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ABSTRACT 
 

Despite the existing scientific and commercial interest in surfactant-polymer systems, 

there is still not enough connection between the understanding of the polymer-surfactant 

interactions in solution and at solid-liquid interfaces. In this work, the surfactant-polymer 

system SDS-JR400 with different component ratios was studied in the bulk solution using 

DLS and during adsorption at solid-liquid interfaces using AFM. 

DLS measurements delivered data concerning the size and uniformity of micelle-like 

clusters formed in the bulk solution. Soft-contact AFM imaging was used to visualize the 

structure of the adsorbed layer, the acquirement of the force-distance curves together with the 

special “scratching”  treatment brought information about the mechanical properties of the 

layer. 

The adsorption from the mixed solutions in the concentration range from below CAC to 

above PSP was cooperative at native mica, hydrophobized mica and hydrophobized silica 

surface. The surfactant-rich mixtures showed the less and the polymer-rich mixtures – the 

most pronounced adsorption at all surfaces. In all cases of adsorption from mixtures the 

adsorbed layer was structured showing a presence of polymer-surfactant aggregates. A 

correlation between light scattering data concerning sturcturizing and particle size, on the one 

hand, and AFM images, on the other hand, was observed. A resemblance between images of 

mixture samples of the same or similar composition, but acquired on different surfaces, was 

found. It turned out that the influence of surface properties is of less importance for 

adsorption, compared to the influence of the mixture composition in bulk. It should be 

remarked that this conclusion can only be drawn, when surfactant and polymer are mixed 

prior to adsorption. A dependence between the surface charge and hydrophobicity, on the one 

hand, and the strength of adsorption, on the other hand, was visualized: SDS-JR400 mixtures 

of the same composition demonstrated different properties of the adsorbed layer after 

adsorption at native mica, hydrophobized mica and hydrophobized silica. The data obtained 

during “washing-off”  experiments including a subsequent substitution of mixtures in the bulk 

phase with increasing surfactant/polymer ratio demonstrated that the composition and 

structure of the adsorbed layer follow the same changes that occur in the bulk phase: SDS 

penetrates the adsorbed layer and causes changes in its properties. 
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1CHAPTER 1. INTRODUCTION 
 

Surfactants and polymers find application in nearly every field of human activity, 

their interactions are of importance for many industrial processes, and investigations in 

the mechanisms of these interactions may be useful in fundamental sciences as well as 

in many industrial applications. 

The application of surfactants is essential in detergency and emulsion technology in 

the chemical industry, medicine and personal care, in oil recovery and mineral 

separation in the oil and mining industries [68]. The behaviour of surfactants at solid-

liquid interfaces attracts attention due to their role in colloid stabilization and wetting 

processes that are important in most of the applications mentioned above. There exists 

still a considerable need in better understanding of the mechanisms of this behaviour. 

Polymers consist of numerous molecular units or monomers. Both natural 

(polysaccharides, polynucleotides or other biopolymers, such as natural caoutchouc) 

and synthetic (polyvinyl acetate, nylon) polymers are used in nearly any technical or 

industrial application. For their use, especially for the use of soluble polymers, the 

understanding of the interfacial behaviour (adsorption and desorption, interaction with 

other components) is of critical importance. 

The branches where polymers and surfactants find their application intersect 

frequently with one another (personal care, cosmetics and pharmaceuticals, paints and 

inks, detergents, flotation). On the one hand, in practical applications, the addition of 

every component has its own purpose. However, interactions between polymers and 

surfactants occur and have influence on the effectiveness of both components. On the 

other hand, a fundamental interest in the mechanisms of these intermolecular 

interactions and hydrophobic aggregation phenomena is a reason of the great research 

activity in this field. Many applications of surfactant-polymer systems are connected 

with their interaction with liquid-air and solid-liquid interfaces. This has been described 

in several reviews in this area. The special attention of the reviewers was attracted by 

applied systems, like mineral processing and solid suspensions, detergency, and 

personal care and cosmetics [17, 44, 136]. For the latter application field, the system 

comprising sodium dodecyl sulphate (SDS) and the cationic polymer JR400 

(cationically modified hydroxyethyl cellulose ether) is of special importance due to the 

broad use of the both components. 
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In the huge amount of studies performed on polymer-surfactant systems, a great 

majority deals with the interactions in bulk, and much less investigations had been made 

on liquid-air and solid-liquid interfaces. If any, investigations considered a broad range 

of concentrations, focusing on the area around and above the cmc of the surfactant. This 

concerns the specific SDS-JR400 system, too. Therefore, little detailed information is 

available regarding the interactions of this system with different surfaces. This is 

especially true for low concentrations, sufficiently below the cmc of the surfactant. 

 

1.1 AIM OF THIS THESIS 

The aim of this work is to provide a better understanding of the interaction between 

SDS and JR400 at the solid-liquid interface, compared with the composition in bulk. 

The work is focused on the area of high dilutions. Specifically, this work will make an 

attempt to distinguish between the roles of the mixture composition in bulk, on the one 

hand, and of the surface properties, on the other hand, in the general adsorption pattern. 

The structure and properties of the adsorbed layer is studied with Atomic Force 

Microscopy (AFM), and the properties in bulk with Dynamic Light Scattering (DLS). 

 

1.2 OUTLINE OF THIS THESIS 

A theoretical overview and background information are presented in the Chapter 2: 

a summary of scientific data concerning the structure and properties of polymers and 

surfactants both in solution and at interfaces is given. The SDS surfactant and the JR400 

Polymer are described. The modern view of polymer-surfactant interactions is 

presented, with an emphasis on the interactions between ionic polymers and surfactants 

bearing opposite charges. The history of investigations of polymer-surfactant systems is 

stated, with a deepened view into the SDS-JR400 system. General description of solid-

liquid interfaces is given, and the surfaces used in this work are described. 

A description of the research methods and preparation procedures used in this work 

is given in the Chapter 3. The method of atomic force microscopy, ways and details of 

data acquisition (imaging, “scratching” , force-distance curves) used in the work are 

examined in details. 
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Only one polymer-surfactant system was chosen for study in this work. A summary 

of data collected while investigating the SDS-JR400 system in bulk and at solid-liquid 

interfaces is given in the Chapter 4. The SDS-JR400 system is described in bulk and 

after and during adsorption at negatively charged mica and silica, both hydrophilic and 

hydrophobized. In this chapter these results are also examined from the point of view of 

theory and compared to the literature data.  

Chapter 5 contains a general summary of conclusion drawn from the results given in 

Chapter 4. 
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2CHAPTER 2. THEORY AND BACKGROUND 
 

Two substances that belong to different classes of chemical compounds are used in 

this work. They interact in the bulk as well as at interfaces. Their adsorption at different 

types of surfaces will be described in this thesis.  

This chapter provides background information concerning the substances and 

interfaces and their interaction. The first two sections deal with surfactants and 

polymers, respectively. A summary of classification, research history, structure and 

properties in the bulk and at interfaces is provided, followed by a description of an 

individual substance used in the work. The third section gives a look at polymer-

surfactant interactions with a more detailed view at patterns significant for this work. 

The final section gives a theoretical overview of solid-liquid interfaces in context of 

polymer-surfactant interactions and describes specific properties of interfaces that come 

to use in this work. 

 

 

2.1 SURFACTANTS 

 

Surfactants occur naturally, like phospholipids, in biological systems or can be made 

synthetically. Their broad application is caused by their ability to modify surface 

properties of liquids, like surface tension and, therefore, wettability. They are used as 

dispersants, surface modifiers, emulsifiers or to aid solubility both in industry and 

chemical formulations. The following section provides a general description of 

surfactants, their behaviour in solution and at interfaces. 

 

2.1.1 General structure and proper ties  

 

Surfactants are called so due to sufficient surface activity, i.e., the ability to lower 

the surface tension of a solution. Generally, a surfactant molecule consists of two parts 
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having different properties: a “headgroup” with a strong affinity for the solvent and a 

longer “ tail”  with less affinity for the solvent. In the case of an aqueous solution, we can 

refer to hydrophilic and hydrophobic parts of the molecule, respectively. The whole 

molecule is thus amphiphilic. A schematic representation of a surfactant molecule is 

given in Figure 2.1. 

 

Hydrophilic „head“
(polar or ionic)

Hydrophobic „ tail“
(mostly alkyl chain)

 

 

Figure 2.1 – Schematic illustration of a surfactant molecule in aqueous solution 
 

According to the properties of the hydrophilic headgroup, surfactants may be 

classified as ionic and non-ionic [74]. Among ionic surfactants, one can distinguish 

cationic, anionic and zwitterionic surfactants. Examples for every group are given in 

Table 2.1.1. 

 

Table 2.1.1 Surfactants classification and examples 
 

Surfactant type Headgroup 

charge 

Example 

Cationic + C14TAB C14H29N
+(CH3)3Br- Ionic 

Anionic - SDS   C12H25SO4
-Na+ 

Zwitterionic + and - DDAPS C12H25NH4
+(CH2)3SO3

- 

Non-ionic no charge C10E8  C10H21[OCH2CH2]8OH 

Dodecyl sulphil ethanol  

  C12H25SOCH2CH2OH 
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Polymeric [53] and dimeric or gemini [51, 52] surfactants have been synthesized 

and used in research. Generally, these are also molecules with intermitting hydrophilic 

and hydrophobic groups. A schematic illustration of gemini surfactants is given in 

Figure 2.2. 

 

 

   A    B 

Figure 2.2 – Schematic illustration of an asymmetric (A) and symmetric (B) gemini 
surfactant. Reproduced from [54]. 
 

Surfactants are often soluble in water due to favourable hydrophilic interaction 

between the polar headgroup and water. A typical ionic surfactant behaves in water as 

any other strong electrolyte: the counterion dissociates from the surfactant ion. 

The dual nature of a surfactant molecule predefines their unique interaction with 

water: as mentioned above, the polar headgroup ensures a certain solubility; but the 

hydrophobic tails, in opposition to the former, have a very entropically unfavourable 

interaction pattern with water, usually referred to as the hydrophobic effect: the 

hydrophobic tails cause a more ordered structure of water. This results in an entropy 

decrease. This property naturally leads to a formation of a more energetically favourable 

interaction patterns, where the hydrophobic tails aggregate, or they are “hidden” or 

removed from the solution. As a consequence structures such as micelles occur or the 

surfactant molecules concentrate at interfaces, respectively. 

 

2.1.2 Surfactant behaviour  at liquid-air  inter faces and in bulk 

solution  

 

At a water-air interface, or generally, on a border between a polar and an unpolar 

phase (e.g., at a water-oil or water-vapour interface), the thermodynamic favourability 

causes an orientated location of surfactant molecules: the polar (ionic or non-ionic) 

headgroup is in the aqueous phase and the tail is directed out of water, as shown in 

Figure 2.3. 
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Figure 2.3 – Surfactants accumulation at air-water interface with energetically favourable 
orientation of molecules. 
 

The accumulation of surfactants at the air-water interface lowers the polarity 

difference between air and water, and, therefore, lowers the surface tension as well, in 

accordance with the Rebinder rule [56]. The surface activity of the surfactant (derivative 

of the surface tension in the surfactant concentration with the reverse sign) depends on 

the length of its unpolar “ tail”  – the hydrocarbon group. According to the Duclaux-

Traube’s rule (1891), every –CH2– group of the hydrocarbon chain increases the 

surface activity of the surfactant 3 to 3,5 times. The surface tension of water (72 mJm-2 

at 293 K [56]) can be reduced to 30 – 35 mJm-2 by adding a surfactant with a 

sufficiently long hydrocarbon chain [68]. In summary, the dual, amphiphilic nature of a 

surfactant causes it to concentrate at the air-water interface with a specific orientation, 

thus reducing the system free energy and the surface tension. 

 

The second way to achieve an energetically favourable state is the interaction of the 

surfactant molecules with one another in the bulk solution.  
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At concentration increase, the saturation of the air-water interface occurs. The 

molecule migration into the surface layer brings less and less energetic “profit” . The 

natural way to reduce the hydrocarbon-water interactions is such an arrangement of the 

surfactant molecules in the bulk solutions, that the hydrophobic “ tails”  of the surfactant 

molecules are as close to one another as possible. As a logical result of such 

arrangement, a special kind of molecule aggregate emerges called micelle. A surfactant 

micelle is schematically represented in Figure 2.4. 

 

 

 

Figure 2.4 – Schematic representation of a spherical surfactant micelle. Reproduced from 
[http://www.upol.cz/resources/kafch/micelles_cz.htm]. 
 

A micelle is a complex of surfactant molecules with hydrophilic headgroups 

directed in the bulk solution and hydrophobic tails – in the inner space of the micelle. 

Inside the micelle, therefore, practically no water molecules are present, and thus no 

energetically unfavourable hydrocarbon-water interactions occur. 

Generally, there exist spherical, rod-like, and lamellar micelles. In this order they 

emerge, or re-form, with increasing concentrations. Evidence for disc-shaped micelles 

has also been obtained [68].  

At the final stage of the concentration increase, the surfactant solution turns into gel. 

The micelle forms are schematically illustrated in Figure 2.4. In this work, due to the 

low concentrations, at which the investigations have been performed, only spherical 

micelles will be discussed. 
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Figure 2.5. – Schematic illustration of possible micelle forms: a) spherical micelle, b) rod-
like micelle, and c) lamellar micellisation. Reproduced from 
[http://perso.curie.fr/Albrecht.Ott/micellescylindriques/amphiphile-Title.html] 
 

Generally the micelle radius is between 1-100 nm, obviously depending on the 

length of the hydrocarbon chain and on the size of the hydrophilic headgroup. One more 

important property of a micelle is the aggregation number N – the number of surfactant 

molecules comprising the micelle. It is characteristic for an individual surfactant at 

given temperature. The geometric considerations hereto will be discussed later in this 

section. The micelles of charged surfactant molecules are surrounded with the double 

electric layer; they contribute to the conductivity of the solution. 

The formation of ordered micelles is not only an energetically favourable process: in 

a micelle, an ordered position of surfactant molecules leads to a loss of freedom, and 

(more important, especially for ionic surfactants) the location of loaded headgroups 

close to one another on the micelle surface causes the electrostatic repulsive force to 

contribute unfavourably to the energy of micellisation. The micellisation process, 

therefore, is a reversible chemical process that depends on a balance of favourable and 

opposing factors. Like for any reversible process, there exists an equilibrium condition 

for micellisation between micelles and saturated surface that is characterized by the 

critical micelle concentration (CMC). The CMC in aqueous solution is characteristic for 

a surfactant at a given temperature and electrolyte concentration. Micelles can only form 

when the temperature is above the Krafft point. The Krafft point is the temperature 

(more precisely, narrow temperature range) above which the solubility of a surfactant 

rises sharply (IUPAC). 
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 The CMC is to define as a concentration at which exactly 50% of the surfactant 

molecules in the bulk solution are aggregated to micelles [56]. Since a transition from 

single molecules to larger aggregates in the solvent takes place at CMC, it is expectable 

that many properties of the solution would change at this point. And really, sharp 

changes are experienced by the concentrational dependence of a large number of 

properties.  

This concerns properties relying on the size (and, therefore, mobility) and number of 

particles in solution, i.e., colligative properties. Most significant are abrupt changes of 

surface tension, turbidity and light scattering (optical density), electric conductivity and 

osmotic pressure. 

�

�

0

Csurf
CMC

 

Figure 2.6. – Typical change in surface tension for a surfactant with increasing 
concentration 
 

These changes can be used for the experimental location of the CMC. For example, 

the typical change in surface tension for a surfactant with increasing concentration is 

shown in Figure 2.6. The deceleration in the surface tension decrease observed in the 

illustration can be explained in terms of surface saturation mentioned above: at further 

increase of the surfactant concentration above the CMC, most of “new” surfactant 

molecules coming in the solution, participate in the formation of micelles, and not in the 

migration to the water-air interface contributing to the reduction of the surface tension. 

As shown by Corkill et al. [69], above the CMC. the surfactant monomer concentration 

remains constant while the total concentration increases. Changes in other properties of 
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the surfactant solution are generally to attribute to the abrupt increase of the size of the 

dissolved particles and to the decrease of their number and mobility (significant for 

electric conductivity, since micelles, and not single molecules become main charge 

carriers in the system). 

The nature of micelles is dynamic, and surfactant molecules are in continuous 

motion. There is constant interchange between micelles and solution. The lifetime of a 

surfactant molecule in a micelle is of the order of 10-7 seconds [70, 71], and the half-life 

for micellar formation or breakdown is usually in the region of 10-3 to 1 seconds [72, 

73]. 

 

Geometric considerations 

 

Size and properties of surfactant micelles and, therefore, the properties of the 

surfactant solution at given concentration, depend very strongly on the geometric 

characteristics of molecules of a specific surfactant. There exists a theory of micellar 

structure, based upon the geometry of various aggregate shapes and the space occupied 

by surfactant headgroup and tail [61-63] It allows prediction of micellar shape using 

three geometric parameters that play the most important role: 

a0 – the effective headgroup area: 

 this is the minimum physical size of the headgroup representing a balance 

between the opposing forces – mutual headgroup repulsion (especially for charged 

headgroups) and hydrophobic attraction; 

v – the volume of the hydrocarbon chain(s), and 

lc – the cr itical chain length: 

 this is the maximum length that the chain(s) can have in a “stretched” state. 

Taking into account the bond lengths and the group volumes, we can use for a 

saturated hydrocarbon chain with “n”  carbon atoms [60], 

 

lc 
�

 lmax�  (0.154 + 0.1265n) nm 

and, 

 

v �  (27.4 + 26.9n) � 10-3 nm3 
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The following mathematical expression incorporating these three terms defines the 

dimensionless critical packing parameter (CPP): 

 

cla

v
CPP

0

=  

 

The CPP value defines the micellar form. The critical values can be derived from 

simple geometric arguments. For example, a spherical micelle of radius R has mean 

aggregation number n that can be expressed as 

 

0

24

a

R
n

π= ,    and    v

R
n

3

4 3π=  

 

What means that,  

 

0

3

a

v
R =  

 

Therefore, since R
�

 lc, a spherical micelle can assemble when 
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This parameter (CPP) is a numerical description of monomer shape. Its value of 1/3 

for spherical micelles indicates that mostly surfactants with relatively small 

hydrocarbon chain volumes and large effective headgroup areas tend to form spherical 

micelles. If the CPP value is between 1/3 and 1/2, i.e., with smaller headgroups and 

larger “ tails” , rod-like micelles assemble, and if CPP exceeds 1/2 bilayers can form.  

Solution conditions, like electrolyte concentrations, ionic strength, and pH have a 

significant influence on size and shape of surfactant aggregates and on CMC as well 

[136]. This can be explained by, for example, screening of electrostatic repulsion 

between the ionic headgroups by the added electrolyte: the repulsion between them is 

reduced which means that the effective headgroup area is decreased, and, therefore, CPP 



 13 

increases. An example for such an influence is a transition of spherical CTAB micelles 

to rod-like form in the presence of 80 mM KBr [64]. 

 

 

2.1.3 Surfactant adsorption at solid/liquid inter faces, dependence 

on mutual charge relations and hydrophobicity 

 

2.1.3.1 General considerations 
 

This work is devoted mostly to interactions between surfactants and polymers, and it 

studies adsorption of their mixtures. Only a simple overview will be presented 

concerning adsorption of pure surfactants. It will give a general “ framework”  

understanding of pattern and mechanisms of surfactant adsorption at solid-liquid 

interfaces. 

At a solid-liquid interface, surfactants readily adsorb from solution. This adsorption 

can be driven by nearly all kinds of intermolecular interactions: hydrophobic and 

hydrophilic, electrostatic and other. Whether adsorption takes place or not; its 

mechanisms, and the final structure and properties of the adsorbed layer, – all these 

issues are generally dependent on the properties of the surfactant and that of the surface, 

as well as on the concentration of the surfactant in bulk. The main surface properties 

having an influence on the adsorption of surfactants are the following: surface structure, 

surface hydrophobicity, and surface charge, especially the sign of the charge and the 

surface charge density [68]. These properties can vary in a very broad range; the 

condition of the surface, and in some cases the condition of surfactant, can depend 

critically on the solution properties (temperature, pH). A unified general approach to 

understanding the adsorption process is hardly available under such circumstances [75]. 

Therefore, only a brief review of adsorption patterns and results of investigations on the 

isolated surfactant adsorption at solid-liquid interfaces is presented in this section. 

Only aqueous solutions are considered here, and most of the solid surfaces bear an 

electric charge when in contact with water [75]. It is therefore useful to discuss the 

surfactant adsorption at charged surfaces in the first place. What concerns uncharged 

surfaces, the only fundamentally and practically important kind of them is graphite. The 

adsorption process and properties of the adsorbed layer at uncharged surfaces will be in 
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further mentioned separately for cases when this process differs significantly from that 

on the charged surfaces. 

One of the most important factors governing the adsorption of ionic surfactants is 

the electrical interaction between ion and surface. It is obvious that only interactions 

between oppositely charged items (surfactant and surface) can be considered here 

because no adsorption e.g. of a cationic surfactant at a positively charged surface is 

possible if no other mechanisms are involved or no other components are present in 

solution.  

Probably the most important feature of solid-liquid interfaces of this kind is the 

electrical double layer formed by the loaded surface and ions in water close to the 

surface. If a surfactant is present in solution it contributes sufficiently to the formation 

of the layer. Depending on the solvation grade, the centers of the ions (or ionic groups) 

lay in the inner Helmholtz plane or in the outer Helmholtz plane (Stern plane). In the 

former case, the surfactants are “specifically”  adsorbed, i.e. electrical interactions play a 

minor role in the formation of the adsorbed layer. In the latter case, the adsorption is of 

no specific character, which means, mostly of electrical nature. This is the situation that 

we discuss here. In this case, the surfactant molecules are oriented with their polar (in 

this case, ionic) heads directed to the surface.  

