Synthesis of conformationally restricted amino acids and their use in the preparation of biologically active peptides and peptidomimetics

Dissertation

Zur Erlangung des Doktorgrades der Naturwissenschaften **Dr. rer. nat.**

der Fakultät für Chemie und Pharmazie der Universität Regensburg und der Università degli studi di Mlano (Italia)

vorgelegt von

Cattaneo Cristian

aus

Comun Nuovo (Italy)

Regensburg 2008

UNIVERSITA' DEGLI STUDI DI MILANO

Facoltà di Farmacia Dottorato di ricerca in Chimica del Farmaco (Ciclo XXI)

SYNTHESIS OF CONFORMATIONAL RESTRICTED AMINO ACIDS AND THEIR USE IN THE PREPARATION OF BIOLOGICALLY ACTIVE PEPTIDES AND PEPTIDOMIMETICS

Tesi del Dottor
Cristian CATTANEO
Matr. Nr. R06578
CHIM 06

Relatori: Prof.ssa M. Luisa GELMI

Prof. Oliver REISER

Coordinatore: Prof.ssa Marina CARINI

Anno Accademico 2007-2008

To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science.

Albert Einstein

Contents

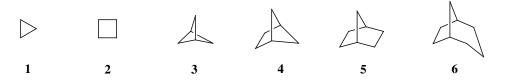
1	Aza	bi	icyc	lo	ami	no	aci	ds
---	-----	----	------	----	-----	----	-----	----

1.1	Introduction				
1.2	3 and 4 member azacyclic amino acids				
1.3	 Bi- and polycyclic conformationally rigid amino acids 1.3.1 Conformationally rigid bicyclic proline rings 1.3.2 Conformationally rigid bicyclic pipecolic derivatives 				
1.4	Rigid Amino acids as drugs				
1.5	Rigid amino acids in peptidomimetics 1.5.1 Conformational rigid cyclic and spirocyclic amino acids with 3 and 4 member rings. 1.5.2 Proline derivatives 1.5.3 Azabicyclo[2.2.1]heptane derivatives 1.5.4 Pipecolic and analogue Bicyclo[2.2.2]octane derivatives				
1.6	Rigid amino acids in organocatalysis				
1.7	Rigid amino acids as metal ligands				
2 6-amino	o-3-azabicyclo[3.2.1]octane-6-carboxylic acids derivatives				
2.1	Introduction				
2.2 atom.	 6-Amino-3-azabicyclo[3.2.1]octane-6-carboxylic acids 2.2.1 Synthesis of norbornene amino acid derivatives 2.2.2 Synthesis of the 6-amino-3-azabicyclo[3.2.1]octane-6-carboxylic acids and derivatives 2.2.3 Studies on the deprotection and functionalization of the N-3 2.2.4 Selective deprotection of amino acid function 2.2.5 Stereochemical assignment for N-phenethyl derivatives 				
2.3	Biological evalutation of 6-Amino-3-azabicyclo[3.2.1]octane-6-carboxylic acids and derivatives 2.3.1 Biological results				
3 ABO in	peptidomimetics				
3.1	Introduction				
3.2	Synthesis of peptides 3.2.1 ABO in peptide synthesis				

- 3.2.2 Use of ABO 124 or 124' as α -amino acids
- 3.2.3 Use of ABO in Solid phase peptide synthesis (SPPS)
- 3.2.4 Solution phase synthesis (PSS)

3.3 Spectroscopical characterization of ABO-peptides

- 4 ABO as a Metal Ligand
- 4.1 Introduction
- 4.2 **norborneoxazoline ligands**
- 5 ABO in Organocatalysis
- 5.1 Introduction
- 5.2 Studies on Diels-Alder reaction
- 5.3 Staudinger reaction.
- **6** Esperimental section


BIBLIOGRAPHY

1 Azabicyclo amino acids

1.1 Introduction

The synthesis and the use of conformationally rigid unnatural compounds have attracted the chemists' interest since long time.^{1, 2} It is commonly assumed that the restriction of the flexibility by structural modifications, such as the insertion of a cyclic scaffold, is an efficient tool to reduce the possible structural conformations of a molecule. Some examples of these rigid scaffolds are reported here below.

Figure 1

In particular non-natural amino acids containing the rigid backbone moieties indicated in *figure 1* are particularly interesting. With respect to the natural constrained amino acids, *i.e.* proline, rigid amino acids are characterized by "fixed" bond length and torsional angles. Furthermore, cyclic amino acids (CAAs) are versatile molecules as they are used in a wide range of applications in different fields. As single molecules, they often possess biological activity and in many cases they are characterized by higher efficiency, stability and receptor selectivity with respect to the natural ones. Their features are particularly profitable, when these unnatural scaffolds are inserted in peptides, as they can improve the selectivity toward a receptor, the stability to enzymatic hydrolysis and so the bioavailability. Another application field of CAAs is their use as rigid ligands in organometallic catalysis and also as organocatalysts into asymmetric reactions.

In the past decades a huge numbers of constrained amino acids were synthesized. Since the focus of our researches were the preparation of CAAs containing an azabicyclo scaffold, (see paragraph 2) in the following paragraphs are presented selected examples of the constrained amino acids containing an aza-ring and some of their applications.

1.2 3 and 4 member azacyclic amino acids.

This class of compounds is represented by synthetic and naturally occurring products holding a three and four member rings³ responsible of the conformational rigidity. Some examples of these azacyclo compounds are reported in *figure 2*.

Figure 2

Aziridine constrained amino acids 7 can be considered as fixed glycine derivatives. Chiral aziridinecarboxylic acids 7 are prepared through an asymmetric synthesis. Some examples are reported below. The key stage in these transformations is the Sharpless catalytic asymmetric epoxidation (*Scheme 1*), obtaining the intermediate 12 than converted in few steps in the compound 14. Alternativelly an asymmetric aziridination of a C=C double bond was performed to give compound 16. (*Scheme 2*)

Scheme 1

ROH

OH

OH

$$2) CH_2N_2$$
 13

OMe

OMe

OMe

 $11) NaN_3$
 $2)PPh_3, DIAD$

H

OMe

 14

OMe

Scheme 2

Ph COOPh
$$\frac{\text{CuOTf, PhI=NTs}}{\text{ligand}}$$
 $\frac{\text{Ph}}{\text{Ts}}$ $\frac{\text{O}}{\text{OMe}}$ $\frac{\text{O}}{\text{Ph}}$ $\frac{\text{O}}{\text{N}}$ $\frac{\text{O}}{\text{N}$ $\frac{\text{O}}{\text{N}}$ $\frac{\text{O}}{\text{N}}$

1-Azaspiro[2.2]pentane-2-carboxylic acid **20** is obtained through the reaction of methyl(chloro)cyclopropylideneacetato with primary amines or ammonia (*Scheme 3*).

Scheme 3

COOMe
$$RNH_2$$
 NHR NH_2 N

Four member aza-rings were initially synthesized in racemic form starting from γ -butyrrolactone.⁴ Since now, there are only few efficient methods for the preparation of these derivatives in enantiometically pure forms. The first example is reported in the 2003 year. The aza-cyclo compounds **25a,b** were obtained starting from amino alcohol **21** as shown in the scheme 4.⁵

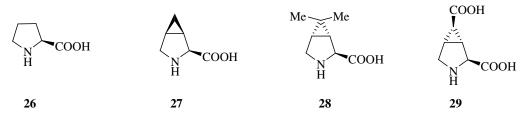
Scheme 4

LHMDS is lithium hexamethylendisilazanide

The development of new methods for the synthesis of these compounds was encouraged for their potential use both as precursors of alkaloids, β -lactam antibiotics and other biological active compounds as well as constrained analogues of natural amino acids which are used in the synthesis of peptidomimetics.⁶

1.3 Bi- and polycyclic conformationally rigid amino acids

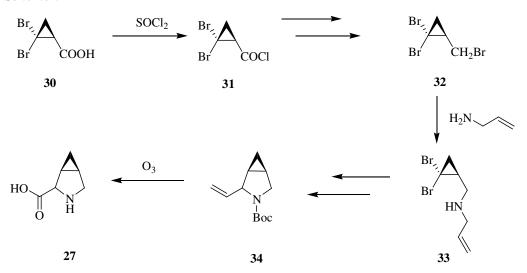
Amino acids discussed in the following sections represent bi- or polyclic structures, in which the nitrogen atom is incorporate into the ring. Consequently, these compounds have the ϕ and χ fixed torsion angles, inducing particular conformations in peptidomimetics.


1.3.1 Conformationally rigid bicyclic proline rings

Proline 26 occupies a special place among proteinogenic amino acids due to its unique structure. In this amino acid, the nitrogen atom is incorporated in a five member ring, which gives rise of conformational changes with respect to other natural amino acids. These features are more pronounced for amino acids with a further strained ring.

In order to confer conformational rigidity to the five member-ring, it is necessary to introduce a bridges with a length of 1 or 2 atoms into the molecule. When such a bridge links two adjacent or non adjacent positions in the ring, proline methanologues are formed. Examples of this classes of compounds are reported in *Figures 3 and 4*.

Cis-3,4 propane–L-proline **27** is found in nature. Other derivatives such as amino acids **28-29** were prepared and tested as interesting organocatalysts and also as buildings blocks in peptide sequences.


Figure 3

As example of this class, the synthesis of compound **27**⁷ is reported below (*scheme* 5). The key reaction step is the cyclization of compound **33** to compound **34** than easily oxidized to compound **27**

11

Scheme 5

2-Azabicyclo[2.1.1]hexane-1-carboxylic acid **36** was first isolated in 1980 from the seeds of legume *Ateleia Herbert smithii* and more recently from the plant *Bocoa Alterna*. It plays an important role in protecting the seeds from insect predation.

Figure 4

Different synthetic methods are possible to access to this compound taking advantage of a very efficient method such as the photochemical cyclization of compound 37 to 38, then hydrolyzed to the amino acid 36.8 (Scheme 6)

Scheme 6

Alternatively, a new method for the synthesis of the 2,4-methanoproline **36** includes a [2+2]-cycloaddition reaction between dichloroketene **39** and allylchloride **40** to give **41** then transformed into the imine **42.** After reaction with 2-hydroxy-2-methylpropanenitrile, a cyclization occurred giving **43**, the precursor of amino acid **36**.⁹

Scheme 7

Cl
$$\rightarrow$$
 Cl \rightarrow Cl \rightarrow Cl \rightarrow Cl \rightarrow Cl \rightarrow Cl \rightarrow A1

NBn Me₂C(OH)CN \rightarrow NH

HOOC

42

43

36

Azabicyclo[2.2.1]heptane carboxylic derivatives containing a five member ring are very interesting compounds widely employed in the synthesis of several conformational rigid peptidomimetics (see sections 1.5).¹⁰

Figure 5

Despite the apparent simplicity of the preparation of 2-azabicyclo[2.2.1]heptane-3-caboxylic acid derivatives, there are only few known representatives of this class. The most utilized method is a Diels-Alder reaction of cyclopentadiene **48** and imine **49**, generated *in situ*. This method allowed to prepare compound **44** in gram scale. 11

Scheme 8

As reported in *figure* 6, it is also possible to generate a series of the above derivative by functionalization of the double bond of the primary cycloadduct 50.

Figure 6

$$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

Concerning the 7-azabicyclo[2.2.1]heptane-3-carboxylic acid **46**, an intramolecular cyclization reaction starting from functionalized cyclohexane derivatives is the useful approach for its preparation.¹² One example is reported below.

Scheme 9

In alternative, the cycloaddition of alkyne **55**, with N-Boc pyrrole gives the adduct **56** than converted into compound **47**.

Scheme 10

1.3.2 Conformationally rigid bicyclic pipecolic derivatives

Pipecolic acid 57 is a non-natural cyclic α -amino acid that represents a proline homologue. To confer rigidity on the pipecolic acid framework, a bridge linking positions 2 and 5 or 3 and 6 have to be included into the ring. Some examples of 2-aza[2.2.2] octane derivatives are reported here below.

Figure 7

15

A large number of these derivatives were synthesized and successfully used for the preparation of peptidomimetics and foldamers. (see section 1.5)

The most useful synthetic method to access to these compounds is a Diels-Alder reaction between 1,3-cycloexadiene and an imine. Functionalized derivatives of this class can be obtained by modification of the double bond.

Scheme 11

Aiming to confer rigidity into the proline ring, an other strategy is to insert the proline ring in a more complex policyclic structure (compounds **64**, **65**) or to introduce sp²-hybridised atoms into the ring as compound **63**.

Figure 8

1.4 Rigid Amino acids as drugs

Different conformational constrained unnatural amino acids, were used as single drug molecules. The rigid scaffold oriented the pharmacophore in the space, thus improving the selectivity, the bioavailability and the stability of these compounds in biological systems. Despite the high interest, only few examples of amino acids containing the aza-ring have found an application. Examples are reported in *Table 1*.

Table 1

Compound	Name	Therapeutic applications	
СООН	2,4-methanoproline	Agonist for mGluR	
66			
НООС	2-(4-amino-4-	Irreversible inhibitor of	
$_{\mathrm{NH_{2}}}^{\dagger}$ $_{\mathrm{HN}}^{-}$	carboxybutyl)aziridine-2-	diaminopipemelic acid	
67	carboxylic acid	epimerase ¹³	
НООС СООН	2-(2-	Irreversible inhibitor of	
HN	carboxyethyl)aziridine-2-	glutamate racemase ¹⁴	
68	carboxylic acid		

Table 1. Unnatural amino acids as pharmaceutical and drug components.

1.5 Rigid amino acids in peptidomimetics

The preparation of peptides is the most wide and extended field in which rigid AAs have found applications.

The design and the use of constrained amino acids in the preparation of peptidomimetics with controlled backbone folding is one of the main strategy aiming to preorganize a flexible peptide into a biologically active conformation responsible of the binding to a receptor. Preorganized molecules are expected to play a lower entropic cost upon complexation. As a consequence, an improved selectivity profile and bioavailability can be expected.

In general rigid amino acids can stabilize a α -, β -, or γ -turn or a β -strand motive that are frequently found in the biologically active conformations.

Since the secondary structure of peptides can be described in terms of the torsion angles φ , ψ and ω , and the conformation of the side chains of amino acids can be described in terms of the torsion angles χ_1 , χ_2 , χ_3 , these parameters play a very important role in the conformation of a peptide fragment. Values of the torsional angles φ , ψ and ω in peptides and proteins containing natural amino acids, were determined as a result of numerous experimental structural data and computational simulations.

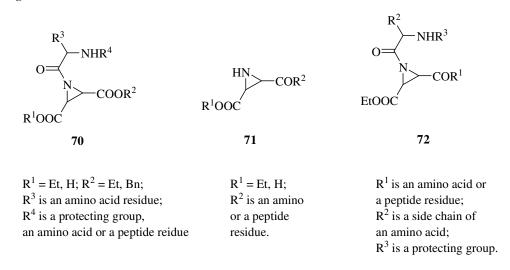
By evaluating the values of the torsion angles of a conformationally rigid amino acid, it is possible in general to predict its effect on the secondary structure.

In particular, if the rigid amino acid presents angles close to the native one, a stabilization in the secondary structure is expected, otherwise the destabilization and change in the secondary peptide structure can be predicted with sufficient accuracy.

Figure 9

	Torsion angle	Notation
C_{ϵ}		
$\chi_3 \stackrel{\zeta_8}{\longleftarrow} \chi_2$	C - N - C_{α} - C	φ
C_{χ}	$N-C_{\alpha}-C-N$	Ψ
$\bigcup_{\alpha} \bigcup_{\alpha \in \mathcal{A}_{\alpha} \setminus \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1} \cap \mathcal{A}_{1}} \bigcup_{\alpha \in \mathcal{A}_{1}} \bigcup$	$N-C_{\alpha}-C_{\beta}-C_{\gamma}$	ω
$C \stackrel{\varphi}{\nearrow} C_{\alpha} \stackrel{\chi}{\nearrow} C_{\alpha} \stackrel{\chi}{\nearrow} C_{\alpha}$	C_{α} - C_{β} - C_{γ} - C_{δ}	χ1
$H = \Psi \cap \mathbf{v}$	C_{β} - C_{γ} - C_{δ} - C_{ϵ}	χ_2
0		

In the ideal case, the ω_0 angle is 0° for the *cis*-configuration of the peptide bond and 180° for the *trans*-configuration. In the majority natural proteins, the peptide bonds have a *trans*-configuration although bonds with the *cis*-configuration are sometimes encountered. Furthermore, the peptide bonds of cyclic amino acids with a nitrogen atom in the ring, the NH-CO bonds can be non-planar since amino acids form tertiary amides. In fact, these residues, are characterized by noticeable pyramidalization of the nitrogen and carbon atoms of the bond NH-CO and by 'twisting' around this N-C bond. The following parameters have been suggested for quantitative description of the conformation of such a non-planar amide fragment: the *twist* angle τ [τ is the angle between the planes defined by the atoms C(1)NC(2) and OC(3)C(4); parameters ω_0 (N) and ω_0 (C) which reflect pyramidalization of a bond at the nitrogen and carbon atoms, respectively; the *tilt* angle δ is formed between the N-C(3) bond and the plane defined by the C(1)C(2)N atoms. A strong pyramidalisation of nitrogen atom bonds and 'twisting' of the amide bond can be achieved in a rigid system, such as derivatives of 1-azaadamantan-2-one **69**.


Figure 10

Here below are reported some examples of peptidomimetics containing the amino acids mentioned in paragraph 1.1 and 1.2 and the above parameters will be discussed for the peptide fragments bearing these rigid moieties.

1.5.1 Conformational rigid cyclic and spirocyclic amino acids with 3 and 4 member rings.

Aziridine amino acids are characterized by strictly fixed ϕ and χ angles. Since small peptides containing this scaffold present an high toxicity, due to the high reactivity of aziridine ring toward nucleophyles, their use as drugs is very limited.

Figure 11

Nevertheless, conformational properties of such peptides may be judged from the single-crystal X-ray diffraction studies of compounds **74** and **75** from which is evinced a significant pyramidalization of the nitrogen atom. This is evidently a consequence of the angle strain in the three-member ring. The δ distortion angle in those dipeptides, is about 37-38°, this mean that the nitrogen atom is virtually tetrahedral as in the case sp³-C hybridisation.

Figure 12

Compounds holding a spiro[2.2]pentane skeleton, were characterized by strongly distorted bond lengths and angles. In particular the C-C bond of the spiro atom is 0.07 Å shorter and the angles are strongly distorted (in range of 59 to 134° of distortion angles δ).

Compound 10 is enough stable to permit the preparation of a short peptide sequence. In order to study the secondary structure induced, it was incorporated into the novel simple peptide structure 76.

Figure 13

Many natural compounds, such as the mugineic acid 77^{15} or the nicotinamide 78^{16} , that contain the azetadine-2-carboxylic acids 8 in their structure, have been reported.

Figure 14

The four member ring in compound **8** is conformationally flexible but it acquires conformational rigidity when is inserted in a peptide sequence because the nitrogen atom is involved in the amide bond.¹⁷ Further studies confirm that this ring is virtual planar. For this reason, these amino acids were often incorporated into synthetic peptidomimetic new drugs.

As examples, pharmacologically important molecules such as the thrombin inhibitor Melagatran **79** or Exanta **80**¹⁸, are hire reported which have been prepared from

compound 8 by modification of the known thrombin inhibitor, viz., Boc-D-Phe-Pro-Arg-H 81.

Figure 15

The replacing of Pro by their conformationally contrained analogous Aze in this tripeptide resulted in a two fold increase in the inhibitory activity.

Figure 16

1.5.2 Proline derivatives

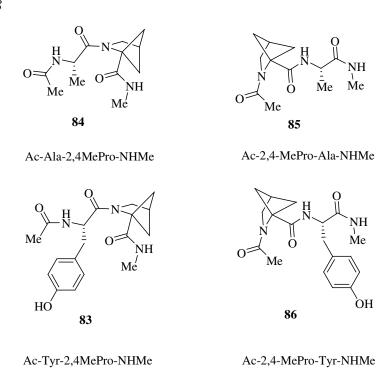
Rigid proline analogues **27**, **28** and **29** may be considered analogues of valine, leucine, and glutamic acids respectively.

Compound 27 is strongly constrained and was successfully employed in the design of mimetics of polyproline II helix. It plays also an important role in the process of intracellular signal trasmission.

Figure 17

A detailed conformational computational analysis of di- and tripeptides containing residue **27** or compounds **28** or **29** shown that the torsion angles φ , ψ , χ_1 and χ_2 are – 70°, 131°, -57°, and –158°. These values agree with angles typical of the polyproline II helix.

2,4-Methanoprolines (2,4-MePro) **35** and **36** are naturally occurring proline analogues. Their bond lengths are close to those of proline but the angles are in some cases different as reported in *Table 2*.


Table 2

Angle	Value (deg)		
	2,4-MePro	Proline	
	(compounds 66)		
N-C(5')-C(4')	97.0	103	
C(3')-C(4')-C(5')	103.1	103	
C(3')-C(4')-C(6)	100.5	103	
C(2')-C(3')-C(4')	82.4	103	
C(2')-C(6)-C(4')	81.9		

Small peptides containing a 2,4-MePro residue (compounds **83-86**) are characterized by fixed torsion angles ϕ and χ . The distortion of these two angles is generated by the

deformation of the framework. Some examples of these compounds have been deeply investigated by NMR spectroscopy and X-ray diffraction. ¹⁹

Figure 18

1.5.3 Azabicyclo[2.2.1]heptane derivatives

Azabicyclo[2.2.1]heptane derivates were widely employed in the synthesis of different conformationally rigid substances. In particular, aza-derivates of norbornane were used in the design of rigid amino acids proline analogues.

The analysis of the bond length and the angles of structure **44** reveled that they are virtually identical to those in proline except for the pyramidalization at the nitrogen atom ($\delta = 14^{\circ}$ and $\tau = 8^{\circ}$). However the corresponding peptide bonds are non-planar. The non-planarity of the amide bonds is evidenced by the values of angles (compound **87**, $\omega_0 = 358^{\circ}$).

Figure 19

For the sake of structural elucidation, two model oligopeptides containing residue **46** (for this residue, a notation Ahc is adopted) has been synthesized. According to the X-ray diffraction data, the angle φ in the protected dipeptides **88** and **89** are strongly deviated from the theoretical value of 0° .

Figure 20

1.5.4 Pipecolic and analogue Bicyclo[2.2.2] octane derivatives

Compound **58** is quite often used as an analogue of proline although it is actually an analogue of pipecolic acid and no substantial difference in the bond angles is observed. X-ray diffraction analysis indicates that the C-C bonds are slightly longer (0.03 Å) than those of pipecolic acid. Instead, no substantial difference in the bond angles were observed.

Amino acids containing a bicyclo[2.2.2]octane framework are widely studied considering the huge number of compounds containing this scaffold. An analysis of

the structural data indicates that amino acids with this framework are characterized by distorted torsion angles especially in the case bulky substituted compounds. Theoretically, the value of the φ angle in derivates of 2-azabicyclo[2.2.2]octane-3-carboxylic acid, assumed the symmetrical framework and the undistorted amide bond, is -60° . According to X-ray diffraction data, this value is -65° for compound **91**. In Zabicipril **90**, the respective torsion angle is -63° . The pyramidalization parameter (ω_0) of the nitrogen atom in **92** is 359.7°. Distortion of the amide bond is also insignificant ($\tau = 4^{\circ}$ and $\delta = 9^{\circ}$), i.e., the amide bond in derivatives of 2-azabicyclo[2.2.2]octane is virtually planar.

According to X-ray diffraction data, the amide bond is characterized by the *trans*-configuration ($\omega = -172^{\circ}$ and $\omega = -174^{\circ}$ for **92** and **90**, respectively).

Figure 21

Zabicipril

1.6 Rigid amino acids in organocatalysis

Organocatalysis represents one of the most active research field in the last decade. A range of catalysts of varying structural complexity were developed. An organocatalyst is "an organic compound of relatively low molecular number and a simple structure capable of promoting a given trasformation in substoichiometric quantities". Organic catalysts offer several advantages with respect to the traditional transitional metal mediate reactions. Organocatalysts are generally cheaper because in many cases are naturally derived compounds. They can often easily handle under wet and aerobic conditions, and there are not associated to toxic problems. However in some cases in order to have good performance the catalytic loading is too high.

Examples of organocatalysts were reported first in 1960's in which natural organic compounds such as alkaloids (chinchona) or natural amino acids (proline) were used as the catalyst in asymmetric reactions. Aiming to developed better catalysts, amino acids, and in particular the constrained ones, have found a central role and also interesting applications.

The most readily available catalytic systems within this field are undoubtedly the proteinogenic α -amino acids, with proline derivatives arguably the most commonly used as organocatalysts.

The first pioneering example of an amino acid used as catalyst, was the asymmetric Robinson annulation reported in the early 1970s. A catalytic amount of (S)-proline was enough to mediate the aldolcyclization of compound **93** in 100 % yield and 93 % ee. ²¹ The polar aprotic DMF was found to give the shorter reaction time and the highest enantioselectivity and yield.

Scheme 12

Advantages on the use of proline are that it is cheap, very powerful and easily available in enantiomerically pure form. For these reasons it is the most utilized organocatalyst. Nevertheless some examples were reported in which the catalyst is a fixed proline derivatives that performs similar or better results with respect to proline.

Here below are reported some examples of rigid proline derivatives used as organocatalysts.²²

Scheme 13

The goal in the use of the rigid proline catalyst is that the loading is much lower compared to the native proline.

Also aldol reaction was studied using rigid proline derivatives reported in *table 3* which gave a good selectivity also using acyclic ketones.²³

Scheme 12

Table 3

Catalyst	Yield	ee (%)
HN COOH 36	99 %	87 %
HOOC 46	100	95 %
COOH N H 44	95%	91 %

Even if, the used of rigid amino acids containing azaring as organocatalyst is a promising application field, since now not many examples are reported in literature.

