Go to content
UR Home

Dirac eigenspinors for generic metrics

URN to cite this document: urn:nbn:de:bvb:355-epub-250248

Hermann, Andreas (2012) Dirac eigenspinors for generic metrics. PhD, Universität Regensburg.

License: Publishing license for publications excluding print on demand
Download (614kB)

Abstract (English)

We consider a Riemannian spin manifold (M, g) with a fixed spin structure. The zero sets of solutions of generalized Dirac equations on M play an important role in some questions arising in conformal spin geometry and in mathematical physics. In this setting the mass endomorphism has been defined as the constant term in an expansion of Green's function for the Dirac operator. One is interested ...


Translation of the abstract (German)

Sei (M, g) eine Riemannsche Spin-Mannigfaltigkeit mit einer fixierten Spin-Struktur. In manchen Fragen aus der konformen Spin-Geometrie oder der mathematischen Physik spielen Nullstellenmengen von Lösungen verallgemeinerter Dirac-Gleichungen auf M eine wichtige Rolle. In diesem Zusammenhang wurde der Massen-Endomorphismus als der konstante Term in einer asymptotischen Entwicklung der Greenschen ...


Export bibliographical data

Item type:Thesis of the University of Regensburg (PhD)
Date:26 June 2012
Referee:Prof. Dr. Bernd Ammann and Prof. Dr. Marc Herzlich
Date of exam:23 May 2012
Institutions:Mathematics > Prof. Dr. Bernd Ammann
Keywords:Spin geometry, Dirac operators, spectrum, eigenspinors
Dewey Decimal Classification:500 Science > 510 Mathematics
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Deposited on:26 Jun 2012 05:59
Last modified:13 Mar 2014 18:56
Item ID:25024
Owner only: item control page


Downloads per month over past year

  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons