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Abstract

Obstructions caused by accidents can trigger or exacerbate traffic congestion. This

paper derives the efficient traffic pattern for a rush hour with congestion and acci-

dents and the corresponding road toll. Compared to the model without accidents,

where the toll equals external costs imposed on drivers using the road at the same

time, a new insight arises: An optimal toll also internalizes the expected increase

in future congestion costs. Since accidents affect more drivers if traffic volumes are

rising than when they are declining, the efficient charge depends upon the demand

for road use during the rest of the peak period.
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1 Introduction

Traffic congestion is an extremely annoying feature of road transport. It con-

sumes substantial amounts of valuable time, creates difficulties for scheduling

and on-time deliveries, and thus reduces the potential advantages of road

transport. Congestion typically occurs at times of high travel demand or as

a consequence of accidents or other non-recurring incidents that temporarily

reduce a road’s capacity. It is associated with external costs in the sense that

an additional driver on a road forces everyone else using this same road at the

same time to adapt to the higher traffic volume by lowering driving speeds, so

other drivers need more time to cover a given distance. The opportunity cost

of the additional travel time is external to the marginal driver. Since there

are no market prices reflecting this cost, drivers ignore it and the equilibrium

traffic volume is excessively high compared to the welfare maximizing one.

The standard economic solution to congestion, dating back to Pigou (1920),

consists in levying a toll equal to marginal external congestion cost. 1 A central

result from the economic literature on traffic congestion (for a concise presen-

tation of the general idea see Hau, 1992) is that external congestion costs take

on different values depending on travel demand and the roads’ characteristics.

In order to correctly reflect the different values of this externality, the toll

1 Solutions in the spirit of Coase (1960) fail to produce efficient results because of

information asymmetries and high costs of negotiations among drivers. Commercial

road management, as suggested by Roth (1996), suffers from limited competition

within transportation corridors, so that profit maximizing tolls exceed efficient toll

levels. Therefore, privatization of roads should be subjected to public price controls,

and the optimal price equals the Pigou-toll.
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needs to be higher on heavily used roads (typically in densely populated ar-

eas) than on uncongested ones, and it has to rise during rush hours. Tolls that

are differentiated in time and space can increase welfare by inducing drivers

to spread their trips more evenly and by reducing total traffic volumes to an

efficient amount. Other externalities arising from road transport – external

costs of accidents, emissions of pollutants and greenhouse gases, noise, road

wear and tear – can also be addressed more efficiently with differentiated road

charges than with the current practice of taxing gasoline and vehicle ownership

(Calthrop and Proost, 1998). Since congestion and accidents are the most im-

portant categories of external costs related to vehicle kilometers traveled (and

not so much to vehicle technology and other factors that are hard to influence

through road charges), these will be the focus of attention in the following.

Based on the pioneering works of Pigou (1920), Walters (1961), and Vickrey

(1969), the theory of congestion pricing has been explored in a variety of

models (for a survey see Lindsey and Verhoef, 2000). Typically, road capacity

is assumed constant in the short term. Congestion arises from high levels of

travel demand or demand that is strongly concentrated during short peak

periods, the latter resulting in pronounced rush hours. A congestion toll, via

changing relative prices, induces some drivers to alter their travel behavior,

e.g. to switch to public transport or to off-peak travel times. Thus, congestion

is lowered by reducing traffic flow in relation to a given road capacity. In the

long term, road building increases capacity, which also alleviates congestion.

But even in the short term capacity changes if accidents and other incidents

are taken into consideration. By temporarily reducing the amount of road

space effectively available, accidents can be triggers of traffic congestion suf-

fered by any given amount of subsequent traffic. Empirically, some 25–30% of
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delays are estimated to be the consequence of traffic accidents (Skabardonis

et al., 2002; Puls, 2004; FHWA, 2005; Kwon and Varaiya, 2005). Neglecting

the impact of road crashes on later traffic flows therefore leads to errors in

the calculation of congestion tolls. To get an impression of the size of the

problem, consider the following back-of-the-envelope calculation: An accident

typically blocks one road lane for 45–90 minutes, causing time losses of 1200–

5000 vehicle-hours. Price this delay at the average value of travel time, say

e 15 per vehicle-hour, to calculate the congestion costs of an accident. If an

additional vehicle increases the probability of an accident by 3 · 10−7, the ex-

pected external costs of accident-induced congestion amount to e 0.005–0.023

per vehicle kilometer (data from Grenzeback and Woodle, 1992; Schrage, 2005;

