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ABSTRACT. The previous functional analytic construction of the fermionic projector
on globally hyperbolic Lorentzian manifolds is extended to space-times of infinite
lifetime. The construction is based on an analysis of families of solutions of the
Dirac equation with a varying mass parameter. It makes use of the so-called mass
oscillation property which implies that integrating over the mass parameter generates
decay of the waves functions at infinity. We obtain a canonical decomposition of
the solution space of the massive Dirac equation into two subspaces, independent
of observers or the choice of coordinates. The constructions are illustrated in the
examples of ultrastatic space-times and de Sitter space-time.
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1. INTRODUCTION

In the recent paper [9], the fermionic projector was constructed non-perturbatively
in a space-time of finite lifetime. In the present paper, we extend the construction
to space-times of infinite lifetime. In order to introduce the problem, we begin with
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the simplest possible example: the Minkowski vacuum. We thus consider the vacuum
Dirac equation

(ir7 95 — m) () = 0

in Minkowski space (M, (.,.)). On solutions of the Dirac equation one has the scalar
product

W) = [ @0)(t.9) s (1.1

(which by current conservation is independent of ¢; here ¥ = 1f4? is the so-called
adjoint spinor). Moreover, on Dirac wave functions with suitable decay at infinity
(which do not need to be solutions of the Dirac equation), we can introduce a Lorentz
invariant inner product by integrating over space-time,

<plp> = /M P@)o(x) d (12)

In [9] we proceeded by representing the space-time inner product (L2]) with respect to
the scalar product (1)) as

<[> = (Y|SP)m (1.3)

with a signature operator S. Then the positive and negative spectral subspaces of
the operator S gave the desired splitting of the solution space into two subspaces.
Unfortunately, in Minkowski space an identity of the form (I.3]) makes no mathematical
sense. Namely, the right side of (I.3)) is defined only if 1) and ¢ are solutions of the
Dirac equation. But on solutions, the left side of (L3]) is ill-defined because the time
integral in (L2) will in general diverge.

Our method to overcome this problem is to work with families of solutions with a
varying mass parameter. This can be understood most easily if one takes the spatial
Fourier transform,

Then a family of solutions has the representation
I (t, &) = ey (K, m) e—itw(mE) 4 . (m, ) it (F.m)

with suitable spinor-valued coefficients c., where we set w(k,m) := 1/|k|2 + m2. For

a suitable class of solutions (for example families which are smooth and compactly
supported in m and &), the coefficients ¢y are smooth functions of m. Since the
derivative 8mw(l;:, m) is always non-zero, the phase factors eFitw(mk) ggcillate in m.
The larger ¢ is chosen, the faster these phase factors oscillate if m is varied. This

implies that if we integrate over m by setting

(v0)(t F) = /I (8, F) din., (1.4)

we obtain destructive interference of a superposition of waves with different phases
(here I C R is an interval containing the support of ci(E, .)). If t is increased, the
integrand oscillates faster in m, so that the integral becomes smaller. We thus obtain
decay in time. This intuitive picture that oscillations in the mass parameter give

rise to decay for large times is made mathematically precise by the mass oscillation
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property. We shall prove that, using the mass oscillation property, one can give (L.3])
a mathematical meaning by inserting suitable mass integrals,

<pylpep> = /1 (Vm|Smbm)m dm . (1.5)

We thus obtain a family of bounded linear operators S,,. For any fixed mass m, the
positive and negative spectral subspaces of the operator S,, give rise to a canonical
decomposition of the solution space into two subspaces.

It it the main purpose of this paper to make such ideas and methods applicable
in the general setting of globally hyperbolic manifolds. After the preliminaries in
Section 2, we begin by stating the most general assumptions on the Dirac operator in
space-time under which mass oscillations can be studied, referred to as the weak mass
oscillation property (Section [3)). In this setting, the operators S, cannot be defined for
fixed m, but only the combination S,, dm is defined as an operator-valued measure.
In Section dl we introduce stronger assumptions (the strong mass oscillation property)
which ensure that the operators S, are bounded operators which are uniquely defined
for any m € I. We point out that we state the mass oscillation properties purely
in terms of the solution spaces of the Dirac equation. This has the advantage that
we do not need to make any assumptions on the asymptotic behavior of the metric
at infinity. The strong mass oscillation property also makes it possible to define the
fermionic projector as an integral operator with a distributional kernel.

In the last two sections we illustrate the abstract constructions by simple examples.
Section Blis devoted to the Dirac operator in ultrastatic space-times, possibly involving
an arbitrary static magnetic field. We find that in this ultrastatic situation, the positive
and negative spectral subspaces of the operator S, coincide precisely with the solutions
of positive and negative frequency. We thus obtain agreement with the “frequency
splitting” commonly used in quantum field theory. Section [ treats the Dirac operator
in the de Sitter space-time. In this case, the positive and negative spectral subspaces
of the operator .S, give a non-trivial interpolation between the spaces of positive and
negative frequency as experienced by observers at asymptotic times ¢ — £oo. In all
these examples, the main task is to prove the mass oscillation properties. Establishing
the weak mass oscillation property will always be an intermediate step for proving the
strong mass oscillation property.

We finally remark that (I4) and (L) can also be written with a Dirac distribution
as

<m|Gmr> = 8(m —m') (m|Smdm)m - (1.6)
Such “d-normalizations in the mass parameter” are commonly used in the perturba-
tive treatment (see [4, 6] and [5, §2.1] or more recently [10]). The mass oscillation
property makes it possible to give such normalizations a rigorous meaning in the non-
perturbative treatment.

2. PRELIMINARIES

Asin [9], we let (M, g) be a smooth, four-dimensional, globally hyperbolic Lorentzian
manifold of signature (+ — — —). We denote its spinor bundle by SM. Its fibres S, M
are endowed with an inner product <.|.>, of signature (2,2), which we refer to as the
spin scalar product. Clifford multiplication is described by a mapping v which satisfies
the anti-commutation relations,

v : TpM — L(S; M) with  y(u)y(v) +y(v) v(u) = 29(u,v) L, (ar) -
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We again write Clifford multiplication in components with the Dirac matrices v/ and
use the short notation with the Feynman dagger, v(u) = w/y; = 4. The metric
connections on the tangent bundle and the spinor bundle are denoted by V. The
sections of the spinor bundle are also referred to as wave functions. We denote the
smooth sections of the spinor bundle by C*°(M, SM). Similarly, C5°(M, SM) denotes
the smooth sections with compact support. On the wave functions, one has the Lorentz
invariant inner product

<|.> ¢ C®(M,SM) x C(M,SM) — C,
<Y|p> =/ <|p-4 dpns - (2.1)
M

The Dirac operator D is defined by
D:=iy'V,; +B : C°(M,SM) — C*(M,SM),

where B € L(S;) (the “external potential”) can be any smooth and symmetric multi-
plication operator. For a given real parameter m € R (the “mass”), the Dirac equation
reads

(D—m)Ym =0. (2.2)
For clarity, we always denote solutions of the Dirac equation by a subscript m. We
mainly consider solutions in the class C$ (M, SM) of smooth sections with spatially
compact support. On such solutions, one has the scalar product

s —— /N nl¥ s dpn (@) | (2.3)

where N denotes any Cauchy surface and v its future-directed normal (due to current
conservation, the scalar product is in fact independent of the choice of N; for details
see [9, Section 2]). Forming the completion gives the Hilbert space (H,, (-|.)m)-

The retarded and advanced Green’s operators sl and s, are mappings (for details
see for example [1])

shse o CS(M,SM) — C2(M,SM) .

mo
Taking their difference gives the so-called causal fundamental solution k,,,

Lo v

km = 5 (s — spy) = C(M,SM) — CZ(M,SM) N Hy, . (2.4)
T

These operators can be represented as integral operators with distributional kernels;
for example,

(k) (z) = /M () 6(y) diint (4) -

The operator k,, is useful for two reasons. First, it can be used to construct a solution
of the Cauchy problem:

Proposition 2.1. Let N be any Cauchy surface. Then the solution of the Cauchy
problem
(D_m)¢m:07 TMN:T;Z)NGOOO(NVSM)

has the representation

Um(z) = 27 / (@, 9) P () dian () -

N
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Second, the operator k,, can be regarded as the signature operator of the inner prod-
uct (2.I)) when expressed in terms of the scalar product (2.3)):

Proposition 2.2. For any ¢, € H,, and ¢ € C§°(M,SM),

(wm ’ km¢)m - <wm’¢> .

Proposition [2Zlis stated and proved in [9] Section 2]. For the proof of Proposition
we refer to 3, Proposition 2.2] or [9) Section 3.1].

3. THE WEAK MASS OSCILLATION PROPERTY

3.1. Basic Definitions. In a space-time of infinite life time, the space-time inner
product <, |¢p,> of two solutions ¥, ¢, € Hpy, is in general ill-defined, because the
time integral in (2.I)) may diverge. In order to overcome this problem, we shall consider
families of solutions with a variable mass parameter. The so-called mass oscillation
property will make sense of the space-time integral in (2.1) after integrating over the
mass parameter.

More precisely, we consider the mass parameter in a bounded open interval, m €
I := (mp,mpg). For a given Cauchy surface N, we consider a function ¢ (x, m) € S, M
with x € N and m € I. We assume that this wave function is smooth and has compact
support in both variables, ¥ € C§°(N x I, SM). For every m € I, we let ¢(.,m) be
the solution of the Cauchy problem for initial data ¥y (., m),

(Dy —m)¢(z,m) =0, Y(x,m) =Yn(x,m) Ve e N. (3.1)

Since the solution of the Cauchy problem is smooth and depends smoothly on pa-
rameters, we know that ¢ € C°(M x I,SM). Moreover, due to finite propagation
speed, 1 (., m) has spatially compact support. Finally, the solution is clearly compactly
supported in the mass parameter m. We summarize these properties by writing

b e O (M x I,SM) (3.2)

sc,0

where SC’SO(M x I, SM) denotes the smooth wave functions with spatially compact

support which are also compactly supported in I. We often denote the dependence
on m by a subscript, ¥, (x) := ¥(x,m). Then for any fixed m, we can take the scalar
product ([2.3). On families of solutions v, ¢ € C5o(M x I, SM) of (B.I), we introduce
a scalar product by integrating over the mass parameter,

(1) := /I (Yl )m dm (33)

(where dm is the Lebesgue measure). Forming the completion gives the Hilbert
space (H,(.|.)). It conmsists of measurable functions v (xz,m) such that for almost
all m € I, the function ¥(.,m) is a weak solution of the Dirac equation which is
square integrable over any Cauchy surface. Moreover, this spatial integral is inte-
grable over m € I, so that the scalar product (8.3) is well-defined. We denote the
norm on H by ||.||.

For the applications, it is useful to introduce a subspace of the solutions of the

form (3:2])
Definition 3.1. We let H* C Cy(M x I,SM) N H be a subspace of the smooth

sc,0
solutions with the following properties:
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(i) H is invariant under multiplication by smooth functions in the mass param-
eter,
n(m)Y(x,m) € H Vipe H®, ne C().
(ii) The set H := {(.,m) |y € H*} is a dense subspace of Hy,, i.e.

Fostm g, vmel.

We refer to H*™ as the domain for the mass oscillation property.

The simplest choice is to set H® = C2o(M x I,SM) N H, but in some applications

sc,0

it is preferable to choose H*> as a proper subspace of C°,(M x I, SM) N H.

sc,0
Our motivation for considering a variable mass parameter is that integrating over

the mass parameter should improve the decay properties of the wave function for large
times (similar as explained in the introduction in the vacuum Minkowski space). This
decay for large times should also make it possible to integrate the Dirac operator in
the inner product (2ZI]) by parts without boundary terms,

<DyY|p> = <p|Dop>

implying that the solutions for different mass parameters should be orthogonal with
respect to this inner product. Instead of acting with the Dirac operator, it is technically
easier to work with the operator of multiplication by m, which we denote by

T:H—>H, (TY) = My, .
In view of property (ii) in Definition BI] this operator leaves H invariant,
Ty + H® — H™ .
Moreover, T is a symmetric operator, and it is bounded because the interval I is,
T =T e L(K). (3.4)

Finally, integrating over m gives the operation
p:H® = CP(M,SM), pw:/wmdm.
I

The next definition should be regarded as specifying the minimal requirements needed
for the construction of the fermionic projector (stronger assumptions which give rise to
additional properties of the fermionic projector will be considered in Section [ below).

Definition 3.2. The Dirac operator D on the globally hyperbolic manifold (M, g) has
the weak mass oscillation property in the interval I C R with domain H>® (see
Definition [31)) if the following conditions hold:

(a) For every v, ¢ € H™®, the function <po|py>= is integrable on M. Moreover,
for any ¢ € H> there is a constant c(¢) such that

|<pplpo>| <cloll Ve IH™T. (3.5)
(b) For all v, ¢ € H™,
<pTY|pp> = <pp|pTo> . (3.6)

Clearly, in a given space-time one must verify if the assumptions in this definition are
satisfied. Before explaining in various examples how this can be done (see Sections
and [6)), we now proceed by working out the consequence of the weak mass oscillation
property abstractly.
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3.2. A Self-Adjoint Extension of S2. In view of the inequality (3.5, every ¢ € H>
gives rise to a bounded linear functional on H*°. By continuity, this linear functional
can be uniquely extended to H{. The Riesz representation theorem allows us to repre-
sent this linear functional by a vector v € H, i.e.

(ulp) = <ptlpg>  VoeXH.
Varying 1, we obtain the linear mapping
S HT =, (SYl¢) = <pilpe> VeI,
This operator is symmetric because

(Sl¢) = <plpd> = (P|S¢) YV, € H™.
Moreover, ([3.6) implies that the operators S and T commute,
ST=TS : H* - XK. (3.7)
For the construction of the fermionic projector we need a spectral calculus for the
operator S. Therefore, we would like to construct a self-adjoint extension of the
operator S. A general method for constructing self-adjoint extensions of symmetric
operators is provided by the Friedrichs extension (see for example [14] §33.3]). Since

this method only applies to semi-bounded operators, we are led to working with the
operator S2. We thus introduce the scalar product

(W] g2 = (Y]0) + (S1[S¢) : H® x H® — C.

