eGovWDF:Validation — A new approach to input
validation in Web based eGovernment applications

WALTER KERN
University of Regensburg

In this paper we introduce the topic input validati analyze its great importance to Web applicatiand
suggest a new comprehensive approach to inputataid The approach has been developed as a césrit
evaluation of current input validation approachleat tshowed that no sufficient solution to commopuin
validation requirements is available at presene paper describes important requirements for implidation
frameworks, especially in the Web context, andomhitices main concepts of this approach. The apprisach
based on the declarative, rule based definitionatiiation logic and the automatic translation afidation
rules into server side and client side code. lpsus conditional, composite and complex interefiealidation
scenarios. It considers topics such as value naratin, inter-field dependencies and validatioticexs and
integrates these aspects into a consistent validaged system. Our evaluation shows the bendfitisonew
approach and highlights its advantages comparedther popular and promising approaches such as
PowerForms or Topes.

Keywords: Human-computer interaction, input validat validators, composite validation, eGovWDF, adat
normalization, inter-field dependencies

1. INTRODUCTION

There has been a large growth of Web 2.0 [O'R&ilI95] based Web sites and related
technologies [Forrester Research Inc. 2008; Waihret al. 2008] due to the richness of
graphical user interfaces, high interactivity antheo potentials that Web 2.0 based
applications offer [Paulsen 2005; Lawton 2008].

Because Web 2.0 applications usually provide mooaténd elements for user
supplied data than classic Web applications andser of the large influence and
importance of invalid user provided data in respaEctentral Web application aspects,
such as data integrity, security and user guiddcicesection 2.2), input validation is an
essential, intellectual and labor intensive taskeflal. 2007].

There are many examples which illustrate the ingyar¢ (cf. section 2.2) of input
validation. Grete Mossbacks’ case is probably thestrpopular one. Mrs. Fossback
wanted to transfer $100.000 to her daughter, lautsterred the money to an unknown
person instead because of a simple keying errasef©P008]. The recipient gambled
away much of the sum before the policy was ablednfiscate the remainder. Olsen
[2008] conducted a survey with his students to ymeakthe common frequency of this
kind of keying errors. His results showed that vcpat of the account numbers specified
by this test subjects were wrong. Furthermore ity @7 percent of the test cases the
students recognized slightly manipulated transactiomber errors on the confirmation
screen, which undergirds the mandatory provisioimjodt validation.

Although there are several approaches to a solutiere is currently no
comprehensive one which is able to satisfy all memoents (cf. section 3). As a
consequence many applications do not provide wididat all, because programmers
often drop input validation when inputs may apgeararious formats or when validation
criteria cannot be precisely specified [Scaffidiabt 2008]. Moreover Hayes and Offutt
[1999] explain that systems which depend on usesviged data are mostly
undocumented although they usually have to be @iaied for several years.

This paper aims at introducing the main aspects méw comprehensive approach to
input validation which targets Web applications Hat also usable in non-Web
environments. The approach také®eb accessibilitfWw3C 1999; W3C 2008a] related
requirements into account because the corresporfdamgework is part oeGovWDF
(eGovernmental Web Development Framework), an éxgetal Web application
framework featuring new approaches and scientificcepts at the intersection of Web

2.0 and Web accessibility. The research is conduati¢he University of Regensburg and

implemented at the Landesamt fir Finanzen, which riegional branch of the financial
authority of the Bavarian state. In the near futowe framework is intended to be used in
a project called BeihilfeOnline which is\eb 2.0based application to acclaim refunds
for expenses for medical treatments. This systelirb@iimplemented starting November
2010 and will finally be offered to all civil semts of Bavaria which includes about
480.000 users.

Because of the large extent of this new approastptiper acts as an introduction and
focuses on the validation logic related aspecte®bvWDF. Further papers will deal
with the validation visualization concepts, cliesitle validation paradigms and the
eGovWDF Designera tool which was designed to be used by the eyeplm define his
(executable) validation requirements himself byirapte Drag & Drop supporting user

interface.

2. DEFINITION AND RELEVANCE OF INPUT VALIDATION

The concept ofalidation is well known, for instance in the fields of simatibn models
[Pace 2003; Sargent 1987], user interfaces [Schiugdy 1989], resource structures
[Balmin et al. 2004], complex system protocols [WE389], distributed systems [Gao et
al. 1995], software quality assurance [Nance anthukr1994] and input validation
[Hayes and Offutt 1998].

According to Hayes and Offutt [1998hput validation refers to “functions in
software that attempt to validate the syntax of psevided commands/information”. Liu
and Tan [2008] provide a slightly more generic digfin by saying “Input validation is
the enforcement of constraints that an input masisfy before it is accepted in a
program”.

Summing up input validation describes the checking of uspec#fied data with
regard for the conformance to a formal specificatidJsually it is the aim of input
validation to reject invalid user supplied data.

In the Web context, the definitions above have ¢oapplied to Web applications.
Therefore we define input validation as follows:

“Validation in the Web context means the automaltiecking of user inputs specified
in Web forms or as http(s) request parameters daggrtheir syntactic and semantic
correctness, including the assistive visualizatbralidation errors of different severity

to eliminate inconsistent and invalid inputs anghtovide user guidance. ”

Our definition does not only describe the proce$scloecking user input for
consistency and correctness but also includesishhzation of inconsistent and invalid
data for the end user [Miller and Myers 2001]. Qigfinition is wider than others
because we regard validation as comprehensive ggdhat is based on human-computer
interaction [Hewitt et al. 1992] and describes @adpects involved in the successful
provision of user input for a computer applicatidMoreover, the definition includes user
guidance aspects, because application workflowsnandyation targets can be based on
complex validation dependencies (cf. Section 4n) ealidation messages can serve as a
kind of context sensitive help [Lee 1987].

Finally, Offutt et al. [2004] describe validatiom the Web context by its syntactic and
semantic specificsSyntactic correctness in HTMtan be expressed by built-in length
restrictions fhaxlengthattribute of textboxes), input value restrictidify varying the
type of the html element, e.gheckboxés transfer mode (e.@5ET or POSTrequests),
type of data access (e.g. hidden fields, cookiegut field selection and control flow
restriction (action attribute of the ht/DRMtag). On the other hand, Offutt et al. [2004]
identified data type conversion, data format vdlala and inter-value constraint

validation as types afemantic data input validation

2.1 Classification of input validation concepts

Because there is no commonly used vocabulary inngmet validation domain, we will
define some basic, general terms before we loak jrtssible categorizations of input
validation approaches.

Validation targetsare the components whose values are to be validatg. HTML
input fields. The termvalidation logic definition describes the description of the
characteristics of a specific type of input validatcheck, e.g. eegular expressiofiEllul
et al. 2005] based validation prandatory valuevalidation checkValidation targetsand
validation logic definitionsare directly (e.g. by hardwired calls to validatimethods
with user input as parameters), or indirectly (elgclarative mapping of HTML input
fields with validation logic definitions) associdte These associations are called
validation mapping definitionsinput values can be of different relevance, a.gurong
password might terminate the current workflow (Brne@hereas an invalid email field
may only result in a warning. This can be modelgdhe concept ofalidation severity
(levels) Validation triggeringmeans the enactment of validation of a singledfigd a

group of input component¥alidation visualizatiordescribes the indication of validation

related messages, e.g. info, warning and error agess These messages aim at helping
users in completing their data input tasks andimportant elements of user guidance
(the so-calledralidation guidance

In view of the input validation -classification, tlee are various possible
categorizations based on different point of viewslifferent central themes. According
to our research [Kern 2008a] current input valioiatiapproaches are mostly
differentiable by the following aspects:

e General aspects

0 Input validation can be conducted top-down (basedl@main objects
and object relational mapping — [Amber 1996]) ottbm-up (based
on user interface input elements).

o0 Validation can be implemented domain specific, day. the Web
context, or general to be usable for arbitraryfptats.

0 The Software architecture can be monolithic or nkexduvalidation
logic definitions, validation mapping definitionglatform specific
integration and validation error visualization da@ implemented as
separate layers or components [Nierstrasz et 8R]1or instance.

« Validation mappingelated aspects:

o Validation mapping definitions can be formulatedgrammatic(e.g.
classic if-statementsomponent-base@e.g. ASP.NET Validators-
[Moore 2002]),declarative and rule basgderaguchi et al. 2008], for
instance.

0 Approaches may require the generation \adlidation mapping
definition specific coder support a morgeneric, run-time dynamic
approach

« Validation logic related discriminators:

0 There are many ways of implementing validation ¢pgé.g. flow
graphs [Christensen et al. 2003], parse trees [@uedt al. 2005],
finite automatons [Wasserman and Su 2004], re@xpressions and
So on.

0 Validation solutions may provide a restrictesgaledset of validation
logic or they may support the extension of existiradidation logic

definitions and the introduction of completely nemes.

» Validation visualization related discriminators:

0 Validation error visualization includes the desighvalidation error
messages and behavioral characteristics for hidind unhiding
validation errors, e.g. showing validation errorsaseparate area of
the Web page or showing errors next to the valdlatamponent.

0 Web accessibility [W3C 2005; Kern 2008b] relategheats may be
regarded or ignored.

In the Web context there are further aspects ffferdintiation. The most relevant ones
are an immediate consequence of the request bdmed-server paradigm of Web
applications [Fielding et al 1997]:

« Validation processing can be done either on theeseside or on the client.
Furthermore client side and server side validaticean be combined.
Additionally, AJAX technology [Garrett 2005; Zhamg al. 2007] can be used
to trigger validation on the server side by cliside code.

e Validation can be done immediate (e.g. keypressor onblur event) or
cumulative (e.g. on submit).

« Validation can be implementes/nchronouswhich means only on submit, or
asynchronous which means independent of submits and the regula
request/response of the Web, e.goablur events.

Besides these main discriminator aspects theréugtteer aspects to categorize input
validation approaches, e.gupport of validation severity leveldifferentiation between
field-based and global validatigrtool support andlistributed versus locabalidation
mapping definitiorstorage.

2.2 Relevance
The great relevance of error handling in softwargimeering is known for a long time
and a lot of research has been dedicated to this {Bhah et al. 2008] and customers are
usually confronted with a lot of errors that canepensive [Graunke et al. 2003].
Regarding the importance of input validation, oesearch [Kern 2008a] indicates there
are three main reasons for the implementationpitinalidation:

e Data integrity

* Web application security

e User guidance
Data integrity [Sivathanu et al. 2005] means data is consisttect and complete.
Generally, the validation of data constraints i® af the most important tasks of a
system to ensure integrity [Laprie et al. 2004]céaing to Liu and Tan [2006] input
validation has always been essential for the comtnd accuracy of inputs to software
systems with intensive user interaction. Aljawarmghal. [2007] explain that there are
three established techniques in common usage frimg the integrity of Web content:
SSL, firewalls andorm-field validationto protect against harmful data at the client- and
server-side. In the Web context input validationsigch important for data integrity
because HTML forms in contrast to their designdiatinot widely supported successor
XForms [Cardone et al. 2005] do not support torietsiextual user inputs to specific data
types, formats or other constraints [Brabrand eP@D0]. This means input validation is
required because data integrity is not ensuredelsigd. Furthermore even if forms based
data constraints would be supported, input valichatis still important, because
manipulations on the client or corruptions of das@smissions are possible.

Web application security [Gollmann 2008] refers tioe protection of Web
applications and relating data. It deals with tgbisecurity threats such as cross-side
scripting (XSS) [Jim et al. 2007] and privacy akmdJackson et al. 2006; Bortz and
Boneh 2007]. Besides these scripting issues [YukVd@ang 2009], there are also main
threads directly related to user inputs such as Bf¥ction attacks because most Web
applications are database driven. According totlale[2007] the invalidated input can
be regarded as one of the most critical Web apmicasecurity flaws. Microsoft
Corporation [2003] approve the importance of inpalidation in view of Web
application security by sayingPtoper input validation is an effective countermaas
that can help prevent XSS, SQL injection, buffarftaws, and other input attacks.”.
Brinhosa et al. [2008] make this even clearer lagirs that input validation attacks are
becoming one of the most frequent attacks regardVep Applications and Web
Services. They also mention the ineffectiveneskatitional counter-measures such as
firewalls against application level attacks becansgontrast to application specific input
validation these mostly external mechanisms lackpplication specific information to
know the meaning and legal values of the field matgiest parameters. A current study of
the MITRE Corporation [2009] acknowledges the igportance of input validation for

Web application security by saying that input vatidn is “the number one killer of

healthy software”. This statement is detailed Igngicant values in the categories attack
frequency, weakness prevalence and attacker aveene

Regarding user guidance input validation can hehrsito improve their interaction
with Web applications by showing them which infotioa is requested and in which
format. This can be considered as a kind of congexisitive help [Lee 1987; Nielsen
2005]. Furthermore, input validation - as kind mput assistance - is explicitly called for
by Guideline 3.30f theWeb Content Accessibility Guidelines (WCAG)[®V3C 2008b].
Moreover advanced input validation systems may tstded different representations of
user input and may transform the user provided tata format the Web application
requires, e.g. consistent date format. This wolllmhathe user to specify the data the
way he knows it and minimize the need for corredidy the user. An intuitive and
assistant validation mechanism can also help tke tosfix type errors and to learn how
to avoid the problems in the future. This is esplciimportant if the user works with
critical applications like online banking systemechuse type errors can lead to negative
financial consequences. In summation, input vateatan improve user satisfaction by
preventing operating errors, teaching the mostiefit and correct specification of data
and by assisting users in the correction of inprdrs.