Pöppel-Decker et al., 2003). This rough estimate of the externality neglects

the cost increase suffered by drivers avoiding the congested road after the

accident by switching to other routes or delaying their trip, so the optimal

accident-related toll component would be somewhat higher.

Congestion caused by accidents and the characteristics of the Pigou-toll that

accounts for this phenomenon have thus far received only limited attention

in the transportation economics literature. Previous work has focused on how

traffic volumes influence accident risk (Newbery, 1988; Vitaliano and Held,

1991; Jansson, 1994; Dickerson et al., 2000; Pöppel-Decker et al., 2003; Edlin

and Karaca-Mandic, 2006) and accidents’ severity (Shefer and Rietveld, 1997;

Noland and Quddus, 2005), or how to design incentives for careful driving

(Vickrey, 1968; Lindberg, 2001; Parry, 2004). Empirically there is no clear-cut

answer to the question whether individual accident risk and accident severity

change with traffic flow. Accident risk on interurban roads seems not to rise

with traffic volume (Shefer and Rietveld, 1997; Dickerson et al., 2000; Pöppel-
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Decker et al., 2003). For urban traffic, in contrast, the elasticity of risk with

respect to flow is found to be strictly positive (Dickerson et al., 2000; Lindberg,

1999), so there is an external cost in this respect which should be added to

a Pigou-toll for road use. More recently, defensive driving behavior has been

recognized as an additional source of travel delays: Accident risk may not rise

with traffic volume, but this comes at the cost of time losses (Peirson et al.,

1998; Hensher, 2006).

The present paper turns the question of how traffic volume affects accident

risk around and analyzes the impact which accidents have on congestion levels

and how this affects optimal toll levels when drivers include the possibility of

delays due to accidents in their expectations. I proceed by describing a model

of traffic congestion that incorporates random accidents. Section 3 calculates

the cost minimizing pattern of road usage, and section 4 derives the road toll

that implements this pattern as an equilibrium.

2 A model of peak traffic congestion and accidents

The congestion model used in this paper is an extension of Henderson’s (1974

and 1977) model of peak period congestion that includes random accidents.

A fixed number of commuters N , one per car, drives to work on a given road.

Commuting entails two kinds of private costs in addition to vehicle operating

costs. One is the opportunity cost of time T spent driving from origin to

destination, which is less productive or enjoyable than other possible uses of

time. The second type of costs are schedule delay costs of arriving earlier

or later than the official work start time. This specification was originally

introduced by Vickrey (1969) in the context of the bottleneck model, which
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has been used to analyze a variety of congestion problems since (Arnott et al.,

1998). The Henderson-model differs from this model class in the congestion

technology used; instead of a queue waiting to enter a bottleneck, it captures

congestion as travel delays which are monotonously increasing with traffic

volume, which is consistent with empirical estimates of speed-flow-functions.

Commuters are homogeneous with respect to all relevant parameters such as

trip origin and destination, time valuations, preferred arrival time and driving

behavior. The generalized cost (i.e. operating costs, opportunity costs of time

spent driving and schedule delay) per driver starting a trip at time t and

arriving at work at time t + T is

c = c(t, T ) (1)

Here I do not explicitly account for the expected private costs of an accident a

driver might be involved in, which are assumed constant for ease of exposition,

but c(t, T ) includes delays caused by previous accidents via travel time T .

The total trip time T of a person departing from home at time t depends

upon the traffic flow f(t) entering the road at the same time as the vehicle in

question, 2 where f is measured in vehicle-kilometers per unit of time. With

low road usage and no congestion, travel time takes on its minimum value T0.

