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Glossary

a crystal lattice constant
b barrier width in the superlattice
β 1/kBT
d superlattice constant
δ νε/νv
δε energy difference of a bulk electron to the miniband edge
D diffusion coefficient
∆ miniband width
e electron charge
ε electron energy
ε̃ electron energy measured from the miniband center
ε0 band edge of the lowest miniband
ε1 band edge of the second miniband
εd mean electron energy in a static homogeneous system with applied field
εT mean thermal energy of electrons in a miniband
εoff energy offset of the miniband compared to the bulk material
ε dielectric constant in the material
ε0 dielectric constant of vacuum
E negative electric field
E z-component of the electric field
E ′ field in units of the critical field Ec

E0 DC field amplitude
E1 AC field amplitude
Ec critical field, defined by Ec = ~/edτ
EET

c critical field in the Esaki-Tsu model
f frequency
f electron distribution function in phase space
f0 equilibrium distribution function in phase space
g growth factor in the LSA mode
~ Planck’s constant
η creation efficiency for high-frequency radiation
In modified Bessel functions
In phase space integral

∫
cos(nkd)f0(k)dk

jd drift current density envd

iii



iv Glossary

Jn Bessel functions
k electron wave vector in z-direction
k⊥ electron wave vector perpendicular to the z-direction
L superlattice length
LSA limited space-charge accumulation
m? effective mass of an electron in GaAs
m?

b effective mass in the barrier material
m?

w effective mass in the well material
m?

l effective mass of an electron at the bottom of the miniband
µd differential mobility ∂vd/∂E0

µω high-frequency mobility vω/E1

n electron density
n0 doping density
ν scattering frequency
νε inelastic scattering frequency
νel elastic scattering frequency
νv momentum scattering frequency given by νv = νε + νel
NDC negative differential conductivity
p electron momentum in z-direction
ψ electron wave function
Q reciprocal vector 2π/d of the superlattice
r relative change of the electric field in the superlattice
σ0 conductivity jd/E0

σd differential conductivity ∂jd/∂E0

σω high-frequency conductivity jω/E1

ttr transit time of a domain
tf time of formation of a domain
T time of one period of an external field
τ scattering time
τc differential relaxation time
τε inelastic scattering time
τel elastic scattering time
U0 DC voltage amplitude
U1 AC voltage amplitude
Uc critical voltage for a superlattice given by Uc = EcL
vd drift velocity in a static homogeneous system with applied field
vω high-frequency component of the velocity
Vb potential height in the barrier
w well width in the superlattice
ω angular frequency 2πf
ωB Bloch frequency, defined by ωB = eEd/~
ωc growth velocity of inhomogeneities σd/εε0
ωn eigenfrequencies of a cavity
z superlattice periodicity direction



Introduction

In this thesis the transport properties of semiconductor superlattices are studied
using a semiclassical model of electron dynamics. Since their first proposal more
than thirty years ago by Esaki and Tsu [Esa70] semiconductor superlattices have
been the subject of intense research. In the superlattices a one-dimensional pe-
riodic potential is created by a periodic variation of semiconductor materials in
one spatial direction.

The implications of a periodic structure on the electronic states are well known
[Bloch28] from the theory of conventional crystal structures exhibiting a peri-
odic potential. The so-called Bloch states occupy certain intervals in the energy
spectrum, the bands, while other energy values are forbidden. The states are
characterized by a quasimomentum ~k and a band index ν. Bloch demonstrated
that a wave packet created by a superposition of momentum space states cen-
tered around some quasimomentum ~k moves with a group velocity given by the
gradient of the energy with respect to the quasimomentum ~k. If an electric field
is applied the Bloch vector of the electron becomes time-dependent according to
the acceleration theorem

~
dk

dt
= eE

where −e is the electron charge and the electric field E points into the direction in
which electrons are accelerated (opposite to the usual definition). In a repeated
zone scheme the quasimomentum of the electron moves uniformly through the
Brillouin zone within one band if a homogeneous and static electric field is applied.
Neglecting interband tunneling and scattering processes, the electron returns re-
peatedly to its original position in momentum space, causing a periodic motion
both in momentum and real space, the Bloch oscillation.

This effect leads to a reduction and ultimately to the disappearance of transport
for increasing electric fields. However, this counterintuitive effect could never be
observed for crystals with a lattice period a of atomic distances. The electric field
necessary to drive the electrons once or even several times through the Brillouin
zone, before a scattering event changes the quasimomentum, cannot be sustained
by the crystals.

This restriction can be circumvented in superlattices. The periodicity length d
is much larger than the crystal lattice constant a leading to a reduction of the
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2 Introduction

size of the Brillouin zone by the factor d/a. The width of the allowed regions in
energy space will be much smaller as well, hence the bands are called minibands.
It is now possible for the electrons to cross the Brillouin zone at attainable fields.
The field necessary to drive the electrons through the Brillouin zone before they
are scattered is called the critical field Ec. Increasing the field strength further
the electrons start to oscillate at the Bloch frequency with the transport being
reduced, resulting in a negative differential conductivity (NDC). This property
could “lead to new ultra-high-speed devices”, as Esaki and Tsu put it, which
makes the system interesting for technical applications. The electrons oscillate
at typical frequencies of several Terahertz, a frequency region where a room
temperature solid state radiation source is still lacking. But more than thirty
years after the proposition no device emitting radiation in the Terahertz regime
has been designed, despite ongoing research activities. One of the main problems
is the instability of the superlattices in the NDC regime.

It is not possible to apply a homogeneous electric field in an NDC material
since density fluctuations inside the material tend to grow with time, destroying
homogeneity. Depletion layers, accumulation layers, or a combination of both, the
so-called dipole domains, form inside the superlattice or at the boundaries. The
importance of inhomogeneities and boundaries for the behavior in NDC materials
was recognized already in the late 1960’s when Kroemer and others investigated
the Gunn effect in GaAs [Kro68]. Depending on the boundary conditions the
charged layers can be static or they travel through the superlattice. If they are
created at the cathode and annihilated at the anode after traveling through the
material, oscillating behavior with a fixed frequency is observed. This mechanism
is used in a conventional Gunn oscillators and was also used in superlattices to
create radiation up to frequencies of more than one hundred Gigahertz [Sch99a,
Sch99b]. Yet, it is questionable whether it is possible to enter the Terahertz
regime with this mechanism.

In contrast to the Gunn-like oscillations where the inhomogeneities are desirable
for the creation of microwave radiation, a homogeneous or almost homogeneous
situation is required to use the Bloch oscillations directly for microwave gen-
eration. It was shown shortly after the proposal by Esaki and Tsu that high-
frequency gain up to the Bloch frequency can be found in materials exhibiting
Bloch oscillations [Kti72]. In this treatment and many of the following investiga-
tions the authors rely on the assumption of a homogeneous electric field inside the
superlattice without a clear conception of how this can be achieved in reality due
to the problem of inhomogeneities. Several mechanisms have recently been pro-
posed to avoid the undesirable inhomogeneities in the superlattices, like reducing
the dimensionality of the system [Fei04], reducing the superlattice length [Sav04],
irradiating with high-frequency radiation [Kro00a], or injecting hot electrons into
the superlattice [Ryn03]. In all cases the authors “have not touched at all on
what is possibly the most severe unsolved problem, the contact boundary prob-
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lem”, as one of the authors concludes [Kro00a]. The only theoretical treatments
known to me which include the boundaries in their considerations rely on the
drift-diffusion-model [Sch02b, Bon03], the applicability of which is questionable
for high-frequency simulations.

In this thesis I study semiclassical equations to model the transport in semicon-
ductor superlattices including the boundary regions.

Chapter 1 reviews basic properties of semiconductor superlattices and intro-
duces concepts that were invented in the late 1960’s when a lot of research was
done to understand the Gunn effect. Already back then Kroemer pointed out
that the boundary conditions are crucial for the behavior of the devices. Some
of the results are summarized here since they also apply to the semiconductor
superlattices. One new mechanism to suppress domains, proposed by Kroemer,
is reviewed and a connection to an old proposal for Gunn diodes established.

In Chapter 2 the semiclassical Boltzmann equation is put into a form which is
suitable for numerical treatment. The boundary conditions can be formulated
easily for this equation. It can be further simplified under certain conditions to
end up with the moment-balance equations and finally with the drift-diffusion
model. Smooth and abrupt transitions from the bulk material to the superlattice
are considered and boundary conditions derived. For the abrupt transitions tun-
neling processes are also considered. Finally models for the current circuit and a
surrounding cavity are developed.

Chapter 3 presents results of the calculations. The chapter is split into two
parts: First, the boundaries are neglected and a system with periodic boundary
conditions is investigated to see which effects can be observed without the addi-
tional features introduced by the boundaries. This model is already an extension
of the usual homogeneous models since the formation of domains is possible. The
numerical results of the different semiclassical approaches developed in Chapter
2 are compared and the behavior under external radiation is analyzed with the
Boltzmann equation. In the second part, the boundaries are included in the
description. Measured current-voltage characteristics are compared with the cal-
culated curves and the high-frequency properties are investigated. While some
features of the measurements can be explained with the developed model, it turns
out that the inclusion of the surrounding of the superlattice into the simulation
procedure would be necessary to fully explain the measurements.

The thesis closes with a Summary and an Outlook.
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Chapter 1

Semiconductor superlattices and Gunn
diodes

This chapter is a short introduction into the physics of semiconductor superlat-
tices and the transport properties of Gunn diodes. I will focus on the miniband
description of superlattice transport which is a valid description for wide mini-
bands. A broader coverage on superlattices can be found e. g. in the book by
Bastard [Bas96] or the review by Wacker [Wac02]. An overview over Gunn diode
physics is given in the book by Shur [Shu86].

1.1 Miniband structure in semiconductor

superlattices

In this thesis superlattices will be considered which are designed as periodic struc-
tures with periodicity constant d built by the deposition of alternating layers of
two materials with similar lattice constants, like Galliumarsenide (GaAs) and
Aluminumarsenide (AlAs) (Fig. 1.1a). The structures are assumed to be trans-
lationally invariant within the x- and y-directions perpendicular to the growth
direction.

In the growth direction the electrons experience alternating layers of different
semiconductor material. The conduction band edge has a steplike structure in
this direction (Fig. 1.1b). The conduction band edge in the GaAs layers lies 1.06
eV lower than in the AlAs layers, therefore the GaAs layers form wells, while the
AlAs layers form barriers. I start the discussion of the electronic properties with
a short review of the Kronig-Penney model [Kro31].

Kronig and Penney assumed a particle subject to a one-dimensional potential as
shown in Fig. 1.2 which can be considered as an infinite sequence of barriers and
wells. Given a particle energy ε such that 0 < ε < Vb one can make an ansatz of

5
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Fig. 1.1: (a) Alternating layers of semiconductor material are deposited,
building an artificial periodic structure with periodicity d. The number of
periods ranges from 15 to 150 in the experiments. (b) The conduction band
edge (εc) and the valence band edge (εv) have a steplike spatial dependence
inside the superlattice.
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Fig. 1.2: The potential profile investigated by Kronig and Penney [Kro31].

plane waves inside the wells (0 < z < w)

ψ(z) = A exp(ikwz) +B exp(−ikwz) with ε =
~2k2w
2m?

w

(1.1)

and decaying wave functions in the barriers (−b < z < 0)

ψ(z) = C exp(κbz) +D exp(−κbz) with Vb − ε =
~2κ2b
2m?

b

(1.2)

with equal effective masses in the well and the barrier. It was shown by Bloch
[Bloch28] short before the paper by Zener that solutions to the problem of a par-
ticle in a periodic potential of extension L (being much larger than the periodicity
length) must be of the form ψ(z) = u(z)exp(ikz) (k = 2πn/L) where u(z) is a
periodic function in z with the same periodicity d as the potential and n is any
integer. The constants A, B, C, and D have to be chosen such that the function
ψ at the boundaries between well and barrier obeys the connection rules

ψ(z)|z→0− = ψ(z)|z→0+ , ψ′(z)|z→0− = ψ′(z)|z→0+ (1.3)
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and

ψ(z)|z→w− = eikdψ(z)|z→−b+ , ψ′(z)|z→w− = eikd ψ′(z)|z→−b+ . (1.4)

Nontrivial solutions for A, B, C, and D can be found, if

cos(kd) = cosh(κbb) cos(kww) +
1

2

(

ξ − 1

ξ

)

sinh(κbb) sin(kww) (1.5)

with the parameter

ξ =
κb

kw
. (1.6)

If the absolute value of the right-hand side of Eq. (1.5) is larger than one the cor-
responding electron energy is forbidden. These gaps separate regions of allowed
energy values, the minibands.

In contrast to the original paper where free particles were considered, the ap-
proach must be slightly generalized for semiconductor heterostructures. Using
the envelope function method [Bas96], the model for the heterostructures can be
reduced to a Kronig-Penney model where the effective masses in the well m∗

w and
in the barrier m∗

b are different. The boundary conditions at the interfaces for the
derivative of ψ are generalized to

1

m∗
b

ψ′(z)|z→0− =
1

m∗
w

ψ′(z)|z→0+ ,
1

m∗
b

ψ′(z)|z→b− = eikd
1

m∗
w

ψ′(z)|z→w+ .

(1.7)
Eq. (1.5) is still valid [Ivc97, Bas96], but ξ is replaced by

ξ̃ =
κbm

∗
w

kwm∗
b

=

√

(Vb − ε)m∗
w

εm∗
b

(1.8)

which differs from the definition of ξ above by the mass term ratio introduced
by the condition for the derivation1. Equation (1.5) can be solved numerically
for the dispersion relation in the miniband. As a concrete example a GaAs/AlAs
superlattice is now considered (Tab. 1.1). The dispersion relation of the lowest
two minibands are shown as solid lines in Fig. 1.3a and b. In GaAs and AlAs the
effective masses m?

w = 0.067 me and m?
b = 0.11 me were chosen.

Denoting the right-hand side of Eq. (1.5) as f(ε) and expanding it around the
energy eigenvalue εj of an isolated well (which is allowed for narrow minibands)
the equation becomes

cos(kd) = f(εj) + f ′(εj)(ε− εj) (1.9)

1 Note the different signs in [Bas96] in Eq.(89), page 21, and Eq.(79), page 90, which is due
to a redefinition of ξ̃, that is not explicitly stated.
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material width band-gap band offset doping length
well GaAs 4 nm 1.52 eV
barrier AlAs 1 nm 3.13 eV

1.06 eV 8× 1016cm−3 100 d

Tab. 1.1: Parameters for a GaAs/AlAs superlattice typical for the super-
lattices used in [Sch98b]. The material parameters are taken from [Wac02].
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Fig. 1.3: The miniband dispersion relation for the lowest (a) and the sec-
ond miniband (b) that follow from Eq. (1.5) (solid lines) for the superlattice
parameters of Tab. 1.1. For comparison a cosine function with the same
bandwidth (∆ and ∆1 resp.) and band edge (ε and ε1 resp.) is shown in both
graphs (dashed lines).

which can be solved for ε

ε = εj − f(εj)/f ′(εj) + 1/f ′(εj) cos(kd) . (1.10)

This shows that a cosine dispersion is a good approximation for narrow mini-
bands. For typical superlattices the approximation of the dispersion by a cosine
is also a good approximation for rather wide minibands as a comparison with
cosine functions with the same bandwidth and band edge (Figs. 1.3a and b)
shows. Very often the miniband dispersions are therefore approximated by a co-
sine function with the bandwidth ∆ and band edge ε0 that can be derived from
the dispersion relation obtained from Eq. (1.5). For the lowest miniband write

ε(k) ≈ ε0 −
∆

2
(1− cos(kd)) . (1.11)

Up to now only the growth direction has been taken into account. If the variation
of the superlattice perpendicular to the growth direction can be neglected, a com-
plete set of eigenstates can be constructed by products of plane waves eik⊥·r⊥/2π
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and a z-dependent function ψ(z). The total energy of the electron is then given
by

εtot(k) ≈ ε0 −
∆

2
(1− cos(kd)) +

~2k2⊥
2m∗

w

. (1.12)

Here the effective mass of the well m∗
w is used for the dispersion in the perpen-

dicular direction since the absolute value of the wave function will be larger in
the wells. In the next section the implications of a cosine dispersion in a mate-
rial with scattering time large enough so that a crossing of the Brillouin zone is
possible will be explored.

1.2 Esaki-Tsu model

To get a first idea about the behavior of electrons in superlattices it is useful
to go back to the model used by Esaki and Tsu [Esa70]. They considered one
electron with a cosine dispersion relation that moves under the influence of an
electric field E in z-direction. According to Bloch [Bloch28] the quasimomentum
changes as

~
dk

dt
= eE (1.13)

where k is the quasimomentum in this direction. This can be integrated to give

k(t) =
eEt

~
(1.14)

for a constant electric field E. The velocity for an electron that starts at the
Brillouin zone center at time t = 0 follows from Eq. (1.11)

v(t) =
1

~
∂ε

∂k
=

∆d

2~
sin(kd) =: v0 sin(ωBt) (1.15)

where the Bloch frequency

ωB =
eEd

~
(1.16)

has been introduced. Assuming that the probability that the electron travels a
time t without scattering is p(t) = exp(−t/τ), where τ is the average scattering
time, the average velocity of the electron is

vd(E) =
1

τ

∫ ∞

0

p(t′)v(t′)dt′ = v0
E/Ec

1 + (E/Ec)2
(1.17)

where the critical field Ec = ~/edτ = ~ν/ed has been introduced. For simplicity
in this model each scattering event scatters the electron back to the Brillouin
zone center. In Fig. 1.4 the resulting vd-E curve is depicted with an intuitive
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explanation for different field strengths. For small electric fields E < Ec the
electrons never leave the parabolic part of the dispersion relation resulting in a
linear drift velocity versus field relation. For fields E ≥ Ec the electron enters
a region where the velocity starts to drop. The vd-E curve passes a maximum.
Increasing the field further the electron reaches a region with negative velocity,
reducing the drift velocity, until for very large fields the electron spends an equal
amount of time in regions with positive and negative velocities and the drift
velocity drops to zero for E →∞.

E

vd

E c

k

v(k)ε (k)

(a) (b)

E<Ec

E=Ec

Fig. 1.4: The cosine dispersion and the velocity of an electron in the lowest
miniband (a) and the resulting drift velocity vd as a function of E (b). For
E < Ec the electron is scattered to the Brillouin zone center before it leaves
the parabolic part of the dispersion. The vd-E characteristic is linear in this
regime. For E ≥ Ec the electron reaches a Brillouin zone region where the
velocity becomes smaller before it is scattered. The vd-E curve passes a max-
imum. For electric fields E > Ec the electron enters the region with negative
velocity reducing the average velocity.

Before that happens interband transitions will of course start to be important
rendering the model invalid in this limiting case. In the next section the simple
Esaki-Tsu model will be extended to the case of an electron ensemble.

1.3 Ktitorov model

There are two restrictions in the Esaki-Tsu model: every time the electron is
scattered it returns to the Brillouin zone center and no elastic scattering events
are included. Both restrictions can be lifted if one uses the equation

∂f

∂t
+
eE

~
∂f

∂k
= − 1

τε
(f(k)− f0(k))−

1

τel

1

2
(f(k)− f(−k)) (1.18)
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which describes the time evolution of an electron distribution f(k, t) in k-space.
The equation is derived in Appendix B from the Boltzmann equation. The first
term on the right-hand side describes the relaxation towards an equilibrium dis-
tribution f0, while the second describes elastic scattering events. This model for
superlattice transport was first introduced in 1972 by Ktitorov et al. [Kti72] and
has been used extensively subsequently [Ign76, Ign83, Ign91, Ign95]. It extends
the Esaki-Tsu model to the case of an electron ensemble f(k) instead of one elec-
tron and includes elastic scattering events. If one used f0(k) ∝ δ(k), the electrons
would scatter to the Brillouin zone center at each scattering event and neglecting
additionally the elastic scattering one would return to the Esaki-Tsu model. It
will be shown that the results of the last section for the drift velocity versus field
relation are qualitatively the same with this model.

1.3.1 Static conductivity

To obtain the results of Ktitorov et al. I will use the moment-balance equation
approach, obtaining the same results for static and high-frequency conductivity
that the authors obtained using a Green function method. We define the averages

〈v〉 = 1

n

∫

f(k)v(k)dk and 〈ε〉 = 1

n

∫

f(k)ε̃(k)dk (1.19)

where ε̃ = ε−∆/2 is the energy measured from the middle of the miniband. With
those definitions we find the following moment-balance equations from Eq. (1.18)

∂〈v〉
∂t

+
eEd2

~2
〈ε〉 = − (νel + νε)

︸ ︷︷ ︸

νv

〈v〉 (1.20)

∂〈v〉
∂t
− eEvd = −νε(〈ε〉 − εT ) (1.21)

where the scattering frequencies νel = 1/τel and νε = 1/τε have been introduced.

εT =
1

n

∫

f0(k)ε̃(k)dk = −∆

2

I1
I0

(1.22)

is the average energy of the equilibrium distribution, which is always negative
measured from the middle of the miniband and we define In :=

∫
cos(nkd)f0(k)dk.

We denote the average velocity and energy for static applied field by vd and εd
in the following. The Eqs. (1.20) can then be solved to give

vd = v0δ
1/2I1
I0

E/EET
c

1 + (E/EET
c )2

(1.23)
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where EET
c = ~√νενv/ed generalizes the definition from the last section and

δ = νε/νv. If f0(k) ∝ δ(k) then I1 = I0 and assuming additionally νel = 0,
one recovers equation (1.17) from the Esaki-Tsu model, as could be expected.
While the shape of the vd-E relation stays the same as in Fig. 1.4b one can
separate the effects of the distribution function and the elastic scattering. The
term I1/I0 originates in the equilibrium distribution function and has a maximum
of one for the δ-distribution considered before. For any other distribution the
average velocity will be suppressed, e. g. for a Maxwellian distribution f0(k) ∝
exp(β∆/2 cos(kd)) one gets I1/I0 = I1/I0, where Im are the modified Bessel
functions with argument2 β∆/2 = ∆/2kBT .

Since δ < 1, the elastic scattering also reduces the average velocity. This can
be understood by the fact that elastic scattering events tend to distribute the
electrons homogeneously in k-space and a homogeneous distribution in k-space
carries no current. The peak velocity vp = v0

2
δ1/2 I1

I0
is reached if the electric

field E = EET
c . Since vp ∝

√

νε/νv and EET
c ∝ √νενv are accessible in the

experiment, one can determine νv and νε by a measurement of both quantities
[Sch98b], assuming that Eq. (1.18) describes the superlattices correctly.

1.3.2 High-frequency conductivity

In addition, Ktitorov et al. have investigated the high-frequency conductivity
with Eq. (1.18). Again the moment-balance equations will be used to derive the
result. We consider the case of a small high-frequency electric field that is applied
in addition to the static field

Etot = E0 + E1e
−iωt . (1.24)

The average velocity and energy will have small components added to the static
values oscillating with this frequency

vtot = vd + vωe
−iωt and εtot = εd + εωe

−iωt . (1.25)

Inserting these equations into Eqs. (1.20,1.21) and neglecting products of the
small oscillating quantities we get

vω =
1− iωτε − (E0/E

ET
c )2

(1− iωτv)(1− iωτε) + (E0/EET
c )2

vd
E0

E1 . (1.26)

From this equation the high-frequency conductivity

σω =
1− iωτε − (E0/E

ET
c )2

(1− iωτv)(1− iωτε) + (E0/EET
c )2

σ0 (1.27)

2 In the following the argument of the modified Bessel functions Im will always be β∆/2 =
∆/2kBT
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can be calculated, where the static conductivity σ0 = jd/E0 = envd/E0 has been
defined. The real part of the high-frequency conductivity is depicted in Fig. 1.5
for E0/E

ET
c = ωB

√
τvτε = 2 and τv = ν−1v = τε.

−0.6
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−0.2
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Fig. 1.5: The real part of the high-frequency conductivity measured in units
of σ0 = jd/E0 as a function of the applied frequency ω in units of the Bloch
frequency ωB = eEd/~ for a static applied field E0 = 2EET

c and τv = τε. It
is negative almost up to the Bloch frequency.

In the limit ω → 0 we get

σω → σd =
∂jd(E0)

∂E0

= σ0
1− (E0/E

ET
c )2

1 + (E0/EET
c )2

. (1.28)

For E0 > EET
c the static differential conductivity (ω → 0) is negative as has

already been explained in section 1.2, and the low-frequency differential conduc-
tivity is also negative. This can be easily explained by the following consider-
ations. For increasing field the current decreases and for decreasing field the
current increases and therefore an applied low-frequency field will be enhanced.
The main question is up to which frequency this gain will survive, i. e. up to
which frequency ω the relation Re(σω) < 0 holds. From equation (1.27) one can
find the frequency where the real part of the differential conductivity crosses zero
as

ωσω=0 =

√

(E0/EET
c )4 − 1

(E0/EET
c )2τvτε + τ 2ε

≈ ωB

√

1

1 + 1
ω2

B
τ2
v

(1.29)

where the last approximation is valid for E0 > EET
c . The high-frequency differen-

tial conductivity stays negative nearly up to the Bloch frequency ωB in this case.
Radiation up to the Bloch frequency will therefore be enhanced. This is usually
referred to as Bloch gain. Kroemer [Kro00b] has explained this phenomenon via
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the creation of bunches of electrons in k-space. If the superlattice is put into a
resonator, the device will start to oscillate if the losses through dissipation are
smaller than the gain through the negative high-frequency conductivity at the
resonator frequency.

Even more than thirty years after the insight that gain up to the Bloch frequency,
which is in the Terahertz regime in usual superlattices, exists in superlattices
nobody has succeeded in making a device that really emits radiation in this
regime, despite ongoing effort all over the world. The reason are instabilities in
the superlattices which tend to destroy the homogeneity that was assumed to
subsist in all the derivations up to now. The next section will deal with those
instabilities.

1.4 Instabilities in negative differential

conductivity (NDC) materials

One can see from Eq. (1.23) and Fig. (1.4)b that the differential conductivity
σd = ∂jd/∂E0 is negative above some critical field value Ec. B. F. Ridley pre-
dicted in 1963 that an instability should occur in a semiconductor sample with
voltage-controlled negative differential conductivity [Rid63]. It was realized al-
ready shortly before, that the velocity in n-type GaAs and some other compounds
should decrease with electric field if the electric field exceeds a critical value in-
ducing the intervalley transition from the high mobility Γ-valley to higher min-
ima with higher effective mass and scattering rate [Rid61, Hil62]. And indeed,
J. B. Gunn discovered in 1963 spontaneous current oscillations in GaAs when the
applied electric field E was greater than some critical value Ec [Gun63]. Kroemer
pointed out that all important features of the Gunn effect are consistent with the
model of instabilities originating in the negative differential conductivity [Kro64].

An abundance of phenomena was discovered in the semiconductor compounds ex-
hibiting NDC afterwards, and many theoretical investigations followed to explain
the observations. All phenomena can be traced back to the NDC characteristic
which is also present in the semiconductor superlattices. In the following I will
review the results of the investigations on the Gunn effect which can be carried
over with minor modifications to the superlattices.

1.4.1 Bulk instabilities

Spatially homogeneous states with a negative differential conductivity cannot
be stable under experimental conditions. The system goes over to a strongly
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inhomogeneous state. This can be understood by noting that a spatially homo-
geneous system is meaningful only as a time-average: instantaneous values of the
carrier density and other physical quantities undergo fluctuations. Under ther-
modynamic equilibrium conditions these fluctuations are rapidly damped out.
However, in the falling branch of the drift velocity versus field relation the dif-
ferential conductivity σd as well as the damping constant change their signs, and
small fluctuations may grow instead of decaying. Before the situation is analyzed
mathematically in more detail the principle of the growth of inhomogeneities will
be described.

z

z

z

E

v

n0

E0

vd

+

j jj0 0

n (a)

(b)

(c)

Fig. 1.6: A small fluctuation of the
electric field E (b) and charge den-
sity n (a) in a homogeneous sample
with negative differential conductiv-
ity, leading to a lower drift velocity
vd inside the fluctuation (c). The
current density j inside the fluctu-
ation will be smaller than the cur-
rent density j0 outside, increasing
the charge accumulation and deple-
tion.

In Fig. 1.6a a fluctuation of the density n along the z-axis is depicted. According
to the Poisson equation the distribution of the electric field E will be of the form
schematically shown in Fig. 1.6b. Since the differential conductivity is negative,
the relative increase of the field inside the fluctuation results in a decrease of
the drift velocity vd (Fig. 1.6c). Thus the current j flowing out of the region
with high charge density is less than the current flowing into this region and the
accumulation grows and the depletion also grows due to an analogous argument.
This process is limited by diffusion which tries to level out the inhomogeneities.

To describe the process on a more mathematical level first extend Eq. (1.18) to
the case of spatial dependence

∂f

∂t
+ v(k)

∂f

∂z
+
eE

~
∂f

∂k
= −ν

(

f(k)− n

n0
f0(k)

)

. (1.30)

f(z, k, t) is now a function of space also and the ratio of the particle density n and
the doping density n0 has the effect that the distribution relaxes at every point in
space to an equilibrium distribution with the local particle density. This ratio also
ensures conservation of the particle number since

∫
(f(k)−n/n0 ·f0(k))dk = 0. As
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was shown in the last section the insertion of elastic scattering changes the results
only quantitatively and is therefore neglected here. It is shown in Appendix C
how one can derive the drift-diffusion model

nv = nvd −D
∂n

∂z
(1.31)

from the moment-balance equations which one can get from Eq. (1.30). This
derivation is done under the assumption of slow variations in space and time.
The diffusion coefficient is assumed to obey the Einstein relation D/µ = kbT/e
in the following which is a good approximation for slow spatial and temporal
changes as is shown in Appendix C.

From this model one can get a first impression of how the instabilities evolve.
The evolution of the density given the local particle current nvd is given by the
continuity equation

∂n

∂t
= −∂nvd

∂z
. (1.32)

The electric field which accompanies the inhomogeneities is described by the one-
dimensional Poisson equation since the system is still assumed to be homogeneous
perpendicular to the z-direction

∂E

∂z
=

e

εε0
(n− n0) . (1.33)

The electric field changes if the electron density n deviates from the positive
background charge density n0 of the ionized donors. Now we make a space-charge
wave analysis introducing fluctuations around the stationary solution n = n0 +
nk exp(i(kz−ωt)). The electric field is then given by E = E0+Ek exp(i(kz−ωt))
with ikEk = e

εε0
nk using Eq. (1.33), and the drift velocity is given by vd =

vd(E0) + vk exp(i(kz − ωt)) with vk = ∂vd

∂E
Ek. Together with Eqs. (1.32) and

(1.31) we get the dispersion relation

ω = kvd(E0)− i(Dk2 + ωc) (1.34)

where ωc = σd/εε0 with the differential conductivity σd = ∂jd/∂E0. This equation
describes a convective space-charge wave which propagates with a phase velocity
exactly identical to the carrier drift velocity vd and has an imaginary frequency
component iω2 = −i (ωc +Dk2) at small wave vector. The equation indicates
that when the differential conductivity σd is negative then −ωc is positive and
the waves with long wavelength (k → 0) will grow with time. The shorter the
wavelength, i. e. the larger the wavevector k, the stronger the diffusion acts
against the growth of the fluctuations. If the system was infinite, it would always
be unstable since arbitrary small wavevectors would be possible. The minimum
value of k is governed by the length of the sample k ∝ 1/L, where L is the size
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of the sample. For this reason the growth of small fluctuations may not occur
in short samples even in the presence of a negative differential conductivity, if
|ωc| < Dk2. This condition can be written as nL2-criterion

n0L
2 <

εε0
e

D

|µd|
(1.35)

where µd = ∂vd/∂E0 is the differential mobility. In the superlattice from Tab. 1.1
we get n0L

2 = 2×1010/m, while the right-hand side equals εε0kBT/e
2 ≈ 2×107/m

using the Einstein relation.

But even if the fluctuations grow with time (|ωc| > Dk2), the system can be
stable if the fluctuations leave the sample before they grow considerably. This is
the case if the time to traverse the sample L/vd is smaller than the differential
relaxation time τc = ω−1c . This equation leads to the so-called Kroemer criterion

n0L <
εε0
e

∣
∣
∣
∣

vd
µd

∣
∣
∣
∣
. (1.36)

A more thorough analysis produces a prefactor of 2.09 on the right-hand side
of this equation [Shu86, McC66]. The ratio vd/µd can be calculated for a drift
velocity given by Eq. (1.17) and one gets

vd
µd

= Ec
E/Ec(1 + (E/Ec)

2)

(1− (E/Ec)2)
≤ −3.33Ec for E > Ec . (1.37)

Combining Eqs. (1.36,1.37) with the prefactor of 2.09 in Eq. (1.36) we get no
domain formation for n0L <≈ 7εε0Ec/e. Again we look at the standard super-
lattice from Tab. 1.1 and get n0L = 4× 1017/m2, while 7εε0Ec/e ≈ 6× 1015/m2.
A typical superlattice is therefore not stable, but one can try to match the Kroe-
mer criterion by making the superlattice short or reducing the doping. Indeed
in [Sav04] the authors tried to avoid the formation of domains tailoring their
superlattices according to this criterion. They did this by reducing the number
of periods and the doping by roughly an order of magnitude compared to the
standard superlattice. Since the superlattices have to be very short then (≈ 15
periods), they grew a super-superlattice, i. e. they grew many short superlattices
interrupted by highly doped buffer regions.

Another approach to avoid the domain formation is to consider two-dimensional
systems, i. e. to restrict the free motion to only one direction perpendicular to
the growth direction which is possible using the cleaved edge overgrowth method
[Pfe90]. We have shown [Fei04] that in this case the growth rate ωc is reduced
by the product of the width of the superlattice in the restricted direction x0 and
the wave vector k

ω2d
c = ωcx0k with x0k ≥ πx0/L . (1.38)

In typical samples one has πx0/L ' 0.01, which means that domain formation is
suppressed considerably.
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1.4.2 Boundary effects

Even though the finite size of the sample was crucial for the Kroemer criterion
to suppress domains, the exact boundary conditions do not play a role for the
behavior in the model up to now, one simply assumes that the domains are
annihilated at the anode when they reach it. All the domains originated in small
fluctuations inside the superlattice that grew due to the negative differential
conductivity. But it was already realized in the 1960’s, after the observation of
negative differential conductivity in GaAs, that very often the boundaries are the
nucleation points of the domains.

Injecting cathode - accumulation layers

To make the effect of the boundary conditions apparent I will first describe a
model which was used shortly after the discovery of the Gunn effect to understand
the observed oscillations [Kro66]. The model is depicted in Fig. 1.7. Between
a highly doped cathode and anode the material exhibiting negative differential
conductivity (NDC) is located. Fig. 1.7a shows the shape of the Esaki-Tsu drift
velocity versus field relation that was already discussed earlier. The doping pro-
file n0 is shown (Fig. 3.6b). Including diffusion effects some of carriers of the
highly doped contacts would diffuse into the low doped region, but this effect is
neglected. Applying a bias voltage one needs to specify the boundary conditions
for the electric field E.

The electric field is assumed to stay small inside the highly doped cathode. It will
be discussed in the next paragraph what happens if that condition is changed.
For a static configuration the current j has to be constant so that enµE has to
be constant. For low bias voltages U < EcL the mobility µ is constant so that
the product nE has to be spatially constant which leads to the density profile n1

in Fig. 1.7b and electric field E1 in Fig. 1.7c.

The situation changes dramatically as soon as the bias voltage is high enough so
that the electric field E crosses the critical field value Ec. If the state was still
stationary, the density profile n2 and field profile E2 depicted in Fig. 1.7b and c
respectively would result. In Fig. 1.8a the formation process of the accumulation
layer, which sets in for U = U2 > Uc, is schematically shown in detail. Diffusion
effects will be neglected in this consideration, only a qualitative description of the
process is attempted. In the left column the static situation before the electric
field crosses the critical field value Ec is depicted. A small increase of the voltage
leads to a supercritical field and a small charge accumulation will form where
the field value crosses the critical field. This can be seen from the current which
drops at the point where the electric field becomes supercritical. The relation
∂n/∂t = −∂nv/∂x shows that the density will rise where ∂nv/∂x < 0 and
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Fig. 1.7: The drift velocity versus field characteristic inside the superlattice
region (a) and the doping profile n0 and densities (b) and corresponding field
distributions (c) for different applied voltages. Assuming a low electric field
value in the highly doped contact region, one can easily draw the schematic
densities n1 and n2 for different applied voltages U1 and U2 where diffusion
effects are neglected. The corresponding field distributions E1 and E2 are
shown (c). For U = U2 the situation is unstable as will be shown in Fig. 1.8.

decrease otherwise, indicated by the small arrows. The charge accumulation
will start to travel since the current nv goes through a maximum which leads to
a decrease of the density on the left side of the accumulation and to an increase
of the density at the right side of the accumulation.

The accumulation layer detaches from the cathode and moves towards the anode
(Fig. 1.8b). The electric field value Ea ahead of the layer is supercritical and
the field value Eb behind the layer stays subcritical. Since the applied voltage
is constant, Ea grows with time and Eb drops with time. This means that the
accumulation layer has to grow while it is traveling through the superlattice.
Therefore the velocity behind the superlattice v(Eb) has to be a little higher
than ahead of the superlattice v(Ea). The processes at the anode, when the
accumulation reaches it, are described in detail in a separate paragraph on anode
domains below. It will be shown that if the drift velocity versus field relation
does not increase for high fields often a static anode domain is formed.

There are some features of the pure accumulation mode that suggested that
in the Gunn diode experiments some other mechanism is responsible for the
microwave emission [Kro66]. In our numerical calculations for the superlattices
it was also difficult to produce oscillations with the pure accumulation mode.
Kroemer proposed several mechanisms for Gunn diodes that lead to a breakup
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Fig. 1.8: (a) The details of the formation of the accumulation layer at the
cathode contact when the field in the superlattice becomes slightly larger than
Ec. (b,c) The resulting overall density and field evolution in the superlattice
after the formation. The left pictures show the processes only at the cathode
contact. If the voltage is increased so that the field inside the superlattice
becomes larger than the critical field Ec, the static situation (left column,
U = Uc) changes into a non-stationary state (middle and right column, U =
U2). The resulting current nv is not spatially constant and the density starts
to change indicated by small arrows. Two different density profiles n′2 and n

′′
2

for the moving layer and the corresponding field values E ′2 and E
′′
2 are shown.

Ea and Eb denote the fields ahead of and behind the accumulation layer.

of the pure accumulation layer mode and resulted in dipole domain behavior. If
depletion layers are created via noise or doping fluctuations or at the interfaces,
they will merge with the primary accumulation layer to form dipole domains and
the results agreed better with the experimental findings.

I will first describe the creation of dipole domains via fluctuations. Many sec-
ondary accumulation and depletion layers emerge in the sample in addition to the
primary accumulation layer ahead of the accumulation layer since the field Ea is
supercritical there. As the strongest of these secondary space-charge layers build
up the fields on either side of them move out of the negative mobility range, and
any weaker space-charge layer in those regions either collapses or merges with
the stronger layer. Depending on the time constant which determines the growth
and the drift velocity one depletion layer will survive and merge with the pri-
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mary accumulation layer. When the resulting dipole domain reaches the anode
the field inside the NDC region rises again and new domains may be formed. On
the other hand a static domain can form.

The formation of a new domain is more probable if the electric field at the cathode
is high. In addition to the fluctuations Kroemer therefore also proposed another
way to produce dipole domains in the models, that is the usage of a limiting
cathode which is accompanied by a high cathode field and will be discussed in
the next section.

Limiting cathode - depletion layers

In some of the experiments carried out with the Gunn oscillators a behavior was
found that could not be explained by the previous model. In those experiments
prior to the onset of Gunn oscillations the crystals developed a stationary high-
field domain ahead of the cathode for increasing applied voltage. The fields in the
cathode fall region were substantially larger than the threshold field Ec. Kroemer
[Kro68] developed a model that was perfectly suitable to explain the experiments,
even though the microscopic origin of the model is not that clear.

Kroemer abandoned the assumption of a well-behaved cathode and introduced the
imperfect cathode in which a transition to the high field value takes place outside
the NDC region. While the control characteristic concept introduced by Kroemer
is a little cumbersome to explain, the behavior of the model can be explained by
just assuming that the electric field at the cathode is fixed to a value Ecath > Ec.
Fig. 1.9a shows the static situation in the cathode contact region for two different
applied voltages. To get a consistent picture it is assumed that the contact region
is a low mobility material so that one gets small velocities even for high applied
voltages. This is one possibility to achieve the high cathode field Ecath. It will
become clear in the next chapter that the band-offset can also be responsible for
a high contact field.

In contrast to the accumulation layer that develops for a low cathode field a
depletion layer develops now and the situation can be static even if the electric
field value crosses the critical field value Ec. While for the accumulation layer
both the density n and the drift velocity v have a maximum so that nvd cannot
be constant, for a depletion layer the maximum of the drift velocity vd and the
minimum of the density can cancel to get a constant product nvd as shown in
both columns for different applied voltages. The higher the overall bias voltage
is the wider to the right the density minimum has to move to accommodate
the high overall voltage (Fig. 1.9b). The density between the cathode and the
depletion layer gets closer and closer to the equilibrium value n0 in this process.
The part to the left of the depletion layer is in the NDC regime and is unstable
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Fig. 1.9: The formation of the depletion layer for a limiting cathode with
rising voltage (a) and the corresponding density (b) and field profiles (c). In
contrast to the accumulation layer case there exist static solutions for increas-
ing voltages even when the field is supercritical in a part of the superlattice.
For increasing applied voltages U1 and U2 the depletion region moves into
the superlattice and a larger and larger part of the superlattice is supercrit-
ical. As long as the electric field is strictly monotonically decreasing in the
supercritical region, i. e. fluctuations are not large enough so that in a small
part of the supercritical region the density n is larger than the doping n0, the
situation is stable.

(Fig. 1.9c). Small depletions will not have a large effect since they drift into the
already existing large depletion.

The density is below the doping density so that fluctuations cannot produce
regions with accumulations, i. e. n > n0, but for large bias the density is only
slightly smaller than the doping density. Accumulations can form if a fluctuation
has already grown enough on its way from the origin to the depletion layer so
that the additional density is larger than the difference to the doping density.
The electric field is then an increasing function of the z-coordinate at that point.
It is shown in Fig. 1.10 that an accumulation layer forms if the electric field is
not a strictly monotonically decreasing function in the supercritical field region,
and the situation ceases to be static.

It is also apparent from the described mechanism that the behavior depends on



1.4. Instabilities in negative differential conductivity (NDC) materials 23

n

z

Ec

z
E0

E

n0

E’2 E’’2

2n’ n’’2

n

E

v

n

E

v

nv nv

n

E

v

nv

E c

n

Formation of a dipole domain

(a) (b)

(c)

Motion of the domain

Fig. 1.10: The formation of a dipole domain from the static depletion layer
(a), the electron densities (b) and the field profiles (c) for a moving dipole
domain for constant applied voltage. Only the small part of the superlattice
where the depletion of Fig. 1.9 is located is shown. In the middle column a
fluctuation is inserted which is associated with an increasing field and also
increasing density, indicated by the small arrow. The fluctuation grows and
it travels towards the depletion where a dipole domain forms (right column).
The dipole starts traveling through the superlattice resulting in the density
profiles n′2 and n′′2 and corresponding field profiles E ′2 and E ′′2 .

the size of fluctuations. The mechanism also explains a feature of the simulation
results that was a little puzzling when it first appeared. It turned out that
the behavior of the device, especially the onset of the oscillating behavior with
increasing voltage, depended crucially on the speed of the voltage increase. For
certain voltages it was possible to produce oscillating modes if the voltage was
suddenly switched on and static situations if the voltage was slowly increased.
From the above description it is clear that the static situation, that is in principle
possible for some fixed voltage, becomes unstable by the fluctuations introduced
due to the sudden voltage switching.

Fig. 1.10a shows the process around the depletion region that starts as soon
as a small accumulation layer forms between the depletion and the cathode.
The accumulation layer starts to grow and as soon as the electric field value
between the accumulation and the cathode becomes subcritical it moves towards
the depletion. It merges with the depletion layer and can now travel as a dipole
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domain through the crystal at constant voltage. Two different density profiles
n′2 and n′′2 and the corresponding field profiles E ′2 and E ′′2 are shown (Fig. 1.10b
and Fig. 1.10c). If the overall bias voltage is not large enough to sustain the fully
developed dipole layer U < Ud + UD, where UD is the voltage drop across a fully
developed dipole domain and Ud is the voltage drop at the cathode, the dipole
layer collapses on its way to the anode and a new dipole layer is formed. At some
bias voltage U > Ud +UD the dipole domain will finally travel all the way to the
anode where first the depletion layer disappears and then the accumulation runs
into the anode and the process is repeated.

Up to now the process at the anode has not been discussed. The next section
describes this process in more detail and shows that either a standing anode
domain or periodic behavior can be observed under suitable conditions.

Anode domains

The standing anode domain was first discovered by Thim et al. [Thi67] and
he also provided an explanation of the dynamics of the disappearance of charged
layers in the anode [Thi71]. Analytical [Gue71] and numerical treatments [Lev79,
Kir84] followed, but they only elaborated on the simple mechanism which will be
described in the following.

It is not obvious at all that the accumulation layer should move into the anode
contact under any circumstances. Let us consider the dashed vd-E characteristic
in Fig. 1.11a which does not increase for large electric field values. It will be
shown in the second chapter that indeed for typical superlattice parameters the
Zener tunneling probability becomes relevant at field values that are so high that
in all practical cases Zener tunneling can be neglected (apart from the superlattice
boundaries). In this case the accumulation layer either disappears at the anode
or it becomes stationary, depending on the time it takes to readjust. When
the accumulation layer starts to travel into the anode the voltage drop over the
accumulation starts to drop since only part of the high-field region is left in the
superlattice region. Since the total voltage is constant, the field upstream of the
accumulation Ea starts to rise. Two different scenarios are now conceivable.

If the process of charge redistribution in the accumulation is too slow, the ac-
cumulation will continue moving into the anode, the upstream field Ea rises to
Ec leading to the nucleation of a new accumulation. In the presence of this new
accumulation layer the upstream velocity of the preceding one is decreasing since
the electric field between the two accumulations Eb is supercritical and increas-
ing. Thus not enough electrons move into the old layer to maintain its shape as
it moves into the anode and, as a result, it disappears.

A distinctly different phenomenon appears if the charge redistribution process is
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Fig. 1.11: (a) The drift velocity versus field characteristic and evolution
of the electric field value ahead of an accumulation layer (Ea) and behind
the accumulation layer (Eb). The Esaki-Tsu characteristic is plotted (dashed
line). If one includes a mechanism, e. g. Zener tunneling, that enhances the
velocity beyond some field value Ev, the velocity goes through a minimum vv
(solid line). The evolution of Ea depends crucially on whether some process
leads to an increase of the drift velocity for high fields. (b,c) The density and
field profiles if the accumulation comes close to the anode.

faster than the accumulation moves into the anode. The rising upstream field Eb

pumps more and more electrons into the accumulation. As a consequence of this
the accumulation layer approaching the anode does not disappear. Its thickness
is determined by diffusion and is assumed to be of the order of several (perhaps
two) Debye lengths lD =

√

D/ωc. A mathematical condition for the stationary
solution is obtained if the time of readjustment is approximated by the dielectric
relaxation time and it is smaller than the time it takes the accumulation to travel
into the anode

|ωc|−1 <
2
√
D

√

|ωc|vd
(1.39)

which can be rewritten as |ωc| > v2d/4D and was found also in an analytical
investigation of Eq. (1.34) [Gue71]. For a superlattice with scattering time τ =
10−13s we get a critical density of ncr = 1017/cm3 using Eq. (1.37). Since in many
experiments the doping is on the same order of magnitude, this rough estimate is
not sufficient to decide whether the anode domains will be stable in superlattices.
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Another mechanism was also proposed which leads to oscillatory behavior. Let
us consider the solid vd-E curve in Fig. 1.11 which rises above some field Ev.
As described in the paragraph on accumulation layers the field Ea ahead of the
anode rises while the accumulation layer moves through the crystal. The current
density j ∝ nvd will go through a minimum for E = Ev and then starts to rise
again. The field between the cathode and the layer Eb will first drop to the value
El and then start to rise again, while the field ahead of the layer Ea only rises
so that the current density ahead of and behind the cathode have nearly the
same value. As soon as Eb rises to Ec a new accumulation layer is formed at
the cathode. The field between the new and the old accumulation layer enters
the negative differential mobility section of the vd-E characteristic, causing the
velocity to drop in this range. As a consequence, fewer electrons stream into
the old accumulation layer and out of the new accumulation layer. The process
continues until the old accumulation layer has vanished and the new accumulation
travels through the lattice.

In the numerical simulations Zener tunneling processes were included, but the
fields that were necessary for a finite probability of the process was never reached
in the calculations. The mechanism relying on the rising current voltage charac-
teristic therefore did not work. The second mechanism of fast moving layers that
cannot readjust also did not work. It was therefore only possible to create new
dipole domains when the electrical field at the cathode was supercritical. This
will be described in detail in Chapter 3.

1.5 Influence of a cavity

Up to now only an applied DC bias voltage has been considered. The influence of
a cavity in which the superlattice is situated will be investigated in this section.
To get a first impression of the effect of the cavity the influence is simply modeled
by an additional AC component of the applied voltage

U(t) = U0 + U1 exp(iωt) . (1.40)

In contrast to section 1.4.2 the oscillating component U1 is now not small com-
pared to the DC component U0. The n0L-product of the superlattice is assumed
to be large enough so that domains will form (see Eq. (1.36)). Depending on the
time of domain transit ttr and domain formation tf compared to the oscillation
period T of the applied voltage one can separate different regimes. tf depends
on the boundary conditions and the superlattice parameters. Here it is just some
empirical time.
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1.5.1 Delayed and quenched domains

I will first consider only resonance frequencies of the cavity of the order of the
inverse transit time νtr ∝ 1/ttr which will be small compared to the domain for-
mation frequencies νf ∝ 1/tf and which lead to delayed and quenched domain
modes. Fig. 1.12 shows the sum of the DC and AC voltage applied to the su-
perlattice structure as a function of time t where the sum of both voltages is
sufficient to start domains. Above some voltage Us an accumulation layer or
dipole domain will start traveling towards the anode as was shown in section
1.4.2. If the voltage falls below some voltage Ue the traveling inhomogeneity will
decay. Both processes will happen during each cycle of the AC field.

t

U(t)

U0 U1U

T

Us

e

et

Fig. 1.12: The sum of the AC
and DC voltage according to equa-
tion (1.37). The voltage is assumed
to rise above the voltage necessary
for domain formation Us and drop
below the voltage where the domain
disappears Ue during each cycle.

I will start with small resonance frequencies and continue with larger and larger
frequencies. If the time from the start of the domain to its decay te, is larger than
the domain transit time the domain will reach the anode during the high-field
part of the total voltage and disappear, but a new domain will not be started
before the voltage grows above Us again. This is the case of delayed domains
and the oscillations in the superlattice will have a slightly lower frequency than
without the cavity.

If the time te is a little smaller than the transit time ttr, the domain will decay
before it reaches the anode as soon as the voltage drops below Ue. This is the
case of quenched domains and the oscillations in the superlattice will have slightly
higher frequency than without the cavity. The frequency of the oscillations in
Gunn oscillators can be tuned by the resonance frequency of the cavity, from
0.5 to about 1.5 times the frequency of the pure oscillations. Reducing the time
constant T further one can hope to avoid the formation of domains if te becomes
smaller than the time of domain formation. This will be analyzed in the following.

1.5.2 Limited space-charge accumulation (LSA) mode

The LSAmode was first predicted theoretically for Gunn oscillators by J. A. Cope-
land [Cop66, Cop67a]. The idea is to avoid the domains which were responsible
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for microwave emission up to now. If this can be achieved one can use the neg-
ative differential conductivity directly to enhance radiation (see section 1.3). I
will assume first that the velocity vd in the crystal follows the field in the crystal
instantaneously. This is true if the frequency of the oscillating field is smaller
than ν/2π ≈ 1.6 THz, where ν is the scattering frequency which is on the order
of 1013/s = 10 THz.

vd

E

E

E E

0

tn

T

c 0

1

t

Fig. 1.13: The figure depicts the working principle of the LSA mode. The
superlattice is assumed to be homogeneous so that the field E(t) = E0 +
E1 cos(ωt) can be deduced directly from the voltage U(t) = U0 + U1 cos(ωt)
by the relation E = U/L. In addition to a constant supercritical voltage
U0 = E0L > EcL an AC voltage is applied so that the field drops below the
critical field during each cycle. While the field E(t) is larger than the critical
field Ec (0 < t < tn) inhomogeneities will grow due to the negative differential
conductivity, while they will decay for E(t) < Ec (tn < t < T ). If the decay
factor is larger than the growth factor, the assumption of homogeneity is
justified a posteriori.

The applied high-frequency field E will be homogeneous in the crystal if one can
avoid the domains and it is simply given by E(t) = U(t)/L so that one can write
E(t) = E0 + E1 cos(ωt) with equation (1.40). The current-voltage relation will
have the same form as the vd-E relation. The high-frequency velocity vω will
have opposite phase to the high-frequency field E1 in the NDC region at least for
small amplitudes E1, and the integral

∫
vω(t)E1(t)dt is negative, indicating that

the radiation is amplified.

To avoid inhomogeneities in the sample it is not sufficient to make the time
constant T of the applied field shorter than the time of domain formation tf .
Fig. 1.13 shows schematically the situation for the LSA mode. Even if during
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the high-field portion of one cycle (0 < t < tn) a mature domain is not formed, a
macroscopic inhomogeneity can be formed over many cycles if the inhomogeneity
does not disappear during the low-field portion (tn < t < T ) of one cycle. The
assumption of a homogeneous sample then cannot be used anymore. For a more
quantitative analysis I go back to the space-charge wave analysis of section 1.4.1.
For the small signal growth of space-charge the diffusion can be neglected and it
is described by

nk = n0k exp(−ωct) (1.41)

with ωc = σd/εε0. Below the threshold (tn < t < T ) σd is positive so that the
space-charge decays exponentially, but above threshold (0 < t < tn) it is negative
so that exponential space-charge growth occurs. For a time-dependent field the
space-charge existing after time T is the infinite product of infinitesimal amounts
of growth or decay with varying rates. Because of the exponential form this
simplifies to

nk = n0k exp

(

−
∫ T

0

ωc(t
′)dt′

)

. (1.42)
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Fig. 1.14: The growth factor g/T (a) in units of q = env0

εε0Ec
and the efficiency

η (b) for the LSA mode as function of the AC field E1. In both cases the
applied DC voltage U = 2 Uc results in an electric field E = 2 Ec. The sign
of the growth factor g determines whether inhomogeneities will grow with time
and the LSA mode is stable. Assuming homogeneity the efficiency η which is
the ratio of the power emitted at the applied frequency and the power absorbed
at the applied DC voltage can be calculated. If the growth factor is positive
and the efficiency η positive, the homogeneous state is stable and incident
microwave radiation is enhanced.

If the integral g :=
∫ T

0
ωc(t

′)dt′ in the exponent is positive, space-charges will
decay with time. Fig. 1.14a shows the integral for an applied voltage of E0 = 2
Ec and different applied amplitudes E1. For the velocity-field relation Eq. (1.17)
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we get for the integrand

ωc =
env0
εε0Ec
︸ ︷︷ ︸

q

1− (E/Ec)
2

(1 + (E/Ec)2)
2 . (1.43)

It might be surprising that the average of the derivative can be positive since the
applied voltage is most of the time in the region with negative slope. This can be
explained by the fact that the curve passes the region with largest negative slope
very fast and spends much time in regions with high positive and small negative
slopes. The amplitude E1 has to be nearly equal to the DC field so that the field
goes down below the critical field Ec and stays long enough in the region with
positive mobility.

Of course it is not clear that for voltages with those large amplitudes there
still exists gain since in our early considerations indicating gain the amplitudes
were small. To see whether gain exists one needs to compute the quantity
∫ T

0
E1 cos(ωt

′)vd(t
′)dt′ which can easily be done if one assumes that the veloc-

ity follows the field instantaneously. If this quantity is negative, there is gain at
the applied frequency ω. A convenient measure for devices is the efficiency which
is defined by

η = −
∫ T

0
E1 cos(ωt

′)vd(t
′)dt′

∫ T

0
E0vd(t′)dt′

. (1.44)

It is the ratio of the power emitted at the applied frequency and the power
absorbed at the applied DC voltage. Fig. 1.14b shows the efficiency for E0 = 2
Ec and different applied amplitudes E1. It can become as large as 10 per cent,
but at that value of E1 the integrated mobility just starts to be positive. In fact,
the region where there is gain and space-charges decay is rather small and goes
from approximately E1 = 1.5 Ec to E1 = 2 Ec.

One more point needs to be addressed. The space-charges not only have to decay
over one cycle, they are also not allowed to grow so large during one cycle that
homogeneity is destroyed since the whole derivation rested on this assumption.
The maximum growth factor gm in the exponential of Eq. (1.44) over one period
is

gm =

∫ tn

0

−ωc(t
′)dt′ ≤ T

en

εε0
(−µd)max ≤ nT

e

εε0

vd
8Ec

. (1.45)

One has gm ≤ 1 if nT < 3×105s/cm3 or T < 3×10−12s for a doping n = 1017/cm3.

After the prediction of the LSA mode in Gunn diodes some groups believed to
see experimental signs of it [Ken67, Iko69], but later Kroemer maintained that
the energy relaxation times are too long in GaAs to really suppress the domains
[Kro78]. Taking into account earlier calculations by Jones and Rees [Jon73] he
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made an estimation that the LSA mode is not possible for frequencies higher than
20 GHz. He explained the high-frequency oscillations with the fast creation and
annihilation of accumulation layers. Subsequent publications on high-frequency
Gunn diodes suggested a somewhat higher frequency limit of 60 GHz for the
LSA mode [Fri83], but in all later publications the oscillations were attributed to
running accumulation layers or dipole domains [Suc98, Dun03]. If the LSA mode
was ever realized, it was only observed in early experiments and at low frequencies,
but all technologically relevant Gunn emitters today work with running domains
[Eis04].