Additionally, there has been a large growth of Vi2e® based Web sites and related
technologies [Forrester Research Inc. 2008; Waihret al. 2008] due to the richness of
graphical user interfaces, high interactivity aotlective intelligence potentials that Web
2.0 based applications offer. Because Web 2.0 egiins behave more and more like
desktop applications they are usually more complek as a consequence provide more
frontend elements for user provided data which makgut validation even more

important.

3. MARKET ANALYSIS

In this section we will focus on the requiremerds ihput validation frameworks in the

eGovernment context. After we show the sourcespliti validation requirements, we

will detail the requirements with regards to valida logic and summarize the results of

our market analysis [Kern 2008a].

3.1 Sources of input validation requirements
The requirements for an input validation framewrkhe eGovernment context that are

stated in this paper are derived from German eGuwent related policies, laws and

recommendations and are based on concepts of ma@démare engineering and IT
security. However, the orientation on German doqmealoes not restrict the global
universality of these requirements because mostcretm documents in German
eGovernment are derived from international onegeEially in the field of Web
accessibility the standards are almost equivalent, the requirements formulated in
WCAG 1.0 [W3C 1999] and the concrete checklistsGa#rmanys Web accessibility
related law called “Barrierefreie InformationstediWerordnung 1.0 (BITV)” (Decree
on barrier free access to information technolodyguUtsches Bundesministerium des
Innern 2002] are contentual identical [Kern 2008ipreover, the major part of the
requirements is more general and not specificecetBovernment domain. In detail input
validation requirements in the eGovernment conteristly arise from the following
areas:

* eGovernment related laws, standards and recomnienslat

e International non-governmental recommendations siscWCAG

e Concepts of modern software engineering

* Web based systems

e IT Security

According to Kern [2008a] the requirements for didagion framework in the
German eGovernment context can mostly be derivad the following documents:

The document “Standards und Architekturen fur e@uvent-Anwendungen”
(SAGA 4.0) [KBSt. 2008], which can be translatetbifstandards and architectures for
eGovernment applications”, aims at providing a gliile and orientation aid for the
forward-looking conception of technical architeetsirand IT applications. Primary
objectives of SAGA are interoperability, reusalilibpenness, scalability and cost and
risk reduction of eGovernment applications [KBS10g].

V-Modell XT 1.21 [KBSt. 2006] is another documeitat describes a software
development process and is provided by the KBSdithahally, V-Modell XT mentions
several principles like reusability and componeasdd architectures.

Besides, the German law for Web accessibility, BIT\0, defines a concrete
checklist based on WCAG 1.0 [W3C 1999]. It apptesil federal agencies, but only to
Web sites and Web applications and not to deskipjications. Because the successor of
WCAG 1.0, WCAG 2.0 [W3C 2008a], was finished in 80¢his specification is also to

be considered.

Moreover, IT Security related work and general @pts of modern software
engineering such as Buschmann et al. [1996] andgsRvan [1996] are relevant sources
for validation requirements. In the Web domain datfion topics such as support of
client- and server side validation [Moore 2002] cuntext sensitive help [Lee 1987;

Nielsen 2005] are most important aspects.

3.2 Focus on validation logic related requirements

As mentioned in the previous section, there aratimplidation requirements in different
domains. Because of the scope of this paper we deilhil the validation logic and

software engineering related requirements belowoatjh our market analysis [Kern
2008a] is based on much wider set of requiremdlitese requirements which are not
discussed here include validation visualization ptatform integration aspects among
other things [Kern 2008a]. In view of validationglo our analysis is based on the
following requirements.

The separation of concerns and loose coupling anergl goals [Fowler et al. 2002;
Buschmann 1996]. However these paradigms are athoseml by governmental
documents such as SAGA 4.0 [KBSt. 2006]. SAGA 4dhcretes these general
suggestions by describing component oriented [Wiss et al. 1992], service oriented
(SOA) [Mahmood 2007] and multi tier architecturégfng et al. 2008] as recommended
system architectures [KBSt. 2006]. Applied to tbeit of validation frameworks, we
demand the separation of validation logic formuolati validation integration and
validation error visualization as a minimum to make implementation of these different
aspects interchangeable. The separation of validdtigic formulation form validation
integration also helps to define validation logit @ neutral representation and in
consequence to use the uniform definitions on warfgatforms, e.g. in Web applications
or desktop applications. This platform specificemration of validation logic is to be
done by a validation integration layer or componei@ecause the average period of
business logic usage is usually longer than thkzatibpn of the user interface, the
validation error visualization aspects are alsdéoimplemented in an interchangeable
way.

In view of validation logic notation, declarativedarule based formulation [Ligeza
2006] of validation logic are to be supported. @henany reasons behind this is that by
using a declarative approach, validation logic bardefined at a higher abstraction layer

instead of hardwiring validation checks in an ingiee way. This also builds the

foundation for a framework whose validation rules de flexibly combined and easily
interchanged which also increases the SAGA 4.0atilbe maintainability [KBSt. 2008;
Broy et al. 2006]. It also simplifies the undemsting of the validation logic and eases
the implementation of tools to define rules in aenconvenient way.

Moreover validation logic is to be reusable [Sdiiffet al. 2008]. In detail, we
demand concepts such as inheritance [Biddle andp&sm1996], combinability and
scalability [Bondi 2000; D’Antonio et al. 2004] ovalidation logic as central
requirements to achieve a certain minimum of reilisabCombinability is especially
important because without combinability, it woul@ Imecessary to create a custom
specific implementation for each specific inputidation requirement which can lead to
a combinatory explosion of implementations. Forténse, if there are two distinct
validation logic implementations for mandatory dieand email validation and the
combination is needed, it would be necessary tdeament a new logic entity which
includes both aspects instead of reusing the agistines and combining them by
declaration. Similarly, inheritance [Biddle and Tmemo 1996] is useful to enhance
reusability because this makes it possible to eefjeneric validation functionality and
adapt it to the specific requirements, e.g. a @gekpression logic rule can be used to
create an email address format validation ruleaddition, data value and form control
dependencies are to be supported [W3C 2001], bedais a common requirement to
have components whose validity depends on the statalidity of other components.

Although scalability [Cheng 1994] is important f@usability, it is also vital for the
practicalness of the corresponding validation fraomx because for some scenarios it
may be sufficient to save validation logic in lofit system and for others databases or
distributed data stores such as Clouds [Sedaya®] 208y be required. As a consequence
we demand a validation framework that allows satheg validation logic definitions in
an arbitrary number of arbitrary distributed dataages which can be achieved by using
plugin [Fowler 2002] concepts. Scalability is alsgportant for increasing reliability and
in combination with inheritance to make it possibdebuild a hierarchical system of
validation policies such as companywide definitiomgplication specific peculiarities or
something in between.

Furthermore validation logic should be extensil#eduse it is not possible to foresee
future requirements or deliver a solution thatseg all — even domain specific — needs.
In this connection plugin concepts, factory pattapproaches or similar mechanisms

[Gamma et al. 1994] are of importance.

Because of economical restrictions, legacy apptinatare often enhanced rather than
newly developed. This trend is even stronger indf@®vernment sector because of a
possibly more conservative thinking and demograptiluences [Jauvin 2007]. As a
consequence, a new approach should be downward atiaep and support an
unobtrusive as possible extension of legacy apiies to find acceptance. We advocate
a bottom up approach (cf. section 2.1) that applegplication-external validation
definitions to user interface input elements indte& requiring a specific persistence
framework. This allows keeping legacy applicatidhat are developed with a specific
persistence framework or without any persistenaenéwork at all and leveraging rule
based validation at the same time.

In addition, we demand a kind of plugin concept tbe description format of
validation logic because formats evolve or areaeptl over time, but central business or
validation logic often prevails for a long time. (i) this requirement ensures long-lasting
usability of validation logic definitions becaudeetvalidation logic description format
can be adapted to future needs without havingitoplement the logic itself.

Because validation errors can be of different Iewélseriousness [Williams 2004], an
input validation framework should also support waspecify the severity of validation
rules. Different severity levels are important hesadepending on the specific business
process some errors may be critical and processftating and some others may be only
informative or warning. The severity setting shobédapplicable to the mapping between
the validation targets and the validation logicemulbecause otherwise it would be
necessary to create duplicates of validation logies for different severity requirements
in different applications.

In the Web context, duality of validation on bothetclient and on the server is
postulated [Moore 2002]. More precisely, a validatframework shall support a single
declarative definition of validation logic and wddition mappings definitions and a
transparent validation on client and server sideetlaon these definitions without
requiring any manual translation work by a humalne Teason for the support of client
side validation is its support for incremental dation and its advantage of avoiding
server side round trips because no submit is reduio do server side validation
[Brabrand et al. 2000]. This also improves resqulisi and leads to a decrease in

network traffic.

3.3 Methodology and Evaluation

The evaluation was carried out in terms of an expmriew. We decided to introduce
three levels of conformance to the requirementadler to make the results comparable:

* 0.0: No support of a requirement.

» 0.5: Partial support of a requirement.

* 1.0: Complete support of a requirement

This conformance level is determined for every kngweighted) validation

requirement. As a result, we get detailed data alio&i fulfillment of every single
validation requirement which forms the basis fortHar evaluation [Kern 2009]. We
calculate the absolute overall value and the radatiegree of fulfilment to make
comparisons based on single, scalar values possibikis section we focus on showing
the basic results of our evaluation [Kern 2008ahtplain the need for a new approach to
input validation. A more detailed analysis that pames our approach (cf. section 4) to
the approaches tested in [Kern 2008a] is providd&érn 2009] and discussed in section
5.

In our evaluation [Kern 2008a] we tested the follogvframeworks/concepts:
* Novel approaches

o XForms validation
* Imperative approaches
0 Adobe Flex validation
0 WebDynpro validation
e Component based approaches
0 ASP.NET validation
o JSF RI validation
0 Apache MyFaces Trinidad Converters and Validators

e Declarative approaches

o

Spring.NET validation
.net Validation Framework

Apache Commons Validator Framework

o}
o
0 Hibernate Validator with Seam integration
0 XWork Validation Framework

o}

LINQ with ASP.NET validation

The framework selection is based on preliminaryeaesh regarding the most

important and promising validation frameworks ire tiWeb field. Importance and

potential are derived from market power of the pic and market penetration of the
framework. In the following we illustrate the ratamle for our selection based on short
framework overviews with focus on validation.

XForms [Cardone et al. 2005] is developed in tandéth XHTML and was chosen
because at the time of evaluation it was regardedoael approach that could replace
HTML forms in the mid-term or long-term. XForms lised on the MVC architecture
and supports data type specific user interface et&lgvhich improves quality of user
provided data and reduces the need for validatiditionally, validation can be
declaratively implemented on the client side withitne need for JavaScript.

Adobe Flex [Wang 2009] provides technology and dotw create rich internet
applications. Because of its novelty and its fooasich internet application development
rich validation was assumed. Furthermore this freork has great potential to flourish
because it is based on flash technology whichadlae on 98% of all client systems.

WebDynpro [Cristea and Prostean, 2009] is a welliggtipn framework of SAP. It
is based on a MDA approach and is part of the eti@n because of the market power of
its producer and the support of domain object feedsdata type constraints which allow
validity constraints on data model level.

Active Server Pages .NET (ASP.NET) [Moore, 2002]d alava Server Faces
Reference Implementation (JSF RI) [Burns and Ki2006] are both component based
Web development frameworks. Both support so-callditlation controls, which validate
the values of assigned input controls. ASP.NETraviped by Microsoft which means
strong market power. JSF RI is the reference imptaation of the JSF specification
provided by Sun. Because of the great influenc8wf and the wide implementation of
Java there is great potential for JSF to expandchAp MyFaces Trinidad Converters and
Validators is based on JSF RI and extends its seside validation capabilities with
client side validation functionality.

The remaining frameworks are further well-knownusioins that support user input
validation [Kern 2008a]. More details concerningnfrework selection and evaluation

execution are mentioned in [Kern 2008a].

