Startseite UB

Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid

Barrett, John W. and Garcke, Harald and Nürnberg, Robert (2006) Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid. Mathematics of Computation (MCOM) 75 (253), pp. 7-41.

[img]
Preview
PDF
Download (1MB)

at publisher (via DOI)


Abstract

We consider a fully practical finite element approximation of the degenerate Cahn-Hilliard equation with elasticity: Find the conserved order parameter, $\theta(x, t)\in [-1, 1]$, and the displacement field, $\underline u(x, t)\in \Bbb R^2$, such that $$\gamma\frac{\partial\theta}{\partial t}=\nabla\cdot (b(\theta)\nabla [-\gamma\Delta\theta + \gamma^{-1}\Psi'(\theta) + \tfrac 12 c' (\theta){\cal ...

plus


Export bibliographical data

Item Type:Article
Date:2006
Institutions:Mathematics > Prof. Dr. Harald Garcke
Identification Number:
ValueType
10.1090/S0025-5718-05-01802-8DOI
Classification:
NotationType
Primary 65M60, 65M12, 65M50, 35K55, 35K65, 35K35, 82C26, 74F15MSC
Keywords:degenerate Cahn-Hilliard equation; elasticity; convergence; nonlinear degenerate parabolic system
Subjects:500 Science > 510 Mathematics
Status:Published
Refereed:Unknown
Created at the University of Regensburg:Unknown
Owner: Eva Ruetz
Deposited On:27 Nov 2009 06:50
Last Modified:13 Mar 2014 12:07
Item ID:10985
Owner Only: item control page
  1. University

University Library

Publication Server

Contact person
Gernot Deinzer

Telefon 0941 943-2759
Contact