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1.Introduction 
 

1.1 Structure and function of ATP-binding cassette (ABC) transporters 

ABC transporter protein usually consists of two transmembrane domains (TMD) and 

two nucleotide binding domains (NBD) or ATP-binding cassettes (ABC). NBD is composed 

of two short, conserved peptides, the Walker A and Walker B motifs (Walker et al, 1982), 

which are required for ATP binding (Hyde et al, 1990). The signature motif is located 

between both Walker motifs and is characteristic for each ABC subfamily (Higgins et al, 

1988). ABC transporters are either present in one polypeptide chain (fullsize transporter) or in 

two polypeptides (halfsize transporter), and several arrangements of the TMD and ABC 

motifs are found in human ABC proteins. TMD0-(TMD-ABC)2, which is one of the fullsize 

transporters, contains an additional five transmembrane spans in the N-terminal series of 

(ABC-TMD)2. (TMD-ABC)2 structures are represented in the ABCA, ABCB, and ABCC 

families, whereas the TMD0-(TMD-ABC)2 arrangement is solely present in specific members 

of the ABCC subfamily. The (ABC-TMD)2 is only found in yeast and not present in human 

ABC molecules. Halfsize transporters were either TMD-ABC organization, as in ABCD 

subfamily, or ABC-TMD, as in ABCG subfamily. In both cases, creation of a functional 

transporter requires the assembly as a homodimer or heterodimer. Most halfsize molecules are 

routed to intracellular membrane systems such as mitochondria, peroxisomes, the 

endoplasmic reticulum and the Golgi compartment (Klein et al, 1999). However ABCG2, a 

member of the ABCG subfamily, has been localized to the plasma membrane (Rocchi et al. 

2000). ABCF1 is associated with ribosomes and interacts with eukaryotic initiation factor 2 

(eIF2) and thereby plays a key role in the initiation of mRNA translation (Tzyack et al, 2000). 

ABC transporters can be split into two different sections depending on their mode of action. 

The active transporters or pumps, such as members of the ABCB subfamily, couple the 

hydrolsis of ATP and the resulting free energy is utilized for the movement of molecules 

across membranes against a chemical concentration gradient (Ueda et al, 1999). In contrast, 
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several ABC proteins which show nucleotide binding, have very low ATP hydrolysis. These 

molecules mainly function as transport facilitators and include ABCC7 (CFTR) (Szabo et al, 

1999), ABCC8 (SUR1), ABCC9 (SUR2) (Bryan and Aguilar-Bryan, 1999), and ABCA1 

(Szakacs et al, 2001). 

                           

Fig.1. Diagram depicting domain arrangements of human ABC transporters. 
The ATP-binding cassette (ABC) consists of Walker A and Walker B motifs, separated by the 
signature motif characteristic for each ABC transporter subfamily. The membrane spanning 
domains are depicted as barrels. (A) The TMD0-(TMD-ABC)2 structure of ABCC (MRP) 
family members is shown. In addition to the regular fullsize type, containing the (TMD-
ABC)2 domain arrangement, this type displays an additional five transmembrane domains 
termed TMD0. (B) Prototype ABC transporter with the (TMD-ABC)2 structure. (C) Two 
alternative types of halfsize molecules, TMD-ABC and ABC-TMD. Only corresponding half-
molecule organizations are able to form heterodimers. (D) The (ABC)2 type of molecules 
lacking transmembrane domains is unlikely to function as transporter. (Klein et al, 1999). 
 
1.1.1 ABCA (ABC1) subfamily 

The ABCA family is a fullsize transporter and ABCA1, ABCA4 (ABCR), and ABCA2 are 

the largest proteins with 2261, 2273, and 2436 amino acids, respectively. Most of the ABCA 

proteins are expressed at low levels and also predominantly in specific tissues, such as 

ABCA1 in macrophages and ABCA4 (ABCR) in photoreceptor cells (Allikmets, 2000). In 

contrast to all other ABC subgroups, the ABCA subfamily has no counterpart. Based on the 

genomic locations and phylogenetic analyses (Broccardo et al, 1999), two distinct divisions of 

ABCAs can be formed. The first group contains five genes located in a cluster on 

chromosome 17q24 (ABCA5, ABCA6, ABCA8, ABCA9, and ABCA10) and the second 
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group consists of seven genes distributed over six different chromosomes (ABCA1, ABCA2, 

ABCA3, ABCA4, ABCA7, ABCA12, ABCA13). The transcriptional control of at least seven 

ABCA members is controlled or influenced by lipids (Kaminski et al, 2001) indicating an 

important role of the whole ABCA subfamily in cellular lipid transport processes (Schmitz et 

al, 2000). ABCA4 is an active retinoid-PE-complex transporter which displays strong, lipid 

activated ATPase activity (Ahn and Molday, 2000). In addition to the high expression in 

neuronal tissues (Zhou et al, 2001), ABCA2 is also present in liver, kidney, and macrophages 

(Vulevic et al, 2001). ABCA2 was localized with endosomal/lysosomal markers and linked to 

the transport of sterols including retinoids, steroids and lipids (Paine and Flower, 2000). The 

ABCA7 protein is predominantly found in myelo-lymphatic tissues (Kaminski et al, 2000) 

and presumbly has a role in the development of hematopoietic cell lineage (Broccardo et al, 

2001) and may be involved in the transport of phosphatidylserine and ceramide-species and 

thus be linked to apoptotic processes (Kielar et al, 2003). The ABCA3 protein is an integral 

part of the surfactant lamellar body membrane in lung alveolar type II cells (Yamano et al, 

2001). Pulmonary surfactant is a complex of phospholipids, neutral lipids, and specific 

proteins. It is essential for a normal lung function, because it reduces surface tension at the air-

liquid interface of alveolar spaces. Phospholipids comprise 80% of the mass of surfactant, of 

which 80-85% are phosphatidylcholines (PC). Increasing in ATP levels in bronchoalveolar 

lavage fluid is sufficient to stimulate surfactant secretion (Rice et al, 1989). 

1.1.1.1 ABCA1 

It is a 2261- amino acids integral membrane protein that is a member of a superfamily of ABC 

transporters that utilizes ATP as a source of energy for transporting lipids and other 

metabolites across membranes (Dean et al, 2001). ABCA1 comprises 2 halves of similar 

structure that are linked covalently. Each half has a nucleotide-binding domain (NBD) 

containing 2 conserved peptide motifs known as walker A and walker B, which are present in 

many proteins that utilize ATP, and a transmembrane domain containing six helixes. ABCA1 
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is predicted to have an N-terminus oriented into the cytosol and 2 large extracellular loops 

that are highly glycosylated and linked by one or more cysteine bonds (Bungert et al, 2001).  

ABCA1 either directly or indirectly mediates transport of cholesterol and phospholipids 

across cellular membranes, where they are removed from the cells by apolipoproteins. Its 

homology with other better characterized ABC transporters suggests that ABCA1 may form a 

channel in the membrane that promotes ”flopping” of lipids from the inner to the outer 

membrane leaflet by an ATPase dependent process (Oram and Lawn, 2001). ATPase activity 

in ABCA1 is not actually involved in lipid transport, so its function is considered as a 

regulator rather than an active transporter (Szakacs et al, 2001). ABCA1 localizes to the 

plasma membrane and intracellular compartments (Neufeld et al, 2001), where it could 

potentially facilitate transport of lipids to either cell surface-bound or internalized 

apoproteins. Thus ABCA1 removes cholesterol that will accumulate as cytosolic 

cholesterylester lipid droplets. Two models have been proposed to account for the ability of 

ABCA1 to target specific lipid domains. The exocytosis model implies that excess 

intracellular cholesterol is packaged into transport vesicles, or raft perhaps in the Golgi 

apparatus, which translocate to domains in the plasma membrane containing ABCA1 (Oram 

and Lawn, 2001). The retroendocytosis model suggests that ABCA1 and apolipoprotein-

containing vesicles endocytose to intracellular lipid deposits, where ABCA1 mediates lipid 

transport into the vesicle lumen for release by exocytosis (Takahashi and Smith, 1999 and 

Santamarina-Fojo et al, 2001). The carboxy terminus has been reported to interact with β2-

syntrophin and utrophin in macrophages (Buechler et al, 2002), forming a protein complex 

that might couple ABCA1 to the actin cytoskeleton. High intracellular cholesterol alters ions 

channels resulting in membrane polarization with subsequent increase intracellular Ca++. 

Excess Ca++ possibly stimulates the dephosphorylation of β2-syntrophin with a subsequent 

release of ABCA1/cholesterol/phospholipid vesicles from the actin cytoskeleton (Murthy et 

al, 2002). ABCA1 is selectively expressed on the basolateral membranes of cultured intestinal 
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(Ohama et al, 2002), and hepatic cells (Neufeld et al, 2002), indicating the presence of factors 

that target ABCA1 to specific membranes in polarized cells. 

Oram and co-workers, (2000) showed that incubation of macrophages with 8-Br-cAMP 

stimulated ABCA1 protein and mRNA with highest level achieved after 24 h incubation. 

Withdrawal of 8-Br-cAMP resulted in bringing the ABCA1 protein and mRNA to the basal 

level within 2–6 h, suggesting that ABCA1 protein is highly unstable and gets degraded in the 

absence of 8-Br-cAMP (Oram et al, 2000). Incubation of human and murine macrophages 

with lipoproteins, oxysterols, and oxidized LDL induced ABCA1 mRNA concomitant with 

increased levels of LXR-α expression (Venkateshwaran et al, 2000). Both RXR-α and LXR-

α agonists induce ABCA1 mRNA expression. Repa and co-workers, (2002) identified the 

heterodimeric partner of LXR-α in the induction of ABCA1 mRNA by LXR-α agonists 

(Repa et al, 2002). They showed that both RXR-α and LXR-α agonists induce ABCA1 

mRNA in duodenum, jejunum, ileum, and macrophage but not in the liver (Repa et al, 2002). 

RXR-α agonists, (Venkateshwaran et al, 2000), LXR-α agonists (Repa et al, 2002), and 

PPAR-α and PPAR-γ agonists (Chawla et al, 2001) induce the transcription of ABCA1. 

Addition of PPARs and LXR-α agonists showed additional influences on ABCA1 

upregulation, suggesting that these agonists influence ABCA1 transcription via independent 

mechanism. PPAR-α and PPAR-γ receptors are nuclear receptors that heterodimerize with 

LXR-α to modulate the expression of target genes involved in lipid and glucose metabolism. 

The ligands for PPAR-α and PPAR-γ induce ABCA1 mRNA in primary human macrophages 

via LXR-α mediated pathway (Chinetti et al, 2001). Another PPAR receptor, PPAR-δ, 

expressed in many tissues, has been implicated in the upregulation of ABCA1 gene 

expression associated with increased plasma levels of HDL (Oliver et al, 2001). Treatments of 

macrophages with IFN-γ reduced ABCA1 mRNA and cholesterol efflux to apoA1 acceptor 

(Panousis et al, 2000), suggesting that IFN-γ  may promote foam cell formation and accelerate 

the progression of atherosclerosis. Geranylgeranyl pyrophosphate, which is a major 
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metabolite in the mevalonate pathway, is a potent suppressor of ABCA1 by acting as an 

antagonist of LXR-α, and also by Rho-GTP binding proteins (Gan et al, 2001). Wang and 

Oram (2002) showed that unsaturated fatty acids inhibited ABCA1-mediated cholesterol 

efflux by enhancing the ABCA1 protein degradation but the saturated fatty acids, palmitate 

and stearate, inhibited neither ABCA1-mediated cholesterol and phospholipid effluxes nor 

ABCA1 protein expression (Wang and Oram, 2002). However, the exact mechanism of 

triggering the ABCA1 degradation by fatty acids is still not known, but the mechanism 

appears to be different than that observed with the cAMP withdrawal (Oram et al, 2000). In 

addition to functional regulatory domains in the exon, an LXR-α element was recently 

reported in the intron 1 sequences (Singaraja et al, 2001). The ABCA1 promoter, in addition 

to TATA box and CAAT box, also contains other potential regulatory sites. Direct repeat of 

the nuclear receptor half site TGACCT spaced by 4 nucleotides (DR4) binds to the LXR/RXR 

heterodimers, and mutation in the DR4 abolished the oxysterol-responsive ABCA1 activation, 

suggesting that DR4 is important in LXR/RXR-mediated upregulation of ABCA1, as well as 

for oxysterol-induced activation of ABCA1 (Repa et al, 2002). The E-Box motif located –147 

bp upstream is an important ABCA1 promotor activation that binds to transcriptional factors 

USF1 and USF2. It also binds to the transcriptional repressor Fra2 (Yang et al, 2002). cAMP 

increased ABCA1 mRNA but did not not involve ABCA1 mRNA stability (Oram et al, 

2000). This implies that a cAMP response element should be present in the ABCA1 promoter 

but has not been definitively identified. The transcriptional repressor ZNF202 was found to be 

associated with Downregulation of ABCA1 through binding with the GnT motif of ABCA1 

promoter and mediates the transcriptional repression (Porsch-Ozcurumez et al, 2001).  

The major clue that ABCA1 is involved in cellular cholesterol removal and lipid efflux was 

the identification of mutations in the human gene as the defect in familial HDL-deficiency 

syndromes such as classical Tangier disease (TD; Bodyioch et al, 1999). The most striking 

feature of these patients is the almost complete absence of plasma HDL, low serum 
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cholesterol levels and a markedly reduced effluxes of both cholesterol and phospholipids from 

the cells (Bottcher et al, 2000). Plasma HDL from TD patients is composed of small pre-β1-

migrating HDL particles containing solely apoA-I and phospholipids but lack free cholesterol 

and apoA-II (Asztalos et al, 2001). The low HDL-levels seen in Tangier disease are mainly 

due to an enhanced catabolism of HDL precursors (Asztalos et al, 2001). In TD patients, 

neither cholesterol absorption nor its metabolism is significantly affected. However, the 

concentration of LDL-cholesterol is only 40% of healthy controls and the particles are often 

enriched in triglycerides. The reduction in LDL levels is mainly caused by disturbance of the 

cholesterol ester transfer pathway resulting in changes of LDL composition and size (Schaefer 

et al, 2001). Heterozygotes ABCA1 mutations (FHD) have approximately 50% of plasma 

HDL, but normal LDL levels (Tall and Wang, 2000) and more than three-fold risk to develop 

coronary artery disease in affected family members and earlier onset compared to unaffected 

members (Clee et al, 2001). In addition, accumulation of cholesteryl esters either in the cells 

of the reticuloendothelial system (RES) or in the vascular wall was leading to splenomegaly, 

enlargement of tonsils and lymph nodes, or premature atherosclerosis (Schmitz et al, 2000). 

                 

Fig.2. The predicted structure of ABCA1. 
ATP-binding cassette A1 (ABCA1) transporter is 2,261-amino acids integral membrane 

protein. ABC transporters are defined by the presence of nucleotide-binding domains 
containing two conserved peptide motifs known as Walker A and Walker B that are present in 
many proteins that utilize ATP as a source of energy and a unique amino acid signature 

between the two Walker motifs called signature domain (S) which is a highly hydrophobic 
segment and defines the family. ABC transporters are integrated into the membrane by 
domains containing six transmembrane helices (Langmann et al, 1999).  
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1.1.2 ABCB (MDR/TAP) subfamily 

ABCB1 (MDR1) has the ability to mediate multidrug resistance in cancer cells and is 

localized to the apical membrane of polarized cells and the major sites of expression are found 

in the liver, the intestine and the blood-brain barrier and one proposed physiological function 

of MDR1 is the protection of cells by extruding lipophilic cytotoxic drugs (Pastan and 

Gottesman, 1991). In addition ABCB1 can transport a variety of lipids: PC analogs, 

phosphatidyl-ethanolamine (PE), sphingomyelin (SM), cholesterol and glucosylceramide 

(GlcCer) (Van Helvoort et al, 1996). So, it has been suggested that the transport of cytotoxic 

drugs, which are mostly lipophilic, is coupled to the translocation of cholesterol and 

phosphocholine (Lavie etal, 2001). ABCB1 is also involved in the secretion of platelet-

activating factor (PAF) (Raggers et al, 2001). An unexpected role of ABCB1 in the immune 

response has been recently identified in mice (mdr1a-/- mice) (Panwala et al, 1998). ABCB1 

can cotransport apoE and β-amyloid and thereby may contribute to the aetiology of 

Alzheimer’s disease (Maggio et al, 2002). Two halfsize members of the subfamily, ABCB2 

(TAP1) and ABCB3 (TAP2) are transporters associated with tissue antigen presentation 

(TAP) and form a functional heterodimer to transport peptides from the cytoplasm into the 

endoplasmic reticulum from where the presentation of peptide antigens via major 

histocompatibility complex (MHC)-I will start (Herz and Beffert, 2000). ABCB9, which is 

closely related to ABCB2 and ABCB3, has been mainly found in lysosomes (Zhang et al, 

2000). Although ABCB9 has been proposed to be involved in TAP-dependent processes, its 

exact function is currently unknown. The remaining four ABCB proteins (ABCB6, ABCB7, 

ABCB8, and ABCB10) are all targeted to the inner mitochondrial membrane and play a role 

in cellular iron homeostasis by transporting iron-sulfur (Fe/S) cluster precursor proteins 

(Zhang et al, 2000). In this respect, a mutation in ABCB7, which is located on the X-

chromosome, has been linked to X-linked sideroblastic anaemia and ataxia (XLSA/A) 

(Allikmets et al, 1999). 
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1.1.3 ABCC (CFTR/MRP) subfamily 

Subgroup of ABCC family can be distinguished by the presence of a TMD0-(TMD-ABC)2 

domain arrangement (ABCC1, ABCC2, ABCC3, ABCC6, ABCC8, ABCC9, ABCC10), 

whereas the other proteins in this subfamily exhibit the (TMD-ABC)2 structure. Although the 

TMD0 part is not required for transport activity, but it is essential for a proper ABCC1 

function (Bakos et al, 1998). Among the (TMD-ABC)2 molecules, ABCC7 (CFTR), which is 

characterized by an extraordinary domain structure and contains a regulatory domain, is 

controlled by cAMP and thereby enables ATP binding and hydrolysis at the nucleotide 

binding domains. It is in turn a control opening and closing of the chloride channels 

(Sheppard and Welsh, 1999). Mutations in ABCC7 (CFTR) cause cystic fibrosis by affecting 

numerous secretion processes. ABCC1, ABCC2, and ABCC3 are all able to transport anti-

cancer drugs. ABCC2 (MRP2) which is located in the apical membrane of polarized epithelial 

cells and particularly to the canalicular membrane of hepatocytes, appears to participate in the 

hepatobiliary secretion of organic anions and has therefore originally called CMOAT 

(Keppler and Konig, 2000). ABCC3 (MRP3) is also an organic ion transporter (Hirohashi et 

al, 1999). ABCC4 and ABCC5 have been shown to function as cellular efflux pumps for anti-

human immunodeficiency virus drugs such as adefovir (PMEA; Schuetz et al, 1999) and 

cancer chemotherapy (e.g. 6-mercaptopurine and thioguanine) (Borst et al, 2000). The 

physiological role as of ABCC6 (MRP6) is still unclear (Kool et al, 1999) and mutations in 

that gene have been detected in the connective tissue disorder pseudoxanthoma elasticum 

(PXE) (Le Saux et al, 2000). ABCC6 is highly expressed in liver and kidney cells and it may 

transport or remove toxic metabolites which destroy connective tissue cells (Dean et al, 2001). 

ABCC8 (SUR1) and ABCC9 (SUR2) bind sulfonylurea with high affinity and interact with 

potassium inward rectifiers KIR6.1 and KIR6.2, to form a large octameric channel 

(SUR/KIR6.x)4 (Forestier et al, 2003). These heteromeric channels regulate insulin release in 

response to glucose metabolism and sulfonylureas which are widely used to stimulate insulin 
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secretion in type 2 diabetic patients because they close these ATP-sensitive potassium (KATP) 

channels in the pancreatic beta-cell membrane (Bryan and Aguilar, 1999). ABCC11 and 

ABCC12 are found duplicated on chromosome 16q12 (Tammur et al, 2001), and are mapped 

to a region harboring gene(s) for paroxysmal kinesigenic choreoathetosis, a disease which is 

characterized by recurrent and brief attacks of involuntary movements induced by sudden 

voluntary movements (Lee et al, 1998). 

1.1.4 ABCD (ALD) subfamily 

This subfamily is composed of four peroxisomal half-size ABC transporters and is involved in 

very long fatty acid (VLFA) transport. Mutations in ABCD1 and ABCD3 are associated with 

adrenoleukodystrophy (ALD) and Zellweger syndrome 2 (ZWS2), respectively (Mosser et al, 

1993). The transcripitonal regulation of ABCD genes was done by lipids and there is a strong 

evidence that nuclear hormone receptor ligands, especially RXR ligands and PPAR ligands 

induce the ABCD1 promoter (Fourcade et al, 2001). 

                

Fig.3. Schematic model for KATP channel controlled insulin secretion from pancreatic β-
cells. 
Entry and metabolism of glucose into pancreatic β-cells leads to increased levels of 
intracellular ATP. This increase causes binding of ATP to the nucleotide binding domains of 
ABCC8 (SUR1) and to KIR6.2. Thereby, the KATP-channel closes and the plasma membrane 
is depolarized. The opening of voltage-gated Ca2+ channels and voltage-dependent Na+ 
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channels raises the intracellular Ca2+ concentration by Ca2+ influx and mobilization of 
intracellular Ca2+ stores, respectively. The increased level of intracellular Ca2+ stimulates the 
dephosphorylation of β2-syntrophin and the dissociation of β2-syntrophin-utrophin-actin 
complexes from ICA 512 and secretory granules. Following dissociation of β2-syntrophin, 
ICA 512 is cleaved by Ca2+/calmodulin (CaM) activated calpain, resulting in the mobilization 
of secretory granules from the cytomatrix and exocytosis of insulin. The pancreatic KATP-
channels are also regulated by important therapeutic pharmacological agents, such as 
sulfonylureas which are widely used in the treatment of non insulin dependent diabetes, 
stimulate insulin secretion by closing the KATP-channels (Aguilar-Bryan et al, 1998). 
 