At higher volumes, congestion sets in and T rises with traffic flow. Groups of

drivers starting out on the road at the same time travel at equal speeds and do

2 Models with this characteristic have been termed ”no propagation” models, as

opposed to ”instantaneous propagation” models, where driving speeds depend upon

the average vehicle density on the road, not the density in a driver’s immediate

surrounding (Lindsey and Verhoef, 2000).
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not draw apart during their journey. In equilibrium, d(t + T (t))/ dt > 0 has

to hold, which can be shown to be the case if the opportunity cost of travel

time is positive (Schrage, 2005). This inequality guarantees two things: First,

drivers cannot arrive earlier by unilaterally postponing their departure time,

so the traffic pattern is actually a Nash-equilibrium, and second, small and

therefore fast groups of drivers are not fast enough to catch up and interfere

with possibly slower traffic further down the road.

Drivers departing at different times only influence each other indirectly in case

of an accident. Since the vehicles involved block part of the road’s width, they

reduce the available capacity κ(t) of the road for some time. For any traffic

volume, a reduction in capacity makes travel more time consuming. Travel

time for drivers starting their trip at time t is thus determined by the convex

function

T = T (f(t), κ(t)) (2)

satisfying

Tf ≥ 0 , Tκ ≤ 0 , Tfκ ≤ 0, (3)

where subscripts indicate partial derivatives with respect to that variable. The

sign of the second partial derivative with respect to κ and f , Tfκ, is intuitively

explained by the observation that at low traffic levels, when driving speeds

are already high, an increase in capacity does little to improve these further.

At high volume, on the other hand, adding capacity can relieve congestion

considerably and make trip times much shorter.

Accidents are modeled as a Poisson process q(t) with an arrival rate ρ(f)
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equal to the expected number of accidents per unit of time. As q(t) counts

the cumulative number of accidents, dq = 1 with each additional accident

that happens and dq = 0 with no accident. The probability that there is

no accident during a time interval of duration ∆ is (1 − ρ(f)∆). The chance

of more than one accident is close to zero if ∆ is short (Ross, 1983), so the

probability that one accident occurs is approximately ρ(f)∆. This probability

is independent of the time that has elapsed since any previous accident, but

increasing in traffic volume. This assumption is reasonable since the expected

number of vehicles involved in accidents equals individual accident risk r(f)

times traffic volume f . Suppose the average number of cars per accident is

a constant x, then the expected number of accidents is ρ(f) = r(f)f
x

, which

increases with rising f for empirically plausible non-negative values of the

elasticity of risk with respect to traffic flow.

Immediately after an accident, the road’s capacity is lowered by a fraction σ

due to the presence of the stalled vehicles on the road. σ is assumed constant

for simplicity. A more realistic specification would model this term as a random

variable (possibly correlated to flow) reflecting accidents of different severity,

causing different degrees of obstruction, but this complication promises little

additional insight. After the accident, police, ambulance or rescue service start

clearing the site, and capacity gradually recovers at a rate of g(κ) ≥ 0 per

unit of time, up to the point where it reaches its maximum of κ̄ again, with

g(κ̄) = 0. The change in capacity is summarized by the following stochastic

differential equation:

dκ(t) = g(κ(t)) dt− σκ dq . (4)

It is composed additively of jumps in capacity whenever an accident occurs
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and the deterministic, continuous function describing its recovery.

Using (2), the average social cost from equation (1) can be re-written as

c = c(t, f(t), κ(t)) , (5)

which is convex and increasing in f 3 and decreasing in κ and satisfies cfκ ≤ 0.

The total cost incurred by all commuters using the same departure time is

f(t) · c(t, f(t), κ(t)). Integrating over the duration of the rush hour from time

t, when the very first person departs, to t, when the last commuter has left

for work, gives the total cost TC of rush hour traffic on this road:

TC =
∫ t

t
f(t) · c(t, f(t), κ(t)) dt . (6)

This cost includes the opportunity costs of travel time and wrong arrival times

and those accident costs deriving from increased congestion levels, which are

part of the travel time costs. In the next section, I derive the pattern of road

usage for the rush hour that minimizes the expected social cost.

