Startseite UB

Enhancing the Efficiency in Privacy Preserving Learning of Decision Trees in Partitioned Databases

Lory, Peter (2012) Enhancing the Efficiency in Privacy Preserving Learning of Decision Trees in Partitioned Databases. In: Domingo-Ferrer, Josep and Tinnirello, Ilenia, (eds.) Privacy in Statistical Databases: UNESCO Chair in Data Privacy, International Conference, PSD 2012, Palermo, Italy, September 26-28, 2012. Proceedings. Lecture notes in computer science, 7556. Springer, Berlin, pp. 322-335. ISBN 978-3-642-33626-3.

Full text not available from this repository.

Other URL: http://www.springer.com/computer/database+management+%26+information+retrieval/book/978-3-642-33626-3


Abstract

This paper considers a scenario where two parties having private databases wish to cooperate by computing a data mining algorithm on the union of their databases without revealing any unnecessary information. In particular, they want to apply the decision tree learning algorithm ID3 in a privacy preserving manner. Lindell and Pinkas (2002) have presented a protocol for this purpose, which enjoys ...

plus


Export bibliographical data

Item Type:Book Section
Date:September 2012
Institutions:Business, Economics and Information Systems > Institut für Wirtschaftsinformatik > Professur für Wirtschaftsinformatik & Wirtschaftsmathematik (Prof. Dr. Peter Lory)
Projects:"Regionale Wettbewerbsfähigkeit und Beschäftigung", Bayern, 2007-2013 (EFRE), Teil des SECBIT Projekts
Keywords:Privacy preserving data mining, decision tree learning, twoparty computations, Chebyshev expansion.
Subjects:000 Computer science, information & general works > 004 Computer science
Status:Published
Refereed:Yes, this version has been refereed
Created at the University of Regensburg:Yes
Owner: Peter Lory
Deposited On:04 Oct 2012 06:14
Last Modified:04 Oct 2012 06:14
Item ID:25991
Owner Only: item control page
  1. University

University Library

Publication Server

Contact person
Gernot Deinzer

Telefon 0941 943-2759
Contact