Clearly, the corresponding norm is bounded from below by the norm ||.||. Thus, forming
the completion gives a subspace of H,
Hgo = 82 < 9. (3.8)

Proposition 3.3. Introducing the operator S? with domain of definition D(S?) by
D(S?) = {u € Hgz such that |(u|g)g2| < c(u)||d] Vo€ Hgz}
S? DS CH=H,  (S*Wle) = (Yld)s2 — (YI9) Vo € H

this operator is self-adjoint. The operator T maps D(S?) to itself and commutes
with S?,
S2T =T5%: D(S?) = H. (3.9)
Proof. The self-adjointness of S? follows exactly as in the standard construction of the
Friedrichs extension (see for example [14, Theorem 33.3.4] for the operator L := S%+1).
Let us show that T(D(S?)) € D(S?). Thus let u € D(S?). Then u € Hgz, so that
by definition ([B.8]) there is a series u, € H> which converges to u in the topology
given by (.|.)g2. Next, for any ¢ € C°,(M x I, SM), we have the inequality

sc,0
(T|T9)s2 = (TY|T6) + (STI|STo) 2 (To|o) + (TSHISTS) < |TI (9ld)s2

showing that the operator T is also bounded on Hg2. As a consequence, the series Tu,
converges in Hg2 to Tu. Moreover, it follows from (B34 and (B7) that

(Tup|@) g2 = (Tun|d) + (STun|S¢) = (un|T'¢) 4+ (Sun|STP) = (un|T¢)s2 . (3.10)
Taking the limit n — oo, it follows that
[(Tulg)sz| < c(u) IT| < c(u) [Tl ] -
We conclude that Tu € D(S?).
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To prove ([BJ]), we first evaluate the operator product on w,. Then we know
from (I0) and @A) that S?Tw, = TS?u,. Taking the limit n — oo gives the
result. O

The property ([B8.9) together with the fact that 7' is bounded guarantees that the
resolvents of S? commutes with 7. More specifically,

(8% =) 1T = —(8* =) ' [$* 7] (S — )"

The operators (S2 —4)~! and T are both normal and bounded and commute with
each other. The spectral theorem for bounded commuting normal operators (see for
example [14, Sections 18 and 31.6], also cf. [I5, Section VIIL.5]) implies that there is a
spectral measure F on ¢(S?) x I such that

(S3)’ 11 = / pPm?dE,,, VYp,qeN. (3.11)
o(S2)

3.3. The Fermionic Projector as an Operator-Valued Measure. Acting with
the operator k,, as defined in (2.4 for each m separately gives the operator

kit COM xI,SM) = H, (k)m = kmtm -

This makes it possible to introduce the fermionic projector Py as an operator-valued
measure on /. Namely, for any f € C°(I) we define

1 1 _1
/If(m) dPy(m) = 3 /J(SZ)fo(m) (p + S> p 2dE,m k (3.12)
L (M x I, SM) — K.

The next proposition explains the normalization of the fermionic projector. This
normalization can be understood as the spatial normalization, expressed in a functional
calculus form (for the spatial normalization see [9 Section 2.3] or the elementary
discussion in [10, Section 2]).

Proposition 3.4. (normalization) For any s,s’ € {£1} and all f,g € C°(I)
and Y, ¢ € CF(M x I,SM),

(/If(m) dPs(m)¢‘ /Ig(m/) dPy ( —555 /f m) <t | (AP, (m) ¢)m> .

Proof. Using the continuous functional calculus, we obtain

([ tmyapsmyv] [ gm') apsim'yo)
- /(52) Fam) g(m) p~! (kW) | (0% % 8)° dEym k(@)

® 2 / . legm) o (kw) (0} £5) dEp,mkw))

\/f /f m) <t | (dPs(m) ¢)m>,

where in (*) we multiplied out (p5 + 5)? and used that S? = p. In the last step
we applied (33]) and Proposition This gives the result in the case s = s’. The
calculation for s # ' is similar, but in (*) we get zero. O
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The following proposition, which is an immediate consequence of the continuous
functional calculus, explains in which sense our construction is independent of the
choice of the interval I.

Proposition 3.5. (independence of the choice of I) Suppose that we have two
mass intervals

I= (mL,mR) c I= (mL,mR).

We denote all the objects constructed in I with an additional check and let i and 7 be
the natural injection and projection operators,

[ JH =9, (Wﬁ))(m,m):{ Y(z,m) ifmel

0 otherwise .
7 H—H, 7() = Ylys -
Then

f(m) dPy(m) :ﬁ/f(m) dPy(m) i v fe )
I’ I

/If(m) dPy(m) =1 I/f(m) dPy(m) VfECg(f).

4. THE STRONG MASS OSCILLATION PROPERTY

4.1. Definition and General Structural Results.

Definition 4.1. The Dirac operator D on the globally hyperbolic manifold (M, g)
has the strong mass oscillation property in the interval I = (mp,mp) with do-
main H> (see Definition[31), if there is a constant ¢ > 0 such that

<pulps>| < c /I Il [l dm V10,6 € 32 (4.1)

Theorem 4.2. The following statements are equivalent:

(i) The strong mass oscillation property holds.
(ii) There is a constant ¢ > 0 such that for all ¥,¢ € H>, the following two
relations hold:

|<p|po>| < c |||l ||| (4.2)
<pTY|pp> = <pp|pTo> . (4.3)

(iii) There is a family of linear operators Sy, € L(H,,) which are uniformly bounded,

sup [|Sp|| < oo,
mel
such that
<pylpo> = /I (o | S by dm V16, € H2. (4.4)

Proof. The implication (iii)=-(i) follows immediately from the estimate

<pulpd>| < / | (G| Sonbrm)on| dim2 < s [ / ol |6l .
I mel I
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In order to prove the implication (i)=-(ii), we first apply the Schwarz inequality
to (AJ)) to obtain

<plpd>| < e /1 bl [l dme

< e ([ Mol dm)* ([ omdm)* =1l ol

proving (£2]). Next, for given N € N we subdivide the interval I = (mp,mpg) by
choosing the intermediate points

L
mg:N(mR—mL)—l—mL, £=0,...,N.
Moreover, we choose non-negative test functions n;,...,n; € C§°(R) which form a

partition of unity and are supported in small subintervals, meaning that

N
> oml;=1r  and  suppne C (me_z,mes1) (4.5)
/=1
where we set m_; = my—1 and my4; = mp+1. For any smooth function n € C§°(R)
we define the operator n(7T") € L(H) : H* — H> by
Then by linearity,

<pT|pp> — <py|pT o>
N

= > (<P T 6 pne(T) 6> — <pme(T) | T e (T) 6>)
0,0=1
N
= Z (<P (T — me) ne(T) | pne (T) o> — <pne(T) b | p (T — mg) e (T) ¢>)
0,0'=1

Taking the absolute value and applying (4.1]), we obtain

N
|<pTelpd> — <pplpTe>| <c > /I . — me| ne(m) e (m) || Gmllm | @mlm dm .
0,0=1

In view of the second property in ([Z3]), we only get a contribution if [£ — ¢| < 1.
Moreover, we know that |m — my| < 2|I|/N on the support of 7,. Thus

6 |1
|<pTplpg> — <pypTd>| < % Z/jm(m) | émllm [1¢mlm dm
/=1

6c |1
7 [ 16l 9l

Since N is arbitrary, we obtain (4.3]).
It remains to prove the implication (ii)=-(iii). Combining ([A2]) with the Fréchet-
Riesz theorem, there is a bounded operator S € L(H) with

<pplpdp> = (Y|S¢)  Vi,p e H®.
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The relation ([A3]) implies that the operators S and 7' commute. Moreover, these two
operators are obviously symmetric and thus self-adjoint. Hence the spectral theo-
rem for commuting self-adjoint operators implies that there is a spectral measure F
on o(S) x I such that