3 Socially optimal pattern of road use

The efficient traffic volume for each departure time minimizes the expected

social cost of having a total of N commuters use the road during the peak

period:

3 The sign of the partial derivative cf ≥ 0 implicitly uses the assumption that the

opportunity cost of time early at the drivers’ destination is less than the opportunity

cost of travel time. This is a common assumption in the analysis of rush hour traffic

and is empirically verified by Small (1982).
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min
f(t),t

E

{∫ t

t
f(t) · c(t, f(t), κ(t)) dt

}
(7)

s.t. κ(t) = κ̄ , (8)

dκ(t) = g(κ(t)) dt− σκ dq , (9)
∫ t

t
f(t) dt = N . (10)

Depending on changes in capacity, f(t) is constantly readjusted to fulfill the

objective equation (7). At the beginning of the rush hour there is no obstacle

on the road (boundary condition (8)), but traffic can cause accidents and

reduce future capacity (state equation (9)). The road’s capacity at time t does

not constrain the problem, since no later driver is hindered by it anymore.

The period of road use is also determined optimally: t is the first time the cost

minimizing f(t) becomes strictly greater than zero; t̄ is the time by which all

drivers have left home (constraint (10)), so f(t) is back to zero for t ≥ t̄ and no

further costs arise. Since the optimal pattern of traffic flow adapts to possible

accidents, t̄ cannot be determined ex ante.

To handle restriction (10) as part of the cost minimization problem, it is

replaced by state equation (11) counting the cumulative number of drivers

A(t) that has already set out on the trip up to time t:

dA(t) = f(t) dt , (11)

A(t) = 0 , A(t) = N . (12)

Boundary condition (12) requires that the rush hour ends when the cumulative

number of people having left for work equals total traffic demand N .

The efficient traffic pattern has to balance three effects: A marginal increase

in traffic flow at time t increases the social cost of congestion at that instant.

It also raises the probability of an accident which might lower future road
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capacity, thus increasing expected congestion costs for subsequent drivers.

But at the same time, having an additional driver use the road at time t raises

A(t) and reduces the number of drivers left to use the road during the rest of

the rush hour, which reduces congestion costs at later times. To solve for the

pattern of traffic flow that weighs these effects in the best possible way, define

the optimal value function

V (t, A(t), κ(t)) = min
f

E

{∫ t

t
f(x) · c(x, f(x), κ(x)) dx

}
. (13)

For given initial conditions A(t) and κ(t) at time t, this is the lowest expected

total cost at which the remaining N −A(t) people can reach their destination

if traffic flows are chosen optimally during the remainder of the rush hour.

By manipulating the optimal value function (see appendix A), the following

optimality condition for this problem is obtained:

c(t) + f(t) · cf + ρf · [V (t, A, κ(1− σ))− V (t, A, κ)] = −VA . (14)

The optimal solution also satisfies state equations (9) and (11) and boundary

conditions (8) and (12). Since the peak period’s beginning is chosen optimally,

the transversality conditions is

Vt(t) = 0 , (15)

and the transversality condition with respect to the value of κ(t̄) is

Vκ(t̄) = 0 . (16)

Equation (14) implicitly defines the optimal traffic flow pattern t, f ∗ = f ∗(t, A(t), κ(t)).

The left hand side of the equation is the expected marginal social cost of an
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additional trip at time t. It consists of private travel cost c, the congestion

externality imposed on other people departing along with the marginal driver,

f ·cf , and external costs to drivers departing later on (the change in probability

of an accident ρf that might narrow road space from κ to κ(1−σ), increasing

the value of V ). With f ∗, the cost of marginally increasing the current traffic

flow exactly offsets the future savings from having one (marginal) driver less

use the road at later times (as given by the right hand side of the equation).