1.1.5 ABCE (OABP) and ABCF (GCN20) subfamilies 

This subfamily contains four half-size ABC transporters, which are ubiquitously expressed in 

human tissues and do not possess transmembrane domains. The ABCE1 gene encodes an 

oligoadenylate binding protein (OABP), which seems to participate in innate immune defence 

(Bisbal et al, 2001). Oligoadenylates, which are produced from virus-infected cells, are 

activators of RNaseL that in turn degrades cellular RNAs and thereby blocks protein synthesis 

in infected cells. ABCE1 binds these oligonucletides and thus inhibits RNAseL, which 

implies that ABCE1 is involved in the control of immune reactions. ABCF1 shares some 

interesting features with ABCE1. Thus, ABCF1 is involved in the control of protein synthesis 

and also in the control of the immune system. ABCF1 binds to the translation elongation 

initiation factor 2 (eIF2) and seems to modulate its phosphorylation state (Lee et al, 1998). In 

addition, ABCF1 has been copurifed with ribosomal components confirming its role in 

protein translation (Tzyack et al, 2000). Richard and colleagues (1998) identified ABCF1 as a 

TNFα-induced transcript in synoviocytes (Richard et al, 1998). They suggest that this ABC 

protein could be part of inflammatory processes related to rheumatoid arthritis (Richard et al, 

1998). 

1.1.6 ABCG (white) subfamily 

The human white or ABCG subfamily consists of five genes (ABCG1, ABCG2, ABCG4, 

ABCG5, and ABCG8) and one gene so far only found in rodents (ABCG3) (Schmitz et al, 

2001). The ABCGs are intended to dimerize to form active membrane transporters. Among 

the half-size molecules ABCG proteins have a peculiar domain organization characterized by 
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a nucleotide binding domain (ATP-binding cassette) at the N-terminus followed by six 

transmembrane spanning domains. ABCG1 was described as the human homologue of the 

Drosophila white gene (Croop et al, 1997). Earlier indications linked ABCG1 with the 

congenital recessive deafness (DFNB10) syndrome using its chromosomal localization on 

chromosome 21q22.3 (Bonne et al, 1996). ABCG1 along with five other known genes had 

been reported as candidates for DFNB10 (Berry etal, 2000). Also, G2457A polymorphism in 

the ABCG1 mRNA is associated with mood and panic disorders and related to suicidal 

behavior (Rujescu et al, 2000). The most interesting report dealing with ABCG1 function 

came from a report by Klucken and colleges, (2000), which identified ABCG1 as a sterol 

induced gene that participates in cholesterol and phospholipid effluxes, especially in 

macrophages and foam cells (Klucken et al, 2000). The ABCG2 protein has been shown to be 

amplified and overexpressed in human cancer cells and is capable of mediating drug 

resistance (Miyake et al, 1999). In contrast to most other halfsize ABC transporters, the bulk 

of the ABCG2 protein has been localized to the plasma membrane, with a minor fraction 

found within intracellular membranes (Rocchi et al, 2000). ABCG5 and ABCG8 had been 

identified and linked to the human disease β-Sitosterolemia (Lee et al, 2001). ABCG4 

transporter was identified as a sterol-sensitive gene (Engel et al, 2001). 

1.1.6.1 ABCG members in sterol homeostasis 

ABCG1 was identified as a target gene involved in macrophage lipid homeostasis (Klucken et 

al, 2000). Like ABCA1, ABCG1 is upregulated during the differentiation process of 

monocytes into mature macrophages and is strongly induced by foam cell conversion of these 

macrophages (Langmann et al, 1999). HDL3 as the cholesterol acceptor suppresses ABCG1 

mRNA and protein expression (Klucken et al, 2000). ABCG1 was upregulated by modified 

LDL (Venkateswaren et al, 2000). TNFα or LPS has no impaction on ABCG1 mRNA 

expression (Venkateswaren et al, 2000). Some oxysterols and RXR-specific ligands can 

upregulate ABCG1 expression via the LXR/RXR pathway. There are at least three 
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independent ABCG1 promoters. Whereas the activity of promoter 1 has not been proven 

(Lorkowski et al, 2001), promoter 3 of ABCG1 has been shown to bind the transcription 

factors LXR/RXR and thereby mediate the sterol-dependent induction of the gene (Kennedy 

et al, 2001) and promoter 2 was described as an independent inhibitory site of the 

transcriptional repressor ZNF202 (Porsch-Ozcurumez et al, 2001). The residual phospholipid 

and cholesterol effluxes present in cells from patients with Tangier disease along with a 

compensatory upregulation of ABCG1 in these cells supporting the function of ABCG1 in 

intracellular mobilization of lipid stores (Lorkowski et al, 2001). ABCG1 was localized in 

intracellular compartments mainly associated with the ER and Golgi-membranes (Klucken et 

al, 2000). ABCG5 and ABCG8 implicated in the efflux of dietary sterols mainly plant sterols 

like sitosterol and shell fish sterols from intestinal epithelial cells back into the gut lumen and 

from the liver to the bile duct (Salen et al, 1970). β-Sitosterolemia (phytosterolemia or 

shellfishsterolemia) was a rare autosomal recessive disorder first described by Bhattacharyya 

and Connor in 1974 (Bhattacharyya and Connor, 1974). The disease is characterized by 

enhanced trapping of cholesterol and other sterols, including plant and shellfish sterols, within 

the intestinal cells and the inability to concentrate these sterols in the bile with strongly 

increased plasma levels of plant sterols e.g. β-sitosterol, campesterol, stigmasterol and 

avenosterol whereas total sterol levels remain normal or just moderately elevated (Salen et al, 

1992). Patients suffer from tendon and tuberous xanthomas at an early age, premature 

development of atherosclerosis and coronary artery disease. In some cases hemolytic 

episodes, hypersplenism, platelet abnormalities, arthralgias and arthritis have been described 

(Bjorkhem, and Boberg, 1999). There are several mutations and a number of polymorphisms 

have been identified in ABCG5 and ABCG8 (Lee et al, 2001). β-Sitosterolemia occurs due to 

either mutation in ABCG5 or ABCG8, but never in both genes together (Lee et al, 2001). 

Dietary sterols including cholesterol and plant sterols which enter the intestinal epithelial cells 

via micellar transport are released along the lysosomal route. β-Sitosterol and other plant 
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sterols are directly transported back to the gut lumen by the heterdimeric ABCG5/ABCG8 

complex. The retained sterols are routed in the ER and either stored as cholesteryl esters in 

lipid droplets or alternatively packed into chylomicrons for further transport back to the liver. 

In the liver, the sterols are either transported to the peripheral tissues by VLDL and LDL 

particles or converted to bile acids which also mediated by ABCG5 and ABCG8. In addition 

to ABCG5 and ABCG8, other ABC transporters including ABCG1 and ABCA1 may also 

participate in intestinal sterol absorption mechanisms (Orso et al, 2000). 

1.1.7 ABC transporters in hepatobiliary transport 

Translocation of compounds from hepatocytes into the bile has been involved by ABC 

transporters localized in the hepatocyte apical (canalicular) membrane (Muller and Jansen 

1998). These ABC proteins belong to the ABCB (MDR) and ABCC (MRP) subfamilies. The 

level of expression of ABCB1 (MDR1) in normal human liver (Silverman and Schrenk, 1997) 

will protect hepatocytes against harmful substances as xenobiotics, neurotoxins, and 

chemotherapeutics by active translocation into the bile (Smit et al, 1998). ABCB4 which is 

exclusively expressed in the liver apical membrane is a bile canalicular phosphatidylcholine 

translocase. Mutations in the human ABCB4 (MDR3) gene cause progressive familial 

intrahepatic cholestasis (PFIC) type 3 (De Vree et al, 1998). The third member of the ABCB 

subfamily involved in hepatobiliary secretion is ABCB11 which is the major, if not the only 

bile salt transporter of mammalian liver, hence the name bile salt export pump (BSEP). 

ABCB11 (BSEP) gene is mutated in patients with (PFIC) type 2 (Strautnieks et al, 1998). In 

the ABCC (MRP) subfamily, at least four members have been shown to be expressed in liver 

cells (Borst et al, 2000). In contrast, ABCC2 (MRP2) is highly expressed at the apical 

membrane domain, but ABCC1 (MRP1) is highly expressed at the basolateral membrane 

domain in normal liver (Borst et al, 2000). ABCC1 and ABCC2 comprise glutathione-

conjugates (e.g. leukotriene C4), estrogen-and bilirubin-glucuronides, taurolithocholate-3-

sulfate, and glutathione disulfide (GSSG). ABCC2 seems to be the major transporter of 
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anionic conjugates and hereditary defects of ABCC2 in humans cause the Dubin-Johnson 

syndrome (Kartenbeck et al, 1996). ABCC3 (MRP3) which has been localized to the 

basolateral membrane of hepatocytes can translocat the conjugated Glucuronate- and sulfate 

from blood sinusoids to hepatocyte but ABCC2 at the apical site can translocat them to the 

bile (Konig et al, 1999). ABCC6 (MRP6) has been localized to the lateral hepatocyte 

membrane but its physiological effect is not known (Madon et al, 2000). 

 

Fig.4. Overview of lipid transport proteins in hepatocytes. 
Monovalent bile salts, such as taurocholate, are taken up into hepatocytes by the sodium-
taurocholate cotransporting polypeptide (NTCP). The organic anion transporting polypeptides 
1 and 2 (OATP1-2) are responsible for the uptake of bulky organic compounds, including bile 
salts and other organic anions, uncharged cardiac glycosides, and steroid hormones. Small, 
type 1 organic cations are transported by the organic cation transporter OCT1. Several ABC 
proteins belonging to the ABCB (MDR) subfamily or ABCC (MRP) subfamily are expressed 
in liver. ABCB1 (MDR1) is responsible for the excretion of bulky amphiphatic compounds 
into bile, whereas ABCB4 is a phosphatidylcholine translocase. Monovalent bile salts are 
secreted into the bile canaliculi by ABCB11. ABCC2 functions as a multispecific organic 
anion transport protein in the canalicular membrane. ABCC1 expressed in the basolateral 
membrane in normal hepatocytes, has similar substrate specificity to ABCC2. ABCC3 
preferentially translocates conjugates with glucuronate or sulfate, whereas the physiological 
substrates for ABCC6 (MRP6) are unknown (Muller and Jansen, 1998). 
 
1.1.8 ABC transporters in macrophages 

The ABCA1 upstream region contains a macrophage specific promoter preceding exon 1. 

This sequence binds the repressors ZNF202 and USF1/2, as well as the activating factors 

Sp1/Sp3 and the oxysterol-induced RXR/LXR heterodimer (Langmann et al, 2002). A second 
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promoter located downstream of exon 1 has been recently implicated in the 

liver/steroidogenic expression of ABCA1 (Cavelier et al, 2001). The LXR/RXR responsive 

elements in promoter 1 were triggered by retinoic acid and oxysterol resulting in activation of 

the ABCA1 promoter and thereby induction of ABCA1 during lipid loading of macrophages. 

The most likely endogenous ligand for LXR-α is 27-hydroxycholesterol. Overexpression of 

cytochrome P27 (CYP27) in HepG2 cells leads to an increase in bile acid synthesis with a 

compensatory stimulation of cholesterol synthesis by increased HMG-CoA reductase (HMG-

CoA R) activity but in extrahepatic cells, CYP27 overexpression results in an increase in 

intracellular 27-hydroxycholesterol leading to downregulation of HMG-CoA reductase and 

cholesterol synthesis (Hall et al, 2001). Cytochrome P27 (CYP27) deficient cells are not able 

to upregulate ABCA1 in response to sterols and since overexpression of CYP27 activates 

LXR/RXR (Fu et al, 2001). The earlier described LXR-ligands, 20(S)-hydroxycholesterol and 

22(R)-hydroxycholesterol, are not present in cholesterol-loaded macrophages rendering them 

unlikely to be natural ligands of LXR (Fu et al, 2001). Zinc finger transcription factor 

ZNF202 is a transcriptional repressor of ABCA1 gene expression, which also prevents the 

induction of the gene by oxysterols by recruiting the universal corepressor KAP1 (Porsch-

Ozcurumez et al, 2001). 

Under disease conditions such as DM where the cells have low glucose levels low ATP levels 

and associated low HDL cholesterol levels, excessive mitochondrial energy production could 

induce mitochondrial exhaustment. This may result in cellular ATP shortage, a process that 

likely enhances the programmed cell death of lesion macrophages (Laffel, 1999). 

Mitochondrial exhaustment may also inhibit mitochondrial 27-OH sterol synthesis and its 

export from the mitochondrion, a critical pathway for LXR activation in response to cellular 

cholesterol stress (Fu et al, 2001). Since deficiency of 27-OH sterol which is observed in 

macrophage-derived foam cells and atherosclerostic lesions (Brown and Jessup, 1999), may 

be engaged in the pathophysiological mechanism of atherosclerosis. In light of these 
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complexities, prolonged or excess treatment with LXR agonists bears the potential risk of 

inducing mitochondrial failure and pro-apoptotic influences and may thus negatively affect 

lesion formation. ABCA1 is detectable not only on the plasma membrane but also in the 

cytosol and Golgi compartment of unstimulated fibroblasts; this may raise the possibility that 

ABCA1 could be a constituent of a vesicular transport route for lipids. ABCA1 acts as a 

translocator of lipids between the inner and outer plasma membrane (Lawn et al, 1999). ATP 

turnover of ABCA1 occurs at a very low rate whereas nucleotide binding induces 

conformational changes (Szakacs et al, 2001). ABCA1 acts as a facilitator of cholesterol/ 

phospholipids export within the cellular lipid export machinery rather than active pump 

function (Szakacs et al, 2001). 

1.2 Steroid hormones 

1.2.1 Estrogen receptors (ERs) 

Estrogen receptors are members of the nuclear steroid receptor family, a large group currently 

totally approximately 150 different proteins, which are bound by their respective ligands and 

function as transcription factors in many different species including both invertebrates and 

vertebrates. The nuclear receptors are characterized by a highly conserved DNA binding 

domain and a moderately conserved ligand binding domain which also functions in 

transcriptional activation (Mangelsdorf et al, 1995). ERs are not only expressed in sex 

accessory tissues but also in many other types of cells including liver, bone, pituitary and 

cardiovascular cells. 

The classical ER (now called ERα) contains 595 amino acids with a central DNA-binding 

domain (DBD), along with a carboxy-terminal hormone-binding domain (Jafrati et al, 1997). 

ERβ is somewhat shorter than ERα, containing 530 amino acids (Ogawa et al, 1998). ERα is 

essential for uterine growth and mammary gland development but is not essential for 

mediating the atherosclerotic inhibitory influences of estrogens in vascular injury (Jafrati et al, 

1997). Thus, it is possible that ERα and ERβ have distinct functions in some tissues but not in 
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others. The region of highest homology between ERα and ERβ is in the DBD (95%). ERβ 

lacks a large portion of the carboxy-terminal F domain is important for the agonist impact of 

certain antiestrogens, such as tamoxifen (Montano et al, 1995). ER-mediated gene 

transcription is stimulated through at least two distinct transactivation domains located in the 

amino-terminal A/B region (called AF-1) and the carboxy-terminal E region of the receptor 

(called AF-2) (Kumar et al, 1987). The AF-1 domain is hormone-independent, whereas the 

AF-2 domain is hormone-dependent (Webster et al, 1989). Both AF-1 and AF-2 are required 

for maximal ER transcriptional activity and can function independently (Tzukerman et al, 

1994). The activity of the AF-1 region of ERβ is negligible compared with the AF-1 of ERα 

(Cowley and Parker, 1999). Thus the activity of ERα may exceed that of ERβ on estrogen 

responsive element containing genes that require both transactivation domains. Antiestrogens 

such as tamoxifen require only the AF-2 domain for ER-mediated transcriptional activity but 

ER AF-1 can function as a partial estrogen agonist of tamoxifen action (McDonnell et al, 

1995). After hormone binding and dimerization, ERs bind to DNA with high affinity through 

their DBD (C region) at specific sites and termed estrogen responsive elements in the 

promoter region of target genes to alter gene transactivation so, ERs act directly as 

transcription factors (Kumar and Chambon, 1988). In the absence of estrogen, ERs exist as 

inactive oligomeric complexes with a number of other proteins including chaperon proteins, 

namely the heat shock proteins Hsp90 and Hsp70 and cyclophilin-40 and p23 (Pratt and Toft, 

1997). The role of Hsp90 and other chaperons may be to maintain the receptors folded in an 

appropriate conformation to respond rapidly to hormonal signals. Following hormone 

binding, the oligomeric complex dissociates allowing the receptors to function directly as 

transcription factors by binding to DNA (Kumar and Chambon, 1988). Members of the 

epidermal growth factor family of tyrosine kinase receptors and insulin-like growth factor 

(IGF) can activate ER by direct phosphorylation (Kato et al, 1995). Different ligands can 
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interact with ER and enhance ER transcriptional activity (coactivators), or decrease its activity 

(corepressors) (Kamei et al, 1996). 

1.2.2 Sex hormones 

Atherosclerotic cardiovascular disease is the leading cause of mortality among 

postmenopausal women. Abnormalities in lipid and lipoprotein metabolism (eg, increased 

LDL and decreased HDL levels) commonly seen in post-menopausal women have been 

attributed to the increased coronary heart disease related mortality in these individuals (Sacks 

and Walsh, 1994). Significant decreases in HDL cholesterol and increases in LDL cholesterol, 

triglycerides and Lp(a) which is a new marker of cardiovascular risk were  affected by an 

increasing of age and increasing time since menopause (Godsland, 2001). The use of estrogen 

as hormone replacement therapy (HRT) in postmenopausal women was associated with 

increase triglycerides production (Walsh et al, 1991), increase lipoprotein lipase activity 

(Tilly-Kiesi et al, 1997), and reduction of Lp (a) levels (Tuck et al, 1997). Because the decline 

in estrogen levels is the primary metabolic alteration observed in postmenopausal women, it 

has been thought that endogenous concentrations of estrogen may have fundamental roles in 

lipoprotein mediated development of atherosclerotic coronary heart disease. Clinical studies 

have indicated that estrogen therapy significantly elevated plasma HDL levels and decreased 

LDL concentrations, suggesting a favourable influence on the plasma lipoprotein profile 

(Lobb, 1991). In postmenopausal women under estrogen therapy have a lower relative risk of 

coronary event than postmenopausal women who are not on estrogen therapy (Grady el al, 

1992). The favorable alterations in HDL levels appear to be a well-established that estrogen 

can prevent atherosclerotic cardiovascular disease. However, the mechanism by which 

estrogen raises HDL levels is not clearly understood and it may be due to increase production 

rate of HDL-protein and apoA-I (Walsh el al, 1994). Contrary to these observations, it was 

shown that the treatment of premenopausal women with estradiol resulted in decreased 

hepatic lipase activity and suggested that estrogen may increase HDL level by decreasing the 
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rate of HDL catabolism, which has been thought (but not proven) to be mediated via this 

enzyme (Tikkanen el al, 1982). Srivastava (2002) found that estrogen's antiatherogenic effects 

may occur via ABCA1-mediated pathway and circulating HDL levels may influence 

expression of ABCA1 in mice (Srivastava, 2002). Postmenopausal women with 

hypercholesterolemia, use of combined oral estrogen and progesterone therapy can result in a 

more cardioprotective lipoprotein-lipid profile than that achieved with either therapy used 

alone (Darling et al, 1999). Regimens containing norethindrone acetate as the progestin not 

only attenuate the influences of estrogen on triglyceride levels but also attenuate the increase 

in HDL-C levels seen with estrogen alone (Lee and Shulman, 2002). 

Little is known about the atherogenic potential of testosterone which has frequently been 

made responsible for the gender difference in the onset of coronary heart disease. For over the 

last four decades, it had been hypothesized that androgen may play a role in preventing the 

development of atherosclerosis and coronary artery disease (Khaw, 1996). In recent years, 

there has been a surge of public interest in androgen because of its reported anti-

atherosclerotic and anti-aging. In clinical studies, testosterone was found to exert both 

beneficial and adverse effects on cardiovascular risk factors and vascular function. The 

increasing use of testosterone for treatment of male hypogonadism, as a hormone replacement 

therapy for aging men, and its use in male contraception make the issue important of whether 

exogenous testosterone is pro- or antiatherogenic (Von Eckardstein, 1998). The major 

argument for the putative atherogenicity of testosterone is its lowering the high density 

lipoprotein HDL-cholesterol (Alexandersen et al, 1996). Numerous clinical and 

epidemiological studies have demonstrated the inverse association between HDL cholesterol 

and the risk of coronary heart disease events (Gordon and Rifkind, 1989). Men have 

considerably lower levels of HDL cholesterol than women. Moreover, application of 

exogenous testosterone leads to a dose-dependent decrease of HDL cholesterol, whereas 

either surgical or chemical castration causes a significant increase of HDL cholesterol in men 
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(Whitsel et al, 2001). Testosterone led to a dose dependent up-regulation of SR-BI mRNA 

and the protein levels and consequently increased HDL3-induced cholesterol efflux from 

macrophages (Langer et al, 2002) but not with Dehydroepiandrosterone (DHEA; Martin et al, 

2003). DHEA and its sulfate ester (DHEAS) are sex hormone precursors of mainly adrenal 

origin, with weak androgenic action. DHEA and DHEAS are the most abundant steroids in 

the circulation, yet their biologic significance is unknown. A supraphysiological dose of 

testosterone can increase the expression of hepatic lipase (HL) in HepG2 cells (Langer et al, 

2002). Moreover, testosterone had no influence on the expression of apoA-I in HepG2 cells 

and ABCA1 in either HepG2 cells or macrophages and these suggest that testosterone, despite 

lowering HDL cholesterol, intensifies reverse cholesterol transport and thereby exerts an anti-

atherogenic rather than a pro-atherogenic (Langer et al, 2002). Others suggested that androgen 

was an atherogenic hormone by increasing human foam cell formation through elevating 

expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion 

molecule-1 (ICAM-1) but without significant impaction on LDL or scavenger receptor 

expression (Martin et al, 2003). Not only androgens but also estrogen, and progesterone exert 

gender-specific effects on human macrophage foam cell formation (Ng et al, 2001).  

1.2.3 Corticosteroids 

Actions of corticosteroids may be mediated by intracellular glucocorticoid receptors. These 

receptors are members of nuclear steroid hormone receptor superfamily related proteins 

(Mangelsdorf et al, 1995). These receptors share two highly conserved domains: a region of 

approximately 70 amino acids forming two zinc-binding domains, termed zinc fingers, which 

are essential for the interaction of the receptor with specific DNA sequences, and a region at 

the carboxy terminus that interacts with ligand (ligand-binding domain). Glucocorticoids enter 

cells and interact with the glucocorticoid receptor to change the GR conformation, induce GR 

nuclear translocation and activate transcription of target genes (Mangelsdorf et al, 1995). 

Dexamethasone is a synthetic form of glucocorticoid hormone but has high anti-inflamatory 
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potency, long duration of action (t1/2 36-72 h.), relative high affinity for GR than 

hydrocortisone (7.1:1 respectively) but no Na+ retension potency.  

The mechanisms of glucocorticoids action on atherogenesis are poorly understood. 