3.4 Discussion
Figure 1 shows the degrees of requirement fulfilitref all tested frameworks regarding
validation logic, validation integration, validatiovisualization and further aspects.

Regarding validation logic related requirements, Itfue bars are to be considered. The

blue bar representing the XWork validation framekwsinows that the XWork validation
approach achieves the highest degree of requirefudfiitment at about 50%. On
average, a validation logic related degree of meguoént fulfillment of 37% is achieved.

Considering all, including non validation logic at#d requirements, the best
framework achieves at about 59% of requirementlliuént whereas on average 51% of
requirement fulfillment is achieved (figure 2).

This shows that currently there is no solution tisatible to appropriately satisfy
common requirements to input validation in the e&§awment domain. Moreover, the
symbiotic combination of validation frameworks i®tnalways possible because of
different and incompatible concepts, platforms &®ls. Furthermore current scientific
approaches (cf. section 6) also have several simimgs that make them incapacitate to
satisfy the requirements for input validation frameks in the eGovernment domain. All

this undergirds the necessity of more researchaamelv approach to input validation.

A 1,00
-
c
o
E
E
2 0,50 —
o
o]
[V
[
=
o
[
O 0,00
1 2 3 4 5 6 7 8 9 10 11 12
Framework >
= Validation logic m Validation integration Valiclation visualization m Further requirements
Fig. 1. Category specific fulfillment of validatiorquirements (%).
L egend:

e Framework 1: XForms validation

* Framework 2: ASP.NET validation

» Framework 3: JSF validation

* Framework 4: Adobe Flex validation

e Framework 5: WebDynpro validation

* Framework 6: Spring.NET validation

* Framework 7: .net Validation Framework

e Framework 8: Apache MyFaces Trinidad Convertersalidators

e Framework 9: Apache Commons Validator Framework
e Framework 10: Hibernate Validator + Seam-Integratio
e Framework 11: XWork validation framework

e Framework 12: LINQ with ASP.NET

Fulfiliment of validation requirements (%)

Vahdatonifeatresof LING and ASP.MET
Fi¥orkvalidation framesork
Hibernate Validatnrwith 5 e am-ntegration
Apache CommansY alidator Framew
Apache WMyFacesTrinidad Comverlers +Validators
nef¥alidalion Framawork
Spring NET-Validabion
‘WebDynpro-alidation
Adoha Flex-YValidation
JEF-validation
ASP NET-validdion
HForms-validaion

DO0 070 020 030 040 050 060 u,n 0,80 0.9 1,0
Fig. 2. Overall fulfillment of validation requiremts (%).

4. THE EGOVWDF VALIDATION APPROACH
The eGovWDF validation framework was designed basethe requirements stated in
Kern [2008a] and in section 3.2.

eGovWDF features an extensible, rule based, deitlaysbottom up approach (cf.
section 3.2) to input validatio®asic validation logic definitionée.g. regular expression
validation) are implemented in code and based @oramonlValidator interface (cf.
section 4.1). Concretdask-specific validation logic definitionare rule basedand
comprised of references to basic validation logefirdtions or other declarative
definitions. These rule based, application indepabhdiefinitions are stored ipolicy
definition resourceswhich are referenced kgpplication definition resources or other
policy definition resourcesApplication definition resources contain applicatspecific
policy definitions and validation mapping definitie Validation logic definitions and
validation mapping definitions can be distributetoss an arbitrary number of resources
which improves scalability (cf. section 4.7). Moveo, both of them are compositional
and support the specification of predefined andarusseverity levels (cf. section 3.2).
Applications integrate validation logic by a locebnfiguration file which contains
references to an arbitrary number of validatiorirdédn resources. Figure 3 depicts the
different resource types and shows their connection

* contains application specific | eferences
p—————>

Application Configuration Resource
= contains configuration of application
Iocal validation behavior (e.g. client

Fig. 3. Simplified view of the validation resourtypes.

The framework also supports an extensive inhergamodel (cf. section 4.7) for
validation logic and validation mappings. This das used to define an arbitrary deep
hierarchy of validation policies. For instance, rtheould be corporate policies and
application specific ones that override the corporanes depending on the chosen
inheritance directives.

The format of validation policy definitions, valiien mapping definitions and the
data storage access are implemented by a plugicepbnwhich makes it possible to
basically save validation logic and mappings of &mynat, e.g. XML, in any resource
such as databases or the file system. This flexédeurce access was implemented by a
novel, generic approach to resource acquisition anocessing calledDimension
Architecture[Kern et al. 2010].

Finally, this approach supports the rule basedoumifspecification of validation logic
and the transparent in-memory translation intodaion checks on the server side and
client side (cf. section 4.8).

In the following sections we will focus on the mainncepts behind eGovWDF

validation logic.

4.1 Validators

Validation logic definitions (cf. section 2.1) aimaplemented byalidators A validator
encapsulates task type specific and usually irgeiglinary validation logic, e.qg.
validation of regular expressions. Validators aoafigured by an associative array of
validation parametersa validation messagéo display if validation fails and severity

setting (e.g. error, warning). A validation parameter camtain a simple configuration

value, e.g. the pattern for regular expression validatpror a list of child validators

which allows hierarchical nesting. Figure 4 showe tcorresponding interfaces for

validators and parameters.

<<Interface>>
IWalidator <<Interface>>

+Mame 1
+Message Hﬂfalue : string
+Severity Parameters [tValidators : List=Validator=

IValidationParameter

+valiclate(value ; object, context : object) : ValidationResult

Fig. 4. Simplified view of the Validator and anddNtiationParameter interfaces.

Validation logic is formulated by declarative valitbn rules based on references to

validators (cf. section 4.2). Allalidator related interfaces and concrete validat@re

implemented in server side and client side (Javi@g§ccode.The complete validation

API on client side and on server side is identwehich enables a rapid learning curve for

framework developers. This combination of clierdesiand server side validation and

central declarative validation definition has seveeasons:

Declarative non-imperative validation logic can anétically be transformed

into client sideand server side code without requiring the developer t
understand any server side (e.g. Java) or cliede de.g. JavaScript)

programming languages. It is our intention to alltve non-IT people that

provide the functional validation requirements toplement their validation

logic by themselves to minimize knowledge transésues between validation
logic specification and implementation. This is gémto the support of end user
programmers [Montgomery and Daniel 2009] by theidetion approach of

Scaffidi et al. [2008].

Validation on the client side enables field-basedtremental validation and

helps in avoiding roundtrips to the server sidealise submits can be avoided if
client side validation fails [Brabrand et al. 2000]

Because JavaScript may be disabled, manipulatedobrsupported by the

client’s browser, pure client side validation apideed in Brabrand et al. [2000]
is not sufficient. As a result this approach endsrcserver side validation,
independently of validation on the client. This matory support of server side

logic is also necessary for Web accessibility, beeaaccessible Web sites have

to work independently of the scripting capabilitefsthe client browser [W3C
1999; Kern 2008b].

As depicted in Figure 5, there are four fundametytas of Validators:

« Verification validators check values or states of components, e.g. regular
expression validators. Depending on the validatiesult and the validation
severity the running process can be aborted.

e Correction validatorsnormalize values (cf. section 4.6). Their applmatdoes
not result in validation errors or warnings in qaist toverification validators
The intention of correction validators is to gatamsistent representation of data
for further processing and validation which is velet regarding data integrity.
Correction validators also aim at helping usersandling the application.

« Composite validatoreenable the composition of multiple validators, .eag
logical And validatorwould have a validation result of true if the daliion
results of its nestecegular expression validataandvalue length validatoare
true. Composite validatorsnake it possible to build a tree of validators amd
satisfy complex validation requirements like cordial validation and inter-
component dependencies (cf. section 4.4). Thissgemial to achieve real
flexibility, extensibility and reusability.

* Action validatorsencapsulate common actions that are to be exedefsehding
on the validation result of an assigned verificatimlidator. For instance, an
action validator could show or hide a configurabtanponent on the current
Web page if the validation result of rmandatory field validatqr which is

assigned to a specific input field, is valid.

<<Interface>>
IValidator

i)

[
BaseValidator

VerificationValidator CorrectionValidator CompositeValidator ActionValidator

Fig. 5. Fundamental Validator types.

This approach supports four fundamental types dflators because error detection
is only one part of a comprehensive validation psscthat is to be based on human-
computer interaction [Hewitt et al. 1992]. Accorglito De Paula et al. [2005], the
correction of statements and the prevention of lerab are an inherent part of human
conversation which we generalize regarding useor&t Whilst Verification validators
show errors to enable their correction by the uSerrection validators help to avoid the
need for users to manually correct many errorss Hiversification of Validator types
combined with conventional input field descripticensd restrictions also correlates with
the error handling categories of the Modeling Laayggi for Interaction as Conversion
(MoLIC) [De Paula et al., 2005]:

* Passive Prevention (PP): documentation or onliséruntions designed to
prevent errors (e.g. the data format of a field)cenventional input field
descriptions, e.g. tooltips

e Active Prevention (AP): active mechanisms that préverrors (e.g. input
fields which restricted choice) -> conventional ubdield restrictions, e.g.
drop down list with prespecified values to seleotrf

e Supported Prevention (SP): asking the user to detbiel reaction to an error
condition (e.g. showing a warning which the usem @nore or take into
account by changing the input data) -> Verificatiealidator with non-
terminating severity level

e Error Capture (EC): errors which are detected gy ghistem and must be
notified to users, but for which there is no ungitian (e.g. file corruption)
-> Verification validator with process-terminatisgverity

e Supported Repair (SR): informing the user abouérmar and allowing him
to correct it (e.g., presenting an error messagktha input the user has
specified previously) -> Verification validator

As mentioned above, in addition to these error hiagdoptions our approach
supports not only the manual correction of inpubesr by the users, but also their
automatic correction.

In our approach, the validate function of a Valadag¢xecutes the validation of the
specified value and returns a result of tifadidationResultA ValidationResultontains
the error message and severity of the first matchimlidator that returned a negative

validation result. It also includes the new valweciase the value was altered by a

correction validator. It also contains a value vhhiicdicates whether the validation result
should have influence on running processes becausiefault behavior is to stop the
running process on validation errors of error séyer

It is possible to implement new validators but Uiguthis is not required because
validation logic can be expressed by configuring phovided general purpose validators,
e.g. aregular expression validatocan be configured to validate email addressesdbase
on a parameter for a regular expression patteranery complex validation scenarios
can be implemented without the need for programnbggusing compositional and
conditional validators (cf. section 4.3) in ordercombine several validators and to even

implement validation dependencies (cf. section.4.4)

4.2 Policies and mappings

As mentioned above, basic validation logic defimg are implemented by validators.
However validators cannot be directly assigned ger unterface components. Instead,
user interface components are mapped witlicieswhich are declarative configurations
of validators. This decision was made to improvesability and to ease the use of
validation logic definitions by providing a more nittional representation than the
underlying technical general purpose validatords Tecision also supports our goal of
support for the delegation of the task of validatlogic definition and mapping to the
(non-IT) people that define the functional (valida) requirements. As mentioned avoe,
this can prevent knowledge transfer issues betwedidation logic specification and
implementation. Listing 1 shows a policy namEdailPolicy which customizes a
RegexValidatorby specifying itsPattern parameter to implement validation of email
addresses.

<Policy name="EmailPolicy">
<Validatortype="eGovWDF.Validation.Core.ValidamCommon.RegexValidator"
message="Invalid email address">
<Param name="Pattern" value="([a-zA-Z0-9_\-\.}&((\[[0-9]{1,3}\.[0-
9{1,3)\.[0-9]{1,3}\.)|(([a-zA-Z0-9\-]+.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\] ?)"/>
</Validator>
</Policy>

Listing 1. EmailPolicydefinition inPolicyDefinitions XML format (ValPDXF)

As mentioned aboveyalidation mapping definitionsassociate the components to
validate yalidation target} with validation policies. At runtime a componeritthe Web
page calledvalidationManager(cf. section 4.8) extracts the values of the \alwh
targets and passes the values to the validatotheopolicies that are specified in the
corresponding mappings. Listing 2 shows an examwip$®me mappings which can either

beglobal or local.

<Mappings>
<Global>
<ValidationMappings>
<Component id="txtld" validationPolicy="AccotiPolicy" />
</ValidationMappings>
</Global>
<Local>
<Context id="default2.aspx">
<ValidationMappings>
<Component id="txtUrl" validationPolicy="UPolicy" />
<Component id="txtMail" validationPolicy="MilPolicy" />
</ValidationMappings>
</Context>
</Local>
</Mappings>
Listing 2. Basic Validation Mappings sampie ApplicationDefinitions XML format
(ValADXF)

Global mapping®f an application definition resource apply to tieole application
that references the resource. In the Web contéxtnieans all components on all Web
pages with the specified ID are checked againsspleeified policy, e.g. all components
with id txtID are checked against the polidccountldPolicy for instance.Local
mappingsare context specific which means the current \&wlag the corresponding
components are only validated if the associated Y&gd®e equals the current Web page.
For example, in Listing 2 the componéxtiJrl is only validated if the current Web page
is default2.aspx The interpretation of the platform independentirdéon format for

mappings depends on the chosd&lidationManager(cf. section 4.8) component which

makes it possible to use the identical validatioapping definitions for different

application user interfaces on different platforms.

4.3 Composite and conditional validation

In contrast to regular component based validatech s ASP.NET validators [Moore
2002] or JSF validators [Burns and Kitain 2006§ treclarative approach of eGovWDF
supports the combination of arbitrary validatorsusingcomposite validatorse.g.
AndValidator OrValidator andNotValidator These basic validators are sufficient to
implement every possible Boolean expression bedaispossible to nest composite
validators indefinitely. Figure 6 and Listing 3 shan example which is based on a
composite validator. The policy ensures that aevédisted against the policy is only valid
if the value is specifiedRequiredValidatorand numericRegexValidatgrat the same

time.

Policy ,MandatoryNumberPolicy”

. And-Validator |
i i Regex\fal.i'dator
RequiredValidator
Message=Mandatory Input! Hus:ﬁ;m[::;?nm

Fig. 6. Composition of validators.

<Policy name="MandatoryNumberPolicy">
<Validator type="eGovWDF]...]OrValidator">
<Param name="Operands">
<Validator type="eGovWDF][...]RequiredValidatorfiessage="Mandatory input!"/>

<Validator type="eGovWDF[...]Common.RegexValiafat
message="Numeric input!">

<Param name="Pattern" value="[0-9]*"/>
</Validator>
</Param>
</Validator>
</Policy>

Listing. 3. Declarative Validator Composition.

This idea gets even more flexible by using a vatidaof the type

PolicyReferenceValidatowhich allows referencing other policies from witha policy.

For instance, instead of usingR@gexValidatolin the sample presented in Figure 6 the
reusability could be enhanced by outsourcing RegexValidatodefinition into a new
Policy called NumberPolicy This new Policy can be referenced from within a
MandatoryNumberPolicyif a PolicyReferenceValidatoris used instead of the
RegexValidatarThis type of reference is calléater-policy referenceand illustrated in

Figure 7 which shows the revisbthndatoryNumberPolicgefinition.

Policy , MandatoryNMumberPolicy™ Paolicy ,,MumberPolicy™

_{ And-Validator | T
> :] . m
RequiredValidator |PolicyReferenceValidator, Pattem=[0-5]°

Message=Mandatory Input: | Policy=NumberPolicy |

Fig. 7. Referencing policies within policies.

Furthermoreconditional validationis supported by thdfValidator composition
validator. Thecondition parameteas well as théhen parametesupports a validator as
argument which enables the execution of one validat dependence of another
validator and avoids the need for code to expresslitions as most other solutions
require [Kern 2008a]. It can also be configured thbe the validation result of the
condition validator is to be factored in the ca#tidn of the validation result. In the
example depicted in Figure 8, the value of the camapt A is only valid if it is

e numeric and a valid currency

e or non-numeric and equal to the hyphen character.

Policy P

IValidator
+ Parameter Condition:

NumericValidator]
Parameter Then

Mapping M
Component A ¢————>
CurrencyValidator

+ Parameter Else

RegexWalidator
+ Parameter Pattern: ,-*

Fig. 8. Implementing basic conditions with tifi¢alidator.

More complex conditional expressions can be fortedlaby nesting IfValidator

validators.

4.4 Component dependencies

Section 4.3 showed eGovWDF’s support for compoaitd conditional validation and
introduced basic concepts of inter-policy referesnadnich deal with the referencing of
reusable policies from within other policies.

A more complex validation topic imter-component dependenciefich means the
validation of a component can depend on other omb& can be implemented by a
combination of théfValidator and theComponentReferenceValidatwhich supports the
specification of the id of another component. Allested validators of the
ComponentReferenceValidamutomatically get and validate the value of the ponent
with the specified id instead of the component tisatmapped in the corresponding
policy. For example, thRequiredValidatoiin thethen branchof the policy depicted in
Figure 9 is only processed if tl@omponentReferenceValidator the condition branch
evaluates totrue. It evaluates totrue if its nested validators, in this case another
RequiredValidatorreturnvalid as result of the validation of the referenced congmt A.
This means componeitis valid if componentA and B are non-emptyr if component
B is empty

Policy P

A Mapping M el dalor
cﬂmpﬂ'nEﬂt « Parameter Condition’

T:nmp-nnentl!e{emncevalidatur
Reference » Parameter Component/D: B*
Gnmponent B € « Parameter Validators

I RequiredValidator]

« Parameter Tham

| RequiredValidator |

Fig. 9. Implementing inter-component reference$ wieComponentReferenceValidator

By additionally using &olicyReferenceValidatait is possible to not only reference
the value of another component, but also referenspecific or all policies of another
component which is calleititer-policy referenceThis can be useful in case the validity
of one component is not only dependent of the vadduefrom the overall validity of the
other component. However, policies that do notresfee a policy but a concrete

component are only allowed in application definitisesources and not in policy

definition resources because references to othenponents in policy definition
resources would weaken the reusability of applicatndependent policy resources.
Becausedependency validators support inter-value and upelicy referenceghis
approach is very flexible. The values of referencethponents can be validated against
the policies of the referenced component or againgtother policy or validation logic.
However the flexibility of referential Validatordsa brings some possible drawbacks
such ascircular referencesand infinite loopsbecause a policy can reference itself or
other policies which reference the policy. The wiéiin of such validator cycles can be
prevented at policy design time and at runtinhe science there is many research
conducted in the field of cycle detection algorithra.g. [Nivasch 2004], [Boukerche and
Tropper 1998] and [Schall 1990]. Because in mosesahere will only be simple 1-
dimensional requirements, e.g. email address or ffRinat, a simple adaption of the
depth first search algorithm in regards to saving visiting state by different colors
based on Kamil [2003] is used. The cycle detectiback based on this algorithm is
conducted duringralidation logic setupat runtime and at design-time by anaphical

validation configuration tooto prevent invalid definitions in advance.

4.5 Validation actions

Section 4.3 and 4.4 described the usage of vadidlatiependencies to execute the
validation of a component based on the validatesuit of other components. Though,
there may be situations when it is required to aeteeactions depending on the validation
result of one or more components. This is implemériby action validatorswhich
execute task type specific actions when execut€hvé/DF provides a basic set of
general purpose action validators, e.g.VibilityActionValidator that changes the
visibility of the validation target. By using @omponentReferenceValidat(sf. section
4.4) it is possible t@hange the visibility of another componémn the validation target.
In the example depicted in Figure 10, the visipildf component B is set to true if
validation of Component A is successful. The basicof action validators also includes

a ValidationActionValidatomwhose execution triggers the validation of a conap.

Policy P

Mapping M
Component A [€——>||fvalidator
» Parameter Condition:

RequiredValidator

Parameter Then:
ComponentReferenceValidator
= Parameter ComponentID: ,B"

» Parameter Validators:
VisibilityActionValidator

= Parameter Show: ,true”

Reference

Component B

Fig. 10. Usage ciiction validators

4.6 Value normalization

As stated in section 2.2, validation is primariljpportant for data integrity, Web
application security and user guidance. Howeverrofthere are multiple valid
representations of data, e.g. country specific datmats. Since different information
representations make it more complex and errorgpran process data further, this
concept supports a specific type of validators Wwhioormalize information
representation. These correction validators alskenitapossible for users to enter data
the way they prefer and support the indication o torrection to help users in
understanding the required format by doing. Forngda, aDateCorrectionValidator
could be used to convert user inputs with diffedate representations, e.g. dd.MM.yyyy
to UTC format (Figure 11). According to Scaffidi &t [2008] normalization also helps
in improving validation accuracy and reusabilityy Bising composite validators,
correction validators can be combined with and etext before verification validators to

provide a consistent view of data before the actasfication takes place.

Component/Field C1 Component/Field C1
-] ! .
|Userinputy 2 eo040s" gets
—— b | aicr | 8 ubstituted for
B mmmn?alldmi. .'I ';..05.04.2009“ in C1
Validation Mapping . Validation Process

Fig. 11. Correction validator mapping and validatpwocessing.

In contrast to several other approaches such afidba al. [2008], the correction
validator based approach does not concentrate singée mechanism to decide which
representations are equal. Instead, the mechawisthd transformation depends on the
chosen correction validator, which allows a morebem specific and potentially a more
efficient transformation, because the optimal odiom validator can be chosen
depending on the data field. For example it candresidered to be more transparent and
problem specific to use a simpdbateCorrectionValidatothat transforms all recognized
date formats to a specific and configurable datené& than a more general text based
RegexCorrectionValidatowhich allows capture group based substitution aimls at
more complex transformations. In summation, theemion validator concept allows the

use of the transformation logic that fits the daeat.

4.7 Inheritance mechanisms

One major advantage of this approach is its widgpstt for inheritance[Taivalsaari
1996]. Vertical distribution (Figure 12) supports inheritance of default déifaims and
allows overriding or extending inherited definitorThe non existing limit of validation
resources referencing other validation resourcesmizes reusability and separation of
concerns, e.g. companywide validation rules to iapfon local validation rules. The
horizontal distribution (Figure 13) on the othedesioptimizes scalability because
validation related definitions can be simply sepedainto an arbitrary number of

resources on the same hierarchy level.

Policy Definition Ressource R1
g Company Wide Valdation Logic

Policy P1 | |Policy P2

* impart
Palicy Definition Ressource R2
& g Validation Logic of Depantment 01
Policy P2 Paolicy P3
if impart
Policy Definition Ressource R4
e.g. Application level Validation Logic

Policy P4 Policy P3

Fig. 12. Vertical distribution (classic inheritander increasing reusability).

Paolicy Definition Ressource R1 Policy Definition Ressource R2
eg ompany Wide Validation Logic e.g Valsdation Logc of Department D
Policy P1 | | Policy P2 Policy P2 Policy P3

impon pilialyl

olicy Definition Ressource R4
& g Application level Validation Laogic

Folicy P4 Policy P3

Fig. 13. Horizontal distribution (for maximizingaability)

As mentioned above, policies can be referenced fotiner policies. This allows
extending existing policies with custom sub orgatianal or even application specific
logic by adding additional Validators or existinglieies.

If horizontal distributionis used,multiple inheritancecan be achieved which could
result in name collisions [Singh et al., 1995] ifpticate policies are to be imported. In
this case it is not automatically decisive whichigohas precedence if multiple policies
with the same id are available. In contrast to iplgtinheritance in object oriented
programming languages, we decided to support tleeibflity of specifying the
application behavior if duplicates of policies amsl a consequence name collisions are
existing. This means, a name collision does noesearily mean an application failure;
instead the policy in the importing resource desiadbich one of the imported policies is
to be used. .

eGovWDF supports the following main inheritanceiaps to handle duplicates:

* Keep
* Override
« Join

* MergeException
e Custom
Keep is the default setting and makes the importingicgobverride the policy
duplicates from the imported policies. This mednes importing policy is kept which is
the default behavior one is used to from inherigaimcobject oriented programming.
Override makes the last imported policy override all pregiamported ones. This
means if policy P is imported from policy resourés and R2 into policy resource R3,
the last imported policy from R2 overrides the ngnigentical policies from R1 and R3,
because according to figure 14 R2 is imported @erIf R1 is to override R2 and the

identical Policy from R3, the import order can bétshed.

Join in the mostintelligent option because nergesthe importing policy with the
policies with the same name from the imported golesources. This means, if there is a
resource R3 that imports policies from R1 and R2ewa policy is created which contains
the combination of the policies with the same ndirmm R1, R2 and R3. For example, if
a PasswordPolicyat global level says a password has to be at tddsingth 6 and an
application specific policy with the same name saysmssword has to contain at least 3
special characters, the new policy resulting frondomn will comprise of a logical
AndValidator that contains the two policies. Figure 14 illusiga the three main
inheritance options mentioned above.

MergeExceptionis a very conservative option that throws an efioeyf two policies
with the same name are found. This is useful imades where you know that there are
no duplicates allowed.

However there can be situations which require aemeaplicit and direct way to select
the dominant policy. This is supported by the aptitustomwhich allows to directly
specify the resource whose policy is to be chosernfjat Resource:Policy If this
flexibility is not enough an existing policy can beferenced from within another policy
and combined with any other validator by using cosife validators.

All of these inheritance options also apply to @ation mapping definitions at
mapping element level and to any validation erititgeneral. Validation contexts (in the
Web domain Web pages) support further inheritanettings. However, validation
mapping definitions are additionally assigned tcoatext, e.g. Web page. At context

element level several additional container relatééritance options are supported.

Temporal importing order

Temporal importing order

Temporal importing order

Resource R1

Resource R2

Resource R1

Resource R2

Resource R1

Resource R2

| Policy P |

I Policy P]

|| Poticy P |

| Policy P |

| Policy |

[Policyp |

import import

Resource R3 Resource R3 Resource R3
Policy P Policy P | | Policy P

Keep | -Override Join |
Memory Memory Memory

Policy P of R3 Policy P of R2

Policy P

Policy R1.P
—| Policy R2.P
Policy R3.P

Figure 14. The inheritance options Keep, Overria Zoin.

Anid-Validator

4.8 Validation processing and platform integration

ValidationManager components are platform and framework specific amegrate
validation into platforms and frameworks, e.g. &spNetWebValidationManager control
integrates validation processing into ASP .NET Ha#éeb applications. It's the job of
the Plugin Pattern[Fowler et al. 2002] basedalidationManagercomponents to setup
client side validation handlers, to extract theueal to validate from the current context
(Web page) and to enact validation of all or speciflues of the context by checking the
values against the associated policies. FurthernvakdationManagercomponents can
cancel operations on validation errors with speciBeverities. In the default
configuration, theAspNetWebValidationManageborts submits on the client side if
validation errors are present, for instance. Onstiwer side it cancels the execution of
event handlers if validation errors are present.

As mentioned in section 4.1, because validatioricpatlefinitions and validation
mapping definitions are declarative and the cleemd server side validation interface is
identical, validationlogic has to be only defined one time in a unifdormat The
central validation definitions can automaticallydatansparently be applied at all tiers
(client and server side). According to Yang etaathitectures like this bring several key
advantages such as decreased development timeasect simplicity [Yang et al. 2007]
because of no need for logic partitioning betwelem tiers and better maintainability

because of eliminating re-partitioning issues.

Our validation presentation framework uses thid thedavior to provide client side,
field based live validation when the user entets.d@or instance, if the user enters data
in a field requiring a special date format, thewtiside part of the validation framework
is trying to transform the input to a uniform regpeatation by using &orrection
validator. If the conversion fails or the date is invalidchase of another irregularity
regarding validation rules, the validation presgataframework highlights the erroneous
field and shows the user the defined validatiomremessage. This process is additive,
which means all validation errors are incrementatiged to a client siderrors list that
can be shown on the user interface. Before sulthgétlient side validation of all input
fields within a triggered Validation Scope (cf. 8en 4.9) is done to avoid unnecessary
roundtrips to the server. Because client side a#bidh is not reliable, an identical
validation on server side always takes place aftémits. Validation processes on both
the client and on the server side are completelysjparent because the validation rules
developer does only have to specify declarativadatibn rules (policies) and the
mappings of the policies to the validation targ&tigure 14 shows an example of the
additive and field based validation error visudi@ma provided by our validation
presentation framework. More details on our val@hat visualization approach

framework will be published soon.

Account ID: |
Thtle: |

Current Error Messages:

& Account ID: Missing input

Fig. 14. Exemplary validation error visualization.

Regarding the validation setup, on applicationtsgafor deployment) the validation
Runtime Environment provided by thespNetWebValidationManagexecutes a multi
stage process (Figure 15) to create client andeseside in-memory representations of

the validation logic definitions and validation npapg definitions.

Referances Pcih(:les >

.

| or
i| Application local i | Validation Validation |!| Validation Validation
1| Validation Settings i | Definition1 |-+ Definitionn |! i Definitionn+1 | === Deafinition m
i r | Y i 3] 1
: CH‘_CUh_iﬁUH of N Processing and Resolving Recursivereloading and resolving |
' 1) Velidation Definition | 2} of Validation Definitions 3} of Val Definition Resources and
| Resources to include | : Validation Policy Resources
Server side eGovWDF Runtime }
! Construction of an Transformation of the server | Mamipuliation of generated HTML
i 4) hierarchical In-Memory | 5} side validation tree to a 6] Cutut and ennchment with chent
; Representation of the clientside representation : side validation handlers '
| Validation logic i ! : i
in-Memory-Tree with | | in-Memory-Tree with ! | Adapted client side Web Page | |
nested Validators ! nested Validators : markup :
{server side) : {client side) : :

Fig. 15. Validation logic setup at application sigr(or deployment).

As depicted in Figure 16, the In-Memory tree ddmdliabove includes a flat structure
of mappings between components and validation iesliaViappings formulated in the
global context are processed on eaohtext(Web page), whereas mappings of a local
context are only applied if the corresponding loaantext is active, i.e. the
corresponding Web page is currently processed.

In contrast to the mapping structure, the Poligsetwhich is also part of the
validation logic in-memory representation can bleiteary deep because validators and
policies can be indefinitely nested.

Global Context
= Mapping. biD == |DPolicy

Policy ,EmallPolicy” |
= oo
— Requireqvalidaior {congimon par)

LDCEI.|.'.:'rIIIﬂ[E:I'.t' MNewHeguest aspx

s i , — Andvalicgator {than par)
- Mapping: bitdame -=_NamePoiic : =
— Mapping: tEmail -=[EmadPolicy - StringLengthValidalor (Max=_.)

- - RegexValldetor (Patiern=___)
Local Context ListRequests aspx
— Mapping: iCustomarName -= CusiPolicy

Validation Mappings Policy Definitions

Fig. 16. In-Memory validation policy and validatiomapping definitions tree.

4.9 Validation triggering
As mentioned above \dalidationManagerconnects an application and its components to
an abstract definition of the validation logic whiis described in policies. In this section

we would like to describe the mechanisms of eGovWéijarding validation triggering.

The eGovWDF approach implements the enactment bfatn by the idea of
validation scopesand validation scope triggersA validation scopecan be defined to
include all components which are to be validatethatsame time. This is similar to the
ValidationGroupconstruct in ASP.NET. However, in eGovWDF validatiscopes are
defined purely declarative and can also be nesteelkged and inherited. Another
advantage of the validation scope approach is tippart of multiple user interfaces,
because the same validation scope definitions eansed for multiple user interfaces,
e.g. a desktop and a web frontend.

The validation of a validation scope and in consege of all its components is

raised by so-calledalidation triggerswhich can be any components that are able to raise

some event. Figure 17 and Listing 4 illustratethakdation scope concept and show that
a component can be defined as trigger for an arlgitnumber of validation scopes (e.qg.
button x is trigger of scope A and scope B) andmmonent can also be member of an
arbitrary number of validation scopes (e.g. radittdns r1 and r2 are both part of scope
A and scope B). Components which are not expligfigociated to a validation scope are

automatically added to a default scope (e.qg. ifipld i and checkbox C2).

-Cnntext c |
Button y | Default Scope [Button z|
(Triggen|\ | Input Field i (Trigger)

[~ Check- Scope A Button x
BoxC1 g4 oo/ (Tigger),

Radio buttons || @ Scope B
Default Scope : | | D ’
ropDown d
| Check - P
'Box C2

Fig. 17. Validation scopes, triggers and components

<Context id="c">
<ValidationMappings>
<!l-- Component and Policy mappings ... -->

</ValidationMappings>

<ValidationScopes>
<Scope name="Scope A">
<Triggers>
<Trigger id="x"/><Trigger id="y"/>
</Triggers>
<Components>
<Component id="C1" />
<Component id="r1" /><Component id="r2"/>
</Components>
</Scope>
<!-- Definition of Validation Scope B ... -->
</ValidationScopes>

</Context>

Listing. 4. Validation Scope definitions MpplicationDefinitions XML format (ValADXF)

By using validation scopes, validation mapping nitiins and validation policies the
validation related logic and behavior can be defimeclaratively andutside of the
application. This makes changes to the validatimicl or behavior possible without the
requirement for code changes. It also allows updit¢he validation logic (mappings) at

runtime and without the requirement for applicatiedeployments and restarts.

5. EVALUATION OF EGOVWDF

Because our approach was designed as responsenortkavailability [Kern 2008a] of a

suitable solution for input validation in the Webntext, our conception was strongly
targeted at taking the postulated requirements g@ftion 3.2 and [Kern 2008a]) into

appropriate account. This enabled a direct compati®tween current solutions and our
approach because it allowed us to contrast ourdveork with the same requirements the
market analysis (cf. section 3) is based on.

In this section we show the performance of our apph regarding the requirements
mentioned in section 3. We also compare our appreath the frameworks that were
tested in the market analysis. A much more extensbmparison between our approach
and the frameworks mentioned in section 3 is diesedrin [Kern 2009].

5.1 Methodology

The evaluation methodology is almost identicalh® one used in the market analysis.
This means it was carried out in terms of an expariew and we used the same three
levels of conformance to the requirements in otdenake the results comparable:

* 0.0: No support of a requirement.

* 0.5: Partial support of a requirement.

e 1.0: Complete support of a requirement

However in addition to the calculation of maximunmdaaverage degree of

requirement fulfilment, we also calculated meahugalower quartile, median, upper
quartile, minimum and maximum values of our apphoaad the frameworks of the
market analysis to draw further conclusions. Additilly, we illustrated the data and the

statistical characteristics by using bar chartstamdplots[Tukey, 1977]

5.2 Execution
In this section we discuss the compliance levad®bvWDF to every single requirement
which forms the basis for the statistical evaluatimd discussion in section 5.3.

The separation of validation logic formulation, idakion integration and validation
error visualization is demanded as a minimum to entde implementation of these
different aspects interchangeable (cf. Section .3This aspect is considered by
eGovWDF by the separation into various layers [Ganehal. 1994] that are loosely
coupled by interfaces and implemented as sepamtgefvorks. All layers are built upon
the Plugin Pattern [Fowler 2002]. As depicted igufe 18, the framework consists of the
following layers:

« eGovWDF Validation RTEThis is theruntime environmenthat processes
validation logic and is executed on validation.

« eGovWDF Validation PIThe validationplatform integrationlayer contains
platform specific code to integrate validation grssing in a specific platform.
For each platform &alidationManager(cf. Section 4.8) has to be provided. In
the Web context, th¥alidationManagersetups a client side equivalent of the
Validation RTE, installs client side event handlers components to trigger
validation and delegates validation processing¢oMalidation RTE.

« eGovWDF Validation CLThis layer contains the validation core logic @i

includes a basic set of validators such as Regédatar, RequiredValidator,

IfValidator, ComponentReferenceValidator, Policy&ehceValidator and
Boolean composite validators.

* eGovWDF Validation PF The presentation framework layer contains all
components and functionality to visualize validatiesults.

* eGovWDF Processar®rocessors provide core functionality used byegiérs.

eGovWDF Validation PF

eGovWDF Validation CL

eGovWDF Validation Pl

-
#
@
8
o
8
3
o
a
[

eGovWDF Validation RTE

Figure. 18. Base architecture of the eGovWDF vélideapproach.

Because the requirement is completely fulfille@ flcore for this requirement is 1.0.

Moreover, a declarative and rule based formulafidggeza 2006] of validation logic
is requested. eGovWDF completely complies to thiguest because validation logic is
defined in form of policies which are declarativeesifications of nested validators.
Additionally, validation mapping definitions are esgified declarative, too. Complex
validation rules can be implemented by nestingdaalidators and including existing
policies. This means a score of 1.0.

Furthermore, validation logic has to be reusabkeafconsequence, concepts such as
inheritance [Biddle and Tempero 1996], combinapiltnd scalability [Bondi 2000;
D’Antonio et al. 2004] are demanded. As mentionedséction 4.7, eGovWDF has
substantial support for inheritance and scalabilityts concept ofiorizontal and vertical
distribution combined with the support afheritance optionseGovWDF has also major
support for combinability because by using compmsitl validators and validator
nesting, complex validation scenarios can be implaed. This also includes conditional
validation and inter-field dependencies and eqaasore of 1.0.

In addition, validation logic is required to be exsible. Our approach supports this

demand by a commotvalidator interface that allows the implementation of adiyr

new validation logic. Furthermore, new validati@git can be created based on existing
validation logic by inheriting from existing valittas or referencing existing policies
within a compositional validation policy definition

Besides, plugin concepts for data storage (e.gbdat, file system) and validation
definition resource format are requested. eGovWDjpperts both demands by a new
approach to resource access calb@hension ArchitectureThe Dimension Architecture
[Kern et al. 2010] is based on the separation ofoua aspects of resource access, €. g.
location address, content format and type of datace into so-calle®imensiongKern
et al. 2010] which allows for the flexible and cignfrable combination of these aspects.
As a result, eGovWDF achieves a score of 1.0 raégguttis requirement.

