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Introduction

Recently, the development of computer applications in the field of life sciences,
in particular for the clinical and biomedical environments, has gained increasing
attention due to the promising results in the treatment of patients.

Today, the recording of the patient’s status in multivariate data sets is a
standard procedure in everydays clinical life. Apart from the immediate evalua-
tion of the data by the physicians, the (off-line) analysis by dedicated computer
processing tools can be a valuable information source.

In the context of data analysis, the methods derived in different fields of
physics raise the question of applying these well known methods to life sciences,
in particular to biomedical data analysis: Is it possible to obtain a deeper un-
derstanding of the data with new (non)linear methods and physical models de-
scribing the biological system? Can we further improve the analysis to reveal the
hidden information in biomedical data by developing new algorithms overcoming
limitations of the existing methods?

At the university hospital in Regensburg, the department of neurosurgery
records different biomedical data sets in the clinical environment. These record-
ings have motivated this work and we will focus on two of these data sets. On
one hand, neuromonitoring data is recorded on the intensive care unit from pa-
tients with severe head injuries. These data sets reflect mainly the following
brain status parameters: oxygen content in the blood and tissue of the brain, the
arterial blood pressure and the internal brain pressure. In addition, the patient’s
brain temperature is measured. On the other hand, the neural brain activity
of patients is recorded in the electro-encephalography (EEG), in particular in the
post-operative treatment, to monitor neurological diseases. These recordings rep-
resent — in contrast to the neuromonitoring data — highly multivariate data sets
with 21 or more signals.

The questions arising in the analysis of the data are very diverse. They all
focus on a deeper understanding of the mechanisms of the investigated system,
namely the human brain. In neuromonitoring data we may ask: Do the signals
influence each other, are they correlated in some sense? Which processes trigger
the system? What is the underlying biological system generating the signals? In
the analysis of the EEG data we are mainly interested in whether new methods
can reveal more information or enhance the highly multivariate data.
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The techniques typically used in data analysis can be divided into three dif-
ferent categories. This depends on the amount of knowledge available about the
investigated system:

e Time Series Analysis:

No knowledge is available about the system, only the time series originat-
ing from the outputs of the system can be analysed. Two main techniques
are used: either unimodal (fourier transforms, wavelets, (non)linear anal-
ysis using time embedding) or bimodal analysis methods (correlations and
couplings using nonlinear statistics). Symptoms or phenomena detectable
in the time series can be quantified in such a way that statistical tests can
be applied.

e Independent Component Analysis (ICA):
Hidden sources are underlying the measured signals. ICA is in particular
useful for the analysis of highly multivariate data sets (> 2 signals). Using
the concept of ICA, the recorded signals can be described by a (non)linear
mixing of unknown statistically independent sources.

e Model:

The basic mechanisms describing the system are known. Based on this
knowledge, the behaviour of the system can be modeled, however some free
parameters have to be fitted by comparing the simulations to the measured
signals. Properties of the system can be analysed by a sensibility and
stability analysis including their parameter dependence. The reaction of
the system with respect to parameter drifts, external influences etc. can be
extrapolated to make possible "predictions”.

With the methods listed above, using complementary approaches with very
different assumptions on the knowledge about the system, we will try to reveal
the mechanisms generating the recorded signals and show how, for the various
data sets, different methods have to be applied.

First, the reader will be made familiar with the basic anatomy of the human
head including a description of the fluid dynamical and metabolic (oxygen supply)
processes. Furthermore, a detailed description of the data sets and the basic phys-
ical principles of the measurement methods will be presented. Finally, the origin
of the neural activity, their recording on the scalp with electro-encephalography
(EEG) and their typical waveforms will be described in the first chapter.

The second chapter focuses on the analysis of the neuromonitoring data using
time series analysis. To gain basic information about possible interconnections
between the time series, a correlation analysis in the frequency domain will be
used, to ensure that all processes are treated equally, independent of their ori-
gin and their frequency band. Beside the well established correlations between
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the oxygen supply processes, more surprising couplings are found. In particular
connections between the arterial blood pressure, as a hydrodynamical process,
and the oxygen content in the blood and brain tissue, as a metabolic process, are
seen. First explanations of these observed correlations can be given with some
intuitive descriptions using basic knowledge about the biological mechanisms in
the human brain.

In a more global context in chapter three, the results of the time series anal-
ysis can be understood in more detail by using biomedical knowledge about the
human brain. Based on this knowledge, we develop a model combining the fluid
dynamical processes with a description of the oxygen supply in the human brain
tissue. Thereby, the amount of blood flowing through the brain, the so-called
cerebral blood flow, represents the main connection between the hydrodynamical
and oxygen supply model. One advantage of the model is that this parameter,
which is in practice hardly measureable, can be numerically estimated and there-
fore provides the physicians with important information about the patient’s state.
Furthermore, this combined model allows to calculate all other parameters mea-
sured in neuromonitoring, in particular the values describing the oxygen supply
processes. Based on a pure physical description, such a combined model enables
us to describe and understand in a more detailed way the couplings identified in
the time series analysis.

Furthermore, the influence of variations of the model parameters, i.e. the state
of health of the patient, on the evolution of the recorded brain status parameters
can now be described and can provide suggestions for the treatment of patients in
various situations. Interestingly, the relationship between some of the parameters
obtained from the model show a surprisingly well established linear correlation,
although the physical processes are highly complex and nonlinear. This obser-
vation explains, why the linear correlation analysis of the time series produced
such good results.

Before the investigation of the applicability of the independent component
analysis (ICA) to biomedical data, an elaborate theoretical presentation of the
method will be given in chapter four. Two new algorithms will be presented. First
an intuitive approach where geometrical consideration of the transformation of
scatter plots will be used to develop a theoretical framework. From these con-
siderations, a fast histogram based algorithm (FastGeo) is derived. The second
algorithm (FastTeICA) shows how time structures in the data can be included
in the framework of ICA by using methods known in time series analysis — in
particular by using independent time embedding vectors.

Finally, we present the results of the application of ICA to two biomedical
data sets, namely the neuromonitoring data and the data recorded by electro-
encephalography (EEG). The examples demonstrate both the power and the
weakpoints of the concept based on ICA. In particular the interpretation of the
extracted independent components have to be considered in real world applica-
tions from a biomedical point of view.
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In the last chapter, the conclusions of the preceding chapters will be sum-
marised and an outlook to further developments in the field of biomedical data
analysis will be given.

This work was conducted in close cooperation with the department of neuro-
surgery of the university hospital in Regensburg.



Chapter 1

Survey of the biomedical data
sets

At the neurosurgery department of the university hospital in Regensburg different
data sets are recorded as a standard procedure for immediate evaluation and later
off-line analysis. In this chapter a survey of these recorded data sets and the
measurement methods is presented.

In the following work two kinds of data sets are of primary interest: first the
neuromonitoring data recorded at the intensive care unit from patients with severe
head injuries and second the electro-encephalography (EEG) data used to monitor
neurological diseases. Both data sets consist of multi-channel recordings often
referred to as multivariate measurements. Before going into a detailed description
of the data sets and the measurement methods, an introductory overview of the
anatomy and physiology of the human brain is given.

1.1 Anatomy and physiology of the human brain

As an introduction to this chapter, a survey of the anatomy and physiology of the
human head will be given. Two schematic illustrations in figure 1.1 visualise the
two main fluid circulations in the head, the cerebral blood flow (CBF) and the
cerebrospinal fluid (CSF) flow. A further illustration in figure 1.4 shows a cross-
section of the human head obtained by a nuclear magnetic resonance recording
of the authors brain.

The cranial bone which acts as a closed compartment accommodates the
human brain. Between the cranial bone and the brain tissue, a fluid, the so-
called cerebrospinal fluid, acts as a protection against external shocks.

The brain itself can be divided into two horizontal layers. The surface of the
brain is composed of nerve cell rich tissue which is called the gray brain matter
(due to its colour) where the main neural activity of the brain takes place. To
connect the nerve cells with each other throughout the brain, the subjacent tissue
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Figure 1.1: Simplified figure of the blood supply and cerebrospinal fluid
flow in the brain. Left: Two main arterial blood vessels (shown as white
striped vessels) supply the brain with oxygenated blood. The vessels branch
into smaller ones reaching the capillary level. Deoxygenated blood flows from
the capillaries through the veins (black vessels) to the central vein (sagittal
sinus) leading back to the heart. Right: The cerebrospinal fluid (CSF) is
surrounding the brain tissue. The production of CSF takes place at the
ventricles (centre of the brain). The CSF flows around the brain and gets
absorbed at the sagittal sinus, the big venous blood vessel at the top of the
brain.

(the white matter) consists primarily of connecting paths or the so-called axons
of the nerve cells. In figure 1.4 the different layers of the brain tissue can be
associated by the different gray values. Note that due to the representation of
the recorded image, the gray brain matter is lighter than the white matter.

Monro and Kellie already formulated their doctrine in the 18th century stating
the volume of the head is fixed by the cranial bone and the only exchange of fluids
is due to the blood flow from and to the heart.

The cerebral blood flow is illustrated in the left drawing of figure 1.1. All
oxygen necessary for the brain as well as for other tissues in the body is trans-
ported through the blood. In the lungs the blood exchanges gases with the air,
COy from the cells is diffusing into the air and O, is absorbed from it into the
blood. Since the amount of dissolved oxygen in the blood would never satisfy the
demands from the cells, the blood has a further oxygen buffer, the haemoglobin,
which is responsable for the red colour of blood. One O molecule can bound to
each of the four iron (Fe) sites on the haemoglobin molecule. 98% of the oxygen
in human blood is bound to the haemoglobin whereas only 2% are dissolved.
Therefore the haemoglobin can be seen as an oxygen buffer.

The nearly 100% saturated (haemoglobin) blood flows from the lungs through
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Figure 1.2: Scheme of the behaviour of different blood vessels (arteries,
capillaries and veins) related to their wall structure. The comparatively thick
muscular layer and high density of vasomotor nerves account for considerable
constriction and dilatation ability of cerebral arteries. These responses are
less pronounced in the veins (especially in the cerebral veins, which are devoid
of a continuous muscles layer), and absent in the capillaries (adapted from
Mchedlishvili [1986]).

the arteries to the brain. The blood vessels branch into smaller and smaller vessels
until they reach the capillary level with diameters of only a few pm. Arteries are
active elements distinguishing themselves from the other blood vessels by having
a muscular layer around the vessel (for an illustration of the different blood vessels
see figure 1.2). This muscular layer comprises the brains possibility to regulate
the cerebral blood flow by dilating or constricting the arteries. The mechanism
of keeping the CBF constant, the cerebral autoregulation, guarantees a steady
supply of oxygen over a wide range of the arterial blood pressure.

In contrast to the arteries, the capillaries are thin-walled vessels with typically
diameters of 7 um. The ratio of the surface of a capillary to the volume of the
contained blood is much higher at this level than at any other point in the blood
vessel arrangement. This enables the dissolved oxygen as well as other metabolic
products like glucose to diffuse easily into the surrounding tissue. At the capillary
level the main exchange of the metabolic products happens. But waste products
like CO, can also diffuse from brain tissue back into the capillaries. The CO,
molecules can then be bind to the free Fe sites on the haemoglobin so that it
can transport the CO4 back to the lungs where it is again exchanged with a new
O, molecule. All diffusion processes, as for example between the blood vessels
(capillaries) and the brain tissue or the air and the capillaries in the lungs, are
based on the pressure difference of the dissolved oxygen. Therefore the oxygen
diffusion processes in the human body are a pure pressure depending processes.
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Figure 1.3: Production and absorption of cerebrospinal fluid (CSF). Left:
The CSF is produced at the capillary level in the ventricles. The driving
force is the pressure difference between the blood in the capillaries and the
CSF compartment. Right: The absorption of the CSF occurs at the sagittal
sinus by the difference between the pressure in the CSF and the sagittal sinus
(figures from Sullivan and Allison [1985]).
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Finally, the veins are the blood vessels transporting the deoxygenated blood
back to the heart, taking mainly the CO, but also other waste products from the
cells. The veins finally reach the sagittal sinus, a big hard-walled venous blood
vessel in the top of the head, which is the main path leading back to the heart.

The fact, that 600 ml blood/min (i.e. 30% of the total amount of blood flow-
ing through the body) is transported through the human brain, gives a rough
impression of the importance of the cerebral blood flow in the brain.

As mentioned before, the brain is not directly touching the cranial bone, but
is surrounded by the so-called cerebrospinal fluid (CSF), which is produced at the
capillary level, the ventricles, in the middle of the brain (see right illustration of
figure 1.1). The fluid, which consists of around 170 ml mainly pure water, protects
the brain tissue from external shocks. The absorption of the CSF takes place at
the sagittal sinus. To get an impression of the microbiological arrangement at
the two locations, a schematic illustration is shown in figure 1.3.

Around 600 ml of CSF are produced and absorbed per day which corresponds
to an exchange of the whole fluid more than three times a day. While the dy-
namics of the CSF circulation reaches just a 1/1500 of the blood circulation, it
plays a crucial role in volume compensation during a brain swelling as will be
seen later in description of the hydrodynamical model in chapter 3.
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1.2 Neuromonitoring

Throughout the treatment of a patient with a severe head injury at an intensive
care unit, different important physiological parameters are continuously moni-
tored. A distinction is drawn between two different mechanisms which can be
monitored by sensing appropriate brain status parameters: first the cerebral
metabolism, i.e. oxygen supply and consumption in the brain tissue, and sec-
ond the cerebral haemodynamics, i.e. the flow and the pressures of the cerebral
fluids.

Primarily the oxygen supply of the brain is the most important factor for
medical observation due to the fact that many of the patients die because of
oxygen undersupply. Therefore a constant monitoring of the patient is necessary.
This monitoring or recording of the data is called "neuromonitoring”.

ICP

(pressure sensor)

Licox

(pO, sensor)

Photodiodes T»

Invos

Infrared-LED —

Figure 1.4: Location of the neuromonitoring sensors — all sensors are placed
at the front part of the brain. i) Licox: the sensor, measuring the partial
oxygen pressure in the brain tissue (py;Os) as well as the temperature, is
placed 2.7cm deep into the brain matter. ii) Invos sensor: placed on the
surface of the scalp measuring the oxygen saturation of blood. The distance of
the photodiodes to the infrared-LEDs is 3 and 4 cm. iii) ICP-sensor: localised
close to the surface (1-2 cm depth) and measuring the intracranial pressure
(internal brain pressure). Note: The image is an NMR measurement of the
authors brain :).

In figure 1.4 the usual positioning of the relevant neuromonitoring sensors is
shown and will be described in the following:

e Cerebral metabolism — Two sensors are used for the measurement of the
oxygen supply and consumption:
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Licox (Liquor Oxygenation) is a brain tissue oxygenation monitoring sys-
tem. This measurement method is a standard method in clinical applica-
tions to monitor the supply of the brain tissue with oxygen. Due to the
temperature dependence of the measurement method the result need to be
corrected by an integrated temperature sensor for a more accurate reading.
Therefore the temperature values of the patients brain are also available.

Invos (In-Vivo Optical Spectroscopy) is a relatively new device to monitor
the oxygen supply in-vivo (i.e. in the living organism) without the need of
placing a sensor into the patients brain tissue. The sensor is placed on the
front part of the scalp using infrared light to measure the oxygen content
of the blood (more precisely the degree of saturation of haemoglobin with

oxygen).

e Cerebral haemodynamics — Mainly two parameters are monitored to get
more information about the flow and pressure of the cerebral fluids:

ICP (Intracranial Pressure) depicts the pressure inside the cranial bone.
It is one of the most basic and important parameters recorded in standard
neuromonitoring, since values above 40 mmHg are perilous. Long time mea-
surements are done by a small piezo-electric sensor placed into the brain
tissue.

ABP (Arterial Blood Pressure) depicts the pressure of the artery blood,
measured in the central arterial of the patient. Typically the mean arterial
blood pressure (MABP) is given in the recordings with typical values in the
range of 80 to 120 mmHg.

In the following sections, the basic physical principles of the measurement
methods will be described in more detail.

Licox including temperature measurement

The Licox sensor is placed into the brain tissue to measure the amount of available
oxygen for the nerve cells. The cells receive the oxygen by diffusion, this means,
that the partial oxygen pressure in the tissue is proportional to the available
oxygen for the nerve cells. Measuring this value gives an indication of the oxygen
supply of the brain tissue.

In figure 1.5 the basic configuration of a Licox sensor is shown. The sensor is
based on a polarographic Clark-type probe which is injected into the frontal part
of the brain. Oxygen diffuses from the tissue through the polyethylene tube dif-
fusion membrane into the inner electrolyte chamber filled with KCI. Between the
polarographic silver anode and gold cathode a current flows due to the applied
voltage of a 800mV. The measured current is proportional to the oxygen con-
centration in the electrolytic chamber. Furthermore it is also proportional to the
oxygen concentration in the surrounding tissue due to the diffusion membrane.
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Figure 1.5: Licox sensor: The basic design of the Revoxode py;Os probe is
a polarographic Clark-type cell. (1)=polyethylene diffusion membrane (di-
ameter of sensor is less than 1mm), (2)=gold cathode, (3)=silver anode,
(4)=electrolytic chamber (KCl) and (5)=Dbrain tissue (figure adapted from
the Gesellschaft fiir Medizinische Sondentechnik mbH).

The chemical reactions at the silver and gold cathode — placed into a KCl
electrolyte — are

e an oxidation at the gold cathode: O +2H50 +4¢e — 40H™
e a reduction at the silver anode: 4 Ag+4Cl- —4e- — 4 AgCL

As seen above, the chemical reaction with one O molecule results in a flow of
four electrons through the circuit, i.e. the flowing current is proportional to the
oxygen concentration.

Furthermore a temperature compensation is necessary for the Licox sensor,
since the permeability of the membrane increases with temperature, permitting
more oxygen to enter the probe. The temperature measurement is done by an ad-
ditional sensor in the probe and digitally processed in the Licox device. Therefore
the temperature values of the patients brain are also available.

In a typical Licox sensor, the surface of the diffusive membrane is about
14 mm? in size. Assuming a capillary density of around 300-1000 capillaries/mm?,
the surface of the sensor touches hundreds of capillaries measuring therefore an
average partial oxygen pressure. Still, compared to the size of the human brain,
the sensor is measuring only a local oxygen concentration.

Typical measurement values of the Licox sensor are in the range of 10 mmHg to
40 mmHg. Under special conditions (supply of the patient with 100% oxygen) the
sensor measurements can reach values above 100 mmHg. Values below 10 mmHg
are in general described as perilous.
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Invos

The Invos sensor measures the percentage of oxygen saturated haemoglobin in
the blood. This type of measurement is called ”oximetry”.

It was discovered in the 1860’s that the coloured substance in blood, the
haemoglobin, is also its carrier of oxygen. Haemoglobin is a protein which is
bound to the red blood cells and can bind oxygen to its 4 Fe (iron) sites. At
the same time, it was noticed that two common forms of the molecule, oxidised
haemoglobin (HbO,) and reduced haemoglobin (Hb), have significantly different
optical spectra in the wavelength range from 600 nm to 1000 nm (see figure 1.6).
The oxygen chemically combined with haemoglobin inside the red blood cells
makes up nearly all of the oxygen present in the blood, only a small amount of
around 2% is dissolved in the plasma.

100000

LIS

10000 |72\ i

T

=
£
<
1S
£ 7
3 A\
S 7
b5 a
@] Y
8 1000 \
c
S
=
2
2 100
<
8
(o]
s
10

200 300 400 500 600 700 800 900 1000
Wavelength [nm]

Figure 1.6: Absorption spectra of haemoglobin in deoxygenated (Hb) and
oxygenated (HbO,) state. The Invos sensor is using two different wavelengths
(730 and 805nm) to distinguish between these two states and to calculate
their ratio. At 805nm the absorption of Hb and HbO, is nearly equal in
contrast to the absorption at 730 nm.

The functional principle of the Invos sensor is based on the difference in
the optical spectra of Hb (deoxyhaemoglobin) and HbO, (oxyhaemoglobin), by
sending light of two different wavelengths through the tissue and measuring their
absorption. The tissue itself is relatively transparent in the range between 650 and
1100 nm. Therefore the wavelengths A\; = 730 nm and Ay = 805nm are chosen
for the oxymetric measurements by the Invos sensor. With the Beer-Lambert law
(I = Iye ) we obtain two equations for the intensities at the two wavelength
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A1 and As:
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where « is the absorption coefficient of Hb and HbOs, ¢ their unknown concen-
trations, [ the length of the light path through the tissue and ¢t = ay - ¢; - [ the
absorption of the tissue which does not depend on the wavelength and oxygen
content, but is also unknown. To actually determine the concentration ratio be-
tween Hb and HbOs, either a further measurement at a wavelength A3 is needed
or the mean absorption of the tissue t is directly determined in a separate ex-
periment. Ignoring absorption and scattering in the tissue would lead to wrong
values, since 83% of the light is attenuated by tissue as shown by Kauper [1999].

The saturation of HbO, is then given by the ratio of the concentration of
HbO, to the sum of the concentrations of haemoglobin

HbO, saturation = _ CHbO; (1.2)

CHb + CHbO,

which takes typically values in the range between 60% and 80%. However, Metz
[2001] emphasised with his knowledge from clinical studies that rather the varia-
tion of the values of the Invos sensor can indicate an oxygen undersupply of the
brain, a so-called ischemia, than the absolute value. Therefore in the analysis of
the Invos data we will focus mainly on its dynamical aspects.

Furthermore, the use of two photodiodes with different distances from the light
emitting diodes (LED) can help to remove the surface effects and to calculate only
the HbO, saturation in the deeper areas of the brain. Calculations on the light
paths of the infrared light through the scalp, the cerebrospinal fluid and the brain
tissue were done by Okada et al. [1997]. It was shown, that for smaller distances
between infrared LED and photodiode the light travels more through the scalp
and the cerebrospinal fluid, while for distances above 4 cm, the photons travel
more through the brain tissue. When ”subtracting” the two measurements from
each other, primarily the contribution from the deeper brain tissue is obtained.
Using these results, a good balance between the removal of surface effects and
a too strong absorption is achieved for a separation of 3 and 4 cm between the
infrared LED and photodiode, as used by the Invos sensor.

The actual value given by this sensor will reflect therefore the local averaged
saturation of the cerebral blood with oxygen. Generally it is assumed, that the
cerebral tissue contains approximately 75% of venous and only 25% of arterial
blood, as was also stated in a publication by Kim et al. [2000]. Therefore the
HbO, saturation measured — also abbreviated by SbOy — is given by
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where SaO, respectively SvOs is the HbO4 saturation in the arterial and venous
blood.

Finally, a discussion about the relation between the Licox and the Invos sen-
sors and their measured values will be given in great detail in chapter 3.3.

Intracranial pressure and arterial blood pressure

The intracranial pressure (ICP) is measured in the brain tissue using the piezo-
resistive effect. A membrane attached to the piezo element is exposed on one
side to the brain tissue, on the other side to the (external) air pressure. The
pressure difference measured at the element gives the intracranial pressure (ICP)
value. Typical values range between 5 mmHg and 20 mmHg. Every value above
40 mmHg is perilous.

Equivalent methods are used for the measurement of the arterial blood pres-
sure. The sensor is normally placed in the central artery of the patient. For
the analysis, only the mean long time behaviour of the arterial blood pressure
is of interest. Therefore only the time average is given in the recordings, which
is abbreviated by MABP (mean arterial blood pressure) or often just by ABP.
Typical MABP values are in the range between 80 to 120 mmHg, the true high
resolution curve of the blood pressure pulse can of course take values between 60
and 200 mmHg.

An example of neuromonitoring data

A typical example of neuromonitoring data recorded at the intensive care unit
of the department of neurosurgery (university hospital Regensburg) is shown in
figure 1.7. The data presented are the unfiltered (raw) time series from a 30 hours
recording. In principle, the recordings of the patients parameters can be taken
over any length in time with a sampling interval of up to one second. Our longest
continuous measurement is a 6 days recording.
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Figure 1.7: Recording of neuromonitoring data from the intensive care unit
at the department of neurosurgery (University hospital Regensburg). The two
upper plots show the parameters of the cerebral metabolism: the saturation
of the haemoglobin with oxygen (HbOs) in the left and right hemisphere of
the brain, the partial oxygen pressure in the brain tissue (p;O2) and the
body temperature of the patient. The lower plot shows the haemodynamic
parameters: the mean arterial blood pressure (ABP) and the intracranial
pressure (ICP). A section of only 30 hours of unfiltered data (sampling every
15 seconds) is shown but recordings of up to 144 hours = 6days are also
available.
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1.3 Electro-Encephalography (EEG)

The recording of electrical patterns at the surface of the scalp which primarily re-
flect cortical electrical activity or ”brainwaves” is called electro-encephalography
and abbreviated by EEG!. In 1929, Hans Berger was the first who discovered that
tiny rhythms of electrical wave activity could be detected at the human scalp.

In the following years typical potentials and rhythms of patients suffering
from epilepsy were categorised. In 1945 the first multi-channel recording with
four channels has been achieved. Quickly the electronic equipment developed to a
standard 21 channel recording, called the Ten-Twenty-System. It was introduced
as a standardised layout for EEG measurements in 1958 (see figure 1.8). Today
up to 256 channels are used for scientific research.

Figure 1.8: Location of the electrodes in the ten-twenty-system (21 chan-
nels) which is the international standard for EEG measurements in clinical
application since 1958 (left=side-view and right=top-view of the patients
head). The positions are chosen to cover the whole scalp and make a loca-
tion of a potential anomaly as good as possible (adapted from Kugler [1981]
and Zschocke [1995]).

The EEG equipment consists of small, non-invasive electrodes which are
placed carefully with paste or a glue-like substance on a patient’s scalp. Low
voltage signals (5-500 microvolts) are amplified and recorded with sampling rates
usually around 166 Hz by the EEG equipment. The measured potentials origi-
nate from the nerve cells which generate electric potentials by chemical processes.
Due to the huge number of nerve cells in the cortex of the brain, the measured
signal is the sum of a huge collection of nerve cells.

The recordings are mostly taken with the eyes closed to get an undisturbed
EEG, although the patient is sometimes asked to open them for short periods.

!Electro-encephalograph: electro=electrical; encephalon=head; graph=drawing/picture
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A typical recording time with eyes closed would be about 5minutes. For an
illustration, a sample of 6seconds is shown in figure 1.9. The evolution of the
electric potentials at the electrodes over time is shown for all 21 channels. By
visual inspection the neurosurgeon can identify four clinically relevant spectral
bands: the delta (0-4 Hz), theta (4-8Hz), alpha (8-12Hz), and beta (above
12 Hz) waves. A very dominant signal in closed eyes condition is the alpha wave
activity, which is easily identifyable also in the example shown here.

Today the EEG measurements are used in clinical applications to monitor neu-
rological diseases. The method turns out to be often more sensitive for epilepsy
and tumour evolution studies than computer tomography (CT) and nuclear mag-
netic resonance (NMR) imaging. At the university hospital in Regensburg in par-
ticular the tumour evolution after a neurosurgical operation is of interest. Patho-
logical regions show typically an increase of slow activity (delta, theta waves) and
diminishing fast activity (alpha, beta waves).