1.7 Rigid amino acids as metal ligands

Amino acids were used as metal ligands since long time, but this research field is also actual for the "bioorganic applications". ²⁴ In this sense, promising researches pointed out the attention on small peptide containing unnatural rigid amino acids that can conveniently replace a complex enzyme structure and are normally more stable than the native one. Very important, is the active site responsible of the catalytic reaction general makes up a transition metal, coordinated to a serie of amino acids. ²⁵ An evaluation of the intrinsic binding energy $\Delta E_{\rm int}$, between the metal in the metal fragment $[X_nM]^*$, and the ligand L^* (these asterisks designate a simplification that the ligand and the fragment have the some energy in the complex $[X_nML]$), can be obtaining according to the electron transition state (ETS) scheme. ²⁶ The bonding energy between two fragments is described by the three interaction terms shown in Equation 1.²⁷

Equation 1

$$\Delta E_{\rm int} = \Delta E_{\rm Pauli} + \Delta E_{\rm elsta} + \Delta E_{\rm orb}$$

The first term ΔE_{Pauli} quantifies the Pauli repulsion between the electrons on the two fragments. The electrostatic attraction between the two fragments is named ΔE_{elsta} and the ΔE_{orb} represents the orbital interaction term, which quantifies the energy gain upon mixing the orbitals of the two fragments. Only analysing all these energy parameters is possible to evaluate the energy of metal-ligand interaction.

The ΔE_{Pauli} plays an unfavourable role for the ligands with rather extended occupied π orbitals such as C_2H_4 , C_2H_2 , and CO and is not counterbalanced by a strong electrostatic interaction ΔE_{elsta} . This latter term is also especially large for NHC complexes in fact N atom is a σ donor but does not have an important π retro donation. Furthermore N atom can also change its hardness character, depending on the different functional group in which is involved. As an example, in an oxazoline, N atom revealed a hard character, but in an amine its character is more soft. These characteristics and the different orbital energy ΔE_{orb} make nitrogen atom one of the most interesting useful and versatile "bindings atom" for transition metal.

Natural and unnatural amino acids have been used since long time as ligands for transition metal in order to create interesting chiral organometallic catalysts. However in literature are reported only few examples of azacyclic rigid amino used as transition metal ligands.

In complex 103 the proline ring is condensed in a more complexes structure that became rigid when the iron ion Fe²⁺ was deeply incorporated in the amino structure.²⁸ Compound 103 could be inserted in a peptidic sequence for the design of mimic enzyme active site.

Figure 22

In another example the four member azacyclic amino acid **9** was used as a ligand for cadmium ion (Cd²⁺) forming a very stable complex **104.** ²⁹ The complex is so stable that this system is a very efficient method to chelate the toxic cadmium cation in biological systems.

Figure 23

2 6-amino-3-azabicyclo[3.2.1]octane-6-carboxylic acids derivatives

2.1 Introduction

As reported in the previous chapter, constrained aza-bicyclo amino acids are noteworthy in particular for their different applications. Since the preparation of constrained amino acids and their possible applications are one of the main synthetic targets of our research group, during my thesis I planned the preparation of a new class of rigid amino acids containing the aza-bicycle-octane scaffold, *i.e.* the 6-amino-3-azabicyclo[3.2.1]octane-6-carboxylic acids named (ABOs) of general formula **105**.

Figure 24

HOOC
$$H_2N$$
 N R

The biological interest for aza-bicyclo octane ring is evinced by the recent literature³⁰ in which a large number of patents point out that this scaffold could be the pharmacophore of a bioactive molecule or a substituent of a different bioactive scaffold.

Depending on the substitution pattern of the ring, different activities were reported. In particular, many of these compounds were used for treating central nervous system disorders. Among these molecules, the carboxylic acid derivatives³¹, as well as the amino substituted compounds are of relevance.³² Some examples of these compounds are reported below.

Figure 25

HOOC
$$N_{\text{NH}}$$
 N_{n} N_{m} $N_{$

Due to the importance of this scaffold we developed an efficient synthetic protocol for the preparation of the new 6-amino-3-azabicyclo[3.2.1]octane-6-carboxylic acids, of general structure **105**.

ABO can be considered both an α,γ - and α,δ -diamino acid containing sterical constraints and characterized by α,α -disubstitution. These features make ABO and their derivatives very promising molecules in view of their applications such as:

- bioactive molecules tested on GABA_A receptor
- building blocks in peptidomimetic synthesis
- ligands for transition metal
- organocatalysts both in Diels Alder and Staudinger reactions

2.2 6-Amino-3-azabicyclo[3.2.1]octane-6-carboxylic acids

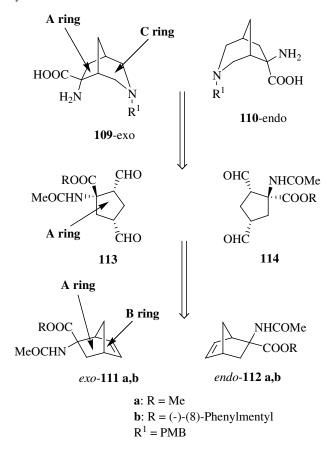
Four isomers of the ABO amino acid can be drawn and synthesized *i.e.* a couple of diastereoisomers each present as enantiomers (*Figure 26*). The availability of all four ABO steroisomers is of importance in view of biological test.

The synthetic protocol for the preparation of ABO amino acids was deeply studied aiming to optimize the synthetic procedure in term of :

- minimization of the synthetic steps
- minimization of cromathographic purification
- orthogonal protection
- preparation of ABO compounds in multi gram scale
- preparation of the four isomers in enantiomerically pure form starting from commercially available compounds

Figure 26

COOH HOOC
$$N-R$$


109-exo

109'-exo

110'-endo

To ensure the preparation of stereomers 109, 109' and 110, 110' in enantiopure form, our retrosynthetic plan features the use of norbornene amino acids 111 and 112 as suitable starting materials.

Scheme 13 Retrosynthetic scheme.

Norbornene amino acids 111 and 112 are readily prepared as endo/exo diastereomers, both in racemic and in enantiopure form, by the Diels-Alder reaction starting from 2-aminoacrylate derivatives and cyclopentadiene 48. Compounds 111 and 112 are very useful starting materials for the preparation of the aza compounds 109, 110. In fact, by disconnection of C₅-C₆ bond into B ring of norbornenes 111, 112 through an oxidative reaction, the cyclopentyl derivatives 113 and 114 (A ring in both compounds 111, 112 and 113, 114), substituted with the amino acid function and with two formyl groups with the proper regiochemistry and cis relationship, were obtained. From these key intermediates, the formation of the C ring of 109 and 110 3-aza-bicyclo[3.2.1]octane skeleton was assured by a reductive amination reaction.

- The objects of these researches were published in:
 - Francesco Caputo, Cristian Cattaneo, Francesca Clerici, Maria Luisa Gelmi and Sara Pellegrino, J. Org. Chem., 2006, 71, 8467-8472
 - Maria Luisa Gelmi, Cristian Cattaneo, Sara Pellegrino, Francesca Clerici, Marina Montanari, Claudia Martini, J. Org. Chem., 2007, 72; 9811-4.

2.2.1 Synthesis of norbornene amino acid derivatives

The preparation of methyl 2-acetamidobicyclo[2.2.1]hept-5-ene-2-carboxylate is reported in literature³³ and shown in scheme 13. The key starting reagents for the preparation of the amino acids containing the 3-azabicyclo[3.2.1]octane skeleton were the norbornene derivatives exo-111a and endo-112a as well as the conresponding enantiopure compounds exo-111b and endo-112b.

Instead enantiopure norbornene derivatives exo-111b and endo-112b were obtained by reaction of aminoacrylates 117 and cyclopentadiene 48 (Scheme 15). (-)-8-Phenylmenthyl acrylate 117 is a know compound, which can be obtained in 47 % yield, according to the literature.³⁴ To improve its yield, a new efficient protocol was adopted, by reacting 2-acetamidoacrylic acid 115 with dicyclohexylcarbodiimide (DCC) in dichloromethane under an inert atmosphere. The corresponding 4methyleneoxazolone 116 was obtained which is an unstable compound, very sensitive to moisture. For this reason, after filtration of the dicyclohexylurea under a nitrogen atmosphere and solvent elimination, oxazolone 116 was immediately made to react in refluxing benzene with (-)-8-phenylmenthol in the presence of bis-(dibutylchlorotin)oxide as the catalyst. Chiral acrylate **117** was obtained in an excellent yield (98%) (*Scheme 14*).

Scheme 14

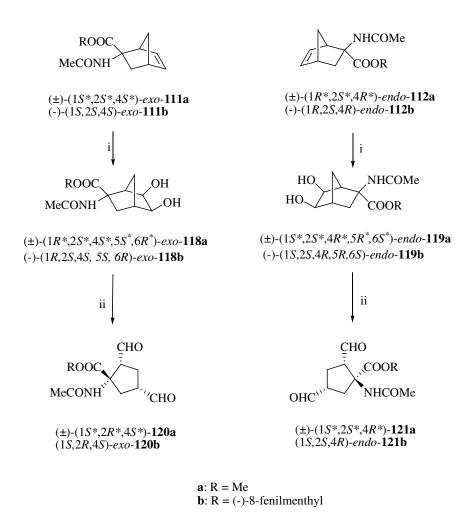
COOH DCC
$$CH_2Cl_2$$
 r.t. Ph Me Ph

The asymmetric synthesis of the new cycloadducts *exo-***111** and *endo-***112** was carried out starting from enantiopure acrylate **117** performing the Diels–Alder reaction in dichloromethane as the solvent, Mg(ClO₄)₂ (0.3 equiv) as the catalyst and with ultrasound (14 h) (*Scheme 15*). A mixture of *exo-***111b** and *endo-***112b** (84%) was obtained in 83:17 ratio and with high diastereoselectivity for each *exo* (de 97%) and *endo* (de 96%) couple of diastereomers (HPLC analysis). Pure compounds *exo-***111b** (de 99%) and *endo-***112b** (de 99%) were isolated by chromatographic separation and crystallization.

The structure of cycloadducts *exo*-**111b** and *endo*-**112b** was determined by NMR experiments (¹H, ¹³C, COSY, NOESY NMRs). ¹H NMR spectra revealed differences between the two diastereomers: typical signals at 5.94–5.89 (m, H-6), 6.37–6.33 (m, H-5), 2.84 (m, H-4, H-1), 2.60 (dd, H-3_{exo}), 1.15 (dd, H-3_{endo}), 1.78 (m, H-7_s), 1.38 (m, H-7_x), 4.88 (NH), and 1.76 (MeCO) are present for the *exo*-adduct. Signals at 5.78–5.74 (m, H-6), 6.36–6.32 (m, H-5), 2.90 (br s, H-4), 1.76 (dd, H-3_{exo}), 2.22 (dd, H-3_{endo}), 2.56 (m, H-1), 1.67 (m, H-7_s), 1.50 (m, H-7_x), 5.42 (NH), and 1.93 (MeCO) characterize the spectrum of the *endo* adduct. As a confirmation of the stereochemistry assigned to the cycloadducts, a significative positive Overhauser effect (NOESY experiments) was observed between the NH and both H-3_{endo} and H-6 in the *exo*-adduct, and between the NH and H-7_s in the *endo*-compound.

The absolute configuration of all the stereocenters in compound *exo-111b* was assigned indirectly by the hydrolysis of the (-)-8-phenylmenthyl ester function to the corresponding acid. The known³⁵ (-)-2-acetylamino-bicyclo[2.2.1]hept-5-ene-2-

carboxylic acid exo-111b was obtained, characterized by the (1S,2S,4S)-configuration.

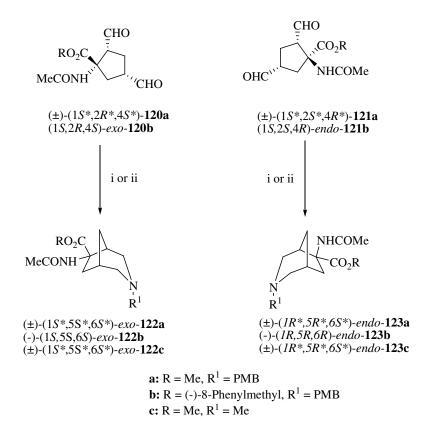

The stereochemical outcome of this reaction showed that the diene attacked the dienophile on the less hindered Si-face (intermediates **A** and **B**), which is in agreement with the results observed for the synthesis of the analogous (-)-menthyl³⁶ or (-)-8-phenylmenthyl derivatives.³³ Accordingly, the stereochemistry assigned to the *endo* adduct (+)-**112b** is 1R,2S,4R.

2.2.2 Synthesis of the 6-amino-3-azabicyclo[3.2.1]octane-6-carboxylic acids and derivatives

The synthesis of ABO derivatives was performed first, starting from racemic compounds exo-111a and endo-112a which were transformed into the corresponding dihydroxy derivatives 118a and 119a by allowing 111a and 112a to react with N-methylmorpholine-N-oxide (NMO) in acetone/ H_2O , in the presence of a catalytic amount of osmium tetroxide ($Scheme\ 16$). The diol derivatives exo-118a (86%) and endo-119a (84%) were obtained in pure form as single diastereomers characterized by the cis relationship between both the hydroxy groups and the bridge, as demonstrated by a NOESY experiment on exo-118a. In fact, spatial proximity between $endo\ H$ -3 (δ 1.34) and H-5 (δ 3.73) and between H-6 (δ 3.97) and the methyl group of the acetyl group (δ 1.94) was observed.

The cyclopentyl derivatives functionalized with two formyl groups with the proper stereochemistry were obtained by cleaving the C₄-C₅ bond of compounds **118a** and **119a** with sodium periodate as the oxidant in dioxane/H₂O (8:1) at room temperature (4 h). Bisaldehydes **120a** and **121a** were quantitatively obtained from *exo-***118a** and *endo-***119a**, respectively (*Scheme 16*).

Scheme 16 Synthesis of Bisaldehydes ^a



^a Reagents and conditions: (i) OsO₄, NMO, acetone/H₂O, 25 °C; (ii) NaIO₄, dioxane/H₂O, 25 °C.

The bisaldehydes are not very stable, and for this reason it was chosen to transform the crude reaction mixtures directly into the corresponding 3-azabicyclo[3.2.1] octane derivatives. A reductive amination was performed using p-methoxybenzylamine, as nitrogen donor, and sodium triacetoxyborohydride, as reducing agent (1.3 equiv). The reaction works at room temperature (4 h) in 1,2-dichloroethane and in the presence of a catalytic amount of acetic acid. Methyl 6-acetamido-3-

azabicyclo[3.2.1]octane-6-carboxylate derivative *exo-***122a** (61%) was obtained from **120a**. Compound *endo-***123a** was isolated in 53 % starting from **121a**. (*Scheme 17*).

Scheme 17 Synthesis of 3-Azabicyclo[3.2.1]octane Ring^a

^a Reagents and conditions: (i) *p*-methoxybenzylamine NaBH(OAc)₃, AcOH (cat.), ClCH₂CH₂Cl, 25 °C, (ii) MeNH₂; NaBH(OAc)₃, AcOH (cat.), ClCH₂CH₂Cl, 25 °C.

This synthetic protocol suffers from some limitations related to (i) the efficiency of the exo/endo norbornenes 111 and 112 separation, and (ii) the necessity to perform the reaction twice, both starting from the exo and the endo norbornenes. For this reasons a more efficient synthetic protocol was developed by the preparation of the exo/endo mixture of compounds (±)-122a and (±)-123a using the same synthetic procedure described for pure diastereoisomers, and in their easy separation by column chromatography in the final step (Scheme 17). The mixture of exo-111a and endo-112a (7:3)transformed mixture of exolendo-3was into a

azabicyclo[3.2.1]octane amino acid derivatives *exo-***122a** (41%) and *endo-***123a** (15%), through the diol derivatives **118a**, **119a** and bisaldehydes **120a/121a**.

The above method was also applied to the preparation of the 3-*N*-methyl compounds (±)-*exo*-122c (24%) and (±)-*endo*-123c (11%), which were obtained in poor yields from the mixture of aldehydes 120a and 121a and using methylamine as a nitrogen donor in the standard reductive conditions (NaBH(OAc)₃, AcOH (cat.), ClCH₂CH₂Cl, 25 °C) (*Scheme 17*).

The enantiopure amino acids (-)-exo-122b (57%) and (-)-endo-123b (58%) (Scheme 17) were prepared following the same synthetic protocol starting from enantiopure compounds (-)-exo-111b and (+)-endo-112b, transformed into the diol derivatives (-)-exo-118b and (+)-endo-119b, oxidized to bisaldehyde 120b and 121b, respectively (Scheme 16).

As reported above, enantiopure compounds *exo-***111b** and *endo-***112b** were obtained in 83 : 17 *exolendo* ratio through a Diels-Alder reaction and this result obviously disfavored the preparation of the endo series of compounds **123b** when starting from (-)-phenylmenthyl ester *endo-***112b**. For this reason and also considering the possibility to synthesize all stereomers of compounds **122** and **123**, we chose to start from racemic methyl esters of *exo-***111a** and *endo-***112a** which can be prepared in 70:30 ratio and in grams scale.³⁷

Following the above reported procedure, the mixture of compounds **111a** and **112a** was transformed into the four enantiopure stereoisomers *exo-***124b** (25%), *exo-***124b**' (28%), *endo-***125b** (12%), and *endo-***125b**' (10%). The preparation of the above amino acids was performed on the gram scale (7 g), using the cheaper of (+)-(*R*)-1-phenylethylamine as nitrogen donor and resolving reagent when the reductive amination reaction (NaBH(OAc)₃, AcOH (cat.), ClCH₂CH₂Cl, 25 °C) was performed from aldehydes **120a**, **121a** (*Scheme 18*).

Scheme 18 Reductive Amination Procedure^a.

^a Reagents and conditions: (i) (+)-(*R*)-1-phenylethylamine, NaBH(OAc)₃, AcOH (cat.), ClCH₂CH₂Cl, 25 °C.

2.2.3 Studies on the deprotection and functionalization of the N-3 atom.

In order to prepare a series of ABO derivatives characterized by a different substitution pattern on N-3, which are useful for biological tests, both 3-NH- and 3-N-alkyl compounds were prepared.

The *p*-methoxybenzyl derivatives *exo-***122a** and *endo-***123a** (*Scheme 19*) were first selected as key reagents aiming to find a general procedure to minimize the synthetic steps. This allowed the *NH*-compounds as well as a series of *N*-alkyl compounds to be synthesized efficiently.

Aiming to prepare the NH azabicyclo[3.2.1]octane derivatives, which are also valuable and alternative starting materials for the preparation of 3-N-substituted amino acids, the N-p-methoxybenzyl group (PMB) on compounds exo-122a was removed by an oxidative process using cerium ammonium nitrate (CAN) in

acetone/H₂O (9:1) at room temperature. This method is reported in the literature, but its straightforward application in the present case caused difficulties because of the solubility of the amino acid derivative in water. The problem was overcome by treating the reaction mixture with solid NaHCO₃ followed by its chromatography on silica gel. Compound *exo-126a* was isolated in 90% yield. The same synthetic protocol allowed us to transform *endo-123a* into amino acid *endo-127a* (62%) (*Scheme 19*).

The deprotection of N-3 was also performed by hydrogenolysis which made possible an easy purification and better reaction yields of the products (*Scheme 19*). The hydrogenolysis of (\pm) -exo-122a and (\pm) -endo-123a (Pd/C, MeOH, 25 °C, 1 atm, 2 days) gave the NH derivative (\pm) -exo-126a (97%) and (\pm) -endo-127a (93%), respectively.

Scheme 19 Orthogonal deprotection of the N-3 amino function ^a

^a Reagents and conditions: (i) CAN, acetone/H₂O, 25 °C; (ii) Pd/C, H₂, MeOH, 25 °C, 1 atm, 2 days

Since, as reported before, the preparation of N-methyl derivatives from aldehydes **120a** and **121a** gave pure results in term of yield, an alternative and more general procedure was planned to prepare, in general, N-alkyl compounds. This synthetic target was achieved using a "one pot" deprotecton and alkylation reaction of the nitrogen atom on N-3, taking advantage of the use of catalytic hydrogenation in presence of a carbonyl compound, starting from reagents **122a** and **123a** or enantiopure compounds **124/124'** and **125/125'**.

When the hydrogenolysis was performed in presence of a methanolic solution of formaldehyde (37%), the *N*-methyl derivatives (\pm)-exo-122c (74%) and (\pm)-endo-

123c (70%) were isolated, respectively, from (\pm) -exo-122a and (\pm) -endo-123a (Scheme 17). It has to be emphasized that this synthetic approach is a valuable alternative to the reductive amination of bis-aldehydes 120a and 121a in the presence of MeNH₂ which gave the same N-methyl derivatives 122c and 123c but in very low yield ($Scheme\ 17$). The reductive alkylation of (\pm) -exo-122a was also performed in EtOH/acetaldehyde and in acetone and the expected N-ethyl and N-isopropyl derivatives (\pm) -exo-122d (93%) and (\pm) -exo-122e (86%) were isolated, respectively ($Scheme\ 20$). Compound (\pm) -endo-123d (85%) was obtained from (\pm) -endo-123a.

Scheme 20 Synthesis of 3-N-Alkyl-6-amino-3-azabicyclo[3.2.1]octane-6-carboxylic Acids by a "One-Pot" Deprotection-Alkylation Procedure^a

MeOOC MeCONH NR i NHCOMe NHCOMe COOMe NHCOMe COOME NHCOME (
$$\pm$$
)-exo-122c: R = Me (\pm)-exo-122c: R = Me (\pm)-exo-122a (\pm)-exo-123a (\pm)-endo-123c: R = Me (\pm)-endo-123d: R = Et

The "one-pot" deprotection-methylation reaction of the N-3 atom of the four stereoisomers (+)-exo-124, (-)-exo-124', (+)-endo-125, and (-)-endo-125' using formaldehyde gave the pure enantiomers (+)-exo-122c (80%), (-)-exo-122c' (70%), (+)-endo-123c (83%), and (-)-endo-123c' (85%), respectively ($Scheme\ 21$).

^a Reagents and conditions: (i) H₂, Pd/C (**122c**,**123c**: MeOH/HCHO; **122d**,**123d**: EtOH/MeCHO; **122e**: MeCOMe)

Scheme 21 Enantiopure 6-Amino-3-azabicyclo[3.2.1]octane-6-carboxylic Acids and Their 3-N-Methyl Derivatives^a

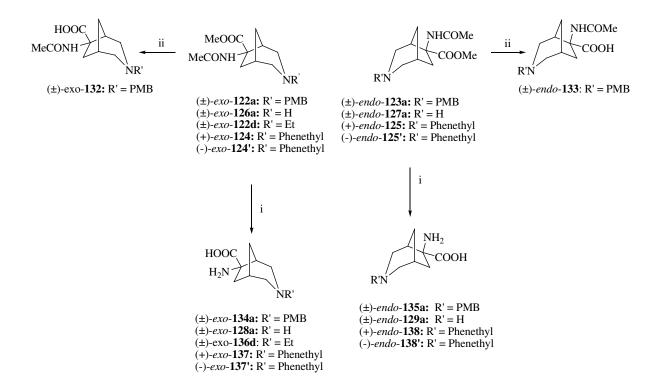
Finally, considering that the 4,4-diphenylbut-3-en-1-yl group is a typical residue that increases selectivity (see compound SK&F 89976-A) on GABA receptors and taking into account that the appropriate aldehyde is not available, compound (±)-*exo*-122g (30%) was prepared starting from (±)-*exo*-126a and 4,4-diphenylbut-3-en-1-yl bromide operating in DMF and in the presence of K₂CO₃ and NaI (*Scheme* 22).

^a Reagents and conditions: (i) $R = Me: H_2, Pd/C, MeOH, HCHO;$ (ii) 6 N HCl, Δ .

Scheme 22. Synthesis of 3-N-(4,4-diphenylbut-3-en-1-yl)-6-amino-3-azabicyclo[3.2.1]octane-6-carboxylic Acids ^a

^a Reagents and conditions: (i) (Ph)₂C=CH(CH₂)₂Br, K₂CO₃, NaI, DMF; (ii) 6 N HCl,Δ;

2.2.4 Selective deprotection of amino acid function

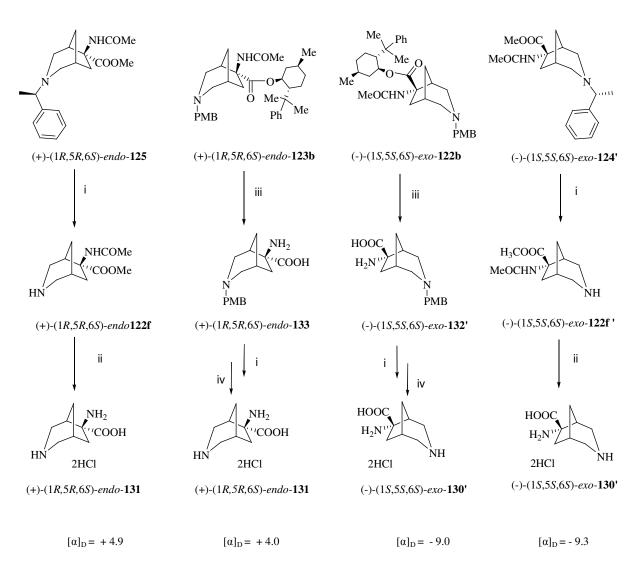

Methyl ester group of (\pm) -exo-122a and (\pm) -endo-123a was selectively hydrolyzed using basic conditions (EtOH/KOH). The corresponding acids (\pm) -exo-132 (95%) and (\pm) -endo-133 (99%) were isolated, respectively (*Scheme 23*).

