Startseite UB

Spectral estimates and non-selfadjoint perturbations of spheroidal wave operators

Finster, Felix and Schmid, Harald (2006) Spectral estimates and non-selfadjoint perturbations of spheroidal wave operators. Journal für die reine und angewandte Mathematik 601, pp. 71-107.

[img]
Preview
PDF
Download (787kB)

at arXiv

Other URL: http://arxiv.org/PS_cache/math-ph/pdf/0405/0405010v4.pdf


Abstract

The spheroidal wave operator $\cal A$ is a linear elliptic operator of second order with smooth coefficients on the unit sphere $S^2$. Using angular variables $\vartheta \in (0,\pi)$ and $\phi\in [0,2\pi)$ this operator may be written in the form ${\cal A}=-{d\over{d \cos \vartheta}}\sin^2\vartheta {d\over{d \cos \vartheta}} + {1\over {\sin^2 \vartheta}}\left(\Omega\sin^2\vartheta+k\right)^2.$ ...

plus


Export bibliographical data



Item Type:Article
Date:2006
Institutions:Mathematics > Prof. Dr. Felix Finster
Identification Number:
ValueType
arXiv:math-ph/0405010v4arXiv ID
Subjects:500 Science > 510 Mathematics
Status:Published
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Owner: Petra Gürster
Deposited On:27 Nov 2009 07:03
Last Modified:13 Mar 2014 12:08
Item ID:10990
Owner Only: item control page

Downloads

Downloads per month over past year

  1. University

University Library

Publication Server

Contact person
Gernot Deinzer

Telefon 0941 943-2759
Contact