Barrett, John W. and Garcke, Harald and Nürnberg, Robert
(2006)
*Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid.*
Mathematics of Computation (MCOM) 75 (253), pp. 7-41.

| PDF Download (1MB) |

## Abstract

We consider a fully practical finite element approximation of the degenerate Cahn-Hilliard equation with elasticity: Find the conserved order parameter, $\theta(x, t)\in [-1, 1]$, and the displacement field, $\underline u(x, t)\in \Bbb R^2$, such that $$\gamma\frac{\partial\theta}{\partial t}=\nabla\cdot (b(\theta)\nabla [-\gamma\Delta\theta + \gamma^{-1}\Psi'(\theta) + \tfrac 12 c' (\theta){\cal ...

## Export bibliographical data

Item type: | Article | ||||
---|---|---|---|---|---|

Date: | 2006 | ||||

Institutions: | Mathematics > Prof. Dr. Harald Garcke | ||||

Identification Number: |
| ||||

Classification: |
| ||||

Keywords: | degenerate Cahn-Hilliard equation; elasticity; convergence; nonlinear degenerate parabolic system | ||||

Dewey Decimal Classification: | 500 Science > 510 Mathematics | ||||

Status: | Published | ||||

Refereed: | Unknown | ||||

Created at the University of Regensburg: | Unknown | ||||

Deposited on: | 27 Nov 2009 06:50 | ||||

Last modified: | 13 Mar 2014 12:07 | ||||

Item ID: | 10985 |