Both the amino and the carboxy functions were deprotected in acid conditions (6 N HCl at 100 °C, 24 h). Amino acids *exo-134a* ,134d, 128a *endo-135a*, 129a were obtained in quantitative yield, as bishydrochlorides, from (±)-*exo-122a* ,122d, 122a (±)-*endo-123a*, 127a respectively (*Scheme 23*). The same protocol was also used efficiently (6 N HCl at 100 °C, 36 h) to deprotect the phenethyl derivatives (+)-*exo-124* and (-)-*exo-124*', (+)-*endo-125* and (-)-*endo-125*', obtaining compounds (+)-*exo-137* and (-)-*exo-137*', (+)-*endo-138* and (-)-*endo-138*' respectively (*Scheme 23*).

Compounds (+)-exo-122c and (-)-exo-122c', (+)-endo-123c and (-)-endo-123c', were also hydrolysed obtaining compounds (+)-exo-128c and (-)-exo-128c', (+)-endo-129 and (-)-endo-129c' respectively (*Scheme 21*).

The hydrolysis of ester functions of compounds (\pm) -exo-122a and (\pm) -endo-123a was successfully achieved with KOH in EtOH (reflux for 50 h). Amino acids (\pm) -exo-132 (45%) and (\pm) -endo-133 (60%) were obtained respectively. (Scheme 23)

Scheme 23 Orthogonal Deprotection^a

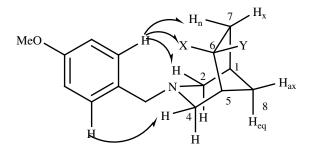


^a Reagents and conditions: (i) 6 N HCl, 100 °C; (ii) KOH, EtOH (95%), 120 °C

2.2.5 Stereochemical assignment for N-phenethyl derivatives

Aiming to ensure the correct stereochemistry of each stereoisomer of the phenethyl series, isomers (-)-*exo*-122f and (+)-*endo*-122f were hydrolyzed in 6 N HCl (100 °C, 24 h) to give (-)-*exo*-130' and (+)-*endo*-131, respectively, in quantitative yield as the bishydrochlorides (*Scheme 24*). Compounds (-)-*exo*-130' ($[\alpha]_D = -9.3$) and (+)-*endo*-131 ($[\alpha]_D = +4.9$) were correlated to the same compounds (-)-*exo*-130' ($[\alpha]_D = -9.0$) and (+)-*endo*-131 ($[\alpha]_D = +4.0$) derived from the catalytic hydrogenolysis (*Scheme 24*) of the known amino acids (-)-*exo*-132' and (-)-*endo*-133 followed by their treatment with anhydrous HCl.

Scheme 24: Stereochemical assignment ^a



^aReagents and conditions: (i) H_2 , Pd/C, MeOH; (ii) 6N HCl, Δ ; (iii) Na, MeOH at 0 °C, then 100 °C; (iv) 6N HCl, r.t.

2.2.6 Spectroscopic characterization

All compounds were characterized by spectroscopic data (¹H NMR, ¹³C NMR, COSY, NOESY; Hetcor) and, as examples, the spectra of compound **122a** and **123a** are here detailed. It is proposed a predominant chair-envelope conformation for 3-azabicyclo[3.2.1]octane from which it is evinced that the benzyl group is in the equatorial position.^{38, 39} Accordingly, we assumed that the more probable conformation of compounds **122a** is that shown in *Figure 28*.

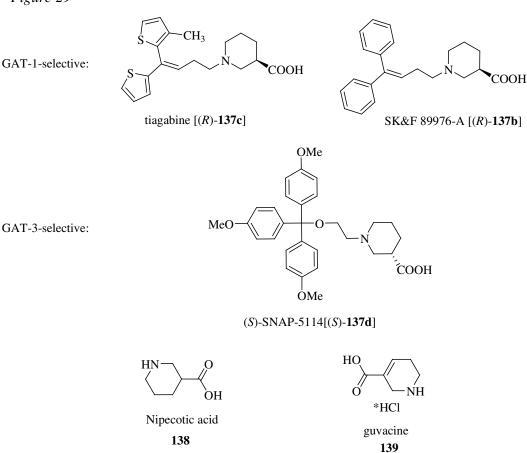
Figure 28 . Conformation and selected NOESY interactions for compounds 122a/123a

exo-122a X = NHCOMe; Y = COOMe

endo-123a X = COOMe; Y = NHCOMe

Typical signals for compound *exo*-**122a** are at δ 1.50 (H_{eq} -8) and 2.00 (H_{ax} -8) and at δ 2.20 (H-1) and 2.72 (H-5). Methylene protons resonate at δ 2.35 ($H_{β}$ -2), 2.80 ($H_{α}$ -2), 2.00 ($H_{β}$ –4), 2.53 ($H_{α}$ -4), 2.35 (H_{x} -7), 1.72 (H_{n} -7) confirming the formation of constrained ring. An AB system at 3.55, 3.17 δ (J = 12.5 Hz) characterizes the presence of the benzyl protons. Selected signals in the 13 C NMR spectrum are δ 65.9 (C-6), 62.2 (CH₂Ar), 61.0 (C-2), 55.6 (MeOAr), 54.9 (C-4), 52.5 (MeO), 42.0 (C-7), 40.0 (C-5), 37.1 (C-8), 34.7 (C-1), 22.5 (MeCO). 1 H NMR spectrum of diastereoisomer *endo*-**5a** shows signals δ 3.42, 3.33 (CH₂Ar), 3.01 (H_{n} -7), 1.90 (H_{x} -7), 2.84 ($H_{α}$ -4), 2.18 ($H_{β}$ –4), 2.71 ($H_{α}$ -2), 2.02 ($H_{β}$ –4), 2.27 (H-1), 2.19 (H-5), 2.01 (H_{ax} -8), 1.51 (H_{eq} -8). The equatorial position of H-8 was univocally assigned through a COSY experiment. In fact, it is evinced a coupling with H_{n} -7 at 3.01 (J = 1.8 Hz).

The carbon atoms resonate at δ 8.5 (C-6), 62.0 (CH₂Ar), 59.0 (C-2), 55.9(C-4), 55.6 (MeOAr), 52.5 (MeO), 46.8 (C-5), 39.9 (C-7), 37.1 (C-8), 35.1 (C-1), 23.7 (MeCO). NOESY experiments confirmed the assigned configuration. Significant special proximity on *exo-***122a** was observed between H_{orto} protons of aryl ring at (δ 7.16) and H_{α}-2, H_{α}-4, and most of all, with NH (δ 6.44) and Me of acetamido group (δ 1.59). Overhauser effect was observed in compound *endo-***122a** between H_{orto} protons of aryl ring at (δ 7.26) and proton of CH₂ groups at lower field (H_{α}-2: 2.71; H_{α}-4: 2.84; H_{α}-7: 3.01 δ) and Me group of carbonylic function (3.69 δ). Furthermore, the NH group shows an Overhauser effect with H_{α}-8.


2.3 Biological evalutation of 6-Amino-3-azabicyclo[3.2.1]octane-6-carboxylic acids and derivates

Compounds **105** can be considered constrained analogues of γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the vertebrate central nervous system. GABAergic neurotransmission, which is mediated through the activation of three receptor subtypes (GABA_A, GABA_B and GABA_C),⁴⁰ has been implicated in many physiological (feeding, cardiovascular regulation) as well as pathological (epilepsy, alcoholism, schizophrenia, sleep disorders, depression and anxiety) events.⁴¹ GABA_A receptor gates a Cl⁻-selective channel in response to the binding of the transmitter and contains multiple sites for pharmacologically distinct classes of allosteric modulators. GABA_A receptor–mediated Cl⁻ conductance is positively modulated at the GABA recognition site, as well as at allosteric sites that bind benzodiazepine, barbiturates, and steroids.⁴²

Selective targeting and modulation of GABA transporter subtypes is of biological interest and additionally of fundamental importance for the elucidation of their specialized physiological function and individual structure. Different constrained amino acids have been prepared and tested on GABA receptors and it was found that the stereochemistry and the substituent linked to nitrogen atom are important features to increase selectivity and activity. Between them, nipecotic acid **138** and guvacine **139** are inhibitors of GABA transport with anticonvulsant activity, ^{43,44} as well as several potent GABA uptake inhibitors including tiagabine **137c**⁴⁵ and SK&F 89976-A **137b**⁴⁶ which are selective molecules for GAT-1. Recently, derivatives of

piperidine-3-alkanoic acids **137d**, characterized by highest affinity at GAT-3, were prepared.⁴⁷

Considering the general biological interest toward new derivatives possessing affinity for GABA receptors, we planned the biological evaluation of GABA mimic amino acids containing the azabicyclooctane skeleton.

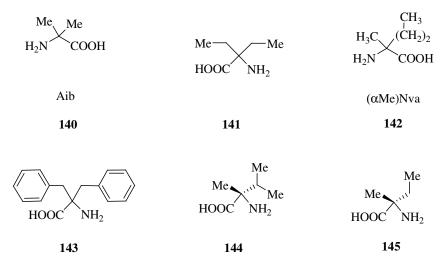
2.3.1 Biological results

Amino acids **134a**, **128c**, **128c'**, **128a**, **129g**, **132'**, **135a**, **129c**, **129c'**,**129a**, **133**, as well as some of the corresponding *N*-acetyl derivatives (see Table 4) were tested for their binding activity on GABA_A receptors in rat cerebral cortical membranes using labelling tests with [³H]muscimol (for GABA_A sites) and [³H]flunitrazepam (for the

benzodiazepine site). The binding affinity of newly-synthesized compounds was determined in rat cerebral cortical membranes by competition experiments. Aliquots of the membrane preparation (~100 μ g protein) were incubated in 50 mM Tris-citrate buffer (pH 7.1) at 0 °C for 90 min with [³H]muscimol (5 nM) and the tested compound (10 μ M); nonspecific [³H]muscimol binding was determined in the presence of 100 μ M GABA. Radioactivity bound to membranes was determined after rapid filtration.

Table 4 Binding affinity of compounds **134a**, **128c**, **128c**', **128a**, **129g**, **132**', **135a**, **129c**, **129c**', **129a**, **133** on GABA receptors ⁴⁸

HO ₂ C R ¹ NH	R^1/R^2	% Inibition (10 μM)	NH R ¹ C O ₂ H	R^1/R^2	% Inibition (10 μM)
(±)-exo- 134a	$R^1 = H, R^2 = PMB$	ni	(±)-endo- 135a	$R^1 = H, R^2 = PMB$	ni
(+)-exo-128c	$R^1 = H, R^2 = Me$	14	(+)-endo- 129c	$R^1 = H, R^2 = Me$	7
(-)-exo-128c'	$R^1 = H, R^2 = Me$	ni	(-)-endo- 129c'	$R^1 = H, R^2 = Me$	ni
(±)-exo-128a	$R^1 = R^2 = H$	ni	(±)-endo- 129a	$R^1 = R^2 = H$	ni
(±)- <i>exo</i> - 129g	$R^{1} = H, R^{2} =$ $(Ph)_{2}C = CH(CH_{2})_{2}$	ni	-	-	-
(±)-exo-132	$R^1 = COMe, R^2 = PMB$	ni	(±)-endo- 133	$R^1 = COMe, R^2 = PMB$	ni


In general these compouds do not display an appreciable affinity for GABA_A receptor. Only *N*-Me derivatives **128c** and **129c** displayed low affinity for GABA_A receptors and in particular, the biological activity is solely due to the (+) enantiomer (*i.e.* (+)-(1R,5R,6R)-exo-**128c** and (+)-(1R,5R,6S)-endo-**129c**) thus confirming that the stereochemistry of the skeleton is an important feature in the binding with GABA receptors.

3 ABO in peptidomimetics

3.1 Introduction

One of the finality of my thesis concern the use of ABO unnatural amino acids in peptide synthesis. In particular we were interested to insert these amino acids in short peptide sequences aiming to evaluate their ability to induce a secondary structure. The features of these compounds, *i.e.* the presence of constraints and heterosubstitutions, make them suitable for this kind of application. ABO compounds are members of the family of $C_i^{\alpha} \leftrightarrow C_i^{\alpha}$ cyclized, C^{α} tetrasubstituted α -amino acids (AC_nC: 1-aminocycloalkane-1-carboxylic acids). The use of $C^{\alpha,\alpha}$ -disubstituted glycines in the synthesis of peptides with restricted conformational flexibility has acquired increasing importance in the design of analogues of bioactive compounds. In fact, it is well known that C^{α} tetrasubstituted amino acids belonging to this class are able to reduce drammatically the available conformational space by stabilizing specific secondary structures, ^{49,50} such as β -^{51,52,53} and γ -turns ^{54,55} and β - and β -helixes. The main rapresentative of this class of amino acids is Aib **140** (α -aminoisobutyric acid) and its congeners such as compounds **141**, **142-145** (reported in *Figure 30*). ⁵⁸

Figure 30

53

Aib has been use since 1964^{59} for the preparation of peptides because it was shown that in general it favours α - or 3_{10} -helix, which are the two most prevalent helices found in proteins^{60, 61}. The 3_{10} -helix, which accounts for approximately 10% of all protein helical structures, is considered to be a protein folding intermediate to the α -helical conformation.

The backbone torsional angles (φ, ψ) of Aib and several other α, α -dialkylated amino acids are severely restricted, resulting in the pronounced propensity of this residue to favor helical structures, even in short peptides. ^{62, 63,64}

In this context the family of the Ac,c 146 (l-amino-1-cycloalkane-carboxylic acid, n = 1-6, 9) alicyclic residues proved to be valuable in the preparation of conformationally constrained peptide backbones.

Figure 31

COOH
$$n = 1-6,9$$
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2
 NH_2

More specifically, the three-membered ring Ac3c residue compounds **146** (n = 1) and **147**⁶⁵ exhibits a marked preference for the *bridge* region of the conformational space, charaterized by $\varphi = \pm 90$, $\psi = 0^{\circ}$. This small-ring residue can also be accommodated in *distorted* type III (III') β -turns and β_{10} -helices. Interestingly, however, the preferred conformations [*regular* type III-(III') β -turns and β_{10} -helices], ⁶⁶ found for Ac₄c-Ac₉c and Ac₁₂c residues, having the cyclic moieties significantly larger than that of Ac₃c, are closely parallel to those of Aib. The conclusion of these studies are that the alicyclic $C^{\alpha,\alpha}$ -disubstituted glycines Ac,c with n=1-6, 9 have different effective volume and hydrophobicity, but they exhibit a strictly comparable conformational preference.

Among $C_i^{\alpha} \leftrightarrow C_i^{\alpha}$ cyclized, C^{α} tetrasubstituted α -amino acids, few example of nitrogen containing ring are reported in the preparation of peptide, *i.e.* the achiral

piperidine-4-amino-4-carboxylic acid Api **149** and derivatives, 67 and its corresponding N-oxide (TOAC 68,69).

Figure 32

HOOC
$$NH_2$$
HOOC NH_2
HOOC NH_2

149
150
151

3.2 Synthesis of peptides

The synthesis of peptides containing multiple α , α -bisubstituted amino acids are inherently difficult due to severe steric hindrance caused by tetrasubstitution at the α -carbon. For this reason, studies on the synthesis of peptides rich in ABO, both in solid phase and in solution, were performed. This part of my research was developed in collaboration with the German group of Dr. Chiara Cabrele of the University of Regensburg (Germany) who introduced me in this field of chemistry. Peptide sequences can be synthesized by two different techniques:

- (i) solid phase synthesis (SPPS)
- (ii) solution phase synthesis (SPS)

Each of these methodologies has intrinsic advantages and disadvantages and it is commonly thinking that one is the complement to the other one.

Even if the most useful techniques for the chemical peptide synthesis is the solid phase, especially when it is necessary to synthesized long peptide sequences, the use of a very steric hindered amino acid residues generally gives better reaction yields operating in solution.

In the solid phase methodology using a Fmoc strategy, the peptide grows up over a solid polymeric support and therefore, after each coupling step, the by-products are

simply removed by filtration and washing. Furthermore, because of the repetitive nature of this synthesis (deprotection, washing, coupling, washing, deprotection, ...), the use of an insoluble support in a single reaction vessel allows the easy automatization of the process.

Scheme 25

In contrast, the solution phase synthesis is not so versatile. In fact, the peptide grows up in solution and, after each step, the purification of the growing peptide is more complicated. Furthermore all the tedious coupling process cannot be automatized. For these reasons this method found application in the preparation of small peptides or to join pre-synthesized peptide sequences.

In particular, this synthetic methodology presents some advantages since the coupling of "difficult sequences" can be better controlled. This methodology is indicated for the coupling with steric hindered amino acids for which the yield of coupling is very low. Solution phase synthesis is based on the use of the acid-labile tert-butyl carbamoyl (Boc) group for the protection of the α -amino group, thereby

allowing the orthogonal protection of side-chain groups through the use of a basiclabile protection.

Figure 33

3.2.1 ABO in peptide synthesis

In the preliminary studies we chose to start from the more available enantiopure compounds exo 124 and 124' which were used as α -amino acids.

Figure 34

3.2.2 *Use of* **124** or **124**' *as* α*-amino acids.*

It is well known that the N-acetyl and the O-methyl protecting groups were not useful as protecting groups for the peptide synthesis, due to the too hard cleavage condition. For this reason, we replaced these groups with more useful functions.

As reported before in *scheme 23* starting from **124** and **124**′, the hydrolysis of both amino and carboxy groups give compounds **137** and **137**′. In order to investigate the behaviour of the ABO scaffold both in solid phase and in solution phase peptide synthesis, we prepared compounds the Fmoc derivatives **152**′, and the Boc protected

compounds **153**' and **153** starting from compounds **137**'. The free amino function was protected using Fmoc-OSu in presence of an aqueous solution of NaHCO₃ and 1,4-dioxane. The reaction works overnight at 25 °C, giving the corresponding compounds **152**' (70%). Alternatively, we protected the free amino function of the compounds **137** and **137**' using Boc-anhydride in aqueous NaOH and t-BuOH. The solution was stirred at 25 °C overnight giving the corresponding compounds **153** (60%) and **153**' (58%), respectively.

Scheme 26: Boc and Fmoc Protection^a

^a i) Boc anhydride in a Bu^tOH/NaOH aqueous solution, 25 °C, overnight; ii) FmocOSu (N-(9-Fluorenylmethoxycarbonyloxy) succinimide) in dioxane solution/NaHCO₃ aqueous solution, 25 °C, overnight 3.2.3 Solid phase peptide synthesis (SPPS)

In order to understand the reactivity of compound (-)-exo-FmocABO **152'** by the solid phase coupling condition, we planned the synthesis of the sequence **154**.

Figure 35

In the sequence **154**, thyrosine was inserted making possible to calculate the exact concentration of the peptide in solution by a simple UV/VIS analysis, since is know its ε (estintion molar coefficient). Furthermore glycine, was the spacer between the thyrosine and the peptide, containing the ABO-Ala sequence.

The synthesis of **154** (*Figure 36*) was carried out by manual solution coupling on Rink amide (MBHA resin (loading 0.58 mmol g⁻¹) which is in the Fmoc-protected form. For this reason, to obtain N-free linker, the resin was first treated with piperidine in DMF/NMP (80:20 v/v).

Figure 36 Rink amide MBHA resin

The natural amino acids of this sequence (L-Tyr, L-Ala and Gly), were coupled activating *in situ* the carboxylic function with HBTU (3.9 equiv.), HOBt (4 equiv.) in DMF in the presence of DIPEA (8 equiv.). The (-)-exo-FmocABO was coupled using different conditions, *i.e.* HBTU (2.2 equiv.), HOAt (2.2 equiv.), instead of HOBt, in DMF in the presence of DIPEA (5 equiv.). Every coupling reaction is also followed by an acetylation reaction to block the incomplete coupling reaction. Fmoc cleavage was accomplished by treating the peptidyl-resin with 20% piperidine in DMF.

To control the progress of the synthesis, small scale cleavage was performed and the resulting sample was analyzed by MALDI-TOF-MS. The last step of the synthesis was the N-terminal acetylation using acetic anhydride (5 equiv.) and DIPEA (2.5 equiv.). Final cleavage of the peptide from the resin and simultaneous side-chain

deprotection was achieved by treatment with a TFA/water/triisopropylsilane (TIS) mixture (90:5:5) for 2.5 hours.

The purification of the peptide was difficult. First the peptide mixture was treated with cold diethyl ether, centrifugation and further three ether-washing/centrifugation cycles to remove the scavengers. In these steps we have many problems since our final compound 154 is a very apolar compound which was partially soluble in ether. For these reasons we obtained a dirty mixture and in few amount. The mass analysis reveal the presence of the expected product but other picks corresponding to the incomplete ABO coupling were also detected.

To overcome this problem we tried to synthesized the sequence **155** in which we replaced the L-alanine with a L-lysine aiming to increase the polarity end to promote the precipitation process. Unfortunately, we were not able to obtain sequence **155** probably for steric problems.

Figure 37

$$\bigcirc \overset{H}{\text{N-Thy-Gly-ABO-Lys-ABO-Lys-ABO}} - \text{Lys-NH-} \bigvee ^{\text{Me}}_{\text{O}}$$

155

3.2.4 Solution phase synthesis (PSS)

To better study the ABO reactivity and the yield of each coupling step, we have developed the synthesis of a short peptide sequence using a Boc solution phase synthesis. We started to synthesized the short penta-aminoacidic sequence **156** containing the repetition of ABO-Ala.

Scheme 27^a

Boc-[ABO]-OH + NH₂-Ala-OMe
$$\xrightarrow{i}$$
 Boc-[ABO]-Ala-OMe \xrightarrow{ii} H₂N-[ABO]-Ala-OMe 153 157 158 159

^a reaction conditions: i) EDC (10 eq.)/HOBT (10 eq.)/DIPEA(15 eq.) in CH_2Cl_2 , 25 °C for 2 days; ii) TFA/ CH_2Cl_2 (1 : 2), 25 °C for 24h.

Each coupling step was performed in CH₂Cl₂ using as coupling reagents EDC (10 eq.), HOBT (10 eq.) and DIPEA(15 eq.). The coupling reactions works in 2 days allowing to give pure peptide after washing the crude mixture with water, drying over Na₂SO₄ and column chromatographic purification on SiO₂. The Boc-cleavage was performed using a solution of TFA/DCM (1:2, reaction time 24h). After neutralization the product was extract and analyzed without further purification. Using this synthetic protocol we synthesized step by step compound **156**.

3.3 Spectroscopical characterization of ABO-peptides

Peptides **158**, **161**, **164**, and **156** were studied performing analytic and spectroscopic experiments. The mass (ESI) experiments confirmed the molecular weight of each peptide.

The dipeptide **158** (*Figure 38*) was characterized by spectroscopic data (¹H NMR, ¹³C NMR, COSY, NOESY; Hector). The results are reported in *Table 6*.

Figure 38

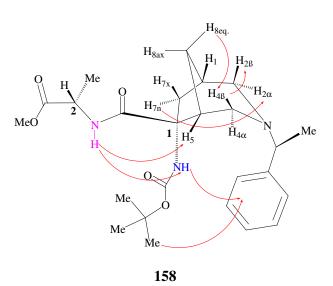
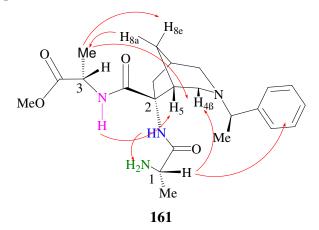


Table 6 NMR data of the dipeptide 158

Residue	atom	δ¹H	Multiplicity J (Hz)	δ ¹³ C	Noesy/Roesy
1	CO			175.0	
	1	2.18-2.08	overlapped	34.3	
	2α	2.83-2.75	m	56.5	MeCH(m), H-7n(vw)
	2β	2.18-2.08	overlapped	30.3	
	4α	2.58	d, J 10.6	53.3	H-5(w)
	4β	1.91 d	J 11.4	55.5	H-5(m), H-2 β (w)
	5	2.3	brs	41.0	H-4α(w)
	6			66.1	
	7x	2.5		39	
	7n	1.60	d, J 13.2	overlapped	$H-2\alpha(vw)$,
	8a	1.69	brs	36.3	
	8e	1.15	d, J 7.3	30.3	$H-4\beta(m), H-5$
	Ph <i>CH</i>	3.38-3.36	m	63.7	H-5
	MeCH	1.26	d, J 6.5	20.1	H-2 α (s), H-4 α (vw)
	Arom	7.35-7.20	m	127.3, 127.8	MeCH(s), MeC, H-
	Afolli	1.55-1.20	m	128.9, 144.9	$4\beta(vw), H-4\alpha(w)$

62

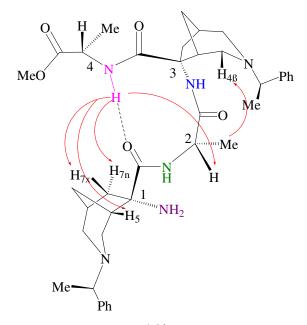

	NH	NH 6.28		brs		Arom, NH _{Ala} (vw), H-
	1111			013		7n, H-4α
		Me 1.40		S	28.8	
	Boc	С			78.7	
		CO			155.7	
	CO				173.7	
	СН	4.25-4.	.19	m	64.7	Me _{Ala}
	Me	1.21		d, J 6.7	17.8	
2	NH	7.67		d, J 7.5		H-5, CH _{Ala} , Me _{Ala} , NH _{ABO} (vw)
	OMe	3.58		S	52.4	

In particular, NOEs effects were observed between H-4 β and H-2 β , between H-8e and H-4 β and between H-7n and H-2 α . These spatial proximity allowed to assigned unequivocally the chemical shift to each proton of the ring. These results are in agreement with the NOEs observed for simple ABO compounds ⁷⁰ where H-2 α , H-4 α , H-7x and H-8a resonate at low field with respect to their counterpart. This observation was used for the assignment of the ABO-protons for the other peptides when the certain stereochemistry could not be assigned since the signals are overlapped.

