Go to content
UR Home

Optimal block-tridiagonalization of matrices for coherent charge transport

Wimmer, Michael and Richter, Klaus (2009) Optimal block-tridiagonalization of matrices for coherent charge transport. Journal of Computational Physics 228, p. 8548. (Submitted)

Full text not available from this repository.

at arXiv

at publisher (via DOI)

Other URL: http://dx.doi.org/10.1016/j.jcp.2009.08.001, http://arxiv.org/abs/0806.2739v1


Numerical quantum transport calculations are commonly based on a tight-binding formulation. A wide class of quantum transport algorithms requires the tight-binding Hamiltonian to be in the form of a block-tridiagonal matrix. Here, we develop a matrix reordering algorithm based on graph partitioning techniques that yields the optimal block-tridiagonal form for quantum transport. The reordered ...


Export bibliographical data

Item type:Article
Institutions:Physics > Institute of Theroretical Physics > Chair Professor Richter > Group Klaus Richter
Projects:Graduiertenkolleg Nichtlinearität und Nichtgleichgewicht, SFB 689: Spinphänomene in reduzierten Dimensionen
Identification Number:
0806.2739v1arXiv ID
Dewey Decimal Classification:500 Science > 530 Physics
Refereed:No, this version has not been refereed yet (as with preprints)
Created at the University of Regensburg:Yes
Deposited on:25 May 2009 13:19
Last modified:08 Apr 2016 09:24
Item ID:7828
Owner only: item control page
  1. Homepage UR

University Library

Publication Server


Publishing: oa@ur.de

Dissertations: dissertationen@ur.de

Research data: daten@ur.de

Contact persons