Despite the fact that it was probably never really achieved in the experiment I
treated the LSA mode in detail because Kroemer suggested an operation mode
in superlattices that reminds very much of the LSA mode [Kro00a] and which
extends earlier considerations by Ignatov et al. [Ign93]. The model that Kroe-
mer uses is more general than the LSA mode and the result reduces to the LSA
behavior in the limit of small frequencies. While the long energy relaxation times
inhibit the LSA mode in homogeneous GaAs, for the mechanism in superlattices
proposed by Kroemer he uses a model which explicitly includes energy and mo-
mentum relaxation effects. For the drift velocity the result for an applied field
E = E0 + E1 cos(ωt) is

v =
∞∑

m=−∞

J2
m

(
E1/Ec

ωτ

)

vd(E0 −mωτEc) (1.46)

where the function vd is given by Eq. (1.23) with δ = 1 since elastic scattering
is ignored. The maximum of the curve is vp = v0/4 due to the choice of f0 so
that I1/I0 = 1/2. The velocity is given as a sum of DC velocity curves shifted
by a field for which the potential drop across one superlattice period is equal to
the photon energy at the drive frequency ω. Due to that Kroemer uses the term
photon replicas for the m 6= 0 members of the sum. For small applied frequencies
z := E1/Ec

ωτ
> 1 many terms will contribute to the sum and using a Bessel function

identity from [Kov04] the expression can be simplified to

v =
1

2π

∫ 2π

0

vd(E0 + E1 cos u)du (1.47)

which is just the average velocity that results if the drift velocity follows the
oscillating field instantaneously. That is the model by Kroemer includes the LSA
picture as a limiting case, a fact that was either not mentioned or overseen by
Kroemer. Of course in this limit one recovers for the stability consideration the
factor g found in the LSA calculations. Because of the fact that the Kroemer
model includes the LSA mode I will call this operation mode extended LSA mode
subsequently.
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The second important requirement for the LSA operation was the high-frequency
gain. The formula for the high-frequency differential mobility calculated by Kroe-
mer

µω = − 2

ωτEc

z2
∞∑

m=−∞

mJ2
m(z) · vd(E0 −mωτEc) (1.48)

reduces using again Bessel function identities to

µω = − 1

E1

1

π

∫ 2π

0

cosu · vd(E0 + E1 cos u)du . (1.49)

The integral extracts the high-frequency component of the overall velocity from
the drift velocity that follows the applied field instantaneously. Again this is
the picture that was used in the LSA considerations, i. e. again one recovers the
LSA result as a limiting case for small applied frequencies. For high-frequency
irradiation ωτ = 10 the range around E0 = 10 Ec is dominated by them = 1 term
in the sum, the m = 0 term does not contribute at all. Due to the minus-sign
the differential mobility is negative in the region E0 > 10 Ec.

The main lesson that can be learned from the model by Kroemer is that the
LSA mode for which the condition ω < 1/τ is necessary can be extended to the
high-frequency regime. One can find photon resonances then and if the photon
energy and applied field are adjusted one can make use of these resonances to
reach large high-frequency gain values, while the DC conductivity is positive. Of
course an adverse point is that one needs strictly homogeneous samples to be
inside the resonance range in the whole superlattice. This will be difficult to
achieve if one includes boundaries. Another problem is that one needs to apply
an electric field with a magnitude several times the critical field value Ec which
will be difficult in the experiment. Still another problem is the construction
of a resonator with frequencies in the Terahertz regime since cavities cannot be
miniaturized arbitrarily. For example, a frequency of 16 THz would correspond to
the case ωτ = 10 for a typical relaxation time τ = 100 fs. Operation of quantum
cascade lasers was already shown in that frequency regime and one would have to
resort to the cavity designs developed there instead of the simple metallic cavities
considered in this thesis if operation in that regime is the goal. In Chapter 3 the
results of the extended LSA mode will be compared to numerical simulations
with and without boundaries.

In the next chapter the derivation of a suitable transport model for the superlat-
tice structures is carried out.



Chapter 2

Transport models for the superlattice
structures

In this chapter the derivation of a suitable transport model for the superlattice
structures is attempted. It was shown in the last chapter that the boundary
conditions are crucial for the behavior of the device not only quantitatively, but
also qualitatively. One of the possibilities that were discussed was an oscillating
state with strong inhomogeneities in space and time. Analytical solutions can
only be found for very simple homogeneous models which are not capable of
reproducing this behavior. But also for numerical approaches one needs a rather
simple model to allow for an inclusion of the boundaries and the spatial and
temporal evolution. In the first section of this chapter different transport models
are introduced and their potential as well as their limitations are discussed.

2.1 Hierarchy of the approaches for

semiconductor transport

At the top of the hierarchy there are the approaches based on a quantum de-
scription of transport. A corresponding theory can be based on density matrices
[Kuh98] or nonequilibrium Green functions [Hau96, Wac02]. This area is still the
subject of much research. In both cases one needs simplifications to make the
problem accessible to solutions. While the density matrix formalism is particu-
larly useful for systems with long phase-relaxation times since the coherent tem-
poral evolution can be directly obtained from a coupled set of differential equa-
tions, the Green function approach can efficiently deal with dissipative transport
processes. From both approaches the Boltzmann equation for the semiclassical
distribution in phase space f(r,k, t) can be obtained

∂f

∂t
+

1

~
∂ε

∂k
· ∇rf + eE · ∇kf =

∂f

∂t

∣
∣
∣
∣
coll

. (2.1)

33
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ε(k) is the one-particle dispersion relation and E is the electric field. The left-
hand side of Eq. (2.1) describes the dynamics of particles without interaction.
In Appendix A it is shown how this equation has to be modified for the case
of a spatially varying periodic potential. This can be derived starting from the
nonequilibrium Green functions formalism. The result will be used in section 2.2
when the boundary regions will be included in the description, but for now I will
stick to the homogeneous problem. Scattering processes of the particles or of
particles with impurities or phonons will give rise to a change of the distribution
function ∂f/∂t|coll. The solution of the Boltzmann equation in general requires
numerical methods.

The most popular numerical approach to the problem has been the Monte Carlo
method [Jac83]. For a homogeneous system one simply models the motion of
one particle as free motion, where the velocity is given by ∂ε/∂k and the quasi-
momentum k changes according to the semiclassical equation ~ ∂k

∂t
= eE. The

probabilities for the different scattering events summarized in ∂f/∂t|coll can be
calculated with Fermi’s golden rule and the electron is scattered in the simula-
tion process according to these probabilities. Assuming ergodicity the behavior
of the electron ensemble in the device can be obtained if one waits long enough so
that the electron has traced out the phase space. The Monte Carlo method has
been used to treat the homogeneous transport problem in superlattices [Sch03].
If the system is not homogeneous, as is the case for the oscillating modes, one
has to use an ensemble of electrons and couple the evolution of the ensemble
to the Poisson equation. The computational effort for this simulation procedure
can become very large and I am not aware of any Monte Carlo simulations for
inhomogeneous superlattice transport.

The collision term involves the distribution function, and the Boltzmann equation
is therefore a rather complicated integro-differential equation for f(r,k, t). The
most frequently used approximation for the collision term is the relaxation time
approximation

∂f

∂t

∣
∣
∣
∣
coll

= − 1

τε

(

f(k)− n

n0
f0(k)

)

− 1

τel

1

2
(f(k)− f(−k)) (2.2)

which is a crude description of the relaxation kinetics towards equilibrium. Phonon
scattering is assumed to restore the equilibrium distribution f0 with the density
adjusted to the local value if the distribution f deviates from the local equilib-
rium distribution. This term conserves the particle number. The second term
describes elastic scattering processes which scatter electrons between degenerate
states. It is assumed here that only the state at -k is degenerate to the state
at k which is true only in one-dimensional systems, but is used here also as an
approximation. If one reduces the problem also to one dimension, assuming ho-
mogeneity of the sample perpendicular to the transport direction, it is shown in
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Appendix B that the Boltzmann equation can be simplified to

∂f

∂t
+ vp

∂f

∂z
+
eE

~
∂f

∂k
= − 1

τε

(

f(k)− n

n0
f0(k)

)

− 1

τel

1

2
(f(k)− f(−k)) (2.3)

which is the Ktitorov model used earlier extended to spatially inhomogeneous
problems. While it is questionable whether a quantitative description is possible
with this approximation, the goal of a qualitative description should be achiev-
able. Due to the numerical effort necessary for the full Boltzmann equation I
chose this approximation as one of the models for my simulations. It was shown
that the elastic scattering term changes the results quantitatively, but not quali-
tatively [Ger93], and therefore most of the calculations were done without elastic
scattering.

A further simplification is possible when the various transport variables are rep-
resented through average densities that are obtained as moments 〈a〉 of the dis-
tribution function which are defined by

〈a〉 = 1

n

∫

a(k)f(k, x, t)dk. (2.4)

In Appendix C it is shown how balance equations for the momentum and energy
density are obtained from Eq. (2.3). Neglecting contributions which are small for
∆/kBT ¿ 1 and assuming that τel = 0, these can be written as

∂(n〈v〉)
∂t

+
v20
2

∂n

∂x
+
ed2

~2
n〈ε〉E = −νn〈v〉 (2.5)

∂(n〈ε〉)
∂t

− en〈v〉E = −νn(〈ε〉 − εT ) . (2.6)

Here ν = 1/τε is the inelastic scattering frequency. Together with the continuity
equation one has a coupled set of differential equations which can be solved
numerically. This is the second set of equations that were investigated doing a
numerical analysis.

Under the assumption of slow variations in space and time, i. e. momentum and
energy relaxation occur faster than all other processes, the moment-balance equa-
tions (2.5,2.6) can be further simplified to the drift-diffusion model (Appendix
C). The drift-diffusion current

J = env = envd − eD
∂n

∂x
(2.7)

is composed of a drift term Jd ∝ vd = µE = v0
I1
I0

E/Ec

1+(E/Ec)2
and a diffusion term

JD = −eD ∂n
∂x
. It is shown in Appendix C that the diffusion coefficient D is

approximately given by the Einstein relation D = µkBT/e, which was used in
the numerical simulations.
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At this point it should be stressed that with the last step in the progress towards
simpler and simpler simulation equations one has given up the possibility to
describe processes that happen faster than energy and momentum relaxation.
Let us assume for the moment a relaxation time of 100 fs, which is realistic
for the momentum relaxation. Any process happening with a frequency around
f = ω/2π ≈ 1 THz or above will be out of reach for this model. Unfortunately
this is the frequency with which domain creation is happening in the system (see
Chapter 3). Apart from that it is also interesting to apply external high-frequency
radiation to the system to see whether one can create higher harmonics or change
the transport mode as suggested in section 1.5.2. The drift-diffusion model was
used to describe domain motion and the response to external high-frequency
radiation in semiconductor superlattices [Sch02b], but from the considerations
above it is clear that the results have to be treated with care. An extension of
the drift-diffusion model to include retardation effects is possible [Bon03].

In section 3.1 the numerical results of the homogeneous problem are compared for
three different models: the Boltzmann transport equation in the form of Eq. (2.3),
the moment-balance equations in the form of Eqs. (2.5,2.6) and the drift-diffusion
model in the form of Eq. (2.7). Different schemes had to be introduced to tackle
the differential equations of the three models. The Boltzmann equation and the
drift-diffusion equation were discretized using an upwind differencing method,
while this procedure did not work for the moment-balance equations. The most
stable scheme which was found there was a simple central difference approach.
Unfortunately the upwind differencing scheme introduces additional diffusion ef-
fects. An advantage of the upwind procedure is its stability when applied to
the Boltzmann equation which made it possible to choose the time-steps for the
Boltzmann equation one order of magnitude larger than for the moment-balance
equations. In effect the computational effort for the calculations was nearly the
same for the Boltzmann and the moment-balance equation, while the effort was
considerably smaller for the drift-diffusion model.

While it is interesting to see how the results change when simplifying the equa-
tions step by step one needs to include the boundaries in the different models since
it was shown in Chapter 1 that the behavior depends crucially on the boundary
conditions. This is the purpose of the next section.

2.2 Boundary conditions

It was recognized early that the creation of periodic behavior in the simulations
is nontrivial. In many of the numerical treatments on the Gunn effect a so-
called “notch” [McC66, Suc98] is introduced which is a short region with smaller
doping density close to the cathode. The notch is actually a source of both
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an accumulation and a depletion layer and for a large notch the accumulation
layer can take over the role of the primary accumulation layer which develops
at the cathode when the field ahead of the cathode is never permitted to exceed
threshold. The accumulation layer will merge with the depletion layer introduced
by the notch and the dipole domain propagates to the anode and the process is
repeated.

The attitude towards the boundary conditions in the drift-diffusion simulations
in superlattices that were done up to now can be exemplified by the statement:
“we have chosen bias and boundary conditions so that dipole mediated current
oscillations occur“ [Bon03]. This position was already adopted in [Kro68] where
the Gunn effect in GaAs was treated. Without giving a microscopic justification
for the boundary conditions that he used Kroemer rather made some general
assumptions about the contact region. As described in section 1.4.2 especially
the assumption of high electric fields in the highly doped GaAs contact region,
which at first sight seems counterintuitive, produced behavior that was in good
agreement with the experimental observations and the situation is similar in the
superlattice simulations. Only if the field in the contact region is high which
coincides with the case of limiting contacts described in section 1.4.2 one can
observe oscillating modes. Of course it should be possible to find afterwards
a justification for the boundary conditions employed (see e. g. [Sch02b]) since
using totally arbitrary conditions to produce some determined behavior is not
satisfactory.

A different approach is to start with a realistic microscopic model and derive
boundary conditions from that. This was one of the goals of this work. If the
resulting model does not produce the observed experimental observations, one is
tempted to modify the model until the result coincides with the experiment and
in the end the difference to the previous approach may be small. But one has
still a microscopic model at hand which may coincide with the real system and
describe its behavior in new parameter regimes.

It was shown in Chapter 1 that the boundary conditions, especially the electric
field value at the transition from the bulk material to the superlattice, is crucial
for the behavior of the device. Even in the absence of an applied voltage there
will be contact voltages between the two regions if the Fermi energies of the
regions are different which will be the usual case. The Fermi energy will depend
both on the difference in electron affinity and the doping density. Assuming a
linear drift velocity versus field relation in the highly doped contact material,
the main parameter in the drift-diffusion model is the mobility µ which has to
be chosen small in the contact region to produce oscillating behavior. A better
starting point is then the Boltzmann equation, with which the distribution in k-
space is fully described. The derivation of boundary conditions for the Boltzmann
equation will be done in the following sections for two different microscopic models
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of the boundary.

2.2.1 Discontinuous transition

Fig. 2.1 shows the boundary conditions that were used in the case of a discon-
tinuous transition. Only electrons from the bulk GaAs material whose energy
matches the energy of the lowest miniband enter the superlattice and electrons
with other energy values are reflected. Even without applied voltage there is an
electron flow from the region with higher density to the region with lower density.
Since the particle density at the same energy value is determining this, the flow
can be opposite to the flow that would result from the doping gradient. The pro-
cess continues until the drift current resulting from the electric field that builds
up balances this diffusion current. This continues until the Fermi energies deep
inside the material are at the same level on both sides of the boundary.
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Fig. 2.1: The superlattice includ-
ing the boundaries with shaded for-
bidden regions (upper part) and the
schematical dispersions in the GaAs
boundaries and the superlattice re-
gion (lower part). Electrons en-
ter the superlattice if the energy ε
is within the superlattice miniband
(εoff < ε < εoff +∆) and are other-
wise reflected.

On the level of the Boltzmann equation one needs the one-dimensional distri-
bution function f ′ integrated over the perpendicular degrees of freedom. The
equilibrium distribution is given by

f ′(0)(z, k) =
L2

2π2

∫

f0(kx, ky, kz)dkxdky =
L2

2π

2m∗

β~2
ln(1 + e−β(ε(k)−µ)) (2.8)

the derivation of which is shown in Appendix B. ε is the energy in the trans-
port direction and µ has to be determined self-consistently from the condition
d/(2π)

∫

kz
f ′(0)(z, kz)dkz = n0(z). To get an impression of a typical situation in

superlattices we determined the chemical potential µ for the standard superlat-
tice from Tab. 1.1. The top left graph of Fig. 2.2 shows the conduction band edge
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εc (solid line) and the chemical potential µ (dotted line) before the electrons are
allowed to relax.
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Fig. 2.2: The conduction band edge, carrier density and electric field be-
fore (a,c,e) and after the relaxation (b,d,f) of the carriers at the interface
between the superlattice and the contact region for the standard superlattice
(Tab. 1.1). One can see that the chemical potential µ is higher in the su-
perlattice region than in the contact region. This means that electrons will
flow from the superlattice region into the contact region (d). The excess and
defect electrons bend the conduction band edge εc until the chemical potentials
are aligned. The electric field at the cathode contact is supercritical for zero
applied voltage.