Spatial proximity was also observed between the two NH, between NH_{Ala} and H-5 and between both the methyl and NH of Boc group and aromatic protons.

The NMR data of compound **161** were reported in *Table 7*. The more significant NOEs correlations are resumed in the *Figure 39*.

Figure 39 Tripeptide 161


Table 7 the NMR data of the tripeptide **161**

D2.1	-4	$\delta^{1}H$	Molteplicity	δ ¹³ C	NT
Residue	atom	$\begin{array}{c c} a \text{ on } & J \text{ (Hz)} & \end{array}$		0	Noesy
	CO			173.0 ¹	
1	СН	3.44	q, J 6.9	49.9	Arom(7.35,w), H-4(2.38,s; 2.72,vw), Me(1.33)
	Me	1.33	d, J 7.0	20.7	
	NH_2	1.70	overlapped		$NH_{ABO}(8.50-7.80,vw)$
	CO			176.3 ¹	
	1	2.25	brs	32.9	H-8e(1.15,s)
	2a	2.80	brs	54.2	
	2β	2.33	d, J 10.1	34.2	
	4α	2.72	d, J 13.4	52.4	Arom (7.36,vw)
	4β	2.38	d, J 11.5	52.4	Arom (7.36,m)
	5	2.90	brs	40.1	NH (7.49), Me _{Ala3} (1.38,s), H-8(2.1,s), H-4(2.72,w),
	6			65.7	
2	7x	2.69	d, J 13.4	39.4 brs	
-	7n	1.90-1.70	m	39.4 018	
	8a	2.20-1.98	m	35.4	$Me_{Ala3}(1.38,w), H-1$
	8e	1.38	overlapped	33.4	Me _{Ala3} (1.38,w)
	Ph <i>CH</i>	3.66	q, J 6.4	63.4	MeCH(1.44)
	<i>Me</i> CH	1.44	d, J 6.4	15.5	
	Arom	7.42- 7.33(<i>o</i> , <i>m</i>) 7.33-7.28 (<i>p</i>)	m	141.4(C), 127.6, 127.3, 126.7(p)	<i>Me</i> CH(1.44), H-4(2.38,s, 2.72,vw), CH _{Ala1} (3.44)
	NH	8.50-7.80			CH _{Ala1} (3.44, vw), NH ₂ (1.70,vw) ²
	СО			172.9 ¹	
_	СН	4.52-4.46	m	47.5	NH _{Ala3} (7.45,s), Me (1.38,s)
3	Me	1.38	d, J 7.1	17.4	NH _{Ala3} (7.45,s), H-8, H-5(w)
	NH	7.45	d, J 6.9		H-5(m), H-7, Me _{Ala3} (1.38,s), CH _{Ala3} (4.50,m)
	OMe	3.72	S	51.5	

^a spectra in CDCl₃ ¹The carbonyl chemical shifts are tentatively assigned; ²exchange pick.

To achieve the better resolution regarding the proton chemical shifts of tetrapeptide **164**, differents solvent were tested (CDCl₃, CD₃CN) and CD₃CN was then selected. Using NMR analyses (¹H, ¹³C, TOXY, COSY, HSQC, NOESY and HMQC, see *Table 8*) we first unequivocally assigned all chemical shifts to each atom.

Figure 40 Tetrapeptide 164

164

 $Table\ 8$ the NMR data for the Tetrapeptide 164

Residue	atom	$\delta^{1}H$	Molteplicity J (Hz)	δ ¹³ C	Noesy	НМВС
	CO			173.2		
	1	1.80-1.70	brs	33.1		
	2α	2.90-2.78	brs	54.9 brs		
	2β	2.25	overlapped	34.9 018	$MeCH_{ABO1}(1.35)$	
	4α	2.52	d, J 11.7	52.3	Ph <i>CH</i> _{ABO1} (3.59-3.51), <i>Me</i> CH or H-8	
	4β	2.17	overlapped			
	5	2.58	brs	40.2	H-8a _{ABO1} (1.30), H- 8a _{ABO1} (1.96)	
1	6			65.2 brs		
Broad	7x	1.77		39.9 brs	$H-7n_{ABO1}(2.41,vw)$	
	7n	2.41	d, J 12.9	39.9 018	$H-7x_{ABO1}(1.77,vw)$	
	8a	1.30	overlapped	35.3		
	8e	1.96	overlapped	33.3		
	Ph <i>CH</i>	3.59-3.51	brs	63.9 br	$MeCH_{ABO1}(1.36,s), H-4\alpha_{ABO1}(2.52,w)$	
	MeCH	1.39-1.34	brs	16.3		
	Arom	7.40-7.28	m	127.9- 126.1 (C)142.		
	NH ₂	2.251	overlapped			
2	СО			171.9		CH _{Ala2} (4.15, vw), Me _{Ala2} (1.33s)
	СН	4.24-4.15	m	48.5	Arom(7.36, 7.31), Me _{Ala2} (1.33,s), NH _{Ala4} (7.08,vw), NH _{Ala2} (7.82,s)	

65

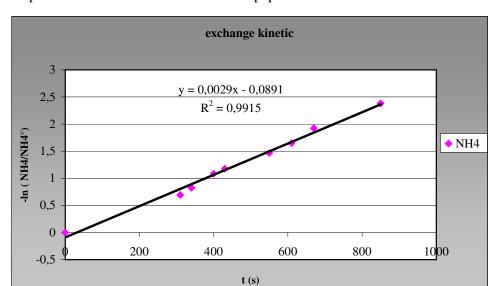
	M	1.22	1 170	16.0	CII (4.24.4.15 -)	CH _{Ala2} (4.24-
	Me	1.33	d, J 7.0	16.9	CH _{Ala2} (4.24-4.15,s)	4.15,w)
	NH	7.82	brs		CH _{Ala2} (4.24-4.15,s)	
	CO	2.22	la una	177.1		$H-7x_{ABO3}(2.40)$
	2α	2.22	dd, J 10.4, 3.9	55.5	arom (vw), PhCH _{ABO3} (3.48,m), H- 7n _{ABO3} (1.46,m), Me _{ABO3} (1.40,s)	C-4 _{ABO3} (52.8,w)/C- 8 _{ABO3} (vw), H- 7x _{ABO3} (2.40,s)
	2β	2.29	d, J = 10.3			
	4α	2.78-2.73	m		H-4β _{ABO3} (2.06), Ph <i>CH</i> _{ABO3} (3.48), <i>Me</i> CH _{ABO3} (1.40)	Ph $CH_{ABO3}(w)$, H- $2\alpha_{ABO3}(2.99,w)$
	4β	2.06	d, J 11.1	52.8	$Me_{Ala2}(1.33,m),$ $PhCH_{ABO3}(3.48,s),$ H- $4\alpha_{ABO3}(2.75,s),$ Arom (7.36w)	C-8 _{ABO3} (36.7,vw)
	5	1.97	overlapped	42.8		H- $4\alpha_{ABO3}(2.75,w)$
	6			64.1		H-7 x_{ABO3} (2.40), H-4 β_{ABO3} (2.06)
3	7x	2.40	d, J 12.9			H-2 $\beta_{ABO3}(2.29,s)$
Sharp	7n	1.46	dd, J 13.0, 2.0	43.0	H-2 $\alpha_{ABO3}(2.99,m)$	C-8 _{ABO3} (36.7), C- 2(55.5,vw)
	8a	2.18	overlapped	36.7		$\begin{array}{c} H\text{-}2\beta_{ABO3}(2.29,w),\\ H\text{-}4\beta_{ABO3}(2.06,w),\\ H\text{-}7n_{ABO3}(1.46,w) \end{array}$
	8e	1.35	overlapped			
	Ph <i>CH</i>	3.48	q, J 6.8	64.0	H-2βABO3(2.99,m), H-2αABO3(2.29,m), H-4αABO3 (2.75,m), H-4βABO3(2.06,m), MeCHABO3(1.40)	H-4 β_{ABO3} (2.06), H-7 x_{ABO3} (2.40), Me $_{ABO3}$ (1.40)
	МеСН	1.40	d, J 6.8	17.5	Ph $CH_{ABO3}(3.48)$, H- 2 α_{ABO3} (2.99,s), H- 4 α_{ABO3} (2.75)	Ph <i>CH</i> _{ABO3} (3.48,vw)
	Arom	7.40-7.28 7.23-7.18 (p)	m	127.9- 126.1 (C)142.		
	NH	7.40-7.28				CVI (1.22)
	СО			172.5		CH _{Ala4} (4.22), Me _{Ala4} (1.28), OMe(3.62)
4	СН	4.31-4.24	m	47.4	Me _{Ala4} (1.28,s), NH _{Ala4} (7.08)	CO _{Ala4} (172.5), Me _{Ala4} (1.28)
	Me	1.28	d, J 7.2	15.8	CH _{Ala4} (4.28,s)	CO _{Ala4} (4.31)
	NH	7.08	brs		CH _{Ala4} (4.28,s), CH _{Ala2} (4.24-4.15,vw), H-5 _{ABO1} (2.58,m), H-7 _{ABO1} (2.40,w), H- 7 _{ABO1} (1.77,vw), Me _{Ala4} (1.28,s)	
	OMe	3.63	S	50.8		CO _{Ala4} (172.5)
1 positi	NOECS	7 1	neak hetween th	1 'C' C	1 ' '	

¹ positive NOESY signal cross-peak between the shift of exchanging site.

In particular, it is evinced that the signals of two ABO moieties, both in ¹H and ¹³C experiments, possess a different shape, one of them is characterized by sharp signals, the other by broad signals. These data suggest that one of the ABO scaffold is present in different conformations.

Concerning to the broad signals, our hypothesis is that an electronic repulsion between the two basic nitrogen, the nitrogen of the ring and of NH₂ of ABO-1, exists inducing an equilibrium between the chair-envelope and the boat conformations of piperidine ring in the ABO which is reported in the literature having in general a chair conformation with the nitrogen substituent in the equatorial position.⁷⁰

HMQC experiment allowed to assign unequivocally the chemical shift of the carbonyl group of each alanine because a correlation with both CH and Me of each corresponding alanine was observed. The carbonyl group of the ABO-3 resonates at δ 177.1 and posses a long range correlation with H-7_n of ABO-sharp. As a consequence the signal at δ 173.2 was assigned to ABO-1. Concerning NH signals, COSY and TOXY experiments allowed to assigned unequivocally the correlation with the corresponding alanine moiety. Instead, the NH_{ABO-3} is overlapped to the aromatic protons.


The ability of each NH to be involved in an intramolecular hydrogen bond was evaluated both at variable temperature and by calculating their exchange rate with D₂O.

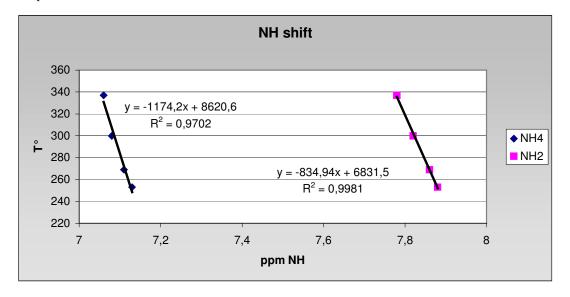
The exchange process respect a second kinetic order (equation 2) but, considering constant the $[D_2O]$ concentration (large excess), the system was simplified to a first apparent reaction order (equation 4 and 5).

- 2) $v = k [NH] [D_2O]$
- 3) $k_{app} = k [D_2O]$
- 4) $v = k_{app}$ [NH]
- 5) $-\ln([NH]/[NH^{\circ}] = k_{app.}[NH]$

Here below is reported the graphic representation of the equation 5 for the NH-4 considering the decreased value of the NH integral against the time (*Graphic 1*). Instead, NH-2 was not detected because the proton was totally exchanged after two

minutes.

Graphic 1^a titration data of NH-4 of tetrapeptide **164**


^a[peptide **164**] = 14,8 mM in CD₃CN (700 μ L) then D₂O (20 μ L), T = 299.94 K

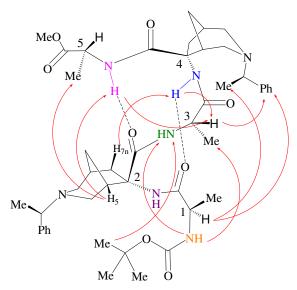
The value of the k_{app} for NH-4 (3·10⁻³ s⁻¹M⁻¹) at T = 299.94 K revels a very week hydrogen bond interaction, compared to the corresponding value found for the corresponding NH-5 in the pentapeptide **156** [k_{app} for NH-5 (6·10⁻⁵ s⁻¹M⁻¹), see below].

The variation of NH chemical shift with respect to the variation of the temperature is a very useful method to evaluate the presence of an hydrogen bond and its stability. 1 H NMR spectra of compound **164** in CD₃CN were recorded at different temperature (from 220 K to 440 K). The δ NH values *versus* the temperature for NH-4 and NH-2 (the signals NH-3 and NH₂ are overlapped) are reported in *Graphic* 2.

By interpolating the experimental values, using the linear equation y = mx + b, the 1/m parameter was calculated from which it is evinced that $\Delta\delta/\Delta T = -0.85$ ppb/K for NH-4, and $\Delta\delta/\Delta T = -1.20$ ppb/K for NH-2.

Graphic 2^a

^a δNH against the temperature (from 253 K to 337 K) of [peptide **164**] = 14,8 mM in CD₃CN (700 μ L).


These data, together with those of hydrogen exchange, are indicative of an equilibrium between an intramolecular hydrogen bonded status and a non-hydrogen bonded status for NH-4, and that NH-1 is not involved in hydrogen bond.

Interesting NOE effects were detected which confirm a possible involvement of NH-4 in a hydrogen bond with CO of ABO-1.

Furthermore positive Overhauser effects were detected between CH_{Ala2} and NH_{Ala4} [d_{α ,N}(i, i+2), vw], which is in general, diagnostic for the presence of a turn which confirms spatial proximity between ABO-1 and Ala-4 moieties, and between NH_{Ala4} and H-7 and H-5 of ABO-1.

The secondary structure of pentapeptide **156** was deeply studied using NMR technique. To achieve the better resolution regarding the proton chemical shifts, different solvent were tested (DMSO, CDCl₃, CD₃CN, CD₃OH) and CD₃CN was then selected. Using NMR analyses (¹H, ¹³C, TOXY, COSY, HSQC, NOESY and HMQC, *Table 9*) we first unequivocally assigned all chemical shifts to each atom as well as the sequence of the amino acids. Finally, NMR studies at variable temperature as well on the *NH*-exchange rate were performed.

Figure 41: Noesy peptide 156

Figure 42: 3D peptide **156**

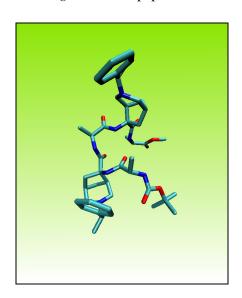
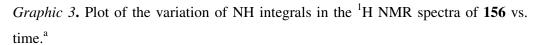


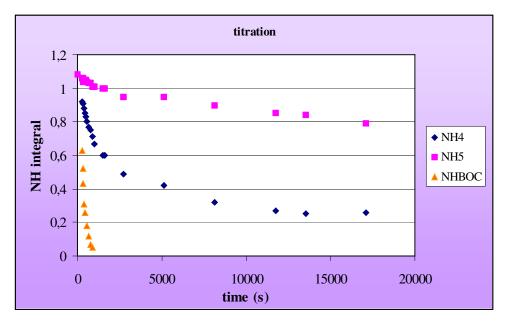
Table 9 the NMR data for the Pentapeptide 156

Residue	ato	om	$\delta^{1}H$	Multiplicity J (Hz)	δ ¹³ C	Noesy	НМВС
	С	О			173.6		CH(4.05), Me(1.39)
	C	Н	4.05	overlapped	51.1	oArom. _{ABO2} (7.42), Me _{Ala1} (1.39), Ph <i>CH_{ABO-4}</i> (3.65)	
	M	le	1.41-1.37	overlapped	16.4		
1	N	Н	6.03	s		Arom. (7.42), CH _{Ala1} (4.05,m), Me(1.39,s), (Me) ₃ C(1.50,w), NH _{Ala3} (7.49,vw)	
	Boc	Me	1.50	s	26.9	NH _{Ala3} (7.49,w), mArom _{ABO2} (7.32), oArom _{ABO2} (7.42)	
	Бос	С			79.2		Me(1.50)
		СО			158.8		CH(4.05), Me(1.39)
2 broad	C	O			175.6 brs		
	1	Į	2.17	overlapped	33.1		
	2		2.68	overlapped	53.7 brs		H-4(2.58), H-
	2	β	2.37	overlapped	33.7 018	oArom _{ABO2} (7.42)	1(2.17)
	4α		2.59	dd, J 8.5, 3.2	51.7	oArom _{ABO2} (7.42,m), Ph <i>CH</i> (3.80,m), H-5(2.75,m), H-2 or/and H-4 (2.37,s), Me(1.43,m)	C-8(36.3), C- 5(39.7), C-2 (53.5)
	4	β	2.37	overlapped			

S 2.75 brs 39.7 H-4β(2.37), H-4(2.58) 6						NH _{Ala5} (7.50,vw),	
Tx 2.18 overlapped 41.7 brs H-2α (2.65vw), NH _{Alss} (7.49w) Se 2.18 overlapped 36.3 oArom_ABox(7.42), H-4α(2.59), H-2/H-4(2.59), H-2/H-4(2.59), H-2/H-4(2.59), H-2/H-4(2.59), Med. (143) MeCH 1.43 brs 14.0 brs PhCH (3.80) 7.44-7.40(a) 127.6(a) 127.6(a) H-2α (14-α		5	2.75	brs	39.7	H-4 β (2.37),	H-4(2.58)
To 1.86-1.78 brs H-2α (2.65vw), NH _{Abs} (7.49w)		6			64.9 brs		
NH 1.86-1.78 brs NH _{Als3} (7.49w)		7x	2.18	overlapped			
Se		7n	1.86-1.78	brs	41.7 brs		
PhCH 3.80 brs 62.9 dArom, aBo3(7.42), H-4a(2.59), H-2H-4a(2.59), H-2H-4a(2.55), Me(1.43) MeCH 1.43 brs 14.0 brs PhCH (3.80) Arom 7.44-7.40(a) T.36-7.28 m (CH), ol40.9(C H-2 or H-4 or H-7.04(2.59, w), H-2 or H-4 or H-7.04(2.59, w), H-2 or H-4.06(2.59, w), H-2 or H-4.06(2.59, w), H-2 or H-7.04(2.59, w), H-7.04(2.59, w) NH 7.36 overlapped T.16 Overlapped T.16 CH(4.06), Me(1.42) CH 4.06 overlapped T.16 Arom. (7.29), Me(1.42) CH 4.06 overlapped T.16 Arom. (7.29), Me(1.42) T 4 sharp CO T.49 CH _{Abis} (4.26), H-7.04(2.59, w), M-2 overlapped T.49 CH _{Abis} (4.06), H-5.04(2.75, vw), NH _{Abis} (7.50) T 2.09 brs T.16 CH(4.06), H-7.04(2.18), H-7.04(2.		8a	1.38	overlapped	36.3		
PhCH 3.80 brs 62.9 H-4a(2.59), H-2/H-4(2.35), Me(1.43) MeCH 1.43 brs 14.0 brs PhCH (3.80) 7.44-7.40(α) 7.36-7.28 m (CH), ol40.9(C) NH 7.36 overlapped 171.6 CH(4.06), Me(1.42) CO 171.6 Arom. (7.29), Malas(7.30) w), MeAlas(1.42) CH 4.06 overlapped 50.3 Malas(7.30) w), MeAlas(1.42) CH 4.06 overlapped 15.4 MeAlas(1.42) NH 7.49 scambio veloce brs H-7haBao2(1.86), H-5habo2(2.75, ww), NHAlas(7.50) CO 174.9 CHlais(4.20), H-7haBao2(1.86), H-5habo2(2.75, ww), NHAlas(7.50) CH 4.06 overlapped 55.9 NHAlas(7.50) CH 4.06 overlapped 55.9 NHAlas(7.50) CH 4.06 overlapped 55.9 H-7haBao2(1.75, ww), NHAlas(1.60), H-2(2.18), H-2(2.1		8e	2.18	overlapped	30.3		
Arom				brs		H-4α(2.59), H-2/H-	
Arom 7.44-7.40(ο) $7.36-7.28$ (m,p) m 127.6(ο)1 $26.6(ο)$ ($C(H)$, $140.9(C)$ ($C(H)$, $0140.9(C)$) $H-2$ or $H-4$ or $H-5(2.69$ w), $H-4$ $\alpha_{ABO2}(2.59$ w), $H-4$ $\alpha_{ABO2}(2.59$ w), $H-4$ $\alpha_{ABO2}(2.37)$, $H-7n_{ABO2}(1.77$ vw) $H-7n(1.77)$, $H-7n_{ABO2}(1.77$ vw) $H-7n(1.77)$, $H-7n_{ABO2}(1.77$ vw) $H-7n_{ABO2}(1.77$ vw), $H-7n_{AB$		MeCH	1.43	brs	14.0 brs	PhCH (3.80)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Arom	7.36-7.28	m	26.6(<i>o</i>) (CH), o140.9(C	PhCH _{ABO2} (3.80,w), H-2 or H-4 or H-5(2.69,w), H-4α _{ABO2} (2.59,w), H-2 or H-4 _{ABO2} (2.37),	7.42 (<i>orto</i> Arom) <i>Me</i> CH(1.43)
CO		NH	7.36	overlapped		H-7n(1.77),	
CO		CO			171 6	• ()	CH(4.06),
CH		CO			1/1.6		Me(1.42)
NH 7.49 scambio veloce brs $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						$NH_{Ala5}(7.50 \text{ vw}),$	
$\begin{array}{ c c c c c }\hline NH & 7.49 \ scambio \ veloce & brs & CH_{Ala1}(4.06,s), \ H-7n_{ABO2}(1.86), \ H-5_{ABO2}(2.75,vw), \ NH_{Ala1}(6.03,vw) & NH_{Ala3}(7.50) \\\hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	3	Me	1.42	overlapped	15.4		
4 sharp CO 174.9 NH _{Ala5} (7.50) CH _{Ala5} (4.22) CH _{Ala3} (4.06) H-2(2.18), H H-2(2.18), H H-2(2.18), H S(2.15), C-6(65) H-8(2.1.15); C-6(65) H-8(2.1.15); C-6(65) H-8(1.15), H S(2.65), PhCH(3.65) 2α 2.69 overlapped NH _{ABO4} (7.55) H-8(1.15), H S(2.65), PhCH(3.65) 4α 2.68 overlapped H-8e(1.15), PhCH(3.65) PhCH(3.65) 4β 2.06 J 11.0 49.7 H-8e(1.15), PhCH(3.65) OArom _{ABO4} (7.34) 5 2.65 overlapped 40.2 H-8(1.15), H T(2.16), H-4(2.15) 6 65.4 H-8(1.15), H T(2.16), H-4(2.15)		NH		brs		CH _{Ala1} (4.06,s), H-7n _{ABO2} (1.86), H-5 _{ABO2} (2.75,vw),	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 sharp	СО			174.9		NH _{Ala5} (7.50), CH _{Ala5} (4.22), CH _{Ala3} (4.06)
2β 2.18 overlapped 55.9 $5(2.65)$, PhCH(3.65) $4α$ 2.68 overlapped 49.7		1	2.09	brs	33.1		H-2(2.18), H- 5(2.65), H-8(2.28, 1.15); C-6(65.4)
2β 2.18 overlapped 55.9 $5(2.65)$, PhCH(3.65) $4α$ 2.68 overlapped 49.7		2α	2.69	overlapped		NH _{ABO4} (7.55)	H-8(1.15), H-
49.7 H-8e(1.15), PhCH(3.65) οArom _{ABO4} (7.34) 5 2.65 overlapped 40.2 6 H-8(1.15), H 7(2.16), H-4(2.15) 7x 2.18 overlapped H-8(1.15)		2β	2.18	overlapped	55.9		
4β 2.06 J 11.0 PhCH(3.65) OArom _{ABO4} (7.34) 5 2.65 overlapped 40.2 6 H-8(1.15), H 7(2.16), H-4(2.15) 7x 2.18 overlapped H-8(1.15)		4α	2.68	overlapped			
5 2.65 overlapped 40.2 6 H-8(1.15), H 7(2.16), H-4(2.15) 7x 2.18 overlapped H.8(1.15)		4β	2.06	J 11.0	49.7	Ph <i>CH</i> (3.65)	
6 H-8(1.15), H 7(2.16), H-4(2.1 7x 2.18 overlapped H-8(1.15)		5	2.65	overlapped	40.2	ADU4(11-1)	
7v 2.18 overlapped H-8(1.15)		6		**	65.4		H-8(1.15), H-7(2.16), H-4(2.06)
403		7x	2.18	overlapped	40.5		H-8(1.15)
7n 2.18 overlapped		7n			40.3		
8a 2.18 overlapped		8a	2.18	overlapped			
8e 1.15 d, J 10.9 36.6 H-48(2.06), H-1(2.09), H-1(2.09), H-1(2.07), C-4(49.7), C-4(49.7), C-4(49.7)		8e	1.15	d, J 10.9	36.6	H-1(2.09),	

	Ph <i>CH</i>	3.65	q, J 7.7	62.9	oArom _{ABO4} (7.34), H-4β (2.06), H _{Ala1} (4.05w), H-2β (2.69s), MeCH (1.40)	Arom(7.3), Me(1.40), C- 4(49.7), C- 2(55.9), MeCH(16.4)
	MeCH	1.41-1.39	overlapped	16.4		
	Arom	7.44-7.40(<i>m</i>) 7.36-7.28 (<i>o</i>), 7.27-7.22(<i>p</i>)	m	126.0(<i>p</i>)1 28.0- 126.0 (CH), 140.8(C)	$m{ m Arom_{ABO4}} 7.42: \ { m CH_{Ala3}} (4.06 \ { m w}) \ { m } o{ m Arom_{ABO4}} 7.34: \ { m Ph} CH_{ABO4} (3.65), { m H-} \ { m } 4{ m } { m }_{ABO4} 2.06), \ { m }$	140.8: ortoArom(7.34) Me(1.39), PhCH(3.65)
	NH	7.55	brs		$CH_{Ala3}(4.06s), H-4\alpha(2.68),$	CO _{Ala3} (171.6)
	СО			172.6		CH(4.22), Me(1.33), OMe(3.62)
	CH	4.25-4.19	m	47.6	NH(7.50), Me(1.33)	
5	Me	1.33	d, J 7.3	15.8	NH(7.50), CH(4.22), H-5 _{ABO2} (2.75vw)	
	NH	7.50	brs		CH _{Ala5} (4.22,s), Me _{Ala5} (1.33,s), CH _{Ala3} (4.06,w)	
	OMe	3.62	S	50.6		

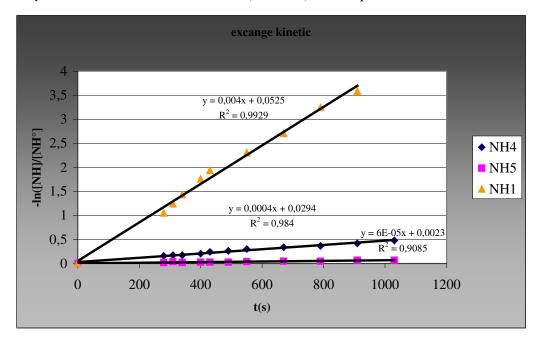

As for pentapeptide **164**, it is evinced that the signals of two ABO moieties, both in ¹H and ¹³C experiments, possess a different shape, one of them is characterized by sharp signals, assigned to ABO-4 the other by broad signals assigned to ABO-2.


HMQC experiment allowed to assigned unequivocally the chemical shift of the carbonyl group of each alanine because of its correlation with both CH and Me of the some alanine moiety. The carbonyl group of the ABO-4 resonates at δ 174.9 and possess a long range correlation with NH_{Ala5}(δ 7.50), CH_{Ala5}(δ 4.22), as well as with CH_{Ala3}(δ 4.06). Concerning NH signals, COSY and TOXY experiments allowed to assigned unequivocally the correlation with the corresponding alanine. Instead, a correlation was observed between NH_{ABO4} at δ 7.55 and CO_{Ala3} (δ 171.6) which is correlated both to CH (δ 4.06) and Me (δ 1.42) of its alanine moiety. As a consequence, the chemical shifts at δ 175.6 (brs) was assigned to the carbonyl carbon of ABO-2 and at δ 7.36 (overlapped) at NH_{ABO-2}.

The NOESY experiments (only certain significative of non-overlapped signals are reported), gave very interesting informations concerning the δ values of ABO protons and their spatial relationship. Concerning protons of ABO-4, positive

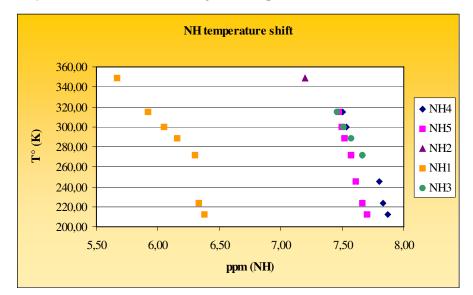
Ovehauser effects were observed between H-4 β (δ 2.06) and H-8e (δ 1.15), and between H-4 α (δ 2.68) and NH (δ 7.55), thus assuring the NH assignment for ABO-4. Instead, no informations are given regarding H-2 since they are overlapped. The δ values are tentatively assigned to these protons considering the data available from the simple ABO-3 and the other peptides. Concerning ABO-2, NOE effects were found between H-7n (δ 1.86-1.78) and H-2 α (δ 2.68; this signal is overlapped but it is the sole one belonging to ABO-2) and between NH (δ 7.36) and both H-7n and H-4 α (δ 2.59) indicating their *cis* relationship. Since the two ABO moieties do not have spatial proximity (see model), the *orto* protons of phenyl ring in ABO2 (δ 7.42) confirms the above assigned stereochemistry. In fact, NOE effects were observed between *orto* protons and Ph*CH*_{ABO2}, H-4 α _{ABO2}, H-2 or H-4_{ABO2} (overlapped) and H-7n ABO2 (1.77 vw). Concerning the aromatic region at δ 7.36-7.28, of relevance for ABO-4 are the spatial proximity between the signal centered at δ 7.34 (σ Arom_{ABO4}) and Ph*CH*_{ABO4} (δ 3.65), and H-4 θ _{ABO4}.

Concerning the titration, this experiment was performed on pentapeptide **156** (16,8 mM in CD₃CN, 700 μ L) in presence of D₂O (20 μ L). A series of NMR spectra were recorded at 299.94 K at different times (from 0 to 5h). No information were given for NH_{ABO2} because the signal is overlapped with the aromatic signals but, as evidenced in a NOESY experiment of **156** in CD₃CN/D₂O, it easily exchange with D₂O. Furthermore, the kinetic exchanges of NH-3 its so fast that the signal was lost in few minute. Concerning NHBoc, NH-4 and NH-5, integral values were reported in the graphic below (*Graphic 3*).

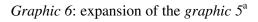


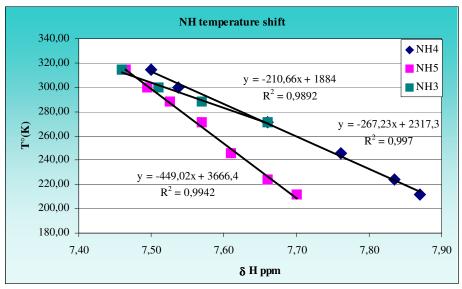
^a[peptide 156] = 16,8 mM in CD₃CN (700 μ L) then D₂O (20 μ L), T = 299.94 K

From these data it is clear that the NH-5 is involved in a very slow exchange process. In fact, after a 8h, the NH integration area was reduced of about 20%. NH-4 slowly exchange too, but the integration area was reduced of 80% after 8h. Concerning NH-1 of carbamate, even if a comparable kinetic with the other signals is not possible because this proton is different with respect to the others NH, it was found that its deuteration is very fast.


Here below is reported the graphic representation of the pentapeptide **156** titration considering the decreased value of the NH integrals against the time (*graphic 4*).

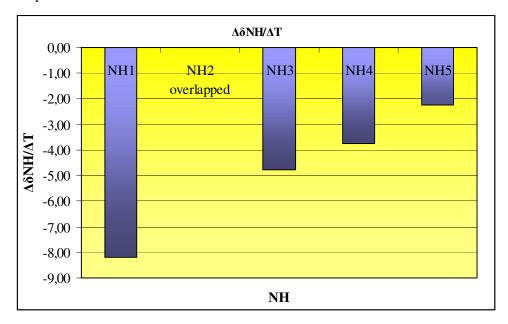
Graphic 4: Plot of the variation of $-\ln(NH/NH^\circ)$ of compound 156 vs. time.^a


^a[peptide **156**] = 16,8 mM in CD₃CN (700 μ L) then D₂O (20 μ L), T = 299.94 K


Using *Equation 5* it is possible to calculate the k_{app} for NH-4 (4·10⁻⁴ s⁻¹M⁻¹) NH-5 (6·10⁻⁵ s⁻¹M⁻¹) and NH-1 (4·10⁻³ s⁻¹M⁻¹). This means that NH-1 exchanges 10 time faster than NH-4, and NH-4 exchanges 10 time quicker that NH-5 at T = 299.94 K. (*Graphic 4*). The variation of NH chemical shift with respect to the variation of the temperature is also performed. ¹H NMR spectra of compound **156** in CD₃CN were recorded at different temperature (from 212.04 K to 348.33 K) and the results of these experiments confirm the data deduced from titration experiments. The δ NH values *versus* the temperature for all NH, except for NH-2 (overlapped with aromatic hydrogens), are reported in *Graphic 5*. The plot in *Graphic 6* represents the expanded area of NH chemical shifts (from 7.40 to 7.90 ppm) *versus* temperature (from 212.51 K to 314.57 K).

Graphic 5: NH chemical shift against temperature^a

 a δNH against the temperature (from 212.04 K to 348.33 K) of [peptide **156**] = 16,8 mM in CD_3CN (700 $\mu L)$



^a δ NH against the temperature(from 212.51 K to 314.57 K) of [peptide **156**] = 16,8 mM in CD₃CN (700 μ L).

As you can see the linearity was not maintained in the large range of temperature analyzed (from 212.04 K to 348.33 K). Only in the 271.51 K to 314.57 K range (expansion in *graphic 6*) a linear relationship between the NH shift and the temperature was observed. When the temperature is higher, probably, a "denaturation" process is involved and the peptidic secondary structure change. Instead, at lower temperature we observed the formation of other hydrogen bonds that again could change the secondary structure.

The above data were reported here below in the histogram of $\Delta\delta NH/\Delta T$ in which is evident the low δ variation for NH-4 and NH-5. (*Graphic 7*)

Graphic 7 variations of the NH proton chemical shifts for peptide **156** toward the temperature.^a

^a $\Delta\delta$ NH/ Δ T considering the linearity Δ T (271.51 K to 314.57 K) range values.

In *Table 5* are resumed all the data for the pentapeptide **156.**

Table 5 reports on the resumes data

N-H	δ (ppm) ^[a]	$\Delta \delta NH/\Delta T$ (ppb/K) ^[b]	$k_{app}(1/s)$ exchange reaction with $D_2O^{[c]}$
H1	6.03	-8.27	4*10 ⁻³
H2	7.42	_[d]	_[d]
Н3	7.47	-4.76	_[e]
H4	7.55	-3.74	4*10 ⁻⁴
H5	7.52	-2.23	6*10 ⁻⁵

[[]a] δ value determined to $T^{\circ} = 299,93(K)$;

From these data appears that the amide protons NH-5 and NH-4 are in an intermolecular hydrogen-bonded status. As reported in *Table 5*, the temperature dependence of the NH-5 chemical shifts falls within the typical values for intramolecularly hydrogen bonded protons. A slightly higher is observed for NH-4 instead, amide protons NH-1 and NH-3 exhibit a larger temperature dependence as well as a quick deuterium exchange with respect to the other amide protons. Furthermore, the good linearity of the chemical shift vs. temperature (271.51 K to 314.57) of NH-4 and NH-5 indicates the absence of conformational changes over the temperature range swept. Our hypothesis is that NH of ABO-4 is involved in a medium hydrogen bond with the carbonyl group of Ala-1 and that a strong hydrogen bond was effective between NH Ala-5 and the carbonyl group of ABO-2. Since CO_i-NH_{i+3} hydrogen bond are typical of a 3₁₀-helix, this secondary structure was assigned to pentapeptide **156**. This hypothesis was supported by NOESY experiments

[[]b] $(\Delta \delta NH/\Delta T)$ coefficients were determined between 271 and 314(K) (were a linear dependence of all signals was observed) and [peptide **156**]= 16,8 mM in CD₃CN;

[[]c] N-H/N-D exchange rate [peptide **156**]= 16,8 mM in CD₃CN (700 μ L) D₂O (20 μ L)T° = 299,93(K);

[[]d] Not determined because overlapped with other resonances;

[[]e] Not determined because the excange is too fast;

which were performed on a sample of **156** dissolved both in CD₃CN and in CD₃CN/D₂O (in this case we ensured the NOE effects for NH_{Ala5} since the other NH disappeared). Interesting informations are given regarding to the secondary structure. Of relevance are the NOESY effects between the NH_{Ala3} (δ 7.49) with NHBoc group (both with Me and NH [d_{N,N}(i, i+2), w]. Positive Overhauser effects were observed between the H-7n of ABO-2 with NH_{Ala3} [d β ,N(i,i+1), w] and between H-5 with both NH _{Ala5} [d β ,N(i,i+3), vw] and Me_{Ala5} (vw). Other NOE contacts of relevance are those of NH_{ABO4} and CH_{Ala3} [d α ,N(i,i+1, s], and between this last and NH _{Ala5} [d α ,N(i,i+2, vw]. The proposed secondary structure is also consisted with the spatial proximity observed between CH_{Ala3} (δ 4.06) and the signals δ at 7.42 (w) and at δ 7.34 assigned to H-*meta*_{ABO4} and H-*orto*_{ABO4}, respectively.

Figure 43 Summary of the NOEs-derived backbone obtained for peptide 156 in CD₃CN^a

	A1a-1	ABO-2	Ala-3	ABO-4	Ala-5
d N,N(i,i+2)					
d α,N(i,i+1)					
d α,N(i,i+2)					
d β,N(i,i+1)					
d β,N(i,i+2)					
4 8 M/3 (±2)					
d β,N(i,i+3)					
Week		Medium		Strong	

^a Peaks are grouped into three classes based upon their integrated volume

As reported above, differently to the signals of ABO-2, ABO-4 shows broad signals suggesting that more than one conformation is possible for the nitrogen ring in this scaffold. This result is comfirmed by the peptide molecular model in which it is evinced that when the benzyl group of ABO-4 is located in the equatorial position it is more crowded with respect to its location in the axial position.

4 Metallorganic ligands

4.1 ABO as a metal ligand

As reported in the introduction, a promising research field is the bio-organometallic chemistry. In fact small peptidomimetics containing a metal center can be considered synthetic enzyme analogues.⁷³ In this view we have tested compounds ABO (exo)-(-) **124'** and ABO (exo)-(±) **122a** as ligands into transition metal complexes (figure 44). Furthermore, we studied also a new organometallic ligand characterized by norbornene structure.⁷⁴ (See figure 45)

This part of my researches was developed under the supervision of Professor Oliver Reiser of the University of Regensburg (Germany) who introduced me into the "World" of metallo-organic chemistry.

Figure 44

ABOs attract our interest because they are polifunctional compounds, with different possible points of interaction with a metal, *i.e.* the amino, amido and phenyl groups which can be conveniently used to stabilize the metal-ligand interactions. Nitrogen compounds are highly attractive as ligands for transition-metal complexes, and their application in catalysis become one of the major research topic.⁷⁵ Amines in fact do not suffer from the intrinsic drawbacks of phosphanes, such as their oxygen

sensitivity. Moreover the biological systems are rich of chiral nitrogen compounds. However late-transition–metal amine complexes are often not very stable and the amine is rather easily displaced by a σ donor. Complexes with sp² valence electron configured nitrogen donors seem to have a higher stability.⁷⁶

Preliminary considerations about ABOs take into account the hard/soft character of the binding site. Particularly, the N atoms present in these molecules possess different features and an hard-borderline character; furthermore, the phenyl group can operate in the complex formation too.⁷⁷ As reported in the sperimental section by the spectroscopic data (¹H NMR, ¹³C NMR, COSY, NOESY; Hector) a predominant chair-envelope conformation for 3-azabicyclo[3.2.1]octane is proposed.

Geometrical consideration revealed that the N amine and the N amidic lone pairs pointed in a convenient direction and computational studies analyzed the distance between this two groups.

All these informations have been used to focalize our studies into a small number of transition metals. Our first choice was directed toward borderline metals characterized by square planar geometry such as Cu²⁺, Zn²⁺, Ni²⁺ Pd²⁺, Ru⁺¹ and Co²⁺. Different reaction conditions *i.e.* temperature (25°C, 40°C, 70°C) and solvents (CH₂Cl₂, and MeOH or EtOH) were evaluated (see *table 14*).⁷⁸ In order to archived the formation of the complex both starting from **124**° and **122a**

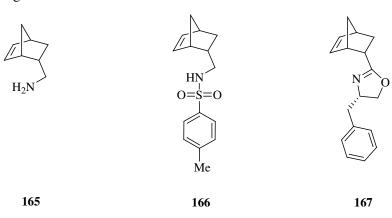
Scheme 28

Table 14 reagents and conditions

ligand	metal salt	Ratio Ligand/metal	solvent	T°C	time (s)
122a ABO (±)	NiCl ₂ *6H ₂ O	2:1	EtOH	60 and 25	24
122a ABO (±)	$Cu(ClO_4)_2*6H_2O$	2:1	EtOH	60 and 25	24
122a ABO (±)	CoCl ₂ *6H ₂ O	2:1	EtOH	60 and 25	24
122a ABO (±)	$ZnCl_2$	2:1	EtOH	60 and 25	24
122a ABO (±)	$MnCl_2$	2:1	EtOH	60 and 25	24
122a ABO (±)	FeCl ₂ *4H ₂ O	2:1	EtOH	60 and 25	24
124' ABO exo (-)	$Cu(ClO_4)_2*6H_2O$	2:1	EtOH	60 and 25	24
124' ABO exo (-)	$Pd(OAc)_2$	2:1	EtOH	60 and 25	24
124' ABO exo (-)	$NiCl_2$	2:1	EtOH	60 and 25	24
124' ABO exo (-)	CuCl ₂ *2H ₂ O	2:1	CH_2Cl_2	25	24
124' ABO exo (-)	[Ru(p-Cymene)Cl] ₂	2:1	CH_2Cl_2	25	24
124' ABO exo (-)	[Ru(p-Cymene)Cl] ₂	2:1	CH_2Cl_2	Reflux	24

The solvent was removed and the row reaction mixture was analyzed by different techniques, *i.e.* NMR, IR, and MASS (ESI) spectroscopy.

Our explorative researches did not give the expected results, ABO scaffold was not useful as a ligand for a stable metal complex.


Our failure could be caused by the rigidity of the ligand structure that increase the transition state energy in the formation of the metal complex, or also by a steric hindrance of the ligand can interfered in the chelation process.

Another possibility could be the not optimal overlapping of the metal and ligand orbitals and, consequently, a week interaction which makes instable the M-L complex, more sensitive to the solvent and temperature effects.

4.2 norborne oxazoline ligands

In the second part of my experience I changed the ligand and I studied a new class of bidentate ligand containing both Hard and Soft binding sites, these molecules are characterized by a double bond (Soft) and a nitrogen (Hard) binding sites. The interest toward this class of compounds is related to the scarce literature data regarding complexes with molecules having both Hard/Soft binding sites. Furthermore they are considered very instable complexes.

Figure 45

First we have synthesized a series of compounds **165**, **166** and **167** as shown in *figure 45*.

These three compounds present a different nitrogen atom characterized by different hardness. In compound **165**, the nitrogen can be considered an hard sp^3 weak σ -donor, in compound **166** the nitrogen atom has a more soft character because its lone pare delocalizes in the sufamidic function, and in the oxazoline derivative **167** the nitrogen atom was characterized by a hard sp^2 good σ -donor. Furthermore, the phenyl group in compounds **166** and **167** can interact with the metal improving the stabilization of the metal complex.

I developed two different synthetic strategies to access in few steps to these compounds.

The first synthetic strategy is reported in the *scheme 29* and consists in the Diels-Alder reaction between acrylonitrile **168** and cyclopentadiene **48** which operating in

CH₂Cl₂ using Mg(ClO₄)₂ as the catalyst and ultrasound. A mixture of cycloadducts **169b**-*exo* and **169a**-*end* were obtained which can be easy separated by column chromatography. Only the major *endo* racemic compound was useful for our further studies. The reduction of the nitrile function using LiAlH₄ in diethyl ether to the corresponding amine gave compound **165**. Compound **165** was then transformed into the corresponding tosylamide **166** by reaction with TsCl.

Scheme 29

+ CN
$$Mg(ClO_4)_2$$
 + CN Cl_2Cl_2 CN cl_2

In order to obtain compound **167**, we have developed a different synthetic strategy (Scheme 30). First we prepared the oxazoline compound **174** and then by a Diels-Alder reaction with cyclopentadiene it is possible to obtain a mixture of compounds **175a** and **175b** easily separed by column cromatography. Also in this case, the *endo* compound is of our interest.

Scheme 30

Studies on the formation of the complexes was performed using different kind of solvents and metals as reported in the table below.

Table 15

ligand	metal salt	Ratio Ligand/metal	solvent	T°C	time (s)
167	Cu(AcO) ₂	2:1	EtOH	60 and 25	24
167	$[RhCl(COD)]_2$	2:1	EtOH	60 and 25	24
165	[Ru(p-Cymene)Cl] ₂	2:1	THF	RT	16
166	[Ru(p-Cymene)Cl] ₂	2:1	THF	RT	16
165	$RuCl_3$	2:1	CH_2Cl_2	25	24
165	[Ru(p-Cymene)Cl] ₂	2:1	MeOH	25	24
166	[Ru(p-Cymene)Cl] ₂	2:1	CH_2Cl_2	Refluxed	24

All reactions mixture (see *table 15*) were analyzed by MASS techniques which is diagnostic for the formation of the complex. Only using NOXA ligand **175a** (Norbornene OXAzoline compounds) and Rh⁺¹ as a metal was observed the formation of a complex. Furthermore, ^{1}H NMR analysis confirmed the ligand chelation, since a significant shift of the oxazoline signals (δ ^{1}H and δ ^{13}C) was observed. Instead, the interaction between the metal and the double bond was not

observed (no significant shift of the double bond signals). Our hypothesis is that complex 176 reported below could be formed.

Figure 46

176

Further studies are in progress modifying the ligand structure **175a** in order to obtain an optimal distance and a favorable geometry between the two function (nitrogen and the double bond), aiming to synthesized a bidentate ligand. Also further transition metal, with a different hardness and geometry, have to be evaluated.

5 ABO in Organocatalysis

5.1 Introduction

The use of ABO as an organocatalyst was performed in collaboration with Prof.ssa Clerici and Prof.ssa La Rosa of the University of Milano, and was a part of a large ongoing program in which the study of Diels-Alder and Staudinger reactions were one of the main research field. Our compounds together with other amine derivatives were tested in the above reactions.

The presence of an amine in the azabicyclo[3.2.1]octane ring makes ABO an interesting tool in organo catalyst-mediate asymmetric reactions. In the literature there are a huge numbers of reaction catalyzed by a small rigid molecule, in which, the secondary amine function is the active site responsible of the substrate activation. Furthermore, these catalysts tagged the reagents in a particular spatial position inducing a particular stereochemistry on the product. Since ABO derivatives are rigid molecules available in enantiopure form too, they are interesting and potential organocatalyst.

Figure N

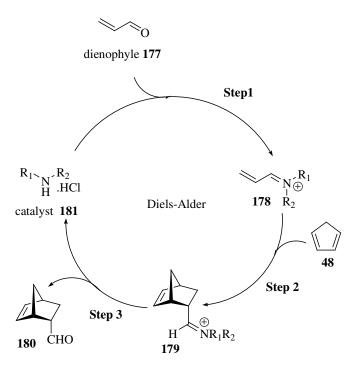
MeOOC
MeOCNH

N
R

exo-128

endo-125/125'
endo-123a

128: R = H,


125/125': (+)-Phenethyl

123a: PMB

5.2 Studies on Diels-Alder reaction

The catalytic cycle of amino organo-catalyzed Diels-Alder reactions is reported below. The condensation of the amine **181** with an aldehyde **177** leads to the formation of an iminium ion (step 1) that is sufficiently activated to engage a diene reaction partner⁷⁹ with cyclopentadiene (step 2). The hydrolysis of compound **179** allows to obtain the product and to regenerate the free catalyst for the next catalytic cycle (step 3).

Scheme 31 Diels-Alder catalytic circle

It is well known, that in general, secondary amines are requested to improve significantly the yield. In a preliminary study we planned to test the racemic mixture of both *exo*-ABO and *endo*-ABO.

The ability of our amines to catalyze the Diels-Alder reaction was tested in the reaction of cypentadiene **48** and an α,β -insatured-aldehyde (E-cynnamaldehyde **182**) as a dienophile. Which do not work without the catalyst ⁸⁰.

The reaction was performed in a screw-cap-tube in which the adehyde 182 (1 eq) was dissolved in MeCN/H₂O (95:5) with ABO catalyst (128). The cyclopentadiene 48 (3 eq. in MeCN) was added and the reaction was sonicated for 42 h. The cycloddition products were isolated by chromatography and analyzed by HPLC to evaluate the enantiomerically excess.

Scheme 32

In principle four stereoisomers could be formed: a couple of *endo* enantiomers **183** and **183**, and a couple of *exo* **184** and **184**. But this reaction do not work without catalyst.

Table 16 results and conditions of Diels-Alder reaction

Dienophile eq.	Diene Eq.	Catalyst		Solvent	Time	Temperature Condition	exo:endo ratio	yield
1	3	MeOOC MeOCHN NH I 10% mol 128	HCl	CH ₃ CN/H ₂ C 95/5	42 h	Ultrasound	1:1	18 %
1	3	MeOOC MeOCHN NH I 15% mol 128	HCl	CH ₃ CN/H ₂ C 95/5	72h	ultrasound	1:1	28 %
1	3	MeOOC MeOCHN NH I 10% mol 128	HCl	CH ₃ CN/H ₂ C 95/5) 42h	ultrasound	1:1	28 %

The results shown in *Table 16* evinced that the reaction yields are modest improved compared to the simple acid catalysis reaction (10 %)⁸¹ but are lower compared to other organo-catalyst such as McMillan catalyst (0-94%)⁸² or proline derivatives (10-86%)⁸¹. Concerning the *exo:endo* ratio, we don't have significant results which is an analogues ratio found by Mc Millan⁸².

5.3 Staudinger reaction.

Concerning the Staudinger reaction, ketene 185 was made to react with the imine 186 to generate a β -lactam derivatives 187.

The catalytic cycle for the above Staudinger like reaction is reported below. First, ketene N reacts with a catalytic tertiary amine (step 1) forming the active intermediate N which gives a nucleophilic attack on the electron poor imine N (step 2). Finally, compound N was formed by cyclization (step 3). Recent result demonstrate 83 that a chiral nucleophilic base could dramatically enhance the rate and the yields in the formation of β -lactam derivatives obtained a good diastereoselectivity and enantioselectivity for analogue reaction.

