Startseite UB

Tame class field theory for arithmetic schemes

Schmidt, Alexander (2005) Tame class field theory for arithmetic schemes. Inventiones Mathematicae 160 (3), 527 -565 .

[img]
Preview
PDF
Download (367kB)

Abstract

Takagi's class field theory gave a decription of the abelian extensions of a number field $K$ in terms of ideal groups in $K$. In the 1980s, {\it K. Kato} and {\it S. Saito} [``Global class field theory of arithmetic schemes". Applications of algebraic K-theory to algebraic geometry and number theory, Proc. AMS-IMS-SIAM Joint Summer Res. Conf., Boulder/Colo. 1983, Part I, Contemp. Math. 55, ...

plus


Export bibliographical data



Item Type:Article
Date:2005
Institutions:Mathematics > Prof. Dr. Alexander Schmidt
Keywords:class field theory; higher dimensional fields; arithmetic schemes; Chow group; zero cycles; fundamental group
Subjects:500 Science > 510 Mathematics
Status:Published
Refereed:Unknown
Created at the University of Regensburg:Yes
Owner: Petra Gürster
Deposited On:27 Nov 2009 06:52
Last Modified:13 Mar 2014 12:07
Item ID:10986
Owner Only: item control page

Downloads

Downloads per month over past year

  1. University

University Library

Publication Server

Contact person
Gernot Deinzer

Telefon 0941 943-2759
Contact