In general, EEG interpretation requires considerable skill and often years of
clinical experience due to the complex structure of the signals. Therefore an
automatic detection and removal of artifacts could enhance the interpretation of
an EEG and the identification of potential neurological diseases. An example of
a typical artifact can be seen in channel "Fp2” in figure 1.9 which corresponds
to an eye movement or an eye blink.
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Figure 1.9: An electro-encephalography (EEG) measurement from a pa-
tient recorded at the department of neurosurgery (University hospital Re-
gensburg). The EEG-channels are labelled by a abbreviation which corre-
sponds to a given electrode on the head of the patient (see figure 1.8). The
plotted lines show the evolution of the electric potentials at each electrode
over time. One clear artifact (an eye-blink) is visible in channel "Fp2”, fur-
thermore the alpha-wave activity of the brain (~ 8 Hz) is visible in nearly all
channels.



Chapter 2

Time series analysis

Typically, when applying time series analysis, only little knowledge is available
about the system to be investigated. The only information source are the ”out-
puts”, i.e. the time series recorded from the system. All information is gained by
the analysis of these outputs.

In this chapter we will use time series analysis to gain more information about
the interrelation between the different time series recorded in neuromonitoring. It
will be shown that in particular the correlation in the frequency domain contains
valuable information which leads to a better insight into intracranial dynamics.

2.1 Introduction

Time series analysis is typically used for uni- or bimodal signals, that means
analysing a system just by using one respectively two time series of the system.
Neuromonitoring data is in contrast to EEG data a good candidate for the time
series analysis. In particular the coupling between the time series of the neu-
romonitoring data is of interest and can be treated by the so-called correlation
analysis. In the following a short overview over the two main techniques in time
series analysis is given.

Nonlinear unimodal time series analysis is mainly based on a method called
time-embedding as described by Kantz and Schreiber [1997]. It can be shown that
by analysing time delayed samples of one time series and plotting them in (2n+1)
dimensions, it is possible to unfold the attractor of a n-dimensional system. Such
an analysis was also performed on the data of the neuromonitoring recordings,
but it yielded no results. This was mainly due to two reasons. Firstly the high
noise level and the short length of the recorded data, which makes it hard to
unfold the attractor of the system — as was also shown in the diploma thesis by
Meier [2000] — and secondly the nonstationarity of the underlying system. The
system parameter in the background can change on the same time scale as the
variations of the system itself. Such conditions make the application of unimodal

19
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time series analysis nearly impossible.

Bimodal time series analysis concentrates more on the correlation or coupling
between two time series. The question to be answered is: Which signals have com-
mon information contents and do they influence each other? Correlation analysis
and higher order statistics like mutual information and conditional entropy, e.g.
transfer entropy, can help to reveal such interconnections.

The problem in neuromonitoring focuses in particular on the signals triggering
the system. To solve this question, the transfer entropy could be applied, since it
can find the direction and coupling strength between two processes as described
by Kaiser and Schreiber [2002]. But the high noise level and the nonstationar-
ity of the data makes it nearly impossible to apply such methods. Further the
time synchronisation between the time series of the neuromonitoring data is not
guaranteed. The measurement devices for the metabolic brain status parameters
use different non-synchronised clocks. Due to this fact, an absolute time stamp
was not available and an estimation of coupling directions of the biological or
physical processes is therefore difficult. This problem will be solved in the future
by using radio controlled synchronised clocks.

In the following analysis we will therefore only use the correlation analysis,
since it works more stable with noisy and nonstationary data. To be able to
interpret the flow of information and the coupling directions, we will use our
biological and medical knowledge about the system.

2.2 Theory

In the following sections the method for the calculation of correlations between
two time series will be presented. The straight calculation of the correlation in
time domain can have some drawbacks. For example when large oscillations and
drifts are superimposed to the data or if the correlation of the high frequency
content between the processes is of interest. Therefore the change from time
domain to frequency domain is an appropriate solution, since all frequencies are
treated equally.

Correlation in the frequency domain

The calculation of the correlation in the frequency domain is equivalent to the
correlation in time domain after filtering the time series with the corresponding
frequency filter. In the appendix the formula for the correlation in the frequency
domain between two time series x(t) and y(¢) in a rectangular frequency window
w1 to ws 1s derived as

5 2Ty + 2yt dw

\/fw2 TT du)fw1 gy* dw

(2.1)

Cay =
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where #(w) depicts the fourier transform of x(¢). Note: The equation is only
valid for long time series with zero mean ((z), (y) = 0).

It turns out, that the definition of the correlation of frequency filtered time
series is equivalent to calculating the correlation between the (complex) fourier
coefficients in the corresponding frequency window. The fourier coefficients can
either be calculated by using a discrete fourier transform (DFT) or more advanced
spectra estimation methods as for example the multi taper method (MTM) used
in the analysis of Brawanski et al. [2002]. A comparison of the two spectra
estimation methods applied to the neuromonitoring data showed the same basic
behaviour. Therefore we will only present results obtained with the discrete
fourier transform.

To take the nonstationarity of long data sets into account, usually a windowed
discrete fourier transform or often called short time fourier transform (STFT) is
applied. Such methods can give more insight into the variability of the correlation
over time. The window length is chosen to be much smaller than the length of the
full time series. The data in the chosen window is then assumed to be stationary.

Smoothing data and removing drifts in time domain

For the removal of unwanted artifacts in time domain, the time series can be
convoluted with a kernel. This procedure is often called ”smoothing”. In par-
ticular the removal of long term drifts and the smoothing of the discrete data
as well as removing the noise from the analog measurements is of interest for
the neuromonitoring data analysis. We can write the convoluted /smoothed time
series x(t) as

T

t+7 I
Fanao() = 7 [ alt)- K= ot (2:2)

with 7 depicting the width of the kernel. Different kernels for the convolution can
be used, as for examples a rectangular (k(z) = 3) or parabolic (k(z) = 2(1—2?)?)
kernel, where x € [—1,1]. For the following analysis we will always choose the
parabolic kernel, since its behaviour is smoother than the rectangular one.

Cross-correlation of two time series

To find the most probable time delay between two time series, the method of
cross-correlations is used. The time series are shifted in time relatively to each
other and the correlation is calculated for every time shift 7.

(x(t)y(t+71)) = /:c(t) y(t+ 7)dt (2.3)

The 7 at which (x(t)y(t+7)) has a maximum, denotes in practical applications the
most probable time shift between the time series. This method will be applied in
the further analysis for two different purposes. If the time series are recorded by
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the same measurement device, than the detected time delay 7 between the time
series can give an indication to the physical processes producing such a time shift.
An interpretation using some basic biological and medical knowledge will then
be possible. But if the time series were recorded by two different measurement
devices and no absolute time stamp was available, the detected time delay will
give no valuable information.

In general, any time shift between the signals should be removed before ap-
plying the frequency correlation analysis. Ignoring this time delay would lead to
virtual phase shifts in the fourier coefficients and distortions in the correlations.
A simple example for this phenomenon is the shifting of two sinusoidal signals
by 1/4 of the period (corresponding to a phase shift of 77/2). This shifting leads
to a correlation coefficient between the two signals of zero even if the signals are
meant to be highly ”correlated”.

2.3 Application: Correlation between ...

To analyse the recorded neuromonitoring data, i.e. Licox, Invos, arterial blood
pressure, intracranial pressure and the temperature, the method of correlation in
frequency domain will be applied.

First analyses between the Invos and Licox data were performed by Brawanski
et al. [2002] showing the possible application of the method to neuromonitoring
data. In the following sections we will discuss all interesting correlations between
the recorded brain status parameters and give some indications to the origin of
the observed phenomena. Explanations of the phenomena will be discussed in
more detail in chapter three when a model for the haemodynamic and metabolic
processes in the brain is presented.

2.3.1 Invos on left and right hemisphere

First of all we will investigate the data from the Invos sensor on the left and right
hemisphere to test on one hand the reliability of this measurement method and
on the other hand to show in detail the analysis techniques used in this chapter.
All further analysis of the neuromonitoring data will be done in the same way,
but only the most important results are then presented.

The monitoring of patients at the intensive care unit with two Invos sensors to
get an indication of the blood supply of both hemispheres is a standard procedure.
Naturally we would expect an equal behaviour of the sensor data, but under some
circumstances as for example after a severe injury on one hemisphere or an injury
close to the Invos sensor, differences can appear.

As an example, the raw data from an Invos measurement on the left and
right hemisphere over a time period of 34 hours with a sample rate of 5seconds
is shown in figure 2.1.
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Figure 2.1: Raw data from the Invos sensor on the left and right hemisphere
of a patient. The relative saturation of the haemoglobin (Hb) with oxygen
(O3) is plotted for both sensors over a period of 34 hours (samples every 5s).

Time shift analysis

To determine the time shift between the time series of the Invos sensors, we use
the method of cross-correlation. The maximum of the correlation gives the most
probable time delay. For these two data sets, which were recorded by the same
measurement device, no time shift between the time series was detected. This is
expected since the Invos sensor measures the saturation of the haemoglobin with
oxygen in the blood and as long as the blood supply of one of the hemispheres is
not impaired no time delay should be seen.

Power spectrum analysis

Further the power spectrum or more precisely the absolute value of the coefficients
of the fourier transformed time series can give an insight into the underlying
processes. Due to the spectral separation of different processes, we find two
fundamental contributions in the Invos sensor data as shown in figure 2.2.

The typical one-over-f behaviour seen in many natural systems can also be
identified in the data from the Invos sensor. Further a white noise contribution
as it is often seen as noise from measurement devices can be detected. One-over-f
time series, i.e. the power behaves as 1/f, are often interpreted as self-similar or
fractal time series, because they show interesting fluctuations on many different
time scales. A very intuitive introduction with many examples to this topic is
given by Gardner [1978]. Compared to one-over-f noise, the white noise has a
power spectrum of the time series which is independent of the frequency, i.e. equal
power in every frequency. A white noise contribution typically shows a complete
random behaviour in the time series.

The crossing of the two contributions occurs in the power spectrum at around
2.5mHz or a cycle length of 6 minutes. Above this frequency the white noise con-
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Figure 2.2: Power spectrum of the Invos data shown in figure 2.1. The
power is given in arbitrary units (a.u.) over the frequency using a double
logarithmic plot. Two contributions can be identified: firstly the one-over-f
type signal (more accurate a f% signal with o = %) represented here as a line
with a negative slope and secondly a contribution of white noise (horizontal
line). The intersection of both lines occurs at a frequency of ~ 2.5mHz or a
cycle length of ~ 6 min.

tribution dominates the one-over-f behaviour. Interestingly the power spectrum
suggests that even for high frequencies the one-over-f noise contribution never
vanishes.

In the whole analysis of the neuromonitoring data, this phenomenon of two
contributions to the power spectrum is seen in all time series analysed.

Correlation in frequency domain

After having performed the analysis on the common behaviour of the data, the
correlation between the time series in the frequency domain is investigated. Small
frequency windows are taken for the analysis, usually 10 to 30 fourier coefficients
per window, to calculate the correlation between the time series. For a more
intuitive representation of the results a plot of the correlation over the cycle
length instead of the frequency is chosen in figure 2.3.

A clear difference can be seen between the correlation of the high and the
low frequency content. The Invos data is well correlated for cycle lengths above
5 minutes (correlation coefficient is above 0.5), while for smaller cycle lengths the
correlation breaks down and is negligible. Note, with statistical tests using white
and coloured (time correlated) noise the level of the correlation coefficient for
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Figure 2.3: Correlation in the frequency domain between the Invos signals
shown in figure 2.1. Every point corresponds to the correlation between ~ 20
fourier coefficients plotted at the mean cycle length of the chosen frequency
window. Both Invos signals are significantly correlated (correlation coefficient
above the noise level of ~ 0.5) for cycle lengths above 5minutes. For long
cycle lengths (> 2h) as well as for high frequencies/short cycle lengths the
correlation breaks down.

significantly correlated signals can be determined as shown in Brawanski et al.
[2002].

Furthermore, a small drop of the correlation for very long cycle length is
seen in the plot. This can be explained by the drifts of the sensors coming either
from the sensor equipment itself or by possible changed environment in the tissue
beneath the Invos sensor.

Interestingly, the signal in the correlated frequency range (above 5minutes
cycle length) corresponds to the one-over-f behaviour in the power spectrum
plot (figure 2.2) which typically corresponds to the behaviour of natural systems.
Further the crossing of the lines of the one-over-f noise and the white noise occurs
at around 5 minutes cycle length, where the power of the one-over-f signal is about
10 times less then the one from the white noise. Tests with synthetic data have
shown a robustness of the correlation method down to a signal to noise ratio
(SNR) of 1:10. This SNR corresponds exactly to the crossing of the two lines in
the power spectrum. Therefore, correlations between the two Invos signals in the
higher frequencies can not be excluded.

Reconstruction and filtering of the data

To get an impression of the waveform of the significantly correlated part of the
signals, the data can be reconstructed by using only the significantly correlated
frequencies in the inverse fourier transform. The resulting signals of the Invos
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sensor for the left and right hemisphere are shown in figure 2.4.
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Figure 2.4: Reconstructed Invos signals using only the significantly corre-
lated frequencies shown in figure 2.3. This corresponds to a frequency filtering
using a rectangular window between 5 minutes and 2 hours.

Comparing these signals to the raw data (shown in figure 2.1), the removal
of the noise and the drift by the reconstruction can clearly be seen. With this
knowledge, we could try to obtain similar data just by filtering or smoothing
the data in time domain using the kernel convolution method. Using a drift
removal method of +2 hours (i.e. smoothing the data with a £2hours kernel and
subtracting this from the original data) gives the drift removed signal. Further
smoothing the data with a £2minutes parabolic kernel, the signals shown in
figure 2.5 are obtained.
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Figure 2.5: Raw data from the Invos sensors filtered in time domain using
a smoothing of £2 min and a drift removal of £2 hours. Filtering in time do-
main shows the same result as the frequency filtered time series in figure 2.4.

It turns out that the signals from both Invos sensors (after applying the kernel
convolution /smoothing method) match even better than the ones obtained by the
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frequency reconstruction method. The deviations at the boundaries seen in the
frequency reconstruction are due to the sharp filtering in the frequency domain
and disappear when using the time domain filtering.

Conclusions

From the theoretical point of view, we can assume to have a one-over-f process
from the natural system (the patient) which is covered by white noise originating
from the measurement device (the Invos sensor). Filtering the data in time
domain using a +2 hours drift removal and a 4+2 minutes smoothing, we obtain
reasonable data showing the correlated content of both Invos channels.

From the medical point of view we can conclude, that the Invos sensor is a
reliable measurement method, since the correlation between the time series is
stable over long time periods. For the further analysis, we are only interested
in the variations (above 5 minutes) of the signals, since Metz [2001] already indi-
cated that only the dynamics of the signals is of interest for the clinical analysis.
Further, the long time drifts seem not to contain any valuable information and
can therefore be neglected.

2.3.2 Licox and Invos

After having presented the detailed analysis of the Invos data, the data from
the two sensors measuring the oxygen supply of the brain is now analysed. The
partial oxygen pressure in the brain tissue (measured by the Licox sensor) is
compared to the oxygen content in the blood or more precisely to the saturation
of haemoglobin with oxygen in the blood (measured by the Invos sensor).

A correlation between the two parameters is expected since both sensors mea-
sure the available oxygen for the nerve cells. First analyses have been done for
previously recorded (Invos and Licox) data by Brawanski et al. [2002] where the
authors presented how advanced spectral estimation methods can be used to
calculate correlations between biomedical time series. The question on the com-
mon information content between Invos and Licox could be positively answered,
showing the stability of the correlation on a large group of patients.

Problems in the measurements of Licox and Invos can arise if they are placed
too close to or into an injured tissue. In such a case no correlations between the
sensors can be expected.

First the time shift between the signals is investigated. As described in the
introduction, the problem of time synchronisation can arise if two different mea-
surement devices are used. For the pair of sensor signals analysed in this section,
the devices were started at different points in time. Therefore any coupling di-
rections or time delays due to processes in the brain, can not be investigated by
using the cross-correlation analysis. But for the further analysis the data was
aligned in time.



28 CHAPTER 2. TIME SERIES ANALYSIS

Performing the correlation analysis in the frequency domain on this time
aligned data sets, the plot in figure 2.6 is obtained. As previously seen, the plot
can be divided into two main parts, the high frequency content (below 6 minutes
cycle length) which is not significantly correlated and a low frequency content
(between 6 minutes and 3 hours) which is highly correlated. Therefore both sig-
nals seem to have only common information down to a cycle length of 6 minutes.
Possible correlations in the higher frequency range are either not resolvable by
the method or not existing. The breakdown of the correlation above 3 hours is
again due to the drifts respectively trends in the data.
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Figure 2.6: Correlation in the frequency domain between Licox and Invos
signals based on continuous data of 27 hours. Both signals are significantly
correlated (correlation coefficient above the noise level of ~ 0.5) for cycle
lengths above 6 minutes. For very long cycle lengths (> 3h) as well as for
high frequencies/short cycle lengths the correlation breaks down.

Overall the signals are well correlated over long time periods as was expected
and seen in previously recorded data. Still, the result of a linear correlation is
an interesting fact for the description of the oxygen supply in the brain. Both
sensors are measuring in some sense the oxygen content in the brain, but their
measured values are connected by a nonlinear dissociation curve, the diffusion
process and the cerebral blood flow as will be seen in chapter 3.3.

The actual variations of the signals are thought to be changes in the cerebral
blood flow (CBF). The CBF depends on one hand on the arterial blood pres-
sure (as will be shown in the next section) and on the other hand on additional
parameters influencing the arteries regulating the CBF.

Sometimes huge variations are seen in the data sets (mainly in the Licox
values) originating from a medical manoeuvre such as the cleaning of the air
tube of the patient. The patient is then supplied with pure oxygen prior to the
manoeuvre and therefore high oxygen values are measured.
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A detailed description of the relation between Licox and Invos, taking all
physical processes into account, is given in chapter 3.3.

2.3.3 Arterial blood pressure and oxygen supply

In this section we will focus on the connection between the haemodynamics, i.e.
primarily the arterial blood pressure, and the oxygen supply, i.e. the measured
signals from Invos and Licox. As shortly mentioned in the previous section, the
variations of the signals from the Licox and Invos sensors are assumed to be due
to variations of the cerebral blood flow. If more blood flows through the brain,
more oxygen per time is available for diffusion into the tissue and therefore a
higher oxygen content should be measured.

The variations in the cerebral blood flow itself are expected to be due to
the variations in the arterial blood pressure (ABP) as a higher ABP leads to a
higher blood flow and in the end to a higher oxygen content in the tissue. This
connection between ABP and the values measured with the Licox respectively
Invos sensor is investigated in the following.

Performing the same analysis as done in the previous sections, we obtain a
clear correlation between the signals for selected parts of the data. Again a look
at the correlations in the frequency domain (see figure 2.7) gives an insight into
the possible processes.

correlation

N 10° 10" 10°
cycle length [min]

Figure 2.7: Correlation in the frequency domain between the arterial blood
pressure and the oxygen content in the brain tissue (Licox sensor). The
analysis is based on continuous data of 21 hours. Both signals are significantly
correlated (correlation coefficient above the noise level of ~ 0.5) for cycle
lengths above 10 minutes. For longer cycle lengths (> 1.5h) as well as for
high frequencies/short cycle lengths the correlation breaks down.
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Noticeable is the small but clearly correlated region in the frequency domain
ranging from 10 minutes to just over one hour. Outside this range the correlation
breaks down quickly. On the low frequency end this can be explained by clearly
visible trends in the data and on the high frequency end by either a high noise
level and/or a damping mechanism from the brain.

The time shift for this pair of signals could be measured, because both mea-
surements were simultaneously recorded by the same device. A cross-correlation
analysis shows that the variations of the arterial blood pressure are seen ~
135 seconds earlier than the ones from the Licox sensor. This can be explained
by two processes. Firstly by the reaction time (the so-called tggy time) of the
Licox sensor of around 90 seconds and secondly by the time the blood needs to
reach the capillaries and oxygen to diffuse into the tissue. From this knowledge
we can conclude that the arterial blood pressure must be the driving force of the
seen variation in the data measured by the Licox sensor.

But as mentioned before, we can only see this correlation in parts of the data
sets (less than 10% of the data). Later, during the discussion of the model, we
will learn that the autoregulation plays a major role in the correlation of the
ABP with the oxygen supply. Only if the autoregulation, i.e. the regulation of
the blood flow by the brain’s arteries, is impaired, a correlation between ABP
and Licox/Invos should be seen.

2.3.4 Arterial blood pressure and intracranial pressure

Focusing on the haemodynamics, we will now investigate the connection between
the driving force of the system, the arterial blood pressure, and the intracranial
pressure, which is one of the most important brain status parameters monitored
on the intensive care unit. The relation between these two parameters is an
important factor to understand the hydrodynamic system in the brain.

The human head can be seen as a closed compartment in which the brain and
the intracranial fluid is contained. A local swelling in the brain can lead to an
increase of the intracranial pressure by a diminishment of the available volume
and therefore a compression of the brain tissue. The question to be asked, when
analysing the sensor data, is, whether an increase of the arterial blood pressure
can lead to an increased intracranial pressure or not.

This connection could be expected, since the increase of the arterial blood
pressure leads to an increase of the (arterial) blood vessels and a reduction of the
available volume in the brain. But this increase of volume can be compensated
by an increased absorption of the cerebrospinal fluid as described in the first
chapter.

In the analysis of more than 670 hours of data we could identify a section
of 9hours of continuous data showing a significant correlation. As usual, the
correlation between the two time series is plotted over the cycle length of the
corresponding frequency window (figure 2.8).
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Figure 2.8: Correlation in the frequency domain between the haemodynam-
ical signals: the arterial blood pressure and the intracranial pressure. The
analysis is based on continuous data of 9hours. A significant correlation
(correlation coefficient above the noise level of ~ 0.5) is only given for cycle
lengths above 15 minutes. For shorter cycle lengths one can see a good cor-
relation around 5minutes, before it breaks down for high frequencies/short
cycle lengths.

Again the plot showing the correlation can be divided into two main parts.
The high frequency content is not well correlated, except a few high peaks below
1 minute cycle length which are probably artifacts of the measurement device.
Whereas the low frequency content has a high correlation, in particular for cycle
lengths above 20 minutes. To get a better impression of the actual waveform,
the arterial blood pressure and intracranial pressure are plotted (after a filtering
in the time domain) in figure 2.9. From the plotted time series, a very good
correlation of the larger and longer oscillations can be seen in contrast to the
ones on the smaller time scale.

Since both measurements are recorded with the same analog/digital converter,
the time shift between the signals can be calculated. The variations of the ar-
terial blood pressure are seen 30 seconds earlier than those from the intracranial
pressure. This supports the hypothesis that the arterial blood pressure is the
driving force of the system.

As mentioned before, the correlation between the haemodynamic parameters
(ABP and ICP) could only be seen very rarely (in 1.3% of the data). This will
get more clear in chapter 3, where the model of the haemodynamic and metabolic
processes in the brain is presented. We will see, that the ICP is stable, as long as
cerebrospinal fluid (CSF) can be absorbed into the venous blood to compensate
the increased volume of the arteries and other blood vessels. Without CSF no
compensation is possible and a rise in the ABP is followed by an increasing ICP.
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Figure 2.9: Filtering the raw data from the arterial blood pressure and the
intracranial pressure in time domain with a smoothing of £2min and drift
removal of +£4h. The correlation of the long and big oscillations are clearly
visible, in contrast to the short time oscillations which are not well correlated.
This observation is in good agreement with the plot in figure 2.8.

Then, the arteries transmit the pressure directly to the brain tissue.

From the medical documents and nuclear magnetic resonance images we can
support this theory. The cerebrospinal fluid was (up to a small amount) fully
absorbed. The patient had a severe swelling of the brain, the scalp had to be
opened to overcome a further increase of the brain pressure.

2.4 Conclusions

Concluding the results of this chapter, we distinguish between a theoretical and
a medical part.

Focusing on the theory: With the correlation analysis in the frequency domain
we can extract a lot of valuable information. It seems that the signals are often
linearly correlated. Higher order statistics like mutual information or transfer
entropy seems not to be necessary to reveal higher order correlations. In preceding
tests, these (higher order statistics) methods were also applied to the data, but
showed equivalent results. However, difficulties with the statistics arise, since
these methods need longer time series with a better signal to noise ratio.

The analysis of the correlation in the low frequency range (variations above
5 to 10 minutes) shows a high correlation between the signals. In the power
spectrum this frequency range corresponds to a one-over-f type noise behaviour
which is typically seen in natural systems. The correlation in this frequency
range seems to be a good measure on which statistical tests can be applied.
This measure could therefore be used in future devices monitoring the patient.
Changes in the correlation of the signals could indicate a variation in the patients
condition and raise an alert.
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The drifts or trends in the time series (cycle length above 2 hours) seem not
to contain any valuable information, no correlation is seen between these signals.
Therefore we suggest to remove the drift in time domain by kernel-smoothing.
But one exception should be mentioned here. The drift of the Licox sensor is
correlated with the temperature seen in at least two data sets of 30 and 50 hours.
An explanation for this correlation can not yet be given, since the Licox sensor is
temperature compensated and calibrated. The phenomenon is still under inves-
tigation by the company providing the Licox sensor, but maybe a physiological
explanation is more reasonable than a technical one.

Furthermore the signals below 2 minutes cycle length have either no common
information content or the method used in this analysis cannot resolve these
correlations. Still the typical one-over-f type behaviour is seen in this frequency
range, even if it is covered by a dominating white noise process. Therefore we
suggest to smooth the data in time domain with a kernel of £2 minutes.

From the medical point of view: The Invos sensor gives reproduceable and
stable measurements over longer periods of time (34 hours — as shown in the
example above), but the placement of the sensor is important. When correctly
placed (not too close to the injured tissue) the variations/dynamics of the data
can be trusted. The absolute values of the sensor are not always reliable due to
unknown trends.

Under normal conditions we can also see stable correlations between Licox and
Invos — in the example shown above on a period of 27 hours. The origin of the
actual variations of the data values can be explained on one hand by variations
in the cerebral blood flow, which produces only small variations and on the other
hand by clinical manoeuvres (supply of the patient with air consisting of 100%
oxygen) resulting in huge oscillations in the data. These phenomena are explained
in great detail in chapter 3.3.

The arterial blood pressure seems to be the driving force of the hydrodynamic
respectively the haemodynamic system if a disease is present. In the case of an
impaired autoregulation (was seen only in less than 10% of the time) it can lead to
the coupling between the ABP and the Licox values due to the linear dependence
of the cerebral blood flow on the ABP. If a swelling of the brain is present, then
the ABP couples also with the ICP due to the missing CSF to compensate the
volume changes (this was only seen very rarely in 1.3% of the time).






Chapter 3

Model of the haemodynamic and
metabolic processes in the brain

With the aid of biological and medical knowledge about the dynamical prop-
erties of the brain — mainly the haemodynamic and metabolic (oxygen supply)
processes — a global model for the dynamical behaviour of the system ”brain”
can be designed.

Previous analysis methods only focused on parts of the system, using for ex-
ample correlation analysis of the time series. With the capability of investigating
the system using a model it should be possible to explain the observed phenomena
within a global context.

The final goal of such an analysis is to find a model which can reproduce
and explain all the measured data, i.e. the combination of haemodynamics and
metabolics. In this case it would then be possible to compare simulations of
the model with the measured data — after fitting free parameters of the model.
Deviations between the prediction of the model and the measured data could
indicate a possible change of the parameters i.e. the patients state of health.