SPTY = / P mldF, , Vp,qg€eN. (4.6)
o(S)xI
For given 1, ¢ € H>, we introduce the Borel measure jy 4 on I by
/Llﬁ,qﬁ(Q) = / Vd(¢|Fu,m¢) . (47)
o(S)xQ
Then puy (1) = (¢|S¢) and
poo@ = [ v a(alT) 8] Funxa()9) = GalT) 61 x0(T)9).
[ X

Since the operator S is bounded, we conclude that

6] < e xa(T) 6] Ixa() 6] Z ( [l am [ o2, dm’)Q
Q Q
Q m{|lm m/[lm’ | - 4.
< c[9] (50 [Wmllm ) ( 502 fl9m ) (4.8)

This shows that the measure u is absolutely continuous with respect to the Lebesgue
measure. The Radon-Nikodym theorem (see [16, Theorem 6.9] or [I1], §VI.31]) implies
that there is a unique function fy 4 € L'(I,dm) such that

oo = [ foplm) dm. (4.9)
Moreover, the estimate (4.8 gives the pointwise bound

[fu.s(m)| < clldmllm [|dmllm -

Using this inequality, we can apply the Fréchet-Riesz theorem to obtain a unique
operator Sy, € L(H,,) such that

fw,¢(m) = (Ym|Sm®m)m and [Sml| < c. (4.10)

Combining the above results, for any 1, ¢ € H*> we obtain

<plpd> = (]59) = / v d(| Fym 8)

o(S)xI
= /Idluw7¢ = /If¢7¢(m) dm = /[(¢m|5m¢m)m dm .

This concludes the proof. O

Comparing the statement of Theorem (ii) with Definition 3.2, we immediately
obtain the following result.

Corollary 4.3. The strong mass oscillation property implies the weak mass oscillation
property.

We next show uniqueness as well as the independence of the choice of the interval I.



12 F. FINSTER AND M. REINTJES

Proposition 4.4. (uniqueness of S,,) The family (S, )mer in the statement of The-
orem [{.2 can be chosen such that for all 1, ¢ € H™, the expectation value fy 4(m) =
(V| S®m )m is continuous in m,

fu € Co(I) - (4.11)
The family (Sp)mer with the properties (&4) and [AII) is unique. Moreover, choosing

two intervals I and I with m € I C 1(0,00) and 0 # I, and denoting all the objects
constructed in I with an additional check, we have

S = S - (4.12)

Proof. Let us show that the function fy 4 is continuous. To this end, we choose a
function n € C§°(I). Then for any ¢ > 0 which is so small that B.(suppn) C I, we
obtain

[ (Fustm+) = s nom) dm = [ s atm) (n0m ) = nim))

() _
2 < [ (ntm =) = nom) i [ 96> = < [ n(m) (1 = ) i [ 6>
where in (%) we used (£.0) and ([@7). Applying ([4.2), we obtain

[ (Fstm+) = gt mtm) don| < e = w1 ol 5w,

where the vector ¢,. € H*> is defined by (Y12 )m := Ymie. Since lim\ g ||4e — 9| =
0 and 7 is arbitrary, we conclude that fy 4 is continuous (IIl). This continuity
is important because it implies that the function fy 4 is uniquely defined pointwise
(whereas in (£9) this function could be modified arbitrarily on sets of measure zero).

In order to prove ([AI2), we first note that the spectral measures dE,,, and dF,,,
(cf. BI1) and ([@6l)) are related to each other by

dEpJn = dF\/ﬁm + dF—\/ﬁ,m .

A direct computation yields that the definitions [B.12) and (£13]) agree if the strong

mass oscillation property holds (see also (&), (£9) and (£I0])). The relation (ZI2I)
then follows from Proposition [3.5] O

We remark that by considering higher difference quotients and taking the limit € \ 0,
one could even prove that fy 4 € C°(I) is smooth, but this is not of relevance here.

4.2. Construction of the Fermionic Projector. Theorem [£.2] and Proposition [£.4]
are very useful because for every m € I they provide a unique operator S,, € L(H,,).
This makes it possible to proceed with methods similar to [9] by analyzing the opera-
tor Sy, for given m € I. From definition [£.4] the operator S,, is obviously symmetric.
Thus the spectral theorem gives rise to the spectral decomposition

S = / vdE, ,
o(Sm)

where F), is the spectral measure (see for example [15]). The spectral measure gives
rise to the spectral calculus

F(Sh) = / o T,

where f is a bounded Borel function.
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Definition 4.5. Assume that the Dirac operator D on (M, g) satisfies the strong mass
oscillation property (see Definition[{.1]). We define the operators Py : C§°(M,SM) —
Hem by

Py = X(O,oo)(Sm) km, and P_ = _X(—oo,O)(Sm) km, (4’13)
(where x denotes the characteristic function). The fermionic projector P is defined
by P= P_.
Proposition 4.6. For all ¢, € C°(M,SM), the operators Py are symmetric,

<Pirp|Y> = <¢| Pryp>.
Moreover, the image of Py is the positive respectively negative spectral subspace of Sy,
i.e.
Proof. According to Proposition 2.2]
<P—¢ ‘ 7/}> = (P—¢ ‘ kmw)m = _(X(—oo,O) (Sm) km¢ | kmd})m
= _(km ¢ ‘ X(—00,0) (Sm) kmﬂ’)m =<¢ | P_y>.

The proof for P, is similar. The relations (£14]) follow immediately from the fact
that &, (C5°(M,SM)) is dense in . O

4.3. Representation as a Distribution and Normalization. Similar as in [9]
Theorem 3.12], the fermionic projector can be represented by a two-point distribution
on M. As usual, we denote the space of test functions (with the Fréchet topology)
by D and define the space of distributions D’ as its dual space.

Theorem 4.7. Assume that the strong mass oscillation property holds. Then there is
a unique distribution P € D'(M x M) such that for all ¢, € C§°(M,SM),

<p|PY>=P(p®1) .
Proof. According to Proposition and Definition [4.5]
<¢|PY> = (km¢ | Pp) = —=(km® | X(—c0,0)(Sm) km¥) -

Since the norm of the operator X(_u 0)(Sm) is bounded by one, we conclude that

|1<¢|P>| < k@l [Emt|| = (<lkmd> <tblkmtp>)7 ,

where in the last step we again applied Proposition As ky, € D'(M x M), the
right side is continuous on D(M x M). We conclude that also <¢|Pv> is continuous
on D(M x M). The result now follows from the Schwartz kernel theorem (see [12]
Theorem 5.2.1], keeping in mind that this theorem applies just as well to bundle-
valued distributions on a manifold simply by working with the components in local
coordinates and a local trivialization). O

Exactly as explained in [9, Section 3.5], it is convenient to use the standard notation
with an integral kernel P(z,y),

<¢|PY> = //M Ny z) | P(x,y) ¥(y) =z dpa () dpnr (y)

wwmaémmw@wmw



14 F. FINSTER AND M. REINTJES

(where P(.,.) coincides with the distribution P above). In view of Proposition [4.0]
we know that the last integral is not only a distribution, but a function which is
square integrable over every Cauchy surface. Moreover, the symmetry of P shown in
Proposition implies that
P(a,y)* = P(y.x),

where the star denotes the adjoint with respect to the spin scalar product. Finally,
exactly as shown in [9, Proposition 3.13], the spatial normalization property of Propo-
sition .8 makes it possible to obtain a representation of the fermionic projector in
terms of one-particle states. To this end, one chooses an orthonormal basis (1;);en of
the subspace X(—oc,0)(Sm) C Hpn. Then

P(z,y) = =Y [j(@)=<1;(y)l
j=1

with convergence in D'(M x M).
We now specify the normalization of the fermionic projector. We introduce an
operator Il by

M: 9, = 9, (M) (@) = —2n /N P(e,y) ¢ W)lv (@) dun(y) . (4.15)

where N is any Cauchy surface.