Glucocorticoids are able to decrease the expression of hepatic LDL receptors (Brindley and 

Salter, 1991), stimulate the net synthesis of apoB-100 and apoB-48 and also decrease their 

intracellular degradation (Wang et al, 1995). These changes are potentially atherogenic and 

the involvement of glucocorticoids in atherogenesis is supported by the strong correlation 

between increased serum cortisol in human and the extent of coronary artery disease (Bridley 

et al, 1993). Intracellular cholesterol movement in human SMC is also under glucocorticoid 

control by an increase in the flux of plasma membrane-located cholesterol into cells, 

promotion of cholesterol esterification and reduction of HDL3-mediated cholesterol efflux 

(Petrichenko et al, 1997). Glucocorticoid treatment has been reported to markedly inhibit 

cholesterol synthesis in various tissues (cultured human fibroblasts, HeLa cells, lymphocytes), 

presumably through the inhibition of both HMG-CoA reductase and synthase activities 

(Lehoux et al, 1989). The ability of glucocorticoids to modulate the cholesterol synthesis and 

stimulate cholesteryl ester formation in SMC by rising in ACAT activity was no longer 

visible at 10-7 mol/L and increasing abruptly with increasing concentration up to 10-5 mol/L 

(Picard et al, 1981). Glucocorticoids, in turn, not only have been shown to inhibit cAMP 

production in rat SMC (Ito et al, 1994) but also directly regulate the HSL mRNA level in 

adipose tissue (Slavin et al, 1994). Glucocorticoids including Dexamethasone increase HSL 

activity by an increase in HSL mRNA levels (Slavin et al, 1994), this may have petential 

clinical significance in excess glucocorticoidscause the development of central (abdominal) 

adiposity due excess lipolysis of omental adipose tissue (Desprts, 1990), along with clinical 

sequellae such as insulin resistance, hypertension and hyperlipidemia (Desprts et al, 1990) . 

When glucocorticoid applied as anti-inflammatory drugs at high pharmacological doses in 

experimental animals, glucocorticoids seem to suppress the development of atherosclerosis, 
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despite enhancement of hypertriglyceridemia and hypercholesterolemia (Naito et al, 1992). 

Glucocorticoids were shown to inhibit leukocyte accumulation in the rabbit carotid artery and 

its intimal thickening (Hagihara et al, 1991) and suppress the development of atherosclerosis 

in the aorta of rabbits by inhibiting recruitment and proliferation of macrophages and 

formation of foam cells in plaques (Asai et al, 1993). 

1.3 Non  steroid hormones 

 1.3.1 Thyroxin 

The hormones synthesized by the follicular cells of the thyroid gland were amongst the first 

observed to affect cholesterol metabolism. Hypercholesterolemia was a useful marker for the 

diagnosis of hypothyroidism in patients before the general availability of rapid measurements 

of thyroid function (Mason et al, 1930). Both the thyroid hormones, l-thyroxin (T4) and l-

triiodothyronine (T3) are believed to have a variety of influences on the concentration of 

cholesterol. For example, in the presence of thyroid hormones, hepatic synthesis of 

cholesterol is actually enhanced (Rossner and Rosenqvist, 1974), adding to the concentration 

of total cholesterol, but these hormones also increase the fractional clearance rates of VLDL 

and LDL particles (Rossner and Rosenqvist, 1974) and the hepatic excretion of cholesterol 

(Miettinen, 1968). The net influence of the opposing actions of the hormones in the liver 

gives rise to greater concentrations of cholesterol in hypothyroid individuals compared with 

those with euthyroid or hyperthyroid levels of the hormones. In patients with 

hyperthyroidism, the concentration of HDL cholesterol and the ratio of LDL/HDL cholesterol 

are generally lower (Scottolini et al, 1980) than those in patients with hypothyroidism 

(Scottolini et al, 1980). In vivo studies in rodents show that thyroid hormone increases the 

concentrations of apoA-I protein and the corresponding mRNA (Mooradian et al, 1996), the 

same result was found in human liver tissue culture (Vandenbrouck et al, 1995). A Motif 

within the apoA-I promoter that resemble T3-response elements (TRE) (Taylor et al, 1996) is 

located between -208 and -193 in the rat apoA-I promoter, and corresponds to a similar 
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sequence in the human gene between –214 and -192 (Rottman et al, 1991). In hyperthyroid 

state, fatty acids oxidation and ketogenesis are stimulated simultaneously with paradoxical 

stimulation of fatty acid synthesis which may be due to stimulatory response of 

palmitoyltransferase I (CPT-I) to malonyl –CoA (Heimberg et al, 1985).  

1.3.2 Leptin 

The leptin (ob) gene was isolated by a group of molecular biologists at the Rockefeller 

University in December 1994 and its sequence patented. The protein coded of the ob gene 

was given the name leptin from the Greek word for thin, leptos. In 1995 several groups 

showed that leptin injections were capable not only of inducing dramatic weight reductions in 

very fat ob mice but were also able to reduce overfed normal mice.  

Human OB is a 16 kDa, 146 amino acid (aa) residue non-glycosylated polypeptide and 

contains two cysteines in the carboxyterminal region, both of which are believed to participate 

in an intramolecular disulfide linkage (Leroy et al, 1996). Leptin hormone is primarily 

produced by adipose tissue (Laharrague et al, 1998) and other tissues such as bone marrow 

(Laharrague et al, 1998), placenta (Hoggard et al, 1997) and may be liver (Friedman-Einat et 

al, 1999).  

In mouse, there is a notable mutation that occurs in the coding sequence number 106 

(normally an arginine residue), here, a cytosine to thymidine change creates a stop codon that 

causes premature termination of the OB molecule. This mutation disrupts functional OB 

production, is associated with the ob-/ob- mouse and is accounted for select obese conditions 

in mouse but this situation does not appear to exist in humans (Maffei et al, 1996). The 

receptor for OB has been identified in mouse (Tartaglia et al, 1995), human (Lee et al, 1996) 

and rat (Lida et al, 1996).  

In human, the mature receptor is 1142 aa residue and is a transmembrane protein with a 

predicted molecular weight of 81 kDa. The molecule shows 817 aa residues in its extracellular 

segment, 23 aa residues in its transmembrane domain, and 302 aa residues in its cytoplasmic 
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tail (Tartaglia et al, 1995). There are at least six isoforms of the leptin receptor (Ob-R) (Lee et 

al, 1996). Mouse, human and rat OB receptors are all virtually identical in length. Anatomical 

regions with soluble OB receptor expressed in adipose tissue stores, hypothalamus, cardio-

vascular system, testis, cerebral cortex, cerebellum, choroid plexus, lung, kidney, skeletal 

muscle, liver, pancreas and adrenal medulla (Golden et al, 1997). Pancreatic β-cells that 

produce insulin have also been identified as expressing OB-Rs but unknown form (Kieffer et 

al, 1996). Human obesity is often associated with increased blood OB levels suggesting 

insensitivity to OB (Rohner-Jeanrenaud and Jeanrenaud, 1996). Insulin is suggested to be part 

of a negative feedback loop by stimulating OB secretion and the circulating OB inhibits 

insulin production (independently of feeding) (Mizuno et al, 1996). Insulin and the size of 

white adipocytes determine the actual quantity of OB released (Klein et al, 1996).  

Increased OB (due to abundant fat stores) decreases neuropeptide Y (NPY) expression in the 

ventromedial hypothalamus, an action that activates the sympathetic nervous system and 

stimulates the heat producing activity of brown adipose tissue (BAT) resulting in increased 

whole body energy expenditure and weight loss (Tomaszuk et al, 1996), also NPY is a strong 

stimulator of appetite (Ahima et al, 1996).  

1.3.3 Insulin and glucagon 

Insulin is one of the most important hormones that control plasma glucose in a narrow range 

between 4 and 7 mM in normal individuals. Normal fasting serum insulin level was 10-400 

µIU/ml (40.1+ 23.4 nmol) (Matsui et al, 1998). It increases glucose uptake in muscle, liver 

and fat. It also stimulates cell growth and differentiation and promotes the storage of 

substrates in fat, liver and muscle by stimulating lipogenesis, glycogen and protein synthesis, 

and inhibiting lipolysis, glycogenolysis and protein breakdown. Insulin receptor belongs to a 

subfamily of receptor tyrosine kinase that includes the insulin-like growth factor (IGF)-I and 

insulin receptor-related receptor (IRR). These receptors are tetrameric proteins consisting of 

two α and two β subunits that function as allosteric enzymes in which the α-subunit inhibits 
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the tyrosin kinase activity of the β-subunit. Insulin binds with α-subunit leads to increase 

kinase activity in the β subunit (Patti and Kahn, 1998). At least eight intracellular insulin 

receptor substrates (IRS) are activated by insulin, four are enumerated from 1-4 and other four 

are Gab-1, p60, CbI and APS (Saltiel and Kahn, 2001). IRS-1 has related to insulin growth 

promotion and insulin sensitivity in peripheral tissues, IRS-2 has insulin growth promotion in 

certain region (brain, retina and islet) and responsible for insulin sensitivity in both peripheral 

tissues and liver and IRS-3 and IRS-4 had slightly growth promotion (Saltiel and Kahn, 

2001). PI(3)K has a role in metabolic (including glucose transport, glycogen and lipid 

synthesis) and mitogenic action of insulin (Shephered et al, 1995). Insulin also stimulates the 

mitogen-activated protein (MAP) kinase extracellular signal related kinase (ERK). This 

pathway involves the tyrosine phosphorylation of IRS protein and/or Shc, which in turn 

interact with adapter protein Grb2, recruiting the Son-of-sevenless (SOS) exchange protein to 

the plasma membrane for activation of Ras. Once Ras activated, it operates as a molecular 

switch and stimulates a serious kinase cascade through the stepwise activation of Raf, MEK 

and ERK. Activated ERK can translocate into nucleus where it catalyses the phosphorylation 

of transcription factors leads to cellular proliferation and differentiation (Boulton et al, 1991). 

Blockade of this pathway with dominant negative mutants or pharmacological inhibitors 

prevents the stimulation of cell growth by insulin, but has no influence on the metabolic 

actions of insulin (Lazar et al, 1995). Insulin deficiency results in profound dysregulation of 

these processes and produces elevations in fasting and postprandial glucose and lipid levels. 

In patients with type 1 diabetes, HDL-cholesterol decreases with increasing blood levels of 

glycated haemoglobin and increasing albuminuria (Laffel, 1999) and also associated with 

hyperacylemia and ketosis. Low HDL-cholesterol in these patients which results from 

decreasing of hepatic apoA-1 gene expression is the most frequent dyslipidemia in patient 

with type 1 diabetes increasing the cardiovascular risk (perez et al, 2000). Ketosis in type 1 

diabetes which is due to accumulation of aceton, acetoacetate and ß-hydroxybutyrate, is 
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highly affecting macrophages and liver cells because of low activity of the rate-limiting 

enzyme in ketolysis i.e., succinyl-CoA-oxoacid transferase (Laffel, 1999). Acetoacetate 

downregulates ABCA1 gene expression especially in macrophages (Uehara, 2002). 

Hyperacylemia especially unsaturated fatty acids in type 1 diabetes can suppress ABCA1 

expression in liver and macrophages of streptozotocin–induced diabetic mice (ie., a model for 

type 1 diabetes ) (Uehara, 2002). 

Glucagon is a single polypeptide chain, composed of 29 amino acids, and secreted from α- 

cells of islets of Langrehans. It contains no -S-S- bridges and needs no zinc for its 

crystallization. It is a hyperglycaemic hormone through stimulation of glycogenolysis and 

gluconeogenesis, protein catabolism and lipolytic activity through 3`5`cAMP. During stress, 

there is an excessive control of metabolism by the stress hormones including the 

corticosteroids, catecholamines, glucagon, and growth hormone. The actions of the stress 

hormones are generally opposed by insulin (Hardardottir et al, 1994). Stress hormones cause 

an increased breakdown of proteins, glycogen, and triglyceride to molecules that can be 

rapidly metabolized. Amino acids liberated from protein hydrolysis are utilized for the 

synthesis of glucose by gluconeogenesis. Glucose, from these sources, is utilized by the brain 

and is available as a source of energy in an acute stress situation. With repeated or chronic 

stress, stress hormones, together with fatty acids, cause insulin resistance in peripheral tissues, 

which may result in hyperglycemia (McEwen et al, 1997). Stress hormones elevate the level 

of homocysteine which induce a heightened state of cardiovascular activity, injured 

endothelium, and induction of adhesion molecules on endothelial cells to which recruited 

inflammatory cells adhere and translocate to the arterial wall (Stoney and West, 1997). 

glucagon from 0.01 to 5 ng/mL also induced a significant increase in rigidity index (RI), with 

the maximal impact being achieved using 5 ng/mL which could be involved in the 

pathogenesis of atherosclerosis (Valensi et al, 1993). 
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1.3.4 Luteinizing Hormone 

The human luteinizing hormone (lutropin or LH) is a glycoprotein with a molecular weight of 

30000, secreted by the basophilic cells in adenohypophysis. Like other glycoprotein 

hormones (FSH, TSH and HCG), LH contains two different subunits, an ∝- and a ß-chain, 

linked by noncovalent bounds. The primary structures of the ∝-subunits of LH and of those 

mentioned are virtually identical, whilst their ß subunits are different. The ß subunits are 

responsible for the immunological and biological specificity of these hormones (Nansel et al, 

1979). The LH synthesis and release are stimulated by the hypothalamic gonadotropin 

releasing hormone (GnRH), whereas the ovarian steroids secreted from the corpus luteum 

control further secretions of LH by negative feedback. Luteinizing hormone affects key 

biochemical changes critical to normal menstrual and ovulatory function in reproductive aged 

women. LH is released by the anterior pituitary in hourly pulses as circhoral oscillations 

(Warner et al, 1983). This release is in response to pulsatile secretion of gonadotropin-

releasing hormone (GnRH) from the arcuate nucleus of the hypothalamus. GnRH was first 

isolated in 1970 and has a serum half-life of 20 minutes. Both estrogen and progesterone play 

important roles in modulating the release of LH, estrogen is more significant in early 

follicular development and ovulation. Estrogen, specifically estradiol, normally inhibits LH 

secretion. However, when estrogen reaches a certain level, there is positive feedback to the 

anterior pituitary, resulting in an increase in circulating LH (Hill et al, 1980). This transition 

from suppression to stimulation of LH secretion takes place at the mid–follicular phase and is 

dependent on the absolute level and duration of elevation of serum estradiol. Estradiol levels 

must be greater than 200 pg/ml for 50 hours to stimulate LH secretion (Hill et al, 1980). This 

typically occurs when the dominant ovarian follicle reaches a diameter of 15 mm or greater. 

The direct influence of the mid–follicular estradiol peak is the LH peak. LH is critical to 

luteinization of the ovarian follicle, production of progesterone in the theca cells, and the 

postovulatory follicular function. If estrogen levels are not sustained at these levels, the mid 
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cycle LH surge may be abbreviated or even fail to occur (Hill et al, 1980). Lewis and Wexler 

found that depression of circulating LH levels parallels the severity of the arteriosclerosis in 

rat (Lewis and Wexler, 1975). 

1.3.5 Somatostatin 

Somatostatin (SRIF) is a peptide hormone has two forms SRIF-14 and SRIF-28 reflecting 

their amino acids chain. Each isoform are secreted depend upon the tissue, for example, SRIF-

14 is the predominant form produced in the nervous system and pancreas, whereas the 

intestine secretes SRIF-28 (Praydayrol et al, 1980). In addition, the two forms have different 

biological potencies for example SRIF-28 is ten fold more potent in inhibition of GH 

secretion, but less potent than SRIF-14 in inhibiting glucagon release (Mandarino et al, 1981). 

Because SRIF-14 and SRIF-28 inhibit glucagon and insulin release with different potencies 

from pancreatic α- and ß-cells, it has been postulated that each cell type expresses different 

SRIF receptor subtypes (Amherdt et al, 1989). Somatostatin is present in the hypothalamus, 

cerebral cortex, brain stem, gastro-intestinal tract, and pancreas. In the CNS, it acts as a 

neurotransmitter; its hormonal activities include inhibition of the release of growth hormone, 

insulin, glucagon, gastrin, TSH, ACTH, secretin, pancreozymin, cholecystokinin, pepsin and 

renin (Brazeau et al, 1973). SRIF and its receptors play an important role in the detection and 

therapy of neuroendocrine disorders including GH-secreting pituitary adenomas, and gastro-

entero-pancreatic carcinoid tumour, vasoactive intestinal peptidomas, gastrinomas, 

insulinomas, and glucagonomas (Fehmann et al, 2000).  

Abnormalities in plasma lipid profiles have been reported in patients with acromegaly and 

these changes may partly contribute to the increased cardiovascular risk of these patients 

(Bengtsson et al, 1988). In acromegalic patients, an increase in the concentrations of small 

dense LDL (Tan et al, 1999a) and remnant-like lipoprotein particles (RLP; Twickler et al, 

2001) had been demonstrated. These patients with predominantly small dense LDL particles 

(Campos et al, 1992a) and exaggerated postprandial lipaemia with accumulation of 
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triglyceride-rich lipoprotein remnants (Masuoka et al, 2000) have an increased risk of 

coronary heart disease (CHD). Small dense LDL are more prone to oxidation in vitro (Tribble 

et al, 1992) and show an increased propensity to bind to arterial wall proteoglycans (Anber et 

al, 1996), whereas remnant-like lipoproteins are taken up by macrophages and can directly 

cause foam cell formation (Tomono et al, 1994). Both remnant-like lipoproteins and small 

dense LDL are also associated with endothelial dysfunction (Tan et al, 1999a). 

 Some of the changes in plasma lipids can be corrected after treatment of acromegaly with 

Octreotide, a somatostatin analogue, which is given as monthly intramuscular injections 

(Lancranjan et al, 1996). Serum cholesterol remained unchanged but serum triglyceride 

decreased and apoA-I increased after treatment (Oscarsson et al, 1994). A decrease in 

triglyceride (James et al, 1991), a rise in HDL cholesterol (Lam et al, 1993) and lower in the 

elevated apolipoprotein (a) levels (Lam et al, 1993) were also observed after octreotide 

treatment. But there are no reported data of the lowering of GH on small dense LDL and RLP 

in patients with acromegaly.
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2. Aims of Work 
 
Coronary artery disease (CAD) is one of the most common causes of death in the world. Not 

only dyslipoproteinemia but also reverse cholesterol transport may play a pivotal role in the 

maintenance of cellular lipid homeostasis and contribute to acceleration of atherosclerosis. 

Protection from pathological lipid accumulation in macrophages that reside in the vessel wall 

needs the understanding of the mechanisms involved in the regulation of genes involved in 

reverse cholesterol transport.  

Members of the ABC transporter gene family such as ABCA1, ABCA7, ABCG1, ABCG5 

and ABCG8 are major regulators of plasma HDL-cholesterol pool size as evident from 

identified mutations in the ABCA1 gene that causes familial HDL deficiency syndromes and 

mutations in the ABCG5 and ABCG8 genes leading to β-Sitosterolemia. 

The first aim of my study was to perform an initial screening of hormones with known 

influences on plasma HDL to examine their effect on ApoA-1 dependent cholesterol and 

phospholipid effluxes. Next, a correlation of these effects with their influences on the gene 

expression of sterol-sensitive ATP-binding cassette transporters that are involved in the 

cellular efflux of lipids in human macrophages and HepG2 cells should be performed.  

Subsequent experminents with one hormone shown to strongly upregulate ABCA1 in order to 

elucidate the underlying mechanisms of gene expression on its receptor, intracellular 

pathway, transcription factors and post-transcriptional modifications will be carried out.    
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3. Materials and Methods  
 
3.1 Cell culture  

Human hepatoblastoma derived cells ATCC (HepG2) were obtained from (American Type 

Culture Collection). HepG2 cells were grown in Dulbecco´s modified Eagles medium 

(DMEM) supplemented with 10% fetal bovine serum (Sigma, St. Louis, USA) and incubated 

in 10% Co2 in air at 37 °C. The cells were seeded into 6 cm or 10 cm dishes and grown to 

70% confluence in complete culture medium. The medium was then removed and the 

monolayers were washed three times with phosphate buffered saline (PBS) before RNA 

isolation. 

Human monocytes obtained from healthy donors were isolated by leukapharesis and 

counterflow elutriation (Klucken, et al 2000). Aliquots of 10 million cells were suspended 

with Macrophage-SFM medium, cultured in plastic Petri dishes (Gibco-BRL, Karlsruhe) and 

incubated overnight. After incubation, non adherent cells were removed by washing with 

warm Macrophage-SFM medium and incubated for additional 4 days with Macrophage-SFM 

medium in the prescence of 50ng/ml recombinant human macrophage–colony stimulating 

factor (M-CSF) (R&D system, Wiesbaden, Germany) to induce macrophages differentiation 

befor hormonal stimulation. 

3.2 RNA isolation.  

Total RNA was prepared by subsequent extraction and precipitation with Trizol (1ml Trizol to 

each 106 cells) (Sigma) (GibcoBRL/Life Technologies, Breda, the Netherlands) and 

precipation by centrifugation 15000 rpm for 2min at 25 C° in QIAshredder tube (QIAGEN). 

Chloroform was added and mixed. The suspension was centrifuged at 17000 rpm for 15 min. 

A second phenol/chloroform extraction was performed by centrifugation 17000 rpm for 10 

min, followed by an ethanol (75%) precipitation. The air dried pellet was dissolved in 100 µl 

RNase free water and further purified with a RNeasy mini column (Qiagen GmbH,Hilden, 

Germany) (Baelde, et al 2001). Total RNA was resuspended in RNase free water (Roche) and 
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its quantity and quality were determined by ultraviolet spectroscopy and electrophoretic 

analysis on an Agilent 2100 Bioanalyzier with RNA 6000 LabChip. Only total RNA with an 

absorbance ratio (A260 /A280) more than 1.8 and a ribosomal RNA (28S/18S) ratio of 1.8-2.2 

was used. The intergrity and size distribution of total RNA can be checked by denaturing 

agarose gel electrophoresis (1.2%) and ethidium bromide staining. The respective ribosomal 

bands should appear as sharp bands on the stained gel. The 28S ribosomal RNA band (human: 

5.0 kb) should be present at approximately twice the amounts of the 18S (human: 1.9 kb) 

RNA.   

3.3 Reverse transcription  

Using the 1st strand cDNA synthesis kit (AMV) from Roche (Basel, Switzerland), RNA was 

transcribed into single strand cDNA using randam hexamer primers. The reaction was 

composed of 2µL of 10X reaction buffer ,4 µL 25 mM Mgcl2 (5mM), 2 µL deoxyribo-

nucleotides mix (1mM), 2µL random hexamer primers, 1µL RNase inhibitor (50 units ), 0,8 

µL AMV-Reverse Transcriptase (20 units) and 1 µg RNA in a total volume of 20 µL. The 

mix was briefly vortexed, centrifuged and incubated at 25 °C for 10 minutes (primer 

annealing), 42 °C for 60 minutes (Reverse Transcription) and 95 °C for 5 minutes (Reverse 

Transcriptase deactivation). 