The second important mechanism of surfactant adsorption at solid-liquid interfaces 

is by hydrophobic interaction. This mechanism participates in the formation of the 

adsorbed layer in a case when the surface itself is hydrophobic, and this mechanism 

plays the leading, or the only, role when the surface bears no electric charge at all. The 

part of the surfactant molecule directed to the surface is in this case its hydrophobic tail 

that bears no electric charge as well. 

So we can see that the dual nature of the surfactant molecule can lead to the 

formation of adsorbed layer caused by nearly every combination of electrostatic and 

hydrophilic/hydrophobic properties, both of the particular surface and the particular 

surfactant molecule. The variety of adsorption patterns emerges that depends on 

contribution of different kinds of interaction in every particular case. This variety will 

be partially presented downwards. 
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2.1.3.2 Measurements of surfactant adsorption 
 

The usual method to quantitatively describe surfactant adsorption at a solid-liquid 

interface is the measurement of the surface excess concentration, � , which is defined as 

excess of surfactant concentration at the interface compared with the bulk equilibrium 

concentration. A result of such experiment is usually an adsorption isotherm that 

provides a quantitative picture of the adsorbed layer without any regards to the layer 

structure. 

A generalized adsorption isotherm for a surfactant and surface of opposite charge 

looks generally as presented schematically in Figure 2.7. 
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Figure 2.7 – Typical simplified adsorption isotherm for a surfactant adsorbing to an 
oppositely charged surface [137] 
 

In Region I (where C << CMC), individual surfactant molecules adsorb via ion 

exchange until the surface charge is neutralized. It is clear that for surfaces bearing no 
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charge, the isotherm looks different, having no Region I. An example for such isotherm 

(in linear scale) is presented in Figure 2.8 (reproduced from [82]). At such surfaces, the 

adsorption process starts from the Region II. 

 

 

 

Figure 2.8 – Cumulative adsorption isotherms of aqueous solutions of C12TAB on graphite. 
Reproduced from [82]. 
 

As (in case of charged surfaces) the surface charge is neutralized, and the surface is 

covered with a kind of monolayer of surfactant molecules with their tails directed to 

solution, adsorption proceeds further in Region II (C< CMC). Here it is driven mostly 

by hydrophobic interaction: a tail-to-tail association of surfactant molecules in solution 

and those already adsorbed at the surface takes place. This association causes a rapid 

increase in adsorption. The surface charge in this region becomes eventually reversed. 

As the surfactant concentration experiences further increase, the isotherm reaches its 

plateau in the point where surfactant concentration becomes equal to CMC. The 

isotherm Region III where C > CMC shows no more adsorption increase. The adsorbed 

surfactant layer is saturated in this region, and this condition is considered to be a very 

stable state. 

The adsorbed surfactant layer was studied in early decades mostly quantitatively. 

The equilibrium adsorbed layer was assumed to have no lateral structure. The 

conformation of the layer (film) was considered to be similar to bilayers. The qualitative 

studies of the film performed since middle 80es have allowed the further 

characterization of its properties and, in some cases, direct visualization of the adsorbed 

layer. Due to the use of specialized techniques such as neutron reflection [65], 
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ellipsometry [85], optical reflectometry [50], fluorescent spectroscopy [86], FT-IR/ATR 

[87], NMR [88], SPR [83, 84] and Scanning Probe Microscopy (to be discussed in the 

Chapter 3), a rich array of structures formed by surfactant aggregates adsorbed at solid-

liquid interfaces has been revealed. The Atomic Force Microscopy (the variation of the 

Scanning Probe Microscopy) has made direct in-situ imaging of these structures 

possible. 

Manne et al. imaged the structures formed by surfactant C16TAB adsorbed to 

graphite surface with the AFM in 1994 [89]. The reported structures have been hemi 

cylinders that were ordered parallel to one another and obviously templated by the 

crystal structure of substrate (graphite). Since then, a great amount of works has been 

published reporting a wide variety of surfactant structures adsorbed at solid-liquid 

interfaces of various kinds at concentrations above the CMC [117, 66, 67, 91, 92, 119]. 

This variety, from the point of view of general properties and important environment 

features influencing adsorption, is summarized and briefly described in the following 

subsections. 

 

2.1.3.3 Substrate  
 

Surfactant adsorption at solid-liquid interfaces is strongly influenced by substrate 

properties. The main substrate properties influencing the adsorption pattern are surface 

charge and surface hydrophobicity, as it was noted above. 

If adsorption takes place at hydrophilic surfaces where the electrostatic interaction 

prevails over the hydrophobic one, spherical and cylindrical aggregates (often referred 

to as (adsorbed) micelles or micelle-like structures) defines the picture of the saturated 

adsorbed layer. Laterally homogeneous adsorbed layers (bilayers) were also reported 

[120, 114, 54]. In all these structures, surfactant molecules closest to the solid surface 

are oriented to it with their polar or ionic heads. A cross-section view of cylindrical or 

spherical aggregates typical for such adsorption is schematically presented in Figure 2.9 

a). 
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a) 

 
 

b) 

 

Figure 2.9 – Schematic representation of cross-section views of structures formed by 
adsorbed surfactants above the CMC: a) at hydrophilic surfaces, b) at hydrophobic surfaces. 
 

When hydrophobic surfaces are in use as adsorption substrate the adsorption process 

is lead by the hydrophobic interaction that prevails over the electrostatic one. This 

causes formation of the adsorption layer where surfactant molecules are oriented with 

their heads to solution and these are the hydrophobic tails which contact with the solid 

surface. The most frequent structures of which usually such adsorbed layer consists are 

hemispheres and hemicylinders. A cross-section view of hemicylindrical or 

hemispherical aggregates typical for adsorption driven by hydrophobic interaction is 

schematically presented in Figure 2.9 b). Laterally homogeneous monolayers of 

surfactant molecules can also form. 

Hemicylindrical structures have to be mentioned separately since they were actually 

the first kind of surfactant adsorption structures observed by the AFM [89]. 

Hemicylinders are also remarkable because they are reported to be formed both at 

hydrophobic [89, 119, 66] and at hydrophilic (gold [84, 115] and mercury [106]) 

surfaces. This can be probably explained in different cases by specific activity of 

sulphur or by electric potential applied to the surface [84]. 

It is to mention that the formation of saturated adsorption layers at solid-liquid 

interfaces possesses some similarity to the process of surfactant micellar aggregation in 

bulk: we can consider the hydrophobic interface plane as a symmetry plane for the 

aggregates and can discover structures very similar to those formed by micellisation in 

bulk solution and described in the section 2.1.2 (see Figure 2.5). Presumed that the inner 

space of a micelle is hydrophobic, we can easily see this resemblance: a hydrophobic 

solid-liquid interface naturally belongs to the inner space of a micelle and thus divides it 

to two hemimicelles only one of which can be observed. A hydrophilic surface, in 
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contrary, belongs to the water environment of micelles, and therefore, to their outer 

space, which causes formation of “complete”  micelle-like structures. Generally, we can 

say that solid-liquid interfaces induce self-aggregation of surfactant molecules. 

Another important feature is the substrate structure: depending on whether the 

substrate is crystalline or amorphous, the adsorbed layer can be templated by the 

(lattice) structure of the underlying solid surface. Examples of such templating were 

collected especially during AFM investigations of adsorbed layers [117, 118]. These 

results are supported by electronic microscopy and surface plasmon resonance studies 

[83,84]. In particular, position and length of hemicylindrical and cylindrical micelle-like 

structures of the adsorbed layer are likely to be strongly influenced by the structure of 

the underlying substrate. This was observed, for example, on gold and highly oriented 

pyrrolithic graphite (HOPG) [117]. 

A particular case has been observed especially on mercury and gold surfaces when 

the surface potential is changed [84]. Such changes lead in experiments to 

transformations of (hemi)cylindrical aggregates to a condensed monolayer and back 

again. This can be explained by the charge screening on the surfactant aggregates what 

caused their “melting” . 

 

2.1.3.4 Influence of solution conditions 
 

Generally, solution conditions able to influence the structure of adsorbed layer are 

the concentration of surfactant itself and the presence of various additives. The 

influence of counter- and coions as well as that of the solution temperature can be also 

significant.  

A higher surfactant concentration causes the increase of packing density of the 

adsorbed surfactant structures: the spacings between them become smaller [119]. An 

increase of aggregates’  period (i.e., both aggregates size and spacing) was also reported. 

Similarly, electrolyte addition results in a decrease of interaggregate spacing, since the 

repulsive electrostatic forces between the surface micelles are screened. Non-polar 

additives, like dodecanol [124] can lower the curvature of aggregates due to the 

hydrophobic interactions with the surfactant.  

The influence of solid-liquid interfaces usually decreases the Krafft temperature 

sufficiently: the structures observed below and above the bulk Krafft point are similar 

[120]. 



 20 

To summarize briefly, surfactants form different structures when adsorbed at solid-

liquid interfaces at concentrations above the CMC. On hydrophobic surfaces, the 

structures are hemispherical and hemicylindrical micelle-like clusters (hemimicelles) or 

monolayers. Hydrophilic surfaces make adsorbed surfactant molecules to form spherical 

or cylindrical micelle-like structures or bilayers. The most typical structures are 

presented in Figure 2.10. The behaviour of surfactant at interfaces demonstrates a 

qualitative similarity with their bulk properties. The interfaces can be considered as a 

part of environment and their influence can be discussed in terms of environment 

properties. 

 

 

 

Figure 2.10 – Examples of different types of structures, which may form due to the 
adsorption of surfactants on solid surfaces: (a) bilayers and monolayer; (b) spherical 
hemimicelles and micelles; (c) cylindrical hemimicelles and micelles. Reproduced from 
[84]. 
 

 

2.1.4 Sodium dodecyl sulphate – an anionic sur factant 

 

Sodium dodecyl sulphate C12H25NaO4S (SDS) is probably the most commonly used 

anionic surfactant in the world. It finds a very broad application in nearly every branch. 

Its annual production in the world reaches millions of tons [55]. SDS is normally the 

most significant component of many important personal care products like shampoos, 

shower gels, cleaners etc. 

The first scientific description of SDS is given by Hartley [76]. Due to the very 

broad application mentioned, it is not surprising that the number of scientific 

publications concerning this substance grows rapidly during last 60 years. This nearly 

exponential growth seems to be so illustrative for the question of practical importance 

of investigations on this substance that it is presented in Figure 2.11.  
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Figure 2.11 – Increase of publications amount concerning sodium dodecyl sulphate 
according to the scientific search system Science Finder Scholar 
 

The rapid increase of publications number in early 70s, when personal care products 

mentioned above came into daily life is of a special interest. 

SDS is used in this work as a typical anionic surfactant. SDS is an alkyl ether 

sulphate. Its molar mass is 288.38 g/mol. The chemical structure of SDS is presented in 

Figure 2.12. 

 

 

Figure 2.12 – Structural formula of sodium dodecyl sulphate 
 

At room temperature, SDS is highly soluble in water (up to 150 g/L). It dissociates 

in water as every strong electrolyte. The pH values of a 10 g/L solution of SDS are 

between 6 and 9 [Merck Product data, 113760]. The micellisation behaviour of this 

surfactant has been studied very precisely in last decades. According to the different 

literature data, the critical micellisation concentration of SDS is about 8.3 mM at 25oC 

[79, 77]. 
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The mean aggregation number N, also according to slightly varying literature data 

obviously depending on the precision of individual method, is between 67 and 76 at 

room temperature when measured close to the cmc[77, 78]. Micelles radius of SDS at 

25 oC is about 2.5 nm [80]. 

As a typical and easily commercially available anionic surfactant, SDS is used in 

investigations of surfactant adsorption at solid-liquid interfaces since 1957 [81]. 

 

 

 

2.2 POLYMERS 

 

Polymers occur in nature, like starch or RNA, or can be produced synthetically, like 

polyethylene. Polymers are macromolecules; they consist of many repeating units called 

monomers. Polymer properties generally differ significantly from those of monomers. 

Polymers can consist of monomer units of the same type (homopolymers), like 

polyacrilic acid or of two or more unit types (heteropolymer or copolymer), like 

proteins, which consist of 20 amino acid types. The structure of the polymer molecule 

can be linear, branched (dendritic) or cross-linked. In the latter case the polymer forms a 

three-dimensional network. The overall properties of the polymer vary according to the 

type of monomers, the structure of the polymer and its resulting molecular weight. 

Depending on the nature of monomers, polymer molecules can carry charges. 

Uncharged polymers are referred to as neutral or non-ionic ones and those carrying 

charge – as polyelectrolytes. They will be discussed in the following sections. 

 

2.2.1 Polymer solubility, polyelectrolytes 

 

Water is the only solvent used here. The general aspects of polymer solubilisation in 

water and their behaviour in aqueous solution are briefly overviewed in this section. 

Most polymers, like e.g. PP, PVC, are insoluble in water. Polymers that are water-

soluble have wide applications in water treatment processes, emulsion stabilization, 

especially in emulsion paints, cosmetics, pharmaceutical formulations etc.  
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Dissolution of a polymer consists of two stages. The first one is the water uptake by 

the dry polymer and leads to a formation of a swollen gel, and during the second one the 

gel breaks down to form a true solution. The main property defining the solubilisation 

process is the affinity of the polymer to the solvent. Since water is a polar solvent it 

dissolves polar or ionic polymers. This affinity can be expressed as a comparison of 

attractive forces between solvent molecules and polymer segments, on the one hand, 

and inside the pairs “segment – segment”  and “solvent molecule – solvent molecule” , 

on the other hand. In order to form a solution, the force between segments and solvent 

molecules has to exceed the sum of those inside the “pairs” . If the affinity of solvent to 

polymer is low, the solvent can be described as “poor” , and if there is a high affinity – 

as “good”.The temperature at which the force between the segments is equal to the sum 

is referred to as theta, � , temperature. The size of the polymer molecule is here 

uninfluenced by the solvent effects; that is, the polymer molecule behaves like being in 

its “own liquid” . 

Quantitatively, the solubility of a polymer in the given solvent is characterized by 

the solubility parameter 
�
, depending on the enthalpy of vapourization, 

�
Hvap, 

normalized with the molar volume, Vm. 

 

 

m

vap

V

H∆
=2δ  

 

To enable polymer solubilisation in the given solvent, the solubility parameter of the 

polymer has to be equal or close to this of the solvent. The main components 

contributing to the solubility parameter are dispersion forces, polar forces and hydrogen 

bonding. The latter, namely its strength, is one of the main reasons, why no satisfactory 

thermodynamic theory has been given for aqueous polymer solutions.  

Polymers can aggregate in the solution, in extreme cases undergoing phase 

separation. This property of water-soluble polymers is used to characterize their 

solubility quantitatively in another way then with the help of the solubility parameter. In 

this method the measure of the polymer solubility is the so-called “cloud point” . This 

point is the temperature where the precipitation of 1 % aqueous solution of the polymer 

occurs. 
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2.2.1.1 Polymer conformations in solution 
 

Polymer molecules are relatively flexible due to the ability of their backbone to 

rotate freely around single bonds along the polymer chain. In a dilute solution, this 

flexibility causes constant motion of the polymer molecule and its interchange between 

one conformation and another. Some information about the polymer conformation can 

be acquired when measuring its hydrodynamic radius by light scattering (details to the 

method see Section 3.2.2.). In this case, the radius of gyration denoted as Rg or 
_

s 2 can 

be measured. This is a part of a concept considering the average shape coiled polymer 

molecule as spherical with the origin in its centre of gravity. 

The polymer molecule form can vary from completely coiled conformation, where 

the polymer chain possesses the minimal possible hydrodynamic volume, up to 

completely extended one. The size of a fully extended polymer chain is called its 

contour length.  

The prevailing conformation type is defined by many factors and conditions, like 

solvent properties, polymer concentration, temperature, pH value and electrolyte 

concentration, and polymer affinity to solvent as well. With increasing affinity between 

polymer segments and solvent molecules, the preferred conformation changes from 

coiled to extended, as presented in Figure 2.13.  

 

low high
solvent-to-polymer affinity

coiled random extended

 

 

Figure 2.13 – Schematic illustration of polymer conformations in solution. 
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2.2.1.2 Various classes of water-soluble polymers 
 

Among non-ionic water-soluble polymers, following classes can be mentioned: first 

of all, polymers with an oxygen or nitrogen in the backbone. These are in the first line 

polyoxyethylene (POE) and polyethyleneimine (PEI), respectively. The latter polymer 

is usually branched and contains normally ¼ of quaternary amine groups. Secondly, a 

presence of an acrylic group causes polymer solubility in water. Here polyacrilic acid 

(PAA) and polymetacrylic acid (PMA) can be mentioned. PAA and POE form a 

complex in aqueous solution due to the hydrogen bonds emerging between the 

hydrogens in the PAA and oxygens in the POE. Another water-soluble polymer in this 

class is polyacrylamide (PAAm). It is very hydrophilic, has a high affinity to surfaces 

due to cationization at lower pH values and is therefore used as a flocculent. Thirdly, it 

is a vinyl group that also makes a polymer water-soluble. The most important examples 

in this group are polyvinyl alcohol (PVAl) and polyvinylpyrrolidone (PVP). These both 

polymers are very important in the practical applications, especially PVP having a weak 

basic character and thus interacting with anionic surfactants (e.g. SDS) in aqueous 

solutions. Such solutions are used in pharmacy, cosmetics and medicine. The SDS – 

PVP system has been also widely used in the fundamental research of polymer-

surfactant interactions both in bulk solutions and at interfaces [116, 104]. All the classes 

of water-soluble polymers listed above are of synthetic origin. 

The fourth and final class includes polymers occurring in nature and their 

derivatives. These are polysaccharides and cellulose derivatives. Polysaccharides can be 

linear or branched; they are made up of sugar-based units. Such of them like dextran, 

gum arabic and agar are widely used in food industry as gelants.  

The derivatives of cellulose are of special importance for this work, since the JR400 

Polymer used here belongs to this class. Most commonly, cellulose can be made water-

soluble using the three hydroxyl groups of � -anhydroglycose unit, which constitutes the 

cellulose chain, as derivatization starting points. The extent of their reaction is referred 

to as the degree of substitution (DS) and is defined as the average number of hydroxyls 

that have reacted; the DS can thus vary between 0 and 3. (It is important to distinguish 

between the DS and the substitution grade (SG), an average number of functional 

groups per monomer unit. The SG plays an important role at further functional 

modifications of cellulose derivatives and will be mentioned later).  
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This reaction is the way how the cellulose derivatives, which are most significant for 

research and application, are manufactured. These are carboxymethylcellulose, 

hydroxyethylcellulose (HEC), and ethyl hydroxyethylcellulose (EHEC). The first 

substance is the product of the cellulose hydroxyls reaction with monochloroacetate, 

giving a sodium salt of the carboxylic acid. It is acidic, displays almost no surface 

activity and is used in detergents preventing re-deposition of removed pollutions. HEC 

is manufactured by the reaction of alkali-swollen cellulose with ethylene oxide. It is 

used as thickener, binder, etc. The addition of ethylene chloride to freshly produced 

HEC leads to EHEC manufacturing. This polymer is very versatile depending on the DS 

and molar substitution (MS – the molar ratio of ethylene oxide to cellulose hydroxyl 

groups for HEC). EHEC and its further derivatives, like hydrophobically modified 

EHEC (HM-EHEC) or JR400 Polymer are most frequently used in research and diverse 

formulations together with polymers in cosmetics and pharmacy.  

Among the classes of water-soluble polymers listed above, one can note polymers 

containing charged groups, like PAA or carboxymethylcellulose, or polymers able to 

carry charged groups after functionalization, like EHEC and its derivative JR400. They, 

as mentioned above, are called polyelectrolytes. Polyelectrolytes play an important role 

among water-soluble polymers; they have many applications and are used technically as 

flocculation aids, thickeners, dispersants, etc. The charged groups are usually 

carboxylate or sulphate groups or protonated amines. 

It can be distinguished between strong and weak polyelectrolytes. The charge of the 

strong ones is almost independent on pH. The weak polyelectrolytes carry weakly 

ionisable groups, and their charge depends strongly on the solution pH. 

This work considers the strong cationic polyelectrolyte JR400; its charge is caused 

by protonated aminogroups.  

 

 

2.2.2 Adsorption of polymers at solid-liquid inter faces 

 

The adsorption of polymers is used in many technical applications, such as treatment 

of surfaces, flocculation processes, dispersion of particles, etc [136]. The point of 

polymer adsorption in these applications is to modify the surface properties. A short 

description of the basics of polymer adsorption is given in this section. 
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Polymer adsorption can be driven by different forces. These are similar to 

interactions driving the adsorption of surfactants discussed above. The most significant 

generalized reason for polymer adsorption is energetic favourability that originates from 

the competition of interactions between polymer segments and solvent molecules with 

one another and among themselves, similar to that described in Section 2.2.1. In case of 

polymer adsorption at solid-liquid interfaces, one new item, namely the solid surface, 

participates in this competition. For example, interaction of segments of a cationic 

polymer with an anionic surface is generally stronger than that between polymer 

segments with one another or with solvent molecules. Another important contribution is 

usually made by the affinity between the solvent molecules and polymer segments. If 

this is poor then the effective polymer-surface interaction can become attractive, 

“helping”  the polymer molecule to minimize the contact with the solvent. It is obvious, 

therefore, that the polymer adsorption has to increase dramatically with polymer 

concentration increase. This increase frequently foregoes precipitation. 
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Figure 2.14 –Isotherms of the adsorption of polyvinyl alcohol (PVA) of different molecular 
weights on a polystyrene surface. Redrawn from [136] 
 

Polymer adsorption at solid surfaces, similar to that of surfactants, is usually 

measured with help of surface excess measurements. A typical adsorption isotherm 

shows the steep rise in adsorption at low polymer concentrations and saturation at 

higher ones where the isotherm reaches its plateau. This kind of adsorption is referred to 
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as positive adsorption. If a surface shows no net attraction on the polymer segments, so-

called negative adsorption commonly referred to as depletion, can occur [93].  