Proposition 4.8. (spatial normalization) The operator II is a projection operator
on H,,.

Proof. According to Proposition 211 the spatial integral in (£I5]) can be combined
with the factor &, in ([dI3]) to give the solution of the corresponding Cauchy problem.
Thus

IT : 3 — Hn s (H ¢m)(x) = X(—oo70)(5m) Ym
showing that II is a projection operator. O

Instead of the spatial normalization, one could also consider the mass normalization
(for details on the different normalization methods see [10]). To this end, one needs
to consider families of fermionic projectors P, indexed by the mass parameter. Then
for all ¢,¢ € C§°(M,SM), we can use (£4) and Proposition [2.2] to obtain

- /1 (6 SonX(—o0.0) (Sm) Kt} dime = —( P (S Prntl)) |

which can be written in a compact formal notation similar to (L6l as
P Py = 8(m —m') (=Sy) P,
Due to the factor (—S,,) on the right, in general the fermionic projector does not

satisfy the mass normalization condition. The mass normalization condition could be
arranged by modifying the definition (EI3) to

S;Ll X(—oo,O)(Sm) km .

Here we prefer to work with the spatial normalization. For a detailed discussion of the
different normalization methods we refer to [I0, Section 2].
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We finally remark that corresponding causal fermion systems can be constructed
exactly as in [9, Section 4] by introducing regularization operators (Re)-~0, computing
the local correlation operators F€(z) and defining the universal measure by dp =
Flk6 d,uM.

5. EXAMPLE: ULTRASTATIC SPACE-TIMES

In this section we prove that the strong mass oscillation property holds for the Dirac
operator in complete ultrastatic space-times, even if an arbitrary static magnetic field
is present. Thus we let (M, g) be a four-dimensional complete space-time which is
ultrastatic in the sense that it is the product M = R x N with a metric of the form

ds? = dt? — gy,

where gy is a Riemannian metric on N. The completeness of M implies that also N
is complete. Let Dy denote the intrinsic Dirac operator on N. In order to introduce
the magnetic field, we let A be a smooth vector field on N (the “vector potential”)
and set

Da=Dy+ 4, (5.1)
where the slash again denotes Clifford multiplication. Using standard elliptic theory
(see [I7, Proposition 8.2.7] and [2]), the operator D4 with domain C§°(N,SN) is
essentially self-adjoint on the Hilbert space L?(N,SN). Thus its closure, which we
again denote by Dy, is a self-adjoint operator with domain D(D,4). The spectral
theorem yields

DA:/ AdF)y , (5.2)
(Da)

where dF), denotes the spectral-measure of Dy4.
The Dirac operator in the ultrastatic space-time (M, g) in the presence of the mag-
netic field A can be written in block matrix notation as

_(i0, —Da
D_<DA —i8t>' (5.3)

Since the Dirac operator is time independent, we can separate the time dependence
with a plane wave ansatz,
Pt x) = e ™ x(x) .
The sign of w gives a natural decomposition of the solution space into two subspaces.
This is often referred to as “frequency splitting”, and the subspaces are called the
solutions of positive and negative energy, respectively.
This is the main result of this section.

Theorem 5.1. The Dirac operator (5.3) has the strong mass oscillation property with
domain

H* := Coo(M x I,SM) NI . (5.4)
The operators Sy, in the representation ([A4l) all have the spectrum {£1}. The eigen-
spaces corresponding to the eigenvalues +1 coincide with the solutions of positive and

negative frequency, respectively.

We remark that the reason why the spectral decomposition of S, gives the frequency
splitting can already be understood in the perturbative treatment as explained in [4]
Section 5]. As a corollary, the above theorem clearly yields the strong mass oscillation
property for the Dirac operator in the Minkowski vacuum.
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We now begin with preparations for the proof, which will be completed at the end

of Section The space-time inner product (ZI]) and the scalar product (2.3) take
the form

<otv> = [~ at [ <wtoru aunte) = [ a (ol (§ 1)) 69

(@l = [ <ol (}) _01) O (t) dpiy () = 27 (B(O)|S() L2, 52 (5.6)

(where in the last line t is arbitrary due to current conservation). In the following
constructions, we will also work with the last scalar product without requiring that ¢
and 1 are solutions of the Dirac equation. In this case, the scalar product will depend
on time, and we denote it by

(Pl)e = 2m (Y(1)|D(1)) L2(v,5:)2 -

We usually write the Dirac equation in the Hamiltonian form as
) . . . 0 Dy 1 0
10 = Hap with H_<DA 0 >+m<0 —]l)'

Substituting the spectral decomposition (5.2]), we get

H:/ (m A ) dFy .
(D) A —m

In order to bring the dynamics into a more explicit form, we diagonalize the 2 x 2-

matrix,
m A
<>\ _m>—wH+—wH_,

w= VA +4+m?. (5.7)

The matrices and Il are orthogonal projections, i.e.

where we set

Il Iy = dg¢ 1 Vs, s € {:]:} .

A short computation shows that

M, = I (\,m) = % + <KL _Am> . (5.8)

Applying the functional calculus, the solution of the Dirac equation of mass m with
initial data ¥, |t=0 = ¥m(0) € C§°(N, SM) can be written as

wm(t) = e_itH(m)wm(O) = /(D ) Urtn()‘) dF) ¢m(0) ) (59)

where U!, is the unitary 2 x 2-matrix

UL (N) = e Om) I (X m) + O™ T (X, m) . (5.10)
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5.1. The Weak Mass Oscillation Property using Mass Derivatives. In prepa-
ration for the strong mass oscillation property, we shall now prove the weak mass
oscillation property. Let 1) € H*> as defined in (54). Then

(p)(t) = /I dm / oy VROV 4B 4 (0). (5.11)

For estimates of such expressions, it is helpful to observe that U}, ()) is a 2 x 2-matrix
which commutes with the spectral measure dF). In particular, the matrix entries of
the inner integral in (B.I1]) can be written as

g(m) = / FOum) dFy $(m) € LN, SN) (5.12)
a(Da)

with f € C®(I x R) and ¢ € C§°(N x I,SN) (where we use the notation ¢(m) =
Ym(.) € C°(N,SN)). In the next lemma it is shown that this function is differentiable
and that we may interchange the differentiation with the integral. Since this is a
somewhat subtle point, we give the proof in detail.