In a deterministic model of peak congestion with no accidents, the optimal

traffic pattern equalizes marginal social congestion costs c+fcf during the rush

hour. This is intuitively plausible because it leaves no margins for arbitrage by

shifting drivers across different travel times. Here, this result is modified. The

expected value of VA can be shown to be constant in optimum (see appendix

B):

E

{
d(−VA)

d t

}
=

[
(c + fcf ) + ρf (V (κ(1− σ))− V (κ)) + VA(κ)

]
∂f ∗

∂A

= 0 , (17)

where the last equality follows from the first order condition for road usage. In

connection with equation (14) this means that with the optimal traffic pattern,

the expected marginal social congestion cost, including expected costs inflicted

upon later drivers, is equalized over the rush hour’s duration.

If accidents trigger congestion, static congestion costs c+fcf ought to change

during the peak in order to compensate for expected changes in later con-

gestion costs, ρf (V (κ(1 − σ)) − V (κ)). This latter intertemporal component

of marginal social cost is not constant, as neither of its factors is: ρf varies

with f ∗, and the effect of a change in capacity from κ to κ(1 − σ) on the
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value function depends upon how many drivers are affected by that change.

A marginal change in capacity influences total cost as follows (differentiating

(A.1) with respect to κ):

Vκ(t) = f(t)
∂c

∂κ
∆ + E{Vκ(t+∆)(t + ∆)}∂κ(t + ∆)

∂κ(t)
+

[
c(t) + f(t) cf + ρf [V (κ(1− σ))− V (κ)] + VA(κ)

]
∂f ∗

∂κ
∆

= f(t)cκ∆ + E{Vκ(t+∆)(t + ∆)}(1 + gκ∆) (18)

A decrease in capacity at time t, all other things equal, causes static congestion

costs to increase by (−fcκ) during a short time interval ∆. This effect is larger

for higher traffic volumes, because with cfκ ≤ 0 one can see that ∂(fcκ)/∂f ≤
0. The capacity reduction at time t also leads to a change in future capacity,

both directly and via its effect on the rate of recovery g(κ). This in turn

influences static congestion costs at later times as long as capacity is affected

- more strongly so at higher traffic flows. Further, the decrease in capacity

tightens one of the restrictions of the optimization problem and requires an

adjustment of the traffic pattern (∂f ∗/∂κ), but the marginal effect of this on

total cost is zero (from the envelope-theorem).

Note that unlike what is derived in the deterministic case without accidents

(Henderson, 1974, 1977; Chu, 1995), the marginal external costs are not de-

termined by current road usage f(t) only. Furthermore, even with the same

traffic flow and equal capacity, the external costs are not equal at different

times during the peak. Identical traffic volumes cause higher expected con-

gestion costs when traffic flows are rising then when road usage is declining.

This result relates to the necessity to assign the commuters to a sequence

of departures: There has to be a first, second, third, ..., last driver. In case

of an accident of the very first driver, for example, all other drivers have to
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adjust their travel speeds or departure times compared to the case that he

has no accident. An accident of the last driver, in contrast, does not trigger

such responses, since there are no subsequent drivers. But postponing the first

driver’s departure to a later time cannot eliminate this disparity, since it is

not departure time but position in the sequence of drivers that is responsible

for his high expected accident cost. There is no possibility for arbitrage in this

respect because it is logically impossible to just skip the first driver and add

him at some later position. The inequality between different drivers’ expected

external accident costs is a consequence of this, and at the optimum it is offset

by an adjustment of the deterministic congestion costs c+ fcf in the opposite

direction.

4 The optimal road toll

The unregulated equilibrium traffic pattern results from the households’ cost

minimizing departure time decisions. Because of the presence of externalities,

it does not coincide with the optimal pattern of road usage. In order to repro-

duce the latter, individuals’ behavior can be influenced by levying a toll for

road use that is variable over time to reflect changing levels of external costs.

In the following, a rule for calculating the toll level τ(t) for departure times

during the rush hour is derived.

Drivers choose their departure time such as to minimize the expected private

costs. These consist of the generalized cost of commuting c(t) and of payments

for road use if a toll is levied. As in the previous section, accident costs other

than congestion will be neglected for ease of exposition. When making their

decision, drivers are assumed to be perfectly informed about current road
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capacity and toll levels, so they know at which cost they can travel instantly

with any given traffic flow. But due to the random nature of accidents they

can only form rational expectations about how these variables will change over

the rest of the rush hour.