One can see in Fig. 2.2 that GaAs is already degenerate (µ > εc), while the
electron gas in the superlattice is still non-degenerate (µ < εc). Even though the
density is much higher in the highly doped GaAs contact, the chemical potential
is higher in the superlattice region due to the band offset εoff ≈ 130 meV. This
means that electrons will flow from the low doped superlattice region into the
highly doped contact region since the electron density is higher at the same energy
in the superlattice. The density increases in the contact region and decreases in
the superlattice region. This will continue until the chemical potentials inside
the superlattice and in the contact region are aligned.

Fig. 2.2b shows the chemical potential and the conduction band edge including
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the electric potential that originates in the excess electrons in the contact and
defect electrons in the superlattice, µ−eU and εc−eU , respectively. The chemical
potential which is ill-defined in the contact region, where the electron gas is not
in equilibrium, has the same value deep inside the superlattice and outside. In
the calculation due to the discretization the values are not exactly identical, but
for increasing spatial resolution the two values approach each other.

Fig. 2.2f shows that the electric field at the contact is supercritical already for
zero applied voltage. This justifies in hindsight the assumption in Chapter 1 that
the electric field at the cathode contact is higher than the critical field value Ec.
Depending on the doping density in the superlattice and contact region and the
band offset the contact field can have different values. It is questionable whether
our crude approximation of a discontinuous change of the dispersion relation can
give a reliable result for the contact field, but at least the correct sign of the
field should be reproduced since this depends on the chemical potentials in the
respective materials which are determined by the doping.

The assumption that electrons always enter the superlattice if their energy is
within the miniband energy is an approximation. The transmission and reflec-
tion probability for electrons approaching the superlattice can be calculated for
example with a tight-binding model. Let us assume that the Hamiltonian is given
by

H =
∑

n≤−1

(

εbb
†
nbn −∆b/4(b

†
n−1bn + b†nbn−1)

)

+ (2.9)

+
∑

n≥1

(

ε0a
†
nan −∆/4(a†n+1an + a†nan+1)

)

+

+t0/4(a
†
1b−1 + b†−1a1)

with band width ∆b > ∆ so that the left side (n ≤ −1) represents the boundary
with a wide band and the right side (n ≥ 1) represents the miniband. With a
Fourier transform the dispersion relations

εb(k) = εb −∆b/2 cos(kbdb) and ε(k) = ε0 −∆/2 cos(kd) (2.10)

can be obtained in the two regions. For t0 =
√
∆∆b and equal lattice constants

db = d one obtains for the reflection probability of plane wave states

R =
1− cos ((k − kb)d)
1− cos ((k + kb)d)

. (2.11)

In Fig. 2.3 the reflection probability is plotted as a function of the electron energy
in the miniband region for a bandwidth in the boundary twice as large as in the
superlattice ∆b = 2∆. For aligned miniband centers, i. e. ε0 = εb, the reflection
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ability R of equation (2.11) for
∆b = 2∆ for aligned band cen-
ters and aligned band bottoms as
function of the miniband energy.

probability approaches 1 at the edges and is zero in the center (solid line). For
aligned miniband bottoms the reflection probability is nearly zero at the lower
edge and approaches 1 at the upper edge (dashed line). Altogether one observes
that the reflection probability is nearly zero apart from the miniband edges and
it was therefore neglected in the numerical calculations. The reflection at the
upper edge plays no role anyway since the miniband width ∆ is on the order of
100 meV ≈ 4 kBT so that the number of electrons is negligible there. For the
reflection at the lower edge the band bending by the electric field is crucial and
will be treated in the following.

In Fig. 2.2b one can see that a triangular barrier forms at the superlattice-contact
interface even without applied voltage. Applying a voltage in forward direction,
where forward direction means lowering the band edge of the right contact, so
that electrons travel to the right, the triangular barrier will be even more peaked.
Fig. 2.4 shows the situation schematically for a constant applied electric field E.
There will be a finite tunneling probability into the superlattice for electrons
whose energy is only by a small amount δε below the peak of the triangular
barrier. Assuming a constant electric field value over the narrow tunneling region,
the tunneling probability through the triangular barrier can be deduced from a
simple WKB integration and one gets (see Appendix D)

P = exp

(

− 4

3eE

√
2m?

l

~
δε3/2

)

. (2.12)

At the other side of the superlattice there will also be a finite tunneling probability
out of the superlattice which was found in Appendix D to be

P = exp

(

−
√

2VQeEdm
?
l

π

4

3
y3/2

)

. (2.13)

Here y is the distance from the superlattice end. Keeping y fixed, the triangular
barrier increases with increasing field and the tunneling probability is reduced
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Fig. 2.4: For finite applied voltage
the miniband is tilted and triangular
barriers are formed at both ends of
the superlattice. The tunneling prob-
ability into the superlattice of elec-
trons with energy being δε lower than
the band edge is given by Eq. (2.12),
while the probability of tunneling out
of the superlattice from distance y
from the superlattice end is given by
Eq. (2.13).

in contrast to the probability of tunneling into the superlattice which rises with
increasing field E for a fixed energy. Of course the two tunneling processes
are principally symmetric. However, for the simulation one needs the tunneling
probability as a function of the energy deficit δε at the left side and as a function
of the distance from the miniband end y at the right side.
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Fig. 2.5: The tunneling probabilities into the superlattice and out of the
superlattice as a function of the energy that the electrons are below the band
edge δε and distance from the superlattice end y respectively.

Both tunneling probabilities are shown in Fig. 2.5 for the standard superlattice
(Tab. 1.1) as a function of the energy difference to the miniband edge δε and
distance from the superlattice end y for different electric fields E. The barrier is
effectively lowered for electrons approaching the superlattice from the left. Since
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already without applied voltage the electric field value at the boundary is on
the order of Ec (see Fig. 2.2f), the barrier is lowered by several meV and even
more if the field is increased. The electric field value at the left contact does not
increase very much for finite voltage since the current rises strongly if the voltage
is increased due to the high doping level in the GaAs contact. The electric field
at the cathode contact is somewhat reduced if one introduces the finite tunneling
probability.

The probability for tunneling out of the superlattice becomes only relevant for
E > Ec since otherwise only few electrons reach the upper edge of the miniband.
For our standard superlattice the tunneling probability is relevant only within a
few superlattice constants d of the right contact. It turns out that this tunneling
process is crucial for the annihilation of the anode domains. Without this term,
standing anode domains form at lower overall voltages than with this term since
the high field value associated with the standing domain quenches the transport
into the contact region and the accumulation layer does not leave the superlattice.
The tunneling supports the motion of the accumulated electrons through the
triangular barrier into the contact region.

The assumption that the miniband dispersion starts immediately with the super-
lattice is a rather crude approximation since the dispersion relation is only valid
for infinite superlattices. The finite size was only taken into account by incor-
porating the tunneling probabilities at both ends of the superlattice through the
triangular barriers which are generated by a finite applied voltage. A totally dif-
ferent approach to the discontinuous transition considered up to now is to assume
that the transition is smooth in the sense that one goes from the bulk material
to the superlattice by slowly increasing the barrier width from zero to the value
in the superlattice region. This will be considered in the next section.

2.2.2 Continuous transition

There are two reasons to consider a slow transition from the bulk material to
the superlattice region. On the one hand it is a complementary approach to
the discontinuous transition in the last subsection that can be treated exactly or
at least the effects on the Boltzmann equation can be determined precisely, as
will be shown. On the other hand it was tried by some groups to improve the
injection of electrons into the superlattice region by growing a sequence of layers
with slowly changing widths.

The question is now how to describe transport of electrons in this structure.
In Appendix A the driving term in the Boltzmann equation is calculated for a
periodic structure with slowly varying potential strength where a local dispersion
ε(k, z) can be defined. Here one obtains for the Boltzmann equation, neglecting
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scattering processes for the moment (see Eq. (A.49)),

∂f

∂t
+
∂ε(k, z)

∂k

∂f

∂z
− ∂ε(k, z)

∂z

∂f

∂k
+ eE

∂f

∂k
= 0 . (2.14)

Comparing this with the driving term in Eq. (2.3) there is an additional term
coming from the spatial dependence of the dispersion relation. The origin of this
term can be understood using the following argument. The total energy εtot =
ε(k, z)− eU of a particle traveling through the superlattice where U =

∫
Edz is

the local potential is conserved if

dεtot
dt

=
∂ε

∂k
|z
dk

dt
+
∂ε

∂z
|k
dz

dt
− eEdz

dt
=

(
dk

dt
+
∂ε

∂z
− eE

)

vk = 0 (2.15)

which holds if
dk

dt
= eE − ∂ε

∂z
. (2.16)

Inserting this into the total derivative of f equation (2.14) is obtained. The
additional term in the Boltzmann equation that arises from the slowly varying
potential can therefore also be derived by the condition that the electrons travel
at a constant energy which is what one would expect from a semiclassical the-
ory. Having this in mind one can transform the driving term of the Boltzmann
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equation. Introducing the function f̃(z, ε(k), t) = f(z, k, t) the spatial term can
be rewritten as

∂ε

∂k
|z
∂f

∂z
|k =

∂ε

∂k
|z
(

∂f̃

∂z
|ε +

∂f̃

∂ε
|z
∂ε

∂z
|k
)

=

=
∂ε

∂k
|z
(

∂f̃

∂z
|ε +

∂f

∂k
|z
∂k

∂ε
|z
∂ε

∂z

∣
∣
∣
∣
k

)

=
∂ε

∂k
|z
∂f̃

∂z
|ε +

∂ε

∂z
|k
∂f

∂k
|z . (2.17)

The last term cancels with the additional term in Eq. 2.14 to get

∂f̃

∂t
+
∂ε

∂k

∂f̃

∂z
+ eE

∂f̃

∂ε

∂ε

∂k
= 0 . (2.18)

In the simulation the spatial derivatives are therefore calculated under a constant
energy condition. When the equation is discretized for the numerical integration
procedure this derivative at constant energy ε has to be handled with care. The
upwind procedure which was used to discretize equation (2.14) and its extension
to equation (2.18) are illustrated in detail in Appendix E.

In the last section the discontinuous transition was described by the assumption
that the electrons enter the superlattice with constant energy and for that one
calculates the densities in the neighboring k-points with the same energy in the
contact region and the superlattices region. In the case of a continuous transition
the discretization procedure ends in just the same instruction: calculate the k-
value at which electrons in the neighboring point have the same energy. Reducing
the number of steps over which the transition from the bulk dispersion to the
superlattice dispersion happens to only one step, the continuous model actually
goes over to the discontinuous model if the reflection processes are neglected.

Fig. 2.7 shows the situation before and after the relaxation of carriers at the
boundary between the superlattice region and the contact region for the standard
superlattice from Tab. 1.1. The width of the contact region is one fifth of the
superlattice length, which amounts to 20 periods of the lattice. In the experiments
the actual length of the smooth transition region is shorter on the order of five
periods, but it is extended here to illustrate the behavior. It is assumed that the
doping density n0 changes linearly between the two regions (c), the conduction
band edge εc is assumed to increase quadratically between the regions. The
rearrangement of the charge carriers happens mainly within the transition region
so that the density is hardly changed in the contact and superlattice region after
the relaxation (d). The Fermi levels are nearly aligned after the relaxation (b),
but now in contrast to the discontinuous transition no triangular barriers are
formed. The Fermi levels are not exactly aligned due to the discretization, but
for increasing number of grid-points in k-space the Fermi levels are finally aligned.
The electric field peak is a little wider and the maximum a little lower than for
the discontinuous transition (f).
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Fig. 2.7: The conduction band edge εc, carrier density n and electric field
E before (a,c,e) and after the relaxation (b,d,f) of the carriers at a smooth
transition region from the superlattice region to the contact region for the
standard superlattice (Tab. 1.1). The carriers redistribute themselves mainly
in the contact region which has a width of one fifth of the lattice length. After
the relaxation process the chemical potentials are aligned. The electric field
peak at the cathode contact is a little wider and not as high as the field peak
that arises in the discontinuous transition (Fig. 2.2).

The field peak becomes higher again when the width of the transition region is
decreased. In fact in the experiments the transition region is on the order of
five superlattice constants which can only be resolved for higher resolution since
this corresponds to only 2 ∼ 3 lattice points for the used resolution. Applying an
electric field a triangular barrier will form again, but it is difficult now to calculate
the tunneling probabilities since the shape of the barriers depends on the charge
distribution inside the transition region. To limit the computation time most of
the simulations in Chapter 3 were carried out with the discontinuous model.

In principle it is possible, at least for the discontinuous model, to derive boundary
conditions for the moment-balance equations or the drift-diffusion model from
the boundary conditions of the Boltzmann equation. These will depend on the
distribution in k-space. Since the Boltzmann equation is numerically not more
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expensive than the other models and more reliable in the high-frequency regime,
this was not attempted. Instead of deriving the boundary conditions for the
hydrodynamic equations or drift-diffusion equation from a microscopic model, it
is probably better to test different boundary conditions for the models and choose
those which produce the experimentally observed behavior. This approach was
used in earlier drift-diffusion simulations [Sch02b, Bon03]. In the only simulations
know to me which use a hydrodynamic model a ”notch”, which is a short low
doped region in which the electric field will be high, was introduced to produce
oscillating behavior [Cao99].

The model for the superlattice is now complete. It is well known from the exper-
iments that the behavior of the device depends also on the surrounding in the
experiment. It is attempted in the next section to set up a suitably detailed but
still tractable model for the environment.

2.3 Influence of the surrounding

It is observed in the experiments that the surrounding has a large influence on
the behavior of the superlattice devices. The treatment of the surrounding is
split here into two parts: first a model for the current circuit is developed and
then the proper description of a surrounding cavity is described.

2.3.1 Current circuit

Apart from any additional features of the surroundings the superlattice device is
part of a current circuit. Fig. 2.8 shows a schematical drawing of the circuit. Since
we model the internal dynamics and the capacitive effects of the boundary regions,
we did not include a capacity parallel to the superlattice like other authors do
[Sch02b]. To be more specific, the model which was described in section 1.4.2
describes the buildup and disappearance of charges at the boundary between
contact and superlattice. Since this is the largest capacitance in the circuit, one
does not need to include an extra capacitance. The wires and other circuit parts
act as inductances which are summed in the inductance L. Additionally there
can be resistive parts in the circuit modeled by an overall resistance R.