Moreover, it is advocated that an approach shoa@ddbwnward compatible and
support an unobtrusive as possible extension afcle@pplications to find acceptance.
eGovWDF is completely downward compatible becatgehased on a principle we call
unobtrusive decoratianThis means eGovWDF does not require a speciftityear
persistence framework to be used in Web applicatibrstead, the application developer
does only need to add \dalidationManagercomponent (a server side user interface
control) to the web page that requires validatibhis component installs all required
client side scripts and also triggers client sidd server side validation based on tiser
interface component eventspecified in an application local configurationlefi
eGovWDF does not demand any modifications in thstiey code data model or code; it
only requires to add an additionghlidationManagercomponent and to declaratively
configure the validation behaviour. This also meassore of 1.0.

Beyond that, validation frameworks are demandedupport different validation
severity levels. Our approach supports this requeirg both at the validation logic level
and at the user interface level. eGovWDF does nlyt support one additional state for a
validation result such asndeterminedbut also supports an arbitrary number validation
severity levels. One can assign an arbitrary vatidaseverity to any validator of a
validation mapping definition. If a validator ofnaapped policy is executed and evaluates
to false, the assigned validation severity of thkdator is returned which can be used to
implement validation warning messages that do eointrast to regular errors - not stop
further processing, for instance. Our referencédatibn visualization framework also
supports three severities out of the box. It costaa different visualization for

information, warning and error messages. Becauisepidwt of our framework is also

based on the plugin pattern, further visualizatiforsadditional severity levels can be
implemented. This means a score of 1.0.

Finally, the requirements mentioned in sectioniBcude the demand for support of
validation on both the client and on the server §k&02002] based on a declarative
definition of validation logic and validation mapgis. This is fully supported in
eGovWDF because validation logic definitions andidedion mapping definitions are
declaratively described imolicy definition resourcesand in application definition
resourcesAs mentioned in section 4.8, these definitioresautomatically translated into
a client side and server side representation. Becdhe requirement is completely

fulfilled, the score for this requirement is 1.0.

5.3 Discussion

The evaluation shows that eGovWDF completely figlfihe requirements postulated in
section 3.2 of this paper. According to Kern [2008]also fulfills all additional
requirements stated in [Kern 2008a] such as togbsrt, Web accessibility and common
requirements related to validation visualizationecBuse eGovWDF achieved the
maximum degree of fulfillment in all requiremente toverall score of eGovWDF equals
the maximum achievable value. In numbers, the divexiative score of eGovWDF is 1,0
which equals 100 per cent of requirement fulfillmeérhe result is even more convincing
when a comparison with other current Web input daglon solutions is conducted
because the best solution on the market only resaglegree of fulfillment of 59 per cent
(Figure 19).

Fulfillment of validation requirements (%)

i nnIE

“ahdehonfeatwes of LING and AGTMIT
svokvahdaran framanork

I ibermate’ alidztorwith S earr-megration
ApachaCommons /3 idstorFra e
Apache MyFacesTrnidad Comveiers+valldalors
nel alidationFramawark

Spring MET-Val dation

Wik Dy 1 p ot licalion
Aok a Flex-validaion

ASE-validaion

AL HCT- alidalion

HFornsWalidenng

(LA W W I B e 1 Rt N U - - 111
Figure. 19. Comparison of current validation frarogkg regarding the fulfillment of main validation

requirements in the eGovernment context.

In Figure 20, a box plot shows lower quartile, naediupper quartile, minimum and
maximum values of the fulfillment of the validatioaquirements by eGovWDF and the
frameworks mentioned in Kef@2008a]. The first box shows the distribution datehout

considering the fulfillment value of eGovWDF. Thenal median, lower quartile and
upper quartile in both visualizations affirm the akecompliance of current validation

frameworks mentioned above.

The short whisker lines combined with the smalffed#nces between median, lower
quartile and higher quartile depicted in sub pietdr of Figure 20 show that all

frameworks are nearly at the same level of compéathat marks the state-of-the-art of
input validation. This means there are no inputidesion frameworks that are

significantly abreast of science. The data of tkeosd box includes the degree of
requirement fulfilment of eGovwWDF. Median, lowendr upper quartiles are nearly
identical because of the small sensitivity of thetaistical parameters to single values.
However, the upper whisker ranges up to 1.00 whighhe maximum degree of

validation requirement compliance. This single ealat the upper end of the upper
whisker represents the degree of requirement campdi of eGovWDF and shows that

eGovWDF significantly surpasses the state-of-theegarding input validation.

1,00

0,90 -
0,80 -
0,70 -
0,60 - |

050 + e T

0,40 A

0,30 -

Degree of
requirementfulfillment >

010 A

0,00

distribution excluding eGovWDF distribution including eGovWDF

Figure. 20. Comparison of validation requiremestribution of current validation.

Further analysis [Kern 200%hows that the differences between eGovWDF andr othe
frameworks are most notable in the area of valiatogic. As depicted in Figure 21,

most validation frameworks only achieve betweeraB@ 40 per cent of compliance to

the validation logic related requirements. Evenlibst framework achieves only 50 per
cent. Figure 22 details this situation by showiing tcompliance to the validation
requirements for every single framework in one imalj shows that only eGovWDF
(framework 13 in Figure 22) completely fulfills akquirements stated in Kef2008a]
and approves the weak compliance of all validatimmeworks to validation logic

related aspects.

1,00
0,90
0,30
0,70
0,50
0,50
0,40
0,30
0,20
0,10
0,00

Degree of
requirementfulfillment >

Validationlogic Validationintegration Validationvisualization Horizontal
requirements requirements requirements requirements

Figure. 21. Overview of requirement compliance rdgey different validation areas.

1,00

q

Degree of
requirementfulfillment>

0,00 -
1 2 3 4 5] 7 B 9 10 11 12 13
Framework >
W validation logic W Vvalidation integration Validation visualization M Overall aspects

Figure. 22. Requirement compliance of current eaiah frameworks regarding different validationase

A more detailed analysis of current validation feamorks and eGovWDF can be found
in [Kern 2008a] and in [Kern 2009].
Further steps will include the usage of eGovWDFlange scale projects like

BeihilfeOnline(cf. section 1) which will be offered to all civllervants of Bavaria and

include about 450.000 users. After the implemeaitative will conduct at least three
more studies:
* one to determine the usability of the frameworkViéeb application developers,
* another one to ascertain the usability for non-€bae to define validation logic
and validation mappings
e« and a third one to get feedback from the end uabmut the usability and

accessibility of the eGovWDF based Web frontend.

6. RELATED WORK

In this section, we will discuss the most relevaaientific approaches on user input
validation, but also address related topics suctads type based validatioandinput
validation testingHayes and Offutt 1998; Li et al. 2007]. More distan the advantages
and shortcomings of current (commercial) validativameworks are mentioned in

section 5 and are examined in [Kern 2008a].

6.1 PowerForms

PowerFormsis a high-level domain-specific language that sufspincremental input
validation on the client side [Brabrand et al. Z000allows the declarative specification
of valid formats for HTML input components based regular expressions. Inter-field
dependencies are supported by special tagds,(<then>, <else>) that can be used
within the format specification of a component.

Compared to eGovWDF, PowerForms has several shoitgs. PowerForms
depends heavily on client side script because altlagative validation format
specifications are transformed to client scriptt bat to server side code. Because the
end users browser may not support client side taegipand client side code can be
manipulated, server side validation is essential.aAconsequence the developer has to
manually implement all PowerForms generated ckéle code as server side code.

Additionally, PowerForms is based on regular exgijzs and a domain specific
language with a fixed set of features. Althoughutag expressions are a powerful tool,
there may be situations when regular expressioadoaalidation is not possible [Scaffidi
et al. 2008] or more efficient alternatives areilabde. For that reason, eGovWDF is
based on an extensible plugin architecture thapatip not only regular expressions but

arbitrary validation logic in the form of differemtlidator types, e.gCurrencyValidator

Both, PowerForms and eGovWDF support conditional &ogical operators, but in
PowerForms this operators are language intrinsiceGovWDF, all validation logic
related things - including conditional expressiocsmposition and dependencies - are
implemented as replaceable and extendable valglator contrast to PowerForms,
eGovWDF does not explicitly support Java appletsabse our frameworks targets pure
Web applications. This decision is motivated by thet that Java applets require an
installed plugin in the clients’ browser which cduhave negative effects on Web
accessibility [W3C 1999].

6.2 The Topes approach
Scaffidi et al. describe an approach that is basgdpes[Scaffidi et al. 2008]. Aopeis
an “application-independent abstraction describimgyv to recognize and transform
values in a category of data” [Scaffidi et al. 2DOBxamples for topes are emalil
addresses, company names or amounts of money.bEf@ction represented by a tope
can be described by several patterns, e.g. toidlesgsrcompany, patterns for all kinds of
company representations (stock symbol notation, pgom abbreviation ...) can be
developed and implemented. This means, topes supgpoispecification of alternative
representations for data, e.g. the comphtigrosoft can be represented iicrosoft
Corporation Microsoft MS or MSFT. Moreover this approach supports reuse by
extending the general purpose formats of topes spiitialized formats on demand.
Compared to our approach, a tope has similaritigs & validation policy. Both a
tope and a policy contain reusable validation lodice equivalents of tope patterns are
correction validators. However, because our appra@ms in providing a comprehensive
solution to input validation, some of the more atbed features of our approach have no
counterpart in the topes approach. Our approadfased on a detailed inheritance and
distribution model (cf. section 4.7), has an exiemssupport for component and
validation logic dependencies and allows the flexitombination of existing validation
logic modules in policies. Additionally, topics $uas triggering of actions as result of
validation processes and conditional validation als® supported in eGovWDF. One
possible advantage of the tope approach is itsa@tipr non-binary validation. This
means the tope approach supports the classificatioimput to be neither valid nor
invalid. Thethird statecan be used to give the user warnings about pig inut does not
have a rejection as consequence. However, thisreeatin be emulated in eGovWDF by

using its support of validation severities. eGovWires not only support one additional

state for a validation result such @sdeterminedbut also supports an arbitrary number
validation severity levels. One can assign an ityitvalidation severity to any validator
of a validation mapping definition. If a validatof a mapped policy is executed and
evaluates to false (in case the input does nothmafmatterr), the assigned validation
severity of the validator is returned which canused to implement validation warning
messages that do — in contrast to regular erroo$ stop further processing, for instance.
The topes approach also supports tool based defirof topes for end user programmers
which is similar to our approach. Our approach détsgion-IT people that specify the
functional validation requirements.

Summing up, both eGovWDF and the topes approachosujnput validation and
multiple representations of input data. However, o@&@DF provides a more
comprehensive approach than tiopes solutionbecause the topes approach is more

specialized and probably better suited in the afekta abstractions.

6.3 Other input validation approaches

Prior to the development of our approach to in@lidhation, we conducted a study [Kern
2008a] on the fulfillment of current Web validatifnameworks regarding the validation
logic related requirements mentioned in sectioneh@ additional requirements such as
tool support, Web accessibility and validation ailzation. The evaluation showed only
51 percentages of average fulfillment of the rezments and 59 per cent maximum
fulfillment by Apache Commons Validator framewoloreover, our evaluation showed
that most validation frameworks, including Apachen@nons Validator, fail in the
requirements that are most important to a flexiakdation approach such as reusability

(none of the frameworks achieved more than 50 eet fulfillment of this requirement).

6.4 Further related work

Data types [Cardelli and Wegner 1985] describekihe and structure of data which
includes the specification of the range of validuea. As mentioned before, Web
application input components could possibly holds aalue [Brabrand et al. 2000]
because there is no support for data type speiiificaor even stricter constraints.
However, some Web application frameworks supp@ttiapping of HTML input fields
to strongly typed instance members of a serveraijiect. Such bindings help the server
side framework to check user input against data tgpnstraints on submits. Some

frameworks, such as JSF [Burns and Kitain 2006]itemhally support converter

components that convert the user supplied string ithéo the mapped data types in case
simple conversion is not possible. Even thoudgta type based validation is too coarse-
grained for even simple validatipe.g. validation of data that is to be matchingegain
regular expression.

Another relevant topic in the domain iofput validationis input validation testing
(IVT) [Hayes and Offutt 1998; Li et al. 2007]. Accorditg Offutt and Hayes, input
validation testing is defined as “choosing testad#iat attempt to show the presence or
absence of specific faults pertaining to input+tahee” [Hayes and Offutt 1998]. In this
context, input-tolerance means the ability of amlons to handle expected and
unexpected user input. Because input validatiotinpsims in testing the application
behavior in case of unexpected inputs, IVT is atatle solution to check the
implementation of input validation. Regarding eGAY®W/ IVT approaches can be used
to check single validators or complex scenariogésigning the validators to be tested to
user interface components that are filled with t¢$t data.