Lemma 5.2. Let ¢ € C°(N x I,SN) be a smooth family of wave functions on N.
Moreover, let f € C*°(I xR) be a smooth function such that f and all its mass deriva-
tives are polynomially bounded, i.e. for all p € N there is £ € N and a constant ¢ > 0
such that

02 fm) <c(1+X¥*)  VYAeR, mel. (5.13)
Then the function g defined by (512) satisfies the bound

Hg(m)Hm(N,SN) <cll(1+ D%)T/’HL%N,SN) : (5.14)

Moreover, the function g is smooth in m and
g m) = [ dEyon, (£Oum) v(m) (515)
o(Da)

Proof. For the proof of the bound (5.14]), we may omit the mass dependence. Then
the spectral calculus yields

I, foan

EI3)
< c/(D )(1+A2f)2d<¢yFA¢>L2(N,SN) = |1+ DX 2.5 -

2

B / [FOOP d(W|FAY) r2(v s)
o(Da)

L2(N,SN)

In order to prove that ¢ is differentiable, we consider the difference quotient and
subtract the expected derivative,

3

¢€ — g(m+€) _g(m) . /(D )dF)\ 8m(f()\,m) ¢(m))
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By rearranging the terms, we obtain

¢a:/ dF), {f“m“w(mﬂ)—f(A,m)w(m)
(Da)

= O (O m) w<m>)]

13
_ /U(DA) dF, [(f(% m 2 —Fm) o, m)> w(m)) (5.16)
+ f(\,m+e¢) {w(m—i-&?;—w(m) —8m1/1(m)} (5.17)
+ ( FOum+e) — f()\,m)) amz/)(m)} . (5.18)

The contribution (5.I7]) can immediately be estimated with the help of (5.14]) (with ¢ (m)
in (5.12) replaced by the expression in the curly brackets in (5.17])). We thus obtain

IEID e sm < e[| (1+23) (L2220 )|

€

L2(N,SN)’

and this converges to zero as € N\, 0 because 1) is smooth and has compact support.
The term (5.I8)), on the other hand, is estimated by decomposing the M-integral into
the integrals over the regions [—L, L] and R\ [-L, L] and estimating similar as in the

proof of (5.14]),

| /_ LL dFy (FOum+ ) = FOum)) dnp(m)| s

< ||Om(m)|| 2 (v, sup [fAm4e) = f(Am)]|. (5.19)
(\m)e[—L,L]xI

Moreover, using again (5.13]),

2

H /R\[—L ; dF) <f()\,m +e) — f()\,m)) 8mq/;(m)‘

L2(N,SN)

s 4 /R\[—L I (143" (Db (m), Frdint(m)) 1oy sy

4c? 20422
=77 L (1 + A ) d(@mw(m),anmzp(m»m(N’SN)
462 2
A H (1 + D124£+2)¢HL2(N75N) . (5.20)

The term (5.20) can be made arbitrarily small by choosing L sufficiently large. The
term (5.19), on the other hand, tends to zero as € N\, 0 for any fixed L due to the
locally uniform convergence of f(A,m+¢) to f(\,m) (note that f is smooth in view
of (5.I0) and (5.8)). This shows that (5.I8]) tends to zero as ¢ N\, 0. Finally, the
contribution (5.I6]) can be estimated just as (5.I8]) by considering the regions [—L, L]
and R\ [—L, L] separately.

We conclude that in the limit £ \, 0, the vectors ¢. converge to zero in L?(N,SN).
This shows (5.I5) in the case p = 1. The relation for general p follows immediately by
induction. O
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Lemma 5.3. The time evolution operator in the vacuum has the representation

277t 82 t 8 t t
UL = 5= AN + 5= BlL(N) + (V) (5.21)

with matrices At , Bt and C., which are bounded uniformly in time by
AL+ 1B+ ICR M < e (1+2%)  Vmel

with a constant ¢ which may depend on the choice of the interval I (here ||.| denotes
any norm on the 2 x 2-matrices).

Proof. We can generate factors of ¢ by differentiating the exponentials in (5.10]) with
respect to w. With the help of (5.7)), we can then rewrite the w-derivatives as m-
derivatives. We thus obtain

2
2 gt _ _ 9 ptiwt _ _ﬁi w 9 9 it
Ow? mOm \'mOm

A straightforward computation in which one uses the product rule inductively gives
the result. g

Lemma 5.4. For any ¢ € H™, there is a constant C' = C(v) such that

C
[l < 7

Proof. Using that the operators U}, are unitary, we immediately obtain
G0l < [ dm ol

In order to prove time decay, we apply the identity (5.21]) to (5.11). Then Lemma
allows us to integrate by parts,

t2(py) yt_/ dm/ dF) (—At +iBt +Ct>¢m(0)
o(Da) om

— [am [ dB (A0 B (0) ~ BN 8t (0) + ColN) 6 (0)).
M o(Da)
Now can use the estimate of Lemma [5.3] together with (5.14]) to obtain

)|, <c/ dm Z /(D ) (1 -+ A2) dFy %4, (0)
a(Da

a=0,2 t
_ / dm Y~ H 1+ D2) 8% (0 )‘ : (5.22)
a=0,2
where in the last step we used the spectral calculus. O

Proposition 5.5. The Dirac operator (5.3)) has the weak mass oscillation property
with domain (5.4]).

Proof. For every v, ¢ € H*, the Schwarz inequality gives

<wsloo = | [~ (@0l 12 Gol), ] < [ Gkl wo], @
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Applying Lemma 5.4 together with the estimate

(o) o] =/ (ol ) dim i
IxI

<5 [ (10l + how 2) dmam’ = 111012

we obtain the inequality (B.5) with

C—O\/|T/

The identity (B.6]) follows by integrating the Dirac operator in space-time by parts,

1+t2

<pTY|pd> = <pDip|pp> = <Dpylpp> = / <Dpy|pp-(z) d'z
o M (5.23)
= /M<pw\7>p¢>(w) d'z = <pyp|Dpo> = <py|pT$> .

In (%) we used that the Dirac operator is formally self-adjoint with respect to <.|.>.
Moreover, we do not get boundary terms in view of the time decay in LemmaBb4l O

5.2. The Strong Mass Oscillation Property using a Plancherel Method. We
now give the proof of Theorem (.1l Before beginning, we point out that the method
of working with mass derivatives in the previous section gave the inequality (B.5) with
a constant ¢ which depended on the derivatives of ¢ (cf. (£:22])). For the strong mass
oscillation property, however, this constant must depend only on the L?-norm of
(see (4.2))). For this reason, working with mass derivatives and an integration-by-
parts argument in the mass parameter is not appropriate for proving the strong mass
oscillation property. Instead, we shall use the following Plancherel method.

First, in view of the decay established in Lemma (5.4l we know that for any 1, ¢ €
H°, the function <pt|pe> is integrable. Moreover, the time integral can be carried
out with the help of Plancherel’s theorem,

<piplpo> = /_ dt /N <PYPd-(1,2) dp(z)

- /_Z ;l_: (o) <(1) —01> @(w)>L2(N7SN)2 : (5.24)

po(w) = /OO (py)(t) e dt .

where

In order to compute this Fourier transform, we take the representation (5.9]) and (510,
integrate over the mass parameter, and rewrite the mass integral as an integral over w,

Z/dm/(p —sztw )\m) (}\ m)dF)\wm( )
s==+ o(Da)

dm —Siw
= 2/0 W /J(D X, 2y (WP = XN%) e T (A, m) dF) b (0) p—
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where the characteristic function X2 ’mg)(cﬂ — A?) vanishes unless vw? — 2 € I.
Using (5.7), we obtain

= / dw e~ M X(m2,m§)(w2 - )\2) (A, m) dF) T/Jm(o)‘

—00 m Jo(Dy)

m=vw2—X2, s=sign(w) '
This shows that

— w
) =20 2L [y (6 ) T ) 4P 1, 0)
M Jo(Da) m=vw?2—\2, s=sign(w)
Using this formula in (5.24)) and applying the spectral calculus for Dy, we obtain
o] 2
<p¢p¢>:2ﬂ'/ dw—/ Xz 2y (@2 — A2
| oM () (m3, b)( )

X <H8(A,m) zpm(o)( <é _01> dFy (A, m) ¢m(0)>

A short computation using (5.8)) shows that

L2(N,SN)2 Im=vw2—\2, s=sign(w) '

1 0 m
Hs ) HS ’ = Hs ) .
v () ) = S m)
Hence
& w
<prhlpp> = 27r/ dw — X(m2,m2) (w? =A%)
—00 M Jo(Dy)

X <¢m(0) ‘dF)\ HS()‘7 m) ¢m(0)>L2(N,SN)2

m=vw2—-\2, s=sign(w)
:27T/dmzs/ d{thm (0) | Fx TIs(X, m) ¢m(0)>L2(NSN)2,
I p— U(DA) ’

where in the last step we transformed back to the integration variable m. Using (5.4]),
we obtain the identity

<pulpe> = /I dm / o L By (L0 m) T Oom) ), (525)

The inequality (4.1]) follows immediately by applying the Schwarz inequality and using
that the matrices II+ have norm one.