In this chapter we propose a basic hydrodynamic model with realistic exten-
sions to existing models which fits the needs of neurosurgical applications. In a
second step we will couple this to a newly derived model describing the meta-
bolic processes in the brain. This will result in a new so-called combined model.
The main connection between the two models is the cerebral blood flow which is
hardly measureable in clinical applications over longer periods. Therefore this pa-
rameter determined by the model can give valuable information to the physicians
for the treatment of the patient.

In the following the fluid dynamical and the oxygen supply model will be
described in detail and validated on typical curves and measured data. It will get
clear, how the observed phenomena seen in the previous section can be explained
within the context of this model.

35
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3.1 Introduction

In this chapter, first a hydrodynamical model based on interacting subunits, the
compartments, will be derived. Compartment models of the present type have
a long history, dating back to the earliest of such models formulated by Monro
and Kellie in the end of the 18th and begin of the 19th century using a three
compartment model (arterial, venous and brain tissue). More recent works on this
type of models are using an increased number of compartments and relaxations
of some assumptions. But many of these models lag of the correct description of
one or the other processes in the brain. Often, instead of a full description of the
autoregulation processes, a constant blood flow is assumed or the compressibility
of the brain tissue is neglected (Kadas et al. [1997], Lakin et al. [1996]). For the
modelling of the autoregulations, Czosnyka et al. [1992] and later Bekker et al.
[1996] proposed the use of a pressure depending nonlinear resistance, regulating
the blood flow. Extensions to the description of the capacitance of the blood
vessels and the brain tissue were then given in more detail by Czosnyka et al.
[1997] and comparisons with measurements by Stevens [2000].

The model presented in this work will more closely follow the one proposed
by Ursino and Lodi [1997], since it uses a more realistic description of the au-
toregulation process and takes into account the possible collapse of the veins in
a preliminary step. Still, some more consistent extensions will be presented here,
in particular regarding the compression of the veins and using a simpler equation
for the autoregulation. Many basic concepts of the later works of Ursino were
already presented in the excellent paper from 1988 (Ursino [1988]).

After presenting a hydrodynamical model, which is adapted to the require-
ments of neurosurgical applications, the details of the oxygen supply will be
discussed. Krogh [1918-1919] proposed as the first a model for the description
of the oxygen supply in tissue. An elaborated discussion of the literature and
the assumption of the Krogh cylinder is given in Reneau et al. [1967] as well
as results of numerical calculations. In the following years Reneau and others
published further works considering countercurrent flows and the undersupply of
tissue (Reneau and Knisely [1971], Reneau et al. [1970], Hudetz et al. [1982]).
Still, the derivation of the analytical expression for the mean oxygen pressure in
tissue, as measured by a device like the Licox sensor, and the oxygen content
in the blood, as measured by the Invos sensor, and in particular their relation-
ship, were not presented in any works published. The reason for this is that
until a few years ago the data of both sensors couldn’t be recorded over long
periods. Therefore, the possibility to compare experimental measured data with
theoretical predictions was not existing.

In this work we will also show, which further difficulties have to be overcome
to get a meaningful comparison of the absolute values of the predictions with
measured data.
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3.2 Fluid dynamics

In this model approach, fluid and matter constituents within the human head are
subdivided into a number of interacting subunits, namely the compartments. The
interactions are mainly determined by fluid dynamical processes. Basically the
blood and the cerebrospinal fluid (CSF) will interact as separate flows between
the compartments, whereas the brain tissue will be depicted by one compartment
consisting of soft matter.

The compartment model used in this work is presented in figure 3.1 showing
a closed overall compartment with only one inflow and one outflow of blood. All
other fluid dynamical processes take place in this overall compartment. In this
model we will distinguish between the following 7 compartments:

A - arteries, C - capillaries, V - veins, S - sagittal sinus, B - brain tissue,
F - cerebrospinal fluid and E - extra volume describing swelling of brain tissue.

The details of each compartment will be discussed in the following sections.
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Figure 3.1: A hydrodynamical model describing the processes in the brain
using 7 distinguishable compartments: A - arteries, C - capillaries, V - veins,
S - sagittal sinus, B - brain tissue, F - cerebrospinal fluid and E - extra volume
describing swelling of brain tissue. For every compartment a pressure py can
be defined as well as flows (gxy) respectively resistances (Rxy) between the
compartments. Furthermore for volumes with a membrane a capacitance

C'xy is defined.

To make it easier to specify for example the pressures in the compartments
or the flows between compartments, the following conventions will be applied.
For the pressure in compartment ”A” the variable p4 will be used. When two
compartments are involved as for example the flow between compartment ”A”
and "C”, the variable q4¢ is used. To depict the standard value of a variable an
index n will be attached as for example gacy,.
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The physical equation describing the hydrodynamical processes is based upon
the conservation of mass and reads as

dm 8m dp Om IOV |
2 =g P, o v o with m(t) = p(t) - V(1). (3.1)
:V —p

The change of mass in the compartments depends on the fluxes in and out of
the compartment (g;) as well as on the changes of the density ( af ) and on the
change of the volume of the compartment ( ) For incompressible media, like

the fluids

, 8t is of course zero. Therefore the ﬁrst term in (3.1) can be neglected.

3.2.1 Assumption for the hydrodynamical model

In the following, the assumptions for the compartment models used in this work
are stated from which the equations are derived later:

i) The blood and the CSF (mainly consisting of water) are fluids and can
be assumed as incompressible media. Therefore a constant density in the
compartments (p = const = dp = 0) due to the isotropy is assumed.

ii) The brain tissue is, in contrast to the fluids, a compressible medium, i.e.
p # const = p(t) = f(p(t)) for a given volume and temperature (V,7T =
const). In our model we always assume the temperature to be constant.

iii) The flow in the blood vessels is laminar, since the Reynolds number of
blood in the arteries and the capillaries is well below the transition Reynolds
number of 2000, which defines the change from a laminar to a turbulent
flow. Therefore we can use the Hagen-Poiseuille law to describe the flow
between the compartments. According to this law, the flux depends only on
the pressure difference between compartments A and C and the resistance

of the vessels
Apac _ ba—DPpc

— 3.2
Rac Rac (3:2)

qac =

iv) The membranes between the compartments, i.e. the blood vessels, are as-
sumed to be elastic. Accordingly, we define the capacitance of the vessels as
dV = C(p)dp. For the volume of a compartment with an elastic membrane
it follows:

v-ti= [ Clons (33)

where p = Pezternal — Pinternai 1S the membrane pressure. For the volume
change < d A of volume A and an external pressure pg we derive from

d(PA - pB)
dt )
(3.4)

PA—PB ) dVA
Va—Vy, = / C(¢)de the equation e C(pa—psB)-
0
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If the capacitance is independent of the pressure we obtain from

d d —
Va—Vy, =C-(pa—pp) the equation aVa =C- M.

dt dt (8:5)

v) The cranial bone acts as a closed compartment, i.e. the total volume is
constant, and therefore the Monro-Kellie doctrine can be formulated as

Y Vi=Vi = Y ‘Z = 0. (3.6)

3.2.2 The compartments

Before going into the details of the fluid compartments, we will shortly address
the role of the brain tissue (compartment "B”) in the model. The brain tissue
consists of soft material which can be compressed. An increase of fluids (CSF
and blood) in the brain can therefore be compensated by the brain tissue. But
this has of course as consequence an increase of the intracranial pressure.

The compliance of compartment B is assumed to be depending on the intracra-
nial pressure pg. In Ursino and Lodi [1997]) an equation for the compliance of the
brain tissue is given, which will be slightly modified by adding an extra pressure
ppo to overcome an unrealistic divergence at pg = 0,

1
\pB| + PBO)

Cols) = 1 (37

where kp defines the stiffness of the brain tissue. Furthermore, the membrane
between the brain tissue and the cerebrospinal fluid compartment is very thin
and soft, i.e. equal pressures in both compartments (pg = pr) can be assumed.
First measurements with dual ICP sensors in the brain tissue and in the CSF
compartment support this assumption (Woertgen et al. [2003]).

In the following subsections, we will go through the compartments of the
model and shortly mention their important properties.

Autoregulation of the arteries

The arteries, described by compartment ”A”, have due to their muscular layer
the capability of controlling the cerebral blood flow. The blood flow through the
brain is kept constant over a wide range of the blood pressure to guarantee a
continuous supply of the tissue with oxygen. This mechanism is called autorequ-
lation. A measurement on baboons describes the dependence between blood flow
and arterial blood pressure (figure 3.2).

Physiologically, the arteries have via their muscles the ability to dilate or con-
strict which results in a changed vessel resistance. In the model, this regulation
is therefore described by adjusting the resistance R4¢ of the arteries. In the case



CHAPTER 3. MODEL OF THE HAEMODYNAMIC AND METABOLIC PROCESSES
40 IN THE BRAIN

e

‘o™

= 70 - PEPSF S NI B

- o

E 60} o ¢

5 o

L 50 e

O

8 ¢

e}

5 40

O =z

%‘ 2l 1 1 1 1 1 | ] 1 ] | ]
o “a0 60 80 100 120 140

Mean arterial blood pressure [mmHg]

Figure 3.2: The cerebral blood flow in relation to the mean arterial blood
pressure shows the autoregulation of the brain. In a wide pressure range the
blood flow is constant. In the case of an impaired autoregulation one obtains
a linear relationship between pressure and flow (not shown here). Values are
taken from measurements on baboons (adapted from Purves [1972]).

of severe head injuries or deep anaesthesia, the autoregulation can be impaired
resulting in a nearly constant resistance of the blood vessels and finally in a linear
dependence between flow and pressure.

Assuming a microvascular bed consisting of a parallel arrangement of several
microvessels with equal inner radius r, the blood volume is then directly propor-
tional to r2. Whereas the resistance can be assumed to be inversely proportional
to r* (Hagen-Poiseuille law). We can then write for the resistance

k}fAc — kRAC — kRAC
Va?  Cap®(pa —pp)?

(3.8)

where Vi = Cap - (pa — pp) and kg, is a constant determined by the standard
values of the volume and the resistance of the arteries. Since the autoregulation is
done by constriction and dilatation of the arteries (volume changes), depending on
the blood flow, the compliance varies accordingly. The autoregulation is therefore
a regulation mechanism of the compliance which can be described by the following
differential equation

1 _
dCap = —— (Cap — Capregla-z)) with z = dac = 9acn

dt T qACn

(3.9)

where Capreq is an "ideal” adapted capacitance to guarantee the constant blood
flow through the brain. The constant « specifies the degree of the autoregulation
and 7 the time constant of the mechanism. The function C4p,4 has the following
form (proposed by Ursino and Lodi [1997]) with an upper and lower limit of the
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compliance corresponding to maximal constriction and dilatation

ACyp

However the autoregulation curve is not symmetrical since the increase in blood
volume (and compliance) induced by dilatation is higher than the decrease in
blood volume induced by constriction. Hence, two different values must be cho-
sen for the parameter AC 4p, depending on whether dilatation or constriction is
considered. Therefore we have

CABreg(x) = CABn - A61143 - tanh ( ’ ) . (310)

ACyp if <0 ie. dilatation,

. . o (3.11)
ACypy if >0 i.e. constriction.

ACyp = {

Cerebrospinal fluid (CSF)

A good general review about the main aspects of the production and absorption
of the cerebrospinal fluid is given in Sullivan and Allison [1985]. The cerebrospinal
fluid surrounding the brain tissue is interacting with three compartments: C -
capillary blood vessels, S - sagittal sinus & F - the fluid compartment itself.

The production of the CSF is taking place at the capillary level, the ventricles,
and the absorption in the sagittal sinus (see chapter 1.1). The driving force of
both processes is the pressure difference between the capillaries and the CSF
compartment respectively between the CSF compartment and the pressure in
the sagittal sinus.

From a medical point of view it is clear, that a reversal of both fluxes is
not possible. Therefore the resistances must be modelled as diodes. For the
absorption of the CSF the amount of CSF volume must additionally be taken
into account. When no fluid is available for absorption, the resistance must be
infinite, since otherwise negative volumes would appear. It follows for the flows
gcr (=production) and gprg (= absorption)

_PB—DPs

Pe —PB - nd qrs = ——— (3.12)

qcr = —F
F Rerp Rps

where

Repn it pc —pp >0
00 otherwise

Rer(pe —pB) = { and (3.13)

(3.14)

00 otherwise

Rpg, if —pg >0) and (V@ >0
RFS(pB_p,SavF):{ e (5 s > 0) (Ve >0)

Furthermore, an injection of fluid from outside of the brain into the CSF com-
partment can be modelled by a flow ¢q;. An inflation of a balloon or a swelling
is modelled by the artificially appended compartment ”E”, where g defines the
in- and outflow to this compartment.
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The venous system

The venous system can be separated into two main parts: firstly the part leading
from the small capillaries (compartment ”C”) to the bigger veins (compartment
”V”) and secondly from the bigger veins to the sagittal sinus (compartment ”S”),
which has a stiff wall and is therefore incompressible.

For the first part, the resistance (Rcy) is assumed to be constant, since the
blood vessels are small and therefore relatively stiff. But when the veins are get-
ting bigger, they behave like a rubber hose, because they have no active elements
like muscles. The diameter — respectively the volume — depends only on the pres-
sure difference between the venous blood pressure and the pressure surrounding
the veins, the intracranial pressure. The resistance can be modelled in the same
way as for the arteries (equation (3.8)) by using the Hagen-Poiseuille law

kr
Ryg = 2. 3.15
) va ( )

The volume of the veins is determined by their compliance which is depending
on the pressure difference. Using the formula proposed by Ursino [1988], but
taking the absolute value of the difference py — pp to overcome a divergence, the
compliance for the veins can be written as

1
lpv — pB| + Pviy)

Cyp = - (3.16)

where ki defines the stiffness of the veins. As we will see later, it is possible to

derive the basic structure for the compliances of the veins and the brain tissue

from the global pressure-volume curve shown in figure 3.5. This pressure-volume

curve shows an exponential increase of the pressure, if the volume of a balloon is

increased: p = eV~ 4 p;. With simple algebraic manipulations, (first taking

the logarithm, then solving for V and finally taking the derivative with respect
av 1

to p) one obtains for the compliance = C~ P

3.2.3 Final set of equations

To obtain the final set of differential equations, we write down the equation of
mass conservation for every compartment. This is the basic equation which must
be fulfilled in every compartment. For the compartment ”B” we use equation (3.6)
to integrate the assumption of the head to be a closed compartment (Monro-Kellie
doctrine).

Now putting together all equations including the ones presented in the previ-
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ous section, we obtain for each compartment

DA — Do - . .
A qa— ]45)7[( =Cuap - (pa—pB)+Cap- (Pa —PB) (3.17)
LAC
bPa—Pc Pc—Pv Pc—DPB
C: — — =0 3.18
Rac Rev Rer (3.18)
Vv p%_pv—pVR_pSZCVB-(pV—pB) (3.19)
cv Vs
pPc —PB PB—DPs
B : — =
qr + 4 + RC{T Rrs
Cppp — Cap - (pa—pB)+ Cap - (Pa—ps) — Cvp - (bv — PB)
(3.20)
Pv —DPs PB — Ps
S: —— —qgg+— =0 3.21
P A (3.21)

and for the autoregulation respectively the capacitance of the arteries

qac — qAcn

Cap = ——(Cap — Capreg(a-x)) with z =
T qACn

(3.22)

Furthermore we have to take the temporal evolution of the volumes of compart-
ment ”V” and "F” into account

_bc—PpPv Pv —DPs

"~ Rev Rys

bc —PB PB—DPs
Reor Rps

Wy

(3.23)

VFIQ1+

(3.24)

since the resistances Rps = Rps(pp—ps, Vr) and Rys = Rys(Vy/) are depending
on these volumes.

A closer look at the equations shows, that the mass conservation equations
of compartment "A” and ”S” (grey shaded) are redundant. Therefore, we finally
obtain

5 coupled non-linear differential equations (3.19), (3.20), (3.22)-(3.24)
plus one extra constraint from compartment ”C” (equation (3.18))
and as variables: pg, pv, Cag, Viy and V.

This set of differential equations has to be solved numerically, where the con-
straint of compartment ”C” causes difficulties, since in general it can’t be explic-
itly solved for pc. The external driving force of the system is described by pa(t)
and pa(t). At the outflow of the system (sagittal sinus), a constant pressure pg
is assumed.
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3.2.4 Standard values

Before verifying the model on data known from medical literature, the standard
values for the parameters of a healthy patient have to be determined. First the
pressure distribution in the cerebral blood vessels will be investigated. This is
shown in figure 3.3 for two different medical conditions. The pressure drops from
the arteries over the capillaries to the veins, where at the end of the veins — in
the sagittal sinus — the pressure is just above 0 mmHg.

As standard values for the pressures in the different compartments we there-
fore use

Pan = 100 mmHg pvn = 15 mmHg PBn = Prn = 10 mmHg (3.25)

In the medical literature, the standard unit of pressure is mmHg. To make it
easier to compare the results with other works, we also use in this work mmHg
as the unit for the pressure.
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Figure 3.3: Distribution of the pressure in the blood vessels of the brain
(more exactly in the cerebral vascular bed) under normal conditions and
in a situation with constricted blood vessels (vasospasm) (adapted from
Mchedlishvili [1986]).

For the corresponding volumes, we use the standard values given in the med-
ical literature as for example in Purves [1972]

Vin = 15ml Virp = 40l Vi = 1000 ml (3.27)
Ve = 10l Ven = 80ml Vien = 30l (3.28)

where for volume Vi it has to be noticed, that from medical experiments it is
known that only 30ml of the total 170 ml cerebrospinal fluid can be absorbed.
Most of the CSF is located in the spinal chanal, so that it can not be absorbed
in the sagittal sinus.
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The main flows of interest are the blood flow from the heart into compartment
”A” and the production of cerebrospinal fluid from the capillaries in the ventricles
into the compartment "F”, where in medical literature the values

qan = 600 2L qorn = 0.4 2L (3.29)
are well established. With these basic parameters the standard values for the re-
sistances can be calculated. The resistance between two compartments is defined

as the ratio of the pressure difference and the flow between the compartments.
For R ¢ this would be ’%. Taking this into account, we obtain for the blood

n

and the cerebrospinal fluid circulation (units of resistance is ;ﬁfi ):
Racn = 0.125 Ry g, = 0.0166 Repn = 37.5 (3.30)
Revn = 0.0166 Rpgn = 12.5. (3.31)

Since the resistance Ry g is not constant but depending on the volume of com-
partment ”V” — see equation (3.15) — we calculate the parameter kg, , using the
volume Vi, to obtain kg, = 26.66.

To determine the parameter kg, in equation (3.8) we first need the capaci-
tance of the arteries since the capacitance determines the volume of the compart-
ment. Following Ursino and Lodi [1997] the standard value for the capacitance
is

AC 45, = 0.165 -2l

mmHg

Cupn = 0.15 -l
mmHg AC A5y = 0.065 —l

mmHg

(3.32)

while ACup1/2 is determined by the upper (140 mmHg) and lower (70 mmHg)
limit of the autoregulation curve. A good review on values of the pressure depen-
dence of the autoregulation curve is given in Gao et al. [1998]. The dimensionless
parameter of the strength of the autoregulation can vary from o = 1.5 to a = 0.2
for a full functional respectively an impaired autoregulation. The time constant
of this process is assumed to be in the range of 7 = 10s (in Giulioni and Ursino
[1996] a value of 5s and in Ursino and Lodi [1997] a value of 20s is given).

We are using for the capacitances Cy g and Cp the following parameters as
first proposed by Ursino [1988] and slightly modified by us for a more realistic
behaviour:

ky =03 % kg =0.26 % (3.33)
pvo = 2.5 mmHg ppo = 2.5 mmHg. (3.34)
With this set of parameters (valid for a healthy patient) the behaviour of our

model can now be validated. After having done this, the same model can then
be used to reproduce measured data of patients from the intensive care unit.
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3.2.5 Validation of the model

In the following, typical curves known in the medical literature are reproduced
to show the applicability of the model and to explain the phenomena seen in
the time series analysis in the previous chapter in more detail. Furthermore a
discussion on the mechanism and measurements of the CSF production can now
be supported by calculations of the model.

Autoregulation curve

One of the basic and most important mechanisms determining cerebral perfusion
is the autoregulation. To reproduce this process, is a basic necessity of a hydro-
dynamical model of the brain. In figure 3.2 the measurements on a baboon are
shown and can now be compared to the behaviour of our model (figure 3.4).
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Mean arterial blood pressure [mmHg]

Figure 3.4: The autoregulation curve from the model shows the same be-
haviour as the measurements in figure 3.2. The increase of the cerebral blood
flow above the critical blood pressure was not possible to measure in the ex-
periment. Chosen parameters for the autoregulation (see equation (3.9)) are
a = 1.5 (with) and a = 0.2 (without autoregulation).

A good agreement between the two curves can be noticed, the plateau is
well established between 70 and 140 mmHg. Below an arterial blood pressure of
70 mmHg the blood flow shows a quasi-linear dependence. Above a critical blood
pressure of 140 mmHg the arteries can not compensate the higher pressure, since
they can’t constrict further and therefore the blood flow above this pressure shows
a linear increase due to the nearly constant resistance of the arteries.

In our model, we can also show, how the blood flow relates to the arterial
blood pressure if the autoregulation is impaired. In this case the arteries are no
longer active elements, their resistance is nearly constant, and therefore the blood
flow increases quasi linearly with the pressure.
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Global pressure-volume curve

An important curve showing the behaviour of the system with increase of extra
volumes in the brain — for example due to a swelling — is the global pressure-
volume curve. In particular the behaviour of the intracranial pressure is of inter-
est, since it provides an opportunity to determine the overall compliance of the
brain.

A good review on determining the pressure-volume curve experimentally is
given in Sklar and Elashvili [1977], where constant flow injection and balloon in-
flation measurements are shown. The difference between these two measurement
methods shows up at that point in the curve where the exponential relationship
starts growing.

In figure 3.5 a balloon inflation measurement is shown. The volume can be
increased by some amount, without any increase of the pressure. This originates
from the possibility that some of the CSF is used to compensate this increase of
volume by absorbing CSF into the blood at the sagittal sinus. Whereas in a flow
injection measurement, the pressure would start growing immediately, since the
"effective” volume increase is calculated, where the absorption of the CSF has
already been taken into account.

In the literature mainly experiments with animals are presented. Data from
human patients using the constant flow injection method can be found in Fridén
and Ekstedt [1983] as well as similar measurements by Gaab et al. [1983].

pCSF :."4———- Exponential fit

30-40 mmHg —

Figure 3.5: Global pressure-volume curve/compliance of the brain. The
measurement of the global compliance is realized by increasing the volume
(AV) of a balloon in the brain or by injecting and extracting fluid from the
CSF compartment. An exponential function can be fitted for the increase
of the intracranial pressure. The resting pressure is then given at AV =0
(adapted from Sullivan and Allison [1985]).

As mentioned before, the pressure-volume curve determines the compliances
of the veins and the brain tissue. To check our model, a balloon inflation exper-
iment was simulated. The volume of compartment "E” was steadily increased
and the volume of this compartment was plotted against the intracranial pres-
sure, showing the results in figure 3.6. Due to the increase of the compartment
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"E”, in particular the veins and the brain tissue are compressed. The arterial
blood vessels have in contrast to that a higher internal blood pressure and active
elements regulating their volume. Therefore their compliance doesn’t play any
role in the resulting curve.
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Figure 3.6: The global pressure-volume curve produced by the model. The
exponential-type increase of the pressure (when the absorbable CSF volume
Vi reaches zero) is consistent with figure 3.5. Note, a reduction of the in-
crease of the intracranial pressure for impaired autoregulation can be observed
accompanied by a decrease in CBF.

The curve clearly shows that the intracranial pressure only rises when no
further cerebrospinal fluid can be absorbed (Vg ~ 0). This means that the CSF
is used for the compensation of the expanding volume AV by absorbing it into
the sagittal sinus.

Furthermore a difference in the increase of the ICP for different states of the
autoregulation can be seen. The increase of the ICP is smaller for impaired au-
toregulation than for a healthy patient. In this case, the arteries are no longer
acting against the external pressure and therefore they will also be compressed.
As a result of this, the cerebral blood flow in the impaired autoregulation situ-
ation decreases (due to the smaller volume of the arteries and therefore higher
resistance) in contrast to a healthy patient.

Cerebrospinal fluid production

From various clinical measurements the production of the cerebrospinal fluid
is either assumed to be depending on the cerebral blood flow or to be stable
over a wide range of the arterial blood pressure. In Sullivan and Allison [1985]
and Hoffmann [1987] these two possibilities are stated. In this section, a short
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explanation of the phenomena and the underlying process will be given by using
results from simulations conducted with the model. The knowledge about the
production is also important to explain the coupling seen between ABP and ICP.

For our model we used a pure pressure dependent production of the CSF, i.e.
the pressure difference between the blood in the capillaries and the pressure of
the CSF in compartment ”F” is the driving force. Simulations with and without
working autoregulation results in the following behaviour for the CBF and CSF-
production (figure 3.7).
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Figure 3.7: Dependence of the production of cerebrospinal fluid on the
arterial blood pressure. For both states (with and without autoregulation)
a good correlation between CBF and CSF-production can be observed, as
documented by experiments. But the origin of this correlation is the linear
dependence of the CSF production on the pressure difference between the
capillary and the CSF compartment!

The plot suggests that the cerebral blood flow is the origin of the CSF produc-
tion, since both curves show the same behaviour over the full range of the arterial
blood pressure. But effectively a secondary process is seen, the primary process
is the pressure depending CSF production. The autoregulation keeps the CBF
as well as the pressure in the capillaries constant, therefore the CSF production
is independent of the ABP. But if the autoregulation is impaired the pressure in
the capillaries varies with the ABP, due to the constant resistance of the arteries,
and therefore the CSF production grows nearly linearly with the ABP.

Arterial blood pressure - Intracranial pressure

In time series analysis, we have seen a coupling between the arterial blood pres-
sure and the intracranial pressure. The question to be asked is, does our model
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reproduce this coupling and if so, under which circumstances? Can we learn
anything from the results of such simulations for the treatment of the patients?

We simulated three different situations describing different states of physical
health. A patient with...

e active autoregulation and CSF to compensate volume changes (Vg > 0)
e impaired autoregulation and CSF to compensate volume changes (Vi > 0)
e impaired autoregulation and no CSF to compensate volume changes (Vi = 0)

To visualise a possible coupling, the intracranial pressure is plotted over the
arterial blood pressure. The results of the simulations are shown in figure 3.8.

20 T T T T T P T , T

5t with autoregulation - \.=30ml ——— |
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without autoregulation and Cg=0 - \fp= Oml ------
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40 60 80 100 120 140 160

Mean arterial blood pressure [mmHg]

Intracranial pressure [mmHg]

Figure 3.8: Relation between the intracranial pressure (ICP) and the ar-
terial blood pressure (ABP) for different states of the autoregulation, the
volume of the CSF fluid (V) and the capacitances of the brain tissue (Cp).
No or only moderate increase of the ICP is seen for situations with fluid
in the CSF compartment (Vz = 30ml). For impaired autoregulation and
no compensation fluid in the CSF compartment, the increase of the ICP
gets stronger especially when the brain tissue is not compressible anymore
(Cp =0).

