Startseite UR

How to generalize Geometric ICA to higher dimensions

Theis, Fabian J. und Lang, Elmar (2002) How to generalize Geometric ICA to higher dimensions. In: Verleysen, Michel, (ed.) Proceedings / 10th European Symposium on Artificial Neural Networks, ESANN'2002: Bruges, Belgium, April 24 - 25 - 26, 2002. d-side, Evere, Belgium, S. 205-211. ISBN 2-930307-02-1.

Im Publikationsserver gibt es leider keinen Volltext zu diesem Eintrag.

Andere URL zum Volltext: http://homepages.uni-regensburg.de/~thf11669/publications/theis02highdimquad_ESANN02.pdf


Zusammenfassung

The geometric approach to ICA, proposed by Puntonet and Prieto, has one major drawback --- an exponentially rising number of samples and convergence times with increasing dimensiononality --- thus basically restricting geometric ICA to low-dimensional cases. We propose to apply overcomplete ICA to geometric ICA to reduce high-dimensional problems to lower-dimensional ones, thus generalizing geometric ICA to higher dimensions.


Bibliographische Daten exportieren



Dokumentenart:Buchkapitel
Datum:2002
Institutionen:Biologie und Vorklinische Medizin > Institut für Biophysik und physikalische Biochemie > Prof. Dr. Elmar Lang
Projekte:Graduiertenkolleg Nichtlinearität und Nichtgleichgewicht
Dewey-Dezimal-Klassifikation:500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
Status:Veröffentlicht
Begutachtet:Ja, diese Version wurde begutachtet
An der Universität Regensburg entstanden:Ja
Eingebracht am:20 Mrz 2007
Zuletzt geändert:15 Okt 2010 07:48
Dokumenten-ID:1557
Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de

Dissertationen: dissertationen@ur.de

Forschungsdaten: daten@ur.de

Ansprechpartner