The capacitance of the superlattice is given by C = εε0A/d which is C = 23
fF for a typical mesa area of 10 µm×10 µm. In the calculations the voltage
that is caused by the inductance UL = Lİ is needed as a function of the current
density UL = Lj̇A. The antenna which couples the current oscillations to the
electromagnetic field is a piece of wire of length 1 mm and diameter 0.03 mm and
has an approximate inductance of L ≈ 1 nH. A typical cavity with length scales
on the order of 1 mm has also an approximate inductance of 1 nH.
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R

L

Fig. 2.8: The current circuit in which the su-
perlattice is situated. The superlattice acts as a
capacitance, other capacitive effects of the circuit
are neglected. The resistance R represents con-
tact resistances between the semiconductor and
the metal wires and of the metal wires itself.

The frequency of the resonance circuit that is formed by the inductance L and

the superlattice capacitance C is given by f =
(

2π
√
LC
)−1

≈ 30 GHz. If

the resonance frequency and the frequency of the free oscillations are of the
same order of magnitude, both will interact, but in the simulations it was only
possible to get results for rather small inductances on the order of 200 pH since
for larger inductances growing oscillations lead to divergences. Especially in the
voltage region where free oscillations were observed the calculations diverged for
reasonable values of the circuit inductance. In a model developed in [Sch02a] an
inductance with a much smaller value (3 pH) was used, but it is not clear how
this small value can be justified.

2.3.2 Cavity

The next step towards a realistic description of the superlattice behavior is to
include a resonator in which the superlattice may be situated. A model for a
cavity is presented in Appendix F which is taken from [Ung89]. The ratio of
the voltage across the superlattice U and the current through the cavity I can
be considered as entrance impedance of the cavity Z = U/I. It is the sum
Z =

∑

n Zn of impedances from each eigenmode of the cavity

Zn = −iωnln

[(
ωn

ω
− ω

ωn

)

− 1 + i

Qn

]−1

(2.19)

where ωn are the eigenfrequencies of the cavity and Qn introduces damping. ln
and Qn are defined by the magnetic field Hn of the eigenmodes of the cavity

ln := µ20

∣
∣
∣

∫

A

Hndf
∣
∣
∣

2

, Qn :=
ωn

RA

∫
df |Hn|2

. (2.20)

For Eq. (2.19) one can find an equivalent circuit description. Each impedance
coming from the different modes corresponds to the impedance of a resonance
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circuit coupled inductively to the line. To show that let us consider a circuit as
shown in Fig. 2.9. Each element consists of a parallel circuit of a capacitance
Cn, a resistance Rn and a coil with inductance L2,n. The coupling to the line
occurs by another coil with inductance L1,n. Both coils are linked by the mutual
inductance L12,n. For the latter we assume L2

12,n = L1,nL2,n which holds if the
same flux is going through both coils.
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Fig. 2.9: The influence of the cav-
ity can be described by the depicted
equivalent circuit. For each eigen-
mode of the cavity a parallel reso-
nance circuit is coupled inductively
to the line. The eigenfrequency of
the equivalent circuit (L2,nCn)

−1/2

has to match the eigenfrequency ωn

of the eigenmode. R represents the
dissipative effects caused by the sur-
face resistance in the cavity.

Let us call the current going through the line I, the voltage drop at the nth
element U1,n and the current through the circuit Ic,n. U2,n is the voltage induced
by the circuit inductance which equals the voltage drop over the capacitance and
the resistance. Then we have for each element (dropping the index n for the
moment)

U1 = −iωL1I − iωL12Ic (2.21)

U2 = iωL2Ic + iωL12I . (2.22)

For the current going through the parallel circuit we obtain

Ic = Y U2, Y = −iωC +
1

R
. (2.23)

Eliminating U2 and Ic from these equations we obtain

U1

I
=
L1

L2

[
1

−iωL2

− iωC +
1

R

]−1

(2.24)

which gives the impedance of the nth element

Zn =
L1,n

L2,n

[
1

−iωL2,n

− iωCn +
1

Rn

]−1

. (2.25)
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Comparing the two expressions Zn in Eqs. (2.19,2.25) we find the identifications

ωn = 1/
√

L2,nCn, Q−1n = R−1n

√

L2,n/Cn and ln = L1,n . (2.26)

Here we have suppressed the small frequency shift produced by 1/Qn for the
resonance mode ωn. Note that in an ideal situation the ratio L1/L2 is the ratio
of the winding numbers of the two coils. The inductance of the coil in the line is
given by L1,n = ln. This quantity defined in Eq. (2.20) has the dimension of an
inductance due to the imposed normalization of the fields of the eigenmodes.

Since the eigenmodes of a cavity with given geometry can be calculated, one can
use the equations above in differential form to model the influence of the cavity
on the behavior of the superlattice device numerically. The inclusion of only an
inductance was difficult for realistic values of the circuit inductance and more
investigations would be necessary to get a conclusive picture of the effects of the
cavity. Qualitatively one expects of course a strong interaction of the resonance
circuit with the superlattice oscillations if the eigenfrequency of one eigenmode
and the frequency of the current oscillations have nearly the same value.

In the experiments one observes voltage intervals in which the frequency stays
constant which can be interpreted as regions where the frequency of the current
oscillations is locked to an eigenfrequency of the cavity. An inclusion of the
cavity seems to be necessary therefore to reproduce the experimentally measured
current-voltage curves.



Chapter 3

Results of the numerical transport
treatment

In the last chapter it was shown how one can derive different transport models
for the description of carrier transport in semiconductor superlattices and now
the numerical results are presented.

3.1 Comparison of different models for a

homogeneous system

First the results are compared for an infinite system. This is achieved by imposing
periodic boundary conditions on the simulation. If the results are either homoge-
neous or the resulting inhomogeneities are shorter than the periodicity length one
can draw conclusions for the transport in real devices. It should be pointed out
that even though the homogeneous problem is considered, the treatment is a cru-
cial step towards a realistic device model compared to the homogeneous transport
models used in most treatments of superlattice transport. Inhomogeneities which
will arise because of the negative differential conductivity can develop and travel
through the superlattice. The question of domain formation and annihilation is
deferred to section 3.2 where boundaries are introduced.

3.1.1 DC transport

Before going into details I would like to discuss which questions one can reason-
ably try to answer with the presented models. It is of course tempting to try to
reproduce the frequencies found in the experiments as was done e. g. in [Bon03].
In this case an extended drift-diffusion model was used, and to get the oscillation
frequencies one needs to know the elastic and inelastic scattering frequencies νel
and νε. While the inelastic frequency may be similar to that of bulk GaAs, the

51
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elastic frequency will depend on the surface roughness of the superlattice struc-
ture and is therefore unknown. It was shown in section 1.3 that it is possible to
deduce the scattering frequencies from the critical field Ec ∝

√

νε · (νε + νel) and

the peak velocity vp ∝
√

νε/(νε + νel). This is true only under the assumption
that the three dimensional form of the elastic scattering is really given by the
simple approximation presented in equation (2.3). It is shown in [Ger93] that
the results of the full three-dimensional scattering agree only qualitatively, not
quantitatively. In addition to that the determination of vp involves the area of
the superlattice mesa since the current I is measured and has to be divided by
A to get the current density j. Summing up these uncertainties the scattering
frequencies which were determined in [Sch98b] give only approximate values of
the real scattering frequencies. Taking this into account it is futile to attempt to
reproduce the measured frequencies with the existing models.

While the absolute frequency will not be accessible with the presented models,
the qualitative behavior of the frequency when the applied voltage is changed
can be investigated. If one assumes that the current oscillations originate in
traveling domains, the time it takes for the dipole domain to traverse the sample
t0 = L/vdom where vdom is the domain velocity and L is the superlattice length
will set the time scale for the current oscillations. The domain velocity and
particularly the evolution of the velocity when the voltage is changed can be
calculated with cyclic boundary conditions. Before that the different domain
profiles of the three models are shown.

Fig. 3.1 shows the density and field distribution for the dipole domains that
develop as soon as the field becomes larger than the critical field Ec which is
in the homogeneous model equivalent to U = Uc = EcL. The shape of the
dipole domain can be calculated for the drift-diffusion model analytically and
was reproduced numerically in [Bon03, Sch02b]. The result of the drift-diffusion
model differs only slightly from the moment-balance model, while the Boltzmann
equation results in a larger diffusion which spreads the dipole domain over a wider
region. With rising voltage the accumulation layer increases its height, while the
depletion layer becomes wider since the density cannot drop below zero. I will not
discuss the shape of the domains any further since it is experimentally difficult
to observe, but rather continue with a discussion of the velocities with which the
domains travel through the superlattice.

If the motion of the domains is really responsible for the current oscillations and
therefore for the microwave emission, the velocity of the domains is an impor-
tant parameter. It determines, apart from the creation and annihilation processes
which are deferred until the next chapter the frequency of the oscillations. Instead
of presenting the velocities, the frequencies that would result from the domain
velocities in a sample of length L will be presented. If the creation and annihila-
tion processes are not very strongly voltage dependent the trend should also be
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Fig. 3.1: The density profile n and the electric field profile E measured
in units of the critical field Ec for the three different models that were
investigated. In all cases as soon as the voltage becomes supercritical,
i. e. Uc = EcL, a dipole domain develops that travels through the super-
lattice. The curves are shown for an applied voltage U = 1.5 Uc and
U = 3 Uc. There is hardly any difference between the result of the drift-
diffusion and the moment-balance equations. The Boltzmann equation
has stronger diffusion effects and broadens the dipole domain.

found in the experiments.

Fig. 3.2 shows the frequencies for the three different models as a function of the
applied voltage. To see the qualitative effect of the elastic scattering term elastic
scattering was also included with a frequency of νel = νε = 10 THz (dashed
lines). The strong dependence of the frequency from the voltage stems from the
observation that the field inside the domain is growing with growing voltage.
Since the drift velocity inside the domain drops with increasing field, the velocity
of the domain also drops. This effect is weaker in the Boltzmann case, but is
still pronounced enough that it should be visible in the experiments. It is not
fully clear why the moment-balance equation leads to a smaller velocity than the
other two models.

It should be noted that the integrating procedure has an influence on the do-
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Fig. 3.2: The frequencies that would result from the drift velocity f = vdom/L
for the three different investigated models with (solid lines) and without elastic
scattering (dashed line). The frequencies are strongly voltage dependent.

main velocity. For the drift-diffusion model instead of the upwind scheme (see
Appendix E) also a central difference scheme was stable and tested. It turned
out that the velocity is smaller, being close to the values that resulted from
the moment-balance equations. However, it was already pointed out that the
absolute value of the frequencies is not the goal of this investigations since the
microscopic scattering times are unknown. In [Bon03] the authors took the same
scattering times as we did (νel = νε = 10 THz) and by adjusting the voltage they
were successful in reproducing the measured frequencies. Looking at Fig. 3.2
it is not surprising that it is possible to reproduce the measured frequencies by
adjusting the voltage since one covers a wide frequency range by changing the
applied voltage.

The influence of the elastic scattering term was tested in all three models. The
result can most easily be explained in the drift-diffusion model. For νel = νε =
10 THz the peak velocity vp ∝

√

νε/(νε + νel) is suppressed by a factor 1/
√
2, but

the frequency is reduced by a smaller amount since the field that accompanies
the dipole domain is smaller measured in units of the new critical field E ′c =√
2Ec. The drift velocity suppression is therefore smaller. In the other models

the influence is not that transparent, but the effect is very similar.

Already at this point one can draw conclusions for the behavior of the device. I
will first concentrate on the drift-diffusion model. For the boundary conditions
that are normally used for the solution of the device, the creation and annihilation
processes consume only a fraction of the total period (this will be elaborated on
in section 3.2). Since the domain extends only over a fraction of the length, the
velocity will be largely equal to that in the periodic system. Especially for voltages
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that are only a little larger than the critical voltage the frequency calculated with
the model is a rapidly varying function of the applied voltage. Let us therefore
look for the moment at higher voltages where the change is less dramatic and
compare the frequencies for U=1.5 Uc and U=2 Uc. In our model the frequency
changes on the order of 20 per cent. In earlier publications using the drift-diffusion
model [Bon03, Sch02b] this strong dependence of the frequency on the voltage
was not mentioned, even though it is a general feature of the simulations [Per04]
and in striking contrast to the experimental observations.
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Fig. 3.3: Measured current, frequency and power for three different super-
lattices with parameters given in table 3.1 taken from [Gre98]. In the shaded
regions microwave radiation was observed. A sudden change in the observed
current, microwave frequency and power occur at certain points which are
indicated by small grey arrows. Between these points the frequency is nearly
constant.

Fig. 3.3 shows some measurements for real superlattices with parameters given
in Tab. 3.1. While a discussion of the current and the produced power is post-
poned until the boundaries are added to the model, a discussion of the voltage
dependence of the frequency follows. In all cases the frequency stays constant
over some voltage region and then suddenly jumps to a different value at the
points indicated by small grey arrows. The constance of the frequency is usu-
ally attributed to the coupling of the device to some external circuit which offers
eigenfrequencies to which the frequency of the device locks. Of course according
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well width barrier width length doping ∆exp ∆thprobe
nm nm µm 1017cm−3 meV meV

2-447 4.80 0.90 0.57 0.8 46 57
1311 4.00 1.00 0.50 0.8 55 70
2-837 3.64 0.93 0.64 1.0 72 95

Tab. 3.1: Parameters for the GaAs/AlAs superlattices of Fig. 3.3 from
[Gre98]. The author used a different model for the miniband width which leads
to a difference between the bandwidths ∆exp in [Gre98] and the bandwidths ∆th

calculated with the model from Chapter 1. The second superlattice coincides
with the standard parameters that were used throughout this thesis.

to the simulations the frequency should jump to lower and lower values when
the voltage is increased since the domain velocity becomes smaller and smaller,
but the opposite is the case in the experiment. Only if the creation and annihi-
lation processes become faster so that the decrease of the velocity is more than
compensated, an increase of the frequency would result. Otherwise one should,
especially for voltages which are only slightly supercritical, observe a rapidly
decreasing frequency.

While the dipole domain motion is accepted by many authors [Bon03, Sch02b]
as the origin of the microwave emission, the explanation of increasing frequency
with increasing voltage remains an open problem. Some process in the experi-
ment which is responsible for the growth of the frequency is not reproduced by
the models introduced up to now. It should be noted that for Gunn diode simula-
tions the frequency also drops with increasing voltage [Dun03] and the microwave
frequency of the Gunn diodes tends to drop with increasing applied voltage.

To get a better understanding of the device one needs a realistic model of the
boundaries as those can determine the overall behavior. In section 3.2 the results
for two different approaches to that problem are presented. Before that the
transport properties in an AC field are studied.

3.1.2 Behavior under external radiation

The AC voltage can be applied alone or in addition to a DC voltage. In the
first case the nonlinear current-voltage characteristic will lead to the creation of
higher harmonics. This will be even more pronounced if the amplitude of the
field is large enough to enter the NDC regime. If the applied frequency is small
enough so that the field is supercritical for a sufficient time, inhomogeneities can
build up in the sample. Applying additionally a DC voltage one can separate
two regimes: If the applied voltage is subcritical the behavior in the superlattice
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will be periodic in the NDC regime for high enough AC voltage. In that case
inhomogeneities will periodically build up if the applied frequency is small. If the
applied DC voltage is already supercritical traveling dipole domains will form
without AC voltage. It may however be possible to suppress the formation of
domains with an applied AC voltage by the LSA mode operation of section 1.4.2.
The buildup times of the domains and the domain suppression will of course be
strongly influenced by the presence of the boundaries. Here we want to discuss
only the basic principles of the behavior which is already rather complex before
the boundaries are included in section 3.2.

