Startseite UB

How to generalize Geometric ICA to higher dimensions

Theis, Fabian J. and Lang, Elmar (2002) How to generalize Geometric ICA to higher dimensions. In: Verleysen, Michel, (ed.) Proceedings / 10th European Symposium on Artificial Neural Networks, ESANN'2002: Bruges, Belgium, April 24 - 25 - 26, 2002. d-side, Evere, Belgium, pp. 205-211. ISBN 2-930307-02-1.

Full text not available from this repository.

Other URL: http://homepages.uni-regensburg.de/~thf11669/publications/theis02highdimquad_ESANN02.pdf


Abstract

The geometric approach to ICA, proposed by Puntonet and Prieto, has one major drawback --- an exponentially rising number of samples and convergence times with increasing dimensiononality --- thus basically restricting geometric ICA to low-dimensional cases. We propose to apply overcomplete ICA to geometric ICA to reduce high-dimensional problems to lower-dimensional ones, thus generalizing ...

plus


Export bibliographical data



Item Type:Book Section
Date:2002
Institutions:Biology, Preclinical Medicine > Institut für Biophysik und physikalische Biochemie > Prof. Dr. Elmar Lang
Projects:Graduiertenkolleg Nichtlinearität und Nichtgleichgewicht
Subjects:500 Science > 530 Physics
500 Science > 570 Life sciences
Status:Published
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Owner: Redakteur Physik
Deposited On:20 Mar 2007
Last Modified:15 Oct 2010 07:48
Item ID:1557
Owner Only: item control page
  1. University

University Library

Publication Server

Contact person
Gernot Deinzer

Telefon 0941 943-2759
Contact