Risk-neutral drivers compare the current private cost of a trip, c(t) + τ(t), to

the expected future cost and choose to drive at the cheaper time. For example,

if a decrease in private cost is expected, some drivers who had considered to

leave immediately will postpone their trip to benefit from lower costs. This

lowers current travel costs and increases their expected value later on. A Nash-

equilibrium evolves where a unilateral shift in departure time does not promise

any cost savings, i. e.

c(t) + τ(t) = E
[
c(t + ∆) + τ(t + ∆)

]
(19)

is satisfied at every instant that the road is actually being used, and the cost

is higher outside the period of road use when schedule delay costs grow too

high. With ∆ → 0, equation (19) is equivalent to

E

[
dc

dt
+

dτ

dt

]
= 0 . (20)

If no toll is charged, traffic flow will constantly adjust such as to equalize

the expected private cost of driving at different times, including the expected

travel delays from possible accidents, but ignoring externalities. Actual costs

in contrast can – and do – change. If, for example, there is no accident dur-

ing a short time interval, then the actual capacity after that time is higher

than what was expected. Ceteris paribus, this lowers travel costs compared to

their expected value. Traffic flow adjusts, which in turn influences costs, until
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present and expected future costs are again equalized, given the actual state

of information – and as this changes constantly, so does average cost.

An optimal toll induces drivers to choose the efficient traffic flow at every

departure time. Comparing the derivative of equation (14) with respect to

departure time t,

E

[
dc

dt
+

d{f cf + ρf · [V (t, A, κ(1− σ))− V (t, A, κ)]}
dt

]
= 0 , (21)

to equation (20), it can be seen that the efficient charge for road usage is

determined as follows:

τ(t) = f(t)cf + ρf [V (t, A, κ(1− σ))− V (t, A, κ)] + Z (22)

If drivers anticipate that the toll is set according to this rule, their individually

cost-minimizing departure time decisions will decentralize the optimal pattern

of road usage. The first term of the toll is a standard congestion toll charged

to internalize the external costs at the time of use resulting from a marginally

higher traffic flow. The second term internalizes the marginal increase in the

probability of an accident’s negative consequences for following traffic. Finally,

since total road usage was assumed to be perfectly inelastic, the toll can be in-

creased by an arbitrary constant term Z (resulting from integration of dτ/ dt).

The expected variation of the toll is responsible for decentralizing the optimal

traffic pattern, and the constant term Z brings about a lump sum transfer

between the road’s users and its operator without distorting the drivers de-

parture time decision. An intuitively appealing value for Z is zero; in this case,

drivers pay a toll exactly equal to their expected external congestion cost. If

Z where set to some positive value instead, they would pay a lump-sum tax
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on top of the congestion toll, or receive a subsidy if Z < 0.

An important point to note about the toll rate is on which variables it depends.

In contrast to deterministic congestion models, it is not sufficient to know

the road’s design capacity (which determines the shape of the average cost

function c(f)) and measure traffic flows to calculate the efficient toll. Here,

the effectively available capacity at a driver’s departure time, κ(t), and the

expected change of traffic flow also need to be taken into consideration in

order to determine his external effect upon other drivers, because the former

changes cf and the latter influences V (κ(1− σ))− V (κ).

5 Summary and policy implications

Traffic accidents are an empirically important trigger of congestion, and they

exacerbate pre-existing congestion levels. Theoretical analysis of accidents and

congestion in the present paper reveals some important aspects of how to deal

efficiently with this problem. The main result is that the marginal social cost

of congestion in a static sense, c+fcf , should not be equalized across different

times of road usage. Instead, the optimal static marginal cost of congestion

tends to be lower early during the rush hour than at later times. This is

because a higher traffic flow causes not only congestion at the time of usage

but also higher expected congestion later on. Early during the rush hour, when

more subsequent drivers are affected, this dynamic cost component is more

important than later on, when road usage is declining.