As expected for a healthy patient, the intracranial pressure is independent
of the ABP. But if the autoregulation is impaired we obtain a linear increase of
the ICP. Both phenomena can be explained by the CSF production. As we have
seen in the previous section, the CSF production is depending on the ABP, i.e.
for impaired autoregulation a higher CSF production is expected for higher ABP.
Due to the constant resistance of the absorption of the CSF, the pressure rises if
more CSF is produced.

The situation changes clearly if the volume of the cerebrospinal fluid (V)
is fully absorbed, i.e. no compensation fluid is available. This situation was
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simulated for blood pressures above 100 mmHg. A sharp bend is seen in the
curves showing a stronger increase of the ICP which can be increased even further
by assuming the brain tissue to be stiff (Cz = 0). The increase is then as strong
as the one seen in the time series analysis where the relation between ABP and
ICP was 3:1 (see figure 2.8).

The main reason for the ICP rising is the increase of the volume of the arteries.
Since the autoregulation is impaired, the arteries are passive elements and act like
a rubber hose. The volume is then proportional to the ABP. This is equivalent
to the phenomenon seen in the global pressure-volume curve. Instead of an
expansion of compartment "E” — by a swelling or a balloon — the compartment
”A” increases its volume due to the impaired autoregulation and results in a rise

of the ICP.

Stability analysis of the system of differential equations

To analyse the stability of our system of 5 coupled non-linear differential equa-
tions, we calculate the eigenvalues of the Jacobi matrix at their fixed points. This
gives of course only information about the linear stability as shown in Wiggins
[1990]. Interestingly, all fixed points — for physiological reasonable parameters —
are stable, i.e. all eigenvalues are negative and real. Furthermore the system has
not only one fixed point, but a fixed point line. The location of the fixpoints on
this line depends on the initial condition from which the simulation is started.

Oscillating, diverging or chaotic trajectories are not found which seems to be
typical for biomedical systems. Still there could be a parameter range — probably
outside physiologically reasonable parameters — which shows asymptotically no
stable solutions.
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3.3 Oxygen transport

As described briefly in the first chapter, the blood circulation is responsible for
the transport of oxygen from the lungs to the cells. As will be seen later, the
Krogh cylinder is a good description for the oxygen diffusion processes between
the blood in the capillaries and the tissue as well as for the tissue itself. A good
overview of the oxygen transport in the human body is given in the textbooks
by Klinke and Silbernagl [2003] and Greger and Windhorst [1996], as well as in
Schmidt et al. [2000].

The intention of this section is the calculation of the mean oxygen pressure
in the tissue, which can be measured by a device like the Licox sensor. To be
able to do so, all diffusion processes including the cerebral blood flow have to be
taken into account. With such a model the relationship between the values of
the Licox and Invos sensor will be shown. The cerebral blood flow is thereby the
origin of the variations as was seen in time series analysis.

3.3.1 The blood

To supply the cells in the human body with oxygen, the blood first flows through
the lungs, where due to diffusion processes — triggered by the pressure gradient
between the oxygen in the air and in the blood — the blood is saturated with
oxygen. The oxygen in the blood is mainly bound to the haemoglobin, which
acts as an oxygen buffer. 98% of the oxygen molecules are buffered on the hae-
moglobin, only 2% of them are dissolved in the blood. The relation between the
oxygen saturated haemoglobin (HbO2) and the dissolved oxygen is described by
the oxygen dissociation curve (ODC), which will be discussed in the following
section.

Oxygen dissociation curve

The haemoglobin releases the bound oxygen into dissolved oxygen depending on
the oxygen dissociation curve (ODC) as shown in figure 3.9.

From the steep slope between 20 and 50 mmHg of the S-shape curve it can be
seen, how the haemoglobin acts as a buffer. Large variations of the saturation of
the haemoglobin will be reflected only in small variations of the partial oxygen
pressure (the dissolved oxygen). Therefore, the dissolved oxygen which is the
only oxygen able for the diffusion into the tissue, is kept stable over a wide range.

First measurements on human blood including a formula for the ODC were
presented by Hill [1910]. Later Adair [1925] proposed a formula with four con-
stants reflecting the 4 Fe sites on the haemoglobin to which the O5 molecules can
bind. A good explanation for the four constants is given in the book of Crys-
tal et al. [1991], where transition probabilities between the states of bound and
unbound Fe sites are used.
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Figure 3.9: Oxygen dissociation curve of human blood. The dissolved oxy-
gen respectively the partial pressure of oxygen in the blood (pbO3) is associ-
ated with the saturation of haemoglobin with oxygen (HbO;) in an S-shape
curve. Furthermore, the dissociation curve depends on the carbon dioxide
content (pCO,) in the blood, where pCOy = 40 mmHg represents normal
conditions (adapted from Reneau et al. [1969]).

For our purposes the equation describing the ODC proposed by Hill is suffi-
cient, reading
(%)
P50

P50

HbO, saturation = SbO, = (3.35)
where SbOs is an abbreviation for the saturation of haemoglobin in the blood
with Os. psg defines the oxygen pressure in the blood for a SbO, of 50%. Typical
values for the equation of Hill, using the two constants n and psq, were measured
for normal conditions by Zwart et al. [1984] (n = 2.5, pso = 26 mmHg) and
Severingshaus [1979] (n = 2.6, psp = 27.6 mmHg) as well as derived from the
Adair formula with the coefficients given by Roughton and Severinghaus [1973]
(n = 2.7, psp = 26.6 mmHg). For our model we will use the following parameters

n=26 and ps = 26mmHg. (3.36)

The saturation of haemoglobin with oxygen in the arterial blood is up to 99—
100%, i.e. the blood is fully saturated and could only transport more oxygen, if
the partial pressure of (dissolved) oxygen in the blood is raised. In contrast to
that, the venous blood shows a HbO, saturation of ”only” 65%, which indicates
still a good reserve of oxygen.
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Total oxygen content in the blood

First we present a convention for the expressions of the amount of oxygen in the
blood. An example would be pbO,y, which defines the partial oxygen pressure in
the blood. Now, the first letter can be either

p = pressure [mmHg],

S = saturation of haemoglobin with oxygen [%] or

cm?3 of Og ]

C = content/amount of oxygen [ -2y —=2s

and the second letter can be either
b = blood, a = arterial or v = venous.

The rest defines the molecule which can be either Oy or CO,. The total amount
of oxygen in the blood can be written as a sum of the two terms, the buffered
and the dissolved oxygen

CbOy = B - SbOs + 7 - pbO, (3.37)

~ 98% ~ 2%

where 3 = 0.201 CT% and vy =3-107° ﬁi?n%g, as given in Schmidt et al. [2000]
and other books. CbO; has therefore the unit ngif%. Using normal values
for the saturation and the oxygen pressure, a ratio of 98% of bound oxygen to
2% of dissolved oxygen is obtained.

3.3.2 The Krogh cylinder

The oxygen supply of tissue was first described by Krogh [1918-1919] using a
tissue cylinder around a capillary. In general it is assumed that the oxygen in the
blood can reach the tissue only by diffusion. Since the surface to volume ratio
in capillaries is the highest, due to their small diameter, here the largest amount
of exchange of oxygen takes place. Therefore arteries and veins can be neglected
for modelling the oxygen transport into the tissue. To get an impression of the
Krogh cylinder an illustration is given in figure 3.10.

For simplicity, cylinder coordinates are used in the description of the Krogh
cylinder. The z axis lies along the capillary and r defines the radius. At r =,
the capillary wall touches the tissue cylinder, whereas r = r; defines its overall
radius. The length of the tissue cylinder is given by L.

For the description of the Krogh cylinder and the diffusion processes, the
following assumptions are made:

i) General: The oxygen pressure gradient as the driving force of the diffusion
process. In this work, only radial diffusion is taken into account. Calcula-
tions of the oxygen pressure in the brain tissue using radial or radial and
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Figure 3.10: The Krogh cylinder representing a tissue cylinder around a
capillary. Red blood cells flow through the capillary carrying the bound
oxygen, which, after dissociation into the blood, diffuses into the tissue. r.
defines the capillary radius, r; the radius of the tissue cylinder and ”lethal
corner” the area in the cylinder with the lowest oxygen content (adapted
from Reneau et al. [1967]).

axial gradients were performed by Reneau et al. [1967]) and the results are
shown in figure 3.11. Only small deviations are seen in the first part of the
tissue cylinder. Since we are only interested in the mean oxygen pressure
in the tissue cylinder, this deviation cancels out and the axial gradients can
therefore be neglected.

ii) Capillary: The capillaries are straight pipes, running in parallel and hav-
ing a unidirectional blood flow. They are arranged in a hexagonal lattice
as shown in figure 3.12. The diameter is assumed to be constant and the
velocity profile is uniform, since the red blood cells can only pass the capil-
lary one by one as shown in the lower part of figure 3.10. Furthermore the
blood flow is assumed to be constant over the whole capillary length. The
capillary wall represents no resistance to the oxygen diffusion. The oxygen
pressure in the capillary is assumed to be constant in r and ¢.

iii) Tissue: The oxygen consumption in the tissue is assumed to be indepen-
dent of the local oxygen pressure (zero-order reaction). The cells may be
represented as a homogeneous volume distribution of sinks of oxygen, in-
dependent of time and position. Further the diffusion coefficient can be
assumed to be homogeneous.

A way to relax this assumption (which is only necessary for pathological

cases) is given at the end of this chapter.

Typical values for the radius of the capillary and the tissue cylinder as well
as the length of the cylinder can be found in different books as shown in the
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Figure 3.11: Oxygen pressure distribution in the tissue cylinder at maxi-
mum radius (r;) along the capillary. Calculations were done with and without
axial gradients in the oxygen diffusion equations. Only small variations at the
arterial end of the capillary (2'<0.1) are seen between the two calculations
(adapted from Reneau et al. [1967]).

following. It is necessary to distinguish between grey and white matter, since
they have different capillary densities.

The values for humans given in Bargmann [1977] for the radius of the cap-
illaries are around 3.5 um. The red blood cells, which are squeezed in the cap-
illaries, have a diameter of 7.7 um. For the capillary density of grey matter
1000-1100 capillaries/mm? and white matter 300 capillaries/mm? are typical. In
Purves [1972] values of 800-870 capillaries/mm? are given for cats in grey matter
and in whiter matter of 370 capillaries/mm?.

The length of the capillaries respectively the tissue cylinder is hard to deter-
mine. Sharan and Popel [2002] used for their multi-compartment model values
(observed in sheeps brain tissue) in the range of 600-1050 pm.

From medical observations we know that the Licox sensor is placed into the
white matter of the brain tissue. Therefore we use the following parameters in
our model

re=35pum and 7r; =31 pm = 330 % and L =770 ym (3.38)
where 7. is the radius of the capillary, r; the radius respectively L the length of the
tissue cylinder. One should mention that the ratio of grey and white matter in the
human brain was determined by Raff et al. [1994] as 57% to 43%. These values
were obtained by using magnetic resonance imaging techniques. Nevertheless we
can be sure, that the Licox sensor is placed in the white brain tissue.

Under normal conditions of the cerebral blood flow, we can assume for the
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Figure 3.12: Theoretical arrangement of capillaries in the brain using a
hexagonal lattice to guarantee an optimal supply of the tissue with oxygen
(adapted from Reneau et al. [1967]).

velocity of the blood respectively the red blood cells typical values of
v =400 £= (3.39)

as mentioned in Mintun et al. [2001]. Further, we need for the tissue cylinder the
parameters of the consumption, diffusivity and solubility of Os. A good review
of typical values in oxygen transport in blood and tissue is also given in Mintun
et al. [2001], from where we take the following values

A=45-107"802 and D =18-10% 2= (3.40a)
_ m30s
and ¢=26-107" L oe (3.40b)

where A is the Os consumption, D the O, diffusivity and ¢ the Og solubility. In
Mintun et al. [2001] only a consumption value for grey matter (8.2-107% %33052) is
given, but from nuclear magnetic resonance imaging measurements in Kn et al.
[2001] the values for grey and white matter were determined as 9.2:10~* and
4.5.10~4 L2202

pm3.s
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3.3.3 Theory

Our intention is to calculate the mean oxygen pressure in brain tissue ((pOa)).
First of all, we will give a rough outline of the calculation before going into the
details. The calculations can be divided into two parts, firstly the calculation of
the oxygen pressure in the blood and secondly the diffusion of oxygen into and
within the tissue.

The content of oxygen in the blood along the capillary (CbOs(z)) can be
calculated by assuming a constant metabolism in the tissue and using the velocity
from the cerebral blood flow. As boundary condition at the arterial end of the
capillary, the content CbOs(2=0) will be set to the oxygen content of the arterial
blood CaO,. For the diffusion processes, the partial pressure of free dissolved
oxygen in the blood (pbOs(z)) is needed. This can be obtained by solving the
equation of CbOy(z) for pbOs(z). Unfortunately the pressure can’t be derived
analytically, therefore either an approximation has to be made (contribution of
pbOy <« CbOs) or a nonlinear equation has to be solved numerically.

The oxygen pressure in the tissue will be calculated by using only the radial
gradients as mentioned in the assumptions. For the boundary conditions we
assume that the pressure is continuous at the interface between capillary and
tissue and that the pressure gradient vanishes at the tissue surface (r = r;). This
can be satisfied by reasons of symmetry, since the flux through the surface of two
neighbouring tissue cylinders should be zero (flux ~ pressure gradient — Fick’s
first law). Therefore we obtain the pressure in the tissue as function of radius
and position along the capillary (pOz(r, 2)). Finally we have to integrate over
the tissue volume to obtain a value for the mean oxygen pressure in the tissue
(as measured by a device like the Licox sensor).

In the following a detailed derivation of the equations will be given.

Oxygen pressure in the blood

From equation (3.37) we obtain the amount of oxygen per blood volume (CbO,).
Using the equation of continuity, the CbO, along the capillary can be calculated.
For simplicity we use p=CbQOa,, i.e.

9]

8—2) +divj =a, where j=p-v, (3.41)
v is the velocity of the blood in the capillaries (depending on the CBF!) and «
depicts the oxygen consumption from the surrounding tissue. The consumption
can be calculated from the product of the volume of the tissue cylinder times the
oxygen consumption of the tissue

a=—""2.A (3.42)
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where A is the constant metabolism of the tissue in units of #2292 Ag g sta-

. pm3.s
tionary solution (% =0 and divj = %) and the boundary condition of CaOy =
CbOs(z=0), we obtain
2_ .24
CbOy(2) = Ca0y — —1< 2 (3.43)
Te v

where z is the coordinate along the capillary in units of pm with the arterial end
at z = 0. For the diffusion of oxygen into the tissue we need the dissolved oxygen
(pbO3) in the blood, which is given implicitly by equation (3.37). The equation
consists of the hill equation plus the linear contribution of the dissolved oxygen

sy

y2:00]

and has to solved for p.(z) — equivalent to pbOs(z) — with the coefficients § =
0.201 @ and v =3-107° _em’02 _ e ohtain as solution an equation of the

cm cm3-mmHg
form
CbOs(z) —
() = LDy ()~ CbOs(s) =0 (3.45)
Pso DPso

where CbOy(z) has to be replaced by equation (3.43). The solution for p.(z) of
this equation will give the correct oxygen pressure in the blood (pbOs(z)), but
unfortunately there is no general analytic solution for arbitrary n — not even for
n=.3a.

Two possibilities exist to obtain a value for the pressure of the dissolved
oxygen in the blood (pbOs(z)): Fither we solve the equation numerically, but
this will lead to a stepwise numerical integration of the final integral for the
mean oxygen pressure in the tissue or we use an approximation ignoring the last
part of equation (3.44), since for normal physiological conditions the contribution
is only 2%, leading to an analytical solution. Using the approximation, we then
only have to deal with the saturation of the haemoglobin (SbO) and not with
the full oxygen content of the blood (CbO,). This simplifies the calculation to

pc(z))n 1
( ShOs(2) \ 7
P50 7 lved for p.: p.(2) = S == 46
L+ (pééj))n solved forpes pelz) = o <1 - SbOz(Z)) (3.46)

Sb02 (Z) =

with SbO, depending on the position z along the capillary

2 2
12 A
ShOs(2) = Sa0y — LT 2, (3.47)

re2 v

which is similar to equation (3.43).
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Oxygen diffusion in the tissue

Calculating the diffusion from the capillary wall into and within the tissue we use
Fick’s second law. The derivation is based on definition of the flux as j = —DVp
from the oxygen pressure field and applying the mass conservation, i.e. the mass
balance for diffusive Os transport and Oy consumption: V - j 4+ «a = 0. For the
time depending equation, we write

op A

P D-Ap . (3.48)
with A the metabolism of the tissue, ¢ the oxygen solubility coefficient and D
the oxygen diffusivity in the tissue. Due to the geometry of the model, we use
cylindrical coordinates. Since we know that we can ignore axial diffusion, i.e.
along the z coordinate, and can assume the tissue to be homogeneous, i.e. no
gradients depending on ¢, we write Fick’s second law as

0 0? 10 A
Pop (EL22)_Z (3.49)
ot or?2  ror c
To solve this equation, we use the following boundary conditions as they were
mentioned in the introduction
0
p=p. at r=r, and —p:0 at T =1y (3.50)
or
where p. is the oxygen pressure in the capillary obtained either from equa-
tion (3.45) or (3.46). Assuming further a steady state, we obtain the solution
for the oxygen pressure in the tissue

A r 1
pti('r; Z) = pc<2) — Q—ZDC (Tt2 In 7’_ —+ §<TC2 — 7’2)) (351)

as was already shown in Krogh [1918-1919], where a Danish friend of him, the
mathematician Mr-. K. Erlang, derived this solution. Finally, to calculate the
mean partial pressure of oxygen in the tissue we have to integrate over the tissue
cylinder

1 L 2 Tt
Dt = (P71, 2))Wie = 7 / / / p(r, z) - rdrdedz (3.52)
tissue JO JO Te

with Vissue = 7r('rt2 - rc2)L. This is the general form of the mean oxygen pressure
in the tissue. Note, our expression of py(r,z) is only valid if the pressure is
positive at any point in the tissue cylinder. For normal physiological conditions,
as we will assume for the following calculations, a positive pressure in the tissue
can be assumed. Therefore the constant extraction of Oy (independent of z), as
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given in equation (3.42), is still valid. The integral can then be solved partially
and the mean oxygen pressure in the tissue can be written as

1 (L 1 A —rlA+Arle? —3rt + 47}4111:—2
/(; pc(z) Z — 8 .

Dii = — :
Dc 2 — 12

. (3.53)

But the integral over p.(z) has still to be solved separately. Either we use equa-
tion (3.45), but then the nonlinear equation has to be solved in every integration
step, or we use the approximation (ignoring the dissolved oxygen in the calcu-
lation of the total amount of oxygen in the blood) given in equation (3.46) and
(3.47). Using this approximation, we then obtain

s /L ( a—bz )i LA T A =
Pti = —F e R 7 — . .
0 ) 8

L 1—(a—bz Dec 72 — 12
(3.54a)
2 _ .24
where a =Sa0y, and b= %—. (3.54b)
re v

The integral has unfortunately no closed solution for arbitrary n, but a solution
involving hypergeometric functions can be given and solved numerically.
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3.4 Validation: Theory «— Experimental data

In the following a validation of the theoretical description of the oxygen diffusion
processes in the human brain as well as a validation of the combined hydrody-
namical and oxygen supply model will be given. We will compare the theoretical
prediction from the model with the experimentally measured data from patients
at the intensive care unit. Finally we will address the problem of the to high
absolute values of the theoretical predictions and give a suggestion for a solution.

Oxygen supply model: Licox < Invos

In the time series analysis chapter, the question of the functional relationship
between the measured values of the Licox and Invos sensors was raised. With
the here presented theoretical framework we are able to give an answer to this
question and to proof the validity of it by a comparison of the predictions with
the measured data.

A plot showing the relationship between the pressure of oxygen in the tissue
(Licox) and the saturation of haemoglobin with oxygen (Invos) is given in fig-
ure 3.13. Due to the long term trends in the data sets, only the variations are
shown to enable a comparison with the theoretical predictions. From a 48 hours
recording, only those time sections where no external influence on the patient
took place, were used. This resulted in 30 hours of undisturbed data.

From the medical point of view, the variations in the measured values of both
sensors are mainly due to the changes of the cerebral blood flow. To be able
to compare the theoretical predictions with the measured data, we calculate the
theoretical values for Licox and Invos for varying cerebral blood flow using equa-
tion (3.53). Thereby the velocity in the capillaries is assumed to be proportional
to the cerebral blood flow. The variable used for the theoretical Licox value is py;,
whereas for the Invos sensor a ratio of 1:3 of the arterial and venous saturated
blood (SaOs and SvO;) is used as was stated in equation (1.3). Overlaying the
measured data with the theoretical curve results in the plot shown in figure 3.13.

At first sight, the relation between Licox and Invos obtained from the theo-
retical calculation shows a nearly linear correlation for the variation of the blood
velocity. The measured signals are not exactly following the theoretical descrip-
tion — which was expected for the description of such a complex system — but the
main behaviour is well described. One should propably notice, that the resolu-
tion of the Invos sensors is given as +1%. Therefore only for the larger variations
(where the influence of the measurement inaccuracy is small) it can be expected
that the measured data follows the theoretical predictions. The linear behaviour
of the prediction explains now, why a good correlation was seen between the two
sensor signals in the (linear) time series analysis.

Before taking the rest of the 48 hours time series into account, we should
mention the air tube cleaning manoeuvre performed by nurses on the patient.
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Figure 3.13: Relation between Licox (py;O2) and Invos (HbOs). Shown is
the data from a patients recording (red dots) compared to the theoretical
prediction (green line). The variations are assumed to depend on the vari-
ability of the cerebral blood flow respectively the velocity of the blood in the
capillaries. Note: The plotted data originates from times with no external
influence on the patient (30 h of 48 h recording).

Due to the artificial ventilation of the patients, the air tube fills itself with a
mucus (a slime) leading to a smaller tube radius. The tube has therefore to be
cleaned regularly. During the cleaning, the patient has no artificial ventilation,
which could lead to an oxygen undersupply. To overcome this problem, the
patient is supplied (a few minutes before the manoeuvre) with air containing
100% oxygen.

In figure 3.14 the remaining 18 hours of the data are plotted as grey dots,
while still showing the 30 hours data (red dots) from the previous figure 3.13.
The blue line is a theoretically calculated curve based on the variation of the
arterial oxygen pressure paO,. The velocity of the blood was kept constant at
400 pm/s. The paOs values — corresponding to the circles on the line — are
increased quadratically from 50 mmHg to 700 mmHg.

We can clearly see a strong increase of p;;Os when paQOs is increased above
100 mmHg. In contrast to the pyOs value, the HbOs value saturates slowly.
This can be described by the higher dissolved oxygen content in the blood. The
haemoglobin saturation is not strongly increased by the higher paO, (due to the
nonlinearity of the ODC), but more dissolved oxygen is available for diffusion into
the tissue. This results automatically in a higher oxygen content in the tissue and
therefore higher values from the Licox sensor. The behaviour of the curves shown
by the grey dots — mostly originating from the air tube cleaning manoeuvre — are
thus described and understood using the variation of the arterial oxygen pressure.
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Figure 3.14: Relation between Licox (p;O2) and Invos (HbOs). The plotted
points shown here originate from a 48 h recording, where the red points are
the data from figure 3.13 and the gray ones are the remaining 18 h. They
are compared to two theoretical curves: green the variation of the cerebral
blood flow (see figure 3.13) and blue the variation of the oxygen pressure in
the arterial blood (paOy). The high Licox values in the recording can be
explained by an increase of the arterial oxygen pressure up to 700 mmHg.

Combined model: ABP «— Oxygen supply

For a comparison of the predictions of the combined hydrodynamical and met-
abolic model with the measured data, we refer once again to the observed cor-
relations seen in the time series analysis. In some cases, a coupling between the
mean arterial blood pressure and the oxygen content in the blood was detected.

As already discussed in section 2.3.3, we assume an impaired autoregulation to
be a reason for this kind of coupling. In such a case, the cerebral blood flow (CBF')
is nearly linear dependend on the arterial blood pressure (ABP). This would have
as consequence that for higher ABP more oxygen per time is transported to the
brain, due to the higher CBF, and finally a higher oxygen content in the blood
and in the brain tissue is measured.

The question is now, how does the relation between the ABP and the oxygen
supply look like? A nonlinear relationship could be expected since the two pa-
rameters are coupled with each other via four processes: ABP « CBF « velocity
of the blood « diffusion of the oxygen from the blood into the tissue « diffusion
of the oxygen in the tissue.

In figure 3.15 a prediction by the model for the relationship between the mean
arterial blood pressure and the values for the Licox and Invos sensor in the case
of an impaired autoregulation is presented.
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Figure 3.15: Predictions from the combined model for the relation between
the mean ABP and Licox (p:Os2) respectively Invos (HbOs) in the case of
an impaired autoregulation. A nonlinear relationship is observed for both
sensors. But in the typical ABP range of 80 to 110 mmHg, in particular the
Licox values correlates nearly linear with the ABP.

In this figure, two interesting observations can be made. First the global
behaviour of both values (py; Oy and HbO,) over the full range of the mean arterial
blood pressure shows a nonlinear relationship. In particular the predicted values
for the Invos sensor show a steep slope for low ABP values and a strong saturation
for high ABP values. But in the typically observed ABP range of 80 to 110 mmHg,
both predicted curves can be well approximated by a linear relationship. In
particular the Licox values follow nicely a straight line.

This linear relationship explains now the well established linear correlation
found in time series analysis, making us confident that the combined model de-
scribes both metabolic and hydrodynamical processes correctly. To support this
claim, we will compare the 21 hours recording used for the correlation analysis
in figure 2.7 with the theoretical predictions. In figure 3.16 the variations of the
recorded Licox values are plotted versus the mean arterial blood pressure (red
dots), after removing trends and noise from the data as described in chapter 2.2.
Further the theoretical prediction from the model for the case of an impaired
autoregulation is shown (green line).

During this 21 hours recording, the patient is assumed to be in the same state
of health, in particular having an impaired autoregulation. Of course external
influences to the patient will be reflected in the data. Nevertheless the measured
data follows mainly the prediction, even when sometimes larger deviations are
seen. Furthermore inaccuracies from the Licox sensor or a wrong drift removal
induce large deviations.
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Figure 3.16: Comparison of the theoretical predictions (green line) for the
relation between the mean arterial blood pressure (ABP) and Licox (p;Os2)
in the case of an impaired autoregulation with the data from a patient’s
recording (red dots). The plotted values correspond to the 21 hours recording
which was already used in figure 2.7. The measured values follow mainly the
theoretical curve. Deviations are probably due to the inaccuracy of the Licox
sensor as well as external influences on the patient.

The presented comparison is a first "proof” of the validity of the combined
model which use just physically based descriptions of the processes in the brain.
This model is just a first step of the description of the complex phenomena in
the human brain. More extensive investigations are necessary, but a promissing
foundation is laid.