Furthermore, input validation can be seen as a &fneikception handling. Although
exception handling originates from the field of gramming languages, this concept can
be adapted to other fields, too [Kienzle 2008]. d&finition, an exception describes a
situation that — if occurring (during program exgeon) - requires an extraordinary
reaction to resolve it. There are several apprcaetéch apply exception handling to the
complete software lifecycle [Kienzle 2008]. Most tifem advocate a separation of
exception handling related aspects [Lemos and Rowsdky 2001; Lippert and Lopes
2000; Filho et al., 2006] which is also the ideaoaf approach. However our approach
takes this idea of separation of aspects evendultly implementing lose coupling on
different levels ob abstraction (validators, magginpolicies). In addition, in contrast to
software development related exception handlingr@ahes, our approach directly
targets the input validation domain and as a carssee is generally better suited for
requirements in this domain. The same argumentafiplies for defensive programming
[Gilmour 1990; Miller et al. 2009] which aims ateating reliable computer programs
based on secure programming practices.

Finally, there are also similarities between inpalidation and constraint validation.
According to Froihofer et al. [2007], constraintligiation is one of the most essential
tasks of a system to ensure integrity which is rapartant attribute of reliability and
security. Similar to the input validation domairhete are competitive approaches,

ranging from simple and hard-coded if-then-claugesnore flexible and declarative

approaches. Classic if-then-based approaches ayet@amplement, but they are very
unflexible and do not allow a specification on heghevels of abstractions, e.g. a visual
specification by non-IT people that usually formalaequirements. In addition, this
paradigm leads to development costs if changdseibtisiness logic are required. On the
other hand, code instrumentation based approacitiesanpiler based approaches allow
the separation of these aspects and glue the adpeether at runtime or compile time.
However these approaches also have major disadyentaegarding code duplication,
debugging problems and compatibility problems [Robér et al.,, 2007]. As a
consequence, approaches that feature explicit rmdnisiclasses and interceptor based
approaches are recommended if flexibility is reggdiand performance is of secondary
relevance [Froihofer et al., 2007] which reinforces approach because of its separation

of different types of validation logic at variolwes/els of abstraction.

7. CONCLUSIONS AND FUTURE WORK

This paper presented the validation logic relatepeats of a novel approach to input
validation in the Web context. Our approach supmpdhe declarative, rule based
definition of validation logic and mappings betweeiidation logic and the components
to validate. eGovWDF has extensive support for doation, extension and inheritance
of validation logic. It considers validation as qummhensive process which takes value
checking as well as data normalization and usedagge into account. It provides a
uniform architecture for all types of validatiororfinstance, conditional validation, value
verification, value correction, dependencies anlidation result depending actions are
all implemented as validators.

Recently, we conducted a study [Kern 2009] that mamad our approach to the
requirements mentioned in section 3.2 and in [K¥08a]. The evaluation approved our
work showing 100 per cent compliance to the requénets. Currently, we are refining
our graphical designer tool which provides a WYSI@/gupport for validation logic
definitions and validation mappings definitions.i§ ool, which is targeted at non-IT
people that usually provide functional validati@guirements, also includes a validation
logic test center to simulate validation logic défons even before they are used in Web
applications. In this context we consider to introel a new role in software development
called “validation engineer” which correlates te tfexception engineer” proposed by
[Shah et al., 2008]; however in contrast to theeption engineer our validation engineer

is a non-IT person.

Further steps will be the usage in large scaleeptsjof the Government like
BeihilfeOnline(cf. section 1) with about 480.000 users. After itthplementation we plan
to do some studies — one to determine the usabilitge framework for Web application
developers, another one to ascertain the usalfdlitpon-IT-people to define validation
logic and validation mappings and a third one tofgedback from the end users about

the usability and accessibility of the eGovWDF lsh¥éeb frontend.

REFERENCES

ALJAWARNEH, SHADI, LAING, CHRISTOPHER, AND VICKERSPAUL. 2007.
Verification of Web Content Integrity: Formulatimgodels to protect servers against
tampering. In: MERABTI, M (ed), PGNET 2007 The 8#tnnual Postgraduate
Symposium on The Convergence of TelecommunicatioNsfworking and
Broadcasting. Liverpool John Moores University.

AMBER, SCOTT. 1996. Object-relational mapping. 8ofDev., 4(10), 47-50.

BALMIN, ANDREY, PAPAKONSTANTINOU, YANNIS, AND VIANU, VICTOR.
2004. Incremental validation of XML documents. vBB. New York, NY, USA:
ACM.

BIDDLE, ROBERT, AND TEMPERO, EWAN. 1996. Explaininigheritance: a code
reusability perspective. Pages 217-221 of: SIGGSBEProceedings of the twenty-
seventh SIGCSE technical symposium on Computenseieducation. New York,
NY, USA: ACM.

BONDI, ANDRE B. 2000. Characteristics of scalapikind their impact on performance.
Pages 195-203 of: WOSP '00: Proceedings of theirtechational workshop on
Software and performance. New York, NY, USA: ACM.

BORTZ, ANDREW, AND BONEH, DAN. 2007. Exposing prita information by
timing web applications. Pages 621-628 of: WWW 'BYoceedings of the 16th
international conference on World Wide Web. NewR/ &Y, USA: ACM.

BOUKERCHE, AZZEDINE, AND TROPPER, CARL. 1998. A Dibuted Graph
Algorithm for the Detection of Local Cycles and KeolEEE Trans. Parallel Distrib.
Syst., 9(8), 748-757.

BRABRAND, CLAUS, M@LLER, ANDERS, RICKY, MIKKEL, AND
SCHWARTZBACH, MICHAEL I. 2000. PowerForms: Declarat Client-Side
Form Field Validation. World Wide Web Journal, 30D.

BRINHOSA, RAFAEL BOSSE, WESTPHALL, CARLOS BECKER, Nb
WESTPHALL, CARLA MERKLE. 2008. A Security Frameworkor Input
Validation. Pages 88-92 of: SECURWARE '08: Proasgsliof the 2008 Second
International Conference on Emerging Security Imfation, Systems and
Technologies. Washington, DC, USA: IEEE Computeri&y.

BROY, MANFRED, DEISSENBOECK, FLORIAN, AND PIZKA, MRKUS. 2006.
Demystifying maintainability. Pages 21-26 of: Wo%®®: Proceedings of the 2006
international workshop on Software quality. New K,dlY, USA: ACM.

BUEHRER, GREGORY, WEIDE, BRUCE W., AND SIVILOTTI,ADLO A. G. 2005.
Using parse tree validation to prevent SQL injettatacks. Pages 106-113 of: SEM
'05: Proceedings of the 5th international workstoop Software engineering and
middleware. New York, NY, USA: ACM.

BURNS AND KITAIN (ed) 2006. JavaServer Faces Speatfon: Version 1.2 - Rev A.

BUSCHMANN, FRANK, MEUNIER, REGINE, ROHNERT, HANS, GMMERLAD,
PETER, AND STAL, MICHAEL. 1996. Pattern-Oriented f8ere Architecture
Volume 1: A System of Patterns. 1 edn. Wiley.

CARDELLI, LUCA, AND WEGNER, PETER. 1985. On Undastling Types, Data
Abstraction, and Polymorphism. ACM Computing Susyely7, 471-522.

CARDONE, RICHARD, SOROKER, DANNY, AND TIWARI, ALPAM. 2005. Using
XForms to Simplify Web Programming.

CHENG, JINGWEN. 1994. A reusability-based softwatevelopment environment.
SIGSOFT Softw. Eng. Notes, 19(2), 57-62.

CHRISTENSEN, ASKE SIMON, MOELLER, ANDERS, AND SCHWANZBACH,
MICHAEL 1. 2003. Precise Analysis of String Expriesss. Pages 1-18 of: SAS '03:
Proceedings of the 10th International Static Analgymposium. Springer-Verlag.

CRISTEA, A.D., AND PROSTEAN, O. 2009. Dynamic pragrming with Web Dynpro
ABAP, Pages 173-176 of: SACI '09: 5th InternatioSgimposium on Applied
Computational Intelligence and Informatics. IEEE.

D'ANTONIO, S., ESPOSITO, M., ROMANO, S. P., AND VERE, G. 2004. Assessing
the scalability of component-based frameworks: BADENUS case study.
SIGMETRICS Perform. Eval. Rev., 32(3), 34-43.

DE LEMOS, R., AND ROMANOVSKY, A. 2001. Exception Hdling in the Software
Lifecycle. International Journal of Computer Sysse@cience and Engineering.
16(2), 119-133.

DE PAULA, MAIRA GRECO, DA SILVA, BRUNO SANTANA, BARBOSA,
SIMONE DINIZ JUNQUEIRA. 2005. Using an interactiamodel as a resource for
communication in design. Pages 1713-1716 of: CHIQHI '05 extended abstracts
on Human factors in computing systems. New York, NBA: ACM.

DEUTSCES BUNDESMINISTERIUM DES INNERN (ed) 2002.amierefreie
Informationstechnik-Verordnung (BITV).

ELLUL, KEITH, KRAWETZ, BRYAN, SHALLIT, JEFFREY, ANDWANG, MING-
WEI. 2005. Regular expressions: new results anch gpeblems. J. Autom. Lang.
Comb., 10(4), 407-437.

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H.,ND BERNERS-LEE, T.
1997. Hypertext Transfer Protocol — HTTP/1.1.

FILHO, F. C., CACHO, N., FIGUEIREDO, E., MARANHACR., GARCIA, A. AND
RUBIRA, C. M. F. 2006. Exceptions and aspects:dbeil is in the details. Pages
152-162 of: SIGSOFT '06/FSE-14: Proceedings of id¢h ACM SIGSOFT
international symposium on Foundations of softwemgineering. New York, NY,
USA: ACM.

Forrester Research Inc. 2008. Forrester: Globagrarise Web 2.0 Market To Reach
$4.6 Billion By 2013. Last accessed at 14.06.2008.

FOWLER, MARTIN. 2002. Patterns of Enterprise Applion Architecture (Addison-
Wesley Signature Series). Addison-Wesley Profession

FROIHOFER, LORENZ, GLOS, GERHARD, OSRAEL, JOHANNE&ND
GOESCHKA, KARL M. 2007. Overview and Evaluation Gbnstraint Validation
Approaches in Java. Pages 313-322 of: ICSE '07ceBdings of the 29th
international conference on Software Engineerin@shkiihgton, DC, USA: |IEEE
Computer Society.

GAMMA, ERICH, HELM, RICHARD, JOHNSON, RALPH, AND VISSIDES, JOHN.
1994. Design Patterns: Elements of Reusable Ohjgented Software. Reading,
Massachusetts: Addison Wesley.

GAO, QIANG, GROZ, R., VON BOCHMANN, G., DARGHAM, JAND HTITE, E. H.
1995. Validation of distributed algorithms and jails. Page 110 of: ICNP '95:
Proceedings of the 1995 International Conference Network Protocols.
Washington, DC, USA: IEEE Computer Society.

GARRETT, J. J. 2005. Ajax: A New Approach to Web phpations.
http://www.adaptivepath.com/ideas/essays/archi@&885.php. - Last accessed at
11.10.2008.

GILMOUR, P. S. 1990. Defensive programming. Embeld8gst. Program. 3(4), 60-68,
San Francisco, CA, USA: Miller Freeman Inc.

GOLLMANN, DIETER. 2008. Securing Web applicatiohsf. Secur. Tech. Rep., 13(1),
1-9.

GAO, QIANG, GROZ, R., VON BOCHMANN, G., DARGHAM, JAND HTITE, E. H.
1995. Validation of distributed algorithms and pails. Page 110 of: ICNP '95:
Proceedings of the 1995 International Conference Network Protocols.
Washington, DC, USA: IEEE Computer Society.

GRAUNKE, PAUL, FINDLER, ROBERT BRUCE, KRISHNAMURTHISHRIRAM,
AND FELLEISEN, MATTHIAS. 2003. Modeling web interons. Pages 238-252
of: ESOP'03: Proceedings of the 12th European cemée on Programming.
Berlin/Heidelberg: Springer-Verlag.

HAYES, JANE HUFFMAN, AND OFFUTT, A. JEFFERSON. 1998creased Software
Reliability Through Input Validation Analysis anddting. Page 199 of: ISSRE '99:
Proceedings of the 10th International Symposium ®aftware Reliability
Engineering. Washington, DC, USA: IEEE Computeri&yc

HEWITT, T., BAECKER, R., CARD, S., CAREY, T., GASEN., MANTEI, M.,
PERLMAN, G., STRONG, G., AND VERPLANK, W. 1992. ACMIGCHI
Curricula for Human-Computer Interaction.