3.4 Relative quantification by TaqManTM real time RT-PCR. 

Real time PCR, using the ABI Prism HT7900 (PE Applied Biosystems, Foster city California, 

USA.) was performed in a total volume of 20 µL in a 384 wells plate. The reactions contained 

a Taqman master mix 18 µM forward primer, 18 uM reverse primer, 5 µM probe and 50 µg 

cDNA for each reaction. The relative quantities of target genes were normalized with 18S-

ribosomal RNA (18SrRNA) to compensate for variation in input cDNA. The primers and 

probes were designed using primer express 2.0 SDS software based on sequence entries in the 

Gene bank. The designed primers and probes are listed in table (1). The TaqMan probes were 

labelled with a reporter dye (FAM) on its 5`end and a quencher dye (TAMRA) on its 3`end. 
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The probe for 18S RNA was labelled with a reporter dye (VIC) on its 5`end and TAMRA on 

its 3`end. Measurements were carried out in triplicate and quantification was performed 

relative to standard curve for 18SrRNA. The results were analysed with an ABI sequence 

detector software version 2.0 (PE Applied Biosystems). 
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Contineous table (1) 
 

  Primer Forward    5`→3` Primer Reverse    5`→3` Probe    5`→3` 
ABCA1 tgt cca gtc cag taa tgg tc tgt cga gat atg gtc cgg att gc tac acc tgg aga gaa gct ttc aac gag act aac c 

ABCA2 aag cct gtg gag gat gat gtg ggt caa cgg cca gga tac g tgg cca gtg agc ggc agc g 

ABCA3 caa aac cct gga tca cgt gtt cct ccg cgt ctc gta gtt ct tgc tgc cca acc act gtc tgg g 

ABCA4 aaa ggt tgc aaa ctg gag tat taa gag ttg ttg ccc cca ctg tac gt  ctg ggc ctg act gtc tac gcc ga 

ABCA5 ggc tgc tat tct gac cac tca cta ta tta act gcc cag aca cca tga t cag agg ctg tct gtg atc gag tag c 

ABCA6 cca tga gaa atg tcc agt ttc ct tgc tgg gtt aaa tta gat att ggt gta tcc tca gaa tct ggg aag ggt aga taa a 

ABCA7 ttt ctc tgg gac atg tgt aac tac ttg  tgt gat cga cca gcc ata cag cct tcc agc aga ggg cat atg tg 

ABCA8 tgc tta gtc cct ttg cct tca gag ccg tcc gat gga tga aat ggc cca gct ttt aca ctt gga cta tga tt 

ABCA9 cat tca gac tga cag aag cac att t tca cca atg ctg ctc att gc tgg att atg agt atg ggt acc gaa gta a 

ABCA10 atc aca aac tgc gtt tct cct tt cag agg cct gaa atc cat aac tg atc gcc atg agcagc atc agc ga 

ABCA12 cct cca ttc agc acc aaa gtc t tga ggt cac cca tgc cat t cct acc tgt cac tcc tac ggg cac tcg 

ABCB1 cag aca gca gga aat gaa gtt gaa  tga aga cat ttc caa ggc atc a ttt cac ttt tgg att cat cag ctg cat ttt cta 

ABCB2 ggg tga cgg gat cta taa caa ca cca aac acc tct ccc tgc aa cat ggg cca cgt gca cag cc 

ABCB3 gag gag cat gaa gtc tgt cgc tat ggc gcg ttc cag gtc tct agg ccc ttg aac aat gtc ggc agc 

ABCB4 tca gga agc cag atc cag tca  cga gat ttc cag cca ttt gg agt ggc agc ctt ttc atc att tag ttc aaa ttc tt 

ABCB5 gac atc ggc tgg ttt gat agc t gag ttt cca gcc ctt cac ca tga cat cgg tga act taa cac tcg act 

ABCB6 tga aag agg aga cag aag tga agg a aac tca ata cgg ccc ttc tga a ctg gag cag ggc ccc ttc gc 

ABCB7 gat ccg gcc ttt agt ctc tgt tag cca agg cgc cga gtt g agg tcc gcagtg gag gcc aca 

ABCB8 gaa gcg aat gct cac gag ttc  tca ccg acg acc gtg ttg tca cca gct tcc ccg agg gct 

ABCB9 cgc cca cct cca acc a cgc aga tgt cca cac tca tga agg atg cgg ctg tgg aag gcg 

ABCB10 gct tcc gta ggc atc agt atg at gga ggc acc acg ctc aaa ttt ttt gtc tca cct aat ctg gcc acc ttt g 

ABCB11 agg gag cta cca gga tag ttt aag g tcg tgc acc agg taa gaa agc ctt cca tcc ggc aac gct cca 

ABCC1 gaa ggc cat cgg act ctt ca cag cgc gga cac atg gt ctc ctt cct cag cat ctt cct ttt cat gtg 

ABCC2 tgc agc ctc cat aac cat gag gat gcc tgc cat tgg acc ta aga gag aac agc ttt cgt cga aca ctt agc c 

ABCC3 cac acg gat ctg aca gac aat ga gag ttt cca gcc ctt cac ca cca gtc acc tat gtg gtc cag aag cag ttt 

ABCC4 aag tga aca acc tcc agt tcc ag ggc tct cca gag cac cat ct caa acc gaa gac tct gag aag gta cga ttc ct 

ABCC5 tga aag cca ttc gag gag ttg tga aag cca ttc gag gag ttg ctc gca gcg tgc cct tga caaa ag 

ABCC6 aga cac ggt tga cgt gga cat gct gac ctc cag gag tcc aa cca gac aaa ctc cgg tcc ctg ctg at 

ABCC7 ggc acg aag gag gca gtc tcg tgt gga tgc tgt tgt ctt t tga tga cac act cag tta acc aag gtc a 

ABCC8 cac caa tca gct cat gtg gtt t ggc act gac tcc gag tat gta gta ga cca gta cag atc att gtg ggt gtg at 

ABCC9 cta ctc ctg tgt tcc tgg ttg ct caa ccc gaa agt att tct gga taa a tcc tgc ccc ttg gtg ttg c 

ABCC10 gcg ggt taa gct tgt gac aga ccc accc cgc aga act tga  ctg ctg agt ggc att cgg gtc 

ABCC11 agg gtc tac cac cac tac atc ca  cga tca gca cca cga aga ag cag ctg gag gtt aca tgg tct ctt gca taa tt 

ABCC12 ttc atc caa agg cct gtc att  ccg ttc gca cac aca ctt g cat aca tca tcc agc tga gcg gac tgc t 

ABCD1 cct ctt tct aca gcc taa ttt att gga tgg cac ggt agt cac att gg tcc cta ttc gta gcc atc tcc g 

ABCD2 gct acc ttc gtc aac agt gca a cgt ggt cta ggc gag ttc tg agg tac ctg gaa tgc aaa ttg gct 

ABCD3 acc cct ctc agt ctg cag tat tg tga tac atg gta acc cct cct tgt  tgt tta aag tat atg tgc agt ctt gct 

ABCD4 ggc cca ggt tag atc tgc aa tga tga cca aga agg aaa caa aac cca gcg gtt cct gca gat act ga 

ABCE1 gat cgc gtc atc gtt ttt ga  atg cca gcc aaa agg gtt t tgt tcc atc taa gaa cac agt tgc aaa c 

ABCF1 gaa gtt cag cat ctc cgc tca t ggc ggc cgg cta caa agg agc tgt tcg tca atg cag acc tgt ac 

ABCF2 tgg agc agg gaa gtc aac tct t ttt tcg gat cat gcc atc tg tga agc tgc taa ctg gag agc tac tac c 

ABCF3 ccg gga gtt gtg ggt atg c gta ctg gtc aaa tcc tcc ttc ca aag gag gcg gcg tca ccc g 

ABCG1 ccg acc gac gac aca gag a gca cga gac acc cac aaa cc tct gat cca acc cct aga acc ggg t 

ABCG2 cag gtc tgt tgg tca atc tca ca tcc ata tcg tgg aat gct gaa g cca ttg cat ctt ggc tgt cat ggc tt 

ABCG4 gag cca ggg tca gtg cat ct gca agc cga gtc ctt tta ga caa agg cgt ggt cac caa cct gat c 

ABCG5 tct ctt ggc ccc cca ctt a cta tat ttg gat ttt gga cga tac ca ttg gtg aat ttc taa ctc ttg tgc t 

ABCG8 tcg tac cct ctc tac gcc atc t ggc cag gta cag gac cat gaa ggt cat tgg cct cag cgg t 
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PPARα gaa atg gga aac atc caa gag att  ggg ctc gaa gct ggt gaa tca tca cgg aca cgc t 

PPARγ agg cga ggg cga tct tg ccc atc att aag gaa ttc atg tca gca gga aag aca aca gac aaa tca cca ttc gtt 

PPARδ cat cct cac cgg caa agc atg tct cga tgt cgt gga tca c aca cgg cgc cct t 

SDP1 aga gga agg ccg aga gag atg tca ggt gcc tat ggt tcc a tgg cgg gag tca tga tat ttt cca cc 

KAP1 ata ggc agc cat aat tca gaa act c  tct gac agc agg cca tgg t tcc aag caa ccc aac ctt cag atc aac t 

ZNF202 aga aga ggg aat tct gat ggt gaa ccg ggt cat ccc tct gta ag aga tga ttt cac ctg tcg gcc aga gtc tg  

ZNF195 tcc tgg gct caa gcg atc t cac ggt ggt tca cac ctg taa t cct gcc tca gcc tcc caa agt gc 

LXR-α tgc ccc atg gac acc tac at cca gcc tga cgg cat ttg cgc aag tgc cag gag tgt cgg c 

ER-α ggg cca ctg ggt tgg aa  gta aga ttt caa gag gta ttc ata gaa gga cag agt ggc ctg ggt gcc gg 

ER-β gcc gac aag gag ttg gta cac cag gct gag ctc cac aaa gc tga tca gct ggg cca aga aga ttc cc  
 
Table (1):- ABC gene subfamily, PPARs, SDP1, KAP1, ZNF202, ZNF195, LXR-α and 
ERs primers (forward and reverse) and probes. Both are designed by using primer express 
2,0 SDS software (ABI) based on the sequence entries in the Gene bank. Both primers and 
probe wrot from 5` (left) to 3` (right). The probes of ABC subfamily were labelled with a 
reporter dye (FAM) on 5`end and the quencher dye (TAMRA) on 3`end. 
 
3.5 Cholesterol and phospholipid effluxes 

Assays for 14C-cholesterol and 3H-choline-phospholipid effluxes were performed with 

confluent HepG2 and macrophage cells on 6 wells dishes as described by Klucken and 

coworkers (2000) (Klucken et al, 2000). One million HepG2 cells were maintained in DMEM 

containing 10% FCS and 1.5 µCi/ml 14 C-cholesterol (Amersham, Freiburg, Germany) for 3 

days. Cells were than rinsed with phosphate buffered saline (PBS) and incubated in DMEM 

containing 5 mg/ml fatty acid free bovine serum albumin (BSA) with 30 µg of cholesterol for 

24 h, followed by 36 h in the same culture medium without cholesterol to allow equilibration 

of cellular cholesterol pools in loaded cells. Choline phospholipids were labelled by adding 

10µCi/ml 3H-choline chloride (Amersham, Freiburg, Germany) to the culture medium for the 

final 24 h of the equilibration incubation. Cells were then rinsed with PBS and incubated for 

18 h in DMEM containing 2 mg/ml BSA with or without 10 µg/ml apoA-I and the indicated 

hormone.  

Monocyte-derived macrophages were cholesterol loaded by adding M-CSF-containing serum-

free macrophage medium supplemented with 40mg/ml enzymatically modified LDL (E-LDL) 

and 1.5 µCi/ml 14C-cholesterol as well as 10 µCi/ml 3H-choline chloride. After 24 h 

incubation, cells were rinsed with PBS and incubated for 18 in RPMI medium supplemented 

with L-glutamine and with or without 10 mg/ml apoA-I and the indicated hormone. The final 
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ethanol concentration in medium was less than 0.1%. Culture media were harvested and 

centrifuged for 10 min at 10.000 rpm to eliminate remaining cell debris. The cell was washed 

with PBS and lysed with 0.2% SDS. The effluxed cholesterol and choline was precipitated 

with chloroform and the radioactivity of 3H- and 14 C- in the cells and culture medium was 

determined by liquid scintillation counter as percent fraction of the cpm. Basal effluxes were 

calculated on the difference between 3H-choline-phospholipid or 14C-cholesterol of the media 

and that of the intracellular without adding apoA-Ι. The total effluxes were the difference 

between 3H-choline-phospholipid or 14C-cholesterol of the media and intracellular site after 

adding apoA-Ι. Specific apoA-Ι  dependent effluxes of 3H-choline-phospholipid or 14C-

cholesterol were the difference between both the total effluxes and basal effluxes. Specific 

apoA-Ι dependent effluxes of 3H-choline-phospholipid or 14C-cholesterol in HepG2 cell line 

or human macrophage were considered as 100% and compared by that after incubation with 

hormonal incubation. Three independent experiments with triplicate measurements have been 

performed in both HepG2 cells and human macrophages. 

3.6 Western Blot 

20 µg postnuclear lysates were loaded into a 7.5% Tris-HCL SDS gels (Bio-RAD) in sample 

buffer without boiling. Following electrophoresis, the gel was transferred to a nitrocellulose 

membrane at 30 volt overnight. Blocking of the membrane was performed with 5 % dry milk 

in TBS-T (Tris-buffered-saline with 0.1% tween 20) for 1 h. The membrane was washed with 

TBS-T for 5 min, probed with anti-ABCA1 polyclonal antibody 1:500 (from Novus 

Biologicals) for 1 h at room temperature. The membrane was washed with TBS-T three times 

for 10 min each, incubated with donkey antirabbit secondry antibody (Amersham) at 1:2000 

in 3% milk in TBS-T for 1 h and washed with TBS-T 3 times, 10 min each. After final 

washing with TBS-T, a chemiluminescent reagent (Pierce) was added to the membrane and 

finally exposed to X-ray film for one minute (Drobnik et al, 2002). 
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3.7 Data analysis 

The Sequence Detector Software SDS 2.0 (Applied Biosystems) was used for data analysis. 

The first step was to generate an amplification plot for every sample, which showed ∆Rn on 

the y axis (where Rn is the fluorescence emission intensity of the reporter dye normalized to a 

passive reference, and ∆Rn is the Rn of an unreacted sample minus the Rn value of the 

reaction) against the cycle number, displayed on the x axis. From each amplification plot, a 

threshold cycle (Ct) value was calculated, which is defined as the cycle at which a statistically 

significant increase in ∆Rn is first detected and is displayed in the graph as the intercept point 

of the amplification curve with the threshold. The threshold is automatically calculated by 

SDS as the 10-fold SD of Rn in the first 15 cycles. The obtained Ct values were then exported 

to a Microsoft Excel spreadsheet for further analysis.  

The next step was to construct calibration curve plots, using Microsoft Excel as recommended 

in User Bulletin 2 for the ABI Prism 7700 Sequence Detection System (Applied Biosystems), 

showing Ct values on the y axis and the logarithm of the input amount of cDNA (equivalent 

to the amount of total RNA) on the x axis.  

All human ABC transporters were subsequently measured in the different human tissues, and 

the obtained Ct values were used to calculate the initial input amount. Thereafter the results 

were normalized to the endogenous control, 18 S-ribosomol RNA (18SrRNA).  

In the last step, we compared the expression of each individual ABC transporter in the 

complete tissue panel. Therefore, for each ABC transporter, the normalized amount of 

expression in the tissue that showed the lowest expression was used as a calibrator (set to 1), 

and the remaining tissue samples were displayed as fold changes (Langmann et al, 2003). 



Results 

 39

4. Results 
 
4.1 Cholesterol and choline-phospholipid effluxes in human macrophages and HepG2 

cells. 

In order to analyse cellular effluxes of cholesterol and choline-phospholipid effluxes, cells 

were pulsed with 14C-cholesterol and 3H-choline-phospholipid and chased with apoA-Ι for 

specific efflux. In vitro differentiated human macrophages, one steroid or non-steroid 

hormone was added.  

Estrogen (100 nM for 36h) increased specific apoA-Ι dependent cholesterol and choline 

phospholipid effluxes (235% + 6.4% p<0.05 and 185% + 6.6% p<0.05 respectively), 

Progesterone (1 µM for 60h) had the same but less extend influence on specific apoA-Ι 

dependent cholesterol and choline phospholipid effluxes (193% + 8.8% p<0.05 and 155% + 

15.9% p<0.05 respectively). Hydrocortisone (1 µg/ml media for 24 h) significantly inhibited 

specific apoA-Ι dependent cholesterol efflux (74% + 6%) (tab. 2-A and B) and (Fig. 4A).  

In contrast, some of Non-steroid hormones as Thyroxin (T3; 10 nM for 24h) significantly 

inhibited specific apoA-Ι dependent cholesterol and choline phospholipid effluxes (67% + 

5.5% and 88% + 2.2 respectively) and glucagon (5 nM for 8h) also significantly decreased 

specific apoA-Ι dependent cholesterol and choline phospholipid effluxes (44% + 9.8% and 

34% + 20.3% respectively). Human insulin (150 nM for 18h) augmented specific apoA-Ι 

dependent cholesterol and choline-phospholipid effluxes (235% + 10.2% p<0.05 and 194% + 

28.1% p<0.05 respectively) (tab.2-C and D) and (fig.4B). 
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Table (2):- Effect of steroid and nonsteroid hormones on ApoA-1 dependent lipid 
effluxes:- 
Influences of steroid hormones on basal, total and specific ApoA-1 dependent cholesterol (3-
A, C) and phospholipids effluxes (3-B, D) in human macrophage were enumerated after 
stimulation with steroid hormones (3-A, C) ‘‘β-estradiol (100 nM for 36 h), progesterone (1 
uM for 60 h), androgen (1 uM for 60 h), dexamethasone (10-7M for 16 h) and hydrocortisone 
(1ug/ml for 24 h)’’ and non steroid hormones(3-B,D) ‘‘LH (5 ug for 16 h), somatostatin (2 
ug/ml for 18 h), thyroxin (10 nM for 24 h), glucagon (5 nM for 8 h), insulin (100 nM for 18 h) 
and leptin (500 ng for 24 h)’’. Data were expressed as mean value in %, SD from three 
independent experiments. Specific ApoA-1 cholesterol and phospholipids effluxes of each 
experiment (Exp.1-3) were expressed in %, mean of the three experiments +SD. * symbol 
means significant (P≤0.05).  
 
 
 
Fig.4-A 

 
Fig.4-B 
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Fig.4. Effect of steroid and non steroid hormones on ApoA-1 dependent lipid effluxes in 
macrophages.           
Influences of steroid hormones (fig.1-A) and non steroid hormones (fig.1-B) on specific 
ApoA-1 dependent cholesterol (black) and phospholpids effluxes (grey) in human 
macrophage were drawn in columns, vertical bars indicated SD, and the horizontal line 
passing through 100 % represented the specific ApoA-1 lipid effluxes without hormonal 
stimulation.  
 

 

In HepG2 cells, 36 h incubation of β-estradiol (100 nM) in these cells decreased specific 

apoA-Ι dependent choline-phospholipid efflux (65% + 5.2% p<0.05). Androgen (1uM for 60 

h) could lower the specific apoA-Ι dependent cholesterol efflux to less extend (85% + 6.2% p 

<0.05). Dexamethasone (10–7 M for 16 h) also supressed the specific apoA-Ι dependent 

cholesterol and choline-phospholipid effluxes (49% + 7.3% p <0.05 and 42% + 3.8% p <0.05  

respectively) (tab.2 A-B) and (fig.5A).  

18 h incubation of 150 nM human insulin in HepG2 cells increased the specific apoA-Ι 

dependent cholesterol and choline-phospholipid effluxes (274% + 12.8%  p <0.05 and 255% 

+ 17.6% p <0.05 respectively), whereas thyroxin (T3; 10 nM for 24 h) had the opposite 

influence (74% + 5.4% p <0.05 and 57% + 7.1  p <0.05 respectively). Both LH (5 ug/ml 

media for 16 h) and somatostatin (2 ug/ml media for 18 h) significantly increased specific 

apoA-Ι dependent choline-phospholipid effluxes to 211% + 5.4% and 261% + 31.4% 

respectively (tab.2 C-D) and (fig.5B). 
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Table (3):- Effect of steroid hormones and nonsteroid hormones on ApoA-1 dependent 
lipid effluxes:- 
Influences of steroid hormones on basal, total and specific ApoA-1 dependent cholesterol (4-
A, C) and phospholpids effluxes (4-B, D) in HepG2 cells were enumerated after stimulation 
with steroid hormones (4-A, C) ‘‘β-estradiol (100 nM for 36 h.), progesterone (1 uM for 60 
h.), androgen (1 uM for 60 h.), dexamethasone (10-7 M for 16 h) and hydrocortisone (1 ug/ml 
for 24 h)’’ and non steroid hormones(4-B,D) ‘‘LH (5 ug for 16 h), somatostatin (2 ug/ml for 18 
h), thyroxin (10 nM for 24 h), glucagon (5 nM for 8 h), insulin (100 nM for 18 h) and leptin 
(500 ng for 24 h)’’. Data were expressed as mean value in %, SD from three independent 
experiments. Specific ApoA-1 cholesterol and phospholipids effluxes of each experiment 
(Exp.1-3) were expressed in % mean of the three experiments and SD. * symbol means 
significant (P≤ 0.05).  
 
 
Fig.5-A 

 
Fig.5-B 
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Fig.5. Effect of steroid and non steroid hormones on ApoA-1 dependent lipid effluxes in 
HepG2 cells:- 
Influences of steroid hormones (fig.2-A) and non steroid hormones (fig.2-B) on specific 
ApoA-1 dependent cholesterol (black) and phospholpids effluxes (grey) in HepG2 cells were 
drawn in columns, vertical bars indicated SD, and the horizontal line passing through 100 % 
represented the specific ApoA-1 lipid effluxes without hormonal stimulation.  
 

4.2 ABC transporter gene expression in human macrophages. 

Since many of ABC transporters had been implicated in cellular lipid effluxes maily ABCA1, 

ABCA7, ABCG1, ABCG5 and ABCG8. All known ABC transporters mRNA expression 

were analysed by RT-PCR (Taqman) and these results were shown in table 4-A and B. To 

differentiate the expression levels of different ABC transporters, ∆CT values were calculated. 

The ranking of gene expression was as follow: ∆CT ≤12 indicated high expression, ∆CT 12-

16 indicated intermediate expression, ∆CT 16-20 indicated low expression, and ∆CT >20 

indicated no expression. The values of expression were calculated in % and considered as < 

50% as a downregulation and > 150% as an upregulation. 