Polymers with higher molecular weight adsorb more intensively than low molecular 

weight species. This is illustrated schematically in Figure 2.14. This figure shows at the 

same time typical forms of the adsorption isotherm. This molecular weight dependence 

can vary for different polymers and surfaces. The most significant here is whether the 

polymer chain adsorbs with its end to the surface or lies flat on it. In reality, most 

polymer systems tend to adsorb in coiled or random conformation, so that the adsorbed 

amount is proportional to M � , where �  is a constant varying in the range 0.3 – 0.5. The 

dependence of polymer adsorption on the conformation of the polymer molecule is 

logically bound, in turn, with the fact that adsorption depends strongly on the solvent 

properties, as mentioned above. Polymer chains adsorbed at a solid surface are usually 

presented as in Figure 2.15, to have a “ tail-loop-train”  conformation. Tails are non-

adsorbed chain ends, segment length in direct contact with the surface are called trains, 

and loops are “ free”  segments between the trains, that is, segments that are not in 

contact with the surface. To understand many properties of adsorbed polymer layers, the 

total segment concentration profile as a function of the distance from the surface, is 

commonly used [94]. 

 

 

 

Figure 2.15 – Schematic illustration of the adsorption of polymer chains at solid-liquid 
interfaces. Reproduced from [83] 
 

A logical consequence of the adsorption dependence on the molecular weight is that, 

from mixed systems, polymers with higher molecular weight adsorb preferentially at the 

expense of the low molecular weight species [136]. 

For polyelectrolytes, the adsorption is predominantly influenced by the electrostatic 

interactions between the polymer and the surface, but non-electrostatic effects can also 

play an important role. For electrostatic interactions, the adsorption exerts a strong 
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dependence on the pH value. The second important factor influencing the adsorption is 

the concentration of added salt. As the pH factor varies, the surface and the 

polyelectrolyte can acquire the charges of the same sign or opposite charges. For both of 

these cases, the adsorption driving forces and mechanisms, as well as the role of the 

added electrolyte, are different. They can be explained in terms of thermodynamics 

[136]. 

In the first case, i.e., when the polymer and the surface have the same charge, the 

driving force of adsorption stems from attractive van der Waals interactions between the 

polymer chain and the surface. Here, the addition of salt can increase the adsorption. A 

possible explanation for this effect is that in the salt-free solution the local counterions 

concentration will increase during adsorption process since they are needed to maintain 

electrical neutrality. This local increase lowers the adsorption entropy, thus increasing 

the system free energy. Upon addition of salt, this effect caused by the “own” 

counterions of the polyelectrolyte, is diminished due to the increasing salt concentration 

in the whole solution volume, not only close to the surface. The second explanation 

suggests a shielding of the repulsive forces between the polymer and the surface by the 

added salt, therefore causing a higher adsorption of the polymer. Divalent cations 

demonstrate more shielding efficiency [105]. 

The second case, where the polymer and the surface have opposite charges, the 

driving force of the adsorption is not as obvious as it could seem at first sight. Indeed, 

the first factor driving the adsorption in this system is the electrostatic attraction 

between the polyelectrolyte and the surface. There exists, however, one more reason 

that makes the polyelectrolyte adsorption to the opposite charged surface practically 

irreversible: this is the presence of counterions: while adsorption proceeds, counterions 

are released from both the polymer and the surface into the bulk solution. This increases 

the entropy of the system, which brings the system into a lower free energy state. 

Therefore, the addition of salt in this case will decrease the adsorption of the 

polyelectrolyte, since the energetic effect of the released counterions will be less when 

compared to a salt-free system. In addition, the added salt will shield the attractive 

electrostatic forces between the polymer and the substrate and also compete with the 

polymer for the adsorption sites at the solid surface. 

Polyelectrolytes can modify the behaviour of charged colloids when added to the 

system. The interactions between two surfaces bearing the same charge that is, in turn, 

opposite to the charge of the polyelectrolyte get dramatically changed upon 
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polyelectrolyte addition: polyelectrolytes adsorb to the surfaces of the particles and can, 

depending on the amount added, change their normally repulsive interaction pattern to 

the attractive one. The factor playing an important role here is so-called bridging, i.e., 

connection of the surfaces at short separation distances by the polymer chains adsorbed 

on the both surfaces. The flexibility of the polymer chains is here crucial, since it allows 

connection of two surfaces if the molecule is adsorbed to both of them. This 

phenomenon is referred to as bridging and is of importance in practical applications, 

like e.g. flocculation. 

The adsorption of practically all polymer classes at the solid surfaces can be 

considered as irreversible at normal circumstances; this can be also explained with the 

help of considerations concerning the slow dynamics in polymer systems as well as 

length and flexibility of the polymer chains: in order to desorb a polymer molecule from 

the surface, all its segments have to desorb simultaneously. This is less probable, 

especially for the polymers with high degree of polymerisation. This property can be 

used for modification of the surface properties, e.g. hydrophilization of the surface. If 

any factors influencing adsorption are introduced into the system, for example 

surfactants, the adsorption at solid surfaces can become energetically unfavourable, and 

thus the polymer can desorb. A special attention will be devoted to this process in the 

section considering interactions between polymers and surfactants. 

The method for determining the polymer adsorption and creating adsorption 

isotherms described at the beginning of this section belongs to indirect methods where 

the adsorbed amount can be calculated from the equilibrium bulk concentration of the 

polymer. Any technique that can measure solution concentration can be used here, like 

e.g. spectroscopic methods. Direct methods, in contrary, can determine the amount of 

the polymer in contact with the surface. The techniques such as neutron and optical 

reflectometry, ellipsometry, surface plasmon resonance can be used for these 

measurements. 

To determine the structure of an adsorbed polymer layer, various types of 

microscopy techniques have been used. These include Scanning Electron Microscopy 

(SEM) and Transmission Electron Microscopy (TEM), and since 1994 [107, 108] 

Scanning Probe Microscopy techniques such as STM and AFM. More detailed 

discussion of the application of these methods is provided in the Section 3.3. 

AFM investigations of the adsorbed layer structure have been performed on proteins 

[108] and polyacrilic acid [109] at graphite and mica, respectively. They have shown 
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the adsorption proceeding from nucleation sides to a homogeneous coverage. The 

roughness of the adsorbed layer changed in cycles indicating the attachment of 

subsequent polymer layers, while the layer “stickiness”  increased gradually. 

The Surface Forces Apparatus (SFA) has been extensively used for the study of the 

forces between polymer-coated surfaces [110-113, 16]. These invesitgations much 

contributed to the understanding of the “bridging”  process described above in this 

section. 

 

 

2.2.3 JR 400 Polymer  

 

The cationic polymer JR400 is a chloride salt of the N,N,N-trimethylammonium 

derivative of hydroxyethylcellulose (CA Index Name: Cellulose, 2-hydroxyethyl 2-[2-

hydroxy-3-(trimethylammonio)propoxy]ethyl 2-hydroxy-3-(trimethylammonio)propyl 

ether, chloride) of molecular weight around 500000. The structure of a monomer unit 

bearing the trimethylammonium group is represented in Figure 2.16. 

 

 

Figure 2.16 – The structure of a functionalized monomer unit of the JR400 Polymer. 
Reproduced from [10] 
 

The substance is also known under different names such as Amerchol JR 400; 

Catinal LC 100; Celquat SC 230M; JR 125; JR 30M; Leogard P; LR 300M; LR 400; 

Polyquaternium 10; Quaternium 19; UCARE Polymer JR. This wide variety of 

identifiers illustrates the variability of the polymer structure and some properties and the 
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fact that the polymer is used by a plenty of research organisations and industrial 

companies. 

The polymer finds extensive application in health and body care, in first line, as an 

emulsion stabilizer [125, 14]. The JR400 Polymer was first reported in 1974 [121]. The 

first publication series in 1975 by Goddard described the most interesting properties of 

the polymer, its importance in body care applications, and its interactions with 

surfactants [126, 127]. These features will be discussed in the next section. 

There is some inconsistency in the literature data concerning charge density and 

mean chain length of the polymer. According to Chronakis and Alexandridis [10], an 

aqueous solution of 1 wt % polymer bears a charge concentration of 10 mM and a mean 

contour length between charges of about 20 Å. This result suggests an average relative 

molecular weight of 1000 per charge. On the other hand, Goddard [8] uses the value of 

670 per charge, a value that is confirmed by an electrophoretic mobility study. These 

data can obviously vary depending on the substitution grade of the polymer. This is, 

according to different sources, between 3 and 20 %, i.e., 3 to 20 of every 100 monomer 

units of hydroxyethylcellulose bear a trimethylammonium group [8, 128]. The wide 

variety of the identifiers mentioned above is an indirect confirmation of this. 

In the present paper, the average polymer molecular weight of 670 per charge is 

presumed. In accordance with this assumption, we use the ratio 1/2.3 w/w between the 

JR400 Polymer and SDS, as an estimation of the stoichiometrical equality between the 

polymer and the surfactant charges. 

 

 

2.3 POLYMER-SURFACTANT INTERACTIONS 

 

When considering previously described application areas of surfactants, on the one 

hand, and polymers, on the other hand, we find out that these areas “ intersect”  in many 

branches. Both polymers and surfactants occur in such diverse products as paints, foods, 

detergents, cosmetics, formulations of drugs and pesticides. Since they occur together in 

the same formulation, the question arises, whether they interact with one another and if 

yes, then which influence does this interaction have on the formulation. 
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In this section a review of polymer-surfactant systems both in bulk and at interfaces 

will be presented. Special attention will be given to the interactions of compounds that 

have been used in this work. 

 

 

2.3.1 General aspects of polymer-sur factant interactions in solution 

 

Usually, polymers and surfactants are employed to achieve different effects – 

emulsification, flocculation, colloidal stability, rheology control and other – but in some 

cases a synergistic effect of polymers and surfactants is expected, that is, an effect 

caused by their interaction. 

Nowadays, a wide consensus exists that polymer-surfactant interactions in the bulk 

are the result of a fine balance between hydrophobic, hydrophilic and electrostatic 

interactions [3, 4].  

The particular pattern of interaction between a polymer and a surfactant in aqueous 

solution is generally determined by the following factors: sign and value of the charge 

of every component, hydrophobicity or hydrophility of the polymer molecule or its 

parts, substitution grade for a functionalized polymer, length and rigidity of both 

polymer backbone and the carbohydrate chain (hydrophobic tail) of the surfactant. The 

first and probably the most important issue is here the relation between charges beared 

by the surfactant and the polymer. Possible cases of polymer-surfactant systems are 

presented in the Table 2.2. In this Chapter they will be referred to as they are denoted in 

this table. 

 

Table 2.2 – The types of possible combinations of polymers and surfactants in solutions.  
 

          Polymer 
Surfactant 

Cationic Anionic Neutral 

Cationic S+P+ S+P- S+P0 
Anionic S-P+ S-P- S-P0 
Neutral S0P+ S0P- S0P0 

 

As mentioned above, this is the electrostatic interaction that plays generally the most 

important role in the polymer-surfactant system. Same charge systems will not therefore 

be discussed in details. The combinations highlighted in the Table 2.2 (ionic surfactant 



 34 

– non-ionic polymer and systems with oppositely charged components) are now the 

most well studied ones and find the broadest application. The SDS and JR400 Polymer 

build a S-P+ system that is highlighted extra.  

According to the classification proposed by Lindman and Thalberg [122] for 

polymer-surfactant interactions in solution, also of importance is the concentration 

region where the study is performed since different aspects of the polymer-surfactant 

interaction are studied at different concentrations. High concentrations are useful for 

studying practical applications, and fundamental studies dealing with interaction 

mechanisms, adsorption behaviour and possible complexes formation are performed 

primarily in low concentration ranges. In this work the surfactant-polymer system of the 

type S-P+ was studied at very low concentrations. 

 

 

2.3.1.1 How do surfactants and polymers interact? 
 

Generally, water-soluble polymers, as well as solid-liquid interfaces (section 

2.1.3.3), induce surfactant aggregation. Micelle-like structures, or clusters, tend to form 

along the polymer molecule and around it. A long, flexible polymer chain possessing 

alternating hydrophobic and hydrophilic parts, when placed in a surfactant solution, 

offers various interaction opportunities for surfactant molecules. On the one hand, 

hydrophilic groups of non-ionic polymers can interact with ionic headgroups of the 

surfactant by ion-dipole association, and those of ionic polymers – by electrostatic 

attraction. On the other hand, hydrophobic parts of the polymer provide an energetically 

favourable environment for interaction with hydrophobic tails of the surfactant. All 

these mechanisms result in the association patterns where the electrical charge is 

screened, and less hydrophobic segments are exposed to water i.e. a state that is 

energetically favourable. 

 

2.3.1.1.1 Characteristic points 
 

These interactions manifest in changes of colligative properties of a surfactant 

solution. If the polymer is added to surfactant solution, it modifies these properties so 

that abrupt changes of them which are usually characteristic for the critical micellar 
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concentration (section 2.1.2) occur at sufficiently lower concentrations. The changes in 

the surface tension are most illustrative; they are depicted in Figure 2.17.  

 

 

 

Figure 2.17 – Idealized surface tension / log concentration plot of a surfactant in the 
presence of a complexing polymer. Reproduced from [123]. The solid line represents the 
surface tension in presence of the polymer, the dotted line – in absence of the polymer. T1 is 
the critical aggregation concentration (CAC); T2’ – concentration of saturation of the 
polymer molecule with the surfactant; T2 – “ total saturation concentration”; C.M.C.’  
(CMC’) – the critical micellar concentration of the same surfactant without polymer 
addition. 
 

The critical aggregation (or association) concentration (CAC) often referred to as T1 

is the concentration of the onset of surfactant binding to the polymer molecule. This can 

be detected also by other techniques such as binding isotherms, conductivity 

measurements or fluorescence quenching. The exact value of the CAC shows some 

dependence on the technique used. The processes taking place in solution while the 

surfactant concentration increases are schematically illustrated in Figure 2.18.  
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Figure 2.18. – Schematic illustration of an interaction process between a polymer and a 
surfactant in bulk solution. Sizes of polymer and surfactant molecules are not drawn in 
scale. The precipitation zone denoted concerns in the first line the interactions between 
oppositely charged polymers and surfactants. Reproduced from [17]. 
 

We see that the CAC should be understood as the surfactant concentration (at given 

polymer concentration) where a complex between the surfactant and the polymer starts 

to form, independent of whether the single surfactant molecules or surfactant aggregates 

first interact with the polymer. At further increase of the surfactant concentration, the 

“new” surfactant molecule associate favourably with the polymer until the T2’ is 

reached – the concentration at which the polymer molecule becomes saturated with the 

surfactant. It is sometimes denoted as the polymer saturation point (PSP). The 

mechanisms of this association are discussed in the next section. As the surfactant 

concentration still increases, the T2 – “ total saturation concentration”  is reached. It is 

easy to see from the Figure 2.17 that this equals the log sum of the difference (T2’ – T1) 

and the CMC’  – the critical micellar concentration of the same surfactant without 

polymer addition. The T2 can be also understood as the “ real”  or “classical”  CMC of the 

surfactant at the given concentration of the added polymer. The CAC / CMC points are 

only weakly dependent on the concentration of the added polymer and essentially 

independent on polymer molecular weight down to very low values [136]. 

T2 > CMC’  –  this could be misunderstood as if polymer rises the CMC of the 

surfactant. Nevertheless, the characteristic changes of the colligative properties occur 
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already at the CAC that is lower than CMC’  for all kinds of surfactant-polymer 

systems. Therefore, it is true that the polymer addition effectively “ lowers”  the 

surfactant CMC. This lowering is indicative of the strength of the interaction between 

the surfactant. It can be less than one order of magnitude for S-P0 or S+P0 systems and 

reaches even several orders of magnitude for S-P+ and S+P- systems. For example, the 

system containing SDS and non-ionic polymer polyvinylpyrrolidone (PVP) has the 

CAC of ~ 2.6 mM, that is, ca. 3 times lower than the CMC of SDS [116]. This relation 

is nearly constant for the PVP concentrations up to 0,5 wt.%. In contrary, for the JR400 

– SDS system (of the kind S-P+) studied in this work, Goddard and Hannan [8] found 

out that already on addition of JR400 Polymer in concentration of only 0,01 wt.%, the 

CAC of SDS equals ~ 0,1 mM, which is more than 80 times lower than the CMC of 

SDS. This is illustrative for the stronger binding as a result of the electrostatic attraction 

between the opposite charges. 

 

2.3.1.1.2 Degree of binding (
�

) 
 

Another important parameter characterizing polymer-surfactant association is the 

degree of binding. This can be calculated from binding measurements using techniques 

like ion-selective electrodes and equilibrium dialysis at low polymer concentrations. 

The degree of binding is equivalent to the moles of bound surfactant per mole of 

polymer repeating unit or ionic group, that is, the binding sites of the polymer. When 

the binding between a surfactant, S, and a polymer binding site, P, is represented by the 

equilibrium expression: 

 

PSPS
K

↔+  

 

where K is the binding constant, then the degree of binding 
�

 for identical and 

independent binding sites can be expressed in the Langmuir form as: 

 

s

s

KC

KC

+
=

1
β   

 

where Cs is the molar concentration of free surfactant. 
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2.3.1.2 Interaction models 
 

Since early research, several models have been proposed to describe the interactions 

between polymers and surfactants. First, a site-binding process was assumed to be the 

only mechanism of interaction. More recent experimental work revealed a certain level 

of cooperativity in the binding. That is, the first bound surfactant molecule facilitates 

the binding of the second, they both aid the binding of the third, and so on. 

Depending on the nature of the interacting surfactant-polymer pair, two different 

kinds of description are in discussion. In cases where either one of the components (in 

practice it is only the polymer molecule) is non-ionic (S+P0 and S-P0 systems), the 

hydrophobic interactions play a leading role. In this case the hydrophobic tails of 

surfactant molecules are attracted to the hydrophobic polymer backbone. Some early 

studies [17] suggested a uniform distribution pattern of surfactant molecules along the 

polymer chain in such systems. This model assumes a formation of a molecular 

“bottlebrush”  consisting of surfactant molecules assembled around the polymer 

backbone. The ionic headgroups of the aggregated surfactant molecules are, according 

to this model, directed into the solution. Recent simulations [7] partially supported this 

model. Figure 2.19 represents schematically the results of one of these simulations 

including the both typical conformations. 

 

 

 

 

 

 

 
 

 a 

Figure 2.19 – Conformations of polymer-surfactant complexes (mesoscopic simulation with 
50 monomer units) with 10 surfactant molecules present (a) and with 100 surfactant mole-
cules present, for which two typical conformations are shown (b, c) Reproduced from [7] 
 

Nevertheless, at the same time this simulation suggested that surfactant molecules 

“prefer”  assembling not only to “bottlebrush”  configuration but also to spherical 

aggregates similar to micelles in the polymer-free solution (Figure 2.19, c).  
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This trend is the alternative interaction model that has now a great amount of 

experimental confirmations  and is usually called the pearl-necklace model [5- 7]. This 

involves micelle-like clusters of surfactant assembled on the polymer backbone like 

beads on a string. The major driving force is here the stabilisation of the interface 

between the hydrophobic core of the micelles and water. The model is schematically 

illustrated in Figure 2.20. 

 

 

Figure 2.20 – Schematic representation of the pearl-necklace model for polymer-surfactant 
complexes. Reproduced from [136] 
 

This model seems now to be proved, and well established. It can be explained that 

after the binding of the surfactant molecule to the binding site on the surfactant, this 

bound surfactant molecule becomes a centre for forming of a micelle-like cluster. It is to 

mention that the binding site can be of various nature: a charged group of a 

polyelectrolyte or a hydrophobic site on the polymer backbone or the side group. We 

see here exactly that polymer-induced surfactant aggregation that was pointed to at the 

beginning of this section. 
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2.3.2 Interactions between ionic polymers and sur factants bear ing 

opposite charges 

 

The interactions in polymer-surfactant systems with oppositely charged components 

are described here and in the next section, in the first line, in relation to the polymer-

surfactant system used in this work, i.e. the system consisting of SDS and JR400 

Polymer. Probably the greatest contribution to investigation of this system was made by 

the group of E.D. Goddard [e.g., 8, 11-14, 17, 123]. From 117 references (excluding 

patents) in Chemical Abstracts which concern this system, 41 articles, reviews and other 

publications are written by Goddard. 

In the case of ionic polymer and surfactant bearing opposite charges the electrostatic 

attraction evidently plays the leading role in the interaction. Here, it is the charged head 

of the surfactant molecule that binds to the charged sites on the polymer molecule. The 

role of hydrophobic and other forces is noticeable at surfactant rich compositions and in 

some specific cases like polycomponent systems or behaviour at interfaces [118]. 

A specific phenomenon characterizing the interactions in the system consisting of 

oppositely charged polyelectrolyte and surfactant is the formation of insoluble 

precipitate, which was described in 1970s by Goddard et al., and later by Yamaguchi et 

al., and Shubin for the SDS – JR400 system [8, 9, 11-16] and also by different authors 

for other systems, including those of S+P- type, like polyvinylsulphate/CTAB [130, 

131]. 

The precipitation occurs when a stoichiometrical equality between charges in the 

mixture is reached, and the polyelectrolyte charge is neutralized. The strength of the 

electrostatic interaction between the two components causes the precipitation well 

below the surfactant CMC. When the stoichiometrical ratio between the components is 

not close to equality, the solution is clear. In a generalized and simplified form this 

phenomenon is illustrated in Figure 2.21. 