In our case we studied the reaction of ketene **193** with imine **194** racemic ABO **123a** and enantiopure compound (+)-**125** were tested as catalysts. To generate the ketene **193** tioazolidinic acid **190** (2 eq.) reacted in the presence of the Mukayama activator **191** (2.31 eq.) and a non nucleophylic base protonsponge **192** (2 eq.). This reaction was performed in toluene at 70°C. In the second step the electron poor imine **194** (1 eq.) and the tertiary catalytic base (ABO **123a** or (+)-**125**: 0.1 eq.) and a further amount of a protonsponge base **192** (4 eq.) were added and mixture of diastereoisomeric compounds **195** β_1 , **195** β_2 was formed.

Scheme 35

Table 17

D	ase catalyst	T, °C	Ratio	yield	de	e e
Б	ase catalyst	1, C	Acid:imine	yieid	$\beta_1:\beta_2$	β_1
1	(±)-ABO	70	1:1	1.5	//	//
1	123a	70	1.1	1.5	11	//
2	(±)-ABO	70	2 . 1	12.2	75 . 25	//
2	123a	70	2:1	12.3	75 : 25	//
3	(+)-ABO 125	r.t	2:1	4.8	86:14	0
4	(+)-ABO 125	70	2:1	14.1	71:29	0
4	(+)-ABO 125	70	2:1	14.1	71:29	0

The results evinced that the reaction does not work very well. In particular yields are very low probably because the steric hindrance of the reactants make difficult the cyclization (catalytic cycle, step 3).

6. Experimental Section

Compounds *exo-***111a**, *endo-***112a**, *exo-***111b** and *endo-***112b** were prepared according to a know procedure.

General Procedure for the Synthesis of Diols 118, 119. Compound 111, 112 [exo-111a or endo-112a or a mixture of exo-111a/endo-112a (7 : 3) (209 mg, 1 mmol); exo-111b or endo-112b (409.6 mg, 1 mmol)] was suspended in a mixture of acetone/H₂O (6 mL, 10 : 1). After addition of N-methylmorpholine-N-oxide (176 mg, 1.5 mmol) and OsO₄ (1.35 mg, 0.005 mmol) the solution turned brown. The reaction mixture was stirred at room temperature for 8 h after which the solvent was evaporated. The crude reaction mixture was filtered on silica gel (CH₂Cl₂/MeOH = 5 : 1). Pure compound 118, 119 (exo-118a: 209 mg, 86 %; endo-119a: 204 mg, 84 %; exo-118a/endo-119a: 202 mg, 83 %) was obtained after crystallization. The crude reaction mixture containing 2b was taken up with a saturated solution of Na₂S₂O₄ (5 mL) and extracted with CH₂Cl₂ (3 x 5 mL). After drying of the organic layer with Na₂SO₄ and column chromatography on silica gel (CH₂Cl₂/MeOH = 20 : 1) pure compound 118b, 119b (exo-118b: 404 mg, 90%; endo-119b: 430 mg, 97%) was isolated.

(1R*,2S*, 4S*, 5S*6R*)-2-Acetylamino-5,6-Methyl dihydroxybicyclo[2.2.1]heptane-2-carboxylate exo-118a. 161 °C (MeOH/*i*Pr₂O); IR ν_{max} 3500-3100, 1735, 1651 cm⁻¹; ¹H NMR (CD₃OD) δ 3.97 (d, *J* = 6.2, 1 H), 3.73 (d, J = 5.0, 1 H), 3.67 (s, 3 H), 2.71 (bs, 1 H), 2.22 (dd, J = 13.8, 5.0, 1 H), 2.09 (bs, 1 H), 1.94 (s, 3 H), 1.94-1.91 (m, 1 H), 1.64 (d, J = 10.9, 1 H), 1.34 (dd, J = 13.8, 2.9, 1 H); ¹³C NMR (CD₃OD) δ 174.6, 172.9, 73.9, 69.3, 62.6, 51.8, 50.4, 43.3, 38.3, 31.3, 21.0; m/z 244.2 [M⁺]; Anal. Calcd for C₁₁H₁₇NO₅: C, 54.31; H, 7.04; N, 5.76. Found: C, 54.28; H, 7.10; N, 5.68.

Methyl (1*S**, 2*S**, 4*R**, 5*R**, 6*S**)-2-Acetylamino-5,6-dihydroxybicyclo[2.2.1]heptane-2-carboxylate *endo*-119a. Mp 186 °C (MeOH/*i*Pr₂O); IR ν_{max} 3346, 1731, 1694 cm⁻¹; ¹H NMR (CD₃OD) δ 3.74 (dd, *J* =

- 6.2, 1.4, 1 H), 3.66 (s, 3 H), 3.57 (dd, J = 5.8, 1.4, 1 H), 2.38 (dd, J = 13.9, 2.5, 1 H), 2.23 (bs, 1 H), 2.16-2.14 (m, 1 H), 1.97 (dt, J = 10.6, 1.1, 1 H), 1.88 (s, 3 H), 1.65 (dt, J = 10.6, 1.5, 1 H), 1.54 (ddd, J = 14.0, 5.1, 0.7, 1 H); ¹³C NMR (CD₃OD) δ 173.1, 171.5, 72.8, 68.9, 63.8, 52.3, 51.6, 43.9, 38.8, 31.8, 20.8; m/z 244.2 [M⁺]; Anal. Calcd for C₁₁H₁₇NO₅: C, 54.31; H, 7.04; N, 5.76. Found: C, 54.25; H, 7.12; N, 5.67.
- (-)-8-Phenylmenthyl (1*R*, 2*S*, 4*S*, 5*S*, 6*R*)-2-Acetylamino-5,6-dihydroxybicyclo[2.2.1]heptane-2-carboxylate *exo*-118b. Mp 235 °C (CH₂Cl₂/*i*-Pr₂O); $[\alpha]_D^{25} = -9.1^\circ$ (c 0.5, MeOH); IR ν_{max} 3360-3300, 1715, 1647 cm⁻¹; ¹H NMR (CD₃OD) δ 7.34-7.11 (m, 5 H), 4.83-4.71 (m, 1 H), 3.97 (d, J = 6.2, 1 H), 3.66 (d, J = 5.5, 1 H), 2.61 (bs, 1 H), 2.26 (dd, J = 13.9, 5.1, 1 H), 2.05-1.77 (m, 3 H), 1.90 (s, 3 H), 1.55-0.72 (m, 9 H), 1.35 (s, 3 H), 1.24 (s, 3 H), 0.86 (d, J = 6.6, 3 H); ¹³C NMR (CD₃OD) δ 172.9, 171.6, 153.3, 128.5, 125.9, 124.9, 77.4, 73.8, 69.3, 62.6, 50.8, 50.2, 43.7, 40.9, 39.7, 38.1, 35.0, 31.5, 29.9, 29.6, 26.8, 24.1, 23.5, 21.9; *m/z* 466.4 [+Na]; Anal. Calcd for C₂₆H₃₇NO₅: C, 70.40; H, 8.41; N, 3.16. Found: C, 70.33; H, 8.45; N, 3.10.
- 2S, 4R. 5R. 6S)-2-Acetylamino-5,6-(-)-8-Phenylmenthyl (1S,dihydroxybicyclo[2.2.1]heptane-2-carboxylate endo-119b. 249 °C; $[\alpha]_D^{25} = +13$ (c 0.5, MeOH); IR v_{max} 3375, 1704, 1649 cm⁻¹; ¹ H NMR (CDCl₃) δ 7.40-7.16 (m, 5 H), 5.00 (s, 1 H, exch.), 4.69-4.59 (m, 1 H), 3.90 (d, J = 5.9, 1 H), 3.82 (d, J = 6.3, 1 H), 2.22-2.00 (m, 3 H), 2.00-1.80 (m, 4 H), 1.81 (s, 3 H), 1.79-1.42 (m, 4 H), 1.34 (s, 3 H), 1.30-0.80 (m, 2 H), 1.17 (s, 3 H), 0.87 (d, J = 6.7, 3 H); ¹³C NMR (CDCl₃) δ 171.8, 169.9, 152.9, 128.4, 125.9, 125.1, 77.7, 73.2, 69.4, 63.7, 52.3, 49.8, 44.4, 41.0, 39.8, 39.2, 35.0, 32.5, 31.6, 28.9, 27.0, 25.1, 23.3, 22.0; m/z 466.4 [+Na]; Anal. Calcd for C₂₆H₃₇NO₅: C, 70.40; H, 8.41; N, 3.16. Found: C, 70.47; H, 8.39; N, 3.13. General Procedure for the Preparation of bis-Aldehydes 120, 121. Compound 118, 119 (118a: 243 mg, 1 mmol; 119b: 443 mg, 1 mmol) was dissolved in a mixture of dioxane/H₂O (5 mL, 8 : 1). NaIO₄ was added (1.7 g, 7.92 mmol) and the mixture was stirred at room temperature for 2 h. The solvent was evaporated and the reaction mixture was taken up with CHCl₃ (10 mL) and the salts were filtered and washed with CHCl₃. The organic solution was collected and, after solvent elimination, the crude aldehydes 120 or 121 [exo/endo-118a/119a: 120a, 121a (240 mg); exo-118a: 120a

(232 mg); *endo-***119a**: **121a** (234 mg); *exo-***118b**: **120b** (395 mg), *endo-***119b**: **121b** (398 mg)] were isolated and used without further purification.

Methyl (1*S**, 2*R**, 4*S**)-1-Acetylamino-2,4-diformyl-cyclopentanecarboxylate 120a: crude compound. IR v_{max} 3346, 1731, 1694 cm⁻¹; ¹ H NMR (CDCl₃) δ 9.76 (s, 1 H), 9.71 (s, 1 H), 6.50 (s, H, exch.), 3.77 (s, 3 H), 3.25-3.05 (m, 1 H), 2.50 (dd, *J* = 13.9, 3.7, 1 H), 2.40-1.90 (m, 4 H), 1.91 (s, 3 H); ¹³C NMR δ 202.7, 172.0, 170.8, 66.6, 57.2, 53.3, 47.4, 37.0, 24.7, 22.9; *m/z* 242.1 [M⁺].

Methyl (1*S**, 2*S**, 4*R**)-1-Acetylamino-2,4-diformyl-cyclopentanecarboxylate 121a: crude compound. IR ν_{max} 3391, 1728, 1658 cm⁻¹; ¹H NMR (CDCl₃) δ 9.68 (s, 1 H), 9.67 (s, 1 H), 6.70 (s, H, exch.), 3.69 (s, 3 H), 3.20-2.90 (m, 1 H), 2.60-1.90 (m, 4 H), 2.01 (s, 3 H); ¹³C NMR δ 201.7, 200.0, 173.0, 170.5, 65.7, 58.4, 53.2, 48.9, 36.8, 27.2, 23.9; m/z 242.1 [M⁺].

(-)-8-Phenylmenthyl (1*S*, 2*R*, 4*S*)-1-Acetylamino-2,4-diformyl-cyclopentanecarboxylate 120b: crude compound. IR v_{max} 3428, 1759, 1633 cm⁻¹; ¹H NMR (CDCl₃) δ 9.73 (s, 1 H), 9.48 (d, J = 0.81, H), 7.39-7.11 (m, 5 H), 6.35 (s, 1 H, exch.), 4.93-4.88 (m, 1 H), 3.02-2.92 (m, 1 H), 2.40-2.31 (m, 1 H), 2.25 (dd, J = 14.0, 2.3, 1 H), 2.20-2.13 (m, 1 H), 2.12-1.75 (m, 5 H), 1.84 (s, 3 H), 1.68 (dd, J = 14.0, 10.1, 1 H), 1.60-1.50 (m, 1 H), 1.32 (s, 3 H), 1.28-1.18 (m, 1 H), 1.14 (s, 3 H), 1.10-0.97 (m, 2 H), 0.93 (d, J = 6.6, 3 H); ¹³C NMR (CDCl₃) δ 202.2, 197.3, 169.6, 168.8, 152.1, 127.4, 124.9, 124.3, 76.6, 65.5, 55.9, 48.5, 45.3, 40.1, 38.7, 35.0, 34.0, 30.7, 30.3, 25.8, 23.3, 21.7, 21.1, 20.8; m/z 442.5 [M⁺].

(-)-8-Phenylmenthyl (1*S*, 2*S*, 4*R*)-1-Acetylamino-2,4-diformyl-cyclopentanecarboxylate 121b: crude compound. IR v_{max} 3390, 1727, 1651 cm⁻¹; ¹H NMR (CDCl₃) δ 9.69 (d, J = 1.5, 1 H), 9.61 (d, J = 1.3, 1 H), 7.32-7.15 (m, 5 H), 6.05 (s, 1 H, exch.), 5.04-4.95 (m, 1 H), 3.27-3.12 (m, 1 H), 2.43 (dd, J = 14.0, 10.0, 1 H), 2.33 (dd, J = 9.3, 9.2, 1 H), 2.12-1.95 (m, 2 H), 1.97 (s, 3 H), 1.90-1.80 (m, 2 H), 1.72-1.55 (m, 3 H), 1.50-1.40 (m, 1 H), 1.36 (s, 3 H), 1.22 (s, 3 H), 1.18-0.80 (m, 3 H), 0.90 (d, J = 6.5, 3 H); ¹³C NMR (CDCl₃) δ 202.0, 200.1, 171.5, 170.3, 151.7, 128.7, 125.9, 78.8, 67.1, 57.9, 50.3, 48.9, 41.8, 40.3, 35.6, 34.6, 31.8, 27.7, 27.3, 27.0, 26.5, 24.5, 22.1; m/z 442.5 [M⁺].

General Procedure for the Reductive Amination: Synthesis of 3-Azabicyclo[3.2.1]octane Derivatives 122/123 a,b. Aldehyde [120a/121a (242 mg, 1

mmol); **120b/121b** (442 mg, 1 mmol)] was dissolved in anhydrous dichloroethane (4 mL) under nitrogen. Operating under stirring at room temperature, *p*-methoxybenzylamine (137.2 mg, 1 mmol), NaBH(OAc)₃ (487.0 mg, 2.3 mmol) and a catalytic amount of AcOH were added. After 4 h, the solvent was evaporated and the crude reaction mixture was taken up with CH₂Cl₂ (5 mL). The organic layer was washed with H₂O (5 mL) and dried over MgSO₄. The crude reaction was chromatographed on silica gel (**122a**: CH₂Cl₂/MeOH = 20 : 1; **123b**: CH₂Cl₂/MeOH = 50 : 1) giving pure 3-aza-bicyclo[3.2.1]octane derivatives **122/123** after crystallization [**120a**: *exo*-**122a** (211 mg, 61%); **121a**: *endo*-**123a** (183 mg, 53%); **120a/121a**: *exo*-**122a** (141 mg, 41%), *endo*-**123a** (52 mg, 15%); **120b**: *exo*-**122b** (311 mg, 57%); **121b**: *endo*-**123b** (317 mg, 58%)].

Methyl (1*S**, 5*S**, 6*S**)-6-(Acetylamino)-3-(4-methoxybenzyl)-3-azabicyclo[3.2.1]octane-6-carboxylate *exo*-122a. Mp 143-145 °C (benzene); IR v_{max} 3344, 1737, 1637 cm⁻¹; ¹H NMR (CDCl₃) δ 7.16, 6.84 (AA'XX' system, J = 8.4, 4 H), 6.44 (s, 1H, exch.), 3.78 (s, 3 H), 3.67 (s, 3 H), 3.55, 3.17 (AB system, J = 12.5, 2 H), 2.83-2.75 (m, 1 H), 2.72 (brs, 1 H), 2.56-2.50 (m, 1 H), 2.40-2.30 (m, 2 H), 2.20 (bs, 1 H), 2.03-1.98 (m, 2 H), 1.72 (dd, J = 13.5, 2.5, 1 H), 1.57 (s, 3 H), 1.50 (dd, J = 11.1, 2.5, 1 H); ¹³C NMR (CDCl₃) δ 174.4, 171.0, 159.2, 130.6, 130.6, 114.2, 65.9, 62.2, 61.0, 55.6, 54.9, 52.5, 43.0, 40.0, 37.1, 34.7, 22.5; m/z 347.3 [M⁺]; Anal. Calcd for C₁₉H₂₆N₂O₄: C, 65.87; H, 7.56; N, 8.09; Found: C, 65.85; H, 7.55; N, 8.06.

Methyl (1*R**, 5*R**, 6*S**)-6-(Acetylamino)-3-(4-methoxybenzyl)-3-azabicyclo[3.2.1]octane-6-carboxylate *endo*-123a. Mp 155-157 °C (benzene); IR v_{max} 3265, 1747, 1640 cm⁻¹; ¹ H NMR (CDCl₃) δ 7.23, 6.84 (AA'XX' system, J = 8.5, 4 H), 5.72 (s, H, exch.), 3.80 (s, 3 H), 3.69 (s, 3 H), 3.42, 3.33 (AB system, J = 13.0, 2 H), 3.01 (dd, J = 13.9, 1.8, 1 H), 2.84 (d, J = 10.2, 1 H), 2.71 (d, J = 8.4, 1 H), 2.30 (bs, 1 H), 2.30-1.85 (m, 5 H), 1.96 (s, 3 H), 1.51 (dd, J = 11.3, 2.2, 1 H); ¹³C NMR (CDCl₃) δ 172.5, 169.7, 159.0, 131.1, 130.4, 113.9, 68.5, 62.0, 59.0, 55.9, 55.6, 52.5, 46.8, 39.9, 37.1, 35.1, 23.7; m/z 347.3 [M⁺]; Anal. Calcd for C₁₉H₂₆N₂O₄: C, 65.87; H, 7.56; N, 8.09. Found: C, 65.91; H, 7.54; N, 8.08.

(-)-Phenylmenthyl (1S, 5S, 6S)-6-(Acetylamino)-3-(4-methoxybenzyl)-3-azabicyclo[3.2.1]octane-6-carboxylate *exo*-122b. Mp 186 °C (*i*-Pr₂O); $[\alpha]_D^{25} = -$

46.5° (c 5.24, CHCl₃); IR v_{max} 3400, 1730, 1657 cm⁻¹; ¹ H NMR (CDCl₃) δ 7.28-7.08 (m, 6 H), 7.08-6.98 (m, 1 H), 6.86 (d, J = 8.4, 2 H), 5.94 (s, 1 H, exch.), 4.81-4.65 (m, 1 H), 3.80 (s, 3 H), 3.54, 3.16 (AB system, J = 12.5, 2 H), 2.90-2.70 (m, 1 H), 2.65-2.00 (m, 4 H), 2.00-1.80 (m, 2 H), 1.60-0.70 (m, 11 H), 1.58 (s, 3 H), 1.30 (s, 3 H), 1.19 (s, 3 H), 0.83 (d, J = 6.2, 3 H); ¹³C NMR (CDCl₃) δ 173.3, 170.6, 159.2, 151.7, 131.0, 130.5, 128.1, 125.9, 125.2, 114.1, 76.7, 66.2, 62.2, 60.9, 55.6, 54.8, 50.4, 42.1, 41.1, 40.3, 36.7, 34.9, 34.7, 31.5, 28.4, 27.6, 25.0, 23.1, 22.7, 22.0; m/z 547.3 [M⁺]; Anal. Calcd for C₃₄H₄₆N₂O₄: C, 74.69; H, 8.48; N, 5.12. Found: C, 74.53; H, 8.50; N, 5.09.

(-)-Phenylmenthyl (1*R*, 5*R*, 6*S*)-6-(Acetylamino)-3-(4-methoxybenzyl)-3-azabicyclo[3.2.1]octane-6-carboxylate endo-123b. Mp 86 °C (CH₂Cl₂/iPr₂O); $[\alpha]_D^{25} = -3.5^\circ$ (c 6.4, CHCl₃); IR v_{max} 3400, 1730, 1657 cm⁻¹; ¹ H NMR (CDCl₃) δ 7.42-7.05 (m, 6 H), 7.05-6.95 (m, 1 H), 6.88 (d, J = 8.8, 2 H), 5.42 (s, 1 H, exch.), 4.78-4.66 (m, 1 H), 3.82 (s, 3 H), 3.55, 3.22 (AB system, J = 13.0, 2 H), 2.90-2.80 (m, 1 H), 2.58-162 (m, 10 H), 1.57 (s, 3H), 1.58-0.70 (m, 7 H), 1.29 (s, 3 H), 1.15 (s, 3 H), 0.84 (d, J = 6.2, 3 H); ¹³C NMR (CDCl₃) δ 171.0, 169.4, 158.8, 152.3, 131.0, 130.2, 128.1, 125.8, 125.2, 113.7, 77.3, 68.5 61.5, 58.1, 55.7, 55.4, 50.2, 41.1, 40.3, 39.1, 37.1, 35.0, 34.6, 31.6, 28.3, 27.6, 25.4, 23.5, 23.1, 22.1; m/z 547.3 [M⁺]; Anal. Calcd for C₃₄H₄₆N₂O₄: C, 74.69; H, 8.48; N, 5.12. Found: C, 74.50; H, 8.51; N, 5.07.

General Procedure for the Oxidative Deprotection of 122a/123a. To a solution of compound 122a/123a (346 mg, 1 mmol), in acetone/H₂O (23 mL, 9 : 1) at 0 °C, (NH₄)₂Ce(NO₃)₆ (2.19 g, 4 mmol) was added in several portion in 1 h. The mixture was stirred at room temperature for 3 h and quenched with a saturated solution of NaHCO₃ (pH 10). A solid was formed. Acetone was evaporated and the aqueous layer was filtered trough a celite pad. After elution with warm EtOH, the organic solution was concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (CH₂Cl₂/MeOH/NH₄OH = 5 : 1 : 0.025). Compound 126/127 (*exo*-126a: 204 mg, 90%; *endo*-127a: 141 mg, 62%) was isolated after recrystallization.

Methyl (1*S**, 5*S**, 6*S**)-6-(Acetylamino)-3-azabicyclo[3.2.1]octane-6-carboxylate *exo*-126a. Mp 110 °C dec. (EtOH); IR ν_{max} 3400, 1727, 1632 cm⁻¹; ¹H NMR (D₂O) δ

3.58 (s, 3 H), 3.10 (brs, 4 H), 2.86 (brs, 1 H), 2.55 (dd, J = 15.4, 7.3, 1 H), 2.39 (brs, 1 H), 2.11-1.98 (m, 1 H), 1.92 (s, 3 H), 1.83 (dd, J = 15.4, 3.0, 1 H), 1.71 (dd, J = 12.5, 2.6, 1 H); ¹³C NMR (D₂O) δ 176.5, 175.5, 65.0, 53.5, 49.2, 45.9, 39.2, 38.8, 34.2, 32.0, 21.9; m/z 227.2 [M⁺]; Anal. Calcd for C₁₁H₁₈N₂O₃: C, 58.39; H, 8.02; N, 12.38. Found: C, 58.21; H, 8.18; N, 12.22.

Methyl (1*R**, 5*R**, 6*S**)-6-(Acetylamino)-3-azabicyclo[3.2.1]octane-6-carboxylate *endo*-127a. Mp 99 °C dec. (EtOH); IR v_{max} 3420, 1720, 1645 cm⁻¹; ¹H NMR (D₂O) δ 3.66 (s, 3 H), 3.21 (d, *J* = 12.5, 1H), 3.18-3.00 (m, 3 H), 2.56 (d, *J* = 15.7, 1 H), 2.47 (brs, 2 H), 2.21-2.00 (m, 2 H), 1.93 (s, 3 H), 1.75 (d, *J* = 12.5, 1 H); ¹³C NMR (D₂O) δ 175.1, 173.9, 66.9, 53.9, 49.6, 45.8, 42.3, 39.8, 34.4, 32.5, 21.7; *m/z* 227.1 [M⁺]; Anal. Calcd for C₁₁H₁₈N₂O₃: C, 58.39; H, 8.02; N, 12.38. Found: C, 58.30; H, 8.20; N, 12.14.

6-Acetylamino-3-(4-methoxybenzyl)-3-azabicyclo[3.2.1]octane-6-carboxylic Acid (\pm)-132/133. Operating in a sealed tube, compound 122a/123a (346 mg, 1 mmol) was dissolved in EtOH (95%, 5 mL) and KOH (112.2 mg, 2 mmol) was added. The solution was heated at 120 °C under stirring for 2h. The reaction mixture was treated with HCl (6 N, pH 7) and the solvent was removed. The crude material was filtered through a pad of silica gel with CH₂Cl₂/CH₃OH (5 : 2). Crystallization from absolute EtOH afforded the pure carboxylic acid derivative 132/133 [(\pm)-*exo*-132: (315 mg, 95%); (\pm)-*endo*-133: (330 mg, 99%)].

(1*S**, 5*S**, 6*S**)-(±)-*exo*-132: mp 200 °C (EtOH); IR v_{max} 3412, 1740, 1661 cm⁻¹; ¹H NMR (CD₃OD) δ 7.61, 7.00 (AA'XX' system, J = 8.4, 4 H), 4.42, 4.01 (AB system, J = 11.0, 2 H), 3.83 (s, 3H), 3.56, 3.17 (AB system, J = 11.0, 2 H), 3.10-1.90 (brs, 2 H), 2.81 (d, J = 12.2, 1 H), 2.63 (d, J = 14.2, 1 H), 2.50 (brs, 1 H), 2.41 (dd, J = 14.7, 7.0, 1 H), 2.38-2.29 (m, 1 H), 1.92 (s, 3 H), 1.78 (d, J = 11.2, 1 H); ¹³C NMR (CD₃OD) δ 176.9, 172.7, 160.2, 131.5, 120.9, 113.4, 65.0, 59.7, 57.6, 53.8, 53.0, 40.0, 36.4, 33.9, 32.8, 20.9; m/z 333.2 [M⁺]; Anal. Calcd for C₁₈H₂₄N₂O₄: C, 65.04; H, 7.28; N, 8.43. Found: C, 65.12; H, 7.38; N, 8.50.