Taking the true capillary distribution into account

In the plots, only the variations of the values from Licox and Invos were shown.
A comparison of the absolute values of the measurements with the theoretical
predictions shows that the theoretical values are slightly to high, in particular
the mean Licox value (measured 25, theoretical 45 mmHg). The values for the
Invos sensor lie closer to each other, instead of 63 in the measurements, a value
of 72 is gained from the theoretical predictions. These deviations are due to two
reasons:

On the one hand, the measurements are from patients on the intensive care
unit, while the parameters for the theoretical predictions are only valid for a
healthy patient. Furthermore, it has to be made sure that the sensors are placed
not to close to an injured tissue area.

On the other hand, a perfect arrangement of the capillaries in a hexagonal
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lattice is assumed. This is of course not true for natural systems. The distance
distribution of the nearest neighbours will be widely spread and we don’t have
(as assumed here) a delta peak at fixed r,. In the book of Hoofd [1992] it was
shown — using a large lattice on which the diffusion equation was solved — that a
randomly distributed arrangement of capillaries shows a decrease of the oxygen
pressures in the tissue. Since in the equations given in this work, the radius of
the tissue cylinder r; can be varied, the overall mean oxygen pressure for true
natural systems can be calculated by integrating over all possible tissue radii

<ﬁti(rt)>all possible tissue radii — / ‘P(T) : ﬁti(rt - T) : TQ - Ldr (355)
0

where () is the probability to find the nearest neighbour capillary at distance
r.

Note: Attention should be paid to the fact that the oxygen pressure in the
tissue (py(r, 2)) can get negative for large tissue cylinders ;. A negative partial
oxygen pressure is of course non-physical and therefore the formulas/boundary
conditions have to be adapted. This can be done by choosing the tissue radius r;
in equation (3.50) so that it fulfils the conditions

pi =0 and 9 _ 0 at r=r; (3.56)
or
as it was mentioned briefly in Reneau et al. [1970]. If the radius of the tissue
cylinder r; is larger than 7}, the oxygen pressure in the tissue (p;;) is zero, i.e.
pu(r >r;) =0.

The two boundary conditions are getting clear when we think about, which
conditions must be fulfilled at the point, where the oxygen pressure reaches zero.
Since the oxygen pressure reaches zero (p; = 0 at r = r}), the flux throughout
this point is zero (no oxygen molecules will diffuse through out this point). But
this is equivalent to a vanishing pressure gradient (% =0atr=rj).

First preliminary tests showed, that the calculation with this modification to
the formulas results in a much better agreement with the measured values. The
overall mean oxygen pressure in the tissue reaches now values of 30 mmHg instead
of 45 mmHg in the previous calculations.
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3.5 Conclusions

In this chapter we have shown that mathematical models of the haemodynamic
and metabolic processes are useful for a deeper understanding of complex pro-
cesses occurring in the human brain in normal and pathophysiological states.

A hydrodynamical compartment model was established by a pure physical de-
scription and adapted to the special requirements of the neurosurgical intensive
medicine. The special properties of the individual compartments, as for example
the autoregulation, the cerebrospinal fluid (CSF) production and the compres-
sion of the veins, were described. From the equation of continuity, a system of 5
coupled nonlinear differential equations plus one constrain was derived. We were
able to reproduce the important interdependencies known from medical literature
as for example the autoregulation or the pressure-volume curve. Furthermore,
the observation of the (indirect) cerebral blood flow dependent production of the
CSF could be explained, by showing that the observations are only secondary
processes. The primary (underlying) processes is the pressure depending pro-
duction of the CSF. Finally, the main advantage of this model is the possibility
to estimate the cerebral blood flow continuously in contrast to already existing
imaging techniques.

Further, an oxygen supply model was derived using the theory of the Krogh
cylinder. With this relatively simple model consisting of a capillary surrounded
by a tissue cylinder, we are able to describe the oxygen supply processes in the
brain. As the basic mechanism, a pressure gradient driven diffusion was used
to determine the oxygen content in brain matter. Interestingly, the theoretical
predictions for the values of Licox and Invos show a nearly linear correlation for
varying blood velocity. The nonlinear oxygen diffusion curve as well as the diffu-
sion processes only play a role, when huge changes to the physiological conditions
takes place, as for example in the air tube cleaning manoeuvre. We could show
how these large oscillations in the Licox measurements could be described by a
variation of the partial oxygen pressure in the arterial blood.

Finally both models were combined to simulate the measurements obtained
by recordings from the intensive care unit. Thereby, the cerebral blood flow
estimated by the hydrodynamical model acts as the link to the oxygen supply
model. By means of the combined model the results of the correlation analysis
could be confirmed and the measurements quantitatively be reproduced. There-
fore, a better insight into the underlying processes generating these correlations
was achieved by this model.



Chapter 4

Independent component analysis

Independent component analysis (ICA) is a multimodal time series analysis tech-
nique to find statistical independent signals within a given data set.

A typical example for the application of ICA is the cocktail party problem,
a so-called blind source separation (BSS) problem. Imagine a group of n people
standing around chatting with each other. This mixture of signals is recorded
by n microphones. The goal is to extract from the mixture of speech signals the
voices of the speakers (the sources) without knowing the sources and the mixture
process (therefore called blind). Assuming the voices to be independent — which
is a valid assumption — the method of ICA can be applied and a corresponding
algorithm is then able to recover, just by using the mixed signals, the voice of
each speaker.

ICA seems not only to be able to find the correct solution in the cocktail
party problem, but also to reveal the essential structures of the data in many
(real world) applications. The assumption of the independence of the signals
appears to be a very strong property and in particular useful when applying it
to the analysis of highly multimodal data sets.

In this chapter the derivation of two new algorithms using a geometric ap-
proach and an information theoretical one including time structures is presented.
Furthermore the application to biomedical data sets — in particular to EEG data —
is shown while the limitations of the method are also discussed.

4.1 Introduction

Independent component analysis is a signal processing tool to decompose observed
signals x(t) € R™ into a set of statistically independent signals y(¢) € R™, which
are called the independent components. Statistical independence has to be seen
in the mathematical sense of stochastically/statistically independent probability
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densities, i.e. the joint probability density factorises into the marginal densities

n

p(y) =[] p(v:) (4.1)

i=1

where y is an n-dimensional random variable with y; its 7th component. The idea
of decomposing signals into independent signals was first expressed by Jutten and
Herault [1991] in the framework of blind separation of sources, while the term
"ICA” was later coined by Comon [1994] in his fundamental paper on the theory
of linear ICA.

However the field became quickly popular with the seminal paper by Bell and
Sejnowski [1995] who elaborated upon the Infomax-principle, first introduced by
Linsker [1992]. Later Amari [1998] introduced the concept of a natural gradient
simplifying the Infomax learning rule. Among others, the most efficient ICA al-
gorithm developed in the following year was the FastICA-algorithm by Hyvérinen
[1999] using negentropy and kurtosis as a contrast function. Recently, geomet-
ric ICA algorithms first proposed by Puntonet et al. [1995], which are based on
neural learning clustering algorithms, have received further attention due to their
relative ease of implementation.

For a good introduction to ICA together with extensions to various cases and

applications of ICA we refer to one of the following text-books: Hyvérinen et al.
[2001], Cichocki and Amari [2002] and Lee [1998].

The blind source separation problem

The most prominent application of ICA is the blind source separation problem.
There an underlying mixture model generates the observed signals x(¢) from the
sources s(t) by x(t) = f(s(t)), where f(-) can be a (non-)linear function mapping
from R™ — R™. For the linear case, which is commonly investigated and on
which will be focused in this work, the observed signals are generated by

x(t) = A -s(t) (4.2)

where s(t) are the n-dimensional independent sources, x(t) depicts the m dimen-
sional mixed /measured signals and A is the m x n mixing matrix. The goal of the
BSS problem is to find the unknown sources s(t) and the unknown transformation
matrix A.

An ICA algorithm is trying to find as independent signals as possible from
the mixture of signals x(¢) by using — in the linear case — an unmixing matrix W,
so that the independent components can be written as y(t) = W - x(¢). Often
only the quadratic case is investigated, where the number of sources equals the
number of observation (m = n).
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Figure 4.1: Application of the independent component analysis (ICA) to
the blind source separation (BSS) problem. The sources s(t) as well as the
mixing process (here the matrix) are unknown — depicted by the light grey
colour. Only the mixed signals x(¢) are available, hence the problem is called
blind source separation. Goal of ICA is to extract independent components
(ICs) from a set of mixed signals. Since the sources s(t) are independent,
the extracted ICs correspond (up to permutation and scaling) to the sources,
while the ICA algorithm also recovers the mixing matrix A ~ W1,
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The reason for the restriction to the quadratic case is that it can be proofen
(as done by Comon [1994]) that the assumption of independent sources is strong
enough to solve the (quadratic) BSS problem correctly up to an indeterminacy
of scaling and permutation of the recovered sources. A further restriction, which
will get obvious in the following theory section, is that maximally one source may
have a probability function equal to a gaussian density. Typically this proof from
Comon is called the proof of the identifiability of quadratic linear ICA.

For BSS problems with more signals than sources (m > n), the problem can
easily be reduced by a principal component analysis to the quadratic case, since
no additional information is gained by further linear combinations of the sources
as shown in great detail in the book of Hyvérinen et al. [2001]. In contrast to
that, the BSS problem with more sources than measured signals (n > m) has
— without any additional knowledge — no unique solutions and is referred to as
overcomplete ICA, since the basis (the sources) represents an overcomplete basis
for the measured signals. First approaches to algorithms solving overcomplete
ICA problems were presented by Lewicki and Sejnowski [1998]. Later Theis et al.
[2003a] presented a procedure using geometric considerations.

In the quadratic case, the recovered mixing matrix W ! is said to be similar
to A, when the recovered sources differ to the original sources only by scaling
and permutation. The unmixed signals respectively the independent components
can then be written as

¥(t) = W x(t)
=W.A - s(t) (4.3)
=S-P-s(t)

where S is a scaling matrix with coefficients only on the diagonal and P is the
permutation matrix. Both matrices are for the quadratic case of the size n x n.
For an illustration of the application of ICA to a BSS problem see figure 4.1.

ICA can be applied in many other areas. The cocktail party problem is a nice
and intuitive example, which shows the basics of speech processing. Beside this
more artificial application, the method is also of great interest for remote sensing,
image recovery and biomedical applications. In this chapter, we will show how
the ICA method can be applied to biomedical data sets and where the limitations
of this method are.

Before presenting the applications, a short introductory section will make the
reader familiar with the notation and the basic concepts used in probability and
information theory. Subsequently, two new algorithms are derived using two very
different approaches. Firstly a geometrically supported algorithm using scatter
plots and their properties under transformation and secondly an approach using
information theory including the knowledge of time structures in the data, as it
is used in the framework of time series analysis.
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4.2 Basic theory

In this section a short review on the basic probability- and information-theoretical
definitions is given to make the reader familiar with the notation used in this work.
The introduction follows mainly the theory chapters of Hyvéarinen et al. [2001]
using the same notation.

4.2.1 Probability theory

For a more detailed introduction to probability theory the book by Papoulis
[1991] is recommended, which includes also the proofs of statements given in
these sections.

Random variables and probability distributions

In this work we are assuming random variables as continuously-valued unless
stated otherwise. The cumulative distribution function (cdf) F, of a random
variable at point x = xy is defined as the probability that = < xg

F.(xy) = P(x < x0) (4.4)

where xy can take values between —oo to oo, defining the whole cumulative
distribution function for all values of . The cdf for continuous random variables
is a nonnegative, nondecreasing continuous function whose values lie in the range
0 < F,(x) < 1. From equation (4.4) it follows directly that F,(—o0) = 0 and
Fy(400) = 1.

The probability density function (pdf) of a random variable x can then be
defined as the derivative of its cumulative distribution function

dF,(z)
dz

T=x0

The normalisation of the probability density function follows directly from the
definition of the cdf .
/ pe(x)da = 1. (4.6)
The concept of probability distributions can easily be generalised to random
vectors. Assuming that x is an n-dimensional random vector x = (1, Ta, ..., )7,
where the components 1, o, ..., x,, are continuous random variables. 7" denotes
the transpose of the vector. We will deal in this work only with column vectors
unless stated otherwise. The same definition for the cdf and pdf can be formulated
for random vectors as shown in Papoulis [1991] and Hyvérinen et al. [2001].
A special set of probability densities are the conditional densities. They are
necessary to answer the question: ”"What is the probability density of a ran-
dom vector x given another random vector y?” Assuming that the joint density



74 CHAPTER 4. INDEPENDENT COMPONENT ANALYSIS

Pxy(X,y) of x and y and the (marginal) density py(y) exist, the conditional
probability density of x given y is defined as

DPxy (X, Y)

yy) .7

pxly(X|Y) =

Expectations and moments

Often the expectations of some functions of a random variable are of interest for
the analysis and the processing of data. A great advantage of expectations is
the possibility to directly derive them from the data, although they are formally
defined in terms of the probability density function.

Let g(x) be any quantity of the random variable, which can be either a scalar,
a vector or a matrix. The ezpectation of g(x) is denoted by E{g(x)} and is defined
as

+oo
Elg(x)} = / g() px(x) dx. (48)

The integration operation is applied separately to every component of the vector
or every element of the matrix resulting in another vector or matrix of the same
size.

Usually the probability density of a random vector is unknown, but often a
set of N samples x1,Xs, ..., Xy from x is available, as for example in the case of
data measured in real world applications. The expectation can then be estimated
by averaging over the samples using

Blglx)} = 1 Y gx) (49)

If g(z) is of the form z™, i.e. products of the random variable, we end up at the
nth moment, denoted by «,, and defined by

400
a, = E{z"} = / " py(x) de. (4.10)

Often the central moments u, are more useful, which are computed around the
mean (m,= «; = lst moment) of x

pn = E{(z —m,)"} = /_ Oo(x —myg)" pe(x) dz. (4.11)

From the definition it follows directly that the central moments py = 1, due to
normalisation, and p; = 0, due to the removal of the mean, are insignificant.



4.2. BASIC THEORY 75

But the higher central moments, used in the so-called higher order statistics, can
contain valuable information. In the literature the following variables are defined

0% = g the variance of , (4.12)
= ,u_g the skewness of x, (4.13)
o
K= 'u—j —3  the kurtosis of x. (4.14)
o

In words, the variance gives an estimate of the width of the distribution, the
skewness of the asymmetry of the distribution and the kurtosis an estimate of
the deviation from a gaussian distribution. As we will see later, the gaussian
distribution has very special properties, its kurtosis is zero and due to its sym-
metry it has also zero skewness. Therefore it is often used as a reference. In one
dimension one can write

pu(x) = e 27, (4.15)

Correlation and independence

The correlation between 7th and jth component of a random vector x is denoted
by r;; and given by

+o0 +o0o
Tij = E{LITZSL’]} = / / xX; xjpmi@j(xi,xj) d.’lfj d.TZ (416)

where the correlation can be positive or negative. Is the correlation equal to zero,
we speak of uncorrelated random variables. For the calculation of all correlations
between the components of the random vector x we can write a n X n matrix,
the correlation matrix

Ry = BE{xx'}. (4.17)

Using the central moments we can also define a sort of correlation matrix, the
so-called covariance matriz, where the mean of the random vector is removed
prior to the calculation

Cy = B{(x —my)(x —m,)"}. (4.18)
If the mean my is zero, the correlation and covariance matrices become equal.

The expectation operation can be extended to functions g(x,y) of two different
random vectors x and y in terms of their joint probability density

E{g(x,y)} = /_ - /_ - g(x,y) pxy(x,y) dy dx (4.19)
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where the integrals are computed over all components of the random vectors. In
analogy to the correlation and covariance matrix definitions, we can define the
so-called cross-correlation and cross-variance matrixz of x and y as

Ry, = E{xy’} and C,, = E{(x —m,)(y — my)"}. (4.20)

Two random vectors x and y are called uncorrelated if their cross-covariance
matrix Cyy is a zero matrix Cyy, = 0.

The mathematical definition of independence of two random variable x and
y (as it is used in ICA) is defined by the factorisation of the joint probability
distribution p, ,(x, y) into the product of their marginal densities p,(x) and p,(y),
i.e. we write

More general the components of a random vector x are independent, if

n

p(x) = [[ (). (4.22)

i=1

It follows directly from this definition that independent variables satisfy the basic
property

E{g(z)h(y)} = E{g(x)} - E{h(y)} (4.23)
where g(z) and h(y) are any absolutely integrable functions of = and y, respec-
tively. This reveals that statistical independence is a much stronger property
than assuming uncorrelated variables. For uncorrelated variables, g(x) and h(y)
are just linear functions, taking only the so-called second-order statistics into
account.

However, if the random variables have gaussian distributions and are uncorre-
lated, then they are also independent. This is a very special property of gaussian
distributions. It gets obvious when we write down the n-dimensional probability
density of a gaussian random vector x

1 _
Px(x) = e~ 2 (i) T O (mmie). (4.24)

"~ (2m)"/2/det Cy

Assuming that x is uncorrelated, it follows directly that Cy is a diagonal matrix
and further the inverse C_! is of a diagonal form. This results in a sum in the
exponent with which the probability density px(x) factorises. But the factorisa-
tion is the criterion of independence. Therefore uncorrelated gaussian random
vectors are independent.

Furthermore it becomes obvious, why independent component analysis can
not find the correct (de)mixing matrix, if more than one source is gaussian dis-
tributed. Assume x is an independent gaussian distributed random vector with
zero mean (my, = 0) and its probability density equals equations (4.24). Then,
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under every transformation of an orthogonal matrix O so that y = Ox, the
probability density of y does not change. Using the property O = O~! of
the orthogonal matrix shows directly the equality of the probability densities
(p(y) = p(x)). Therefore ICA can only find the (de)mixing matrix of a mixture
of gaussian distributed random variables up to an orthogonal matrix.

Markov chains

A class of random processes that is rich enough to capture a large variety of
temporal dependencies is the class of finite state Markov processes. In the Markov
chain model, the current state of the process depends on a certain number of
previous values of the process. The number depicts the order of the process.

Such a process is characterised by its order m, and by a conditional probability
matrix P, whose rows may be interpreted as probability functions according to
which the next random variable X; is generated when the process is in a state
Ti1,T5-2y -y Ti—m

P(XZ = SCZ'|X7;,1 = Ti—1,--- ,Xl',m = .’L‘Z‘,m) = Pm<xi‘l‘i,1, e ey l’i,m). (425)
A process X; is a Markov chain of order m, if the conditional probability
P(Xi = Zlfz“Xzel =Ti1,...,X1 = 551) =
P(XZ = xi‘Xifl = Tj—1y-- -, Xifm = xi,m) (426)

is independent of x;_j, for all A > m.

4.2.2 Information theory

An alternative approach to characterise random variables — instead of using mo-
ments — is information theory. Here the emphasis lies on coding and code length.
Finding a suitable code depends on the statistical properties of the data and
therefore it is another measure for the distribution of the random variable.

Entropy and mutual information

The basic concept of information theory is entropy which is defined for a discrete-
valued random variable X as

H(X)=-Y P(X =a;)log P(X = a;) (4.27)

where the a; are the possible values of X. The object entropy can be seen as a
measure for the uncertainty or randomness of a random variable. In the context
of (information) coding it describes roughly the minimum necessary code length
to transmit most efficiently a large number of observations of X.
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For a continuous random variable z a similar object can be defined, the so-
called differential entropy

H(z) = [ plo) ogp. o) do (4.28)

which can be seen as a generalisation of the entropy of discrete random variables
by a discretisation of the probability distribution. But a straight forward reduc-
tion of the discretisation size would lead to a diverging quantity in the formula
(logAx diverges for Az — 0), which has therefore to be ignored. This leads to
the above definition of the differential entropy.

Still, the differential entropy can be interpreted as a measure of randomness in
the same way as entropy. In the following we will leave out the term ” differential”
since it gets obvious in the calculations which definition is used to calculate the
quantity entropy. A generalisation to random vectors is straight forward.

The transformation of the (differential) entropy can be calculated for an in-
vertible transformation y = f(x) of the random vector x. We obtain

H(y) = H(x) + E{log | det Jf(x)|} (4.29)

where Jf(x) denotes the Jacobian matrix of the function f, i.e. the matrix of the
partial derivatives of f at point x. For the special case of linear transformations
(y = Wx) we obtain for the last term of the above equation log | det W|. This
shows that the (differential) entropy is not scale-invariant.

A quantity measuring the amount of common information between two ran-
dom variables is the mutual information. 1t is defined by using the sum of the
following entropies

I(x) = Z H(z;) — H(x). (4.30)

In the framework of the entropies, the mutual information can be interpreted
as the difference between the sum of the minimum code length for each random
variable and the code length for the full random vector. If the random variables
are all independent of each other, a coding of the full random vector would not
reduce the code length, since there is no common information, which can be used
to reduce the size. With these arguments we can see, that the mutual information
is nonnegative and only zero for independent variables.

Inserting the definition of the (differential) entropy we obtain a different for-
mulation of the mutual information

I(x) = /px(x) log % dx (4.31)

where p;(-) are the marginal densities of the z;. This is exactly the Kullback-
Leibler divergence which measures a kind of distances between two probability
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densities px(x) and [[, pi(x;). It has the property of being nonnegative and
only zero if both probability densities in the logarithm are equivalent, which is
equivalent to the independence of the random variables of the vector.

From the definition it follows directly, that the mutual information is invariant
under the permutation of the arguments I(x,y) = I(y, x).

Maximum entropy and negentropy

A natural question arises when defining a measure like the entropy: which random
variable has the highest entropy or in other words, the highest randomness for a
fixed variance? For continuous valued random variables the gaussian distribution
fulfils this criterion.

This maximal entropy property for gaussian random variables shows that en-
tropy can be used to define a measure of nongaussianity. Every other probability
distribution has a lower entropy. Therefore we can define a measure called ne-
gentropy of the following form

J(x) = H(x%) — H(x) (4.32)

where x¢ is a gaussian random vector with the same covariance matrix as x. From

the definition and the maximum entropy property of gaussian random variables
it follows that the negentropy is nonnegative and only zero if the distribution of
X is gaussian.

An interesting and useful property is the invariance of the negentropy under
an invertible linear transformation: J(y) = J(Mx) = ... = J(x). We refer for
the derivations of these and the following statements to Hyvérinen et al. [2001].

Furthermore, we can write the mutual information in terms of the negentropy
as it will be derived in the following. Using the definition of the mutual infor-
mation in terms of the entropies (equation (4.30)) and letting y = Wx with
W € Mat(n x n,R) of full rank, E{x} = 0 and W so that the variance of y is
one (E{yy’} =1), we can write

I(y) = Z H(y;) — H(y) (4.33)

= H(y) ~ H(x) ~ log | det W], (4.34)

Adding and subtracting the term Y, H(y") with y being a gaussian random
variable with the same variance as y, we obtain

1y) == S H) + S Hw) + 3 HE) — Hix) — log| det W], (435)

Since Y, H(y) and H(x) are independent of W, both terms give only a constant
contribution. The last term log | det W] is also constant since

E{yy"} = E{Wxx' W'} = WE{xxT W' =1 (4.36)
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where I is the identity matrix and therefore we can write
det I = det(WE{xx"}W7') = det W det E{xx"} det W’ =1 (4.37)

which leads to det W = const since det W = det WT and det E{xx"} is inde-
pendent of W. Thus, the mutual information can be written in terms of the
negentropy as

I(y)=— Z J(y;) + const . (4.38)

The calculation of the entropy from a given set of observations of a random
variable is non trivial since for the estimation a large number of observations is
necessary. An approximation can reduce the necessary number of observations.
For the negentropy, we can expand the probability density function of a ran-
dom variable x around the standardised gaussian density, not unlike a Taylor
expansion using moments or cumulants (the so-called Gram-Charlier expansion).
Doing so for a one-dimensional random variable, we obtain as an approximation
for the negentropy

() ~ 1—12E{a:3}2 + %(E{x‘*} _3)2 (4.39)

corresponding to a sum of the skewness and kurtosis of x, assuming the variance
of x to be one (E{x?} = 1). The disadvantage of such an approximation is the
lag of robustness to outliers. A term of z* is very sensible to observations far
from the mean of the distribution and can therefore destroy a correct estimation.

Using entropy approximations based on an approximative maximum entropy
method, we can overcome such problems. Instead of using the functions ® and
z* two new functions G! (odd) and G? (even) are used, which do not grow too
fast and therefore are more robust to outliers. For the new approximation of the
negentropy we then obtain

J(2) ~ b E{G (1)} + k2 (B{G(2)} — BE{G*(n)})” (4.40)

where k; and ks are positive costants and v is a standardised gaussian random
variable with zero mean. This is a generalisation of equation (4.39), since for
G(r) = 23 and G?*(z) = 2* we end up with the expansion of Gram-Charlier.
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4.3 A geometric approach

Geometric algorithms for linear independent component analysis represent a type
of ICA algorithms that is easy to comprehend and simple to implement. The
geometric approach to ICA has been proposed first by Puntonet et al. [1995] in
order to separate linear mixtures using a kind of neural algorithm.

We reconsider geometric ICA in a theoretic framework showing that fixed
points of (neural) geometric ICA fulfil a so-called geometric convergence condition
(GCC), which the mixed images of the unit vectors satisfy, too. This leads to
a conjecture claiming that in the nongaussian unimodal symmetric case there
is only one stable fixed point, thus demonstrating uniqueness of geometric ICA
after convergence.

Guided by the principles of neural geometric ICA, a new approach to linear
geometric ICA based on histograms (FastGeo) is presented observing a consid-
erable improvement in separation quality of different distributions and a sizable
reduction in computational cost by a factor of 100 compared to the neural learn-
ing approach.

Furthermore we explore the accuracy of the algorithm and compare the per-
formance of the geometric algorithms with classical ICA algorithms based on
information theory. Finally we discuss the problem of high dimensional datasets
within the realm of geometrical ICA algorithms.

The theoretical results on geometric ICA have been published in Theis et al.
[2001] and Theis et al. [2003b], where also the FastGeo algorithm by Jung et al.
[2001] has been presented and studied.

The notation

In the following mathematical derivations it will be important to distinguish
between the random variables themselves and their realizations. Therefore we
denote S : €2 — R"™ as a n-dimensional random vector, where € is a fixed proba-
bility space. The samples of a random vector S are denoted by s; € R" or if they
originate from a time series by s(¢). The mixing process can therefore be written
either in terms of the random vectors X = A oS or by using the samples directly
x(t) = As(t) where A € Mat(n x n,R) is a mixing matrix of full rank.

4.3.1 Geometric considerations

We will explain the principles of the geometric algorithm using a simple two-
dimensional blind sources separation model x(t) = As(t).

Assuming S to be an independent two-dimensional random vector with zero
mean and a peaklike probability distribution (kurtosis > 0) and let si,...,sy €
R? be independent identically distributed (i.i.d.) samples of S. The whole set
of samples can be visualised in a scatter plot, where every point in the plot
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corresponds to a given sample s; — see left illustration in figure 4.2. In this so-
called source space, the areas with larger probability density pg have a higher
density of samples than those with a lower pg value. Therefore the scatter plot
can be used to visualise the density of S.

Let
1 05
A= (%), »

be the mixture matrix in this example, then the samples x(t) = As(t) in the mix-
ture space can be visualised in the same way — see right illustration in figure 4.2.