Generally, the interaction between the JR400 Polymer and SDS in water solution 

can be described as follows. At a constant polymer concentration (the horizontal dotted 

line in Figure 2.21), a subsequent addition of surfactant leads to viscosity changes: 

Either a rapid increase at higher polymer concentrations (1 wt% and more) or a slight 

decrease at lower concentrations. The reason for this behaviour variation is explained 

downwards. This is followed by an increase in turbidity of the solution that ends in 

precipitate formation and then, upon further surfactant addition, resolubilisation. This 
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pattern is explained by Goddard [8, 17] in terms of two stages of SDS adsorption on the 

polymer molecule: the first stage involves mostly electrostatic interactions, where SDS 

adsorbs to the sites of positive charge on the polymer, the anionic heads of the 

surfactant molecule being directed to the polymer. As a result, a hydrophobic “ layer”  

consisting of surfactant alkyl tails forms around the polymer molecule at the point of 

stoichiometrical equilibrium between surfactant and positive charges. This stage 

corresponds to the conditions of maximum precipitation of the mixture. A further 

increase of the surfactant concentration leads to the formation of the second “ layer”  of 

the surfactant molecules, where surfactant alkyl tails are directed towards the polymer 

backbone. Since the polar heads of the surfactant are now facing into the solution, the 

resolubilisation occurs. Hydrophobic attraction is responsible for adsorption during this 

stage. 

 

 

Figure 2.21 – Simplified solubility diagram of the polymer-surfactant system with opposite 
charges. Notation of viscosity changes concerns the SDS – JR400 system. 
 

As mentioned above, the polymer-surfactant complexes formed at the precipitation 

concentration are nowadays considered not as a plain layer (bottlebrush pattern) but as 

micelle-like clusters attached to the polymer backbone. This can illustrate the viscosity 

changes mentioned above. These changes are now considered to be caused by 

hydrophobic attraction between polyalkyl tails of bound surfactant molecules. At higher 

polymer concentrations intermolecular tail-to-tail associations play the leading role, i.e., 
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the associations between surfactant bound to the different polymer chains. This causes 

formation of networks and a sharp viscosity increase. If the polymer concentration is 

lower, the probability of tail-to-tail associations between the surfactants bound to the 

same polymer chain is of significance, that is, intramolecular association, and therefore, 

less interactions between different polymer chains take place than in the surfactant-free 

solution.. This is schematically illustrated in Figure 2.22. 

 

 

 

Figure 2.22 – Schematic illustration of intermolecular and intramolecular associations 
between hydrophobic tails of bound surfactant molecules. 
 

This viscosity pattern has been observed especially for the JR400 Polymer. Other 

polycations did not reveal such viscosity behaviour. The most probable reason for this is 

that JR400 is characterized by low flexibility of the polymer backbone, whereas, e.g. 

acryl amide / 
�

-methacryloxyethyltrimethylammonium chloride copolymer (Reten) has 

much more flexible polymer chain and thus does not reveal such viscosity changes [90]. 
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2.3.3 Adsorption of polymer-sur factant mixtures of opposite charge 

at solid-liquid inter faces – cooperative adsorption 

 

The adsorption of polymer-surfactant mixtures at solid surfaces is of significance for 

their practical application in nearly all branches mentioned before. There exist several 

reviews in this area [17, 136, 129, 134]. Special attention has been given to applied 

systems such as personal care and cosmetics, pharmaceuticals, ink chemistry and paints. 

Previous works point also to the importance of the properties of every component of the 

polymer-surfactant system, surface properties and solution conditions like pH and 

electrolyte concentration. Like with polymers and surfactants themselves, all these 

conditions and properties affect the adsorption behaviour of the mixtures as well. 

An important general observation is that the adsorption properties of a polymer-

surfactant mixture can differ greatly from those of any of components in absence of 

another: surfactant and polymer modify the adsorption behaviour of one another. 

Generally, surfactant-polymer pairs which do not interact in solution, like S+P+ or S-P-, 

usually compete for adsorption sites on the surface. They are outside the topic of this 

work.  

Polymer-surfactant systems that do interact in solution like S+P0 or S-P+, show 

various adsorption properties if one or both of the components has a strong affinity to 

the surface. Of special interest are here the systems consisting of oppositely charged 

polyelectrolyte and surfactant. In contrary to the investigations in the bulk, 

comparatively little work has been done to study the adsorption of these mixtures at 

solid-liquid interfaces, especially that of the oppositely charged polymer-surfactant 

systems. A brief review with some examples is presented here, with an emphasis on the 

SDS – JR400 system. 

Moudgil and Somasundaran studied the adsorption of a cationic polyacrylamide and 

dodecanesulfonate onto hematite and quartz [126]. They reported differing results, 

depending on the order of addition and pH. Generally, the presence of the polymer 

before the surfactant was of more significance than otherwise. For example, the 

presence of CTAC only weakly affected the adsorption of an anionic polyacrylamide 

onto hematite [127]. 

SDS and JR400 Polymer at liquid-air and liquid-solid interfaces has been intensively 

studied in recent years, sometimes as a part of more extensive investigations concerning 

interactions between polymers and surfactants at interfaces and including components 
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bearing different, the same or no charges. The main methods used were radioactive 

labeling, ellipsometry, surface force measurements, and fluorescence microscopy. These 

researches are detailed in the following paragraphs. 

Arnold and Breuer [18] studied SDS adsorption on alumina surfaces in the presence 

of JR400 polymer using adsorption measurements with 14C labelling and electrophoresis 

measurements. Their results suggested that the strong interactions between polymer and 

surfactant in solution significantly affected the adsorption. Depending on the 

composition of the mixture, synergistic effects favored or inhibited adsorption. It is 

interesting to note that in the recent literature this study seems to be the only one where 

surfactant and polymer bearing opposite charges were mixed prior to adsorption. In all 

other studies, surfactant was added to the polymer previously adsorbed on the surface. 

The adsorption from mixtures is extensively studied mostly after AFM entered into 

wide research practice. This work is detailed below. 

Agrillier et al. [19] and Shubin [16] used surface force techniques and showed that 

the polymers JR400 and LM200 (hydrophobically modified JR400) readily adsorb at 

negatively charged surfaces and that this adsorption is affected by the concentration of 

the SDS present in solution: SDS forms a complex with the adsorbed polymer layer. At 

lower concentrations, the thickening of the adsorbed layer could be detected, and at 

concentrations higher than the CMC of SDS, the surfactant causes desorption of the 

complex from the surface. Since this polymer-surfactant system finds widespread 

applications in health care and cosmetics, Goddard [14] studied the polymer adsorption 

on hair surface (keratin, bearing a negative charge) and its interaction with SDS using 

fluorescence microscopy of the fluoresceine-labelled JR400 polymer. It was again 

found that SDS at low and moderate concentrations entered the adsorbed polymer layer 

and affected its thickness positively but at concentrations above the CMC the SDS 

could cause a partial polymer desorption from the surface.  

Both on keratin and on silica surface, cationic surfactants Triton X-400 and CTAB 

caused rapid and, in some cases, full desorption of the polymers JR 125, JR 400 and JR 

30M (products with different MW, in order of increase) [95, 97]. Preadsorbed surfactant 

prevented here adsorption of the polymer. This is interesting as an example of partially 

similar phenomena with different mechanisms: introduction of both kinds of surfactants 

can cause desorption of the polymer, but in the case of the surfactant of the same charge 

we observe a competition between polymer and surfactant for the binding sites, whereas 

the processes taking place when the oppositely charged surfactant is added can be 
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explained in terms of a “competition”  between negatively charged surface and 

negatively charged surfactant for the polycations. 

 

 

2.3.4 Use of scanning probe microscopy for  the study of adsorption 

at solid-liquid inter faces 

 

The method of scanning probe microscopy (SPM/AFM) is described in details in the 

Chapter 3.2. It allows a wide variety of possibilities to investigate the surface before, 

during and after adsorption of any substance on it. One of the great advantages of the 

method is that the surface can be visualized directly: the adsorbed particles and their 

sizes can be seen. The properties of the adsorbed layer, such as viscosity, hydration and 

rigidity, can be investigated as well. The surface forces can be measured in the selected 

area with high precision. However, the data concerning the layer thickness are not 

absolute since the spring constant of the cantilever and the feedback parameters of the 

AFM software “stand”  between the really acquired data and the computed mechanical 

properties of the adsorbed layer. The details are presented in the section devoted to the 

method description. 

In the last 10 years [20, 21] this method and related techniques have been used to 

study the adsorption of polymer-surfactant systems on solid surfaces [20, 22, 29, 48-50]. 

Because AFM studies of colloid systems are a rather sophisticated task, significant work 

was devoted to the development of the technique [21, 23]. A wide range of methods 

including contact mode, tapping mode [24, 25] and single-molecule force spectroscopy 

[26] were applied. A so-called soft-contact AFM imaging technique [21, 27] developed 

by Senden, Biggs et al. proved to be the most powerful tool for the investigation of the 

adsorption of polymer-surfactant mixtures at solid-liquid interfaces. The systems 

studied with AFM and related metods, like surface forces apparatus (SFA) were of 

various compositions, including S+P+ [50], S-P+ [29, 48, 49] and S-P0 [28, 31]. 

Works published in recent years [27-31] deal also with polymers and surfactants 

mixed prior to the exposure of the surface and adsorption. For example, Dedinate et al. 

[29] compared the adsorption of mixtures of a highly charged cationic polyelectrolyte, 

poly{(propionyloxy)ethyl}trimethylammonium chloride (PCMA), and SDS using 

atomic force microscopy, surface force apparatus for experiments on mica and small-
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angle neutron scattering for investigations in bulk. The results, as well as the results of 

some previous studies [48-50], suggest that the adsorption of established polymer-

surfactant complexes from the mixture differs significantly from the adsorption of pure 

polymer followed by surfactant addition. For example, the adsorbed amount is about 7 

times less in the former case; the adsorbed layer is more heterogeneous by adsorption 

from mixtures; the addition of the surfactant to preadsorbed polymer layer causes a 

sufficient and nearly irreversible swelling f the layer. 

An important general observation made during the direct investigations of 

adsorption of polymer-surfactant systems at solid-liquid interfaces is that the 

equilibrium establishment in these systems is extremely slow: The appearance and the 

properties of the adsorbed layer can change even after several days of equilibration. One 

main reason why equilibrium is reached so slowly is that the polyelectrolyte is bound to 

the surface by many segments, each of which has a high affinity for the surface. Hence, 

the mobility of the chain on the surface will be low and likewise the desorption will be 

slow. 

It is important to mention that most studies were performed at relatively high 

surfactant concentrations, from 1 × CMC [29] up to 5 × CMC [48]. There is not enough 

information about the adsorption behaviour of polymers-surfactants systems at high 

dilutions. 

 

 

 

2.4 SOLID/LIQUID INTERFACES AND THEIR INFLUENCE ON 

COLLOID SOLUTIONS 

 

This section will give a brief description of general questions concerning the nature 

of interfaces, main definitions; forces acting at the interfaces, their properties that are of 

importance. The surfaces used in this work, together with their structure and properties, 

are also described in this section. 
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2.4.1 Inter faces, general aspects 

 

An interface is the boundary region dividing two immiscible phases. There exist 

liquid-liquid, liquid-gas, solid-gas, solid-solid and solid-liquid interfaces. The properties 

of substances close to an interface can in many instances differ from those in the bulk of 

the corresponding phase. On the other hand, materials at interface can greatly affect the 

bulk physical properties of a system. In colloidal systems like emulsions, foams and 

solid dispersions this influence is especially important and apparent. 

Adsorption is an increase in concentration of solute in the region of the solid-liquid 

interface, compared to the bulk of the phase. Contrary to absorption, the solute (or 

adsorbate) does not permeate the bulk of the substance to which it adsorbs (adsorbent). 

There exists also negative adsorption (a decrease in the solute concentration close to 

interface compared to the bulk concentration) called depletion. Whether adsorption or 

depletion occurs, depends on the net adsorption energy, which is the difference between 

the free energy of solute/surface, solute/solvent and solvent/surface contacts. 

 

 

2.4.1.1 Surface charge and hydrophobicity, theories of interactions at 
solid-liquid interfaces 

 

The most important properties of solid-liquid interfaces that are of significance for 

this work are discussed in Section 2.1.3. These are surface charge and surface 

hydrophobicity. The electrical charge carried by many solid surfaces in an aqueous 

solution can be explained by the high dielectric constant of water, and thus by very 

common surface dissociation, or by adsorption of a charged species. The charged 

surface and the counterions balancing the net charge are known as the electrical double 

layer, for which exists a detailed theoretical description. A hydrophobic surface can be 

distinguished from the hydrophilic one by the contact angle, � , of a water droplet on the 

surface. Hydrophilic surfaces are referred to as “high energy”  surfaces and hydrophobic 

– as “ low energy”  ones. 

In general, the interactions at solid-liquid interfaces and forces important for these 

interactions are described by the DLVO theory, named after its authors Derjaguin and 

Landau and Verwey and Overbeek, who independently developed this quantitative 

theory in 1940s [57, 58]. The DLVO theory considers the electrostatic repulsion and 
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van der Waals attraction to be the main forces defining the distance between particles in 

colloidal solution, H; or the distance between a particle and the surface. Since this 

theory does not describe all surface interactions completely, it has to be supplemented 

by so-called non-DLVO forces, which include solvation forces (for aqueous solutions 

referred to as hydration forces), oscillatory or structural forces caused by the 

oscillations of the solvent molecules successions between two solid surfaces separated 

only by a thin layer of liquid, repulsive steric forces due to the loopings of adsorbed 

polymer extending into the liquid phase. Of special importance are long-range attractive 

hydrophobic forces. 

 

 

2.4.2 Types of sur faces (used in this work) 

 

In various types of investigations presented in this work, we used two main surfaces: 

mica and silica wafers. In some experiments the surfaces were used either “as is” , i.e. 

freshly cleaved mica and industrially supplied silica wafer. In other cases, a 

hydrophobization of surfaces was performed with a sililation process; their properties, 

therefore, were changed. As a result, the adsorption and desorption processes presented 

in this work, took place at four different types of surfaces. These are briefly overviewed 

in the following table. 

 

Table 2.4. – Properties of surfaces used in this work 
 

Surface “as is”  sililated 

Mica Strongly negatively 

charged, hydrophilic 

Strongly negatively 

charged, moderately 

hydrophobic 

Silica Moderately negatively 

charged, hydrophilic 

Moderately  negatively 

charged, strongly 

hydrophobic 

 

The detailed description of the structure and properties of the surfaces used in this 

work is given in the following sections of this chapter. The hydrophobization process is 

described in the section 3.1.2. 
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2.4.2.1 Mica 
 

Mica is a layered aluminosilicate mineral. Its general molecular formula is  

 

R1R2-3 [AISi3O10](OH, F)2. Here R1 = � , Na; R2 = Al, Mg, Fe, Li  

 

The main element of the mica crystalline structure consists of three-layer 

„packages“ , each of them includes two tetrahedral layers of [AlSi3O10]. Between these, 

there is an octahedral layer consisting of R2 cations. Two of six oxygen atoms in the 

octahedrons are replaced by the hydroxyl groups (��� ) or by fluorine. The � + or Na+ 

ions with the co-ordination number of 12 bind the „packages“  to a continuous structure. 

According to the number of the octahedral cations in the formula, one can distinguish 

between dioctahedral and trioctahedral mica variations: The Al+ cations occupy two of 

three octahedrons, and one remains empty, whereas Mg2+, Fe2+ cations, as well as Li+ 

with Al+ occupy all the octahedrons. The crystallization of mica occurs in a single-

wedge (pseudo-trigonal) system. The relative location of the hexagonal surface cells of 

the packages is caused by their turns at angles divisible by 60o around the c axis, 

together with a shift along the a and b axes of the elementary cell. This defines the 

occurrence of different modifications (polytypes) of mica that can be distinguished with 

X-ray spectroscopy. According to the chemical structure variations, it can be 

distinguished among aluminum and lithium mica types, magnesial-iron, vanadium and 

chrome mica types.  

To the aluminum mica types belongs muscovite used in this work. The chemical 

formula of muscovite is KAl2[AISi3O10](OH)2, the layer structure of muscovite is seen 

with a naked eye, and cleavage to very thin plates is possible. The structure of 

muscovite layer packages is schematically illustrated in Figure 2.23. 

 



 50 

 

 

Figure 2.23 – Schematic illustration of the structure of muscovite layer packages. 
Reproduced from [http://unit.aist.go.jp/greenlife/ii/STRUCIMAGES/Muscovite.gif] 
 

Each layer is strongly negatively charged, about 2.1*1014 lattice charges/cm2. The 

negative charge of the mica lattice stems from the fact that a quarter of the tetravalent Si 

atoms are substituted by trivalent Al atoms. In the crystal these charges are compensated 

by mainly K+ ions. If the mica surface is immersed in an aqueous medium at  almost all 

pH values except strongly acidic, K+ ions leave the lattice. The charge values mentioned 

here concern the mica surface itself, i.e., the mica surface immersed in water represents 

a water-solid interface bearing a strong negative charge. 

 

 

2.4.2.2 Silica 
 

Silica, the most abundant mineral in earth’s crust, can be crystalline (quartz) or 

amorphous (some kinds of glass). The general chemical formula of silica is SiO2. The 

bulk structure of silica consists of siloxane units: tetrahedral lattice where every silicon 
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atom is bound to for oxygen atoms, and every oxygen atom – to two silicon atoms. 

Silanol groups –Si–OH constitute the surface of silica. These groups can be hydrated or 

anhydrous. Hydrogen atoms of anhydrous silanol groups are bound to the oxygen atoms 

of the neighbour groups with hydrogen bonds. If hydrogen bonds bind water molecules 

to the silanol groups, such groups are called hydrated. Therefore, the silica surface is 

hydrophilic under usual circumstances. The surface can be hydrophobized with different 

methods including polymer deposition by adsorption, spin-coating with non-ionic 

surfactants [98] or covalent binding of substances carrying non-polar functional groups 

[32, 33]. The hydrophobization process used in this work is described in the section 

3.1.2. 

When brought into contact with an aqueous solution, silica acquires a surface 

electric charge. The charge is mainly generated due to the dissociation of the silanol 

groups. Depending on the concentration of the potential determining ions, pH, ionic 

strength and temperature, the sign and magnitude of the charge can vary:  

 

–Si–OH + H+ �  –Si+ + H2O or –Si–OH2
+  (positively charged surface) 

 

–Si–OH + OH- �  –Si–O- + H2O  (negatively charged surface) 

 

Since the silanol groups are acidic in nature, silica is generally negatively charged at 

neutral pH. The isoelectric point of silica is about pH 2 to 3 [96]. 
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3CHAPTER 3. EXPERIMENTAL METHODS AND 
MATERIALS 

 

AFM and DLS have been used to investigate the structure of polymer-surfactant 

mixtures in the bulk and at solid-liquid interfaces. To visualize the adsorbed structures, 

“soft-contact”  AFM imaging was used. This was complemented by the acquirement of 

force-distance curves and “scratching” . To compare the sizes of structures of the 

adsorbed layer with those in bulk, DLS measurements were performed. 

 

The first section of this chapter will describe materials used in this work and details 

their preparation. The second section will detail the methods of investigations in the 

bulk solution: the establishment of the ternary phase diagram and the DLS 

measurements. The final section is devoted to the main method of research: a detailed 

description of the basics of AFM, and specific techniques used in the investigations will 

be presented.  

 

3.1 MATERIALS AND PREPARATIVE PROCEDURES 

 

This section will give a description of the substances used in this work and details of 

their preparation for the experiments. First, the chemicals and dilution/mixture 

procedures will be presented. The surface types used in this work have been described 

in the Section 2.4.3. Therefore, mostly the details of surface preparation techniques used 

in this work will be explained, with a special attention paid to the plasma treatment of 

surfaces and devices used for this treatment. 

 

3.1.1 Water , Chemicals and Solutions 

 

The purity of all components of the investigated solutions and mixtures, as well as 

that of surfaces and vessels, is crucial for the relevance of the results of our studies, 

since any contamination can distort the results by its own participation in the 
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interactions. Especially at low concentrations of polymer and surfactant, any additional 

substance even at minimal amount may cause changes in the mixture structure and thus 

lead to wrong conclusions. Therefore, a special attention was paid to keep the purity of 

water, chemicals and their mixtures at high level and to avoid their contamination with 

any external substances. 

All water used in this study was deionized water. For the dilution of chemicals and 

rinsing the fluid cell, only water purified with a passage through a Milli-Q-Plus 

(Millipore) system of ion exchange and activated carbon cartridges was used. The 

specific conductivity of water did not exceed 5.6 µS/m. While performing dilutions and 

measurements, precautions were taken to prevent any water contamination from the 

laboratory air. No water was kept for use more than 72 hours. 

All glassware was soaked for at least 2 hours either in 10 wt% NaOH or in the 

mixture of KOH and isopropanol, then rinsed with deionized water (minimally 10 

times) and finally rinsed with Millipore water. For drying of the glassware and surfaces 

a specially purified nitrogen flow was used. 

Sodium dodecyl sulphate (SDS) from Merck and from ICN was used without further 

purification. The purity grade of SDS from both manufacturers is >99% a. After first 

preliminary experiments, it was decided to perform no further special activities to 

eliminate possible impurities present in the substance delivered from the manufacturer. 

On the one hand, both recristallisation from ethanol and purifying according to 

Lunkenheimer [135] seem to have influence on the surfactant properties when studies 

on liquid-air interfaces are performed. On the other hand, the mentioned preliminary 

results had shown no difference in the polymer-surfactant interaction pattern, when 

compared to the literature data [8, 10, 16] where additional purification of SDS was 

performed. 

An aqueous SDS stock solution of 1 wt% concentration was prepared at room 

temperature and stored at 4oC before further dilution and use. 

 JR 400 Polymer was obtained from Dow Chemicals. A stock solution 

(preconcentrate) of 1 wt% concentration was prepared at room temperature and then 

filtered to remove insoluble residues, and then it was diluted to the desirable 

concentration. 

Trimethylchlorosilane from Fluka (> 90% purity) was used without further 

purification. Trimethylchlorosilane is highly volatile and extremely flammable, 
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especially at contact with water or with water vapour. All manipulations with this 

substance were performed only in hood and under exclusion of any contact with water. 