(1*R**, 5*R**, 6*S**)-(±)-endo-133: mp 202 °C dec. (EtOH); IR v_{max} 3435, 1613, 1516 cm⁻¹; ¹H NMR (CD₃OD) δ 7.42, 6.98 (AA'XX' system, J = 8.4, 4 H), 4.16, (brs, 2 H), 3.80 (s, 3 H), 3.40-3.20 (m, 3 H), 3.11 (d, J = 12.1, 1 H), 2.66 (d, J = 15.0, 1 H), 2.53 (brs, 2 H), 2.30-2.02 (m, 2 H), 1.92 (s, 3 H), 1.88 (d, J = 11.5, 1 H); ¹³C NMR

(CD₃OD) δ 177.2, 170.9, 160.2, 131.1, 120.7, 113.6, 67.6, 58.7, 56.2, 54.4, 53.8, 42.3, 41.2, 33.8, 33.6, 20.8; m/z 333.3 [M⁺]; Anal. Calcd for C₁₈H₂₄N₂O₄: C, 65.04; H, 7.28; N, 8.43. Found: : C, 65.00; H, 7.30; N, 8.39.

General Procedure for the Hydrolysis of Amino Acid Function. i) Operating in a sealed tube, compounds (±)-exo-122a,123a or (±)-endo-122a,123a (1 mmol) were suspended in HCl (1 mL, 6 M) and the mixture was heated at 120 °C for 24 h. The solvent was removed and the crude amino acids (±)-exo-134a (mixture of conformers 7 : 1), exo-135a and (\pm) -endo-134a,135a were isolated as bis-chlorhydrate in quantitative yield. ii) Operating in a sealed tube, MeOH (5 mL) was cooled at 0 °C and Na (161 mg, 7 mmol) was added. Compound 122b (546.7 mg, 1 mmol) was added and the mixture was heated at 100 °C under stirring for 50 h (TLC: CH₂Cl₂/MeOH, 50: 1). The solvent was removed and the crude reaction mixture was taken up with distilled H₂O (5 mL) and extracted with AcOEt (3 x 10 mL). The aqueous solution was treated with HCl (6N, pH 1) and was purified by a Dowex 50W x 4-50 ion exchange resin which was first activated with NH₄OH (2N) then with AcOH (2 N, pH 4) followed by washing with H₂O (pH 7). The reaction mixture was deposited on the resin which was rinsed with water. The amino acid was eluted with aqueous NH₄OH (2 N). Ninhydrin positive fractions (T.L.C. $CH_2Cl_2/MeOH/NH_4OH(15\%) = 5:3:0.9$) were pooled and evaporated to give (-)exo-134b' (130 mg, 45 %) from (-)-exo-122b' and (-)-endo-135b' (172 mg, 60 %) from (-)-endo-123b'.

6-Amino-3-(4-methoxybenzyl)-3-azabicyclo[3.2.1]octane-6-carboxylic Acids:

(1*S**, 5*S**, 6*S**) (±)-*exo*-124a · 2 HCl: mixture of isomers (8 : 1). Mp 176 °C (acetone/H₂O); IR v_{max} 3470-3370, 1742, 1614 cm⁻¹; ¹H NMR (D₂O) δ major isomer: 7.32, 6.92 (AA'BB' system, J = 8.8, 4 H), 4.29, 4.13 (AB system, J = 12.8, 2 H), 3.70 (s, 3 H), 3.52, 3.37 (AB system, J = 14.3, 2 H), 3.15 (brs, 2 H), 2.70-2.55 (m, 2 H), 2.52-2.48 (m, 1 H), 2.30-2.10 (m, 1 H), 1.62 (d, J = 4.0 1 H), 1.56 (d, J = 8.4, 1 H); minor isomer (significative signals): 7.18, 6.80 (AA'BB' system, J = 8.8, 4 H); ¹³C NMR (D₂O) δ 173.1, 160.5, 133.3 (133.5), 120.3, 114.5 (115.9), 64.6, 61.9, 57.5, 55.5, 52.5, 41.5, 33.8, 33.0, 32.5; m/z 291.8 [M⁺]; Anal. Calcd for C₁₆H₂₄Cl₂N₂O₃: C, 52.90; H, 6.66; N, 7.71. Found: C, 52.50; H, 7.00; N, 7.28.

(1S, 5S, 6S) (-)-exo-134b': $[\alpha]_D^{25} = -36.3^{\circ}$ (c 3.7, MeOH).

(1*R**, 5*R**, 6*S**) (±)-*endo*-135a · 2 HCl: mixture of isomerss (3 : 1). Mp 220-221 °C (EtOH); IR v_{max} 3405-2950, 1725, 1614 cm⁻¹; ¹H NMR (D₂O) δmajor isomer: 7.35, 7.01 (AA'BB' system, J = 8.8, 4 H), 4.18, 4.12 (AB system, J = 13.1, 2 H), 3.79 (s, 3 H), 3.44, 3.16 (AB system, J = 11.2, 2 H), 3.28-3.13 (m, 2 H), 2.71 (brs, 1 H), 2.66 (brs, 1 H), 2.46 (dd, J = 15.7, 2.1, 1 H), 2.17 (dd system, J = 15.7, 7.2, 1 H), 2.09-2.07 (m, 1 H), 1.94 (d, J = 13.5, 1 H); minor isomer (significative signals): 7.28, 6.90 (AA'BB' system, J = 8.8, 4 H); ¹³C NMR (D₂O) δ 174.6, 160.3, 132.4 (132.2), 121.3 (120.6), 114.9 (116.2), 67.1, 59.96 (60.03), 56.99 (56.93), 55.5, 54.5, 42.8, 38.9, 34.2, 33.9; m/z 291.8 [M⁺]; Anal. Calcd for C₁₆H₂₄Cl₂N₂O₃: C, 52.90; H, 6.66; N, 7.71. Found: C, 52.53; H, 7.69; N, 7.29.

(1R, 5R, 6S) (-)-endo-135b' $[\alpha]_D^{25} = -14.0^{\circ}$ (c 4.25, MeOH).

(1*S**, 5*S**, 6*S**) 6-Amino-3-azabicyclo[3.2.1]octane-6-carboxylic Acid 2 HCl (±)-*exo*-130: IR v_{max} 3600-2950, 1695, 1626 cm⁻¹; ¹H NMR (2 HCl salt D₂O) δ 3.51 (dd, *J* 14.6, 3.1, 1 H), 3.45 (dt, *J* 14.6, 2.2, 1 H), 3.37-3.24 (m, 2 H), 2.89 (dd, *J* 15.9, 8.0, 1 H), 2.78 (brs, 1 H), 2.62 (brs, 1 H), 2.45-2.28 (m, 1 H), 1.85 (dd, *J* 15.9, 1.9, 1 H), 1.79 (dd, *J* 13.0, 2.1, 1 H); ¹³C NMR δ 172.6, 63.1, 48.9, 42.9, 39.6, 33.6, 32.2, 31.0; m/z 172.2 [M]⁺; Anal. Calcd for C₈H₁₆Cl₂N₂O₂: C, 39.52; H, 6.63; N, 11.52. Found: C, 39.05; H, 6.96; N, 11.30.

(1*R**, 5*R**, 6*S**) 6-Amino-3-azabicyclo[3.2.1]octane-6-carboxylic Acid 2 HCl (\pm)-endo-131. IR ν_{max} 3600-2950, 1697, 1627 cm⁻¹; ¹H NMR (D₂O) δ 3.35 (dt, *J* 12.7, 2.4, 1 H), 3.27 (brs, 2 H), 3.23 (d, *J* 12.7, 1 H), 2.71 (brs, 1 H), 2.68 (brs, 1 H), 2.57 (dd, *J* 15.9, 2.1, 1 H), 2.24 (dd, *J* 15.9, 7.4, 1 H), 2.20-2.12 (m, 1 H), 1.98 (dd, *J* 13.2, 2.1, 1 H); ¹³C NMR (D₂O) δ 173.2, 66.3, 48.4, 45.7, 41.4, 37.7, 33.2, 32.6; *m/z* 172.2 [M]⁺; Anal. Calcd for C₈H₁₆Cl₂N₂O₂: C, 39.52; H, 6.63; N, 11.52. Found: C, 39.01; H, 6.98; N, 11.28.

General Procedure for the Reductive Amination from Aldehydes 120a, 121a: Synthesis of 3-aza-bicyclo[3.2.1]octane *exo-*124, 124', 122c and *endo-*125, 125', 123c. A mixture of aldehydes 120a, 121a (241 mg, 1 mmol) was dissolved in anhydrous dichloroethane (4 mL) under N_2 and stirring at 25 °C. (*R*)-1-Phenylethylamine (50 μ L, 1.1 mmol) or MeNH₂ (32.6 mg, 1.05 mmol), NaBH(OAc)₃ (530 mg, 2.5 mmol) and AcOH (catalytic amount) were added. After 36 h, the solvent was eliminated, the mixture was taken up with CH₂Cl₂ (5 mL),

washed with H₂O (5 mL) and dryed over MgSO₄. In the case of phenylethylamine (1.45 mL, 31.9 mmol) the reaction has been scaled up starting from aldehydes **120a**, **121a** (7 g, 29 mmol) to give a mixture of diastereoisomers (7.6 g, 80%) which were chromatographed on silica gel (CH₂Cl₂/MeOH, 20 : 1), affording the mixture *exo*-**124/124'** (5.3 g, 56%) and *endo*-**125/125'** (2.3 g, 24%). Using a Biotage chromatographic system (column: FLASH 65i, KP-SIL, 65x200 mm; *exo*-**124/124'**: cyclohexane/AcOEt, 3:2; *endo*-**125/125'**: CH₂Cl₂/MeOH, 10:1) pure (+)-*exo*-**124** (2.3 g, 25%) was separated from (-)-*exo*-**124'** (2.65 g, 28%) and (+)-*endo*-**125** (1.15 g, 12%) from (-)-*endo*-**125'** (0.95 g, 10%). Pure (±)-*exo*-**122c** (57 mg, 24%) and (±)-*endo*-**123c** (21.6 mg, 11%) were isolated after column chromatography (CH₂Cl₂/MeOH, 50 : 1) and crystallization.

General Procedure for the Deprotection of *N*-3. Compound (\pm)-*exo*-122a or (\pm)-*endo*-123a (346 mg, 1 mmol) or (-)-*exo*-124' or (+)-*endo*-125 (330 mg, 1 mmol) or (-)-*exo*-132' or (-)-*endo*-133 (290 mg, 1 mmol) was dissolved in MeOH (10 mL). Pd/C (10 %, 100 mg, 0.1 mmol) was added and the mixture was hydrogenated (25 °C, 1 atm; *exo*-122a and *endo*-123a: 48 h; *exo*-124' and *endo*-125: 36 h; *exo*-132' and *endo*-133: 24 h). The catalyst was filtrated over a celite pad, the solvent was removed and the mixture was purified by column chromatography on silica gel (CH₂Cl₂/MeOH, 1 : 1). Pure compound [from (\pm)-*exo*-122a: (\pm)-*exo*-126a (165 mg, 73%); from (\pm)-*endo*-123a: (\pm)-*endo*-127a (158 mg, 70%); from (-)-*exo*-124': (-)-*exo*-122f' (192 mg, 85%); from (+)-*endo*-125: (+)-*endo*-122f (165 mg, 73 %), from (-)-*exo*-132': (-)-*exo*-130 (142 mg, 84%); from (-)-*endo*-133: (+)-*endo*-131 (160 mg, 95%)] was isolated after crystallization. Spectroscopic data of known compounds are in agreement with literature.²

6-Amino-3-aza-bicyclo[3.2.1]octane-6-carboxylic Acids exo-130 and endo-131 · 2 HCl. The hydrochloride salt was obtained after treating compounds (-)-exo-130 and (+)-endo-131 with a solution of anhydrous HCl in EtOH.

(-)-(1*S*, 5*S*, 6*S*)-*exo*-130 · 2 HCl: $[\alpha]_D^{25}$ - 9.0 (*c* 0.5, MeOH). (+)-(1*R*, 5*R*, 6*S*)-*endo*-131 · 2 HCl: $[\alpha]_D^{25}$ + 4.0 (*c* 0.5, MeOH).

General Procedure for the "One Pot" Deprotection-Alkylation Reaction of N-3. Compound (\pm)-exo-122a or (\pm)-endo-123a (150 mg, 0.432 mmol) or (\pm)-exo-124 or (-)-exo-125 or (-)-endo-125' (100 mg, 0.303 mmol) was

dissolved in the proper solvent (see below: 10 mL). A catalytic amount of AcOH and the carbonyl compound were added [for **c**: MeOH and formaldehyde (37 % MeOH solution, 200 μL, 1.2 mmol); for **d**: EtOH and acetaldehyde (25 μL, 0.476 mmol); for **e**: acetone and water 1:3]. The mixture was hydrogenated with Pd/C (10%, 47 mg, 0.044 mmol) at 25 °C and 1 atm for 24 h. The catalyst was filter over celite, the solvent was eliminated affording the expected compounds of **c** series [from (±)-*exo*-122a: (±)-*exo*-122c (90 mg, 88%); from (±)-*endo*-123a: (±)-*endo*-123c (88mg, 85%); from (+)-*exo*-124: (+)-*exo*-122c (50 mg, 70%); from (-)-*exo*-124': (-)-*exo*-122c' (58 mg, 80%); from (+)-*endo*-123b: (+)-*endo*-123c (60 mg, 83%); from (-)-*endo*-123b': (-)-*endo*-123c' (62 mg, 85%)] or (±)-*exo*-122d (from (±)-*exo*-122a: 100 mg, 90%) or (±)-*endo*-123d (from (±)-*endo*-123a: 75 mg, 68 %) or (±)-*exo*-122e (from (±)-*exo*-122a: 81 mg, 70%) after crystallization.

Synthesis of Methyl (±)-(1S*, 5S*, 6S*)-6-Acetamido-3-(4,4-diphenylbut-3-enyl)-3-aza-bicyclo[3.2.1]octane-6-carboxylate *exo*-122g. To a solution of (±)-*exo*-126d (297 mg, 1.3 mmol) in DMF (20 mL), 4-bromo-1,1-diphenylbut-1-ene (565 mg, 1.96 mmol), K₂CO₃ (370 mg, 2.68 mmol) and NaI (78 mg, 0.52 mmol) were added. The reaction was stirred at reflux for 48 h (TLC: CH₂Cl₂/*n*-hexane, 4:1). The reaction mixture was poured into water (10 mL) and extracted with Et₂O (3 x 10 mL). The organic layer was washed with a saturated solution of NaCl (3 x 10 mL), dried over Na₂SO₄. After flash column chromatography on silica gel (CH₂Cl₂/MeOH, 40:1) pure compound (±)-*exo*-122g was obtained (170 mg, 30%).

General Procedure for Hydrolysis of Amino Acid Function. Operating in a sealed tube, compound (+)-exo-122c or (-)-exo-122c' or (+)-endo-123c or (-)-endo-123c' or (+)-exo-133 or (-)-exo-122f' or (+)-endo-122f or (-)-endo-132' or (±)-exo-122d or (±)-exo-122g (1 mmol) was suspended in 6N HCl (1 mL) and the mixture was heated at 120 °C for 14 h. The solvent was removed and the corresponding acids exo-128, exo-128', endo-129 and endo-129', (+)-exo-137, (-)-exo-137, (+)-endo-138, (+)-endo-138' were isolated in quantitative yield. Spectroscopic data of known compound are in agreement with literature.²

(-)-(1*S*, 5*S*, 6*S*)-6-Amino-3-aza-bicyclo[3.2.1]octane-6-carboxylic Acid *exo*-130 · 2 HCl: $[\alpha]_D^{25}$ - 9.3 (*c* 0.5, MeOH).

(+)-(1*R*, 5*R*, 6*S*)-6-Amino-3-aza-bicyclo[3.2.1]octane-6-carboxylic Acid *endo*-131 · 2 HCl $[\alpha]_D^{25}$ + 4.9 (*c* 0.5, MeOH).

General Procedure for the Fmoc protection. Compound (-)-.exo-137'(226 mg, 0.65 mmol); was suspended in 1,4-Dioxane (10 mL). After addition of aqueous solution NaHCO₃ (6mL) the pH turned basic. FmocOSu (240 mg, 0.914 mmol) was dissolved in 5 mL of Dioxane and dropped into the stirring solution. The reaction mixture was stirred (overnight, 25 °C). The solvent was evaporated. The crude reaction mixture was solubilized in HCl 2N (10 mL) to pH acid and the product was precipitated and filtered off. Product (-)-.exo-140' (332 mg, 0.67 mmol)

(1*S*, 5*S*, 6*S*, 1'*R*) 6-Amino((9H-fluoren-9-yl)methylcarbamoil)-3-azabicyclo[3.2.1]octane-6-carboxylic Acid (-)-exo-140'. $[\alpha]_D^{25} = -18.9^\circ$ (*c* 0.3, MeOH); IR ν_{max} cm⁻¹; ¹H NMR (CD₃OD) δ 1.56 (d, *J* 7.0, 3 H) 1.67 (brs, 2H) 1.8-2.0 (brs 1 H), 2.32-2.54 (m, 2 H), 2.80 (s, 2 H), 3.09 (brs, 2 H), 3.87 (d, *J* 6.2, 1 H), 4.15 (d, *J* 3.3, 1 H), 4.21 (d, *J* 5.9, 1 H), 4.33 (d, *J* 7.0, 1 H), 4.47 (brs, 1 H), 4.65 (d, *J* 7.0, 2 H), 7.29-7.38 (m, 7 H), 7.6-7.83 (m, 6 H); ¹³C NMR (CD₃OD) δ 175.2, 157.8, 144.2, 144.0, 141.5, 134.6, 130.0, 129.4, 127.9, 127.4, 125.5, 125.2, 120.0, 67.2, 67.1, 56.8, 52.0, 41.2, 34.7, 33.8, 30.0, 25.4, 14.5 *m/z* 497.2 [M]⁺; Anal. Calcd for C₃₁H₃₂N₂O₄: C, 74.98; H, 6.50; N, 5.64. Found: C, 75.01; H, 6.51; N, 5.63.

General Procedure for the Boc protection of compounds 137 and 137'. Compounds (+)-.exo-137 (398,8 mg, 1.08 mmol) or (-)-.exo-137'(400 mg, 1.15 mmol); was suspended in Bu^tOH (10 mL). After addition of aqueous solution NaOH 2N (6mL) the pH turned basic. Boc anhydride (1,3 g, 6.3 mmol) was dissolved in 15 mL of H₂O and dropped into the stirring solution. The reaction mixture was stirred (3 days, 25 °C). the solution was concentred and the Boc anhydride was extracted with diethylether. HCl 2N was added in the solution to pH = 4 and cooling the water solution and the product precipitate and was filtered of giving respectively (+)-.exo-N (mg, mmol yield 40%) or (-)-.exo-N (mg, mmol yield 35%).

(1S, 5S, 6S, 1'R) 6-Amino((ter-Buthyl)carbamoil)-3-azabicyclo[3.2.1]octane-6-carboxylic Acid (-)-exo-153'. [α]_D²⁵ = -57.97° (c 5.25, MeOH); IR ν _{max} 3600-2950, 1691, 1600, 1500, 1169 cm⁻¹; ¹H NMR (CD₃OD) δ 1.3-1.4 (m, 6 H), 1.44 (s, 9H) 1.53- 1.61 (d,d, J 13.6, 2.2, 1 H), 1.93 (brs, 2H), 2.05-2.11(brs, 2H), 2.24 (d,d, J 13.5, 6.6, 1 H) 2.49 (d, J 6.2, 1 H), 2.73 (s, 1H), 2.99 (d, J 7.0, 1 H), 3.20-3.29 (d,d, J 1 H), 7.30-7.25 (m, 5 H); ¹³C NMR (CD₃OD) δ 181.3, 156.9, 145.5, 128.2, 127.2, 126.7, 78.5, 67.6, 65.3, 58.0, 53.3, 43.6, 40.5, 37.3, 34.4, 27.7, 20.4; m/z 375.2 [M]⁺, 397.2 [M+Na⁺]; Anal. Calcd for C₂₁H₃₀N₂O₄: C, 67.35; H, 8.07; N, 7.48. Found: C, 67.38; H, 8.08; N, 7.49.

(1*R*, 5*R*, 6*R*, 1'*R*) 6-Amino((*ter*-Buthyl)carbamoil)-3-azabicyclo[3.2.1]octane-6-carboxylic Acid (+)-*exo*-153. [α]_D²⁵ = +19.5° (c 5.36, MeOH);IR ν _{max} 3600-2950, 1691, 1600, 1500, 1169 cm⁻¹; ¹H NMR (CD₃OD) δ 1.31-1.439 (m, 6 H), 1.39 (s, 9H) 1.61- 1.69 (d,d, *J* 13.6, 2.6, 1 H), 1.95 (d, *J* 9.3, 1H), 2.1 (brs, 2H), 2.18 (d, *J* 9.9, 1H), 2.41 (d,d, *J* 14.0, 6.6, 1H), 2.50 (brs, 1H), 2.57 (d, *J* 11.0, 1H), 2.88 (d, *J* 9.5, 1H), 3.32 (q, *J* 6.6,14.1, 1H) 7.25-7.35 (m, 5H); ¹³C NMR (CD₃OD) δ 181.4, 156.6, 144.1, 128.2, 127.5, 126.6, 67.4, 65.2, 56.8, 53.7, 41.1, 37.1, 34.4, 27.7, 18.6; *m/z* 375.2 [M]⁺, 397.2 [M+Na⁺]; Anal. Calcd for C₂₁H₃₀N₂O₄: C, 67.35; H, 8.07; N, 7.48. Found: C, 67.36; H, 8.06; N, 7.48.

General Procedure for the synthesis of peptide 154, 155 via solid-phase peptide synthesis.

Peptide **154, 155** were synthesized via solid-phase synthesis using manual coupling steps on a peptide rink amide linker MBHA (0.58 mmol/g) solid support. The resin was swelled for 30 minute in DMF, after which the Fmoc protecting group was cleavage with a DMF/Piperidine solution (1 mL 40% of piperidine, 3 minute). We repeated the cleavage DMF/Piperidine solution (1 mL 20% of piperidine, 10 minute) and the resin was washed with DMF to remove all the Fmoc residue.

Each oligomer was synthesized manually. Double coupling of the N-α-Fmoc natural amino acids was performed using a mixture of amino acid/HOBt/HBTU/DIPEA (4 eq. each) in DMF for all four coupling. A single coupling of the Fmoc-ABO-OH (6 eq.) using HBTU (8 eq.)/HOAt (8 eq.)/Collidine (10 eq.) in DMF for 4h was preferred. After each coupling, the not reacted amino acid coupled chain was stopped

using a acetylation reaction with acetic anhydride (17 μ L in 0.5 mL of DMF) DIPEA for 30 minute. Fmoc cleavage was developed using DMF/Piperidine solution (1 mL 40% of piperidine, 3 minute) than we repeated the cleavage DMF/Piperidine solution (1 mL 20% of piperidine, 10 minute) and the resin was washed with DMF to remove all the Fmoc residues.

General Procedure for the synthesis of peptide 156 via solution-phase peptide synthesis.

Coupling reaction

(+)-exo-ABO **153',159,162,164** (1 eq.) was dissolved in CH2Cl2(10 mL) of. DIPEA (eq.), HOBT (10 eq.), EDC (10 eq.) and L-Ala-OMe (5 eq.) were added to the solution mixture and the reaction was stirred at 25° C for two days. The organic phase was washed with water and dried over Na_2SO_4 . The solvent was removed and the crude product was purifided over SiO_2 (CH_2Cl_2 : Et_2O). Giving pure compound N (Yield 40%).

Boc deprotection

Compound **158, 161, 163** was solubilized in a solution of TFA/CH₂Cl₂ and stirred overnight at 25°C. The solution was treated with a acqueous solution of Na₂CO₃ and the product was estracted with CH₂CL₂, dried and the solvent was removed under reduced pressure. The compounds were analyzed without further purifications.

ΔδΝΗ/ΔΤ

We have prepared a sample dissolved compound **156** and **164** in CD_3CN and a series of 1H spectra to different temperature have been registered. The analytical data of the δNH have been reported below (only the signals without overlapping were reported)in the table 10.