Variable road pricing can enforce the optimal pattern of road usage as an

equilibrium allocation. The road toll changes to reflect the changing value of
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the marginal external effects, which consists of three components. The first

is a component familiar from deterministic congestion pricing models, which

depends only upon the traffic volume at the time it is being levied. It is

responsible for leveling the peak and elongating the period of road use in order

to achieve a more even utilization of the road. The second toll component

captures the expected consequences of an accident, and its value depends

upon the number of people that are left to use the road over the remainder of

the rush hour. Finally, the toll can be increased or lowered by a time-invariant

term if total demand is perfectly inelastic, changing the distribution of welfare

gains among the road’s operator and its users in a lump-sum fashion. If total

demand is not fixed, this constant toll component has to be chosen to ensure

optimal total road usage.

In order to set the correct Pigou-toll for road use, it is important to distinguish

between congestion as a pure traffic flow problem and additional congestion

that results from traffic accidents. Since these add up to the actual level of

congestion, Lindberg (1999) suggests that the ”distinction is not so important

when designing the charge, the label of the components will differ but the sum

of charges will be the same.” The present model shows that this is true for the

toll’s static congestion component only, which equals the external congestion

cost at the time of driving, no matter whether it results from high traffic flow

or from low capacity after an accident. But an efficient road toll also charges

the additional congestion costs caused by an accident to the drivers responsible

for that accident (or rather the expected value of that cost to every driver),

before the extra congestion sets in. This cannot be accomplished by a static

congestion toll.

Taking accident-related externalities other than subsequent congestion into
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account does not change the picture. The efficient toll for road usage would

need to be amended to reflect the system and traffic volume externality (Lind-

berg, 1999). But since they are both static in nature (i.e., their value depends

on current traffic flows only), there is no modification to the intertemporal

toll component, only a strengthening of the general case for road pricing to

incorporate external accident costs.

Current methods of charging for road use are obviously inadequate to reflect

the marginal external costs of accidents and congestion. Automobile insurance,

motor vehicle or gasoline taxes are not nearly variable enough by distance

driven, road characteristics or traffic volumes. But differentiated road pricing

has in recent years evolved from a theoretical idea into a very real possibility.

Technologies for toll collection have improved to the point where toll rates can

be changed every few minutes based on real time traffic counts. Experience

with time-variable tolling in Singapore and the US shows that drivers respond

to the incentive of high peak period tolls by shifting their departure to off-

peak times, much as theory assumes. Using satellite navigation and mobile

communication, it is also possible to charge for driving on complex road net-

works with no need for toll bridges or other roadside charging infrastructure

on countless road sections. Public acceptance for road charging is generally

low when first introduced, but improves when drivers get accustomed to it

(Schade and Schlag, 2003) and start to appreciate the reduction in congestion

and other advantages accomplished by using the toll revenues, e.g. for road

improvements.

One obstacle for putting the toll derived in section 4 into practice is that its

calculation relies on knowledge of the optimal value function or, as a proxy

for V (κ(1 − σ)) − V (κ), its derivative with respect to road capacity. Both
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functions are not readily measurable. Therefore, real-world implementations

would have to rely on numerical approximations to equation (22). Another

practical drawback is that it is necessary to announce toll rates before they

come into effect: Only if they know the cost of a trip in advance can drivers

adapt their travel plans. For this reason, the charge for road usage would have

to lag behind current traffic conditions, losing part of the theoretically possible

efficiency gains.

The important qualitative conclusion with respect to the ”accident-congestion-

toll” is that the marginal external cost of a higher traffic flow not only affects

drivers at the same time, but also those driving later on. The congestion

toll derived from deterministic models without accidents is therefore merely a

lower bound for the efficient road toll, and particularly during the early phase

of the rush hour, when traffic levels are rising, a higher toll is recommended.
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Shefer, D. and P. Rietveld (1997): Congestion and Safety on Highways: To-

wards an Analytical Model, Urban Studies 34, 679–692.

Skabardonis, A., P. P. Varaiya and K. F. Petty (2002): Measuring recurrent

and non-recurrent traffic congestion, Presentation at the 82nd Transporta-

tion Research Board Meeting 2003, Washington.

Small, K. A. (1982): The Scheduling of Consumer Activities: Work Trips, The

American Economic Review 72, 467–479.