 

3.1.1.1 Samples preparation 
 

All concentrations are expressed in weight %, for the sake of simplicity. As 

mentioned above in section 2.2.3, the following approximations were used for all 

concentration calculations: the average molecule weight per charge of JR 400 Polymer 

was assumed to be 670, the stoichiometric ratio 1:1 between surfactant molecules and 

polymer charge units (the ratio at the point of electrostatic neutralization) was presumed 

to be achieved at the weight relation 1/2.3 between w/w solutions of polymer and 

surfactant, respectively. These assumptions are based on the data of Goddard [8]. 

All mixtures were made from mixtures and dilutions of a 0.075 wt% solution of JR 

400 Polymer and a 0.1 wt% solution of SDS corresponding to �  0.4 of the cmc of the 

surfactant (later on called “working solutions”). These very high dilutions were needed 

to avoid the high viscosity that occurs at polymer prevalence at higher concentrations 

and, on the other hand, to have sufficiently large regions of the ternary phase 

diagramme exhibiting clear solutions. To avoid precipitation during the mixing process, 

the mixtures were prepared in the following order: The quantitatively prevalent 

component (polymer or surfactant) was added, then water and then the minor 

component (surfactant or polymer, respectively). At compositions for which 

precipitation could not be excluded the mixtures were stirred while adding the 

components. All samples were produced at room temperature. Generally, the samples 

were shaken for about 20 seconds after composition and left at least 10 hours for 

equilibration. When kept in closed vessels at room temperature, all samples proved to 

be stable and remain unchanged in their properties during at least 4 weeks. 
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3.1.2 Surfaces and their  preparation 

 

3.1.2.1 Mica (Muscovite) 
 

The 10 *  10 mm² muscovite wafers were cut from natural mica sheets. After this, a 

cleavage using a sharp preparation needle tip was performed. The freshly cleaved 

wafers underwent plasma treating as described below. During the whole preparation 

process, a contact with any foreign objects (tools, fingers, glassware, etc.) was strictly 

avoided. During pauses and between subsequent preparation procedures the wafers were 

kept in closed glass vessels to avoid any dust contamination.  

 

3.1.2.2 Silica 
 

Commercially available silica wafers were cut into 10 *  10 mm² pieces and cleaned 

with Carbon Dioxide snow [34], followed by rinsing with redistilled ethyl alcohol and 

dried under a stream of clean nitrogen gas. As a rule, the cleaned wafers were set at the 

AFM scanner immediately after cleaning. 

 

3.1.2.3 Plasma treating – cleaning and hydrophobizing. 
 

The surfaces and AFM cantilevers have been treated in plasma reactor at conditions 

and times usual for the device. The facilities of the reactor have been used also for 

making the surfaces hydrophobic. 

 

3.1.2.3.1 Plasma reactor 
 

A plasma reactor custom built in the Department of Applied Mathematics of the 

Research School of Physical Sciences and Engineering, Canberra, Australia, was used.  

This instrument is used to routinely produce clean high-energy surfaces such as 

silicon wafers, silica, Force Microscopy tips, etc. The sample is placed in a partial 

vacuum, around 0.1 Torr, composed of argon and water vapour, or air. A high voltage, 

~1kV at ~120 kHz, RF signal is capacitively coupled (“electrodelessly” ) through a ring 



 56 

electrode on the exterior of the pyrex cylinder into the low pressure interior by 

grounding all internal metal (stainless steel) components. The intensity of the treatment 

is tunable by altering the pressure, composition of the gases and transmitted power. The 

high voltage generator is the HG-2 model from MKS, ENI® Products Rochester, New 

York. The layout of the system is presented in Figure 3.1. 

 

 

Figure 3.1 – system layout of the plasma treating system. 
         V1 - 1° & 2° regulator for Oxygen  
          V2 - fine metering valve 
          V3 - fine metering valve 
          V4 - ball valve 
          V5 - ball valve (Teflon ball) 
          V6 - Neoprene diaphragm valve 
          V7 - Neoprene diaphragm valve 
          V8 - vacuum release valve 
 

In operation the cleaning process continues typically < 1min at 10-20 Watts. For 

Force Microscopy cantilevers 30 sec at 10 W is sufficient, longer times than one minute 

may cause damage to the gold coating. The plasma itself is at room temperature, 

although at plasma powers >50 Watts appreciable sample heating can occur. The actual 

mechanism of cleaning is predominantly by kinetic activation, although some ionization 

will occur. As a result, the surface becomes densely hydroxylated, perfect for silanation 

reactions. Any adventitious carbon is oxidised to volatile species which easily leave the 

surface. From Force Microscopy there does not appear to be any increase in surface 

roughness as moderate powers. This has been checked on muscovite mica in the 

Department of Applied Mathematics. 
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The advantage of this electrode system is that the risk of contamination from the 

electrode material is much reduced. The device has a vacuum transference chamber for 

post cleaning reaction with reactive vapours, such as silanes. The chamber was 

specifically made from stainless steel and not aluminium alloy because of the ease of 

sputtering in the latter. 

The plunger mechanism allows the user to lower a sample cover assembly under 

vacuum for clean transferral. The valve in the assembly then allows silanes or other 

reactive gases to pass over the freshly reacted sample, without exposure to ambient 

atmosphere. Only stainless steel and pyrex are in contact with the plasma. A scheme of 

the device is illustrated in Figure 3.2. 

 

 

 

Figure 3.2 – Scheme of the plasma reactor used for preparation of surfaces and cantilevers. 
Reproduced from http://wwwrsphysse.anu.edu.au/appmaths/plasma.html with great thanks 
to Mr. Anthony Hyde. 
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3.1.2.3.2 Hydrophobizing of surfaces 
 

Silicon surfaces were made hydrophobic by coating with a monolayer of 

trimethylchlorosilane according to the method of Hair [32, 33]. Silicon wafers (10 x 10 

mm2) were cleaned with Carbon Dioxide snow [34], followed by rinsing with redistilled 

ethyl alcohol and dried under a stream of clean nitrogen gas. Additionally, the wafers 

were plasma treated as the mica surfaces except that on completion of plasma treatment 

the samples were stored under vacuum in a transference chamber. This chamber was 

subsequently connected to a glass vessel containing trimethylchlorosilane (TMCS). 

Upon opening a valve the TMCS vapour entered the chamber and reacted with the 

prepared silica surface. The reaction equation [33] was: 

 

CH3

CH3

CH3

Si HCl+SiS O

CH3

CH3

CH3

SiClSiS O H �

 

 

The same procedures have been performed over mica wafers. After exposure to 

water-vapour plasma, the mica surface becomes reactive to silanation with chlorosilanes 

in the gas phase. [99]. 

The degree of surface modification was checked by assessing the inner contact angle 

of a sessile water droplet. It was 60 – 75o for silica and about 30o for mica. It is 

important to mention that the contact angle was only assessed with the naked eye, and 

not measured with the contact angle meter. Due to this, the values given above refer 

only to the inner contact angle seen with the naked eye. 

 

3.2 INVESTIGATIONS IN THE BULK SOLUTION 

 

3.2.1 Phase diagram establishment 

 

To obtain a general picture of the interaction pattern between SDS and JR400 in 

bulk solution, a ternary phase diagram was established. The working solutions were 
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mixed with one another and with pure water at various ratios so that more then 100 

different samples could be investigated. The numbers of these samples are used as 

identification later on. The procedure of the phase diagram establishment was as 

follows. 

All samples underwent a simple visual turbidity test. Evidence of precipitation or 

turbidity was first checked with the naked eye under back illumination (light shining 

through the sample). The samples without precipitate or evident turbidity were checked 

under side lighting and compared with pure water. Clear solutions were attributed to the 

areas of the diagram indicating pre-precipitation or resolubilisation, depending on the 

composition of the particular sample. The border of the precipitation area was defined 

by the compositions where turbidity could only be determined under side lighting. The 

raster step of composition changes was 10 % at initial screening; at the border of 

turbidity/precipitation the step decreased subsequently down to 1% of composition 

variation to achieve the highest precision possible with laboratory devices used. The 

total number of prepared and evaluated samples was about 110. 

 

 

3.2.2 Dynamic light scatter ing measurements 

 

This method is also known as photon correlation spectroscopy (PCS), quasi-elastic 

light scattering (QELS) or low angle laser light scattering (LALLS). It allows 

measurement of hydrodynamic radius of particles of various kinds dispersed in solution. 

 

3.2.2.1 Method basics 
 

Particles dispersed in solution can scatter incident light, if the refractive index of the 

substance differs from that of water. This is true also for colloid solutions and, 

therefore, for polymer-surfactant mixtures. The theoretical descriptions of light 

scattering process differ depending on whether the particle size is small or not compared 

to the wavelength of the incident light, but for the DLS method it is only important that 

in both cases the light is scattered. i.e., the incident light beam (or, more correctly, 

photon) changes its direction after interaction with the particle. This scattered light can 

be registered aside from the initial light direction. 
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Another feature significant for the DLS method is that the disperse particles or 

macromolecules suspended in a liquid medium undergo Brownian motion which causes 

the fluctuations of the local concentration of the particles, resulting in local 

inhomogeneities of the refractive index. This in turn results in fluctuations of intensity 

of the scattered light. The speed of the Brownian motion is characteristic, since it 

depends on the hydrodynamic radius of the particles, or more deeply, on the diffusion 

coefficient of the particles D, with which the mean radius can be obtained from the 

Stokes-Einstein equation: 

 

DTkR πη6/Β=  

 

where kB is the Boltzmann constant, T the temperature, and �  the shear viscosity of 

the solvent. 

The speed can be measured by collecting data from scattered light from a sample 

maintained at a precise temperature. The intensity of the scattered light is registered 

during a pre-defined interval so that a time raw is created. From the raw an 

autocorrelation function G(� ) is created, often called correlogram. It shows the decay of 

the correlation between subsequent patterns of the scattered light registered by the 

detector. This sequence is illustrated schematically in Figure 3.3. 

 

 

Figure 3.3 – Principles of detection of particle diffusion. Reproduced from Zetasizer family 
brochure by Malvern Instruments Ltd.. U.K. 
 

The diffusion coefficient of the particles D is inversely proportional to the decay 

time of light scattering fluctuations. Since the hydrodynamic radius R is, in turn, 
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inversely proportional to the diffusion coefficient, we see that the steeper the 

autocorrelation function (less decay time) then the smaller the particles and vice versa. 

 

3.2.2.2 Instrumentation principles 
 

The calculations and explanations in the previous section are only relevant under the 

assumption that we deal with the simplest case of spherical monodisperse non-

interacting particles in a dust-free fluid. There are some more assumptions that have to 

be mentioned here. 

Older instruments and some existing instruments rely only on the Fraunhofer 

approximation which assumes:  

• The particle is much larger than the wavelength of light employed 

(ISO13320 defines this as being greater than 40
�
 i.e. 25µm when a He-Ne 

laser is used).  

• Particles of different sizes scatter with equal efficiencies.  

• The particle is opaque and transmits no light.  

These assumptions are never correct for many materials and for small material they 

can give rise to errors approaching 30% especially when the relative refractive index of 

the material and medium is close to unity. When the particle size approaches the 

wavelength of light the scattering becomes a complex function with maxima and 

minima present. The latest instruments (e.g. Mastersizer 2000, Malvern Instruments) 

use the full Mie theory which completely solves the equations for interaction of light 

with matter. This allows accurate results over a large size range (0.02 -2000µm 

typically). The Mie theory assumes the volume of the particle as opposed to Fraunhofer 

which is a projected area prediction. The "penalty" for this complete accuracy is that the 

refractive indices for the material and medium need to be known and the absorption part 

of the refractive index known or guessed. 

 

The instrument used in this work consists generally of:  

A laser as a source of coherent intense light of fixed wavelength. He-Ne gas lasers 

�
�
=633 nm are the most common as they offer the best stability (especially with respect 

to temperature) and better signal to noise than the higher wavelength laser diodes.  

A suitable detector. Usually this is a slice of photosensitive silicon with a number of 

discrete detectors. It can be shown that there is an optimum number of detectors (16-32) 
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– increased numbers do not mean increased resolution. For the photon correlation 

spectroscopy technique (PCS) used in the range 1nm – 1µm approximately, the intensity 

of light scattered is so low that a photomultiplier tube, together with a signal correlator 

is needed to make sense of the information. The registration of the scattered light 

intensity proceeds at the angle of 90o. 

Some means of positioning the sample in the laser beam. Particles in suspension can 

be measured by recirculating the sample in front of the laser beam. Generally, for 

suspensions or emulsions, a glass or plastic cuvette is used. 

 

3.2.2.3 Data acquisition and processing 
 

DLS measurements were performed on the Zetasizer 3000 device from Malvern 

Instruments Ltd, UK, at a wavelength of 633 nm in 1 cm plastic cuvettes. The standard 

device measurement protocol including sample thermostating at 25°C was followed and 

the monomodal analysis mode was used. For the light scattering measurements, the 

samples without evident turbidity or precipitation, including the borderline samples, 

were selected. Depending on the composition of the mixture, the original device filters 

“200” or “400” were used. All data acquisitions were repeated 10 to 30 times in order to 

collect sufficient statistics. All samples were left for equilibration for at least 24 hours 

before measurements.  

 

 

3.3 ATOMIC FORCE M ICROSCOPY 

 

The atomic force microscope is one of about two dozen types of scanned-proximity 

probe microscopes (SPM). All of these microscopes work by measuring a local property 

- such as height, optical absorption, or magnetism - with a probe or "tip" placed very 

close to the sample. The small probe-sample separation (on the order of the instrument's 

resolution) makes it possible to take measurements over a small area. To acquire an 

image the microscope raster-scans the probe over the sample while measuring the local 

property in question. The resulting image resembles an image on a television screen in 

that both consist of many rows or lines of information placed one above the other. 
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The scanning probe microscopy was introduced in laboratory practice in 1980s, after 

Gerd Binnig and Heinrich Rohrer were awarded half of the 1986 Nobel Laureate in 

Physics for their design of the scanning tunneling microscope that they reported in 1982 

[100]. 

This section briefly describes principles and variations of the SPM techniques giving 

special attention to the specific methods used in this work: 

• Atomic force microscopy (AFM) 

• Soft-contact AFM for investigation of adsorbed layers of colloids 

• AFM instruments used in this work 

• Modes and techniques used in this work and their details. 

 

 

3.3.1 Basics of Scanning Probe Microscopy 

 

Scanning probe microscopy covers several related technologies for imaging and 

measuring surfaces on a fine scale, down to the level of molecules and groups of atoms.  

At the other end of the scale, a scan may cover a distance of over 100 micrometers 

in the x and y directions and 4 micrometers in the z direction. This is an enormous 

range. It can truly be said that the development of this technology is a major 

achievement, for it is having profound effects on many areas of science and 

engineering.  

SPM technologies share the concept of scanning an extremely sharp tip (3-50 nm 

radius of curvature) across the object surface. The tip is mounted on a flexible 

cantilever, allowing the tip to follow the surface profile. 

When the tip moves in proximity to the investigated object, forces of interaction 

between the tip and the surface influence the movement of the cantilever. These 

movements are detected by selective sensors. Various interactions can be studied 

depending on the mechanics of the probe. The principal scheme of the method is 

represented in Figure 3.4. 
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Figure 3.4 – Scanning concept of SPM.  
Reproduced from http://www.mobot.org/jwcross/spm/ 
 

The interactions between the tip and the surface can be of different kind. According 

to the properties best corresponding to these interactions, different SPM probe 

techniques can be used. Some of them are described in the following section, since they 

are a great part of the methodology or come in use in this work. Other techniques do not 

concern the topic of this work at all. For the sake of completeness they are listed in the 

Table 3.1. 

 

Table 3.1 – Other SPM techniques and physical/chemical properties that can be investigated 
with them. 
 

SPM Technique Properties 

Frictional Force Microscopy (FFM) Frictional properties 

Magnetic Force Microscopy (MFM) The magnetic field of the surface is imaged 

Chemical Force Microscopy (CFM) Chemical properties (with functionalized tip) 

Near-Field Thermal Microscopy 

(NFTM) 

the distribution of  

thermal conductivity is imaged 

Tunnelling Acoustic Microscopy 

(TAM) 

Acoustic properties 
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3.3.1.1 Probe Techniques  
 

The three most common and significant scanning probe techniques are:  

Atomic Force Microscopy (AFM) measures the interaction force between the tip and 

surface. The tip may be dragged across the surface, or may vibrate as it moves. The 

interaction force will depend on the nature of the sample, the probe tip and the distance 

between them. This technique and its different variations have been used in this work. 

Scanning Tunnelling Microscopy (STM) measures a weak electrical current flowing 

between tip and sample as they are held a very distance apart. STM is very significant 

for electrically conductive materials. As a first approximation, an image of this 

tunnelling current maps the topography of the sample. More accurately, the tunnelling 

current corresponds to the electronic density of states at the surface. STMs actually 

sense the number of filled or unfilled electron states, within an energy range determined 

by the bias voltage. 

Near-Field Scanning Optical Microscopy (NSOM) scans a very small light source 

very close to the sample. Detection of this light energy forms the image. NSOM can 

provide resolution below that of the conventional light microscope.  

 

 

3.3.2 How does an atomic force microscope work 

 

The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, 

a few microns long and down to less than 10 nm in diameter. The tip is located at the 

free end of a cantilever that is 100 to 300 µm long. Forces between the tip and the 

sample surface cause the cantilever to bend, of deflect. A detector measures the 

cantilever deflection as the tip is scanned over the sample. The measured cantilever 

deflections allow a computer to generate a three-dimensional map of surface 

topography. Contrary to STM, AFMs can be used to study insulators and 

semiconductors as well as electrical conductors. 

All AFMs or, more generally, all SPMs consist of the main components presented in 

Figure 3.5. The principles of detection can be described as follows: 

The “heart”  of the system is a small, flexible cantilever that bears the sharp probe tip 

actually sensing the sample. 
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The general position of the cantilever is defined by a positioning system usually 

including a small electric motor and a worm transmission. 

The sample is fixed on the top of a piezoelectric scanner that bends under the signals 

of a computer system generally controlling the whole device. Every bending of the 

scanner means a movement of the sample (or, in rare cases, of the tip). 

A laser beam is transmitted to and reflected from the backside of the cantilever for 

measuring the cantilever position and orientation. The reflected laser beam is detected 

with a position-sensitive detector (photodiode, PSPD). The output of the PSPD is 

provided to a computer for processing of the data for providing a topographical image 

of the surface with high resolution. 

Currently used position-sensitive detectors are four-sectional that allows measuring 

not only longitudinal but torsion bending too, which is important for the lateral force 

microscopy (LFM). 

 

Figure 3.5 – Generalized schematic representation of an AFM. Reproduced from [101] 
 

AFM can operate in several modes which differ according to the force between the 

tip and surface. They are described in the following section. 
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3.3.2.1 Method Variations 
 

The application modes of AFM are dependent on the forces acting between the tip 

and the sample surface. The force most commonly associated with AFM and virtually 

making the most important contribution to the resulting force is the interatomic van der 

Waals force. The dependence of the van der Waals force upon the distance between the 

tip and the sample is illustrated in Figure 3.6. 

 

Figure 3.6 – Forces between the tip and the sample and modes of AFM 
 

The most important variations of the AFM with respect to the interaction forces 

method are presented in the Table 3.2. 

 

Table 3.2 – Operation modes of the atomic force microscopy 
 

Mode of Operation Force of Interaction 

contact mode strong (repulsive) - constant force or constant distance 

non-contact mode weak (attractive) - vibrating probe 

intermittent contact mode strong (repulsive) - vibrating probe 

lateral force mode 
frictional forces exert a torque on the scanning 

cantilever 

 

In contact mode, the tip is usually maintained at a constant force by moving the 

cantilever up and down as it scans. In non-contact mode or intermittent contact mode 

(the latter also known as tapping modeTM) the tip is driven up and down by an oscillator. 



 68 

Especially soft materials may be imaged by a magnetically-driven cantilever (MAC 

ModeTM). In non-contact mode, the bottom-most point of each probe cycle is in the 

attractive region of the force-distance curve. In intermittent contact mode the bottom-

most point is in the repulsive region. Variations in the measured oscillation amplitude 

and phase in relation to the driver frequency are indicators of the surface-probe 

interaction.  

To image frictional force, the probe is dragged along the surface, resulting in a 

torque on the cantilever. To image the magnetic field of the surface, a magnetically-

susceptible probe is used. In other variations, the electric charge distribution on the 

surface or the surface capacitance is imaged. For thermal scanning microscopy (TSM) 

the thermal conductivity of the surface is probed with a resistive tip that acts as a tiny 

resistance thermometer.  

In addition to these modes, many instruments are also designed to plot the phase 

difference between the measured modes, for example frictional force versus contact 

profile. This plot is called phase mode. 

 

3.3.2.2 Force-distance curves and the soft-contact mode 
 

The atomic force microscope [102] can be used to measure the force between the tip 

and the sample surface as a function of the distance between them in gas or liquids 

[103]. 

The so-called force-distance measurements are suited to characterize the total 

interaction force of a particle (tip) and a surface in aqueous media. Two examples of  

graphs characterizing these interactions are illustrated in Figure 3.7. 

A cycle of measurements starts at a large tip-sample distance, i.e. without any 

interaction, so that the cantilever is not deflected. When approaching the sample to the 

tip, the cantilever deflects in dependence on interaction forces. After tip and sample are 

in contact, the tip will be retracted. During the whole cycle, the deflection of the 

cantilever is recorded as a function of sample displacement. The resulting graph can be 

converted into a force-distance curve, which is independent of the spring constant.  
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A) 

 

B) 

Figure 3.7 – Simplified illustration of force-distance curves at dry sample surface (A) and in 
case when a liquid layer (or lubricant) is present (B). Arrows on the graph lines indicate the 
direction of cantilever movement. The positive direction of the “distance” axis denotes the 
tip movement towards the surface. Reproduced from [101]. 
 