Figure 4.2: Schematic example of a two-dimensional scatter plot for the
source s(t) (left), which have identical peaklike distributions, and their mix-
tures after the transformation x(¢) = As(t) (right). Every point in the scatter
plot corresponds to a given sample s(t), where s/, is the first/second com-
ponent of the vector. The unit vectors e/, are mapped onto the vectors a;
corresponding to the columns of the mixing matrix A.

The unit vectors e;/; are transformed under the mixture matrix A to a;/; =
A - ey, which corresponds exactly to the columns of the matrix A. In order to
find A, we have to find the "principle” axis defined by a; and a, in the mixture
space — indeed we only need lines and not the points themselves, so we have to
recover a; and as up to scaling and permutation which corresponds exactly to
the indeterminacy of the BSS problem.

The recovery can be achieved by projecting the samples x; onto a unit sphere
and find the clusters using a Kohonen-like clustering algorithm which moves
iteratively so-called neurons (wi,w], ws, w)) on the circle into the direction of
the chosen sample. Figure 4.3 shows the starting and end configuration of the
neurons in the two-dimensional example and demonstrates visually that the fixed
points of the algorithm correspond to the lines defined by a; and a,.

Recapitulating we can say that the basic idea of the geometric separation
method lies in the fact that in the source space {si,...,sy} C R", where s;
represent a fixed number of samples of the source vector S with zero mean,
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Figure 4.3: The basic idea of the geometric learning algorithm in two di-
mensions: 4 neurons are initially located at the crossings of the sphere with
the axes of the coordinate system (left). Then iteratively, a winner neuron
defined by a minimum distance to the chosen sample vector projected onto
the sphere, is moved towards the sample by a given amount. This process
continues until a convergence is reached and the axes fall together with the
main distribution axes.

the data cluster along the axes of the coordinate system. After applying the
transformation (matrix A), the data cluster along the transformed coordinate
axes. The detection of these n new axes allows the determination of a demixing
matrix B with an inverse that is equivalent to A.

The detection of these lines can either be done with a (neural) geometric
learning algorithm — as briefly mentioned here and described in the next section
in more detail — or by an algorithm based on histograms using the knowledge
from the theoretical fundaments of the (neural) geometric learning algorithm,
the so-called FastGeo algorithm.

A precise description how to recover the matrix A after the axes, which span
the observation space, have been successfully extracted from the data and a proof
of the uniqueness of the geometric algorithm are given in the appendix A.2.

4.3.2 The (neural) geometric learning algorithm

We will for now restrict ourselves to the two-dimensional case for simplicity —
extension to higher dimensions is in principal straight forward, but problems due
to sparseness of samples will be discussed in detail in section 4.3.7.

So, let S : 2 — R? be an independent two-dimensional random vector describ-
ing the source pattern distribution; its density function is denoted by p : R? — R.
As S is independent, p factorises in the following way

p(s1,52) = p1(s1) - p2(s2), (4.42)

with p; : R — R denoting the corresponding marginal source density functions.
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As a further simplification we will assume the source variables S; to have zero
mean F(S) = 0 and to be distributed symmetrically, i.e. p;(z) = p;(—z) forz € R
and ¢ = 1,2. To assure stability of the geometric algorithm we further have to
assume that the source distributions are nongaussian and unimodal — in practice
these restrictions are often met at least approximately.

As usual let X = AoS denote the sensor signal vector. The geometric learning
algorithm or often called neural geometric algorithm for symmetric distributions
in its simplest form then goes as follows:

Pick four starting neurons wy, w}, w, and wh on S such that w; and w] are
opposite each other, i.e. w; = —w) for i = 1,2, and w; and wy are linearly
independent vectors in R?. Usually, one takes the unit vectors w; = e; and
wy = ey. Furthermore fix a learning rate n : N — R. The usual hypothesis — as
given in Cottrell et al. [1994] —is n(t) >0, >,y n(n) = coand Y, n(n)* < oc.
Then iterate the following step until an appropriate abort condition has been met:

Choose a sample x(t) € R? according to the distribution of X. If x(t) = 0
pick a new one — note that this case happens with probability zero since the
probability density function (pdf) px of X is assumed to be continuous. Project
x(t) onto the unit sphere to get y(t) := % Let ¢ be in {1,2} such that w; or
w} is the neuron closest to y with respect to a Euclidean metric. Then update
w;(t) according to the following update-rule

wilt + 1) = pr <wl-(t) + n(t)%) , (4.43)

where pr: R?\ {0} — S represents the projection onto the unit sphere, and
wi(t +1) :== —w;(t +1). (4.44)

The other two neurons are not moved in this iteration.

Later the following theorem will be proven (under some more restrictions) for
n=2.

Theorem 4.1 (Geometric ICA). Let S be unimodal, symmetric and nongaus-
sian. Assume the algorithm has converged against wy, ..., w,. Then (wi]...|w,)™?
solves the BSS problem.

In figures 4.4 the learning algorithm has been visualised both on the S! sphere
and after the projection onto [0, 7).

This competitive weight update-rule may be called absolute winner-takes-all
learning. It resembles Kohonen’s learning algorithm for self-organising maps
with a trivial neighbourhood function, but with the modification that the step
size along the direction of a sample does not depend on distance, and that the
learning process takes place on S! not in R.
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Figure 4.4: Left: Visualisation of the geometric algorithm with starting

points wy(0) and wy(0) and end points w;(00) and wy (o) in a scatterplot of

a mixture of two Laplacian signals with identical variance. Dash-dotted lines

mark receptive field borders. Right: Plot of the density py on the sphere S!
of the mixture of the two Laplacian signals with identical variance.

4.3.3 Theoretical framework for the geometric ICA algo-
rithm

Now, we present a formal theoretical framework for geometric ICA which will be
used in the next section to formulate a proper convergence condition. Without
loss of generality, assume that A is of the form

A ( CcOS(v; COS (vg ) (4.45)

sinap  sin oy

where «; € [0,7) denote two angles.

First, we show using the symmetry of S that it is in fact not necessary to
have two neurons w; and w, moving around on the same axis. Indeed, we should
not speak of neurons but of lines in R? — so the w;’s would be living in the
real projective space RP' = S'/ ~, where ~ identifies antipodal points. This is
the manifold of all 1-dimensional subvectorspaces of R?. A metric is defined by
setting

d([], [y]) == min{|z — yl, |z + y[} (4.46)

for [z], [y] € RP'. Alternatively, one can picture the w’s in
St o= S"N{(21,20) € R*|z9 > 0}/ ~, (4.47)

where ~ identifies the two points (1,0) and (—1,0). Let ¢ : S' — S represent
the canonical projection. Furthermore, it is useful to introduce polar coordinates
¢ : ST — [0,7) on SL with the stratification ¢’ : R — S such that ¢’ o p =1id,
where id denotes the identity. Let x := po¢’ : R — [0, 7) be the 'modulo 7’ map.
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We are interested in the projected random sensor signal vector proX : Q — S,
so, after cutting open the circle S' and identifying opposite points, we want to
approximate the transformed random variable Y := pooproX : Q — [0, 7). in
a suitable manner. Note that using the symmetry of p, the density function py
of the transformed sensor signal Y can be calculated from the density px of the
original sensor signal X by

pr(e) = [ pxlreosgrsing)rdr

[e.9]

= |detA|1/ p(A(rcos p, rsin ) rdr (4.48)

o0

=2|det A|™! / p(A1(r cos @, rsin gp)T) rdr
0

where the last identity follows for any ¢ € [0,7) because of the symmetry of
p. Then the geometric learning algorithm induces the following discrete Markov
process W (t) : Q — R? defined recursively by W (0) = (wy,ws) and W(t + 1) =
AW () +n(0)0((Y (), Y (t)) — W(t))), where

f (sen(2),0) |yl > |al
bz, ) "{ (0,5gn(y)) |z| > |y (4.49)

and Y (0),Y(1),... is a sequence of independent identically distributed random
variables ) — R? with the same distribution as Y. These random variables will
be needed to represent the independence of the successive sampling experiments.
Note that the ‘modulo 7" map x guarantees that W (¢t + 1) € [0, 7). Indeed, this
is just winner-takes-all learning with a signum function in R, but taking into
account the fact that we have to stay in [0, 7). Note that the metric used here is
the planar metric, which obviously is equivalent to the metric on S induced by
the Euclidean metric on S' C R2.

We furthermore can assume that after a sufficient number of iterations there
is one point a € S! that will not be transversed any more, and without loss of
generality, we assume a to be 0 (otherwise cut S open at a and project along
this resulting arc), so that the above algorithm simplifies to the planar case with
the recursion rule

W(it+1)=W(t)+nt)d(Y(t),Y(t) —W(t)). (4.50)

Without the sign function, and the additional fact that the probability distri-
bution of Y is log-concave, it has been shown in Cottrell and Fort [1987], Ritter
and Schulten [1988] and Benaim et al. [1998] that the process W (t) converges to
a unique constant fixed point process W = w € R? such that

w; B2 (F;)
/ py (@) de =/ py (@) de (4.51)
ﬁl(Fz) w;
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for 1 = 1, 2, where

Fy = F(w;) = {p € [0,7) [ x(Jl¢ —wi]) < x(lp —wy]) for all j #i}  (4.52)

denotes the receptive field of w; and (3;(F;) designate the receptive field borders.
However, it is not clear how to generalise the proof to the geometric case, espe-
cially because we do not have (and also do not want) log-concavity of Y as this
would lead to a unique fixed point. Therefore we will assume convergence in a
sense stated in the following section.

4.3.4 Limit points of the geometric algorithm

In this section, we want to study the end points of geometric ICA, so we will
assume that the algorithm has already converged. The idea then is to formulate
a condition which the end points will have to satisfy and to show that the solutions
do so, too.

Definition 4.2 (Geometric Convergence Condition). We say that two an-
gles 11,1y € [0,m) satisfy the Geometric Convergence Condition (GCC) if they
are the medians of Y restricted to their receptive fields respectively i.e. if l; is the
median of py|F(l;) fori=1,2.

Definition 4.3. A constant random vector W = (iy,10,) € R? is called fired
point of geometric ICA in the expectation if

E{O(Y —W(t))} = 0.

Hence, the expectation of a Markov process W (t) starting at a fixed point of
geometric ICA will indeed not be changed by the geometric update rule because

E{W(t+ 1)} = E{W(0)} +n() E{6(Y (1) = W(1)} = E{W()}.  (4.53)

Theorem 4.4. Given that the geometric algorithm converges to a constant ran-
dom vector W (oo) = (wq(00), we(00)), then W (o) is a fixed point of geometric
ICA in the expectation if and only if the w;(c0) satisfy the GCC.

Proof. Assume W(oo) is a fixed point of geometric ICA in the expectation.
Without loss of generality, let |31, G2] be the receptive field of w;(c0) such that
B; € [0, 7). Since W (o0) is a fixed point of geometric ICA in the expectation, we
have

E {X(5:,6: (Y (1)) sgn(Y () — wi(00)) } =0 (4.54)

where x|, 3,] denotes the characteristic function of that interval. But this means

w1 (00) B2
/ (=1)py(p)dp + / Lpy (¢) dp = 0 (4.55)

w1 (00)
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and therefore 0 5
/ py (@) dp = / ( )py(so) de, (4.56)
1 w1 (00
so wy(o0o) satisfies GCC. The same calculation for ws(co) shows one direction
of the claim. The other direction follows by simply reading the above proof
backwards, which completes the proof. O

As before, let p; := Ae; be the transformed unit vectors, and let ¢; := po (o
pr(p;) € [0, 7) be the corresponding angles for i = 1, 2.

Theorem 4.5. The transformed angles q; satisfy the GCC.

Proof. Because of the symmetry of the claim it is enough to show that ¢; is at
the median of py|F(q;). Without loss of generality let 0 < a3 < ay < 7 using
the symmetry of p. Then, due to construction ¢; = «;. Let () := % -3
and (B, := (1 + 5. Then the receptive field of ¢; can be written (modulo 7) as
F(q1) = [$1, f2]. Therefore, we have to show that ¢; = «; is the median of py

restricted to [(1, 52|, which means

ai B2
/ py (p) dp = / py () de. (4.57)

1

We will reduce this to the orthogonal standard case A = id by transforming
the integral as follows:

a1 (e%) 00
/ py () dp = 2| det A|_1/ / p(A (rcosp,rsing)’)rdrde  (4.58)
B1 1 0
= 2| det A| ™! / p(A " (z,y)") dydz (4.59)
K

where
K = {(z,y) € R}, < arctan(y/z) < oy} (4.60)

denotes the cone of opening angle a; — (31 starting from angle ;. Using the
transformation formula, we continue

aq
/ py (p) dp = 2/ p(z,y) dy da. (4.61)
1 ATL(K)

Now note that the transformed cone A~'(K) is a cone ending at the x-axis of
opening angle 7/4, because A is linear. Therefore we are left with the following
integral

/: py(@)dso:2/ooo/_i p(z,y) dyd:c:2/ooo/0m p(z, —y)dydz  (4.62)

2/000 /0m p(z,y)dydr = /f py () dp (4.63)

1
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where we have used the same calculation for [aq, O] as for [51,aq] at the last
step. This completes the proof of the theorem. O

Combining both theorems, we have therefore shown:

Theorem 4.6. Let ® be the set of fized points of geometric ICA in the expecta-
tion. Then there exists (1, q) € ® such that (1 |we)~" solves the BSS problem.
The stable fixed points in ® can be found by the geometric ICA algorithm.

Furthermore, we believe that in the special case of unimodal, symmetric and
nongaussian signals, the set ® consists of only two elements: a stable and an
unstable fixed point, where the stable fixed point will be found by the algorithm:

Conjecture 4.7. Assume that the sources S; are unimodal, symmetric and non-
gaussian. Then there are only two fixed points of geometric ICA in the expecta-
tion.

We can prove this conjecture for the special case of two sources with identical
distributions which are nicely super- or subgaussian in the sense that py has only
four extremal points. This together with the preceding theorem is as close as we
can get with proofs to theorem 4.1

Theorem 4.8. Assume that the sources S; are unimodal, symmetric and that
p1 = pa. Assume that py|[0,7) with A = id has exactly two local maxima and
two local minima. Then there exist only two fized points of geometric ICA in the
expectation.

Proof. Due to the lengthiness, the proof can be found in appendix A.3. O

The above conjecture states that there are only two fixed points of geometric
ICA. In fact, we claim that of those two, only one fixed point is stable in the
sense that slight perturbations of the initial conditions preserve the convergence.
Then, depending on the kurtosis of the sources, either the stable (supergaussian
case: kurtosis > 0) or the instable (subgaussian case: kurtosis < 0) fixed point
represents the image of the unit vectors. This is stated in the following conjecture.

Conjecture 4.9. Assume that the sources S; are unimodal, symmetric and non-
gaussian. Then by conjecture 4.7 there are only two fized points (y,ws) and
(W1, W9) of geometric ICA in the expectation. We claim:

i. There is only one stable fixed point (wy,ws).
i. If the sources are supergaussian, (iq|we)~! solves the BSS problem.

iii. If the sources are subgaussian, (11|wq)~" solves the BSS problem.
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Figure 4.5: Projected density distribution py of a mixture of two Laplacian
signals with different variances, with the mixture matrix mapping the unit
vectors e; to (cosay,sinq;) for i = 1,2 (smooth line = theoretical density
function, ragged line = histogram of a mixture of 10.000 samples).

Update rules without sign functions

We have shown that in two dimensions the geometric update step after projection
onto [0, ) requires the signum function as follows

wilt + 1) = wi(t) + n(t) sen(y(t) — wi(t)). (4.64)

Then the w; converge to the medians in their receptive field. Note that the
medians don’t have to coincide with any maxima of the sensor signal density
distribution on the sphere as shown in figure 4.5. Therefore, in general, any
algorithm searching for the maxima of the distribution — as done in Prieto et al.
[1999] — will not end at the medians, which are the correct images of the unit
vectors under the given mixing transformation. Only given special restrictions to
the sources (same super-gaussian distribution of each component, as for example
speech signals), the medians correspond to the maxima and a maximum searching
algorithm will converge to the correct fixed points of geometric ICA.

4.3.5 FastGeo: A histogram based algorithm

So far in geometric ICA — Puntonet and Prieto [1995] and Puntonet and Prieto
[1998] — mostly 'neural’ algorithms as in section 4.3.2 have been applied. As shown
above, these algorithms search for points satisfying the GCC. In the following we
will establish a new geometric algorithm called FastGeo using the GCC only. The
theoretical derivations and the applications were published in Jung et al. [2001]
and Theis et al. [2003b].
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Figure 4.6: Probability density function py of Y — from the scatter plot in
figure 4.4 — with the mixing angles «; and their receptive fields F; for 1 = 1,2
(smooth line = theoretical density function, ragged line = histogram from
the scatter plot).

Let again the dimension n = 2 and let

A ( COS(v] COS iy ) _ (4.65)

sinqq  sin oy

Theorem 4.5 shows that the vectors (cosay, sin ;)7 satisfy the GCC. Therefore
the vectors w; will converge to the medians in their receptive fields. This enables
us to compute these positions directly using a search on the histogram of Y,
which reduces the computation time by a factor of about 100 or more. In the
FastGeo-algorithm we scan through all different receptive fields and test GCC.
In practice this means discretising the distribution fy of Y using a given bin-size
B > 0 and then testing the 7/ different receptive fields. The algorithm will be
formulated more precisely in the following:

For simplicity let us assume that the cumulative distribution Fy of Y is in-
vertible — this means that Fy is nowhere constant. Define a function

p:0,mr) — R

T 4.66
where . . i
() = P (FY(80+@§)+ZY(SD+(Z—1)§)> (4.67)

is the median of Y{[p+ (i = 1)5,p+i5| in [p+ (1 = 1)F, o+ 5] for i = 1,2.
Lemma 4.10. Let ¢ be a zero of u in [0, 7). Then the l;(¢) satisfy the GCC.
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Proof. By definition,

[ l l l
1(p) +b(p) T 1(p) + I(p) (4.68)
2 2 2
is the receptive field of [1(p). Since p(p) = 0, the starting point of the above
interval is ¢, because

b)) +l(p) T
pE=— T g (4.69)

Hence we have shown that the receptive field of I;(¢) is [p, ¢ + ], and by con-
struction [y () is the median of Y restricted to the above interval. The claim for
l2() then follows. O

Algorithm 4.11 (FastGeo). Find the zeros of .

Hence by lemma 4.10 and conjecture 4.9 FastGeo solves the BSS problem.

1 always has at least two zeros which represent the stable and the unstable
fixed point of the neural algorithm. In practice we extract the fixed point which
then gives the proper demixing matrix A~! by picking ¢, such that

fy(Li(wo)) + fy (l2(w0)) (4.70)

is maximal. For unimodal and super-gaussian source distributions conjecture 4.9
claims that this results in a stable fixed point. For sub-gaussian sources choosing

fy(Li(wo)) + fy (l2(w0)) (4.71)

being minimal induces the corresponding demixing matrix. Hence, one advantage
of this histogram-based algorithm is that without any modifications we can solve
the ICA problem also for subgaussian signals. Furthermore, the sophisticated
parameter choice of the 'neural’ algorithm is not necessary any more; only one
parameter, the bin size, has to be chosen.

In practice, one sometimes notices that due to the discretization of the distri-
bution, the approximated distribution has a rather noisy shape on small scales.
This results from p having zeros being split up into multiple zeros close together.
Therefore, a useful improvement of convergence can be established by smoothing
this distribution with a kernel function with sufficiently small halfwidth. This
smoothing should be performed preferably during the discretization process of
the original distribution.

4.3.6 Accuracy and performance of FastGeo

In this section we want to test the accuracy of the results from the FastGeo
algorithm and compare the performance with other established ICA algorithms.
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Accuracy

First we want to consider the dependence of the FastGeo ICA algorithm on the
number of samples after the bin-size 3 has been fixed. As seen in the previous
section, the accuracy of the histogram based algorithm then only depends on the
distribution of the samples X respectively Y i.e. we can estimate the error made
by approximating the mixing matrix A by a finite number of samples. In the
following we will give some results of test-runs made with this algorithm.

When choosing two arbitrary angles «; € [0,7),7 = 1,2 for the mixing matrix
A, we define « as the distance between these two angles modulo 5. This will give
us an angle in the range between 0 and 7 respectively 0° and 90°.

First let us consider the accuracy of the recovered angles Aa = |ay; — afecovered |,
when varying the angle « for a fixed number of samples. Choosing a mixture of
two Laplacian source signals (p(z) ~ e~I*!) with identical variances, figure 4.7
shows a nearly linear decrease of the error Aa with decreasing a. The 95% con-
fidence interval decreases similar to the standard deviation, i.e. both parameters
provide a good estimate for the error. Note that the mean of the error A« is very
close to zero.

T T T T T T T [ A—1
Mean —t i LT
Standard deviation =~ --—-x-—- : N
4 L95% confidence intervat->--- | e ]
: : : : I}K"" : : :
I N
: ,X’// : : : : :
X* B X : : : : : :
Sl S
ol

Figure 4.7: Mixture of 1.000 samples of two Laplacian source signals with
identical variances. Plotted is the mean, standard deviation and 95% confi-
dence interval of A« calculated from 100 runs for each angle a.

An alternative way to demonstrate this proportionality Aa o« « is to plot
Aa/a versus « in figure 4.8, which should result in a horizontal line. Obviously
the resulting graph is reasonably constant over a wide range of a demonstrating
that the estimate of the «; with respect to « is good for a wide range of «
(v > 10°) and gets only slightly worse for smaller values of o. Note that the
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distortions around the origin are due to the finite bin-size. Increasing the number
of bins increases the accuracy for small a’s, but also the computational effort.
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Figure 4.8: Same mixture as in figure 4.7, plotting Aa/a versus a.
Varying the number of samples used for estimating the angles a; shows that

with increasing number of samples the quality of the estimate enhances as denoted
in figure 4.9. This fact is well know in statistics and signal processing.
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Figure 4.9: Mixture of two Laplacian source signals with identical variances
for different number of samples. The standard deviation of Aa/a calculated
from 100 runs for each angle « is plotted.
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To investigate the relation between the error A« and the number of sam-
ples, we plot for different «, the standard deviation of A« versus the number of
samples, see figure 4.10.

s(Aa)[ ]

1000 10000 100000
Samples

Figure 4.10: Dependence of standard deviation of A« with the number of
samples for estimating the a; for three different angles a = 10°; 50° and 90°.
Note the logarithmic scale on both axes.

The above results have been collected numerically in table 4.1, where we chose
the following mixing matrix A:

A= ( 0%5 Oi5 ) ' 472

The table entry gives the standard deviation of the non-diagonal terms after
normalising each column of the mixing matrix, so that the diagonal elements are
unity. For comparison, we also calculated the performance index F; as proposed
by Amari Amari et al. [1996].

- - |pij‘ - \pw\
B = S A N— N —1 4.73
=2 (; maxy, |pi| Z Z maxg, |pr;| (4.73)

=1

where P = (plj) Arelcon AL

In statistics, an often used technique for estimating the error made by ap-
proximating a probability density function by a finite number of samples is the
so-called confidence interval, which is the interval around the estimate obtained
from a given number of samples such that the probability that the real value lies

outside this interval is less than a fixed error probability e:

P(X —i|<c)=1—¢. (4.74)
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number of samples | standard deviation | index F;

1.000 0.033 0.18
10.000 0.013 0.07
100.000 0.007 0.038

Table 4.1: Standard deviations of the non-diagonal terms and the perfor-
mance index F; with different number of samples.

For estimating the median of a probability density function, we refer to Bosch
[1993]: Let x1,...,x, be independent identically distributed (i.i.d.) samples of
the random variable X, such that z; < x;.1, then the estimated median & of the
samples is defined as Tnt1 if n is odd or %(:cg + :cgﬂ) if n is even. For large n
(n > 36), let z be the inverse of the cumulative standard distribution of 1 — £

2
and
k=—0,5+ g + gz. (4.75)

Then the confidence interval of  is given by
[~T1+k, l’n,k] . (476)

In our case, an approximate confidence interval can be calculated by first run-
ning the algorithm to estimate approximate angles a;. Then use the equations
given above to derive confidence intervals for the samples of Y restricted to the
corresponding receptive fields F;. This is useful for error estimation in real world
problems.

Performance

Now, we compare geometric ICA algorithms with other ICA algorithms, namely
the Extended Infomaz algorithm by Lee et al. [1999], which is based on the classi-
cal Bell-Sejnowski ICA algorithm (Bell and Sejnowski [1995]) using the maximum
entropy criteria, and the FastICA algorithm by Hyvéarinen and Oja [1997a] and
Hyvérinen [1999] in version 2.1, with different non-linearities as described in the
articles. As geometric algorithms, we use the classical Neural Geometric algo-
rithm presented in Puntonet and Prieto [1995] and Puntonet and Prieto [1998]
and the FastGeo algorithm from above. Calculations were conducted on a PIII-
850 PC using Matlab 6.0.

In our first example, we consider a mixture of two Laplacian signals. The
results of the different algorithms are shown in table 4.2: for each algorithm we
measure the mean elapsed CPU-time per run and the mean crosstalking error F;
with its standard deviation.

Both the Extended Infomax and the FastICA algorithm perform best in
terms of accuracy. Using more complicated non-linearities where accuracy, and
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Algorithm elapsed time [s] | index E;
Extended Infomax 11.1 0.07240.002
FastICA (pow3=default) 0.068 0.076+0.004
FastICA (tanh) 0.11 0.05240.001
FastICA (gauss) 0.12 0.04840.001

Neural Geometric >60 0.18+0.10
FastGeo 0.84 0.110+£0.071

Table 4.2: Comparison of time per run and crosstalking error of ICA algo-
rithms for a random mixture of two Laplacian signals. Means and standard
deviations were taken over 1000 runs (100 runs for Extended Infomax and
Geo) with 10000 samples and uniformly distributed mixing matrix elements.

in terms of computational speed, FastICA lives up to its name being followed
by FastGeo, then Infomax and the neural algorithms, always by one order of
magnitude slower. The neural algorithm lacks of accuracy, and also shows some
convergence problems, whereas FastGeo lies between the geometric algorithm and
FastICA /Infomax regarding accuracy.

Algorithm elapsed time [s] | index E;
Extended Infomax 41.2 0.058%0.002
FastICA (pow3=default) 0.14 0.05040.005
FastICA (tanh) 0.24 0.022-£0.001
FastICA (tanh) 0.26 0.019+0.001

Neural Geometric >60 0.49£0.29
FastGeo 0.89 0.136+£0.087

Table 4.3: Comparison of time per run and crosstalking error of ICA algo-
rithms for a random mixture of two sound signals with 22000 samples. Means
and standard deviations were taken over 1000 runs (100 runs for Extended
Infomax and Geo) with uniformly distributed mixing matrix elements.

The second example deals with real-world data: two audio signals (one speech
and one music signal) — see table 4.3. The results are similar to the Laplacian
toy example. FastICA outperforms the other algorithms in terms of speed. The
accuracy of Extended Infomax and FastICA are comparable, and FastGeo is
slightly (factor 4) worse, but faster than the extended Infomax. The neural
geometric algorithm again is both slower and less accurate, mainly because of
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convergence problems.

The conclusion of our test-runs is the confirmation of the exceptional per-
formance of the FastICA algorithm; nonetheless, the FastGeo algorithm is much
faster than both Extended Infomax and the Neural Geometric algorithm. There-
fore, when geometric algorithms are the choice, we suggest to use FastGeo instead
of any neural approach, also because of a much higher stability of FastGeo.