Finally, comparing (5.25]) with (4.4]), one sees that the eigenvalues and corresponding
eigenspaces of the operator S, correspond precisely with those of the matrix I, —
II_. Hence S,, has the spectrum {£1}, and in view of (5.I0) the eigenspaces are
precisely the subspaces of positive and negative frequency. This completes the proof
of Theorem (.11

6. EXAMPLE: DE SITTER SPACE-TIME
We consider the de Sitter space-time M = R x S% with the line element
ds® = dt* — R(t)* ds%s and R(t) = cosht, (6.1)

where ds?93 is the line element on the three-dimensional unit sphere. This is a special
case of the Friedmann-Robertson-Walker metric obtained for a specific choice of the



22 F. FINSTER AND M. REINTJES

scaling function. The Dirac operator was computed in [§] (see also [7, Appendix A])

to be
o 3R(t) 1 0 Dg
D= zfyo (@ + W(t)) + m <_DSS 69 > ) (6.2)

where Dgs is the Dirac operator on S2. The inner products (Z.1) and (23] take the
form

<tp|p> = /_OO dt /SS<1,Z)|¢>(t,:E) R(t)® dugs(x) (6.3)

(nlbm)on =27 [ <0%6-(0,2) RO duss(a) (64)

where <9|¢p= = 1¥'1%¢ and +° = diag(1,1,—1,—1) (here dugs is the normalized
volume measure on S3).

In order to separate the Dirac equation (2.2]), one uses that, being an elliptic operator
on a bounded domain, the Dirac operator on S has a purely discrete spectrum and
finite-dimensional eigenspaces. More specifically, the eigenvalues are (see [13] or the
detailed computations in [8, Appendix A]),

7(Dgs) = { ig, ig, i;}

with corresponding eigenspaces of dimensions
1

dimker(Dgs — \) = A% — 1

Since the Dirac operator (6.2)) obviously commutes with Dgs, the solution spaces can
be decomposed into eigenspaces of Dgs. We use the notation

Ho= P Y, = H HW.

)\EU('DS3) )\EU('DS3)
We also refer to the eigenspaces of Dgs as spatial modes. Next, we choose H*> as the
proper subspace of SO(SO(M x S, SM)NH of solutions composed of a finite number of
spatial modes,

J{“:{¢e “(MxS,SM)mJ{(we@

sc,0

e HO with A € R} (6.5)

(this choice clearly has all the properties demanded in Definition B} the reason for
this choice will be explained after Lemma below). This is our main result:

Theorem 6.1. On any interval I = (mp,mg) with mg,mg > 0, the Dirac operator
in the de Sitter space-time has the strong mass oscillation property with domain ([G.5]).

The remainder of this section is devoted to the proof of this theorem. Choosing a
normalized eigenspinor ¢ of Dgs corresponding to the eigenvalue A, we employ the

ansatz
_3 fur(m,t N (z
o= (10 D) &

to obtain the coupled system of ordinary differential equations

)= (i 7)) () 6



THE FERMIONIC PROJECTOR IN SPACE-TIMES OF INFINITE LIFETIME 23

for the complex-valued functions u; and ug. The inner products ([6.3]) and (6.4 become

<> = / (uriy — ugts) dt (6.8)
(Ym|bm)m = 27 (Urty + Uztiz) = 27 (u, U)c2 - (6.9)
Using that the matrix in (6.7]) is Hermitian, one easily verifies that
d
a(u, )2 =0, (6.10)

showing that the scalar product (6.9) is indeed time independent. We refer to a wave
function of the form (6.6) as a single spatial mode.

The asymptotics of solutions of (6.7]) for large times can be described with a simple
Gronwall-type estimate:

Lemma 6.2. Every solution of (6.7) is asymptotically as t — +oo of the form

B e—imt f1:|: N
u(t) = 0 (6.11)

etmt f2:|:
with the error term bounded by
IE=(@)) < 1751 (exp (2[A1€7) —1) (6.12)
(thus E*(t) decays exponentially as t — F00).
Proof. Substituting into (6.7]) the ansatz

B e—z‘mt fl (t)
) = (ot 18] (6.13)

we obtain for f the differential equation

df b\ 0 e2imt
E—EQ%M 0>f‘ (6.14)
Taking the norm, we obtain the differential inequality
daf | _ [Al
—I < = . 1
2] < Bn (6.15)

Let us first show that f(¢) has a limit as t — +o00. To this end, we first apply Kato’s

inequality to (G.15),
d Al

< . .1
Dyrr< By (6.16

We may assume that our solution is nontrivial, so that || f|| # 0. Thus we may divide

by [.£l

d A

—lo <.

< tog /1 < 2

Since the scaling function grows exponentially for large ¢ (cf. (6.1))), we conclude
that || f|| is bounded and converges as ¢ — £oo. Using this a-priori bound in (6.15]),
we infer that f has bounded variation, implying that lim;_, 1, f exists. We set

ff= lim f(t).

t—+oo
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In order to estimate ||f — f7||, we divide (GIG) by | f|| and integrate from ty to

any t > to,
L@ < £ (o)l exp ( / % d7> |

Substituting this inequality into (G.I5]) gives

) < e >||exp</t:R'?') >—||f(to)\|—exp</t:%d7>-

Integrating on both sides from ty to some t > t( gives

1£(t) — £t} < I (to) | exp ( / % df) |

Now we take the limit tg — —oo to obtain

17— 77| < IF )l exp< DL dT> |

Employing the estimate

we conclude that
[£) = f7II < I (t)]l exp (2A]€) .
Using this estimate in (GI3) and comparing with ([G.IT]) gives the desired estimate

for E~.
The estimate for E is derived similarly. O

As is typical for a Gronwall estimate, the error bound (6.12]) grows exponentially
in A. In particular, our estimate is not uniform in the spatial modes. It is not clear how
to improve this estimate to for example polynomial growth in A. This is the reason
why with the choice (6.5) we always restrict attention to a finite number of spatial
modes.

Lemma 6.3. For every single mode ¢ € Csco(M x I,SM)nN HWN | the corresponding
coefficients f* in (6I1) are smooth in m,
frecser,c?).

Proof. Evaluating ¢ at time ¢ = 0, we get a smooth family u(m,t = 0). Consequently,
the functions f are smooth,

fli=o € C§°(1,C?).