This AFM feature found extensive application during the last years [21, 46-48]. We 

will only mention that the force-distance curves bring a lot of information concerning 

thickness, rigidity, viscosity and other mechanical and adhesive properties of the 

adsorbed layer.  

The variations of AFM can be illustrated by these curves. For example, region b in 

Figure 3.7 (A) is the region of use of contact AFM: the cantilever deflection (or force, 

according to the Hooke’s Law) is directly proportional to the tip-sample separation. 

Another important feature is that the length of the region c2 shown in the same figure is 

indicative for the thickness of the liquid layer, or, in our case, for that of the adsorbed 

layer of polymer-surfactant mixture. 
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The soft-contact mode by Manne [114] and Senden et al. [21, 28] that has been used 

in this work is a special modification of contact AFM that was developed for soft layers. 

For adsorbed layers of surfactants and polymers in aqueous solutions, the force-distance 

curves are a result of interaction (overlap) of two electrical double layers which 

generates repulsive force. The force gradient then increases as the tip pushes onto the 

surfactant. The operating force for imaging is set at the steepest part of the force curve, 

such that during scanning the tip glides across the layer. Changing the interaction force 

setting allows one to obtain the thickness value of the adsorbed layer. 

 

3.3.2.3 AFM Limitations 
 

An understanding of limits set by any method used is of great significance. AFM, as 

any other method, is not free from limitations: The properties and types of cantilever 

and scanner, calibration and feedback parameters, tuning of laser detector – all of these 

features play an important role when evaluating the relevance of the data acquired. Very 

often it is difficult, or almost impossible, to distinguish between correct images and 

artefacts. A short review of possible artefacts and their reasons is given in this section. 

The scanner tube of an AFM is a piezoelectric tube made usually of lead zirconium 

titanate, or PZT. From Figure 3.8 the main principles of scanner operation are seen. 

 

Figure 3.8 – Schematic representation of AFM scanner 
 

It is easy to see that movements in XY plane are, due to the scanner design, not 

horizontal movements but curves. The data distortion caused by this fact is referred to 

as cross coupling. Other scanner properties and processes occurring in the scanner are: 
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intrinsic scanner nonlinearity, hysteresis, creep (two-phase scanner response to strong 

feedback signals) and scanner aging contribute to nonlinearities in sample imaging [101, 

118]. Various means of hardware and software correction, such as optical and 

capacitive, can be used to eliminate this influence. 

Other important sources of artefacts are the tip, the feedback loop and external 

physical influence. The gains of the feedback loop have to be optimized precisely and 

maintained during scanning. A non-optimized feedback loop can cause high-frequency 

oscillations if set too high, or a false flattening of the image if set too low. 

The role of form and size of the AFM tip can be critical: a wrongly selected tip can 

produce images that have almost nothing common with the true structure of the sample 

surface. There exist a “collection”  of tip artefacts. The way how they can emerge is 

illustrated in Figure 3.9 

 

 

Figure 3.9 – Comparison between true imaging and “ tip imaging” . The square structures on 
the bottom image, when presented three-dimensionally, are pyramidal, i.e. they are “ tip 
reflections on the sample surface” . 
 

An outside influence can be caused by any external source like strong 

electromagnetic fields, extreme temperature changes and – most frequently – 

mechanical vibrations. These can be avoided by a proper positioning of the instrument. 

The most common way is an instrument suspension on elastic strings, or usage of a very 

hard and stable pedestal, or a combination of both means. 
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The ways to prove whether the image is true or an artefact are universal for almost 

all SPM techniques and include repeat imaging, change of scan direction, scan rotation, 

scale change and changing of the scan speed [101]. 

Specifically for investigations of adsorbed layers the AFM technique is good for 

giving information about the layer structure. Nevertheless, no information about the 

amount of adsorbed material can be obtained. The results of the layer thickness 

measurements as well as the force-distance curves are not absolutely precise and will be 

interpreted mainly qualitatively in this work. 

 

3.3.3 Instrumentation and Operation 

 

The AFM investigations were performed using a Park Scientific Autoprobe CP 

instrument with the Multitask Head (Institute of Physical and Theoretical Chemistry, 

University of Regensburg, Regensburg, Germany) and a Digital Instrument Nanoscope 

MultiMode instrument (Department of Applied Mathematics, Research School of 

Physical Sciences and Engineering, Australian National University, Canberra, 

Australia). The devices are represented in Figure 3.10. 

 

 

A) B) 

Figure 3.10 – AFMs used in this work: A) Autoprobe CP instrument. Illustrated together 
with the optical microscope and video camera used for control. Reproduced from 
www.veeco.com. B) DI Nanoscope III instrument. Reproduced from 
www.eng.yale.edu/environmental/ facilities.html 



 73 

 

 

Figure 3.11 – Cantilever chip with 4 cantilevers (left) and standard V-shaped cantilever 
(right) 
 

The cantilevers from ThermoMicroscopes, Sunnyvale, CA were used on the 

Autoprobe CP instrument. The length of them was 180 µm and the leg width 25 or 38 

µm (C-Ultralevers type A and B, respectively). Nanoscope III instrument used standard 

silicon nitride V-shaped cantilevers of length 200 µm with a leg width 40 µm (long, fat) 

(Digital Instruments, Santa Barbara, CA). The tip diameter, according to the 

manufacturer’s data, did not exceed 10 nm, and the spring constant was in all cases 

below 0.6 N•m-1. Cantilever chips and a scheme of a cantilever are presented in Figure 

3.11. 

New cantilevers have been used for every measurement performed on the Digital 

Instruments Nanoscope III. Before mounting, the cantilevers underwent plasma 

treatment identical to the substrate (described above). When working on the Autoprobe 

CP instrument, each cantilever was used for more than one measurement. Between the 

measurements, cantilevers mounted on the cartridge, were soaked in a water-isopropyl 

alcohol mixture, rinsed with deionized water and dried in air. The cantilever integrity 

and condition was checked before every measurement using a 1µm calibration grating 

and adjusting feedback software parameters.  

A fluid cell constructed and made at the Mechanical Shop of the Faculty of 

Chemistry and Pharmacy of the University of Regensburg was used during studies on 

the Park Scientific Autoprobe CP Microscope. Between the measurements, the cell was 

cleaned using a water-isopropyl alcohol mixture. The standard Contact Mode Fluid Cell 

was used while working with the Digital Instruments Nanoscope. Cleaning of this cell 

was performed using Millipore water and redistilled ethyl alcohol followed by drying 

with a stream of nitrogen gas. The filling of the standard Contact Mode Fluid Cell 

(Digital Instruments device) was performed by sample injection after mounting the cell 



 74 

and before cantilever approach. The filling of the custom made fluid cell (Autoprobe 

CP) was made by adding 2.2 ml of sample into the opened cell before lowering the 

AFM head. 

 

3.3.3.1 Software 
 

The post-measurement processing of images and curves was performed using 

ProScan Version 1.6 Image Processing software of Autoprobe CP instrument, 

NanoScope 4.42 GUI software, and Nanotec WSxM 1.2 software as well as Microcal 

Origin 4.1 and Microcal Origin 7G software.  

 

3.3.3.2 Imaging 
 

The soft-imaging method of Manne et al. and Senden et al. [114, 21, 28] was used. 

The key to this method is fine control of the imaging force in the repulsive regime of the 

tip-sample interaction, enabling the adsorbed layer to be imaged without damage. 

Adsorbed aggregates are generally only visible over a narrow range of applied force (<1 

nN), with the substrate imaged at higher forces. Generally, the applied force on both 

instruments can be controlled directly using the operation software of the AFM. In all 

cases it was below 0.9 nN. 

 

3.3.3.3 “Scratching”  
 

For investigation of the properties of the adsorbed layer of the polymer-surfactant 

mixtures a special treating of the layer with the cantilever was applied. First, a scan 

image (typically, 10*10 µm2 or 5*5 µm2) of the adsorbed mixture was acquired. Then, a 

smaller area (typically 1*1 µm2) in the middle of the field of vision was scanned by 

pushing the cantilever very hard, at the highest scan rate (60 Hz). After making this, the 

scanning was repeated at previous settings and on a larger area. This method is 

downwards called “scratching” , since the cantilever may move the layer or its parts 

aside and expose the substrate surface. The method allows investigation of adhesion 

pattern of the adsorbed layer or clusters.  

 



 75 

3.3.3.4 Acquirement and evaluation of force-distance curves 
 

The force-distance curves were acquired on every sample, with an emphasis to 

visualize the difference between areas with different structures’  pattern. When 

“scratching”  had been applied, some curves were acquired inside and outside the 

scratched area. This allows making conclusions about the presence or absence of the 

polymer and the surfactant on the investigated surface, about the rigidity of the layer, its 

elasticity and hydration. The force-distance curves are presented without any further 

processing except “shifting”  the curves by means of the Origin 7.0 software package in 

order to reflect precisely the zero lines and zero positions (elimination of feedback 

distortions). 



 76 

 

4CHAPTER 4. RESULTS AND DISCUSSION 
 

The results of our investigations are presented in this Chapter. First, the properties of 

the SDS / JR400 mixtures of different compositions in bulk solution are described: the 

ternary phase diagram established during the solubility studies is discussed and a 

description of the selection procedure of mixtures (samples) for further research is 

given. Then the results of DLS measurements performed on selected samples are 

represented. The second part of the chapter shows the results of imaging and 

characterization of adsorbed polymer-surfactant layers at solid-liquid interfaces with the 

help of AFM. This part is divided into two sections: the first compares the structure of 

adsorbed layers at different surfaces and the properties of the corresponding samples in 

bulk solution. The second section deals with the results of the AFM measurements: the 

results of two series of “washing-off”  experiments are presented consisting of 

subsequent altering of the polymer-surfactant mixture composition with simultaneous 

monitoring the properties of the adsorbed layer. 

 

4.1 SDS / JR 400 M IXTURE IN SOLUTION 

 

4.1.1 The ternary phase diagram 

 

The ternary phase diagram was established according to the procedure described in 

Section 3.2.1. It delivered the general basic picture of interaction between working 

solutions of both substances and allowed the selection of specific compositions for 

further investigation. 

 

4.1.1.1 General Description 
 

The ternary phase diagram presented in Figure 4.1 reflects the interactions of the 

polymer and the surfactant at different compositions. Following regions of the diagram 

were highlighted and are denoted in Figure 4.1: region 1 exhibits clear solutions with 
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lower viscosities than that of the pure polymer (see Section 2.3.2). Region 2 indicates 

the presence of a turbid or precipitated mixture corresponding to phase separation. 

Region 3 exhibits clear solutions due to resolubilisation and a highly diluted mixture is 

present in Region 4. Qualitatively, the region of phase separation is in agreement with 

the literature[11]. Some quantitative differences will be explained in the following 

sections. 

 

Water JR400

SDS 0,1%

0,075%

1

2

3

4

 

 

Figure 4.1 – Ternary phase diagram of interaction of the working solutions of SDS and 
JR400. Dotted line represents the theoretical composition of maximum precipitation, and the 
dashed line – the composition where this maximum was observed experimentally. The 
region numbers are explained in text. 
 

All further investigations focused on regions 1, 3 and 4, while no DLS or AFM 

investigations in the precipitation area itself were possible because of the high turbidity 

of the samples. To cover a possibly broad range of concentrations and compositions and 

to highlight the most characteristic properties of the mixtures, a variety of samples was 

selected for DLS measurements. 
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4.1.1.2 Important samples 
 

After preliminary measurements, 16 samples were chosen for DLS measurements. 

They represent all characteristic regions of the phase diagram under different dilutions. 

The properties of these samples are presented in Table 4.1. 

 

Table 4.1 – List of samples selected for DLS measurements. “Extra water fraction”  is a 
measure of mixture dilution. Samples discussed in this section are shaded. 
 

 

final 

concentration / w/w% 

 

 

 

Sample No. SDS JR400 

 

 

stoichiometr ic 

ratio∗∗∗∗ 

SDS : JR 400 

 

Phase 

diagram 

region 

 

Extra 

Water  

fraction, 

wt%,  

8 0,09 0,0075 27,7 : 1 3 0 

9 0,085 0,01125 17,4 : 1 3 0 
13 0,016 0,003 12,28 : 1 4 80 

15 0,01 0,03 0,77 : 1 1 50 

20 0,01 0,0525 0,44 : 1 1 20 

25 0,057 0,00225 58,17 : 1 4 40 

27 0,01 0,0075 3,07 : 1 4 80 

45 0,015 0,0563 0,61 : 1 1 10 

46 0,01 0,06 0,38 : 1 1 10 

47 0,005 0,06375 0,18 : 1 1 10 

49 0,08 0,0075 24,58 : 1 3 10 

50 0,085 0,00375 52,19 : 1 3 10 

66 0,0135 0,0574 0,54 : 1 1 10 

 

For the sake of clearness, the positions of the samples characteristic for discussion 

of DLS results (shaded in Table 4.1) on the ternary phase diagram are presented in 

Figure 4.2. The samples are denoted as asterisks. 

 

                                                 
∗ Quantitative details of the calculating of stoichiometric ratios are given in the text. 
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Figure 4.2 – Samples characteristic for the DLS results on the ternary phase diagram. The 
region of precipitation is shaded. Dotted line represents the theoretical composition of 
maximum precipitation, and the dashed line – the composition where this maximum was 
observed experimentally. 
 

 

4.1.2 Results of particle size measurements with DLS 

 

The size distribution profiles of particles (clusters) obtained with DLS in the SDS-

JR400 mixtures are presented in this section. The results are grouped according to the 

regions of the ternary phase diagram. 

 

4.1.2.1 Region 1 – polymer rich mixtures before precipitation. 
 

Figures 4.3 – 4.5 demonstrate the results of DLS measurements performed on the 

mixtures with the same dilution in the order of subsequent increase of stoichiometric 

ratio SDS to JR400 charges. Sample 15 presented in Figure 4.6 is of higher dilution, and 
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its stoichiometric ratio seems to be the precipitation onset for less diluted samples (see 

Figure 4.1). 
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Figure 4.3 – Hydrodynamic diameters of clusters in the mixture of the working solutions of 
SDS (5%), JR400 polymer (85%) and water (10%), composition point 47 from Fig. 4.2. 
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Figure 4.4 – Hydrodynamic diameters of clusters in the mixture of the working solutions of 
SDS (10%), JR400 polymer (80%) and water (10%), composition point 46 from Fig.4.2. 
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Figure 4.5 – Hydrodynamic diameters of clusters in the mixture of the working solutions of 
SDS (15%), JR400 polymer (75%) and water (10%), composition point 45 from Fig. 4.2. 
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Figure 4.6 – Hydrodynamic diameters of clusters in the mixture of the working solutions of 
SDS (10%), JR400 polymer (40%) and water (50%), composition point 15 from Fig. 4.2. 
 

We consider the absolute values of hydrodynamic diameters of less significance for 

characterization of SDS-JR400 system in an “ isolated”  DLS study, that is, without 

comparison with other methods. Due to the variability of possible conformations of 

polymer chains and forms and sizes of micelle-like clusters at different conditions [10, 

17] it is hardly possible to draw any conclusions alone from the fact that the mean 

diameter of polymer-surfactant complexes, for example, in the mixture number 45 is 

430 nm. However, the absolute size values are of importance when the DLS results will 

be compared to the AFM results. This will be presented in next sections. 

More important are size relations between the samples of different compositions and 

the possibility to follow the tendencies shown in the particular region of the phase 

diagram. For the region 1, it is remarkable how strongly differs the uniformity of cluster 

sizes depending on the mixture composition. There is approximately one surfactant 

molecule per 5 polymer binding sites in the sample 47 (under the assumptions made in 

section 3.1.1.1). The mixture composition here indicates a great amount of free polymer 

with appropriate loops and curls of polymer chains that are in constant motion. No one 

of 10 size distribution curves obtained from this sample is similar to another in the same 

sample. It is important again to mention here that the curves presented have been 

obtained from the single sample under the same conditions – the measurements have 

been performed subsequently without any changes or stirring of the sample. Also 

significant that no time-depending tendency can be observed while cooking at the 

results of subsequent measurements. This means that the correlograms formed during 

every particular measurement differed from one another, i.e. the particle velocity was 

sometimes high, sometimes low. As the SDS / JR400 ratio increases in samples 46, less 

data scattering is observed, and in the sample 45, all distribution curves are 

superimposed showing a great data uniformity. We observe here a transition from a 

disordered mixture state to the formation of relatively ordered clusters that can be 

reproducibly measured with our method. This transition is obviously driven by energetic 

favourability reasons as the interactions between polymer and surfactant play a more 

and more important role. 

Although the SDS/JR400 ratio in the sample 15 is 0.77:1, i.e. even higher than in the 

sample 45, the degree of uniformity in the former is obviously less than in the latter 
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(compare Figures 4.5 and 4.6). The reason could be a higher dilution of sample 15, 

which means less interaction between forming polymer-surfactant clusters. 

 

 

 

4.1.2.2 Region 4 – highly diluted mixtures 
 

Figure 4.7 shows the size distribution for the sample 27 with a composition close to 

the experimental maximum precipitation line (see section 4.1.3), but highly diluted. 

Sample 13 in Figure 4.8 has a composition close to the redissolution region and is 

transparent due to the high dilution. 
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Figure 4.7 – Hydrodynamic diameters of clusters in the mixture of the working solutions of 
SDS (10%), JR400 polymer (10%) and water (80%), composition point 27 from Fig. 4.2. 
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Figure 4.8 – Hydrodynamic diameters of clusters in the mixture of the working solutions of 
SDS (16%), JR400 polymer (4%) and water (80%), composition point 13 from Fig. 4.2. 
 

Like in the Region 1, we can see here that the reproducibility of the size 

measurement results increases with the increase of stoichiometric ratio 

surfactant/polymer. Another remarkable feature seen in the graph in both regions is a 

parallel increase in the mean cluster size. 

 

 

4.1.2.3 Region 3 – surfactant rich mixtures in the resolubilisation area 
 

Surfactant rich mixtures in the redissolution area can be considered as most stable 

ones among all non-precipitated mixtures: Samples 49 and 50 underwent control 

measurements by DLS and imaging with AFM after 4 months storage at room 

temperature and demonstrated no significant changes. Mixtures of other compositions, 

in contrary, changed after this time period, probably due to bacterial contamination that 

caused precipitation in mixtures of composition close to that of precipitation onset.  

An indirect indication of mixture stability is also the high reproducibility of DLS 

size distribution curves. A comparison of the cluster uniformity will be presented in the 

next sections. 
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Figure 4.9 – Hydrodynamic diameters of clusters in the mixture of the working solutions of 
SDS (85%) and JR400 polymer (15%), composition point 9 from Fig. 4.2. 
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Figure 4.10 – Hydrodynamic diameters of clusters in the mixture of the working solutions 
of SDS (57%), JR400 polymer (3%) and water (40%), composition point 25 from Fig. 4.2. 
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4.1.3 Summary and discussion of investigations in the bulk solution 

 

The ternary phase diagram together with the results of light scattering measurements 

show some quantitative differences when compared with the literature data and the 

theoretical pictures described in the introduction: the start of phase separation and its 

maximum seem to occur at substantially higher SDS to JR400 stoichiometric ratios than 

expected. Indeed, one can see that the mixtures with the ratio close to that at which the 

maximal precipitation could be expected (e.g. sample 15), are “ located”  just on the 

borderline of the phase diagram. The possible explanation for this phenomenon may be 

the following: since we deal with samples of very high dilution, we may assume that the 

so-called effect of “ ideal gas behaviour”  that was referred to in the literature previously 

[35] is present. That is, no detectable interaction between polymer and surfactant takes 

place before the T1 “onset”  concentration of interaction is reached. This could also be a 

plausible explanation for the relatively small slope of the lower borderline of the 

precipitation region. Contrary to our data, Regismond et al. [11] found that mixtures 

with composition similar to our samples 15 and 105 show some turbidity or 

precipitation, and therefore lie just within the turbidity area. A different strictness of the 

turbidity criteria could be the explanation: we noted that our borderline has been formed 

by samples already demonstrating an initial turbidity, though only under side 

illumination. 

An interesting observation is the demonstration of the transition from “disordered”  

to the “ordered”  cluster pattern with increasing stoichiometric ratio surfactant / polymer 

in the region 1 when comparing Figures 4.3, 4.4 and 4.5 

The mean cluster size tends to change both due to the dilution changes and again, to 

the changes stoichiometric ratio surfactant / polymer. These changes are of various 

kinds: in surfactant rich mixtures in region 3 the mean cluster size increases with 

increasing dilution, and in polymer rich compositions of region 1, on the contrary, the 

diluted sample 15 has a less mean hydrodynamic diameter of clusters than the sample 

45 that is more concentrated. Unfortunately, no possibility is available to compare a 

sufficient amount of samples with the same stoichiometrical ratio of components and 

significantly different dilution: any “ line”  representing such a batch of samples on the 

ternary phase diagram inevitably crosses the precipitation region. Therefore, no 

tendency couldbe strictly proven. 
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Nevertheless, it is necessary to remark that a deep discussion concerning the 

significance of the cluster size in the SDS/JR400 system is not always possible: for 

example, the term “cluster”  itself can not be considered as correct for the region 1 where 

the polymer-surfactant complexes only start to form. Such a discussion will have a 

better reason when relatively stable [29] adsorbed structures are involved in it. 
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4.2 ADSORPTION OF THE SDS / JR 400 M IXTURES ON 

SURFACES 

 

This section presents the results of AFM investigations of adsorbed layers of SDS-

JR400 system of different compositions on different surfaces. In the first subsection, the 

general pattern of adsorption of mixtures from different regions of the ternary phase 

diagram is presented. The roles of surface charge and hydrophobicity are highlighted on 

an example of one sample. 

The second subsection compares the structures in the adsorbed layer on freshly 

cleaved mica and on hydrophobized silica with respect to the properties of the same 

mixture compositions in bulk. 