Vickrey, W. (1968): Automobile Accidents, Tort Law, Exernalities, and In-

surance: An Economist’s Critique, Law and Contemporary Problems 33,

464–487.

Vickrey, W. (1969): Congestion Theory and Transport Investment, The Amer-

ican Economic Review 59, 251–260.

Vitaliano, D. F., and J. Held (1991): Road accident external effects: An em-

pirical assessment, Applied Economics 23, 373–378.

Walters, A. A. (1961): The Theory and Measurement of Private and Social

Cost of Highway Congestion, Econometrica 29, 676–699.

23



A Derivation of (14)

The value-function in (13) is decomposed into the deterministic social cost of

travel over a short time interval ∆, for which f(t) is approximately constant

and κ(t) is known with certainty, and the expected cost for the rest of the

rush hour. This yields the following Bellman-equation:

V (t, A(t), κ(t)) = min
f

[f(t)c(t)∆ + E{V (t + ∆, A(t + ∆), κ(t + ∆))}](A.1)

The cumulative number of departures at time t+∆ is determined via equation

(11): A(t + ∆) = A(t) + f(t) ∆. The change in capacity is stochastic. With ∆

small enough to assume g(κ) constant, κ(t + ∆) can be approximated as

κ(t + ∆) = κ(t) + dκ(z)∆ = κ(t) + g(κ(t))∆− σκdq∆ . (A.2)

Uncertainty about V (t + ∆) arises only from future capacity, therefore the

expected value can be written as a probability-weighted average of the value

function in case the next few drivers cause no accident or do cause one:

E{V (t + ∆)}= (1− ρ(f) ∆) · V (t + ∆, A + f ∆, κ + g ∆) +

ρ(f) ∆ · V (t + ∆, A + f ∆, κ(1− σ) + g ∆) , (A.3)

where (A.2) was used for κ(t + ∆). This is plugged into (A.1) and V (t) sub-

tracted from both sides of the equation. Dividing by ∆ and taking limits for

∆ → 0, the following is obtained:

0 = min
f

[fc + Vt + VAf + Vκg + ρ(f)[V (t, A, κ(1− σ))− V (t, A, κ)]] .(A.4)

The optimal traffic flow at time t minimizes the sum of instantaneous cost

f(t) · c(t) and the expected change in V during an infinitesimal amount of
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time. By differentiating the expression in brackets with respect to f , (14) is

derived as the first order condition.

B Derivation of (17)

Inserting the optimal traffic volume f ∗(t, A(t), κ(t)) as implicitly defined by

(14), equation (A.1) becomes an identity.

V (t, A(t), κ(t)) ≡ f ∗(t)c(t, f ∗(t), κ(t))∆ + E {V (t + ∆, A(t + ∆), κ(t + ∆))}(B.1)

Differentiate with respect to A(t) to obtain

VA(t)(t) = (c + fcf ) |f∗ ∂f ∗

∂A(t)
∆ + (B.2)

[−ρf∆V (κ + g∆) + ρf∆V (κ(1− σ) + g∆)]
∂f ∗

∂A(t)
+

[
(1− ρ∆)VA(t+∆)(κ + g∆) + ρ∆VA(t+∆)(κ(1− σ) + g∆)

] (
1 +

∂f ∗

∂A(t)
∆

)

︸ ︷︷ ︸
∂A(t+∆)/∂A(t)

.

Using

E

{
d VA

dt
∆

}
= E{VA(t+∆)(t + ∆)} − VA(t)(t) , (B.3)

equation (B.2) can be rearranged to find

E

{
d(−VA)

d t
∆

}
=

[
(c + fcf ) |f∗ ∆+ (B.4)

−ρf∆V (κ− g∆) + ρf∆V (κ(1− σ) + g∆) +

(1− ρ∆)VA(t+∆)(κ− g∆)∆ + ρ∆VA(t+∆)(κ(1− σ) + g∆)∆
]

∂f ∗

∂A(t)
.

Dividing by ∆ and finally taking limits for ∆ → 0 results in equation (17).
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