Following M-CSF dependent differentiation of human monocytes to macrophages, ABCA1, 

ABCB2, ABCB3, ABCB6, ABCB8, ABCB9, ABCB10, ABCC1, ABCC3, ABCC5, ABCD1, 

ABCF2 and ABCF3 were highly expressed. ABCA2, ABCA3, ABCA5, ABCA7, ABCA12, 

ABCB1, ABCB4, ABCC4, ABCC6, ABCC7, ABCC9, ABCC10, ABCD2, ABCD3, ABCD4, 

ABCE1, ABCF1, ABCG1, and ABCG2 displayed intermediate expression. ABCA6, 

ABCA10, and ABCC2 were low expressed and the remaining ABC transporters were not 

expressed in these human cells. 

In differentiated human macrophages, various hormones were added to the culture media 

according to the same conditions used for testing cholesterol and choline phospholipid 

effluxes. β-estradiol (100 nM for 36h) (Boffelli et al, 1999 and Kanamori et al, 2000) 

upregulated ABCC7 (172%), ABCC9 (155%), ABCD2 (164%), and ABCD3 (154%). 

Progesterone (1 µM for 60h) (Lemoisson et al, 1994) upregulated ABCA1 (276%), ABCA12 

(202%), ABCB1 (159%), ABCB4 (154%), ABCC2 (180%), ABCC6 (193%), ABCC7 
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(250%), ABCC9 (244%), and ABCG1 (230%), and downregulated ABCA2 (40%) and 

ABCA7 (46%). Dihydrotestosterone (1 µM for 60h) (Faredin and Toth, 1975) upregulated 

ABCC10 (183%) and downregulated ABCA5 (29%), ABCA6 (7%), ABCA12 (3%), ABCB1 

(7%), ABCB4 (49%), ABCC6 (13%), ABCC7 (12%), ABCD2 (6%), and ABCG2 (27%). 

Dexamethasone (10-7 M for 16h) (Dutta et al, 1989) upregulated ABCA3 (191%), ABCC7 

(190%), ABCC9 (163%), ABCD2 (152.7%), and ABCG1 (159%), but downregulated 

ABCA2 (31%), ABCA10 (31%), ABCB3 (45%), ABCC1 (39%), ABCC3 (30%). 

Hydrocortisone (1 µg/ml for 24h) (Carr et al, 1981) upregulated ABCA3 (162%), and ABCC7 

(188%), but downregulated ABCA2 (48%), ABCA5 (49%), ABCA6 (50%), ABCA10 (46%), 

ABCA12 (27%), ABCB1 (17%), ABCB3 (43%), ABCB4 (50%), ABCB8 (48%), ABCB9 

(27%), ABCC6 (29%), ABCC9 (35%),  ABCD2 (37%), and ABCG2 (30%) (Tab 4-A).     

Triiodothyroxin (10 nM for 24h) (Stange et al, 1981) upregulated ABCC1 (156%), ABCC10 

(174%), ABCD3 (220%), and ABCE1 (232%), but downregulated ABCA6 (27%), ABCA12 

(8%), ABCB1 (16%), ABCB6 (8%), ABCC6 (15%), ABCC7 (14%), ABCC9 (13%), ABCD2 

(26%), ABCG1 (31%), and ABCG2 (44%). Luteinizing hormone (LH) (5 µg/ml for 16h) 

(Magoffin, and Erickson, 1988) upregulated ABCB2 (185%), ABCB3 (220%), ABCB6 

(171%), ABCC1 (247%), ABCC3 (185%), ABCC10 (203%), ABCD3 (237%), and ABCE1 

(293%), but downregulated ABCA12 (47%), ABCB1 (42%), and ABCC6 (50%). 

Somatostatin (2 µg/ml for 18h) (Stange, et al, 1984) upregulated ABCA6 (185%), ABCA12 

(156%), ABCB4 (150%), ABCC6 (170%), ABCC7 (226%), ABCC9 (218%), ABCC10 

(150%), ABCD2 (181%), ABCD3 (220%), and ABCE1 (199%). Leptin (500ng/ml for 24h) 

(Berti et al, 1997) upregulated ABCA3 (206%), ABCA6 (230%), ABCA12 (217%), ABCB1 

(174%), ABCB4 (155%), ABCB9 (156%), ABCC3 (150%), ABCC5 (153%), and ABCG2 

(217%). Human recombinant insulin (100 nM for 18h) (Anne, et al 2000) upregulated ABCE1 

(284%), and ABCG2 (330%) but downregulated ABCA5 (36%), ABCA6 (35%), ABCA12 
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(9%), ABCB1 (13%), ABCC6 (18%), ABCC7 (12%), and ABCD2 (15%).  Glucagon (5 nM 

for 8h) (Anne et al, 2000) downregulated most of ABC transporters (Tab.4-B).  

4.3 ABC transporter gene expression in HepG2 cells. 

In HepG2 cells, ABCA1, ABCB1, ABCB2, ABCB3, ABCB4, ABCB10, ABCB11, ABCC1, 

ABCC2, ABCC5, ABCD3, ABCE1, ABCF1, ABCF2, ABCF3, ABCG5 and ABCG8 were 

highly expressed. ABCA2, ABCA3, ABCA5, ABCA7, ABCC3, ABCC4, ABCC6, ABCC10, 

ABCD1, ABCD4, ABCG1 and ABCG2 were intermediate expression. ABCA6, ABCA12, 

ABCC7, and ABCD2 were low expressed and the remaining ABC transporters were not 

expressed in these cells (table 4-C&D). 

In HepG2 cells, one hormone was added to the culture media and incubated by the same 

concentration and for the same duration tested cholesterol and choline phospholipid effluxes.  

β-estradiol upregulated ABCA6 (151%), ABCA12 (177%), ABCB1 (209%), ABCB11 

(409%), ABCC7 (198%), ABCD1 (154%), ABCD2 (308%), ABCD3 (189%), ABCE1 

(181%), ABCF1 (294%), ABCF2 (191%), ABCF3 (170%), and ABCG1 (155%) but 

downregulated ABCA2 (25%), ABCA7 (46.1%), and ABCG8 (40%). Progesterone 

upregulated ABCB11 (287%) and ABCC7 (180%). Androgen upregulated ABCB11 (229%). 

Dexamethasone upregulated ABCA3 (216%), and ABCB11 (647%), and ABCC7 (237%), but 

downregulated ABCA5 (36%), ABCA6 (10%), ABCA7 (32%), ABCA12 (16%), ABCB1 

(50%), ABCB3 (40%), ABCB4 (46%), ABCC1 (34%), ABCC5 (37%), ABCD2 (9%), 

ABCD4 (43%), ABCG1 (35%), ABCG5 (45%), and ABCG8 (42%). Hydrocortisone 

upregulated ABCA6 (235%), ABCA12 (156%), ABCC7 (203%), ABCC10 (262%), and 

ABCD2 (197%), but downregulated ABCB3 (44%) (Tab.4-C). 

Triiodothronine upregulated ABCB11 (356%), ABCC6 (158%), ABCD3 (203%), and 

ABCG5 (163%), but downregulated ABCA3 (31%), ABCA6 (31%), ABCA7 (35%), ABCB3 

(43%), ABCC7 (36%), ABCD2 (48%), and ABCG1 (48%). LH upregulated ABCA5 (428%), 

ABCA6 (250%), ABCA7 (271%), ABCA12 (810%), ABCB2 (178%), ABCB3 (251%), 
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ABCB4 (197%), ABCB11 (332%), ABCC10 (172%), ABCD2 (561%), ABCD3 (191%), 

ABCD4 (150%), and ABCG8 (264%), but downregulated ABCB10 (20%). Somatostatin 

upregulated ABCA2 (187%), ABCA3 (187%), ABCA5 (415%), ABCA6 (243%), ABCA7 

(364%), ABCA12 (600%), ABCB2 (186%), ABCB3 (270%), ABCB4 (205%), ABCB11 

(422%), ABCC6 (201%), ABCC7 (739%), ABCC10 (165%), ABCD2 (513%), ABCD3 

(158%), ABCD4 (189%), ABCF1 (171%), ABCF3 (197%), ABCG1 (197%), and ABCG8 

(236%), and downregulated ABCB10 (30%). Leptin upregulated ABCA6 (192%), ABCA7 

(181%), ABCC6 (171%), ABCC7 (181%), ABCC10 (177%), ABCD2 (174%), ABCD3 

(169%), ABCD4 (161%), and ABCF1 (156%). Human recombinant insulin upregulated 

ABCA1 (197%), ABCB1 (150%), ABCB3 (150%), ABCA4 (151%), ABCB11 (392%), 

ABCC1 (244%), ABCC4 (290%), ABCC5 (170%), ABCD1 (204%), ABCD3 (303%), 

ABCF1 (224%), ABCF2 (191%), and ABCF3 (246%), but downregulated ABCA6 (30%), 

ABCC6 (45%), ABCC7 (9%), ABCC10 (4%), and ABCD2 (12%). Glucagon upregulated 

ABCA12 (160%), ABCB3 (193%), ABCB11 (393%), ABCC1 (221%), ABCC4 (204%), 

ABCD3 (412%), ABCE1 (183%), ABCF1 (212%), ABCF2 (158%), ABCF3 (157%), and 

ABCG2 (157%),  downregulated ABCB4 (50%), ABCB10 (15%), ABCC6 (45%), ABCC7 

(9%), and ABCC10 (4%) (Tab. 4-D).  
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Table (4-A) 

 Mac. β-estradiol Progesteron Androgen Dexamethasone Hydrocortison 
Conc. 100nM 1uM 1uM 10-7M 1ug/ml 
Dur. 

 
36h 60h 60h 16h 24h 

 CT ∆CT Value% CT ∆CT Value% CT ∆CT Value% CT ∆CT Value 
% CT ∆CT Value 

% CT ∆CT 

ABCA1 24.2 9.8 74% 25.1 10.7 276% 22.7 8.3 101% 24.2 9.8 100% 24.2 9.8 79.0% 24.6 10.2 

ABCA2 29.8 15.4 89.7% 30 15.6 40.2% 31.1 16.7 100.7% 29.8 15.4 30.8% 31.5 17.1 48.3% 30.9 16.5 

ABCA3 28.4 14.0 104.4% 28 13.6 127.8% 27.7 13.3 69% 28.6 14.2 190.5% 28.2 13.8 161.6% ne ne 

ABCA4 ne ne ne ne ne ne ne ne ne ne ne ne Ne ne ne ne ne 

ABCA5 28.2 13.8 100.6% 28.2 13.8 80% 28.5 14.1 28.7% 30 15.6 65.7% 28.8 14.4 48.6% 29.2 14.8 

ABCA6 30.5 16.1 120% 30.4 16 141.3% 30.2 15.8 7% 34.5 20.1 140.6% 30.2 15.8 49.9% 31.7 17.3 

ABCA7 27.3 12.9 80% 27.6 13.2 45.8% 28.4 14 58.1% 28.1 13.7 101.3% 27.3 12.9 131.5% 26.9 12.5 

ABCA8 Ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne 

ABCA9 Ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne 

ABCA10 33.9 19.5 81.4% 34.2 19.8 57% 34.7 20.3 58% 34.7 20.3 31.1% ne ne 46% ne ne 

ABCA12 28 13.6 144.7% 27.6 13.2 202% 27.1 12.7 2.6% 33.4 19 144.5% 27.6 13.2 27.1% 30 15.6 

ABCB1 29.3 14.9 117% 29.1 14.7 159% 28.7 14.3 7% 32.9 18.5 96% 29.3 14.9 17% 31.7 17.3 

ABCB2 22.4 8 84% 22.7 8.3 98% 22.5 8.1 80% 22.8 8.4 67% 23.2 8.8 58% 23.2 8.8 

ABCB3 23.2 8.8 78% 23.6 9.2 71% 23.7 9.3 67% 23.8 9.4 45% 24.4 10 43% 24.4 10.0 

ABCB4 28.5 14.1 107% 28.4 14 154% 27.5 13.1 49% 30.2 15.8 118% 28.1 13.7 50% 30.1 15.7 

ABCB5 Ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne 

ABCB6 26.3 11.9 63% 27.1 12.7 60% 27.2 12.8 79% 26.9 12.5 60% 27.2 12.8 64% 27.1 12.7 

ABCB7 Ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne Ne 

ABCB8 23.6 9.2 99% 23.6 9.2 61% 24.3 9.9 77% 23.9 9.5 51% 24.5 10.1 48% 24.6 10.2 

ABCB9 25.6 11.2 110% 25.4 11 90% 25.7 11.3 51% 25.5 11.1 65% 26.1 11.7 27% 27.4 13 

ABCB10 25.1 10.7 79% 25.5 11.1 55% 26 11.6 89% 25.3 10.9 52% 26.1 11.7 60% 25.8 11.4 

ABCB11 Ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne 

ABCC1 24.7 10.3 102.8% 24.6 10.2 113.6% 24.5 10.1 92.2% 24.8 10.4 39.4% 26 11.6 68.5% 25.2 10.8 

ABCC2 32.5 18.1 89.1% 32.7 18.3 179.8% 31.7 17.3 92.8% 32.6 18.2 75% 32.9 18.5 117.5% 32.3 17.9 

ABCC3 25.7 11.3 104.9% 25.6 11.2 116% 25.5 11.1 134.3% 25.3 10.9 30% 27.4 13 69.2% 26.2 11.8 

ABCC4 27.2 12.8 106.9% 27.1 12.7 132% 26.8 12.4 77.2% 27.6 13.2 78.3% 27.6 13.2 67% 27.8 13.4 

ABCC5 25 10.6 74.1% 25.4 11 111.1% 24.9 10.5 125.1% 24,7 10.3 72.5% 25.5 11.1 116.5% 24.8 10.4 

ABCC6 28.3 13.9 124.6% 28 13.6 192.6% 27.4 13 12.6% 31.3 16.9 118.9% 28.1 13.7 28.9% 30.1 15.7 

ABCC7 30.3 15.9 171.8% 29.5 15.1 249.8% 29 14.6 11.6% 33.4 19 190% 29.4 15 188% 29.5 15.1 

ABCC8 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne Ne 

ABCC9 29.3 14.9 154.6% 28.7 14.3 243.5% 28 13.6 99% 29.3 14.9 162.8% 28.6 14.2 34.1% 30.9 16.5 

ABCC10 28.9 14.5 87.9% 29.1 14.7 110.9% 28.8 14.4 183% 28 13.6 60.2% 29.6 15.2 112.6% 28.7 14.3 

ABCD1 26.1 11.7 108.3% 26 11.6 144.4% 25.6 11.2 130.6% 25.7 11.3 57.1% 26.9 12.5 54.6% 27 12.6 

ABCD2 29.3 14.9 164% 28.6 14.2 142.4% 28.8 14.4 6.2% 33.3 18.9 152.7% 28.7 14.3 36.7% 30.8 16.4 

ABCD3 29.7 15.3 154% 29.1 14.7 139.2% 29.3 14.9 132.8% 29.3 14.9 91% 29.8 15.4 141.7% 29.2 14.8 

ABCD4 27.1 12.7 92% 27.2 12.8 135.4% 26.7 12.3 124.7% 26.8 12.4 79.3% 27.4 13 82.7% 27.4 13 

ABCE1 28.3 13.9 112% 28.1 13.7 71.4% 28.8 14.4 121.7% 28 13.6 51.8% 29.3 14.9 52.7% 29.2 14.8 

ABCF1 27.8 13.4 67% 28.4 14 92% 28 13.6 72% 28.3 13.9 67% 28.4 14 61% 28.5 14.1 

ABCF2 26.4 12 55% 27.2 12.8 58% 27.2 12.8 87% 26.6 12.2 63% 27.1 12.7 52% 27.3 12.9 

ABCF3 24.5 10.1 73% 25 10.6 96% 24.6 10.2 77% 25 10.6 73% 25 10.6 51% 25.6 11.2 

ABCG1 27.5 13.1 93% 27.6 13.2 230.4% 26.4 12 93% 27.6 13.2 159% 26.8 12.4 96% 27.5 13.1 

ABCG2 28.5 14.1 110% 28.3 13.9 127% 28.1 13.7 27% 30.4 16 102% 28.5 14.1 30% 30.2 15.8 

ABCG4 Ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne Ne 

ABCG5 Ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne Ne 

ABCG8 Ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne Ne 
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Table (4-B) 

  Mac. L H. Somatostatin Triiodothyroxin Glucagon  Insulin  Leptin 
Conc. 5ug/ml 2ug/ml 10nM 5nM 100nM 500ng/ml 
Dur.   16h 18h 24h 8h 18h 24h 

  CT ∆CT 
Value 
% CT ∆CT

Value 
% CT ∆CT 

Value 
% CT ∆CT 

Value 
% CT ∆CT

Value 
% CT ∆CT 

Value 
% CT ∆CT

ABCA1 24.2 9.8 95% 24.3 9.9 83% 24.5 10.1 70% 24.8 10.4 40% 25.6 11.2 85% 24.5 10.1 90% 24.4 10

ABCA2 29.8 15.4 75.3% 30.2 15.8 64% 30.4 16 92.6 29.9 15.5 49% 30.8 16.4 97.6% 29.8 15.4 92.8% 29.9 15.5

ABCA3 28.4 14 74% 28.5 14.1 146% 27.5 13.1 59% 28.8 14.4 68% 28.6 14.2 ne 28 13.6 206.4 27 12.6

ABCA4 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCA5 28.2 13.8 88% 28.3 13.9 93% 28.3 13.9 54.6% 29 14.6 41% 29.5 15.1 35.6% 29.1 14.7 111.2% 28 13.6

ABCA6 30.5 16.1 78% 31 16.6 185% 29.8 15.4 27% 32.5 18.1 42.5% 31.9 17.5 34.5% 31.9 17.5 229.9% 29.5 15.1

ABCA7 27.3 12.9 60% 28 13.6 78% 27.6 13.2 88% 27.5 13.1 35.4% 28.4 14 119.6% 27.1 12.7 60.1% 28 13.6

ABCA8 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne

ABCA9 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne

ABCA10 33.9 19.5 108% 33.8 19.4 99% 33.9 19.5 84.8% 34.1 19.7 49% 34.9 20.5 95% 33.9 19.5 118% 33.6 19.2

ABCA12 28 13.6 46.5% 29.2 14.8 156.1% 27.5 13.1 7.9% 31.8 17.4 41% 29.4 15 8.6% 31.6 17.2 216.8% 27 12.6

ABCB1 29.3 14.9 42% 30.4 16 123% 29 14.6 16.1% 31.8 17.4 27% 31 16.6 13% 32.1 17.7 174% 28.5 14.1

ABCB2 22.4 8 185% 21.5 7.1 112% 22.3 7.9 84.5% 22.7 8.3 38% 23.8 9.4 89% 22.6 8.2 102% 22.4 8

ABCB3 23.2 8.8 220% 22.1 7.7 106% 23.1 8.7 97.9% 23.2 8.8 43% 24.4 10 84% 23.5 9.1 102% 23.2 8.8

ABCB4 28.5 14.1 58% 29.8 15.4 150% 27.4 13 105.4% 28.4 14 56% 29.5 15.1 68% 29.4 15 155% 27.5 13.1

ABCB5 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne

ABCB6 26.3 11.9 171% 25.6 11.2 94% 26.5 12.1 8.2% 34.8 20.4 40% 27.7 13.3 91% 26.6 12.2 73% 26.9 12.5
ABCB7 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne

ABCB8 23.6 9.2 102% 23.5 9.1 101% 23.6 9.2 107.7% 23,5 9.1 44% 24.8 10.4 97% 23.6 9.2 114% 23.4 9

ABCB9 25.6 11.2 69% 26.1 11.7 120% 25.2 10.8 85.1% 25.7 11.3 39% 26.9 12.5 66% 26.1 11.7 156% 24.9 10.5

ABCB10 25.1 10.7 97% 25.2 10.8 80% 25.4 11 104.8% 25 10.6 39% 26.5 12.1 101% 25.1 10.7 71% 25.6 11.2
ABCB11 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne

ABCC1 24.7 10.3 246.8% 23.4 9 110.7% 24.5 10.1 156.4% 24.1 9.7 39.3% 26 11.6 ne 24.5 10.1 121.5% 24.4 10
ABCC2 32.5 18.1 122.3% 32.2 17.8 126.7% 32.2 17.8 98.4% 32.6 18.2 55.9% 33.4 19 ne 32.3 17.9 107.3% 32.4 18

ABCC3 25.7 11.3 184.6% 24.8 10.4 91.7% 25.8 11.4 133.2% 25.3 10.9 40.8% 27 12.6 135% 25.3 10.9 149.5% 24.4 10

ABCC4 27.2 12.8 65.4% 27.8 13.4 124.1% 26.9 12.5 96.8% 27.3 12.9 49.3% 28.2 13.8 98.7% 27.2 12.8 103.2% 27.2 12.8

ABCC5 25 10.6 68% 25.6 11.2 92.7% 25.1 10.7 105.4% 24.9 10.5 43.7% 26.2 11.8 ne 24.6 10.2 152.7% 24.5 10.1

ABCC6 28.3 13.9 50% 29.3 14.9 169.8% 27.5 13.1 14.6% 31.1 16.7 44.2% 29.5 15.1 17.5% 30.8 16.4 122% 28 13.6

ABCC7 30.3 15.9 61.4% 31 16.6 225.6% 29.1 14.7 13.8% 33.2 18.8 52.3% 31.2 16.8 11.8% 33.4 19 124.1% 29.7 15.3

ABCC8 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne Ne

ABCC9 29.3 14.9 66.9% 29.9 15.5 218.2% 28.2 13.8 13.1% 32.3 17.9 54.1% 30.2 15.8 111% 29.1 18.1 123.5% 28.9 14.5

ABCC10 28.9 14.5 203.3% 27.9 13.5 150.3% 28.3 13.9 174% 28.1 13.7 62.7% 29.6 15.2 115.5 28.7 14.3 142.3% 28.6 14.2

ABCD1 26.1 11.7 112% 25.9 11.5 101.4% 26.1 11.7 108.4% 26 11.6 29.2% 27.9 13.5 105.6 26 11.6 107.3% 26 11.7

ABCD2 29.3 14.9 56.1% 30.1 15.7 181.2% 28.5 14.1 26.2% 31.2 16.8 44.4% 30.5 16.1 14.7% 32.1 17.7 103.2% 29.3 14.9

ABCD3 29.7 15.3 236.9% 28.5 14.1 219.7% 28.6 14.2 220% 28.6 14.2 38% 31.1 16.7 ne 28.7 14.3 122% 29.5 15.1