The third section describes two series of “washing-off”  experiments performed by a 

change of the mixture compositions in the AFM fluid cell. In these experiments 

mixtures with lower SDS/JR400 ratio were substituted by those with higher polymer-

surfactant ratio in order to observe changes in structure and properties of the adsorbed 

layer. 

 

4.2.1 General adsorption picture 

4.2.1.1 Comparison of different mixtures adsorbed on mica 
 

Samples 15, 25 and 27 were selected to represent the results of this study since they 

are most characteristic for the appropriate regions of the ternary phase diagram due to 

their composition (see Table 4.1 and Figure 4.2), on the one hand, and brought 

comparatively clear and well structured images, on the other hand. All samples were 

AFM imaged with increasing magnification until 1×1µm2 scans have been obtained 

containing different kinds of adsorbed structures: polymer-surfactant aggregates and, if 

possible, visually aggregate-free substrate surface. Then, force-distance curves were 

acquired on different parts of the scan area. The curves have been computer-processed 

with Origin® 7G SR2 software package and are presented in the following pages. For 

the sake of comprehensiveness, the corresponding scans are presented as well. The spots 
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where the force-distance curves were acquired are marked. A discussion of the results 

obtained is presented in the final part of the subsection. 
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B) 
 

Fig 4.11 – Force-distance curves acquired on the 1×1 µm2 AFM scan of the adsorbed 
mixture of the working solutions of SDS (10%), JR400 polymer (40%) and water (50%), 
composition point 15 from Fig.4.1. The scan is presented on the right hand side. A) Curve 
acquired on the polymer-surfactant complex marked as spot 1, B) Curve acquired on 
visually aggregate-free, plane substrate surface marked as spot 2. 
 

250 nm 
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B) 
 

Fig 4.12 – Force-distance curves acquired on the 1×1 µm2 AFM scan of the adsorbed 
mixture of the working solutions of SDS (10%), JR400 polymer (10%) and water (80%), 
composition point 27 from Fig.4.1. The scan is presented on the right hand side. A) Curve 
acquired on the polymer-surfactant complex marked as spot 1, B) Curve acquired on 
visually aggregate-free substrate surface between clusters marked as spot 2. 
 

250 nm 
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B) 
 

Fig 4.13 – Force-distance curves acquired on the 1×1 µm2 AFM scan of the adsorbed 
mixture of the working solutions of SDS (57%), JR400 polymer (3%) and water (40%), 
composition point 25 from Fig.4.1. The scan is presented on the right hand side. A) Curve 
acquired on the (eventual) polymer-surfactant complex marked as spot 1, B) Curve acquired 
on visually aggregate-free substrate surface between clusters marked as spot 2. 
 

Scans and force-distance curves presented in this section suggest that the structure 

of the adsorbed layer, so far as it can be understood on the basis of the AFM data, 

logically corresponds to the composition of the particular mixture. 

250 nm 

250 nm 
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Polymer rich sample 15 demonstrates remarkable elastic properties and viscosity of 

the adsorbed layer. This conclusion can be drawn from the smooth form of the force-

distance curve. It is to mention that high viscosity of the adsorbed layer differs from 

properties of the same sample in bulk. This was expectable because the total local 

concentration of both components in the adsorbed layer is by definition [55] higher than 

in solution. And higher concentration, according to Goddard [17] means a viscosity 

increase in polymer rich mixtures. 

The local composition in the adsorbed layer does not seem to vary principally from 

one spot to another, which can be seen from the similarity of the curves acquired at 

different places. This is also in accordance with theory: the composition means that no 

cluster formation has occurred yet, and the probability to “meet”  either polymer or 

surfactant or both of them in any particular place is similar. 

The stoichiometric ratio of components in the sample 27 is close to that of 

maximum precipitation observed in this study by less dilution. This means that some 

compartmentalization, i.e. mesoscale separation of surfactant-rich and polymer-rich 

complexes would occur. It is confirmed by the scan appearance but this will be 

discussed in section 4.2. After scale correction, the force-distance curves do not show 

any remarkable difference between different acquisition spots. 

The most interesting observation concerns sample 25: the smooth and plane surface 

seen in the scan means that strongly diluted surfactant rich polymer-surfactant mixtures 

do not adsorb at mica at all. The force-distance curves confirm this conclusion: they 

look similar to those acquired on native mica [21, 118]. This is also easy to explain 

theoretically: anionic surfactant SDS can not adsorb to the negatively charged, 

hydrophilic mica surface, and all polymer molecules that could adsorb to the surface 

seem to be bound by highly excessive SDS. 

An important remark to this sample: the very first curve acquired on spot 1 looked 

different and suggested presence of small qualities of polymer (not shown due to poor 

quality). All further curves were similar to those presented in Figure 4.13 and did not 

differ from curves acquired on the cluster-free surface. There are only two possible 

explanations for this phenomenon: either the aggregate in the spot 1 is an artefact, or it 

existed really but was very weakly adsorbed and desorbed after the first contact with the 

cantilever. 
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4.2.1.2 Comparison of the same mixture adsorbed at different surfaces 
 

Sample 27 adsorbed on normal mica, hydrophobized mica and hydrophobized silica 

surfaces was imaged at the same conditions and underwent “scratching”  as described in 

Section 3.3.3.3. Force-distance curves (more precise, deflection vs. separation curves 

specific for the Nanoscope III instrument) were acquired before and after scratching. 

Qualitative differences in the adsorption picture and some force-distance curves are 

presented in Figures 4.14 – 4.17. 

 

 

Figure 4.14 – 3-dimensional presentation of 9×9 µm2 AFM deflection image of the 
adsorbed mixture of the working solutions of SDS (10%), JR400 polymer (10%) and water 
(80%), composition point 27 from Figure 4.1 after “scratching”  on the hydrophobized silica 
surface. 
 

Two issues are important in Figure 4.14. First, the scratched area is flat, without any 

rests of adsorbed structures. Another important observation is that aggregates scratched 

away from the processed area were not moved aside (almost no aggregates are 

accumulated on the borders of the scratched area) but obviously desorbed. 

Both facts can mean that adsorption of polymer-surfactant aggregates is not very 

strong at this particular surface due to two possible reasons: the hydrophobized silica 

surface bears relatively low negative charge, which weakens electrostatic interactions 

between the surface and the charged groups of the polymer; the hydrophobic adsorption 

mechanism also can not be fully engaged at this particular mixture composition.  
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A) 

 

B) 
 

Figure 4.15 – 3-dimensional presentations of 10×10 µm2 AFM deflection images of the 
adsorbed SDS-JR400 mixture, composition point 27 from Figure 4.1. 
A) after “scratching on the hydrophobized mica surface. The “waved”  look of the 
underlying surface is an artefact. 
B) after “scratching”  on the freshly cleaved (native) mica surface. 
 

A comparison of Figures 4.14, 4.15 A) and 4.15 B) suggests that the affinity of this 

polymer-surfactant system to substrates is in the following order: hydrophobized silica 

< hydrophobized mica < native mica. Contrary to the observations for the silica surface, 

we see that although most of the aggregates (but not all) could be scratched away from 
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the hydrophobized mica surface, they did not desorb but were moved aside. On native 

mica, most of the aggregates remained on the surface, which indicates the strongest 

adsorption. 
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B) 
Figure 4.16 - Force-distance curves acquired on the scan presented in Figure 4.15 A) 
(hydrophobized mica). A) The curve from the flat part of the scratched area (1); B) curve 
acquired on the “hill”  region aside the scratched area (2). 
 

2.5 µm 
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B) 
Figure 4.17 - Force-distance curves acquired on the scan presented in Figure 4.14 
(hydrophobized silica). A) The curve acquired before scratching; B) curve acquired on the 
flat part of the scratched area in the middle of the scan. 
 

The comparison of force-distance curves from different surface types, on the one 

hand, and from scratched or not scratched areas, on the other hand, supports the 

assumption of different affinity to different surfaces. The curves in Figure 4.16 A) and 

B) differ from one another (see the thickness of the adsorbed layer indicated by the 

bottom part of the withdrawal curve, refer section 3.3.2.2), but in both cases strong 

attractive forces are exerted on the cantilever by the adsorbed layer. Most probably it is 
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the adsorbed polymer that contributes most significantly to these forces. The layer 

thickness is less in the scratched area but the layer is also present here. 

On the contrary, the curves in Figure 4.17 A) and B) differ from one another 

dramatically: a soft, thick and elastic layer can be seen on not scratched surface; this 

layer disappears almost completely after scratching. The curve form resembles the form 

of curves acquired on surfaces free of any adsorbed layer. 

 

 

4.2.2 Compar ison of structures in the adsorbed layer  and in the 

bulk. 

 

The samples selected for this study are presented in Figure 4.18. 

 

Figure 4.18 – Samples selected for comparison of DLS results with measurements of 
structures in the adsorbed layer. The region of precipitation is shaded. Dotted line represents 
the theoretical composition of maximum precipitation, and the dashed line – the 
composition where this maximum was observed experimentally. 
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4.2.2.1 Processing of results of DLS measurements 
 

The DLS results obtained on the selected samples and presented in Section 4.1.2 

have been processed statistically in order to compare the calculated sizes and volumes 

to those obtained during AFM measurements (see below). The processing comprised an 

averaging of size distribution curves in order to obtain a cumulative distribution per 

sample. This is especially important for sample 15 with broad size distribution and 

sample 27 with a significant scattering of the DLS results. The results of calculations 

together with the main characteristics of samples are presented in Table 4.2. 

 

Table 4.2 - Results of DLS measurements of samples from the different regions of the 
ternary phase diagram. Samples denoted by N/A were only considered for the AFM 
measurements, not for the DLS measurements. 
 

 

final 

concentration/ 

w/w% 

 

par ticle size 

distr ibution, nm 

 

Sample 

No. 

SDS JR400 

 

Stoichio-

metr ic 

ratio 

SDS /  

JR 400 

unit 

 

Phase 

diagram 

area 

 

mean 

par ticle 

size /nm 

for at 

least 

85% of 

counted 

particles, 

nm 

for at 

least 

45% of 

counted 

particles, 

nm 

 

average 

par ticle 

volume 

nm3 

15 0.01 0.03 0.77 : 1 1 120.2 30 – 510 60 - 210 300000 

105 0.0123 0.0283 1 : 1 1 N/A N/A N/A N/A 

27 0.01 0.0075 3.07 : 1 4 43.5 12 - 120 24 - 60 38000 

9 0.085 0.01125 17.4 : 1 3 205.8 108 - 324 180 - 300 4560000 

85 0.0867 0.01 20 : 1 3 N/A N/A N/A N/A 

 

The volumes of the structures were calculated assuming that they are spherical. Size 

distribution ranges were used as a measure of particle uniformity. Samples 105 and 85 

did not undergo light scattering measurements. 
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4.2.2.2 AFM Investigations 
 

4.2.2.2.1 Comparison of sample sizes on different surfaces 
 

The AFM investigations of the samples characterized by light scattering, or of those 

very close in composition (samples 85 and 105, instead of samples 9 and 15, 

respectively), were performed both on hydrophobized silica and on mica. Investigations 

included direct imaging of adsorption patterns at various scales and acquisition of force 

versus distance curves. The following image processing comprised, in particular, height 

profile analysis in order to compare particle sizes. Height profiles were acquired on the 

“ topography”  or “height”  images directly corresponding to the “deflection”  images 

presented for visual comparison. The deflection images give enhanced contrast of edges 

and are therefore often more pleasing to the eye in elucidating the form of structures in 

the x-y plane. Quantitative data in the Z direction is available from the height images. 

The lines, along which the profiles were acquired, are not indicated.  

The images in Fig. 4.19, 4.21, and 4.23, are presented in pairs. This enables a direct 

visual qualitative comparison of the general adsorption pattern on mica and 

hydrophobized silica. Although the wetting properties of the substrates vary greatly it 

can be seen that the adsorption patterns for the pairs are more similar than the 

adsorption patterns obtained for solutions of different compositions adsorbed on 

surfaces of the same kind, indicating that the substrate plays a minor role in the 

adsorption behaviour compared to the role of the initial composition of mixtures. 

The height profiles plotted with different image processing programs were coupled 

and brought to the same scale in both dimensions (errors in precision must be taken into 

account) using the CorelDRAW® software, version 11.633. On every drawing, the top 

profile (DI instrument) represents the sample adsorbed on hydrophobized silica, 

whereas the bottom profile (Park Scientific) characterizes the sample adsorbed on 

freshly cleaved mica. The peak width information for a number of regions is indicated. 

The profiles provide further information concerning cluster sizes of adsorbed polymer-

surfactant complexes. 
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Highly diluted area (region 4) 

 

A)      

 

B) 

 

Figure 4.19 – 3x3 µm2 AFM deflection images of the adsorbed mixture of the working 
solutions of solutions of SDS (10%), JR400 polymer (10%) and water (80%), composition 
point 27 from Fig.4.18. A) Image of structures adsorbed from the mixture onto a 
hydrophobized silica substrate): a 3x3 µm2 section of the 5 x 5 µm2 image (DI III 
instrument), B) Image of structures adsorbed from the mixture onto mica (Autoprobe CP 
instrument) 
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Figure 4.20 –. Height profiles of adsorbed structures using a working solution of SDS 
(10%), JR400 polymer (10%) and water (80%). A and B correspond to Fig. 4.19. The peak 
sizes concern the profile B. For explanation see the text. 
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Adjacent to the pre-precipitation area (region 1) 

 

A) 

 

B) 
 

Figure 4.21 – 5x5 µm2 AFM deflection images of adsorbed structures using a working 
solution of: A) solution of: A) Sample 105; SDS (12,28%), JR400 polymer (37,72%), water 
(50%). Composition point 105 from Fig. 4.18. Image of structures adsorbed from the 
mixture onto hydrophobized silica (DI III instrument), B) Sample 15; SDS (10%), JR400 
polymer (40%), water (50%). Composition point 105 from Fig. 4.18. Image of structures 
adsorbed from the mixture onto mica (Autoprobe CP instrument).  
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Figure 4.22 – 5. Height profiles of adsorbed structures using Sample 105  and Sample 15; 
SDS  A and B correspond to Fig. 4.21. The peak sizes concern the profile B. For explanation 
see the text. 
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Resolubilisation area (region 3) 

 

A) 

 

B) 
 

Figure 4.23 – 2,5x2,5 µm2 AFM deflection images of adsorbed structures using the 
working solutions: A) Sample 85; SDS (86,7%), JR400 polymer (13,3%), water (0%). 
Composition point 85 from Fig. 4.18. Image of structures adsorbed from the mixture 
onto hydrophobized silica (DI III Instrument), B) Sample 9; SDS (85%), JR400 polymer 
(15%), water (0%). Composition point 9 from Fig. 4.18. Image of structures adsorbed 
from the mixture onto mica (Autoprobe CP instrument). 
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Figure 4.24 – Height profiles of adsorbed structures obtained using Sample 85 and 
Sample 9. A and B correspond to Fig. 4.23. The peak size concerns the profile B. For 
explanation see the text. 
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The light scattering method is, like every other experimental technique, not free 

of limitations. Those concerning particle size measurements are mentioned above 

(section 4.1.2) and described, for example, in a recent review by D.Horn et al. [36] 

and discussed by A. Rawls [37]. Particularly the position of for example a rod-like 

micelle or a surfactant loop in the laser beam may change the size data. Therefore, 

only the main trends and the clear differences between samples are discussed here. 

When examining the light scattering data in Table 4.2, one can see that the mean 

particle size is a minimum in the region of high dilution. The mean particle size 

increases in the region of the precipitation onset, and reaches a maximum in the 

resolubilisation area. This suggests that the particles in the latter region are not single 

micelle-like clusters but bigger aggregates formed by surfactants and polymers. A 

further property revealed by the light scattering results is the change in particle size 

distribution. At the precipitation onset (sample 15), the particle size distribution is 

larger than it is for the highly diluted solution (sample 27) and becomes even smaller 

in the resolubilisation region (sample 9). This trend is revealed by the ratio of largest 

to smallest particles for 85% of the distribution. Values of 17, 10 and 3 are obtained 

for samples 15, 27 and 9 respectively. The trend also holds when we consider the 

central part of the appropriate distribution curves: the ratios are 3.5, 2.5 and 1.67 for 

the samples 15, 27, and 9, respectively. In both cases, the particles in the 

resolubilisation region are the most uniform ones, and at the precipitation onset the 

particle size exhibits the smallest uniformity. The most probable explanation for the 

interaction pattern observed by the light scattering measurements agrees with the 

existing model of the interaction between the polymer and surfactant: at the 

precipitation onset, a very wide range of possible configurations of emerging clusters 

exist: loopings and coils of the polymer backbone, aggregates of a few SDS 

molecules, as well as already “mature”  micelle-like clusters and their aggregates are 

present in solution. As the polymer-surfactant ratio approaches that which results in 

maximum precipitation, most micelle like clusters are established, and, taking into 

account that we deal here with a very diluted sample, it may be expected that no new 

loopings, coils or other changes on the polymer backbone occur. The increase in the 

cluster size and size uniformity observed in the region of resolubilisation may also be 

explained if we consider the results of Nilsson et al. [38] and their conclusions drawn 

from these. Nilsson et al. studied the interaction of SDS with ethyl-
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hydroxyethylcellulose (EHEC) – a non-ionic polymer – using dye solubilisation and 

fluorescence quenching. Nilsson et al. found that “ in a dilute polymer solution 

(c<0,05% EHEC) the cluster concentration is fairly constant up to the point where 

normal micelles begin to form”. This means that no new clusters appear, and an 

increase in SDS concentration thus may lead to the uptake of “newcoming” SDS 

molecules by existing micelle-like clusters, which in turn, must lead to an increase in 

the micellar size. The influence of polymer-surfactant interactions on micelle 

properties, namely an increase of cluster size with increasing surfactant 

concentration, has already been reported by Kjøniksen et al. [40]. In our samples that 

lie in the resolubilisation region, there are more than 15 SDS molecules per one 

positive charge site on the polymer, even assuming that the relative molecular mass 

per charge is only 670 (this assumption is close to that of the substitution degree of 

about 42%, which is relatively high: literature data are between 3 [16, for LM200] 

and maximally 45% [39], obviously depending on the production batch, see also 

sections 2 and 3). Therefore, we may presume that electrostatic neutralization has 

already taken place, and further surfactant binding to polymer is of hydrophobic 

nature. So, the mentioned conclusions for the non-ionic EHEC may be also relevant 

for our case of the cationic EHEC in solutions with a large excess of anionic 

surfactant.  

As mentioned previously, the atomic force microscopy images demonstrate more 

resemblance between the samples of the same or similar solution acquired on 

different surfaces than between solutions of different compositions obtained using 

the same surface. A simple visual comparison shows this. Previously, results of some 

studies [41, 19, 16, 5, 42, 43, 18] suggested a prevalence of interactions between 

polymer and surfactant over interactions between any component and the surface 

itself: a change of the concentration of one component in the solution is more 

important than a modification of the solid surface, and this result is confirmed here.  

The analysis of the AFM images reveals that the size and size distribution of the 

adsorbed particles is in good agreement with those in the bulk. There is also no 

evidence of any influence of the surface on the bulk structures with respect to their 

size. When the height profiles of particles adsorbed on hydrophobized silica are 

compared with those acquired on mica, they show that the particles on mica are 

“smaller”  in the x-y plane and “higher”  (i.e. larger in the z dimension) than those 

obtained from the corresponding mixtures adsorbed on hydrophobized silica. One 
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possible explanation might be a further flattening of the clusters and networks caused 

by surface hydrophobicity. The adsorption process in this case is driven essentially 

by hydrophobic interactions, and the affinity of the complexes to the surface may be 

stronger than they are in the case of hydrophilic mica. This will favor spreading of 

the structures over the surface. This explanation, however, looks to be in 

contradiction to the results presented in section 4.2.1.2 where we have seen that the 

structures easily desorb from hydrophobized silica. Nevertheless, the latter results are 

obtained only with sample 27 which shows the least height profile difference on mica 

compared to hydrophobized silica. 

For all samples, particle size data (x axis sizes) from section analysis suggest 

some squashing, or flattening, of particles. This can be caused both by the cantilever 

tip compressing the adsorbed layer and (what seems more likely) by spreading of the 

micelle-like clusters over the surfaces during adsorption. 

 

4.2.2.2.2 Volume analysis 
 

The volumes of particles adsorbed on mica were measured using the image 

processing software and compared with the volumes of the particles in bulk 

measured by DLS. However, it should be noted that the statistics is rather poor due to 

the limited amount of particles in the field of vision of the AFM.  

 

Table 4.3. Average cluster volumes obtained from the AFM and DLS measurements of 
samples from the different regions of the ternary phase diagram. 
 

Average particle volume 

nm3  

Sample 

No. 

stoichiometric ratio 

SDS : JR 400 
Phase diagram area 

AFM DLS 

15 0.77 : 1 1 8000 300000 

27 3.07 : 1 4 24000 38000 

9 17.4 : 1 3 3700000 4560000 
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Two examples of direct size comparisons for the samples 9 (redissolution area) 

and sample 27 (highly diluted area) are represented in Figures 4.25 and 4.26. 
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Figure 4.25 – Statistical distribution of cluster sizes in the resolubilisation area of the 
ternary phase diagram (sample 9)  measured by DLS (column graph) and by AFM 
imaging (line graph, particle diameters are recalculated from the volumes). 
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Figure 4.26 – Statistical distribution of cluster sizes in the area of high dilution of the 
ternary phase diagram (sample 27)  measured by DLS (column graph) and by AFM 
imaging (line graph, particle diameters are recalculated from the volumes). 
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The differences in the cluster volumes between the mixtures in bulk and adsorbed 

mixtures vary depending on the mixture composition. As seen from the Table 2, this 

difference may reach more than one order of magnitude in case of the pre-

precipitation area of the ternary phase diagram (sample 15). The most probable 

explanation for this particular case is that, at low SDS concentrations, a large amount 

of SDS-free polymer backbone and its loopings is present in the adsorbed mixture. 