4.3.7 Higher dimensions

So far we have explicitly considered two-dimensional data sets only. In real world
problems, however, the sensor signals are usually high-dimensional data sets like,
for example, EEG-data with 21 dimensions. Therefore it is necessary to generalise
geometric algorithms to higher dimensions. The neural geometric algorithm can
be easily translated to higher dimensional cases, but one faces serious problems in
the explicit calculation: In order to approximate higher dimensional probability
density functions it becomes necessary to have an exponentially growing number
of samples available, as will be shown in the following.

The number of samples in a ball B! of radius ¥ on the unit sphere S¢~! c R¢
divided by the number of samples on the whole S9! can be calculated as follows,
if we assume a uniformly distributed random vector.

Let B := {z € RY||z|] < 1} and S¥ ! := {& € R?||z| = 1} - referring to
Pathria [1998], the volume of B¢ can be calculated by

ol

T

vol(BY) = = Cq. (4.77)

(5)!

[\CIIsH

It follows for d > 3:

vol(B4—1)yd—1
Number of Samples in Ball ”W

4.78
- . (4.78)
Ve,
_ YV G (4.79)
Cd
d—1
< M (4.80)
Cd+1
vi-1q
= 4.81
- (481)

Obviously the number of samples in the Ball decreases by 99-1d if 9 < 1, which is
the interesting case. To have the same accuracy when estimating the medians, the
decrease must be compensated by an exponential growth in the number of sam-
ples. For three dimensions using the standard geometric learning algorithm, we
have found a good approximation for the demixing matrix by using 10° samples,
in four dimensions the reconstructed mixing matrix couldn’t be reconstructed
correctly, even with a larger number of samples.
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X2 -4 -4 X

Figure 4.11: Projection of a three dimensional mixture of Laplacian signals
onto the three coordinate planes. Note that the projection into the xi-zo-
plane does not have two distinct lines which are needed for the geometric
algorithms.

Bauer et al. [2000] and Puntonet et al. [2000] have taken a different approach
for higher dimensions, where A has been calculated by using @ projections
of X from R? onto R? along the different coordinate axes and reconstructed
the multidimensional matrix from the two-dimensional solutions. However, this
approach works only satisfactorily if the mixing matrix A is close to the unit
matrix up to permutation and scaling. Otherwise, even in three dimensions, this
projection approach won’t give the desired results, as can be seen in figure 4.11,

where the mixing matrix has been chosen as

10 0
A=|01 03 |. (4.82)
00 07

4.3.8 Conclusions

The geometric ICA algorithm has been studied in a concise theoretical frame-
work resembling the one of Kohonen’s learning algorithm. The fixed points of
the geometric ICA learning algorithm have been examined in detail. We have
introduced a Geometric Convergence Condition, which has to be fulfilled by the
fixed points of the learning algorithm. We further showed that it is also fulfilled
by the mixed unit vectors spanning the sensor signal space. Hence geometric ICA
can solve the BSS problem. Finally, we have finished the theoretic part by giving
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two conjectures for the unimodal case where the fixed point property is expected
to be very rigid.

We have then presented a new algorithm for linear geometric ICA (FastGeo)
based on histograms, which is both robust and computationally much more effi-
cient than the neural geometric ICA algorithm. The accuracy of the algorithm
concerning the estimation of the relevant medians of the underlying data distri-
butions, when varying both the mixing matrices and the sample numbers, has
been explored quantitatively, showing a rather good performance of the algo-
rithm. Simulations with non-symmetrical and non-unimodal distributions have
shown promising results so far, indicating that the new algorithm will perform
well with almost any distribution. This is the subject of ongoing research in our
group.

When comparing FastGeo with classical ICA algorithms and the neural geo-
metric one, we noticed that FastGeo performs only slightly worse than the classi-
cal ones in terms of accuracy, and better than the neural one; in terms of speed,
FastGeo places itself between FastICA and the Extended Infomax, and is much
faster than the neural approach, which also suffers from severe convergence prob-
lems. Furthermore, the fact that geometric algorithms and especially FastGeo
are very easy to implement makes FastGeo a good choice even in comparison
with the classical ICA algorithms in practical 2-dimensional applications.

We also considered the problem of high dimensional data sets with respect
to the geometrical algorithms and discussed how projections to low-dimensional
subspaces could solve this problem for a special class of mixing matrices.

In future work, the two conjectures will have to be proven in full, as well
as the Kohonen proof of convergence to be translated into the above model. In
addition, the histogram based algorithm could be extended to the non-linear case
similar to Puntonet et al. [1999], using multiple centred spheres for projection on
the surface on which the projected data histograms could then be evaluated.
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4.4 An information theoretical approach includ-
ing time structures

So far we have treated the independent component analysis as a tool in which
the structure of a time series was not been taken into account. But in many
real world applications the signals are not just independent samples of a random
variable but show an ordering, a temporal structure. This structure can be used
to extend the classical ICA to cases in which it would fail.

In this section we will show how temporal structures in time series can be
used in the framework of independent component analysis assuming the signals
arise from Markov chains with finite order. Taking the past of the underlying
processes into account by using time embedding vectors, not only instantaneous
independent — as done in the classical ICA — but also uncoupled sources can be
found. As a result signals which are gaussian distributed at each time can be
decomposed as long as the time embedding vectors are nongaussian. Using the
model of independent time embedding vectors, we derive an algorithm — we will
call it Fast Time Embedding ICA (FastTeICA) — which is similar to the well
known FastICA algorithm introduced by Hyvérinen [1999].

A comparison will be conducted between the known ICA algorithm already
dealing with time structures and the new derived FastTelCA algorithm, showing
the performance and the more flexible application due to less assumptions for the
FastTelCA algorithm.

At the end a new concept will be presented which weakens the strict assump-
tion of independent time embedding vectors but still taking into account the
dynamics of the processes for signal decomposition. This can be achieved by as-
suming independent increments, i.e. the change of state respectively the dynamics
of the processes is assumed to be independent, which is correct for Markov chains
of order one and a good assumption for higher order Markov chains. Both ap-
proaches, independent states and independent dynamics/increments, are a special
case of the independence of the time embedding vectors.

The results presented in this section are published in Jung and Kaiser [2003].

4.4.1 Introduction

In many real world applications one deals with time signals which are given by
stochastic processes. Hence, the random variables of each source are usually
correlated in time. The so far proposed algorithms by Hyvérinen [1999] using
negentropy and by Bell and Sejnowski [1995] using the maximum information
principle, do not consider these additional temporal structures. In particular,
scrambling the time series leads to the same result, since these algorithms only
use as criteria the independence between the signals at the same time step. Thus,
one could try to improve the recovery of the sources, using the extra structure
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contained in the signals.

Approaches using time structures

A set of algorithms dealing with time structures have been proposed in the past,
using different approaches:

Tong et al. [1991], Molgedey and Schuster [1994], Belouchrani et al. [1997]
and Ziehe and Miiller [1998] used autocorrelation functions to separate temporal
correlated signals. Simple and intuitive algorithms can be derived from this ap-
proach, but they all lag of two disadvantages: first the autocorrelation functions
of all sources have to be different since otherwise the matrix of the autocorrela-
tion functions is singular and second, nonlinear temporal correlations can not be
detected and therefore the sources not be separated.

Pearlmutter and Parra [1997] and Amari [2000] proposed to use autoregressive
models based on maximum likelihood approaches. There the coefficients of the
autoregressive models are estimated, i.e. one is trying to find the model generating
the signals. But in the derivation of the algorithm one has to assume, that the
coefficients of the models have to be different for each signals.

In Matsuoka et al. [1995] the idea was proposed to use the non-stationarity of
the signals, which works very successful for speech signals. Other sources having
no non-stationarity will not be treated with this approach.

Finally, an approach using the the past time steps in a probabilistic theory
was proposed by Hosseini and Jutten [2001] using for the estimation of the sources
a quasi maximum likelihood approach. There the nonlinear correlations are also
taken into account, but the maximum likelihood approach needs for the correct
convergence the knowledge of the probability density functions of the sources,
which are normally not known.

Our approach: independent time embedding vectors

In our approach we extend the idea of looking ”only” for (instantaneously) inde-
pendent signals, i.e. the states of the sources s;(t),...,s,(t) at time ¢ are inde-
pendent, to the idea of independent and uncoupled signals.

For this, we assume that the processes can be approximated by Markov chain
of order m. We say, the Markov processes x and y, both of order m, are (stochas-
tically) uncoupled from each other, if the transition probability of the process
(x,y) factorise into the transition probabilities of the processes x and y such that
the transition probabilities of x does not dependent on the past of y and vice
versa, i.e.

p(z(t),yt)|x(t —1),...,x(t —m),y(t —1),...,y(t —m)) =
plx@®)]z(t — 1), ..zt —m)) - ply@®)|y(t — 1), ..., y(t —m)) (4.83)
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A schematic illustration of (in)dependent and (un)coupled Markov processes is
shown in figure 4.12.

Markov time
process: o
s; - (t2[t-1] ] -
A
s "
s, - (=201 t ] ...

2

Figure 4.12: Schematic illustration of the possible couplings between two
Markov processes s; and so. In the classical ICA only the coupling between
the same time steps of the processes is investigated, hence we call it instan-
taneous (in)dependence. Taking also the past time steps into account, one
speaks of (un)coupled processes.

Based on this model of coupling, it is possible to determine the coupling direc-
tion and to quantify the information transfer between two stochastic processes as
first presented by Schreiber [2000] and later also in the context of point processes
in Kaiser and Schreiber [2002].

In particular, x and y are uncoupled if the (m+1)-dimensional time embedding
vectors (x(t), ...,x(t—m))T and (y(t), ..., y(t—m))T are stochastically independent.
The generalisation on more than two processes is straight forward.

In the following we show, how temporal structures using the concept of inde-
pendent time embedding vectors can be included in ICA. In particular, we derive
an algorithm analog to the FastICA algorithm, first proposed in Hyvéarinen and
Oja [1997b] and Hyvérinen [1999], to show in a ”proof of concept” the applicabil-
ity of the idea. Although the assumption of independent time embedding vectors
is very powerful, one has to deal with numerical instabilities. In order to solve
this difficulty the strict requirement of independent time embedding vectors is
weakened. Consider uncoupled Markov chains of order one where the dynamics
of each process is independent of the other. In this case, the increments of each
process, i.e. the change of state within one time step, are independent. Hence, an
ICA algorithm which searches for sources with independent increments represents
an alternative approach to the classical ICA. In order to apply this approach, one
only has to modify the classical ICA algorithms marginally.

4.4.2 Theory

Consider n time series generated by n sources s = (si,...,s,) with s(t) € R™.
The states of s(t) are recorded at time ¢t = 1,2, . ... The sources should be centred
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(E{s} = 0) and should be Markov chains of order m. Furthermore, the sources
should be stochastically uncoupled,

n

p(s()ls(t —1),....s(t —m)) = [[plsiOlsilt — 1), si(t —m)),  (4.84)

i=1

which means, that the state s;(¢), (i = 1,...,n) of each process s; is only affected
by the process’s own past (s;(t — 1),...,s;(t —m)) and not by the past of the
other processes (s;(t —1),...,s;(t —m)), (¢ # j).

This is fulfilled if the joint probability p(s(t),s(t —1),...,s(t —m)) factorises
into the probabilities of the (m+1)-dimensional embedding vectors (s;(t), s;(t —
1),...,s8(t—m)), (i=1,...,n), thus we write

n

p(s(t)s(t = 1),....s(t —m)) = [ p(si(t), st = 1), si(t —m)).  (4.85)

i=1

From the independence of these embedding vectors, the instantaneous inde-
pendence of the processes follows immediately, so that one has both uncoupled
and (instantaneously) independent sources. If equation (4.85) is fulfilled, then
the mutual information of all time embedding vectors is zero as well,

s1(t) sn(t)
[(( : )( : )):0. (4.86)
s1(t—m) Sn(t—m)

Equation (4.86) is obviously an extension of the classical ICA assumption where
the sources s(t) fulfil I(sy(t),...,s,(t)) =0.

In the following, we concentrate on linear instantaneous mixtures x(¢) of the
sources s(t) with a square matrix A € Mat(n x n;R) of full rank

x(t) = A - s(t). (4.87)

To simplify the calculations, the signals x(¢) can be decorrelated and nor-
malised resulting in a new variable z(t) = ED~'/2E"x(t), where E are the eigen-
vectors of Cy = F{xx’} and D is a diagonal matrix with the corresponding
eigenvalues. Then for z(t) holds E{zz”} = I, where I is the identity matrix.
This step is called in the literature whitening or sphering of the data (Hyvérinen
and Oja [1997b]). Since we assume a linear mixing, we want to find a demixing
matrix W, so that the demixed signals

y(t) =W - z(t) (4.88)

are equivalent to the sources or at least as independent as possible. Taking our
new definition of independent and uncoupled sources (equation (4.86)), i.e. inde-
pendent time embedding vectors, we can rewrite the mutual information in terms
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of the negentropy J as given in equation (4.38), but now taking m + 1 time steps
into account

¥i(0)
I(y) = ; J((yi-(-?-n) )) + const . (4.89)
Here, we dropped the time index t for easy reading and introduced the notation
yi(k) :==vy; (t — k) with k =0,1,...,m.

In analogy to the classical ICA, where the mutual information is minimised
to obtain as independent signals as possible, we are now able to maximise the
negentropy of the time embedding vectors. The maximisation of the negentropy
is simpler than the estimation of the mutual information, since we don’t have
to estimate any probability densities but can use the approximations for the
negentropy as given in equations (4.39) and (4.40).

In equation (4.89) we have made so far no approximation for finding indepen-
dent and uncoupled signals. In contrast, other approaches, e.g. AMUSE Molgedey
and Schuster [1994]; Tong et al. [1991], SOBI Belouchrani et al. [1997], and TD-
SEP Ziehe and Miiller [1998], as well as Amari [2000], have to assume, that the
autocorrelation functions of the sources are different or that the sources are mod-
elled by different autoregressive processes. Further, we do not have to assume a
non-stationary of the sources as it was done in Matsuoka et al. [1995]. Merely,
the time embedding vectors of the sources may not be gaussian distributed, since
under every orthogonal transformation the independent components of a multi-
dimensional Gaussian process remain independent. However, in real world prob-
lems the distribution of the time embedding vector is usually nongaussian.

4.4.3 Algorithm

In this section we derive an algorithm — close to the FastICA algorithm — to show
in a proof of concept, the advantages of the criteria of independent time embed-
ding vectors. Therefore we use equation (4.89) which uses temporal structures of
the signals but not limiting it to a special set of sources — except of sources where
the (m+1)-dimensional time embedding vectors are gaussian distributed, since
these sources cannot be separated as mentioned above. In analogy to the FastICA
algorithm by Hyvéarinen [1999] a deflation scheme first introduced by Delfosse and
Loubaton [1995] is used including a Gram-Schmidt orthogonalisation method.

Since the estimate for the negentropy is only given for an one dimensional
random variable, we generalise the function J(w) — equation (4.40), but dropping
the odd function, since we assume symmetric probability density functions as also
done in the (classical) FastICA algorithm — to m+1 dimensional random vectors
in the following way

J(w) = [E{G (W"2(0).... w"a(m)} — B{G ()} i (4.90)
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but instead of a one dimensional function G : R — R a different function
G(ug, ..., Up), in particular, G : R™ — R is used. Thus, by considering the
time embedding vectors the function is now mapping from a m+1 dimensional
space to R, taking the time structures into account. v is a (m+1)-dimensional
Gaussian random variable with the same variance as the unmixed signals y. The
shape of the function G will be discussed later, for the following derivation it has
only to be twice differentiable.

In order to maximise equation (4.90) respecting to w one has to find the
extrema of the first expectation F{G(w’z(0),...,wTz(m))}. Furthermore the
demixed signals y shall be normalised, thus we obtain the constraint E{(w?z)?} =
||[w||? = 1, which acts as a regularisation. Using the method of the Lagrangian
multipliers, by which constrained extrema can be found, we get the function

Liw)=E{G (w"z(0),...,w"z(m))} —A(||w|]*—1). (4.91)

A is the Lagrangian multiplier. The constrained extrema are given by the zeros
of the first derivative of L(w). To solve this numerically, Newton’s method can
be applied. For this, the first 3—5 and second derivatives % of L(w) are needed

Tl-r { D2 A (05,75, 6 (W0 ’WTZ(m>)} -

R~ Z E{z(k)z"()} E { &%amG (w'z(0),. .. ,sz(m))} —2AI (4.94)

- 62 T T
~ ZE{aukaulG(W z(0),...,w z(m))}I—QAI.

The stabilised Newton method to find the zeros of a function f(w) reads
W<—w—,u-Jf_1 - f(w) (4.95)

where J; is the Jacobian matrix of f, u € (0, 1] is the stabilisation factor and ” «”
denotes the update step for w. Inserting f = % and Jy = 2L we obtain the

w?
following iteration scheme for finding the unmixing vectors w; using the deflation
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described in Delfosse and Loubaton [1995]:

L\ oL
i—1
W, — W; — Z(WZTWJ)WJ- (4.97)
j=1
'W.
W, — S (4.98)
|[w|

To ensure the constraint ||w]||? = 1, the unmixing vector w; is normalised at the
end of the iteration step again.

In analogy to the classical FastICA algorithm, in the second derivative of
L(w), equation (4.94), we made the approximation that the (z(k)z” (1)) are inde-
pendent of the other part of the addendum. Furthermore, we assumed that the
expected value E{z(k)z” ()} reduces to the identity matrix if k # [ as well. If
k =1 then F{z(k)z"(l)} =TI holds due to whitening. Using this approximation
for gijQ one gets good convergence, while using the exact second derivative, the
Newton’s method has difficulties to converge. This was also observed for the
embedding dimension 1 (m=0) when our algorithm is identical to the classical
one. We do not have any satisfying explanation yet.

Following the proof for the FastICA algorithm given in Hyvarinen and Oja
[1997b], one can also show, that if w; is a sought demixing vector for s; (s; =
w; - z), then E{G (w'z(0),... ,ijz(m))} has a maximum/minimum under the

j
constraint E{(w7z)’} = ||w;||*> = 1 if the condition

> B (s} B { 5.0 6(s,0) . sy(m)

- gE {sj(k)a%c;(sjm), , .,sj(m))} S0 (4.99)

holds for all ¢ = 1,...,n, i # j. Furthermore, each sought demixing vector w;
is a zero of % = 0. Equation (4.99) represents a guideline for choosing the
function G, so that one obtains a converging algorithm.

Since we want to approximate the negentropy of a (m+1)-dimensional random
variable, we have to take the higher dimensional structure of the probability
distribution into account. Using a function like G(ug, ..., Up) = ug + ... + uk
would not yield any improvement because it does not consider any correlation

between the time steps. As a starting point we use

m

G(ug, ..., upy) = F(ug) + Z F(ug — ug) (4.100)

k=1
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with F(u) = Tu’.

Even when the existence of an extremum for the original sources for this algo-
rithm can be proven, we like to mention the critical point: Due to approximations
and the estimation of high dimensional functions, which is necessary for includ-
ing the information from the temporal structure, the numerical stability of this
algorithm is more critical than for the classical FastICA algorithm. However, the
proposed idea works with any mixture of sources, as long as the time embedding

vectors are nongaussian and independent.

An alternative approach

Note, one can also derive an algorithm analog to the Bell and Sejnowski [1995]
algorithm by optimising the mutual information of the time embedding vectors.
However, more knowledge about the (m+1)-dimensional source distributions is
necessary. Even for simple distributions the implemented algorithm works un-
stable and convergence is often not achieved. Therefore the derivation of this
algorithm is leaved out here.

4.4.4 Applications

In an example, we want to demonstrate the application of our algorithm. We have
mixed 4 sources with gaussian distributed states at each time step according to
our mixing model (4.87), using a random 4x4 matrix with full rank. In particular,
the source data set consists of two synthetic data sets (a sinusoidal and triangle
signal), one autoregressive process of order one and a voice signal. All sources
were made gaussian and each time series had a length of 10,000 samples. The
first few hundred samples of the time series of the four sources are shown in

figure 4.13.
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Figure 4.13: Time series used in the example showing the first 300 samples
of the four sources having gaussian distributed states at each time step.
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To visualise the temporal structure of the signals, in figure 4.14 the scatter-
plots of the sources (s;(t — 1) over s;(t)), i = 1,...,4 are given. All four plots
show a strong deviation from a 2-dimensional gaussian distribution. In particular,
the sinusoidal and the triangle signals, which is in addition asymmetric, can be
clearly identified (upper two plots in figure 4.14).

4 4
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Figure 4.14: Scatter-plot s;(t — 1) over s;(t) of the sources s; shown in fig-
ure 4.13. The deviation of the scatter-plots from a two dimensional gaussian
distribution is clearly visible, showing the temporal structure in the data.

When plotting the histograms of the sources s;(¢) one obtains perfect gaussian
distributions (see left column of figure 4.15). In contrast, the histograms of s;(t) —
s;(t—1) (right column of figure 4.15) deviate strongly from a gaussian distribution.
One can interpret the histograms as a projection of the 2-dimensional distribution
(figure 4.14) along the diagonal. These deviations are used in the time embedding
algorithm to separate the sources.

Using the function given in (4.100) and a time embedding vector of dimension
2 (m=1), we can separate the mixed signals applying the algorithm described in
the previous section. The best convergence in our example was achieved for a time
delay 7 of 10 samples, (s;(0), s;(1)) — (s;(t), si(t —7)). To determine the correct
time embedding dimension, one calculates the conditional entropy H (x(t)|x(t —
1),...,z(t — m)) and varies m until a plateau is reached. A misestimation of
m results in ignoring longer time correlation, but still a good separation was
achieved in real world applications with small m.

To verify how close the estimated signals are to the original sources, we cal-
culate the matrix E{sy”}, where s are the sources and y the sources estimated
by the algorithm. Both signals are normalised to a variance of one so that this
matrix has only entries in the range from -1 to 1.
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Figure 4.15: Histograms of the sources s;(¢) (left column) and of the in-
crements s;(t) — s;(t — 1) (right column). The histograms of the increments
show the temporal structure of the data whereas the left column shows the
gaussian distribution of the states.

A good measure for the accuracy of the estimate is the mean off-diagonal
element of this matrix. Due to a finite number of samples, we obtain already a
value of 0.036 when calculating F{ss”} for the sources. For the estimated sources
of our algorithm, we obtain a value of 0.049 (= mean off-diagonal element of
E{syT}), which can be seen as a good reconstruction of the sources. The signal
to noise (S/N) or more accurate the signal to error ratio for our estimated sources
is in the range of 200 to 1,000, which indicates also a good reconstruction.

For comparison we made calculations with the TDSEP algorithm where we
obtain values of 0.021 for the mean off-diagonal element. This indicates a better
performance of the algorithm, but one should realize, that TDSEP, SOBI etc.
can only be used in cases with temporal correlations and different autocorrelation
functions of the sources. In contrast, our algorithm can in principal deal with
any independent sources. Still this algorithm should presently only be seen as a
proof of concept to test the presented approach.

Furthermore it should be mentioned, that classical ICA algorithms will give
no results for these mixture of sources. For real world applications, e.g EEGs
with 21 signals, the proposed algorithm converges and finds sources as expected
by physicians.
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4.4.5 A new concept for ICA — independent increments

As seen in the previous sections, the independence of the time embedding vectors
is very strict but also powerful. Asking for ”independent sources” in real world
application — as done by an independent component analysis — one does not
only want instantaneous independent sources, but those for which the current
state does not depend on the past of the other sources. In principal, one has to
take the complete past of the time series into account in order to guarantee full
independence. However, if the sources are Markov chains of order m then it is
sufficient to look for sources whose (m+1)-dimensional time embedding vectors
are independent.

Assuming that the sources are only random variables (Markov chains of or-
der zero), we can reduce the embedding dimension to 1. Hence, we end up at
the assumption of the classical ICA (the s;(¢) are independent of each other).
Therefore the classical ICA is a special case of the time embedding ICA.

Due to numerical difficulties when trying to find sources with independent
time embedding vectors of dimension m + 1, one would like to weaken the as-
sumption of the time embedding ICA. We want to propose a new assumption for
independent sources:

Assume the sources are Markov chains of first order and their time embedding
vector with dimension two are independent. Then the increments (s;(t)—s;(t—7))
of the processes s;, ¢ = 1,...,n are also independent. On the other hand, the
increments display the dynamics of the sources. Therefore, why don’t we look
for independent increments instead of instantaneous independent signals?

This assumption weakens the time embedding ICA, but for Markov chains of
first order it is equivalent with the time embedding ICA and even for Markov
chains with order m > 1 it takes the dynamics of the system in a certain degree
into account.

In order to perform an ICA with the aim to seek sources with independent
increments the classical FastICA algorithm can be applied on the increments
2i(t) — zi(t — 7). In contrast to the time embedding ICA the classical FastICA al-
gorithm is more stable. Using this algorithm to look for independent increments,
it gives not only the correct results for Markov chains of order 1 but also for
random variables (Markov chains of order 0). For the example above we obtain
a mean off-diagonal element of 0.039 and a signal to error ratio of 1,000 to 5,000
using increments, showing the power of the new concept.

Performing ICA using the states of the processes or the increments of the
processes depends on the question one wants to be answered. When searching
for sources which show little similarities (synchronisation), i.e. the sources shall
be instantaneous independent, then the classical ICA has to be applied while ICA
performed on the increments is more appropriate to seek sources with independent
dynamics, i.e. which are uncoupled.
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4.4.6 Conclusions

We have shown that in the framework of ICA temporal structure in the time
series can — in the most general case — be taken into account by using time
embedding vectors. This is a generalisation of the classical ICA. Instead of con-
sidering only instantaneous independent sources, the sources are assumed to be
uncoupled, i.e. the dynamics of the processes are independent of each other. This
extension of the ICA model is very powerful and we have shown how to imple-
ment it analogously to the FastICA algorithm resulting in an algorithm which we
call Fast Time Embedding ICA (FastTeICA). As long as the (m+1)-dimensional
time embedding vectors are nongaussian, the sources can be separated with the
FastTelCA algorithm.

A weakening of the strict requirement of independent time embedding vectors
which still takes the dynamics of the processes into account, can be achieved by
assuming that the increments of the processes are independent. This is an al-
ternative approach to the decomposition into instantaneous independent sources.
For this, standard ICA algorithms can be used just by applying them on the
increments of the signals. Thus, the advantage of the better stability in conver-
gence of the standard ICA algorithms compared with the FastTelCA algorithm
can be combined with the aim of seaching for dynamically independent sources.
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4.5 Application to biomedical data

The concept of describing observed signals by a mixture of underlying hidden
sources is an intuitive approach and suggests to use it in biomedical applications.
Not only the underlying sources and their waveform can be of interest, but also
the mixing process (in the linear case the mixing matrix) can be useful to get a
better understanding of the origin of the measured signals

In this section, we want to explore how far independent component anal-
ysis can be applied to the biomedical data sets (neuromonitoring and electro-
encephalography data) presented in the first chapter and how the method can
improve the interpretation of medical measurements in the clinical environment.

4.5.1 Neuromonitoring data

In the chapter of time series analysis we have seen a high correlation in the low
frequency range between some of the measured neuromonitoring signals. This
linear correlation suggests, that an underlying source generates the signals and
is mixed linearly with different weight into the measured signals.