ABCD4 27.1 12.7 106.3% 27 12.6 119.1% 26.9 12.5 101.3% 27.1 12.7 32.5% 28.7 14.3 100% 27.1 12.7 124.1% 26.8 12.4

ABCE1 28.3 13.9 292.8% 26.8 12.4 199.4% 27.3 12.9 232.2% 27.1 12.7 69.2% 28.8 14.4 284% 26.8 12.4 132.5% 27.9 13.5

ABCF1 27.8 13.4 136% 27.4 13 87% 28 13.6 96.1% 27.9 13.5 39% 29.1 14.7 94% 27.9 13.5 86% 28.1 13.7
ABCF2 26.4 12 114% 26.2 11.8 86% 26.6 12.2 107.1% 26.3 11.9 43% 27.6 13.2 112% 26.2 11.8 88% 26.6 12.2

ABCF3 24.5 10.1 110% 24.4 10 94% 24.7 10.3 93% 24.7 10.3 59% 25.4 11 96% 24.6 10.2 103% 24.5 10.1

ABCG1 27.5 13.1 81% 27.8 13.4 114% 27.3 12.9 31.4% 29.1 14.7 42% 28.7 14.3 137% 28.7 14.3 148% 26.9 12.5

ABCG2 28.5 14.1 62% 29.2 14.8 141% 28 13.6 44.2% 29.7 15.3 41% 29.7 15.3 330% 29.6 15.2 217% 27.4 13

ABCG4 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne
ABCG5 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne

ABCG8 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne
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Table (4-C) 

  HepG2 Estrogen  Progesteron  Androgen  Dexamethasone  Hydrocortison 
Conc. 100nM 1uM 1uM 10-7M 1ug/ml 
Dur.   36h 60h 60h 16h 24h 
  CT ∆CT Value% CT ∆CT Value% CT ∆CT Value% CT ∆CT Value% CT ∆CT Value% CT ∆CT
ABCA1 24.6 9.8 71.2% 25.2 10.4 111.3% 24.5 9.7 102.9% 24.6 9.8 64.6% 25.5 10.7 103.5% 24.6 9.8
ABCA2 29.2 14.4 25% 31.8 17 93.9% 29.2 14.4 97.1% 29.2 14.4 69.4% 31.4 16.6 131.8% 28.8 14
ABCA3 28.4 13.6 114.4% 28.3 13.5 94.8% 28.4 13.6 91% 28.4 13.6 215.6% 31.6 16.8 131.8% 28.2 13.4
ABCA4 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCA5 27.6 12.8 97.5% 27.7 12.9 101.7% 27.6 12.8 91.8% 27.7 12.9 36% 29.5 14.7 101.3% 27.6 12.8
ABCA6 32.9 18.1 151.1% 32.3 17.5 131.3% 32.3 17.5 83% 33.1 18.3 9.5% 36.5 21.7 234.5% 31.1 16.3
ABCA7 28 13.2 46.1% 29.3 14.5 91% 28.2 13.4 90.1% 28.2 13.4 31.6% 29.8 15 113.7% 27.8 13
ABCA8 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne Ne
ABCA9 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne Ne
ABCA10 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne Ne
ABCA12 31.9 17.1 177% 29.8 15 115.5% 30.5 15.7 64.2% 31.7 16.9 15.7% 34 19.2 156.2% 29.9 15.1
ABCB1 24.7 9.9 209% 23.4 8.6 105.1% 24.7 9.9 115.4% 24 9.2 49.8% 25.7 10.9 82% 25 10.2
ABCB2 24.4 9.6 95% 24.9 10.1 85.2% 24.3 9.5 106.6% 24.3 9.5 54% 25.8 11 19% 24.1 9.3
ABCB3 24.3 9.5 108% 24.2 9.4 81.2% 24.6 9.8 91.7% 24.5 9.7 40% 24.2 9.4 44% 24.4 9.6
ABCB4 24.6 9.8 131% 25 10.2 104.2% 24.6 9.8 114.1% 24.8 10 45.5% 25.3 10.5 117% 24.8 10
ABCB5 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCB6 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCB7 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCB8 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCB9 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCB10 26.4 11.6 138% 26.1 11.3 108% 26.3 11.5 108% 26.3 11.5 70% 27.2 12.4 92% 26.6 11.8
ABCB11 26.3 11.5 409% 25.7 10.9 286.9% 25.5 10.7 229.4% 25.5 10.7 646.8% 25.8 11 115.8% 26.3 11.5
ABCC1 24.8 10 144% 24.6 9.8 94.2% 24.7 9.9 108.7% 24.7 9.9 34.1% 27.2 12.4 80% 25 10.2
ABCC2 24 9.2 85% 24.5 9.7 110% 23.8 9 102.4% 24 9.2 79.3% 24.7 9.9 82.4% 24.5 9.7
ABCC3 26.9 12.1 64% 28.6 13.8 107.7% 26.7 11.9 100.7% 26.9 12.1 70.6% 28.4 13.6 92.5% 27.1 12.3
ABCC4 28.1 13.3 125% 27.1 12.3 102.4% 28.1 13.3 101.7% 28.1 13.3 112.2% 27.5 12.7 90% 28.2 13.4
ABCC5 26.3 11.5 127% 25.6 10.8 90% 26.6 11.8 100.2% 26.3 11.5 37% 27.7 12.9 92.2% 26.6 11.8
ABCC6 27 12.2 59% 28.3 13.5 119.7% 26.5 11.7 99.6% 27 12.2 93.7% 27.8 13 89% 27.3 12.5
ABCC7 32.7 17.9 198% 32.1 17.3 179.9% 32.2 17.4 52.6% 34 19.2 237% 31.8 17 202.9% 32.1 17.3
ABCC8 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCC9 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCC10 28.1 13.3 137% 27.8 13 88% 28.2 13.4 79.4% 28.3 13.5 72.7% 28.4 13.6 262.3% 26.1 11.3
ABCD1 27.1 12.3 154% 26.6 11.8 98.2% 27.1 12.3 86.1% 27.2 12.4 117.4% 26.9 12.1 75.8% 27.3 12.5
ABCD2 32.1 17.3 308% 31.4 16.6 119.9% 32.2 17.4 69.1% 33.5 18.7 9.4% ne ne 197% 31.1 16.3
ABCD3 25.7 10.9 189% 25.6 10.8 101.8% 25.7 10.9 89.6% 26.3 11.5 138% 25.7 10.9 76.3% 26.6 11.8
ABCD4 27.1 12.3 111% 27 12.2 98.7% 27.2 12.4 87.7% 27.3 12.5 43.2% 28.2 13.4 87.9% 27.2 12.4
ABCE1 24.5 9.7 181% 24.4 9.6 94.4% 24.6 9.8 97.5% 24,6 9,8 89.1% 24.7 9.9 65.4% 25.7 10.9
ABCF1 26.4 11.6 294% 25.7 10.9 98.2% 26.4 11.6 76.8% 26.8 12 67.2% 27.2 12.4 55.3% 28 13.2
ABCF2 25.4 10.6 191% 25.2 10.4 87.9% 25.6 10.8 80.1% 26.3 11.5 81% 26.3 11.5 63.5% 26.5 11.7
ABCF3 25.9 11.1 170% 25.7 10.9 84% 25.9 11.1 83.4% 25.9 11.1 111% 25.8 11 75.8% 26.1 11.3
ABCG1 28.8 14 155% 26.8 12 90.9% 29.3 14.5 67.8% 31.2 16.4 34.5% 32 17.2 75.8% 30.4 15.6
ABCG2 29.6 14.8 66% 30 15.2 117.1% 29.3 14.5 119.2% 29.3 14.5 80.8% 29.8 15 91% 29.7 14.9
ABCG4 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCG5 25.3 10.5 52% 26.7 11.9 108.6% 25.1 10.3 92% 25.4 10.6 45% 26.8 12 101.4% 25.3 10.5
ABCG8 25.9 11.1 40% 27.5 12.7 66.6% 26.3 11.5 67.9% 26.3 11.5 42.1% 27.5 12.7 111.6% 25.9 11.1
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Table (4-D) 

 

  HepG2 L H. Somatostatin Triiodothyroxin Glucagon Insulin Leptin 
Conc. 5ug/ml 2ug/ml 10nM 5nM 100nM 500ng/ml 
Dur.   16h 18h 24h 8h 18h 24h 

  CT ∆CT 
Value 
% CT ∆CT 

Value 
% CT ∆CT

Value 
% CT ∆CT 

Value 
% CT ∆CT

Value 
% CT ∆CT 

Value 
% CT ∆CT

ABCA1 24.6 9.8 114.3% 24 9.6 118.1% 24.3 9.5 105.7% 24.6 9.8 109% 24.6 9.8 197% 23.4 8.6 104.9% 24.6 9.8

ABCA2 29.2 14.4 120.7% 29 14.2 187% 28.6 13.8 85.2% 29.3 14.5 106% 29.1 14.3 83.5% 29.3 14.5 115.2% 29 14.2

ABCA3 28.4 13.6 120.7% 28.3 13.5 187% 28.1 13.3 31.2% 30.2 15.4 62% 28.6 13.8 92.8% 28.4 13.6 115.2 28.3 13.5

ABCA4 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne
ABCA5 27.6 12.8 428% 26 11.2 415% 26 11.2 55.4% 28.4 13.6 142% 27.4 12.6 99.3% 27.6 12.8 132.6% 27.5 12.7

ABCA6 32.9 18.1 250.2% 30.6 15.8 243.4% 30.6 15.8 31.4% 34.6 19.8 145.1% 32.3 17.5 30.4% 34.7 19.9 191.6% 31.3 16.5

ABCA7 28 13.2 271% 25 10.5 364% 24.1 9.3 35% 29.7 14.9 97.5% 28 13.2 60.9% 28.9 14.1 180.7% 26.1 11.3

ABCA8 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne

ABCA9 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne

ABCA10 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne

ABCA12 31.9 17.1 810.1% 27 11.9 600.3% 27.1 12.3 56.7% 31.6 16.8 160% 29.9 15.1 97.4% 31.9 17.1 121.5% 30.4 15.6

ABCB1 24.7 9.9 104.2% 25 9.9 130.2% 23.9 9.1 62.5% 25.2 10.4 109.3% 24.7 9.9 150% 23.7 8.9 105.8% 24.7 9.9

ABCB2 24.4 9.6 177.9% 23 7.9 185.9% 22.6 7.8 56.3% 25.8 11 140% 23.8 9 109.2% 24.2 9.4 102.7% 24.4 9.6

ABCB3 24.3 9.5 251% 22 6.8 270% 21.4 6.6 43% 24.2 9.4 193% 22 7.2 149.6% 22.3 7.5 112.6% 24 9.2

ABCB4 24.6 9.8 197.3% 24 9.1 204.7% 23.8 9 114.6% 24.9 10.1 49,9% 25.2 10.4 151% 25.2 10.4 122.6% 24.9 10.1

ABCB5 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne

ABCB6 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne
ABCB7 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne

ABCB8 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne

ABCB9 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne

ABCB10 26.4 11.6 20% 28 13.4 30% 27.9 13.1 99% 26.4 11.6 15% 29.1 14.3 94% 26.6 11.8 114% 26.2 11.4
ABCB11 26.3 11.5 332.4% 26 11.1 422% 24.8 10 355.6% 25.9 11.1 393% 25.8 11 392% 25.8 11 138.4% 25.3 10.5

ABCC1 24.8 10 79.2% 25 10.5 56% 26.3 11.5 63.5% 26 11.2 221.2% 24.3 9.5 244.3% 24.2 9.4 117.9% 24.7 9.9
ABCC2 24 9.2 75.2% 25 9.9 96% 24.3 9.5 125.7% 23.5 8.7 117.3% 23.7 8.9 140.2% 23 8.2 124.9% 23.5 8.7

ABCC3 26.9 12.1 95.2% 27 12.3 82% 27.5 12.7 75.9% 28 13.2 81.2% 27.7 12.9 74.6% 28.1 13.3 101.9% 26.9 12.1

ABCC4 28.1 13.3 63.2% 29 14.1 60.9% 28.9 14.1 122.2% 27.1 12.3 204% 26.2 11.4 289.4% 25.6 10.8 105.9% 28 13.2

ABCC5 26.3 11.5 110.7% 26 11.2 128.7% 25.4 10.6 75.6% 26.7 11.9 102.6% 26.3 11.5 169.7% 24.9 10.1 117.3% 25.9 11.1

ABCC6 27 12.2 124.6% 27 12 200.8% 23.9 9.1 157.9% 26.2 11.4 44.6% 28 13.2 44.6% 28 13.2 170.9% 24.6 9.8

ABCC7 32.7 17.9 103% 29 13.8 738.8% 29 14.2 35.7% ne ne 8.7% n.e. n.e. 8.7% n.e. n.e. 181.1% 32.3 17.5

ABCC8 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne

ABCC9 ne ne ne ne ne ne ne ne ne ne ne n.e. n.e. n.e. n.e. n.e. n.e. ne ne ne

ABCC10 28.1 13.3 172.1% 26 11.6 165.4% 26.3 11.5 62.1% 28.5 13.7 3.7% 30.3 15.5 3.7% 30.3 15.5 177.3% 26.5 11.7

ABCD1 27.1 12.3 115.3% 27 12.1 126.6% 26.8 12 98% 27.1 12.3 130.4% 26.8 12 204% 25.9 11.1 108.8% 27 12.2

ABCD2 32.1 17.3 560.6% 29 14.1 513.2% 29 14.2 47.6% ne ne 115.4% 32.2 17.4 11.6% n.e. n.e. 174.1% 31.0 16.2

ABCD3 25.7 10.9 190.7% 26 10.8 157.5% 25.6 10.8 202.6% 25.6 10.8 411.5% 24.4 9.6 303.1% 24.6 9.8 168.6% 25.6 10.8

ABCD4 27.1 12.3 150.4% 27 12.1 188.7% 26.5 11.7 56.8% 28 13.2 84.7% 27.3 12.5 81.9% 27.3 12.5 160.7% 26.8 12

ABCE1 24.5 9.7 115.3% 25 9.8 126.5% 24.6 9.8 108.8% 24.5 9.7 182.6% 24.4 9.6 59.2% 26.1 11.3 138.2% 24.5 9.7

ABCF1 26.4 11.6 115.3% 27 11.7 170.6% 25.9 11.1 65.5% 27.2 12.4 211.7% 25.8 11 223.5% 25.8 11 155.7% 26 11.2
ABCF2 25.4 10.6 115.3% 26 10.7 124.7% 25.5 10.7 73.7% 26.7 11.9 158.2% 25.3 10.5 190.8% 25.2 10.4 131% 25.3 10.5

ABCF3 25.9 11.1 115.3% 26 11 197.4% 25.4 10.6 107% 25.9 11.1 156.9% 25.8 11 245.7% 24.8 10 99.9% 25.9 11.1

ABCG1 28.8 14 115.3% 28 13 197.4% 25.7 10.9 48% 32.8 18 117.4% 27.8 13 90.5% 32.3 17.5 99.9% 28.8 14

ABCG2 29.6 14.8 102.8% 30 14.8 96.5% 29.7 14.9 65.5% 30 15.2 156.5% 28.8 14 124.9% 29 14.2 85.2% 29.8 15

ABCG4 ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne ne
ABCG5 25.3 10.5 130.9% 25 10.2 137.2% 24.9 10.1 162.5% 24.9 10.1 63% 26.6 11.8 87.2% 25.9 11.1 108.1% 25.1 10.3

ABCG8 25.9 11.1 263.5% 25 9.9 235.8% 24.9 10.1 76.3% 26.1 11.3 76.5% 26.1 11.3 121.2% 25.9 11.1 115.3% 25.9 11.1
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Table (4):- Effect of Steroid hormones on ABC transporters mRNA expression:- 
ABC gene expression has been measured in human macrophage (3-A,B) and HepG2 cells (3-
C,D) following stimulation with steroid hormones (3-A,C) ‘‘β-estradiol (100 nM for 36 h), 
progesterone (1 uM for 60 h.), androgen (1 uM for 60 h), dexamethasone(10-7

 M for 16 h) and 
hydrocortisone (1 ug/ml for 24 h)’’ or with non steroid hormones(3-B,D) ‘‘LH (5 ug for 16 h), 
somatostatin (2 ug/ml for 18 h), thyroxin (10 nM for 24 h), glucagon (5 nM for 8 h), human 
recombinant insulin (100 nM for 18 h) and leptin (500 ng for 24 h)’’. ABC transporters 
mRNA levels were determined by TaqMan real time RT-PCR. Values are presented as mean 
of triplicated value in % comparing with non stimulated cells, CT and ∆CT (it is the 
difference between CT of ABC and 18SrRNA as  a reference gene). Upregulated gene 
expressions (≥ 150%) were coloured their background with red and downregulated gene 
expressions (≤ 50%) were coloured their background with blue.   
 

4.4 Effect of insulin concentration on ABCA1 in human macrophages.       

Different insulin hormone concentrations (25nM, 50nM, 100nM, 150nM, 200nM, 250nM and 

300nM) were added to human macrophages cultured in Macrophage-SFM medium with M-

CSF and incubated for 3 h. Insulin upregulated ABCA1 gene expression at 25 nM (153% + 

3.8%), 50 nM (164% + 8.4%), 100 nM (195% + 8.9%) and 250 nM (156% + 4%) with its 

maximum influence at 150 nM insulin concentration (217% + 6.7%) (Tab. 5) and (Fig.6).  

 

 

 

 

 

 

 

Table (5):- Concentration schedule of insulin on ABCA1. 
Human macrophages were incubated with variable insulin concentrations (25, 50, 100, 150, 
200, 250, 300 nM) for 3h. ABCA1 mRNA levels were determined by TaqMan real time RT-
PCR. Values are presented as mean of triplicate value in % compared to HepG2 cells and SD. 
* symbol means significant (P≤ 0.05). 

ABCA1 
Insulin Conc. Value % SD % 

25nM 153.4* 3.8 
50nM 164.2* 8.4 
100nM 195.3* 8.9 
150nM 216.8* 6.7 
200nM 186.9 11.9 
250nM 156.4* 4 
300nM 169.4 15.8 
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Fig. 6. ABCA1- expression as a function of insulin concentration.       
% of relative of ABCA1 mRNA expressions in human macrophages had been drawn in 
column form and vertical bars indicated SD, were compaired in different insulin concentration 
(0, 25, 50, 100, 150, 200, 250, and 300 nM) for 3 h insulin incubation. 
 
4.5 Time kinetic of insulin on ABCA1, ABCG1 and ABCA7 genes expression in 
macrophages.  
 
The insulin impact on ABCA1, ABCG1 and ABCA7 genes expressions in a time dependent 

manner was measured by TaqMan real time RT-PCR and the effect on ABCA1 protein 

expression was detected by western blot. 150 nM insulin was added to macrophages and 

incubated for 1h, 2h, 3h, 4h, 6h, 12h, and 24 h. Insulin significantly upregulated ABCA1 

mRNA expression in a time dependent manner starting after the first hour (141% + 8.8%) and 

peaking after 3h (220% + 11.8%). A similar significant upregulation could be seen with 

ABCG1 which started after the first hour (135% + 5.6%) and peaked after 3 h of insulin 

incubation (231% + 14.5%). ABCA7 was not affected by human insulin (Tab.6 and Fig.7). To 

compare the influence of insulin on ABCA1 gene expression with ABCA1 protein expression, 

western blot was done in a time schedule (1h, 2h, 3h, 4h, 6h, 12h, 24h and 48h) of insulin 

incubation (150 nM) in human macrophages. We found that, high ABCA1 protein expression 

observed after 1 h and extended until 12 h with maximum intenisty of the band after 4 h of 
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insulin stimulation. However, glucagon supressed ABCA1 protein expression (the ABCA1 

protein band was only faint). ABCA1 protein expression is standardized by β-actin (Fig.8). 

 

 

 

 

 

 

 
Table (6):- Time kinetic of insulin on ABCA1, ABCG1 and ABCA7 gene expressions.    
Expression of ABCA1, ABCG1 and ABCA7 genes has been measured in human macrophage 
following stimulation with insulin (150nM) for 1, 2, 3, 4, 6, 12, 24 h. ABC mRNA levels 
were determined by TaqMan real time RT-PCR values are presented as mean of triplicate 
values in % comparing with non and SD. * symbol means significant (P≤ 0.05). 
 

    
 
Fig. 7. Time kinetic of insulin on ABCA1, ABAG1 and ABCA7 gene expressions in 
            macrophages. 
% of relative of ABCA1 (•), ABCG1 (ο) and ABCA7 (▼) mRNA expressions in human 
macrophage had been drawn in linear scale with vertical bars indicated SD in relation to 
duration of insulin stimulation (150 nM) for 1, 2, 3, 4, 6, 12, 24 h. 

ABCA1 ABCG1 ABCA7 Insulin 
Duration     Value % SD %  Value % SD %   Value %  SD % 

1h. 141.4* 8.8 135.4* 5.6 82.4* 3.6 
2h. 173.6* 9.4 185.4* 10.4 98.5 6.7 
3h. 220.3* 11.8 231.1* 14.5 80.7* 3.9 
4h. 135.7* 7.8 134.7* 8.3 82.9 7.8 
6h. 105.4 10.9 123.9* 6.9 86.9 6.1 
12h. 95.8 11.2 125* 16.3 78* 2.9 
24h. 89.6* 5.9 111.4* 12.5 123.1* 5.1 
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Fig.8. Kinetics of insulin on ABCA1 protein expression in macrophages.  
Variable duration (1, 2, 3, 4, 6, 12, 24, and 48 h) of 150nM insulin or glucagon (5 nM for 8 h) 
on ABCA1 protein expression of human macrophage was tested by western blot. β-actin was 
used as a standard protein. 
 
4.6 Time kinetic of insulin on ABCA1 gene expression in HepG2 cells. 
 
To study the impact of human recombinant insulin on ABC transporter expression in HepG2 

cells, insulin (150 nM)is added to the cells for 1h, 2h, 3h, 4h, 6h, 9h, 12h, 18h and 24h. 

ABCA1 gene expression was detected by TaqMan real time PCR. Insulin upregulated 

ABCA1 gene expression which started after 1h (124% + 2.1%) and peaked after 3 h (150.3% 

+ 10.5%) then gradually declined and then peaked again after 18 hours (230% +15.9%). So 

ABCA1 gene expression in HepG2 cells had two peaks with insulin after 3 and 18 h of insulin 

incubation (Tab.7 and Fig.9). 

 

 

 

 

 

 

 

 

 

 

Table (7):- Time kinetic of insulin on ABCA1 gene expression.  
Expression of ABCA1 gene has been measured in HepG2 cells following incubation with 
insulin (150 nM) for 1, 2, 3, 4, 6, 9, 12, 18, 24 h. ABCA1 mRNA levels were determined by 
TaqMan real time RT-PCR values are presented as mean of triplicate values in % comparing 
with HepG2 cells and SD. * symbol means significant (P≤ 0.05). 
 