JACKSON, COLLIN, BORTZ, ANDREW, BONEH, DAN, AND MITHELL, JOHN
C. 2006. Protecting browser state from web privattacks. Pages 737-744 of:
WWW '06: Proceedings of the 15th international eosice on World Wide Web.
New York, NY, USA: ACM.

JAUVIN, NICOLE. 2007. Demographic challenges facitite federal public sector.
http://www.tbs-sct.gc.ca/nou/n20070417-eng.asg@ast laccessed at 16.05.2009.

JIM, TREVOR, SWAMY, NIKHIL, AND HICKS, MICHAEL. 20@. Defeating script
injection attacks with browser-enforced embeddeticies. Pages 601-610 of:

WWW '07: Proceedings of the 16th international eoasfice on World Wide Web.
New York, NY, USA: ACM.

KAMIL, AMIR. 2003. Discussion 13: Topics: Graph Algthms.
http://lwww.cs.berkeley.edu/~kamil/teaching/fa02/3@P.pdf. - Last accessed at
14.12.2008.

KBST. (ed) 2006. V-Modell XT 1.2.1. ftp://ftp.tualsthal.de/publ/institute/informatik/v-
modell-xt/Releases/1.2.1/Dokumentation/V-Modell-XsBsamt.pdf. - Last accessed
at 22.05.2009

KBST. (ed) 2008 (Marz). SAGA 4.0: Standards undhitekturen fir E-Government-
Anwendungen.

KERN, WALTER. 2008a. Validierungsunterstutzung in rafReworks zur
Webentwicklung: Eine Evaluierung der bedeutend®g¥@bentwicklungsframeworks
im Hinblick auf den Aspekt Validierung im Kontexbw eGovernment. Vdm Verlag
Dr. Mller.

KERN, WALTER. 2008b. Web 2.0 - End of AccessibifitAnalysis of Most Common
Problems with Web 2.0 Based Applications Regardigeb Accessibility.
International Journal of Public Information Syste®®(2), 131-154.

KERN WALTER. 2010. Evaluierung des Webentwicklumgsieworks eGovWDF im
Hinblick auf den Aspekt Validierung und die besamtieAnforderungen im Bereich
des eGovernment. Technical report, Information r8®e Department of the
University of Regensburg. http://epub.uni-regenghie/15763/. — Last accessed at
14.07.2010

KERN, WALTER, SILBERBAUER, CHRISTIAN and WOLFF, CHRTIAN. 2010.
"The Dimension Architecture: A New Approach to Rese Access," IEEE
Software, pp. 74-81, September/October, 2010

KIENZLE, JORG. 2008. On exceptions and the softwdreelopment life cycle. Pages
32-38 of: WEH '08: Proceedings of the 4th inteoral workshop on Exception
handling. New York, NY, USA: ACM.

LAPRIE, JEAN-CLAUDE, R, BRIAN, AND L, CARL. 2004. &sic Concepts and
Taxonomy of Dependable and Secure Computing. |IEEBESEctions on Dependable
and Secure Computing, 1, 11-33.

LAWTON, G. 2008. New Ways to Build Rich Internet pligations. In: Computer 41
(2008), 10-12

LEE, W. 1987. ?: a context-sensitive help systesedan hypertext. Pages 429-435 of:
DAC '87: Proceedings of the 24th ACM/IEEE confeermn Design automation.
New York, NY, USA: ACM.

LI, NUO, ZHONG JIN, MAO, AND LIU, CHAO. 2007. Web pplication Model
Recovery for User Input Validation Testing. Page of: ICSEA '07: Proceedings of
the International Conference on Software Engingedmvances (ICSEA 2007).
Washington, DC, USA: IEEE Computer Society.

LIGEZA, ANTONI. 2006. Logical Foundations for RuBased Systems. (Studies in
Computational Intelligence). 2nd ed. edn. SprinBerjin.

LIPPERT, M., AND LOPES, C. V. 2000. A study on eptien detection and handling
using aspect-oriented programming. Pages 418-43aC$8E '00: Proceedings of the
22nd international conference on Software engingeilew York, NY, USA: ACM.

LIU, HUI, AND TAN, HEE BENG KUAN. 2006. Automatederification and test case
generation for input validation. Pages 29-35 ofTA®6: Proceedings of the 2006
international workshop on Automation of softwarsti&ew York, NY, USA: ACM.

LIU, HUI, AND TAN, HEE BENG KUAN. 2008. An approacfor the maintenance of
input validation. Inf. Softw. Technol., 50(5), 4481.

MAHMOOD, ZAIGHAM. 2007. Service oriented architectu potential benefits and
challenges. Pages 497-501 of: ICCOMP'07: Procesdofgthe 11th WSEAS
International Conference on Computers. StevenstPuiisconsin, USA: World
Scientific and Engineering Academy and Society (\WSE

MICROSOFT CORPORATION (ed). 2003. Improving Web Aggtion Security:
Threats and Countermeasures. Microsoft Press Chigmp. 4, page 74.

MICROSOFT CORPORATION (ed). 2007. .NET Frameworle$denbibliothek:
BaseValidator.ValidationGroup-Eigenschaft. httpgéim.microsoft.com/de-
de/library/system.web.ui.webcontrols.basevalidasdidationgroup(printer).aspx. -
Last accessed at 23.05.2009.

MILLER, FREDERIC P., VANDOME, AGNES F., AND MCBREWER, J. 2009.
Defensive Programming. Alphascript Publishing.

MILLER, ROBERT C., AND MYERS, BRAD A. 2001. Outlidfinding: Focusing User
Attention on Possible Errors.

MITRE CORPORATION 2007. 2009 CWE/SANS Top 25 Mostargerous
Programming Errors. http://cwe.mitre.org/top25/#CR(E - Last accessed at
22.05.2009.

MONTGOMERY, MIKE, AND DANIEL, DWIGHT D. 2009. End ser developer:
friend or foe? J. Comput. Small Coll., 24(4), 40-45

MOORE, ANTHONY. 2002. ASP.NET Validation in Depth.
http://msdn2.microsoft.com/en-us/library/aa47904is(pr).aspx. - Last accessed at
09.01.2008.

NANCE, RICHARD E., AND ARTHUR, JAMES D. 1994. Sofare Quality
Measurement: Assessment, Prediction and Validafiech. rept. Blacksburg, VA,
USA.

NIELSEN, JAKOB. 2005. Jakob Nielsen's Alertbox, ®epber 19, 2005: Forms vs.
Applications. http://www.useit.com/alertbox/formsh. - Last accessed at
12.01.2008.

NIERSTRASZ, GIBBS, AND TSICHRITZIS. 1992. Componentented software
development. Commun. ACM, 35(9), 160-165.

NIVASCH, GABRIEL. 2004. Cycle detection using acditalnf. Process. Lett., 90(3),
135-140.

OFFUTT, JEFF, WU, YE, DU, XIAOCHEN, AND HUANG, HONG2004. Bypass
Testing of Web Applications. Pages 187-197 of: IESR: Proceedings of the 15th
International Symposium on Software Reliability Eregring. Washington, DC,
USA: IEEE Computer Society.

OLSEN, KAI A. 2008. The $100,000 Keying Error. Coutgr, 04, 106—108.

O'REILLY, TIM. 2005. What Is Web 2.0? Design Patteand Business Models for the
Next Generation of Software. Last accessed at 12008.

PACE, DALE K. 2003. Verification, validation, an@a@editation of simulation models.
487-506.

PAULSON, L. D. 2005. Building Rich Web Applicatiomsth Ajax, Computer, v. 38 n.
10, p. 14-17.

PRESSMAN, ROGER S. 1996. Software Engineering: @cftioner's Approach. 5. edn.
McGraw-Hill Higher Education.

SARGENT, ROBERT G. 1987. An overview of verificatiand validation of simulation
models. Pages 33-39 of: WSC '87: Proceedings ofl@tie conference on Winter
simulation. New York, NY, USA: ACM.

SCAFFIDI, CHRISTOPHER, MYERS, BRAD, AND SHAW, MARY2008. Topes:
reusable abstractions for validating data. Pag&® bf: ICSE '08: Proceedings of the
30th international conference on Software engimgefew York, NY, USA: ACM.

SCHALL, ERIC. 1990. Parallel cycle detection intdisuted databases. Inf. Syst., 15(5),
555-566.

SCHLUMBERGER, M. 1989. Definition and validation oéer interfaces. Pages 518—
525 of: Proceedings of the third international evefice on human-computer
interaction on Designing and using human-computterfaces and knowledge based
systems (2nd ed.). New York, NY, USA: Elsevier &ce Inc.

SEDAYAO, JEFF. 2008. Implementing and operating iaternet scale distributed
application using service oriented architecturengples and cloud computing
infrastructure. Pages 417-421 of: iiWAS '08: Prdaegs of the 10th International
Conference on Information Integration and Web-ba&eglications & Services.
New York, NY, USA: ACM.

SIVATHANU, GOPALAN, WRIGHT, CHARLES P., AND ZADOK,EREZ. 2005.
Ensuring data integrity in storage: techniques apglications. Pages 26—36 of:
StorageSS '05: Proceedings of the 2005 ACM workshofStorage security and
survivability. New York, NY, USA: ACM.

SHAH, HINA, GORG, CARSTEN, AND HARROLD, MARY JEAN2008. Why do
developers neglect exception handling?. Pages 6a8k68EH '08: Proceedings of
the 4th international workshop on Exception harglliftlanta, Georgia: ACM.

Taivalsaari, A. 1996. On the notion of inheritand€M Comput. Surv.
28(3):438-479.

TERAGUCHI, MASAYOSHI, YOSHIDA, ISSEI, AND URAMOTONAOHIKO. 2008.
Rule-based XML Mediation for Data Validation andvecy Anonymization. Pages

21-28 of: SCC '08: Proceedings of the 2008 IEEErihdtional Conference on
Services Computing. Washington, DC, USA: IEEE Cotap8ociety.

TUKEY, JOHN W. 1977. Exploratory Data Analysis. Asloh Wesley Pub Co Inc.

W3C (ed) 1999. Web Content Accessibility Guidelided. http://www.w3.org/TR/WAI-
WEBCONTENT/. - Last accessed at 14.06.2008.

W3C (ed) 2001. XForms Requirements: W3C Working fDré4 April 2001.
http://www.w3.org/TR/xhtml-forms-req.html. - Last@essed at 21.05.2009.

W3C (ed) 2005. Introduction to Web accessibility.
http:/iwww.w3.0org/TR/WAI-WEBCONTENT/. - Last accesbsat 20.05.2009.

W3C (ed) 2008a. Web Content Accessibility GuidedieD.
http://www.w3.0org/TR/WCAG20/ - Last accessed aD12008.

wW3C (ed) 2008b. Understanding WCAG 2.0.
http://www.w3.0rg/ TR/JUNDERSTANDING-WCAG20/completgml. - Last
accessed at 18.05.2009.

WANG, FEI. 2009. The Development of Rich Interngipiication Based on Current
Technologies. Pages 815-818 of: WISM '09: Procemdof the 2009 International
Conference on Web Information Systems and Mining.

WASSERMAN, G., AND SU, Z. 2004. An analysis frametWwdor security in web
applications. Pages 70-78 of: SAVCBS '04: Procegdif the FSE Workshop on
Specification and Verification of Component-Basgdtéms.

WEINREICH, HARALD, OBENDORF, HARTMUT, HERDER, EELCO AND
MAYER, MATTHIAS. 2008. Not quite the average: An pirical study of Web use.
ACM Trans. Web, 2(1), 1-31.

WEST, C. H. 1989. Protocol validation in complexsteyns. Pages 303-312 of:
SIGCOMM '89: Symposium proceedings on Communicati@chitectures &
protocols. New York, NY, USA: ACM.

WILLIAMS, JEFF. 2004. Input Validation. AppSec 2004
http://www.owasp.org/images/3/37/ AppSec2004-Jefilidvhs-
Input_Validation.ppt. - Last access at 01.02.2009.

YANG, FAN, GUPTA, NITIN, GERNER, NICHOLAS, QI, XINDEMERS, ALAN,
GEHRKE, JOHANNES, AND SHANMUGASUNDARAM, JAYAVEL. 207. A
unified platform for data driven web applicationsthwautomatic client-server
partitioning. Pages 341-350 of: WWW '07: Proceeslinf the 16th international
conference on World Wide Web. New York, NY, USA: WC

YUE, CHUAN, AND WANG, HAINING. 2009. Characterizingnsecure javascript
practices on the web. Pages 961-970 of: WWW 'O@cdeadings of the 18th
international conference on World wide web. NewR/d{Y, USA: ACM.

ZHANG, XIAO, ZHANG, YI, AND WU, JUN. 2007. Researcand Analysis of Ajax
Technology Effect on Information System Operatirfficiency. Pages 641-649 of:
CONFENIS (1).