Taking these initial conditions and solving the equation (6.14]), we get a family of
solutions which clearly depend smoothly on m. Differentiating (6.14]) with respect to
the mass and setting £ := o, f, we obtain

df(l) A 0 2zmt A 0 e2imt
“dt R (e_%mt > 70 2it R <—e‘2imt 0 > f

o

and thus

ALy ) Al
< — 21t — . 6.17
<SP 421t 1] (617)
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Again applying the Kato inequality, we obtain similar to (6.10]) the differential inequal-
ity

d o ot |\l
g (RSO @I) < e IR 2 g I

Integrating on both sides and using the exponential growth of R(t) at infinity, we
conclude that ||f(M(¢)| converges as t — 4oo. Using this fact in (6.17), we infer
that also the vector f (1)(t) converges as ¢t — £oo. The higher derivatives f®) can be
estimated inductively by differentiating (6.14]) p times with respect to m, taking the
norm, and integrating the resulting differential inequality. O

Lemma 6.4. For every single mode ¢ € C2,(M x I,SM) N HWN | the corresponding

functions u in ([©.0) satisfy the inequality

e < £

Proof. Integrating the asymptotic expansion (6.11) over the mass parameter gives

P / AV +/Eid (6.19)
I etmt f2:|: /

The integral over the error term can be estimated by

/Eidm
I

where in the last step we applied (6I2)) and used that sup,, ||| is bounded by
Lemma Writing the first summand in (G.19)) as

e—imt fl:l:(t) B 1 42 e—imt 0 fl:t
/1 (amt () ) i = _?/1 [W < 0 e"mtﬂ (fi s

we can integrate by parts to obtain the estimate

—imt
f1 !I! Cw)
\U@mgmﬁﬁwmfmvﬂ

Combining this estimate with (620, we obtain (6.18]). O

sc,0

(6.18)

< | sup [|[EF|| < e()e™, (6.20)
mel

Proposition 6.5. The Dirac operator in the de Sitter space-time has the weak mass
oscillation property with domain (6.5)).

Proof. Suppose that 1, ¢ € H*>. Since 1 and ¢ only involve a finite number of spatial
modes, we may restrict attention to one of them. Moreover, using orthonormality
of the spatial eigenfunctions, we may assume that ¢ and @ have the same spatial
dependence. Then the Schwarz inequality yields

100l < /1 16(m)llm dm < /T 1611

Combining this inequality with (63)), (6.4)) and Lemma [6.4] we obtain
<putpo] < VITION [ IGald <ol [~
proving (B.1]).



26 F. FINSTER AND M. REINTJES

The property ([B.0) follows by integrating the Dirac operator by parts according
to (B23]), where in () we again use that the Dirac operator is formally self-adjoint
with respect to <.|.>. Moreover, we do not get boundary terms in view of the time

decay in (G.I8]). O

Our next task is to compute the inner product <p1/1\p1/;> for two single modes 1, 1/; €
HW with the same spatial dependence. We write the result of Lemma as

e—imt fl-l-(m) B e—imt fl_(m)
eimt fz-l-(m) > +®( t) (eimt f2—(m)

where O is the Heaviside function, and the error term decays exponentially as t — +o0,

u(m,t) = O(t) ( > + En(t), (6.21)
|Em(t)]| < ce !t (6.22)
For the function 1/; we use the same notation with an additional tilde.

Lemma 6.6. For any single modes w,zﬁ e HW with the same spatial dependence,

<pylp> =7y /1 (750 f (m) -
s==+

F5(m)f5(m)) dm . (6.23)

Proof. We first explain why the error terms E,, (t) and Ej;(t) do not enter the formula.
To this end, we again use the partition of unity (1¢),=1,. n introduced in the proof of
Theorem[4.2] (see (4.5])). Since we already know that the weak mass oscillation property
holds, we conclude from (B.6]) inductively that <pTPy|pp> = <pp|pTP¢> for all p.
Using the continuous functional calculus corresponding to the spectral theorem (B.11]),
we conclude that

<pne(T) | p e (T)> = <p (neme ) (T) ¢ [pib>
which implies by the right side of (4.35]) that
<pne(T)Y | pne (T)> =0 unless [( — 0| < 1.

Estimating the integrals of the error terms by

H /f e(m) Em<f>H = % Sup || B (1)

and using the bound (6.22]), the contribution by the error terms tends to zero as N —
00.

It remains to consider the first two summands in (6.21I]). Because of the Heaviside
functions, we only get the product of f; with ber and of f, with f,~. Moreover, the
following argument shows why it suffices to consider the contributions where the lower
indices coincide: For example, the contribution involving ffr and f;r is

A= / dt / fi(m) f5F (m) ™ dm dim,
0 IxI
Using the distributional equation

/ et = mo(w) +i PP (6.24)
0 w
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(where PP denotes the principal value of the integral), we can use the fact that m +m
is bounded away from zero to obtain

aef g m)
IxI m4+m ’

Again inserting the partition of unity (1¢)¢=1,. ~ and taking the limit N — oo gives
zero. The other contributions for a # b are treated similarly.

We conclude that it suffices to take into account the products of the form f2 with f2
with a = 1,2 and s = £1. Thus

<plpy>
/ dt//lXI z(m m') f—i-( )fl( ) (m—m/)t f;(m) f;(ﬁ@)dmdm

/ dt //I ) Z(m m') _( )fl ( ) i(m—m')t f2_(m) f{(m))dmd’fh,
and applying (6.24) gives
<pylp> = 77/1 (Tfj — - Eﬁ;) | dm (6.25)
PP —— .
H//Ixfm(ff(m)fl( )+ f(m) f5 () (6.26)

— J7 () Jr () = f5 (m) f5 () dmdiiv. — (6.27)

Using current conservation (6.I0) together with (6.I1]), we may evaluate the scalar
product asymptotically as t — 400 to obtain

Zfa a Zfa a )

a=1,2 a=1,2
This implies that the terms (6.26]) and (6.27) cancel each other, giving the result. [

Proof of Theorem [6.1l Suppose that v, 1[1 € H*. Then we decompose them into spa-
tial modes, i.e.

l\.’)lw

DY (m >¢§3’< >>
R
M;M kzl ((u Y (m,t) o ()

and similarly for ¢). Choosing the spatial wave functions qSk to be orthonormal, we
can apply Lemma [6.6] to each mode to obtain
K(\)
)\
<wpizl <7 30 ST [ o) [ )] dm-
IN<|A| k=1 s==%

Using current conservation (6.10]), we can compute the norms of u,(j‘) and ﬂ,(j‘) asymp-
totically as t — +o0o with the help of Lemma[6.21 This gives

K(\)
<pvlpi> < 2m 30 S [ m)| o om)]| dm.
[Al<|A| k=1

Applying the Schwarz inequality gives the result. O



28 F. FINSTER AND M. REINTJES

We finally explain what the result of Lemma means for the decomposition of
the solution space. Comparing (6.23)) with (£4)), one sees that now the spectral sub-
spaces of the operator S, no longer coincide with the solutions of positive and negative
frequency. This is also clear because in the time-dependent setting of the de Sitter
space-time, the “frequency” of a solution is only defined asymptotically as ¢t — Fo0,
but not globally or at intermediate times. Instead, the sum over s in ([G.21]) corresponds
to the fact that we must take a suitable “interpolation” of the frequency splittings as
experienced by observers at asymptotic times t — +o0o. Here the notion of “interpo-
lation” can be understood similar as explained in [4, Section 5] and [9), Section 6].
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