ABCA1 Insulin 
Duration Value % SD %

1h. 123.5* 2.1 
2h. 139.3* 7.2 
3h. 150.3* 10.5 
4h. 138.4* 7.9 
6h. 132.1 11.2 
9h. 185.3 12.4 
12h. 197.6* 10.1 
18h. 230.3* 15.9 
24h. 128.9* 7.4 
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Fig. 9. Kinetics of insulin on ABCA1 gene expression in HepG2 cells.    
% of relative of ABCA1 (•) mRNA expressions in HepG2 cells had been drawn in linear 
scale with vertical bars indicate SD in relation to duration of insulin stimulation (150 nM) for 
1, 2, 3, 4, 6, 9, 12, 18, 24 h. 
 
 
4.7 Insulin stimulates ABCA1 expression via the MAP kinase pathway. 

Since the insulin pathway could involve different signalling mechanisms (Shephered et al, 

1995), the influence of specific kinase inhibitors on insulin dependent ABCA1 expression was 

analyzed. Human macrophages were preincubated for 1 h with Wortmannin (PI-3 kinase 

inhibitor; 100 nM) or PD98059 (selective MEK-1/2 inhibitor; 25µM) before stimulation with 

human insulin (150 nM) for additional 3 hours (Lida el al, 2001). Insulin significantly 

upregulated ABCA1 mRNA expression (250% + 14.4%). Pretreatment with PD98059 

completely abolished insulin ABCA1 gene induction, while Wortmannin did not antagonize 

upregulation of ABCA1 gene expression by insulin (Tab.8) and (Fig.10). This can also be 

observed at the protein level, where the insulin augmented ABCA1 protein expression which 

was strongly abolished by pretreatment with PD98059 in human macrophages but not 
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antagonized by pretreatment with Wortmannin. ABCA1 protein expression is standardized by 

β-actin protein expression (Fig.11). 

 

 
 
 
 
 
 
 
 
 
 
 
Table (8):- Role of insulin with or without kinase inhibitors on ABCA1 gene expression. 
Human macrophages were preincubated with the specific PI-3 kinase inhibitor Wortmannin 
(100 nM) or the MAP kinase inhibitor PD98059 (25 µM) for 1h before incubation with 
insulin for further 3h. ABCA1 mRNA expression was determined by TaqMan real time RT-
PCR. Values are presented as mean of triplicated values in % compaired with macrophages 
and SD. * symbol means significant (P≤ 0.05).  
 
 

 
 
Fig. 10. Role of insulin with or without kinase inhibitors on ABCA1 gene expression. 
% of relative of ABCA1 mRNA expressions in human macrophage had been drawn in 
column form with vertical bars indicate SD in relation to insulin (150 nM for 3h; first column) 
and with preincubated in Wortmannin (100nM for 1h; second column) or PD98059 (25µM 
for 1h; third column).  

ABCA1 

  Value% SD% 

Macrophage+insulin 250* 14.4 

Macrophage+insulin 
+Wortmann 245* 12.3 

Macrophage+insulin+
PD98059 91* 7.2 
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Fig.11. Role of insulin with or without kinase inhibitors on ABCA1 protein expression. 
Insulin (150nM for 3 hours) influence on ABCA1 protein expression of human macrophages 
was tested by western blot, compared with that after preincubated with the specific MAP 
kinase inhibitor (PD98059; 25 µM) or PI-3 kinase inhibitor (wortmannin; 100 nM) for 1h 
before insulin incubation. β-actin was used as a standard protein. 
 
4.8 Time kinetic of  β-estradiol on ABCA1 and ABCG1 genes expression in human 
macrophages.  
 
100 nM β-estradiol is added to macrophages and incubated for 1, 3, 6, 12, 18, 24, and 36 h. β-

estradiol upregulated ABCA1 gene expression significantly in a time dependent manner, 

which started after the first hour (175% + 7% p <0.05) untill the twelfth hour of incubation 

(131.7% +2.8% p <0.05) and peaked after the third hour of incubation (218% + 8.9% p <0.05) 

(Tab.9 and Fig.12). A similar upregulation could be seen for ABCG1 which started after the 

first hour (235% + 13.6% p <0.05) till the twenty fourth hour of incubation (137% + 9.3% p 

<0.05) and peaked after the third hour of estrogen incubation (465% + 18.5% p <0.05). 

ABCA7 was not affected by estrogen (Tab.9) and (Fig.12).  
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ABCA1 ABCG1 ABCA7 β-estradiol   
duration  Value % SD % Value % SD % Value % SD % 

1h. 174.6* 7 234.5* 13.6 98.3* 3.4 
3h. 218.4* 8.9 465.1* 15.2 96.4* 5.2 
6h. 147.1* 5.1 195.8* 12.8 84.8 12.1 
12h. 131.7* 2.8 141.8* 6.8 88.7* 3.1 
18h. 102 15.7 132.6 5.2 81.9* 4.9 
24h. 124.2* 7.1 136.5* 2.8 95 6.8 
36h. 73.6* 7.8 93.4 3.4 80.1 7.1 

 
Table (9):- Time kinetic of β-estradiol on ABCA1, ABCG1 and ABCA7 genes 
expression.    
Expression of ABCA1, ABCG1 and ABCA7 genes had been measured in human 
macrophages following stimulation with β-estradiol (100nM) for 1, 3, 6, 12, 18, 24 and 36 h. 
ABC mRNA levels were determined by TaqMan real time RT-PCR. Values are presented as 
mean of triplicated values in % compared with and SD. * symbol means significant (P≤ 0.05).  
 
 
 

  
 
 
Fig. 12. Time kinetic of β-estradiol on ABCA1, ABCG1 and ABCA7 genes expression.    
% of relative of ABCA1 (•), ABCG1 (ο) and ABCA7 (▼) mRNA expressions in human 
macrophage had been drawn in linear scale with vertical bars indicate SD in relation to 
variable duration of β-estradiol (100nM) incubation. 
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4.9 Insulin effects on transcription factor gene expression. 

Since ABCA1 gene expression had been shown to be controlled by nuclear receptors and 

SCAN domain containing proteins. PPARs, KAP1, SDP1, ZNF202, ZNF195 and LXR-α 

mRNA expressions were determined after insulin incubation in a time kinetic schedule in 

human derived macrophages.  PPARγ was upregulated early by insulin from the first hour 

(146% + 17.3% P <0.05) till the fourth hour of incubation (153% + 13.3% P <0.05) with a 

peak after the third hour of insulin incubation (217% + 14.4% P <0.05) (Tab.10-A) and 

(Fig.13). Also with SDP1, insulin had upregulated SDP1 which was started from the first hour 

(156% + 5.3% P <0.05) till the fourth hour (171% + 5.6% P <0.05) with a maximum 

influence after the third hour (243% + 17.4% P <0.05) (Tab.10-A) and (Fig.13). Insulin had 

also upregulated LXR-α which was started from the first hour (156% + 3.5% P <0.05) till the 

fourth hour (180% + 15.5% P <0.05) with a peak after the third hour of insulin incubation 

(214% + 6.1% P <0.05) (Tab.10-B) and (Fig.13). Insulin had no influences on mRNA 

expression of PPARα, PPARδ, ZNF195, ZNF202 or KAP1. 

 
PPAR-α PPAR-γ PPAR -δ SDP1 

  Value % SD % Value % SD % Value % SD % Value % SD % 

1h. 104.6* 6.7 145.7* 17.3 94.5* 6.9 155.5* 5.3 

2h. 109.1* 5.8 185.8 12.3 102.5* 3.1 191.2* 11.5 

3h. 98.5* 6.1 217.3* 14.4 103.3* 3.2 243.1* 17.4 

4h. 105.8* 3.2 152.6* 13.3 101.4* 2.1 171.4* 5.6 

6h. 95.9* 4.5 130.5* 17.2 99.5* 4.2 139.6 18.7 

9h. 92.5* 5.8 112.4* 19.2 81.6* 1.9 102.5 19.9 

18h. 96.4 6.2 104.3* 11.2 93.6 4 106.3* 6.6 

24h. 91.4 5.5 95.3* 10.2 91.8 6.9 88.7 12.4 
                                 Table (10-A)  
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KAP1 ZNF202 ZNF195 LXR-α 

  Value% SD % Value% SD % Value% SD % Value% SD % 

1h. 106.4* 3.4 104.4 3.9 105.5* 4.3 155.6* 3.5 

2h. 95.7* 2.2 104.3* 1.9 99.4 12 193.8* 8.3 

3h. 99.2 8.9 99.3* 2.9 88.3* 3.9 241.3* 6.1 

4h. 115.1 7.9 91.4 3.8 100.3* 1.1 180.4* 15.5 

6h. 95.6* 2.1 112.5* 2.7 95.4* 4.5 130.4* 6.1 

9h. 100.2* 2.3 100.3 4.1 99.3 15 112.3* 9.1 

18h. 82.5* 1.3 99.3* 3.8 120.5* 5.1 108.3 12.3 

24h. 96.6* 3.5 85.3* 1.9 112.5* 2.2 99.3 9.1 
                                 Table (10-B) 
 
Table(10):- PPARs, SDP1, KAP-1, ZNF202, ZNF195, and LXR-α  genes expression in 
macrophages modulated by insulin.     
Human macrophages were incubated in the presence of 150nM insulin for variable duration 
(1, 2, 3, 4, 6, 9, 18, and 24 h). PPARα, PPARβ, PPARγ, and SDP1 (Tab 10-A) and KAP-1, 
ZNF202, ZNF195, and LXR-α  (Tab 10-B) mRNA expression levels were determined by 
TaqMan real time RT-PCR. Values are presented as mean oftriplicat valuein % compaired 
with macrophages and SD. * symbol means significant (P≤ 0.05).  
 

 
Fig. 13. PPARγ, SDP1, and LXR-α genes expression in macrophages modulated by 
insulin.    
 % of relative of PPARγ (•), SDP1 (ο), and LXR-α (▼) mRNA expressions in human 
macrophages has been drawn in linear scale with vertical bars indicate SD in relation to 
variable duration of insulin (150 nM; for 1, 2, 3, 4, 6, 9, 18, and 24 h) incubation in 
macrophages. 
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4.10 ERs mRNA expression in macrophages and HepG2 cells 

 
 ERs mRNA in both HepG2 and human macrophages derived monocytes were relative 

quantificated by TaqMan real time PCR. ER-β was high expressed (∆CT 9.5) in macrophages 

but ER-α was not expressed (∆CT >20). In HepG2 cells, both ER-α and ER-β were low 

expressed (∆CT 17.3 and 18.1 respectively) (Tab.11). 

 

 

 

 

Table (11):- ERs (ER-α and ER-β) gene expressions.    
ERs gene expressions in both human monocytes derived macrophages and HepG2 cells were 
tested by TaqMan real time PCR. Values were presented as CT and ∆ CT 
 

 

ER-alpha ER-Beta 
Type of cells CT ∆CT CT ∆CT
Macrophage ne. ne. 24.3 9.5 

HepG2 31.7 17.3 32.9 18.1
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5. Discussion 
 
Hypercholesterolemia is one of the modifiable risk factors underlying ischemic heart disease, 

currently it is the most important cause of premature death in the world (Murray and Lopez, 

1997). We have choosen human macrophages derived monocytes which are the source of 

foam cells responsible of pathogenesis of atherosclerosis and HepG2 cells because the liver 

cells are the major site for cholesterol biosynthesis and catabolism by converting cholesterol 

to bile acids (Shinji-Yokoyama, 2000) to examine the expression of their ABC transporters 

and their ApoA-1 dependent cholesterol and phospholipids effluxes. 

In our results, ABC transporters expressions were tested in both human macrophages and 

HepG2 cells. ABCA4 is an active retinoid-PE-complex transporter, which displays strongly 

the lipid activated ATPase activity in photoreceptor cells (Ahn and Molday, 2000). ABCA4 

was not expressed in both macrophages and HepG2 cells. ABCG5 and ABCG8 which 

implicat in the efflux of dietary sterols mainly plant sterols like sitosterol from intestinal 

epithelial cells back into the gut lumen and from the liver to the bile duct (Salen et al, 1970). 

Both ABCG5 and ABCG8 were not expressed in human macrophages but highly expressed in 

HepG2 cells. 

ABCB1 can transport a variety of lipophilic cytotoxic drugs, cholesterol, phosphocholine, 

apoE and β-amyloid (Lavie et al, 2001 and Maggio-Price et al, 2002). It was higher expressed 

in HepG2 than in macrophage, and this could explain its protective action against excess 

accumulation of toxic substances by active translocation in both cell types. ABCB4 was 

highly expressed in HepG2 than macrophages because of its bile canalicular 

phosphatidylcholine translocase activity (De Vree et al, 1998). ABCB6, ABCB7, ABCB8, 

and ABCB10 are all targeted to the inner mitochondrial membrane and play a role in cellular 

iron homeostasis by transporting iron-sulfur (Fe/S) cluster precursor proteins (Zhang et al, 

2000). Thez were mostly not expressed in HepG2 except ABCB10 and they were highly 

expressed in human macrophages except ABCB7. This may indicated that one or more of 
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these genes has a specific tissue location to prevent excess intracellular iron accumulation. 

ABCB7 was not expressed in either HepG2 or human macrophages, so, it had no role in 

preventing haemosiderosis in macrophages or liver tissue. ABCB11 which was the major bile 

salt transporter in mammalian liver (Strautnieks et al, 1998) was highly expressed in HepG2 

but not in macrophages. ABCC1 (at the hepatic basolateral membrane domain), ABCC2 (at 

the hepatic apical membrane domain) and ABCC6 (at the hepatic lateral membrane domain) 

were highly expressed in HepG2 cell line and higher than macrophages especially ABCC2. 

Abnormalities in lipid and lipoprotein metabolism (eg, increased LDL and decreased HDL 

levels) and atherosclerotic cardiovascular disease are commonly seen in post-menopausal 

women have been attributed to the increased coronary heart disease related mortality in these 

individuals (Sacks and Walsh, 1994). Low estrogen level is the primary metabolic alteration 

observed in postmenopausal women, so, endogenous concentrations of estrogen may have 

fundamental roles in lipoprotein mediated development of atherosclerotic coronary heart 

disease. Estrogen therapy significantly elevates plasma HDL levels and decreased LDL 

concentrations, suggesting a favourable influence on the plasma lipoprotein profile (Lobb, 

1991). In postmenopausal women under estrogen therapy, they have a lower relative risk of 

coronary events than postmenopausal women who are not on estrogen therapy (Grady el al, 

1992). The mechanism by which estrogen raises HDL levels is not clearly understood. Plasma 

turnover studies (kinetic) have indicated that estrogen increasing HDL level is solely due to 

the increase in the production rate of HDL-protein and apoA-I (Walsh el al, 1994). Contrary 

to these observations, it is shown that the treatment of premenopausal women with estradiol 

results in decreased hepatic lipase activity and suggests that estrogen may increase HDL level 

by decreasing the rate of HDL catabolism (Tikkanen el al, 1982). Srivastava found that 

estrogen antiatherogenic actions may occur via ABCA1-mediated pathway, and circulating 

HDL levels may influence expression of ABCA1 in mice (Srivastava 2002).  
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In our study, it was clearly evident that β-estradiol (100nM for 36h) has increased the specific 

apoA-Ι dependent cholesterol and choline-phospholipid effluxes, these actions were mediated 

through upregulation of ABCA1 mRNA which started after 1h up to 12 h with a maximum 

effect after 3h of β-estradiol incubation. In addition an upregulation of ABCG1 mRNA started 

after 1h and continuous for 24h with a maximum action after 3h could be seen. No influence 

of β-estradiol on ABCA7 mRNA expression in human macrophages derived monocytes was 

detected. This rapid genomic onset of action is not only with ABCA1 gene expression but 

also with vascular endothelial growth factor (VEGF) mRNA in the rodent uterus (Hyder et al, 

2000), Fibulin-3 mRNA (FIBN3; Blackburn et al, 2003) and WISP-2 (mRNA and protein was 

overexpressed in preneoplastic and cancerous cells of human breast) (Banerjee et al, 2003). In 

HepG2 cells, β-estradiol slightly increased specific apoA-Ι dependent cholesterol efflux after 

36h incubation and this presumbly mediated through upregulation of ABCG1 mRNA but not 

ABCA1 or ABCA7 mRNA. The later was downregulated by β-estradiol (100nM for 36h) 

which presumably decreased apoA-Ι dependent phospholipid efflux in HepG2 cells. 

Kramer and Wray found that ER-β mRNA and ER-β protein are detected in primary 

monocyte-derived macrophages and the changes in estrogen concentration do not alter 

estrogen receptor levels suggesting a lack of autoregulation (Kramer and Wray, 2002). 

Western analysis with the ER-α antibody produces no signal in the macrophages (Vegeto et 

al, 2001). In mice, estrogen, despite lowering the levels of HDL, can upregulat the hepatic 

ABCA1 mRNA (1.5-2 folds), and in the absence of ER-alpha, ER-beta could compensate for 

ER-alpha in ER-alpha-/- hepatic mice (Srivastava, 2002). These results are co-ordinated with 

our results where ER-β mRNA was expressed in human macrophage derived monocytes, but 

not ER-α mRNA. In HepG2 cells, both ER-α and ER-β mRNA were very low expressed, and 

this can explain the less positive action of estradiol on HepG2 cells than macrophages. By 

these results, we could say that positive effects of β-estradiol on specific apoA-Ι dependent 
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cholesterol and choline-phospholipid effluxes and ABCA1 and ABCG1 genes expression 

were mediated through ER-β.  

From our results, both β-estradiol and progesteron in macrophages had an upregulation action 

on ABCC9 which could regulate insulin release (Bryan and Aguilar- Bryan, 1999), so, both 

hormones might have a role in regulation of insulin release. More recently, Jankowski and co-

workers found this relation between increased insulin extraction (C-peptide and insulin) and 

oral contraceptives (Jankowski et al, 2004). Also, hyperinsulinemia is caused by the direct 

stimulation of progestins on insulin secretion from the pancreas (Belaisch and Hommais-

loufrani, 1988).  

Estrogen and progesterone have been shown to have impact on cystic fibrosis transmembrane 

conductance regulator (CFTR) gene expression, tone of smooth muscle in the airways, 

immune response, exhaled nitric oxide and cytology in the tracheobronchial epithelium 

(Johannesson et al, 2000). Estrogen can inhibit chloride secretion in intact monolayers lung 

alveoli by its action on CFTR chloride channel activity (Ashvani et al, 2000). Progesterone 

inhibites cAMP-activated chloride-efflux from rabbit acinar cells (Sweezey et al, 1998). 

ABCC7 (CFTR), which is controlled by cAMP and thereby enables ATP binding and 

hydrolysis at the nucleotide binding domains, can in turn control opening and closing of the 

chloride channel (Sheppard and Welsh, 1999). Mutations in ABCC7 (CFTR) cause cystic 

fibrosis by affecting numerous secretion processes. In our results, estradiol and progesterone 

upregulated ABCC7 mRNA expression in both HepG2 and macrophages and this supported 

the effect of estrogen and progesterone on chloride channel and secretion through its influence 

on ABCC7 (CFTR) gene expression.  

ABCD subfamily especially ABCD1 was induced by nuclear hormone receptors (Fourcade et 

al, 2001), estrogen had upregulated ABCD2 and ABCD3 in macrophages and ABCD1, 

ABCD2 and ABCD3 in HepG2 cells. This may explain the role of ERs (especially ER-α) in 

ABCD1 gene expression.    
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From our result, estrogen had an upregulated ABCB1 gene expression especially in HepG2 

cells. Also, progesteron has the same action on ABCB1 especially on human macrophages. 

ABCB1 can cotransport apoE and β-amyloid and thereby may contribute to the etiology of 

Alzheimer´s disease (Maggio-Price et al, 2002). HRT by estrogen and progesteron has to be 

protective against alzheimer disease. Estrogen stimulates nerve growth factors and can 

improve cerebral blood flow in post-menopausal women (Birge, 1996). Estrogen and 

progesteron prevent accumulation of apolipoprotein E4 which is one of the causes of AD 

beside several other factors modifying the neuronal injury leading to alzheimer disease (Birge, 

1996) through upregulation of ABCB1 gene expression. 

Postmenopausal women with hypercholesterolemia under combined oral estrogen and 

progesteron therapy can result in a more cardioprotective lipoprotein-lipid profile than that 

achieved with either therapy used alone (Darling et al, 1999). Our results indicated that 

progesterone (1µM for 60h.) augmented specific apoA-Ι dependent cholesterol and choline-

phospholipid effluxes, these actions were mediated through upregulating ABCA1 and 

ABCG1 mRNA but had not ABCA7 mRNA expression in human macrophages derived 

monocytes. In HepG2 cells, pregesterone could not influence specific apoA-Ι dependent 

cholesterol and phospholipids effluxes, ABCA1, ABCA7 or ABCG1 gene expression.  

Little is known about the atherogenic potential of testosterone which has frequently been 

made responsible for the gender difference in the onset of coronary heart disease. In clinical 

studies, testosterone is found to exert both beneficial and adverse effects on cardiovascular 

risk factors and vascular function. The increased use of testosterone for treatment of male 

hypogonadism, as a hormone replacement therapy for aging men, and its use in male 

contraception make the issue important of whether exogenous testosterone is pro- or 

antiatherogenic (Von Eckardstein, 1998). The major argument for the putative atherogenicity 

of testosterone is its lowering the high density lipoprotein HDL-cholesterol (Alexandersen et 

al, 1996). Numerous clinical and epidemiological studies have demonstrated the inverse 
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association between HDL cholesterol and the risk of coronary heart disease events (Gordon 

and Rifkind, 1989). Men have considerably lower levels of HDL cholesterol than women. 

Moreover, application of exogenous testosterone leads to a dose-dependent decrease of HDL 

cholesterol, whereas either surgical or chemical castration causes a significant increase of 

HDL cholesterol in men (Whitsel et al, 2001). Testosterone led to a dose dependent 

upregulation of SR-BI mRNA and the protein levels and consequently increased HDL3-

induced cholesterol efflux from macrophages (Langer et al, 2002). A supraphysiological dose 

of testosterone, it can increase the expression of hepatic lipase (HL) in HepG2 cells (Langer et 

al, 2002). Moreover, testosterone has no influence on the expression of apoA-I in HepG2 cells 

and ABCA1 in either HepG2 cells or macrophages and these suggest that testosterone, despite 

lowering HDL cholesterol, intensifies reverse cholesterol transport and thereby exerts an anti-

atherogenic rather than a pro-atherogenic action (Langer et al, 2002). Others suggeste that 

androgen is an atherogenic hormone by increasing human foam cell formation through 

elevating expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular 

adhesion molecule-1 (ICAM-1) but without significant action on LDL or scavenger receptor 

expression (Martin et al, 2003). 