Table 10 tetrapeptide 164

δΝΗ4	7.13	7.11	7.08	7.06
T°K	253	268.9	299.91	337
δ NH2	7.88	7.86	7.82	7.78
T°K	253	268.9	299.91	337

^a [peptide **164**] = 14,8 mM in CD₃CN, T° = 253 K to 337 K

Table 11 pentapeptide 156^a

δΝΗ5	7.87	7.84	7.80	7.66		7.54	7.50	
T°K	212.04	223.75	245.61	271.51	288.31	299.94	314.57	348.33
δ NH4				7.66	7.57	7.51	7.46	
T°K	212.04	223.75	245.61	271.51	288.31	299.94	314.57	348.33
δ NH3	7.70	7.66	7.61	7.57	7.52	7.50	7.47	
T°K	212.04	223.75	245.61	271.51	288.31	299.94	314.57	348.33
δΝΗ2								7.20
T°K	212.04	223.75	245.61	271.51	288.31	299.94	314.57	348.33
δ NH1	6.38	6.33		6.30	6.16	6.05	5.92	5.67
T°K	212.04	223.75	245.61	271.51	288.31	299.94	314.57	348.33

^a [peptide **156**] = 16,8 mM in CD₃CN, T° = 212,04 K to 348.33 K

Table 12 Kinetic Exchange data of the tetrapeptide 164

[peptide **164**] = 14,8 mM in CD₃CN (700 μ L) then D₂O (20 μ L), T = 299.94 K

		N	NH4 = 7,08	NH2 = 7,82
N° prova N° exp.	t (s)			
0	60	0	1,3	3 1,3
1	61	280		exchanged
2	62	310	0,65	5
3	63	340	0,57	7
4	64	370		
5	65	400	0,44	ļ
6	66	430	0,4	ļ
7	67	490		
8	68	550	0,3	3
9	69	610	0,25	5
10	70	670	0,19)
11	71	730		
12	72	790		
13	73	850	0,12	2
14	74	910		
15	75	970 e	exchanged	
16	76	1030		
17	77	1330		
18	78	1630		

Table 13 kinetic exchange data for the pentapeptide 156 with D_2O : [peptide 156] = 16,8 mM in CD_3CN (700 μL) then D_2O (20 μL), T=299.94 K

N°	N°exp	time	NH1	NH2	NH	3	NH4	NH:	5
		s							
				7.55	7.52	7.4		7.42	6.03
						anged	overla	pped	
	0		0	1,08	1,08				1,8
	1	31	280	0,92	1,06				0,63
	2	32	310	0,91	1,04				0,52
	3	33	340	0,91	1,06				0,43
	4	34	370						
	5	35	400	0,88	1,05				0,31
	6	36	430	0,85	1,05				0,26
	7	37	490	0,83	1,05				
	8	38	550	0,83	1,03				0,18
	9	39	610	0,8	1,04				0,16
	10	40	670	0,77	1,03				0,12
	11	41	730	0,77	1,03				0,12
	12	42	790 790	0,75	1,03				0,07
	13	43	850	0,73	1,03				0,07
	14	44	910	0,71	1,01				0,05
	15	45	970	0,71	1,01				0,03
	16	46	1030	0,67	1,01			evel	nanged
	10	70	1030	0,07	1,01			CACI	langed
	17	47	1330						
	18	48	1630	0,6	1				
	19	49	1930						
	20	50	1530	0,6	1				
	21	51	2130						
	22	52	2730	0,49	0,95				
	23	53	3930						
	24	54	5130	0,42	0,95				
	25	55	6330						

26	56	8130	0,32	0,9
27	57	9930		
28	58	11730	0,27	0,85
29	59	13530	0,25	0,84
30	60	17130	0,26	0,79
31	61	20730 excl	nanged excl	nanged
32	62	27930		
33	63	35130		
34	64	49530		

Metallorganic chemistry

(S)-4-benzyl-4,5-dihydro-2-vinyloxazole 174: $[\alpha]_D^{25} = -93.7^{\circ}$ (c 10.2, CHCl₃) IR v_{max} 3600-3000, 1666, 1645, 1454 cm⁻¹; ¹H NMR (CDCl₃) δ 2.67 (AB system, J 13.8, 8.4, 1 H), 3.15 (AB system, J 13.8, 5.5, 1 H), 4.04 (t, J 8.06, 1 H), 4.24 (t, J 8.43, 1 H), 4.46 (m, J 8.4, 5.5, 1 H), 5.68(dd, J 10.6, 1.8, 1 H), 6.04 (dd, J 17.6, 1.8, 1 H), 6.31 (dd, J 17.6, 10.6, 1 H), 7.19-7.35 (m, 5 H); ¹³C NMR δ 163.4, 129.4, 128.8, 126.7, 126.2, 125.2, 71.7, 67.9, 41.9, 27.14; m/z 188.2 [M + H]⁺; Anal. Calcd for $C_{12}H_{13}NO$: C, 76.98; H, 7.00; N, 7.48. Found: C, 76.96; H, 6.98; N, 7.49.

(endo)-(S)-4-benzyl-2-(bicyclo[2.2.1]hept-5-en-2-yl)-4,5-dihydrooxazole 175a: mixture of two diastereoisomers IR v_{max} 3600-3200, 2971, 2930, 1660, 1453 cm⁻¹; ¹H NMR (CDCl₃) δ 0.80-0.85 (m, 1 H), 1.15-1.6 (m, 9 H), 1.85-2.10 (m, 2 H), 2.4-2.6 (m, 2 H), 2.8-3.2 (m, 10 H), 3.8-4.0 (m, 2 H), 4.0-4.2 (m, 2H), 4.2-4.4 (m, 2 H), 5.8-6.0 (m, 2 H), 6.1-6.3 (m, 2 H), 7.1-7.4 (m, 10 H); ¹³C NMR δ 170.2, 138.2, 137.63, 137.61, 132.68, 132.51, 129.6, 129.5, 129.57, 128.6, 126.5, 71.5, 71.45, 67.27, 67.15, 49.8, 49.76, 46.03, 45.97, 42.77, 42.74, 41.9, 41.8, 37.5, 37.4, 30.4, 30.3, 30.2, 29.9, 27.12 m/z 254.1 [M + H]⁺; Anal. Calcd for C₁₇H₁₉NO: C, 80.60; H, 7.56; N, 5.53. Found: C, 80.58; H, 7.58; N, 5.55.

(*endo*)-(bicyclo[2.2.1]hept-5-en-2-yl)methanamine 165: compound known in licterature and prepared follow the procedure in the L.I. Kasyan, I.N. Tarabara, O.A. Kasyan, O, Sergiy *Tetrahedron*, 2007, 63(8), 1790-1797

(*endo*)-(bicyclo[2.2.1]hept-5-en-2-yl)-N-tosylmethanamine 166: mixture of two diastereoisomers; 1 H NMR (CDCl₃) δ 0.5 (m, 1 H), 1.1(d, 1 H), 1.4 (d, 1 H), 1.8 (m, 1H), 2.2 (m, 1H), 2.45 (s, 3 H), 2.5-2.6 (m, 1H), 2.7-2.75 (m, 2 H), 2.8 (s, 1 H), 2.9 (s, 1 H), 5.2 (bs, 1H), 5.75 (m, 1 H), 6.1 (m, 1H), 7.3(m, 2 H), 7.7 (m, 2 H).

Organocatalysis

General Procedure for the Diels-Alder reaction.

Catalyst **128** (9 mg, 0.05 mmol) and cynnamaldehyde **182** (88 mg, 0.5 mmol) were solubilized in CH₃CN/H₂O solution (1.5 mL, 95:5), distilled cyclopentadiene (99 mg 1.5 mmolo) was added into the solution. The reaction was stirred for 72 h or 42 h at 25°C. The solvent was removed and the product were purified by column chromatography. The pure product mixture was analyze by chiral HPLC.

General Procedure for Staudinger reaction

Tioazolidinic acid **190** (50 mg, 0.214 mmol) was dissolved in toluene (5 mL), Mukayama activator **191** (63.4 mg, 0.247 mmol) and the protonsponge base **192** (45.79 mg, 0.214 mmol) were added in the reaction mixture and warmed to 70°C for 1h allow to obtain the relative chetene **193**. Imid **194** (31.1 mg, 0.107 mmol) protonsponge base **192** (91.58 mg, 0.428 mmol) and catalytic base ABO **123a** and **125** (7,09 mg 0.0214 mmol) were dissolved in toluene (5mL) and dropped in the stirring reaction to 70° C or 25° C. The reaction was stirred overnight. The product mixture was then washed with HCl 2 N solution to remove the excess of base. The organic phase was dried over Na₂SO₄ and the product purified by column cromatography.

Bibliography

1

¹ P. Kyung-Ho, M.J. Kurth *Tetrahedron*, **2002**, *58*, 8629

² I.V. Komarov, A. O. Grigorenko, A. V. Turov, V. P. Khilya *Russ. Chem. Reviews*, **2004**, *73*, 785

³ F. Gnad, O. Reiser *Chem. Rev.* **2003**, *103*, 1603

⁴ R. A. Miller, F. Lang, B. Marcune, D. Zewege, Z. J. Song, S. Karady *Synth. Com.* **2003**, *33*, 3347

⁵ A. Carlin-Sinclair, F. Couty, N. Rabasso *Synlett.* **2003**, 726

⁶ D. Tanner Angew. Chem. Int. Ed. Engl. 1994, 33, 599

⁷ V.V. Tverezovsky, M.S.Baird, and I.G. Bolesov *Tetrahedron*, **1997**, *53*, 14773

⁸ M. C. Pirrung, *Tetrahedron Lett.*, **1980**, 21, 4577

⁹ T. Rammeloo, C.V. Stevens, N De Kimpe, J. Org. Chem., **2002**, 67, 6509

¹⁰ B. Portevin, A. Benoist, G. Remond, Y. Hervg, M. Vincent, J. Lepagnol, G. De Nanteull, *J. Med. Chem.* **1996**, *39*, 2379

¹¹ D. E. Gaitanopopulous, J. Weinstok, J. Heterocycl. Chem., 1985, 22, 957

¹² A. Avenoza, C. Cativiela, J. H. Busto, J. M. Peregrina, *Tetrahedron Lett.*, **1995**, 36, 7123

¹³ M. E. Tanner, S.C. Miao *Tetrahedron Lett.*, **1994**, *35*, 4073

¹⁴ F. Gerhart, W. Higgins, C. Tardif, J. B. Ducep *J. Med. Chem.*, **1990**, *33*, 2157

¹⁵ T. Takemoto, K. Nomoto, S. Fushiya, R. Ouchi, G. Kusano *Proc. Jpn. Acad., Ser. B* 1978, 54, 469

¹⁶ E. Kinoshita, J. Yamakoshi, M. Kikuchi Biosci *Biotechnol. Biochem.*, **1993**, *57*, 1107

¹⁷ K. Isono, K. Asahi, S. Suzuki J. Am. Chem. Soc., **1969**, 91, 7490

¹⁸ F. Couty, E. Gwilherm, M. Varga-Sanchez, and G. Bouzas *J.Org. Chem.*, **2005**, 70, 9028

¹⁹ L. Piela, G. Nèmethy, and H.A.Sheraga *J. Am. Chem. Soc.*, **1987**, *109*, 4477

²⁰ Benaglia M., Puglisi A., Cozzi F. Chem Rev., **2003**, *3*, 4296

²¹ Z. G. Hajos, D. R. Parrish, J. Org. Chem., 1974, 39, 1615

- (a) Kumar, N.; Kaur, K.; Gupta, S.; Chugh, A.; Salman, Mohammad; Shirumalla, R. K.; Malhotra, S. PCT Int. Appl. 2007, PIXXD2 WO 2007039884 A1 20070412; *Chem. Abstr.* 2007, 146, 401841. (b) Hamamoto, I.; Takahashi, J.; Yano, M.; Kawaguchi, M.; Hanai, D.; Iwasa, T. PCT Int. Appl. 2007, PIXXD2 O 2007040280 A1 20070412; *Chem. Abstr.* 2007, 146, 401834. (c) Sarma, P. K. S.; Shelke, S. Y.; Ashani, K.; Gupta, P.; Pal, A.; Kondaskar, A.; Dharmarajan, S.; Sharma, S.; Chugh, A.; Tiwari, A. PCT Int. Appl. 2007, PIXXD2 WO 2007029078 A2 20070315 *Chem. Abstr.* 2007, 146, 316947. (d) Zierler-Brown, S. L.; Kyle, J. A. *Ann. Pharmacother.* 2007, 41, 95. (e) Buschmann, H. H. PCT Int. Appl. 2007, PIXXD2 WO 2007009691 A2 20070125; *Chem. Abstr.* 2007, 146, 163111. (f) Keating, G. M.; Siddiqui, M. A. A. *CNS Drugs* 2006, 20, 945. (g) Meinke, L.; Chitkara, R.; Krishna, G. *Exp. Opinion Pharmacother.* 2007, 8, 23.
- ³¹ (a) Butora, G.; Goble, S. D.; Pasternak, A.; Yang, L.; Zhou, C.; Moyes, C. R. PCT Int. Appl. 2004, PIXXD2 WO 2004094371 A2 20041104. *Chem. Abstr.* 2004, 141, 410822. (b) Chandrakumar, N. S.; Chen, B. B.; Clare, M.; Desai, B. N.; Djuric, S. W.; Docter, S. H.; Gasiecki, A. F.; Haack, R. A.; Liang, C.-D. PCT Int. Appl. 1996, PIXXD2 WO 9611192 A1 19960418. *Chem. Abstr.* 1996, 125, 142545. (c) Buckley, B. R.; Page, P. C. B.; Heaney, H.; Sampler, E. P.; Carley, S.; Brocke, C.; Brimble, M. A. *Tetrahedron* 2005, 61, 5876-5888. (d) Brocke, C.; Brimble, M. A.; Lin, D. S.-H.; McLeod, M. D. *Synlett.* 2004, 13, 2359-2363. (e) House, H. O.; Mueller, H.

²² S. G. Davies, A. J. Russel, R. L. Sheppard, A. D. Smith and J. E. Thomson *Org. Biomol. Chem.*, **2007**, *5*, 3190

²³ C. B. Shinisha and R. B. Sunoj, *Org. Biomol. Chem.*, **2007**, *5*, 1287

²⁴ Y. Ye, L. Min, L. F. K. Jeff, G. R. Marshall *Byopolimers*, **2008**, 89, 72-85

²⁵ K. Severin, R. Bergs, and W. Beck *Angw. Chem. Int. Ed.*, **1998**, *37*, 1086

²⁶ T. Ziegler, A. Rauk *Inorg. Chem.*, **1979**, *18*, 1558

²⁷ C. Defieber, H. Gruetzmacher, and E.M. Carreira *Angw. Chem. Int. Ed.*, **2008**, *47*, 2

²⁸ L. Tebben, G. Kehr, R. Froehlich, and G. Erker, Eur. J. Org. Chem., 2008, 2654

²⁹ S. Kuriyama, Y. Inomata, Y. Arai, and F. S. Howell *J. Inorg. Biochem.*, **2006**, *100*, 1299

C. J. Org. Chem. 1962, 27, 4436-4439. (f) Lowe, J. A. III; Drozda, S. E.; McLean,
S.; Bryce, D. K.; Crawford, R. T.; Snider, R. M.; Longo, K. P.; Nagahisa, A.;
Tsuchiya, M. J. Med. Chem. 1994, 37, 2831-2840. (g) King, F. D. PCT Int. Appl.
1992, PIXXD2 WO 9212149 A1 19920723. Chem. Abstr., 1992, 117, 212337.

³² (a) Heng, R.; Revesz, L.; Schlapbach, A.; Waelchli, R. PCT Int. Appl. 2005, PIXXD2 WO 2005103054 A2 20051103. Chem. Abstr. 2005, 143, 440438. (b) Hamamoto, I.; Takahashi, J.; Yano, M.; Hanai, D.; Iwasa, T. PCT Int. Appl. 2005, PIXXD2 WO 2005095380 A1 20051013. Chem. Abstr. 2005, 143, 386926. (c) Evertsson, E.; Inghardt, T.; Lindberg, J.; Linusson, A.; Giordanetto, F. PCT Int. Appl. 2005, PIXXD2 WO 2005066132 A1 20050721. Chem. Abstr. 2005, 143, 172772. (d) Breining, S. R.; Bhatti, B. S.; Hawkins, G. D.; Miao, Lan; M., Anatoly; P., Teresa Y.; Miller, C. H. PCT Int. Appl. 2005, PIXXD2 WO 2005037832 A2 20050428. Chem. Abstr. 2005, 142, 430157. (e) Dong, J.; Han, H.; Geng, B.; Li, X.; Gong, Z.; Liu, K. J. Pept. Res. 2005, 65, 440-444. (f) Coe, J. W.; Iredale, P. A.; McHardy, S. F.; McLean, S. U.S. Pat. Appl. Publ. 2005, USXXCO US 2005043345 A1. Chem. Abstr. 2005, 142, 233377. (g) Bridger, G.; McEachern, E. J.; Skerlj, R.; Schols, D. U.S. Pat. Appl. Publ. 2004, USXXCO US 2004209921 A1 20041021. Chem. Abstr. 2004, 141, 379809. (h) Lew, W.; Wu, H.; Chen, X.; Graves, B. J.; Escarpe, P. A.; MacArthur, H. L.; Mendel, D. B.; Kim, C. U. Bioorg. Med. Chem. Lett. 2000, 10, 1257-1260. (i) Yamashita, A.; Takahashi, N.; Mochizuki, D.; Tsujita, R.; Yamada, S.; Kawakubo, H.; Suzuki, Y.; Watanabe, H. Bioorg. Med. Chem. Lett. 1997, 7, 2303-2306. (j) Takahashi, N.; Mochizuki, D. U.S. 1997, USXXAM US 5658923A 19970819. Chem. Abstr. 1997, 127, 248269. (k) Rico, B.; Galvez, E.; Izquierdo, M. L.; Arias, M. S.; Orjales, A.; Berisa, A.; Labeaga, L. J. Het. Chem. **1994**, 31, 313-318. (1) Keasling, H. H.; Moffett, R. B. J. Med. Chem., **1971**, 14, 1106-1112.

³³ F. Caputo, F. Clerici, M.L. Gelmi, S. Pellegrino, T. Pilati *Tetrahedron Asymmetry*, **2006**, *17*, 61-67

³⁴ C. Cativiela, M. D. Diaz de Villegas, J.A. Galvez Synthesis **1990**, 25, 198-199

³⁵ C. Cativiela, P. Lopez, J.A. Mayoral *Tetrahedron Asymmetry*, **1991**, *6*, 449-456

³⁶ C. Cativiela, P. Lopez, J.A. Mayoral *Tetrahedron Asymmetry*, **1990**, 1, 379-388

³⁷ M. P. Bueno, C. Cativiela, C. Finol, J. A. Majoral A. Can. J. Chem., **1987**, 65, 2182-2186

- ³⁹ I. Iriepa, A. I. Madrid, A. Morreale, E. Galvez, J. Bellantino *J. Mol. Struct.*, **2003**, 65, 2182
- ⁴⁰ A. K. Mehta, M. K. Ticku *Brain Res. Rev.* **1999**, 29, 196
- ⁴¹ R. W. Olsen, T. M. DeLorey GABA and glycine in *Basic Neurochemistry*, G.J. Siegel, B.W. Agranoff, R.W. Alberts, S.K. Fisher, M. D. Uhler, Eds. Lippincott-Raven:New york 1999 pp 335
- ⁴² R. L. MacDonald, R. W. Olsen Ann. Neurosci. **1994**, 17, 569
- ⁴³ G. Johnston, P. Larsen-Krogsgaard, A. Stephenson *Nature* **1975**, 258, 627
- ⁴⁴ M. J. Croucher, B. S. Meldrum, P. Larsen-Krogsgaard Eur. J. Pharmacol. 1983, 89, 217
- ⁴⁵ K. E. Andersen, C. Braestrup, F. C. Gronwald, A. S. Jorgensen, E. B. Nielsen, U. Sonnewald, P.O. Sorensen *J. Med. Chem.* **1993**, *36*, 1716
- ⁴⁶ F. E. Ali, W. E. Bondinell, P. A.Dandridge, J. S. Frazee, W. Garvey, G. R. Girare, C. Kaiser, T. W. Ku, J. J. Lafferty, G. I. Moonsammy, H. J. Oh, J. A. Rush, P.E. Setter, O. D. Stringer, J. W. Venslavsky, B. W. Volpe, L. M. Yunger, G.C. L. Zirkle *J. Med. Chem.* **1985**, 28, 653
- ⁴⁷ G. H. Fuelep, C.E. Hoesl, G. Hoefner, K. T. Wanner *Eur. J. Med. Chem.* **2006**, *41*, 809-824
- ⁴⁸ Caputo, F.; Cattaneo. C.; Clerici, F.; Gelmi, M. L.; Pellegrino, S. *J. Org. Chem.* **2006**, *71*, 8467

³⁸ D. I. Kim, M. M. Schweri, H. M. Deutsch J. Med. Chem. **2003**, 46, 1456

⁴⁹ I. L. Karle, P. BAlaram *Biochemistry* **1990**, 29, 6747

⁵⁰ C. Toniolo, M. Crisma, F. Formaggio, C. Peggion *Biopolymers* **2001**, *60*, 396

⁵¹ C. M. VenkatachAlam, *Biopolymers* **1968**, *6*, 1425

⁵² C. Toniolo, *CRC Crit. Rev. Biochem.* **1980**, 9, 1

⁵³ G. D. Rose, L. M. Gierasch, J. A. Smith, *Adv. Protein Chem.* **1985**, *37*, 1

⁵⁴ G. Némethy, M. P. Printz, *Macromolecules* **1972**, *5*, 755

⁵⁵ B. W. Matthews, *Macromolecules* **1972**, *5*, 818

⁵⁶ C. Toniolo, E. Benedetti, *Trends Biochem. Sci.* **1991**, *16*, 350

⁵⁷ C. Toniolo, M. Crisma, F. Formaggio, C. Peggion, Q. B. Broxterman, B. Kaptein, *Biopolymers* **2004**, *76*, 162

⁵⁸ E.Gatto, A. Porchetta, L. Stella, I. Guryanov, F. Formaggio, C. Toniolo, B. Kaptein, Q. Broxterman, B. Quirinus, M. Venanzi *Chemistry & Biodiversity* **2008**, *5*(7), 1263

⁵⁹ J. Friedrich Diehl, and Y. A. Ellen *J. Med. Chem.* **1964,** 7, 820

⁶⁰ I.L. Karle, & P. BAlaram, *Biochemistry* **1990**, 29, 6747

⁶¹ C.Toniolo, A. Polese, F. Formaggio, M. Crisma & J. Kamphuis *J. Am. Chem. Soc.*, **1996**, *118*, 2744

⁶² I.L. Karle, J.L. Flippen-Anderson, R. Gurunath, & P. B. Alaram *Biopolymers* (*Protein Sci.*), **1994**, *4*, 1547

⁶³ G. Basu, & A. Kuki *Biopolymers*, **1993**, *33*, 995

⁶⁴ P. B. Alaram *Curr. Opin. Struct. Biol.*, **1992**, 2, 845

⁶⁵ M. Crisma, W. M. De Borggraeve, C. Peggion, F. Formaggio, S. Royo, A. Jimenez, C. Cativiela, C. Toniolo *Chem. Eur. J.*, 2006, 12, 251

^{a)C.Toniolo, A. Polese, F. Formaggio, M. Crisma & J. Kamphuis J. Am. Chem. Soc., 1996, 118, 2744. b) M. Gatos, F. Formaggio, M. Crisma, C. Toniolo, G. M. Bonora, Z. Benedetti, B. Di Blasio, R. Iacovino, A. Santini, M. Saviano, J. Kamphuis J. Peptide Sci., 1997, 3, 110.c) C. Toniolo, M. Crisma, F. Formaggio, E. Benedetti, A. Santini, R. Iacovino, M. Saviano, B. Di Blasio, C. Pedone, J. Kamphuis, Biopolymers, 1997, 40, 519. d) M. Gatos, F. Formaggio, M. Crisma, G. Valle, C. Toniolo, G. M. Bonora, Z. Benedetti, B. Di Blasio, R. Iacovino, A. Santini, M. Saviano, S. Galdiero, J. Peptide Sci., 1997, 3, 367e) C. Toniolo and E. Benedetti, Macromolecules, 1991, 24, 4004. f) C. Toniolo, Janssen Chim. Acra, 1993, 11, 10. h) V. Moretto, F.Formaggio, M. Crisma, G. M. Bonara, C. Toniolo, E. Benedetti, A. Santini, M. Saviano, B. Di Blasio, and C. Pedone, J. Peptide Sci., 1996, 2, 14. i) M. Gatos, M. Saviano, R. Iacovino, V. Menchise, E. Benedetti, G. M. Bonora, L. Graci, F. Formaggio, M. Crisma, C. Toniolo, Biopolymers, 2000, 53, 200. l) K. Wright, J. F. Lohier, M. Wakselman, J-P. Mazaleyrat, C. Peggion, F. Formaggio, C. Toniolo, Biopolymers, 2007, 88, 797}

⁶⁷ E. Gatto, A. Porchetta, L. Stella, I. Guryanov, F. Formaggio, C. Toniolo, B. Kaptein, Q. B. Broxterman, and M. Venanzi *Chem. And Biodiversity*, **2008**, *5*, 1263

⁶⁸ J. Venkatraman, S. C: Shankaramma, and P. BAlaram *Chem. Rev.*, **2001**, *101*, 3131

- ⁷¹ J. Cavanagh, W. J. Fairbrother *Protein NMR Spectroscopy: Principles and* **Practice**
- ⁷² J. Cavanagh, W. J. Fairbrother *Protein NMR Spectroscopy: Principles and* Practice pag151
- ⁷³ I. Kazuaki, F. Makoto, and A. Matsujiro Acc. Chem. Res., 2007, 40, 1049
- ⁷⁴ J. M. Takacs, D. A. Quincy, W. Shay, B. E. Jones, and C. R. Ross *Tetrahedron* Asimmetry, 1997, 8, 3079-3087
- ⁷⁵ F. Fache, E. Schulz, M. L. Tommasino, M. Lemaire *Chem. Rev.*, **2000**, *100*, 2159
- ⁷⁶ R. Dorta, D. Broggini, R. T. Kissner A. Chem. Eur. J., **2004**, 10, 4546
- ⁷⁷ K. Ishihara, M. Fusimi *Org. Lett.*, **2006**, *8*, 1921
- ⁷⁸ S. Chandra, L. K. Gutpa, *Spetrochimica Acta Part A*, **2005**, 1125
- ⁷⁹ J. S. Baum, H. G. Viehe *J. Org. Chem.* **1976**, *41*, 183
- 80 H. Gotoh and Y. Hayashi Org. Lett., 2007, 15, 2859
- H. Gotoh, Y. Hayashi *Org. Lett.*, **2007**, *9*, 2859
 S. Mossè, and A. Alexakis *Org. Lett.*, **2006**, *16*, 3577
- 83 S. France, M. H. Shah, A. Weatherwax, H. Wack, J.P.Roth, and T.Lectka J. Am. Chem. Soc., 2005, 127, 1206

⁶⁹ Martinez, Gary V.; Hanson, M. Paul; et al. *J. Pep. Sci.* **1995**, *1*, 45

⁷⁰ D. I. Kim, M. M. Schweri, H. M. Deutsch J. Med. Chem. **2003**, 46, 1456