These loose and flexible molecules are not observed in AFM measurements due to 

their extreme softness and therefore do not contribute to the particle size being 

imaged, while in DLS these SDS-poor structures are observed.  

The particle flattening that occurs during adsorption must be considered, together 

with the method limitations and the limited statistics when comparing the particle 

volume data obtained by AFM with the DLS data. Consequently, caution should be 

exercised when interpreting the particle volumes in quantitative terms. 

 

4.2.3 Changes of the adsorbed mixture as a result of changes in 

the solution composition  

Two series of “washing-off”  experiments were performed to investigate possible 

desorption of adsorbed structures which can be caused by an increase of 

surfactant/polymer stoichiometric ratio. AFM images were taken and force-distance 

curves acquired on the hydrophobized silica surface during subsequent change of the 

composition of solution contained in the fluid cell. 

The samples selected for this study are listed in Table 4.4 and presented 

according to their position on the ternary phase diagram in Figure 4.27. While 

preparing these experimental series, a special attention was paid to the stoichiometric 

ratio of components. In addition to these samples, pure working solutions of JR400 

Polymer and SDS were used. To demonstrate the desorption of the polymer layer 

under the influence of relatively high concentrations of SDS a different solution with 

a 5 times higher SDS concentration was used in the final part of the first series (0.5 

wt%, corresponding to approximately 2×cmc of SDS). Such a desorption has been 

repeatedly reported by many groups [16, 29]. However, no information concerning 

this desorption phenomenon at high dilutions is available. This is why we 

investigated how to “wash off”  completely or partially the adsorbed layer by 

increasing polymer-surfactant ratio. 
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Table 4.4 SDS-JR400 mixtures chosen for washing-off experiments  
 

final  

concentration, w/w% 

Mass portion of  

working solution, % 

stoichiometric ratio 

SDS : JR 400 

 

Sample 

No. 

SDS JR400 SDS JR400  

97 0.093 0.00535 92.87 7.13 40:1 

85 0.0867 0.001 86.7 13.3 20:1 

89 0.0245 0.0566 24.55 75.45 1:1 

91 0.014 0.0645 14 86 1:2 

92 0.00755 0.06933 7.55 92.45 1:4 

93 0.0039 0.0721 3.9 96.1 1:8 

95 0.002 0.0735 2 98 1:16 

 

Figure 4.27 – Positions of samples used in the washing-off experiments on the ternary 
phase diagram. 
 

Schemes of the experimental series are presented in Figure 4.28. The drawings 

demonstrate the sequence in which the samples with polymer excess were substituted 

by surfactant-rich samples. 
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B) 
 

Figure 4.28 – Schematic representation of the order in which sample substitution in 
“washing-off”  experiments occurred. A) in the first series; B) in the second series. The 
composition of columns reflects the composition of the samples. Diamonds represent the 
reverse stoichiometric ratio, i.e. ratio JR400 monomers/SDS. 
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Injecting a new portion of liquid into the AFM fluid cell causes disturbance and 

makes it difficult to record a proper image or a meaningful force-distance curve in a 

reasonable time. It was already noted that sometimes many hours or even days can be 

needed to reach an equilibrium state in the adsorbed layer [29]. Not every 

composition could be imaged successfully, and not in every case one can be sure that 

the results are free of artefacts caused e.g. by repeated withdrawal and engagement of 

the cantilever tip or by repeated rinsing of the fluid cell in order to eliminate an air 

bubble. In some cases optical noise was inevitable. Therefore, caution is needed in 

the interpretation of results and assessment of their relevance. In some cases images 

or/and force-distance curves will be omitted or presented after additional computer 

processing performed to eliminate artefacts. 

 

4.2.3.1 First series 
 

The working solution of JR400 Polymer without any additions or dilution was 

imaged on the hydrophobized mica surface. The adsorbed layer formed on the 

surface was thin, slightly viscous and homogeneous, i.e. without any structures. 

Scratching did not cause any remarkable changes for any sufficient time. This 

characteristic feature is illustrated in Figures 4.29 and 4.30. 

 

 

Figure 4.29 – 1×1 µm2 AFM deflection image of the working solution of JR400 Polymer 
adsorbed at the hydrophobized silica surface. 
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Figure 4.30 – Force-distance curve acquired in the adsorbed layer of the working 
solution of JR400 Polymer at the hydrophobized silica surface. The right hand part of the 
curve is omitted due to remarkable optical noise artefacts. 
 

95 �  93 

 

The next sample injected was the Sample 95. No sufficient changes could be 

observed or distinguished from artefacts. The sample 93 was injected. It is illustrated 

in Figures 4.31 and 4.32. The image presented was taken immediately after 

scratching. The scratched area in the right hand bottom part of the image is 

distinguishable only after a remarkable increase of the image contrast. 

 

Figure 4.31 – 5×5 µm2 AFM deflection image of the working solutions of SDS (3,9%) 
and JR400 Polymer (96,1%), composition point 93 from Figure 4.27 adsorbed at the 
hydrophobized silica surface in the sequence shown in Figure 4.28 A). 
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Figure 4.32 – Force-distance curve acquired in the adsorbed layer of the working 
solutions of SDS (3,9%) and JR400 Polymer (96,1%), composition point 93 from Figure 
4.27 adsorbed at the hydrophobized silica surface in the sequence shown in Figure 4.28 
A). 
 

After injection of the sample 93, we can see that the adsorbed layer becomes 

thicker, very viscous and stable against mechanical treating. The first two properties 

are indicated by the force-distance curve. The curves obtained inside and outside the 

scratched area were similar. The stability of the layer is seen from the fact that 

scratching left practically no traces. 

 

93 �  92 

 

Sample 93 was displaced by sample 92. This was the first sample that 

demonstrated significant difference compared to the previous composition: The 

adsorbed layer did change during scratching. Nevertheless, the scratching traces were 

very unstable and disappeared after a few scans. The force-distance curves showed 

an interesting pattern of multiple deflections, i.e. the cantilever was subject to 

attractive forces more than one time while withdrawing from the surface. This, 

together with a further increase of the layer thickness indicates the presence of single 

polymer chains [138], that is, a beginning structuring of the polymer layer. This 

description is illustrated in Figures 4.33 and 4.34. Images 4.33 A and B were taken 

one after another after 5 minutes of scratching with the scan rate of 60 Hz. This made 

approximately 30 cycles of scratching. Immediately after scratching the image 4.33 
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A was taken with the scan rate of 5 Hz. This continued 102 seconds and was 

immediately followed by taking the image 4.33. B. 

 

Figure 4.33 – 5×5 µm2 AFM deflection images of the working solutions of SDS (7.55%) 
and JR400 Polymer (92.45%), composition point 92 from Figure 4.27 adsorbed at the 
hydrophobized silica surface in the sequence shown in Figure 4.28 A). 
 

 

 
A) Immediately after scratching. The scratching trace (layer gathered to a ”hill” ) is seen 
in the top part of the image. 
 

 

 
B) After 100 seconds of scanning. The “hill”  is significantly smoothed out. 
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Figure 4.34 – Force-distance curve acquired in the adsorbed layer of the working 
solutions of SDS (7.55%) and JR400 Polymer (92.45%), composition 92 from Figure 
4.27 adsorbed at the hydrophobized silica surface in the sequence shown in Figure 4.28 
A). For explanation of the multiple cantilever deflections see the text. 
 

92 �  91 

After sample 91 with stoichiometric ratio SDS/JR400 of 1:2 was injected, some 

indications of structure formation in the adsorbed layer could be observed. This is 

illustrated in Figure 4.35. 

 

Figure 4.35 – 1×1 µm2 AFM deflection image of the working solutions of SDS (14%) 
and JR400 Polymer (86%), composition 91 from Figure 4.27 adsorbed at the 
hydrophobized silica surface in the sequence shown in Figure 4.28 A). The elongated 
form of structures is an artefact. 
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After scratching, the substance seems to be much more stable than in mixtures 

with higher polymer-surfactant ratios. The structures formed by scratching cannot be 

smoothed out so easy as in previous images. 

 
Figure 4.36 – 5×5 µm2 AFM deflection images of the working solutions of SDS (14%) 
and JR400 Polymer (86%), composition 91 from Figure 4.27 adsorbed at the 
hydrophobized silica surface in the sequence shown in Figure 4.28 A). Images A and B 
were taken with an interval of 3 minutes one after another after 5 minutes of scratching. 
 

 

 
A) Immediately after scratching. The scratching trace (layer gathered to ”hills” ) is seen 
in the top part of the image. 

 

 
B) After 200 seconds of scanning. Image acquired in 45o rotated position to verify the 
structure truth. The elongated form of structures is an artefact. 
 

The force-distance curve shows some decrease in layer thickness and viscosity. 

Furthermore, the layer acquired some homogeneity, in contrast to the previous 
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sample. This, together with other features described above, can be indicative of a 

beginning transition to the formation of dense aggregates that could lead to an onset 

of precipitation in the bulk solution. This assumption can be supported by the DLS 

data from measurements performed on sample 45 with a stoichiometric ratio of the 

components very similar to sample 91(section 4.1.2.1). That mixture shows transition 

accomplishment from “disordered”  state to “ordered” , which again suggests the 

similar transition in the present sample. 
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Figure 4.37 – Force-distance curve acquired in the adsorbed layer of the working 
solutions of SDS (14%) and JR400 Polymer (86%), composition 91 from Figure 4.27 
adsorbed at the hydrophobized silica surface in the sequence shown in Figure 4.28 A). 
 

91 �  89 

 

The transition to the mixture with components stoichiometric ratio of theoretical 

maximum precipitation brought too much artefacts in images: the solution injected 

into the fluid cell was simply turbid. This caused increased difficulty of taking the 

images and finally prevented capturing of any artefact-free images of this sample. 

Nevertheless, informative force-distance curves could be obtained, like those shown 

in Figure 4.38. one of the curves acquired immediately after mixture injection 

suggest the further indications of single polymer chain extension. This could mean a 

further structuring of the adsorbed layer: the aggregates become separated from one 

another, the tip contact to the single chains becomes more frequent. 
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Figure 4.38 – Force-distance curves acquired in the adsorbed layer of the working 
solutions of SDS (24,55%) and JR400 Polymer (75,45%), composition 89 from Figure 
4.27 adsorbed at the hydrophobized silica surface in the sequence shown in Figure 4.28 
A). 
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A) Typical view of force-distance curve for this composition 
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B) single polymer chain extension. “Waves”  in the right hand part of the curve are and 
artefact. 
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Figure 4.39 – 5×5 µm2 AFM deflection image of the working solutions of SDS (24,55%) 
and JR400 Polymer (75,45%), composition 89 from Figure 4.27 adsorbed at the 
hydrophobized silica surface in the sequence shown in Figure 4.28 A). The elongated 
form of structures as well as (partially) spreading of the gathered “hill”  in the top part of 
image are artefacts. 
 

In general, the mixture No. 89 injected in the fluid cell exerts a moderate 

influence on the adsorbed layer. Multiple clusters begin to form, although this 

process takes a very long time. The image acquired after “scratching”  and presented 

in Figure 4.39 shows only a small increase in cluster size and amount. 

 

 

89�  SDS�  5SDS 

 

Injection of pure SDS solution caused dramatic changes in the cell especially 

multiple artefacts and a very long equilibration time. After 2 hours of equilibration 

some changes could be observed, like remarkable softness of the polymer film: even 

“holes”  could be easily “dug” in the adsorbed layer by simple “scratching” . 

Unfortunately, the changes were not very pronounced and seen only in a few cases. 

Really significant changes occurred after rinsing of the fluid cell with the 5 times 

more concentrated working solution of SDS (0,5 wt%). The scan in Figure 4.40 and 
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the force-distance curve in Figure 4.41 show interesting features: A scratched area is 

clearly seen in the top part of the scan. The clusters adsorbed at the surface are well 

formed, well distinguishable and rigid. The thickness of the adsorbed layer assessed 

with the help of the force-distance curve became almost negligibly small although no 

“ jump in contact”  with the underlying surface could be observed as a rule. In brief, 

the adsorbed layer became similar to those of mixtures of much higher stoichiometric 

ratio surfactant/polymer on the hydrophobized silica surface. This could be 

interpreted like a gradual displacement of polymer by surfactant and formation of 

micelle-like clusters in the adsorbed layer. 

 

 

 

Figure 4.40 – 5×5 µm2 AFM deflection image of a polymer-surfactant layer adsorbed at 
the hydrophobized silica surface in the sequence shown in Figure 4.28 A) after repeated 
rinsing with 0,5 wt% solution of SDS. The elongated form of structures in the bottom 
half of the image is an artefact – only transversal size is relevant. The plane scratched 
area is clearly seen in the top part of the image. 
 

It is interesting that the structures presented in Figure 4.40 are of large size 

resembling complexes adsorbed from surfactant rich mixtures (compare Figure 4.23 

A). 
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Figure 4.41 – Force-distance curve acquired in the polymer-surfactant layer adsorbed at 
the hydrophobized silica surface in the sequence shown in Figure 4.28 A) after repeated 
rinsing with 0,5 wt% solution of SDS. 
 

 

4.2.3.2 Second series 
 

The second series of “washing-off”  investigations was performed to obtain some 

additional information concerning especially the processes occurring at compositions 

very close to the precipitation – in the pre-precipitation and (more important) in 

resolubilisation the area. It was attempted to avoid turbidity, artefacts, and distortions 

occurred in the first series of measurements. Two surfactant rich mixtures were 

applied in the second series. They deliver some more interesting features presented 

here.  

The second difference as compared to the first series was that no pure polymer 

solution was injected at the very beginning. This could explain slower equilibration 

and less expressed structures in the surfactant-rich samples: no preadsorbed polymer 

layer is present that could act as a sort of “ lubricant”  between adsorbing polymer-

surfactant complexes and the underlying surface, thus facilitating transformations. 

The order of the sample substitution in this series is presented in Figure 4.28, B. The 

data acquired at imaging of samples 95, 93 and 91 did not significantly differ from 
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those obtained in the first series of substitution experiments. Therefore, only the 

results from the surfactant-rich mixtures are presented I this section. 

 

Figure 4.42 – 5×5 µm2 AFM deflection image of the working solutions of SDS (86,7%) 
and JR400 Polymer (13,3%), composition 85 from Figure 4.27 adsorbed at the 
hydrophobized silica surface in the sequence shown in Figure 4.28 B). 
 

 

A) Image obtained immediately after sample injection. No structures are seen 
 

 

 

B) Image scanned after 45 min of equilibration and 5 minutes of scratching. The 
scratched area is seen in the upper part of the scan. Some structures are suggested in the 
adsorbed layer. 
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Figure 4.43 – Force-distance curve acquired in the adsorbed layer of the working 
solutions of SDS (86,7%) and JR400 Polymer (13,3%), composition 85 from Figure 4.27 
adsorbed at the hydrophobized silica surface in the sequence shown in Figure 4.28 B). 
 

Both images and the force-distance curve indicate the presence of a thick (up to 

100 nm), soft adsorbed layer containing both polymer and surfactant.  

 

 

85 �  97 

 

The sample 97 added into the fluid cell causes changes in the adsorbed layer 

similar to those caused by SDS in the first series of washing-off measurements 

(compare images 4.45 and 4.40). This influence, however, is moderate. Just after 

injection, as well as after scratching, the situations are similar to that with sample 85: 

thick and relatively homogeneous layer immediately after injection, and increasing 

stiffness and evidence of structures after some equilibration time. 
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Figure 4.44 – 10×10 µm2 AFM deflection image of the working solutions of SDS 
(92,87%) and JR400 Polymer (7,13%), composition 97 from Figure 4.27 adsorbed at the 
hydrophobized silica surface in the sequence shown in Figure 4.28 B). Image acquired 
before scratching. 
 

 

 

Figure 4.45 – 8×8 µm2 AFM deflection image of the working solutions of SDS (92,87%) 
and JR400 Polymer (7,13%), composition 97 from Figure 4.27 adsorbed at the 
hydrophobized silica surface in the sequence shown in Figure 4.28 B). Image acquired 
immediately after 5 minutes of scratching. 
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Figure 4.46 – Force-distance curve acquired in the adsorbed layer of the working 
solutions of SDS (92,87%) and JR400 Polymer (7,13%), composition 97 from Figure 
4.27 adsorbed at the hydrophobized silica surface in the sequence shown in Figure 4.28 
B). The “wave”  form of the right hand part of the curve is an artefact. 
 

A brief summary of washing-off investigations can be presented as follows. If the 

solution composition changes, the adsorbed layer undergoes changes similar to those 

in bulk, but with a remarkable time gap. These processes in adsorbed layer have been 

investigated and reported by Shubin, Horn, Goddard, Holmberg [16, 17, 36, 136] and 

many other researchers at different conditions and mostly at higher polymer or, more 

often, surfactant, concentrations [48-50]. Our results suggest that similar polymer-

surfactant arrangements take place at low concentrations, too. 
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5CHAPTER 5. SUMMARY AND CONCLUSIONS 
 

The properties of structures formed by polymer-surfactant mixtures containing 

the anionic surfactant SDS and the cationic polymer JR400 were studied in the bulk 

solution using DLS and during adsorption at solid-liquid interfaces using AFM. The 

mixtures were studied in a broad range of the component concentrations: the 

surfactant concentration to 0,4 × CMC of the pure surfactant, the polymer 

concentration did not exceed 0,075 wt/wt%. The mixed system was studied both 

below and above the CAC and the PSP. The range of theoretical stoichiometric ratios 

between surfactant molecules and polymer charge units was from 0.18 to 58.17. 

The ternary phase diagram was established exhibiting three most interesting 

regions: pre-precipitation area of modified viscosity (polymer excess, below the 

CAC), post-precipitation area (resolubilisation at surfactant excess, above the PSP), 

and highly diluted samples with stoichiometrical surfactant-polymer ratio close to 

that of maximum precipitation. DLS measurements were performed in mixtures 

representing all three regions of the diagram. 

Soft-contact AFM imaging was used to visualize the structure of the adsorbed 

layer, while acquirement of the force-distance curves together with the special 

scratching treatment brought information about the mechanical properties of the 

layer. AFM studies included: 

Investigation of the composition (indirect data) of the adsorbed layer formed on 

the same substrate by mixtures of different compositions prepared prior to 

adsorption. 

Investigation of the mechanical and adhesive properties of the adsorbed layer 

formed by the mixtures of the same composition, prepared prior to adsorption, at 

different substrates: native mica, hydrophobized mica and hydrophobized silica. 

Investigation of the changes in the adsorbed layer caused by changes in the bulk 

solution. 

Investigation of the visual picture of the adsorbed layer formed by the systems of 

the same or similar composition, prepared prior to adsorption, at different substrates: 

native mica and hydrophobized silica. 

Comparison of the sizes of the micelle-like clusters in the bulk solution, obtained 

during the DLS measurements, with the sizes of the clusters observed on the AFM 

images of the adsorbed layer from the solutions of mixtures with corresponding 

compositions. 
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The micelle-like clusters in the mixtures of different compositions showed 

different sizes and, more important, different size uniformity increasing with the 

increasing polymer-surfactant ratio. 

Polymer-rich mixtures adsorbed readily at all kinds of surfaces used in this work. 

The adsorption of highly diluted mixtures with the polymer-surfactant ratio close to 

that of  experimentally observed precipitation maximum depended significantly on 

the surface properties: the higher the negative charge and hydrophilicity of the 

surface, the stronger the adsorption. Surfactant-rich mixtures hardly adsorbed to mica 

and moderately – to the hydrophobized silica. 

During the “washing-off” , or substitution, experiments performed on the 

hydrophobized silica surface a dependence between the structure of the adsorbed 

layer and the composition of the bulk phase could be observed. An increase of 

SDS/JR400 ratio lead first to the thickening of the adsorbed layer together with its 

structuring and formation of the micelle-like clusters in it, and then to the partial 

desorption from the surface with the further layer structuring. 

Following conclusions could be drawn from the investigations: 

1. The adsorption of the SDS-JR400 system at the negatively charged 

interfaces is driven mostly by the polymer affinity to the surface. SDS 

molecules adsorb together with the polymer chains to which they are 

bound. 

2. In the SDS-JR400 system prepared prior to adsorption the size of micelle-

like clusters measured in the bulk is comparable to the size of adsorbed 

structures. The clusters seem to undergo only minor or no changes during 

adsorption of polymer-surfactant mixtures at mica and silica. 

3. If the polymer and the surfactant have been mixed prior to adsorption the 

visual adsorption pattern does not depend on the surface properties: it is 

the same at freshly cleaved mica and at hydrophobized silica. 

4. However, the surface has an influence on the properties of the adsorbed 

mixture: its adhesion to freshly cleaved mica is stronger than to the 

hydrophobized mica, and the adsorption to the hydrophobized mica 

surface is in turn stronger than to hydrophobized silica. A possible 

explanation could be the role of the electrostatic attraction and the 

thickness of the hydrophobizing layer. 

5. The properties of adsorbed layer are prone to changes following those in 

the composition in the bulk solution. This occurs also at low polymer and 

surfactant concentrations. The changes are slow and can be visualized 

only under special treatment of the adsorbed layer. 
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6. The role of the adsorption substrate is, therefore, to form the adsorbed 

layer – the space with the increased concentration of both components. 

Most of the properties of this layer are, however, governed by the mixture 

composition in the bulk solution. 

 

This study brings a further contribution to the understanding of properties of the 

mixtures of cationic polymers and anionic surfactants both in the bulk solution and in 

adsorbed state. It shows the prevalence of solution composition in defining the 

adsorption pattern of the pre-mixed systems. The correctness of the model of co-

operative adsorption of S-P+ systems is confirmed for the broad range of 

stoichiometric ratios and especially for high dilutions. The reasons of the role played 

by the order of addition of components that was highlighted by previous studies [29, 

137] is shown. 
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