From our data, androgen (1µM for 60h) was observed that it had no significant influence on 

ApoA-1 dependent cholesterol efflux, ABCA1 or ABCG1 mRNA expression in human 

macrophages. In HepG2 cells specific apoA-Ι dependent cholesterol was slightly decreased 

may be due to its downregulation of ABCG1 mRNA but it had no impact on ABCA1 mRNA 

expression. Androgen had an upregulation influence on ABCB11 which was the major bile 

salt transporter in the human liver cells; this may be added to the explanation of 

antiatherogenic action of androgen by excess cholesterol excretion in the bile (Strautnieks et 

al, 1998).  

Thyroid hormones is observed to affect cholesterol metabolism depending on the facts that 

hypercholesterolemia is a useful marker for the diagnosis of hypothyroidism and an indicator 
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for progress in myxdematous patients under thyroxin therapy (Mason et al, 1930). Thyroid 

hormones, T4 and T3, enhance hepatic synthesis of cholesterol (Rossner and Rosenqvist, 

1974), fractional clearance rates of VLDL and LDL particles (Rossner and Rosenqvist, 1974) 

and the hepatic excretion of cholesterol (Miettinen, 1968). In patients with hyperthyroidism, 

the concentrations of HDL cholesterol are generally lower than those in patients with 

hypothyroidism (Scottolini et al. 1980). In vivo study in rodents found that thyroid hormone 

increases the concentrations of apoA-I protein and the corresponding mRNA (Mooradian et 

al, 1996). The same result is observed in human HepG2 cells (Vandenbrouck et al, 1995). Our 

data revealed that thyroxin had a negative lowering influence on ApoA-1 dependent 

cholesterol and phospholipids effluxes in human macrophages and HepG2 cells, these 

influences could be added to explanation of hypercholesterolemic state of hypothyroidism. 

The ApoA-1 dependent cholesterol efflux by thyroxin on macrophages is lower than that of 

HepG2 cells, this was presumbly due to its downregulation of ABCA1 (only in macrophages) 

and ABCG1 (in macrophages and HepG2 cells) genes expressions, these results were 

identical to more recent results from Huuskonen and co-workers (2004) where they found that 

ABCA1 transcriptional activity is suppressed by T3 in primary human fibroblasts through 

competition between TR/RXR and LXR/RXR heterodimers to suppress or activate DR-4 

element of the ABCA1 promoter (Huuskonen et al, 2004). The phospholipids efflux by 

thyroxin on HepG2 cells was lower than that of macrophages; this may be due to more 

prominent downregulation of thyroxin on ABCA7 gene expressions in HepG2 cells. 

Insulin is well known as an anabolic hormone that stimulates the translocation of several 

transporters to the plasma membrane, resulting in reduction in blood glucose. It is also a 

potent growth factor and antiapoptotic factor that can regulate gene expression in various cells 

(Wu et al, 1995). In DM, the cells have low glucose and low ATP levels due to loss of insulin 

action on glycolysis enzymes. The cells can compensate the low ATP yield by excess 

lipolysis and lipid oxidation which lead to excess mitochondrial energy production and 
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mitochondrial exhaustment. This may result in cellular ATP shortage, a process that likely 

enhances the programmed cell death in macrophages. Mitochondrial exhaustment may also 

inhibit mitochondrial 27-OH sterol synthesis and its export from the mitochondrion, a critical 

pathway for LXR activation in response to cellular cholesterol stress (Fu et al, 2001). Since 

deficiency of 27-OH sterol which is the predominant oxysterol in macrophage-derived foam 

cells and atherosclerostic lesions (Brown and Jessup, 1999), may be engaged in the 

pathophysiological mechanism of atherosclerosis associated DM. Ratajczak and co-workers 

found a robust response of insulin on gene expression in a relatively short amount of time 

(Ratajczak et al, 2001). Also Sartipy and Loskutoff base their experiments on the early effects 

of insulin on gene transcription (Sartipy and Loskutoff, 2003). In present study, the rapid 

influence of insulin was clear on ABCA1 and ABCG1 but not ABCA7 gene expressions and 

supported by the longer impact of insulin on ABCA1 protein expression in comparison to its 

gene expression.  

Also, in our study, glucagon had a reverse influence not only on both ABCA1 gene and 

protein expression but also on ABCA7 and ABCG1 genes expression which could explain the 

negative action of glucagon on Apo-A1 dependent cholesterol and phosphocholine effluxes in 

human macrophage cell. 

In Hepatoblastoma cell line (HepG2), ApoA-1 dependent cholesterol and phosphocholine 

effluxes were increased after 18 hours of insulin incubation. These results run barrel with 

insulin upregulation of ABCA1 gene expression after 18h. Considering the time kinetic of 

insulin on ABCA1 gene expression, the results show that 2 peaks of ABCA1 after 3 and 18h. 

ABCA7 was downregulated after 18h of insulin incubation and this can explain the more 

positive augmented action of insulin on ApoA-1 dependent cholesterol efflux than on ApoA-1 

dependent  phosphocholine efflux.  

Sartipy and Loskutoff found that insulin downregulated ABCA1 gene expression in human 

adipocytes after 3 hours insulin incubation by using Affymetrix GeneChips. In our 
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experiments, the data revealed that insulin had upregulation of ABCA1 gene expression in 

human macrophages after 3 hours insulin incubation and in HepG2 cells where ABCA1 gene 

expression has two peaks after 3 and 18 hours of insulin incubation by using TaqManTM real 

time RT-PCR. These opposite results are due to a dose difference used in both experiments 

where Sartipy and Loskutoff used 1000 nM and we used 100 nM insulin concentrations. 

ABCA1 gene expression was significantly upregulated by variable insulin concentration (25 

nM -250 nM), and reached its peak at insulin concentration level 150 nM then gradually 

decreased % of relative ABCA1 gene expression with increasing of insulin concentration 

above 150 nM. This indicates a variable insulin effect depending on both its concentration and 

may be on the type of cells (Sartipy and Loskutoff, 2003).  

Patients with type-1 diabetes have increased cardiovascular risk even with normal or slightly 

elevated levels of HDL-cholesterol (Valabhji et al, 2002). Insulin reduces intracellular fatty 

acids by inhibiting intracellular hormone sensitive lipase enzyme especially in adipocyte with 

reduction of intracellular lipolysis of triglyceride (Anthonsen et al, 1998). Insulin deficiency 

in type 1 diabetes is associated with excess accumulation of fatty acids due to excess 

intracellular lipase. Excess unsaturated fatty acids downregulate the ABCA1 gene expression 

through inhibition of the nuclear transcription factor LXR-α (Costet et al, 2000). Insulin 

deficiency in type 1 diabetes is also associated with excess oxidation of fatty acids and excess 

yield of active acetate which is the source of ketone bodies formation (ketogenesis). 

Ketoacidosis not only suppresses ABCA1 gene expression (by acetoacetate) which is obvious 

in macrophage than in hepatocyte (Uehara, 2002) but also decreases hepatic ApoA-1 gene 

expression (by butyrate) in rat (Haas et al, 2000). Accumulation of butyrate has no action on 

ABCA1 gene expression (Uehara, 2002). 

Insulin upregulated transcription and posttranscription of ABCA1. Transcription activation of 

ABCA1 mRNA by insulin was extended from 2-4 hours with high peak at 150 nM in 

Macrophages cells. Posttranscription activation of ABCA1 protein was extended for a longer 
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time up to 12 hours in Macrophages cells. This in vitro transcription can explained by 

antilipolyic activity of insulin with reduction of intracellular fatty acids especially unsaturated 

fatty acids which downregulate ABCA1 gene expression via suppression of the nuclear 

transcription factor LXR-α (Wang and Oram, 2002) or by its antiketogenic of insulin with 

less acetoacetate which can suppress ABCA1 gene expression (Uehara, 2002). 

Posttranscription effect of insulin on ABCA1 protein expression was related to its 

transcription action on ABCA1 mRNA expression but its prolongation for 12 hours 

presumably due to one of two reasons; first reason may be related to insulin stimulation of 

glycolysis with excess release of ATP which acts as a source of energy for ABCA1. However, 

this explanation can not be accepted because ABCA1 is a very low dependent ATP (Szakacs 

et al, 2001). Second reason may be related to reduction of intracellular unsaturated fatty acids 

which reduce the macrophage ABCA1 protein contents by enhancing its degradation rate 

(Wang and Oram, 2002).  

Insulin induces a cascade of intracellular events in the adipocyte (Whiteman and Birnbaum, 

2003) will start with binding to the α-subunits of its receptor at the cell surface and then 

activating the intrinsic tyrosine kinase activity of the β-subunits of the receptor. This 

interaction leads to phosphorylation of intracellular proteins, including insulin receptor 

substrate-1–4, GAB-1, and Cbl. The insulin signals subsequently diverge through different 

pathways that control distinct functions such as glucose transport, glucose/lipid metabolism, 

cell growth, protein synthesis, and gene expression (Feve et al, 1994). Although, the exact 

molecular mechanism that governs these pathways is not known, some key molecules have 

been identified. For example, numerous studies have confirmed a role for phosphatidyl 

inositol 3-kinase (Balbis et al, 2003) and mitogen-activated protein (MAP) protein kinase 

(O'Brien et al, 2000) in metabolic signalling. However, the actions of insulin on gene 

expression often occur independently of PI(3)K activity and may instead require activation of 

the Ras-Raf-MAPK pathway (Ezure et al, 1997). Since the activation of MAP kinase 
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signalling via insulin has been shown to be a rapid and transient event (O'Brien et al, 2000). 

ABCA1 gene induction by insulin occurs only in a narrow time window. In this study, we 

defined the exact pathway involved in ABCA1 upregulation by preincubation of human 

macrophage with a selective MAP kinase inhibitor for one hour had abolished ABCA1 

upregulation action of insulin, but preincubation of human macrophage PI(3)K inhibitor had 

not abolish this action (Lida el al, 2001). This would prove that ABCA1 upregulation of 

insulin can proceed through MAP-Kinase dependent pathway. Insulin dependent MAP-

Kinase pathway could explain the rapid and transient action of insulin on upregulation of 

ABCA1 gene expression (O'Brien et al, 2000). 

Peroxisome proliferator activated receptors (PPARs) are nuclear receptors that regulate lipid 

and glucose metabolism and cellular differentiation. PPARγ plays an important role in 

adipocyte differentiation and regulation of adipocyte gene expression (Chinetti et al, 2001). 

PPARγ activators induce ABCA1 gene expression through LXR-α which is an oxysterol 

activated nuclear receptor inducing ABCA1- promotor transcription (Chinetti et al, 2001). 

Zhang and co-workers found that MAP kinase is an important mediator of cross-talk between 

insulin signal transduction pathways and PPARγ (Zhang et al, 2001). On the other hand 

Watanabe and co-workers observed that in adipocytes MAP-kinase activation, achieved by 

overexpression of MEK1, can inhibit PPARγ activity (Watanabe et al, 2003). So the relation 

between MAP-kinase and PPARγ is controversial. In our result, insulin upregulated PPARγ 

(but not PPARα or PPARδ) gene expression with a high peak after 3 hours. We had 

demonstrated that insulin stimulated transcriptional activity of PPARγ and ABCA1 mediated 

by MAP kinase in human macrophages. So, there might be a direct relation of MAP-kinase 

activating by insulin hormone and PPARγ gene expression. 

Scan-domain containing protein (SDP1) shares in a high degree of amino acids sequence and 

previously identified as PPARγ2 co-activator in the mouse (Babb and Browen, 2003). Robert 

and Bowen in found that SDP1 bound through its SCAN-domain with non SCAN domain 
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containing protein PPARγ2 at its DNA-binding/ hinge region (Babb, and Bowen, 2003). So, 

SDP1 contributes to a PPARγ2 co-activator. Also SDP1 is shown to disrupt the binding of the 

transcription repressor KAP-1 to ZNF202 in vitro (Porsch-Ozcurumez et al, 2001). In our 

result, insulin has a stimulatory influence on SDP1 gene expression with a peak after 3 hours 

in human macrophage but not on ZNF202 or ZNF195 gene expression. SDP1 had an indirect 

upregulating ABCA1 gene expression through PPARγ2 activation and disrupting KAP-1 

binding to ZNF202. ZNF202 mRNA expression is inversely correlated with ABCA1 (Porsch-

Ozcurumez et al, 2001), ABCG1 and apoE (Langmann et al, 2003) in human monocytes. 

The oxysterol receptor LXR (liver X receptor) is a nuclear receptor that plays a key role in 

regulation of cholesterol and fatty acid metabolism. LXR also plays a significant role not only 

in glucose metabolism (Guoqing et al, 2003) but also in lipid metabolism and cholesterol 

transport including ABCA1 (Costet et al, 2000), ABCG1 (Kennedy et al, 2001), ABCG5, 

ABCG8 (Repa et al, 2002), ApoE (Cao et al, 2002), CETP (Luo and Tall, 2000), Cyp7a 

(Edwards et al, 2002), LPL (Zhang et al, 2001), SREBP1c (Janowski et al, 1996), and FAS 

(Shao and Lazar, 1997). In our results, LXR-α mRNA was upregulated by insulin in a time 

dependent manner similar to that of ABCA1 gene upregulation by insulin. LXR-α induction 

by insulin might act on ABCA1 promotor site (DR4) to upregulat ABCA1 gene expression 

(Repa et al, 2002), and on ABCG1 promtor 3 to upregulat ABCG1 (Kennedy et al, 2001). The 

transcripitonal regulation of ABCD1 gene was also dependent on nuclear hormone receptor 

ligands, especially LXR ligands and PPAR ligands  (Fourcade et al, 2001) and this could 

explane insulin upregulation effect on ABCD1 in HepG2 cells. 

The mechanisms of glucocorticoids action on atherogenesis are poorly understood. 

Glucocorticoids seem to be anti-atherosclerotic in experimental animals by inhibiting 

leukocyte accumulation in the rabbit carotid artery and its intimal thickening (Hagihara et al, 

1991), suppressing proliferation of macrophages and formation of foam cells in plaques (Asai 

et al, 1993) and markedly inhibiting cholesterol synthesis in various tissues presumably 
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through the inhibition of both HMG-CoA reductase and synthase activities (Lehoux et 

al,1989). Atherogenic action of glucocoticoids in human may be due to stimulation of the 

synthesis of apoB-100 and apoB-48, decrease their intracellular degradation (Wang et 

al,1995), increase serum cholesterol and its intracellular movement in human SMC (Brindley 

et al,1993), promote cholesterol esteification (Picard, et al.1981) and reduce HDL3-mediated 

cholesterol efflux (Petrichenko et al, 1997). In our result, hydrocortisone decreased ApoA-1 

cholesterol efflux in macrophages due to downregulation of ABCA-1. Also dexamethasone 

had more suppression impact on ApoA-1 cholesterol and phospholipids effluxes in HepG2 

cells due to downregulation of ABCA-1 and more marked on ABCA7 and ABCG1 genes 

expressions. These influences might contribute to atherogenic effect glucocorticids especially 

with dexamethasone.  

Corticosteroids are widely administered both antenatally and postnatally to stimulate lung 

maturation. Components of this response include acceleration of epithelial cell maturation to 

be more able to absorb lung liquid at birth (Ingbar, et al 1997) and secrete pulmonary 

surfactant (Ballard, et al 1997). In the neonatal rat, exogenous corticosteroids accelerate 

thinning of the alveolar wall and microvascular maturation, but inhibit the growth of new 

interalveolar septa (Massaro and Massaro, 1986). The inhibition of septal growth results in an 

emphysematous state of the lung in the mature animal, with a reduced number of enlarged 

alveoli (Tschanz and Burri, 1997). In the same species, glucocorticoid (dexamethasone) 

administration is found to inhibit surfactant-A and -C genes (Tschanz and Burri, 1997) and 

proteins (Fussel and Kelly, 1991) expression in the lung, which can explain the reduced 

formation of septa. Exogenous corticosteroids have a similar inhibitory action on alveolar 

formation in the fetal rhesus monkey. Inhibition of septal formation by corticosteroids is a 

result of inhibited elastin synthesis in the lungs (Noguchi, et al 1990). However, another study 

provided that corticosteroids have no or even upregulation effect on elastin synthesis 

(Anceschi, et al 1992). In our results, we found that corticosteroids (especially 
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dexamethasone) upregulated ABCA3 on both human macrophages and HepG2 cells. ABCA3 

had a transporter action on surfactant phospholipids in alveoli. 

Dexamethasone induces a decrease in insulin sensitivity and a proportionate increase in 

insulin secretion and in insulin concentrations in healthy individuals (Nicod et al, 2003). This 

can be correlated with our data with upregulation influence of dexamethasone on ABCC9 

mRNA in macrophages. 

ABCE1 participates in innate immune defence (Bisbal et al, 2001) and involves in the control 

of immune reaction. ABCF1 also shares this features with ABCE1 (Tzyack et al, 2000). Both 

ABCE1 and ABCF1 proteins may be a part of inflammatory processes related to rheumatoid 

arthritis (Richard et al, 1998). It is clearly evident that dexamethasone and hydrocortisone 

downregulated both genes in both HepG2 and most obvious in macrophages so, it can explain 

the benefit of use of glucocorticoids in treatment of rheumatoid arthritis (van den Brink et al, 

1994). 

The human luteinizing hormone (lutropin or LH) was normally inhibited by estrogen, 

specifically estradiol. However, when estrogen reaches a certain level, there is positive 

feedback to the anterior pituitary, resulting in an increase in circulating LH (Hill et al, 1980). 

Lewis and Wexler found that depression of circulating LH levels parallels the severity of the 

arteriosclerosis in rat (Lewis and Wexler, 1975). In our results, LH has a significant 

augmentation on ApoA-1 dependent phospholipids efflux in HepG2 cells which presumably 

related to its upregulation of ABCA7 gene expression but without influence on ABCA1 or 

ABCG1 gene expression.  

Somatostatin (SRIF) is a peptide hormone and has a potent inhibiting growth hormone (GH) 

secretion, but less potent in inhibiting glucagon, insulin, gastrin, TSH, ACTH, secretin, 

pancreozymin, cholecystokinin, pepsin, and renin secretion (Brazeau et al, 1973). Changes in 

plasma lipids can be observed after treatment of acromegaly with somatostatin analogue 

(Octreotide) (Lancranjan et al, 1996). Serum cholesterol remaines unchanged but serum 
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triglyceride decreases and apoA-I increases after treatment (Oscarsson et al, 1994). A 

decrease in triglyceride (James et al, 1991), a rise in HDL cholesterol (Lam et al, 1993) and 

the decrease in the elevated apolipoprotein (a) levels (Lam, et al.1993) are also observed after 

octreotide treatment. But there are no reported data on the effect of lowering GH on small 

dense LDL and RLP in patients with acromegaly. In our data, somatostatin had a positive 

augmentation on ApoA-1 dependent phospholipids efflux in HepG2 cells, this action might 

correlate to its upregulation of ABCA7 and ABCG1 genes expressions (but without action on 

ABCA1 gene expression). This might be responsible for elevation of HDL cholesterol level 

(Lam, et al.1993) during its therapy in treatment of acromegaly.    

octreotide administration in young adults with newly diagnosed diabetes mellitus type 1 

positively influences both the onset and duration of remission (Vondra K et al 2004). This 

could be explained from our data that somatostatin had upregulated ABCC9 in macrophages. 

ABCC9 stimulates pancreatic β-cells insulin secretion (Bryan and Aguilar-Bryan, 1999). 
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6. Summary 

Although the knowledge of ATP-binding cassette of lipid transport had grown substantially 

over the last few years, the detailed molecular mechanisms and the exact functions of these 

transporters were still awaiting clarification. In this thesis, analysis of the actions of human 

steroid and non-steroid hormones on cholesterol and phospholipid effluxes and on ABC 

transporters gene expression in two cell types (human monocytes derived macrophages and 

HepG2 cells) were performed. Human macrophages are the source of foam cells involved in 

the pathogenesis of atherosclerosis, and liver cells are the major site for cholesterol 

biosynthesis and catabolism by converting cholesterol to bile acids. 

Some of these hormones had promoted ApoA-1 dependent cholesterol and phospholipid 

effluxes and others had suppressed these effluxes depending on their influences on the 

expression of ATP binding cassette transporters. β-Estradiol enhanced ApoA-1 dependent 

cholesterol and phospholipids effluxes in human macrophages through upregulation of 

ABCA1 and ABCG1 gene expression. In HepG2 cells, β-estradiol had little or reversed effect 

on ApoA-1 dependent cholesterol and phospholipids effluxes and sterol sensitive ABC 

transporters, which presumbly related to estrogen receptors gene expression. Estrogen 

receptor-β was high expressed in human macrophages but not in HepG2 cells. Upregulations 

of ABCA1 and ABCG1 genes expression by β-estadiol in human macrophages were time 

dependent where they started early and lasted for few hours.  

Progesterone augmented ApoA-1 dependent cholesterol and phospholipids effluxes in human 

macrophages through upregulation of ABCA1 and ABCG1 gene expressions. Luteinizing 

hormone increased ApoA-1 dependent phospholipid efflux in HepG2 cells through 

augmentation of ABCA7 mRNA. Somatostatin hormone also enhanced ApoA-1 dependent 

phospholipid efflux in HepG2 cells by enhancing ABCA7 gene expression.  

Human insulin promoted ApoA-1 dependent cholesterol and phospholipid effluxes in both 

human macrophages and HepG2 cells. These actions could be associated with an upregulation 
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of ABCA1 and ABCG1 mRNA. The ABCA1 upregulation of human insulin was time, 

concentration and tissue dependent. In human macrophages, ABCA1 and ABCG1 induction 

started early and extended over hours. The same occurred in HepG2 cells but with a more 

extended effect. The maximum concentration of insulin that could upregulate ABCA1 gene 

expression was 150 nM in human macrophages. Above this concentration, ABCA1 gene 

expression declined. Posttransscription influence of insulin was more pronounced than its 

influence on ABCA1 transcription. ABCA1 gene expression in human macrophages was 

induced by insulin via a MAP kinase signaling pathway. Furthermore, we speculate that 

activation of PPAR-γ and SDP1 were involved in this process.  

Some hormones had suppressed ApoA-1 dependent cholesterol and phospholipid effluxes. 

Hydrocortisone suppressed cholesterol efflux in human macrophages presumbly by 

downregulation of ABCA1 gene expression. Triiodothyroxin decreased cholesterol efflux in 

both human macrophages and HepG2 cells through downregulation of ABCA1 and ABCG1 

genes in human macrophages, and ABCA7 and ABCG1 genes in HepG2 cells. Glucagon 

declined ApoA-1 dependent cholesterol and phospholipid effluxes in human macrophages by 

supression of ABCA1, ABCA7 and ABCG1 gene expressions. Dexamethasone suppressed 

ApoA-1 dependent cholesterol and phospholipids effluxes in HepG2 cells through 

downregulation of ABCA1 and especially ABCA7 and ABCG1 genes expressions. 
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