But, we have also seen, that this correlation is not stable over time, i.e. the
data is non-stationary, which is a main assumption when using random variables
with constant probability density functions. By using ICA on smaller windows,
we can overcome this problem, but a second more severe problem arises with the
neuromonitoring data.

As an example, the plotted time series of the Invos sensors in figure 2.1 and
their power spectra in figure 2.2 illustrate the problem. These measured signals
can be divided into different contributions. The signals originating from the
patients oxygen content in the blood is overlaid by two other contributions, a
long term drift — clearly visible in figure 2.1 — and a white noise signal. Therefore
not only two sources generate the two signals, but in total five different sources
(the oxygen content signal, two noise signals from the sensor device and two long
term drifts).

Thus, we have an overcomplete ICA problem with non-stationary signals
bringing us to an unsolvable problem. The true signals originating from the
oxygen content in the blood are not recoverable by ICA. But as we have seen,
time series analysis can be used to uncover the original signal by using other
techniques.

4.5.2 Electro-Encephalography (EEG) data

EEG data, as shown in figure 1.9, is a highly multimodal data set and often more
than 21 signals are recorded. In the medical research up to 256 electric potentials
are recorded from the scalp of patients to be examined. Therefore it seems to be
an interesting question, what we can expect when applying ICA to EEG data.
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Figure 4.16: Independent components (ICs) found by the FastICA algo-
rithm from the EEG data shown in figure 1.9. An interpretation of the some
selected ICs can be given as following: #2 - eye movement, #4 - heart beat,
#7 - a-wave activity (~ 8 Hz), #11 - noise, #19 - pulse amplitude from the
heart.

To give the reader a simple and intuitive example for an EEG measurement,
we will use the following analogy. Imagine you are listening to a football game
from outside the stadium using many microphones. The goal is to understand,
what happens inside the stadium. Surely the main behaviour will be recognisable
— the goals of one or the other team can be identified by the different songs they
sing and even where the supporters are located. But trying to identify a single
person or smaller group of people will not be possible, we only see an average
behaviour. More microphones will only increase the spatial resolution. But what
will happen, if an airplane flys above the stadium? This additional (noise) signal
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will also be recorded by the microphones. Surely one would like to remove such
signals from the recordings, since they will give no information about the events
inside the stadium.

Different ICA algorithms were applied to EEG signals in the past, as for
example done in Puntonet et al. [2000] and Bauer et al. [2000] by using geometric
ICA, to reveal deeper information and identify possible tumour signals. To get an
impression of the resulting independent components found by an ICA algorithm
(FastICA), the signals are shown in figure 4.16.

Very different signals arise from such an analysis, but a trained eye can sort
them into different categories. The first three independent components in fig-
ure 4.16 can be identified as artifacts from the eye movement due to their slow
changes, but also noise signals (as for example independent component #8 and
#11) are identifiable. The typical alpha-wave activity (~ 8 Hz) of the brain is also
separated into an independent component (#7). The other signals originating
from the brain or from other external sources are difficult to identify.

Figure 4.17: Origin of the independent components (ICs) — shown in fig-
ure 4.16 — projected on to the scalp using the absolute values of the entries in
the recovered mixing matrix. The positions of the electrodes are represented
by the circles. Some selected ICs (from top left to bottom right): #2 - eye
movement, #4 - heart beat, #7 - a-wave activity (~ 8 Hz), #10 - unknown
distortion (random origin of IC), #11 - noise and #19 - pulse amplitude from
the heart.

Additionally to the waveform, the algorithm allows us to determine the origin
of the signals by investigating the entries of the recovered mixing matrix. Each
entry corresponds to the amount of signal of the independent component which
is mixed into the recorded channel (the recording of each electrode). To visualise
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these entries and the origin of the signals, the absolute value of the entries is used
to generate a density plot mapped on to the scalp, as is shown in figure 4.17.

With these two different informations — the waveform and the origin of the
sources — we can try to determine the true nature of the signal. Either the signals
originate from internal events (like the alpha wave activity corresponding for
example to the songs in the stadium) or external events. The signals originating
from external events are often called artifacts, since they give no information
about the investigated system (as for example the electric activity of an eye
movement which in the analogy corresponds to the noise of the airplane flying
above the stadium).

Independent components = independent biomedical signals?

An open question which needs to be answered when applying ICA to biomedical
signals is: how much can we trust in the independent components found by an
ICA algorithm? Are these independent components true biomedical signals or
artifacts from the algorithm?

independent component [a.u.]

233 234 235 236
time [s]

Figure 4.18: Independent components #4 (heart beat —red) and #19 (pulse
amplitude from the heart — green) from figure 4.16. Plotted is the raw data
and the data smoothed with a parabolic kernel of +5samples = +30ms
(black line). By visual inspection both signals show a high correlation sug-
gesting that the heart beat occurs 0.1 s earlier than the maximum of the pulse
amplitude.

The following example will illustrate that algorithms can generate signals,
which are statistically independent, but are in the medical sense not independent
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biomedical signals. The independent components (ICs) #4 and #19 from fig-
ure 4.16 are such an example. For a better comparison both signals are plotted
enlarged in figure 4.18. The IC #4 corresponds clearly to the (electrically mea-
surable) heart beat signal recorded close to the ears, as it is well known. But IC
#19 is a similar looking signal, which turns out to be the pulse of the heart beat
from an arterial close by the right ear — see also the projection in figure 4.17.

To understand the origin of these biomedically correlated signals, we will now
analyse both signals in more detail. The signals generated by the algorithm are all
statistically independent, this can be shown by calculating the cross-correlation
and mutual information between the signals. Figure 4.19 illustrates this for both
signals while also investigating the behaviour of both measures for time shifts
between the signals.

cross—correlation

mutual information [a.u.]
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Figure 4.19: Time lagged cross-correlation and mutual information between
the independent components #4 (heart beat) and #19 (pulse amplitude from
the heart). Calculation performed with the raw data (black line) and with
data smoothed with a parabolic kernel of +5 samples = +30 ms (red), 60 ms
(green) and £180ms (blue). At time lag = 0s the raw data of the ICs have
no cross-correlation and very low mutual information. But with an increase
of the smoothing, both values rise drastically. With a smoothing of £180 ms
a maximum of the correlation between the signals is obtained at a time shift
of 0.1s, as was also visible in figure 4.18. Conclusion: ”"numerical noise”
made the signals independent.
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First of all, the raw data of the signals (black line) shows at time lag = Os
no correlation and a very low mutual information. The small positive value
of the mutual information originates from the estimation procedure. For more
details on estimating entropies and mutual information see the PhD thesis of
Kaiser [2002]. But already for small time lags the correlation and the mutual
information rise quickly. In particular the cross-correlation over the time lag of
+1 second shows a sinusoidal behaviour, except for time lags close to zero where
it drops quickly to zero. This suggests, that the algorithm forced the resulting
independent components to be uncorrelated and instantaneous independent.

But this was only achieved by adding artificial "numerical noise” to the sig-
nals. When the signals are smoothed with increasing width of the kernel — as
explained in the chapter of time series analysis using equation (2.2) — the signals
show also an increasing correlation and mutual information. Especially at time
lag zero the cross-correlation and the mutual information rise quickly with the
kernel width.

For a smoothing window of £180 ms — removing nearly all noise — the cross-
correlation as well as the mutual information reach a maximum at a time lag
of around +0.1s. That means that the electrical heart beat pattern occurs 0.1s
earlier than the pulse amplitude measured near the right ear. This value fits well
with a visual inspection of the time series in figure 4.18 and can also be supported
by medical observations.

Thus, we have shown, that not all independent components found by an ICA
algorithm are always independent in the biomedical sense. The ICA algorithm
can — under some circumstances — generate "quasi” independent signals which
are just artifacts from the algorithm. The requirement of producing as many
independent components as measured signals can lead to such consequences. Es-
pecially for a larger number of measured signals one has to be careful with the
resulting independent signals.

Removal of artifacts from Electro-Encephalography (EEG) data

As we have seen in the previous section, some of the independent components
correspond to external influences disturbing the EEG recordings. Muscle activity
such as the eye movements strongly disturbs the EEG recordings. But also noise
from some of the electrodes can make the EEG recordings difficult to interpret.

From the medical point of view, these external influences can easily and ac-
curately be identified by their waveform and their origin on the scalp. As in
our analogy, we would like to remove these external signals (the sound from an
airplane flying above the stadium) to make it easier for the physician to examine
the true electric potential originating from the brain.

Therefore we suggest to use ICA not to try to identify electric patterns origi-
nating from the brain, but to identify external influences and remove them from
the data. Since we can fully reconstruct the data from the independent compo-
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nents (using the (de)mixing matrix) we can also reconstruct an artifact free EEG
recording by using only those independent components, which are not identified
as an external influence.

For our EEG example from figure 1.9, we identified in figure 4.16 the following
independent components as artifacts: #1,2,3,6 (originating from eye movements),
#4 (heart beat signal respectively the ECG) and #8,11,16 (noise signals). Recon-
structing the EEG recording without those independent components, we obtain
the EEG shown in figure 4.20.
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Figure 4.20: EEG data cleaned by associating independent components
(ICs) with artifacts and using for the reconstruction of the data only non-
artifact ICs. The ICs identified as artifacts were #1,2,3,6 (origin from eye
movement), #4 (heart beat) and #8,11,16 (noise signals).

Compared to the original recording, which was already a quite good (artifact-
free) EEG recording, nearly all artifacts were removed leaving only those signals,
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which from our and the physicians perspective originate from the electric activity
in the brain. The author is not aware of any other method which can remove
artifacts so clearly without disturbing the rest of the signals. Smoothing pro-
cedures to remove noise or nonlinear time series analysis techniques don’t work
that well on high dimensional data.
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4.6 Conclusions

In this chapter we have presented two different approaches to find independent
components in a mixture of signals.

The geometrical approach uses scatter plots and their behaviour under trans-
formation, to recover the unknown sources and the mixture matrix in the case of
the blind source separation problem. With the presented derivation of the theo-
retical fundaments of the neural geometric learning algorithm (first presented by
Puntonet et al. [1995]), a new algorithm based on histograms (FastGeo) could be
derived. The computational effort was reduced by two orders of magnitude and
also the accuracy was enhanced, making it comparable in performance to other
ICA algorithms. In particular the easy implementation of the algorithm makes
it a good choice for two dimensional problems.

The information theoretical approach using the temporal structures in time
series was motivated by the time series analysis technique, which uses time em-
bedding vectors to reconstruct the underlying system. With the concept of inde-
pendent time embedding vectors, restrictions of other algorithms based on time
structures could be weakened. Any linear quadratic mixture of sources can be
recovered as long as the complete time embedding vector is nongaussian dis-
tributed. The derived algorithm (FastTelCA), which was derived in analogy to
the classical FastICA algorithm, shows in a proof of concept the applicability to
temporal correlated signals. Furthermore, the theoretical description lead to a
new concept of ICA which uses independent increments (respectively independent
dynamics) instead of searching for instantaneous independence (removing simi-
larities between the signals). Depending on the question which shall be answered
by ICA, one of the two concepts should be used. Though, in real world appli-
cations the question for independent dynamical processes often arises, wherefore
the concept of independent increments should be favoured in such cases.

The application of ICA in biomedical data analysis demonstrates both the
power and weakness of the concept. In the case of the neuromonitoring data,
the mixture of signals represents a so-called overcomplete problem (more un-
known sources than signals, which can not be solved uniquely), while the electro-
encephalography (EEG) data seem to be an ideal application. The artifacts in
the data can easily be identified and by reconstructing the data without these
signals, a cleaned EEG recording can be produced. Still we have to keep in mind,
that independent components do not always have to be independent biomedical
signals. Furthermore not every independent component must correspond to a
biomedical process.






Conclusions and Outlook

In the following, a summary of the conclusions of the preceding chapters will be
given. For more details we refer to the conclusions in the corresponding chapters.
The second part of this chapter gives an outlook on further developments in the
field of biomedical data analysis, in particular how enhanced biological/physical
models could be developed.

Conclusions

In the presentation of the time series analysis applied to neuromonitoring data
we have shown that well known methods with nearly no assumptions on the data
can reveal interesting relations.

The correlation analysis in the frequency domain and the power spectrum of
the data uncovered three fundamental characteristics of the data. First the signals
originating from the patient behave as a one-over-f-type process and represent
the only correlated part in the time series of the neuromonitoring data. These
so-called selfsimilar time series are typical processes observed in many natural
systems. In contrast to that, the two other contributions, a long term drift of the
signal and a white noise contribution in the higher frequency band, seem not to
contain any valuable information from the medical point of view.

The correlation between the time series representing the oxygen supply was
well established in a large group of patients. But also other more surprising cou-
plings were seen between the time series describing the hydrodynamical processes
and the oxygen supply. With some basic medical knowledge, we gave an intuitive
description of the origin of these couplings. In general, these interconnections
between the measured brain status parameters can be used for statistical tests to
indicate a change in the state of health of the patient.

In a next step we adapted a hydrodynamical model to the special require-
ments necessary in neurosurgical applications. This model reproduces all patterns
known from medical experiments such as the autoregulation and the pressure-
volume curve. To be able to reproduce the brain status parameters measured at
the neurosurgical intensive care unit, we added a mathematical description of the
oxygen supply of brain matter based on the theory of the Krogh cylinder. This
combined model enables us to describe and understand in a far more detailed way
the couplings between the measured signals, as was investigated by the correlation
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analysis, as well as their generating processes. Furthermore, other parameters as
for example the cerebral blood flow or the autoregulation capability of the brain,
which are only hardly measureable in the clinical environment, can now be es-
timated by the model. This gives the physicians an important indication of the
state of health of the patients and the possibility of a more accurate treatment.

All fundamental biological processes used in this model are based on pure
physical descriptions, making us confident to reproduce the mechanisms in the
brain correctly. The comparison of the simulations of the model with the mea-
sured data, in particular the relation between the time series describing the oxy-
gen supply, supports the model.

An alternative approach to analyse biomedical data is the independent com-
ponent analysis (ICA). First we presented in an elaborate theoretical discussion
the derivation of two new algorithms based on very different assumptions. The
geometrical approach uses the properties of the scatter plots under transforma-
tion, making it a simple and intuitive algorithm for low dimensional problems.
From the presented theoretical framework, where a proof for the correct solution
of the method is given, a new fast histogram based algorithm is derived. The
second approach is based on information theoretical considerations including the
knowledge about the time structures in the data. A method known in the nonlin-
ear time series analysis is used to overcome limitations of other ICA algorithms
using time structures. The approach of independent time embedding vectors lead
further to a new concept of ICA. Instead of looking for instantaneous indepen-
dence, i.e. removing similarities between the signals, the concept of independent
dynamics respectively independent increments is proposed. In many real world
applications these independent dynamical processes are of interest.

The results of the application of ICA to biomedical data demonstrate both
the power and the weakpoints of the concept based on ICA. While ICA is not well
suited for the analysis of neuromonitoring, due to the high number of unknown
sources generating the measured signals, the application to the EEG data showed
the excellent data enhancement possibilities of ICA. Artifacts respectively exter-
nal influences in the recordings can be removed in a very accurate way without
disturbing the data. This makes it a superior data processing method compared
to others known for this purpose.

However, not all independent components extracted by the ICA algorithms
have to be independent in the biomedical sense. In an example we have shown
that the extracted electrical heart beat pattern was correlated to a signal similar
to the pulse amplitude of a heart beat after marginal smoothing. Therefore the
independent components have to be verified to their biomedical significance.
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Outlook

From the medical point view, the presented combined model can support the
detection of changes in the patient’s physiological state. Possible clinical appli-
cations could be...

e ...the determination of the state of the autorequlation by the analysis of
the coupling between the arterial blood pressure and the parameters of the
oxygen supply (pOs2 and HbO,) as it was shown in time series analysis
and described by the model. For the medical treatment, the knowledge of
the state of the autoregulation is vital as already emphasised by Golding
et al. [1999]. Questions on the behaviour of the system on possible changes
of the ABP to higher or lower values can be answered by the model.

e ...the analysis of the current status of the patient by fitting the parameters
of the model to the measured data. With these parameters, a prediction
of the brain status for different conditions is then possible. In particular,
the model can describe under which conditions and in which form (linear
or exponential) the intracranial pressure (ICP) rises. Correspondingly the
treatment of the patient can be adapted.

e ...the calculation of the metabolic brain status parameters — in particular
the oxygen supply including the oxygen content in blood and tissue. This is
only possible since we obtain from the hydrodynamical model the cerebral
blood flow (CBF), which is vital for the calculation of the oxygen transport.
A monitoring of the oxygen measurements and a comparison with the model
predictions can give an indication on the change of the patients physiological
state.

In the context of the physical description of the model, further extensions are
imaginable. In particular the increase of the spatial resolution in the model
could be of interest. Two approaches could be followed:

e A "top/down” approach by subdividing the model into smaller subunits
taking the local anatomic structure of the brain into account. A swelling or
injury of the brain tissue could be described by dedicated subunits. Local
measurements obtained by a set of devices like the Invos sensor could then
reveal a better insight into the regional processes occurring in the brain, as
for example the local velocity in the blood vessels and the diffusion of the
oxygen into the tissue. Such — in some sense — phenomenological description
would of course need a more detailed incorporation of the knowledge about
the anatomy of the human brain.

e Or a "bottom/up” approach by using computer tomography or nuclear
magnetic resonance imaging to reconstruct the true anatomy of the blood
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vessels in the human head. A full hydrodynamical calculation, i.e. solving
the Navier-Stokes equation, coupled to a oxygen diffusion model as de-
scribed in this work could then be performed. But the questions of how to
implement the autoregulation mechanisms in the brain and the calculation
of the long term predictions have to be answered. If this could be achieved,
we would have the ideal model.

In addition, other chemical substances beside the oxygen could be taken into
account. In particular the autoregulation mechanism, which regulates the blood
flow in the brain is influenced by a variety of chemical substances and neural pro-
cesses. For example the CO,, which originates from the nerve cells, determines
the pH-value of the blood and finally influence the autoregulation process. A
description which takes all important chemical substances into account, would
be favourable but also highly complex. A good balance between the phenomeno-
logical and the pure chemical/physical description has to be found.

Nevertheless, the presented model are a first step in a long iterative process to
develop sophisticated diagnostic tools for neurosurgical intensive care units. In
particular the fitting of the free parameters to the current patients state defines
the next step in this challenge.

Apart from the ”classic” analysis techniques, a method first used in nuclear
physics to describe the energy spectra of the nucleus, has been used for the
analysis of the EEG data, namely the random matrix theory (RMT). Without
the knowledge about the interactions in the core of the atom, the resonances are
measured and statistically analysed. In electro-encephalography (EEG) a similar
problem arises, only little is known about the interactions of billions of neurons
in the brain. However, one can measure the electric potential on the scalp of
the head. Correlations between the measured signals can be written in a matrix
and the fluctuations of the eigenvalues (corresponding to the resonances of the
nucleus) can be compared to the predictions of RMT. Interestingly, a behaviour
similar to the gaussian orthogonal ensemble (GOE) is found in the EEG data, i.e.
the entries in the correlation matrix seem to be random and gaussian distributed,
but a perfect agreement to RMT is not achieved.

The reason for this is not yet clear and will require further investigation.
Probably a preprocessing step to remove the artifacts with the ICA method as
well as a higher temporal resolution of the EEG data is necessary, to be able to
understand in a more detailed way the origin of this behaviour. Still, this analysis
method is an interesting approach since no prior knowledge about the system is
necessary.

In general, the removal of artifacts by the ICA method is a promising ap-
plication for devices recording electro-encephalography (EEG) data. In clinical
environments such a method could enhance the quality of the EEGs and simplify
the inspection of the EEG recordings for the physicians. A possible implementa-
tion of this method into EEG recording devices is under consideration.



Appendix A

Mathematical tools and proofs

A.1 Correlation in the frequency domain

In the following the correlation coefficient between two frequency filtered time
series xf(t) and y(t) will be derived. To filter the time series x(t) and y(t¢) in
frequency domain, one has to fourier transform them by

~ 1 T
T(w) = E/x(r)e dr (A.1)

and multiply them with a (here rectangular) windowing function

S(w):{ Lowrslwlsw (A.2)

0 else

The filtered fourier coeflicients read as 7;(w) = Z(w)S(w) and the filtered time
series can be written as

(t) = \/LQ_W / Hw)S(w)e“Tdr. (A.3)

For the correlation coefficient between the frequency filtered time series (nor-
malised by the standard deviations) we write

Cors = (xryr) = (xp)(ys) (AA)
U@ — @ ) - )

where (.) is defined as

()= Jim = [ jodi (A.5)
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For simplicity and clarity of the equations, we will leave out the limits T" — oo
in the equations, however still taking it in the calculations into account. Fur-
thermore we can remove the mean from the time series before calculating the
correlation, i.e. (zy), (ys) = 0, since this simplifies the correlation coefficient to

fl‘fyf dt

Coryr = .
" \/ Jagdt [yFdt

In the following, the numerator will be written in terms of the fourier coefficients
instead of the time series itself, which leads to a simpler equation

/:L’f(t)yf(t) dt = % ///i(w)S(w)eM J(w)S(we ™ dw dw’ dt (A7)
: (A.8)

(A.6)

The integration dt over e~*“*)* simplifies to §(w + ')

— 5 [[ 3@ S@SW S + ) dvds, (A9

after the integration dw’ over §(w + w') one substitutes w’ by —w

1
o

T(w)y(—w) S(w)S(—w) dw. (A.10)

Since S(w) is symmetric, i.e. S(w) = S(—w), and x(t) and y(t) are real valued
functions, i.e. g(—w) = §*(w) where §* is the conjugate complex of 7, and the
frequency window is chosen to be rectangular (w; and wy are the limits as defined
in A.2), the equation simplifies to

1 [

2m ),

W) (@) dw + % /w L:Q:%(w)gj*(w) dw. (A1)

Exchanging the limits of the first integral gives the final result for the numerator

1 [* N PN
=5 (W)Y (w) + T(w) 7" (w) dw. (A.12)
w1
Therefore one obtains for the correlation coefficient
B %f;‘f g+ 2y dw

Capys = = = .

Vo aw do [ 5 dw

Note: This formula is only strictly valid for long time series and zero mean of the

time series x(t) and y(t)!

(A.13)
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A.2 Proof: Uniqueness of geometric ICA

We now describe precisely how to recover the matrix A after the axes, which span
the observation space, have been extracted successfully from the data using for
example a (neural) geometric learning algorithm. This proof is given in Theis
et al. [2003b] and in a shorter version in Theis [2002].

So we assume that each w; is linear-dependent on one Ae;. Let

A={(z1,...,2,) e R" | Jiz; > 0,2, =0 for all j # i} (A.14)

be the set of positive coordinate axes and denote with A’ := AA the image of
this set under the transformation A. Note, due to A being bijective A’ intersects
the unit (n — 1)-sphere

Srli={z eR" | |z| =1} (A.15)

in exactly n distinct points {py,...,p,} and that those p;’s form a basis of R”
Define the matrix My, . € Gl(n), where Gl(n) := {W € Mat(n x n,R) |
det(W) # 0}, to be the linear mapping of e; onto p; for i = 1,...,n, i.e.

Mp,...pn = (P1] - [Pn).- (A.16)

This matrix thus effects the linear coordinate change from the standard coordi-
nates (e;) to the new basis (p;). Note that for this coordinate transformation the
following lemma holds:

Lemma A.l. For any permutation o € S,, the two matrices My, 5. and

Mpo<1)7---,po<n) are equivalent.

Proof. The relation

M = PM (A.17)

P1;-.,Pn Po(1)--5Po(n)

holds with P representing a permutation matrix and Mpm),___,pa(n) designating
the matrix My, ., with permuted columns according to o € S,,. Note that any
additional permutation does not interfere with the equivalence condition given
above. O

Therefore My, . is equivalent to My, . w, = (Wi|...][w,). Now we can
state the following theorem:

Theorem A.2 (Uniqueness of the geometric method). The matriz My, 5.,
s equivalent to A.

Proof. By construction of My, ., we have

Aei

Mpl,...,pn(ei) =p; = f(e;) = M7 (A.18)
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so there exists a \; € R\ {0} such that
My, .p.(€) = NiAe;. (A.19)

Setting L(e;) := \;e; yields an invertible diagonal matrix L € Gl(n), such that
M,, . . p. = LA. This shows the claim. ]

Having proven this theorem, the following corollary follows immediately:

Corollary A.3. Under the assumption of successful convergence of the geometric

learning algorithm, the matriz My} .~ solves the BSS problem.

A.3 Proof: Existence of only two fixed points
in geometric ICA

The proof of the following theorem is given in Theis et al. [2003b] and the PhD
thesis of Theis [2002].

Theorem A.4. Assume that the sources S; are unimodal, symmetric and that
p1 = pa. Assume that py|[0,7) with A = id has exactly two local maxima and
two local minima. Then there exist only two fized points of geometric ICA in the
expectation.

Proof. The same calculation as in the proof of theorem 4.5 shows that we can
assume A = id without loss of generality. Then by theorem 4.4 and by p; = po,
the two pairs {0,2} and {Z, 27} satisfy GCC. We have to show that no other
pair than those two fulfils this condition.

First note that the symmetry of p; and ps shows that

nm nm

py(; —p) = py(; + ) (A.20)

for n € Z and ¢ € R, and p; = p2 induces even

nm nm

py( = @)= o) (A.21)

Due to assumption py has only two maxima and two minima in [0, 7), the above
equations then show that those have to be at {0, 7,5 ?jf .

Now we claim that for 8, # =F, n € Z, the median of py|[31, 31 + 5] does not
equal 8 + 7. Note that this shows the theorem.

For the proof of the claim, consider the smallest integer p € Z such that
Y1 =5 > Bi, and set yp := 1 + 5. Let B := B+ § and o := 1 + . We
have to show that the median of py|[51, f2] does not equal . A figure visualising

these relations and the following definitions is given in figure A.1.
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p, (o)A

=V

ﬁ1 Y1 61 a Y2 62 BZ

Figure A.1: Visualisation of the proof of theorem 4.8. «, 3;,7; and 9; are
defined in the text.

Using the symmetry noted above, we have for 6, := vy + (y1 — 1) = 271 — bi:

7 01
Cl I:/ Py :/ Py - (A22)
1 G

Note that ; # «, or else pm = 2v; = a + 31 = 26 + 5, which contradicts the
assumption to F;. Without loss of generality, let a > d;; the other case can be
proven similarly.

Setting ds := o + (72 — @) = 291 — «a, again symmetry shows that

V2 02
CQ = / Py = / Py <A23>
o 72

a B2
Cs 3:/ Py 2/ Py (A.24)
5 52

the second equation follows because v — 61 = (2 — 72 and 75 — @ = dy — Ys.
Now assume in contradiction to our claim that « is the median of py|[51, Ba]-
Then we have

and

a B2
201 + Cg = / Py = / Py = 202 + Cg (A25)

and therefore C; = C3. As shown above py (1) and py (72) are the only extremal
points of py|[01, 32]; without loss of generality, let py(7;) be a maximum, then
py (72) has to be a minimum. But this means that

Y1 Y2
Cr= [ v > = goeria) = [Cor = (A.26)

1 (6%

which contradicts the above. This completes the proof of the theorem. O
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