Unbiased superlattices - frequency multiplication

Since an unbiased superlattice has ohmic behavior around zero applied voltage,
it is necessary to apply radiation with rather high intensity to observe interesting
phenomena. The first thing that always happens when applying high-frequency
voltage to a nonlinear device is the creation of higher harmonics. For an anti-
symmetric current-voltage relation only odd harmonics will show up. For small
applied frequencies one can simply use the static drift velocity versus field relation
which for simplicity is assumed here to obey the Esaki-Tsu relation (1.17)

vd(E) = v0
E/Ec

1 + (E/Ec)2
. (3.1)

If the drift velocity follows the applied voltage E = E1 sin(ωt) instantaneously
the amplitude of the third harmonic of the drift velocity v3ω can be calculated
easily. It is depicted in Fig. 3.4.
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Fig. 3.4: The third har-
monic of the drift velocity
v3ω as a function of the am-
plitude of the driving field
E1. It increases cubically for
small amplitudes and has a
maximum of v3ω ≈ 0.25.

For small amplitudes it increases as E3
1 since, defining E ′(1) = E(1)/Ec, one gets

vd (E(t)) ≈ v0 · (E ′ − E ′3 + E ′5 − · · ·) = (3.2)
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= v0

[(

E ′1 −
3E ′31
4

)

sin(ωt) +

(
E ′31
4
− 5E ′51

16

)

sin(3ωt) + · · ·
]

.

To get the current density one needs to take into account some additional factors.
Since the distribution in k-space leads to a factor I1

I0
in the Esaki-Tsu relation,

this factor and the density need to be accounted for if one wants to calculate
the current density j ∝ nvd. In Fig. 3.5 the third harmonic numerical result
of the current density using the Boltzmann equation is presented (solid line).
The parameters used are the standard parameters from table 1.1 (a) and the
parameters from table 3.2 (b). Constant doping density and periodic boundary
conditions were assumed. The dotted line shows the curve from the static drift
velocity versus field relation (Fig. 3.4), but the maximum value is normalized to
the value of the numerically calculated curve to account for the factors of doping
and k-space distribution.
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Fig. 3.5: The third harmonics of the particle current density nvd as a func-
tion of the amplitude of the driving field E1 for the standard superlattice of
table 1.1 (a) and the highly doped superlattice of table 3.2 (b) without bound-
aries. The solid lines show the numerical result of the Boltzmann equation
calculation and the dotted line is the curve following from the static drift ve-
locity field relation of Fig. 3.4 renormalized to the maximum of the numerical
curve. If small fluctuations are added to the system dipole domains form as
soon as the electric field exceeds the critical field (dashed lines). The applied
frequency was f = 10 GHz (a) and f = 50 GHz (b).

Considering a superlattice with doping fluctuations one has the additional pos-
sibility of dipole domain formation as soon as E1 > Ec. The effect of this on
the third harmonic of the current is shown in Fig. 3.5 (dashed line) where the
applied frequency was f = 10 GHz for the standard superlattice and f = 50 GHz
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material width band-gap band offset doping length
well GaAs 5.1 nm 1.52 eV
barrier AlAs 1.1 nm 3.13 eV

1.06 eV 2× 1018cm−3 18 d

Tab. 3.2: Parameters for a superlattice that was used in high-frequency
multiplication experiments [Kla04a].

for the highly doped superlattice since the domain formation happens faster in
the second case. For larger frequencies the dipole domains did not form since
the supercritical field periods were too short. For subcritical field values the two
curves merge, the superlattice is always homogeneous then.

In both cases the amplitude of the third harmonic increases slightly as soon as
domain formation in the superlattice is possible. In the experiment an increase
of the emitted intensity by an order of magnitude is observed at some irradiation
intensity [Kla04a] and is attributed to the onset of domain formation. The result
for the highly doped superlattice without boundaries indicates that an increase
of the third harmonic is to be expected as soon as domain formation sets in.
Since the emitted power changes quadratically with the amplitude of the third
harmonic, a strong increase is to be expected, but an increase by an order of
magnitude cannot be fully explained.

If boundaries are taken into account, there will already be inhomogeneities for
subcritically biased superlattices. After the introduction of the boundary treat-
ment in section 3.2 the changes in the amplitude of the third harmonic will be
presented.

Biased superlattices - current peak shift

If one applies high-frequency radiation to biased superlattices one is usually not
interested in the creation of higher harmonics. Other questions are addressed
by this process: the time of domain formation can be indirectly extracted from
the measurement of the current. In principle it would also be possible to extract
the time of domain formation from the unbiased case, but one needs rather high
intensities to have supercritical fields E1 > Ec at frequencies of several hundred
Gigahertz which is usually not easily accessible. In contrast to that one can also
apply a slightly subcritical DC field, and with the addition of the high-frequency
field the field is periodically supercritical.

The dielectric relaxation time is given by the inverse of ωc (see Eq. (1.34))

τc =
εε0
σd

(3.3)
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where σd = ∂jd/∂E. It is the time constant for the growth of fluctuations in
the NDC region. For the standard superlattice we get τc ≈ 1 ps for E0 = 1.3
Ec. It takes several time constants τc to build up the dipole domain from the
nearly homogeneous initial case. Assuming additionally that only for a fraction
of one period the field is supercritical this should be possible only for frequencies
below 100 GHz. This is indeed the case in the simulations, where the period
during which the field is supercritical is long enough for domain formation only
for frequencies below 100 GHz.

Fig. 3.6a shows the current density as a function of the applied electric field
for small amplitude of the applied high-frequency field. The dotted line shows
the current for homogeneous field, i. e. the superlattice is artificially kept in
the homogeneous situation. For the non-irradiated case E1 = 0 the curve is
shown that results if the domains are allowed to form (grey curve). Above the
critical field the current suddenly drops as soon as a domain is formed. When the
high-frequency field is applied one can separate two frequency regimes: for large
applied frequencies above 200 GHz domains cannot form in the short supercritical
period and the current deviates only slightly from the curve without radiation
(dashed curve). For frequencies below 100 GHz domains can form during the
supercritical period and the current drops already for lower static field since with
domains the current is suppressed (solid curve).

When the amplitude of the high-frequency field becomes larger already the ho-
mogeneous current density deviates from the current density without irradiation
(Fig. 3.6b, dotted curve). If domains are allowed to form it is again crucial
whether the frequency lies above or below 100 GHz. For frequencies around 200
GHz and above the current density drops as soon as the differential conductivity
becomes sufficiently negative (dashed line). For 100 GHz (solid line) or 50 GHz
(dash-dotted line) the domains form already for lower static voltage since then
the supercritical period is again long enough for domains to form.

The current peak is shifted to the left and becomes smaller for small applied
frequencies and this is caused by the formation of domains. On the other hand
one can see from the dotted and dashed curve in Fig. 3.6b that the peak moves
to the right if no domains are created and the superlattice is homogeneous or the
frequency is so high that the supercritical part of one cycle does not suffice to
produce a domain. In this way it was attempted to determine the time for domain
formation in the superlattices since this time limits the maximum frequency that
would be attainable in a device by the domain mode [Kla04]. The frequency limit
that was determined this way was around several THz and thus much larger than
the frequency limit determined by this simulation.

Of course the results change drastically if one includes the boundaries in the
description. There will be rather large inhomogeneities already for subcritical
voltage and therefore it will take less time for the domains to form and the fre-
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Fig. 3.6: The current density for two different applied AC voltages when
domain formation sets in compared to the homogeneous situation (dotted
curves). The grey curve shows the situation for a superlattice without ir-
radiation, but including domain formation. For large applied frequencies do-
main formation does not set in until the DC field E0 is supercritical (dashed
curves) since the domain formation is too slow. For small applied frequencies
the domain formation suppresses the current already for lower voltages (solid
curves).

quency limit below which domains can form during the high-field part of the cycle
will be much higher. As will be shown in the section on transport with bound-
aries there is unfortunately a rather large voltage region between the voltage peak
and the onset of oscillations. This is not the case in the experiment where the
oscillations start as soon as the current peak is reached. Our calculations indi-
cate the the surrounding is crucial to create this behavior and our model does
not incorporate these effects. To determine whether the maximum shifts to the
right or to the left is thus not possible with the existing model since it does not
capture the experimental processes around the current maximum which would be
necessary to reproduce the experimental curves. A description of the processes
with boundaries will therefore not be presented.

Supercritically biased superlattices - domain suppression

In section 1.5.2 the LSA mode was described which was first proposed for Gunn
diodes to make use of the high-frequency negative differential conductivity while
the homogeneous state is stabilized at the same time by the interaction with the
generated high-frequency field. Kroemer has shown that one can go beyond the
drift-diffusion model and then one can see photon resonances in the DC and AC
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conductivities [Kro00a] which also result in high-frequency gain while inhomo-
geneities are suppressed. I have shown that the results obtained by Kroemer
reduce to the results of the LSA mode calculations and therefore I introduced
the term extended LSA mode. While the LSA description is only valid for fre-
quencies below ν/2π ≈ 1.6 THz, the model developed by Kroemer is valid for
large frequencies also. In this section I will first display the results of Kroemers
description in a convenient way to see the effect of the phonon replicas and de-
scribe how Kroemer intended to take advantage of these. The same parameter
range is then investigated with the numerical model used throughout this thesis.

At this point one might ask if it is reasonable to reproduce analytically obtained
results via a numerical method. There are several points which justify such a
procedure. First it is not clear from the outset what will happen if the differential
DC conductivity is negative. Inhomogeneities will start to build, but it is not
clear what the final state of this process will be. On the other hand one can start
with a dipole domain and enter a region with positive DC conductivity. It is not
clear whether the domain will decay since the positive DC conductivity was only
calculated for the homogeneous situation. It will turn out that the region with
positive conductivity and the regions which were homogeneous in the simulations
overlap rather well which encourages one to repeat the calculations including
the boundaries. Already Kroemer pointed out in his paper that a crucial factor
for the question whether this mode will really be realizable in a device is the
influence of the boundary region. The results for superlattices with boundaries
will be presented in section 3.2.

In Fig. 3.7 the results of [Kro00a] are shown in a convenient way. Fixing the
applied DC field E0 to a certain value one can investigate the efficiency η (see
Eq. (1.44)) which is the ratio of the of the power emitted at the applied frequency
and the power absorbed at the applied DC voltage. It is plotted as a function
of irradiation frequency f and amplitude E1. The result is only shown if the
efficiency is positive. For E0 = 2 Ec the gain (η > 0) simply disappears if the
frequency approaches E0/Ec × 1.6 THz. For increasing E0 a resonance structure
becomes apparent. In Chapter 1 it was shown that gain is obtained for ωτ <
E0/Ec which results in f < 8 THz for E0 = 5 Ec and f < 16 THz for E0 = 10
Ec. If this frequency criterion is fulfilled, there is only a small parameter region
between the resonance peaks in which no gain is observed (in Fig. 3.7 these
regions are hidden behind the peaks). In the limit of small frequencies the results
of the LSA mode are obtained, for which the efficiency in the case E = 2 Ec was
displayed in Fig. 1.14b.

The other important question is in which parameter regions the growth factor
which is the integrated differential mobility is positive. Fig. 3.8 shows the deriva-
tive of the DC current with respect to the DC field E0 as a function of frequency
f and AC amplitude E1. For small applied frequencies one retains the growth
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Fig. 3.7: The efficiency η as a function of the applied frequency f and am-
plitude E1 for three different DC fields for the model introduced by Kroemer
[Kro00a]. In all cases the efficiency is positive for nearly all amplitudes as
long as f < 1.6 THz ×E0/Ec. For high DC fields one observes photon reso-
nances just below the frequency limit.

factor g/T [p] of the LSA mode. For the original LSA mode operation the am-
plitude of the AC field needs to be at least as large as E0 − Ec so that the field
enters the region with positive mobility during each cycle. In this limit one needs
rather large amplitudes E1 for large applied DC amplitudes E0.

For large applied frequencies the photon resonance gives large positive growth
factor if ωτ = E0/Ec which is in the region around f = 1.6 THz×E0/Ec. These
resonances can be clearly observed in Fig. 3.8 for E0 = 5 Ec and E0 = 10 Ec

where the corresponding frequencies are f = 8 THz and f = 16 THz. One can
also see multiphoton resonances at integer fractions of this frequency since the
emission of several photons of a fraction of this frequency costs an equal amount
of energy as one photon of the original frequency.

Summing up the results one sees that as long as one is below the cutoff frequency
f = E0/Ec × 1.6 THz gain is usually observed, but the problem will be the
homogeneity of the sample. It is rather difficult to test whether a system is stable
for a given parameter set since even if the system becomes unstable with respect
to long-range fluctuations it is not clear how long it will take for them to build up
to a detectable size. The procedure that I chose for the simulations with periodic
boundary conditions is the following: for each applied frequency f amplitude E1

is increased very slowly within several nanoseconds to the maximum value. The
relative change r = Emax−Emin

Eaverage
of the electric field inside the superlattice, with
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Fig. 3.8: The growth factor g in units of qT = env0

εε0Ec
T (see Eq. (1.43)) as a

function of the applied frequency f and amplitude E1 for three different applied
DC fields E0. It is positive for E1 > E0 − Ec for small applied frequencies.
For frequencies f = 1.6 THz ×E0/Ec one can observe resonance peaks. The
amplitudes E1 that are necessary for a positive growth factor are much smaller
in that case.

obvious definitions, is calculated several times in each interval.

Fig. 3.9 shows the result of that procedure for the different DC fields. Only
the regions in which r < 0.1 are plotted. The parameter r is either close to
zero indicating that the system is homogeneous or it is larger than 1 indicating
that a domain travels through the system. The transition region between the
region with and without domains is very small. For E = 2 Ec in the region 1.5
Ec < E1 < 2 Ec and f < 4 THz, where the differential mobility in Fig. 3.8
was positive, no domains are observed in the simulations. For E = 5 Ec apart
from this classical LSA region one can also see the resonance suppression of the
domains around f = 8 THz, but the minimum field necessary is around E1 = 4
Ec and is larger than in Fig. 3.8. Around f = 4 THz one can also see a slight
suppression caused by the two-photon resonance. For E = 10 Ec one can see
a domain suppression around f = 16 THz and a suppression for the two- and
three-photon resonances around f = 8 THz and f = 5.3 THz. As pointed out
above it is not clear from the outset that a numerical treatment reproduces the
analytical results. The analytical treatment relies on the fact that the system is
homogeneous and with domains already being in the system the behavior could
be rather different.

Around the resonance frequencies the analytical results suggest that a rather
small AC amplitude is sufficient to suppress the domains and this is preserved
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Fig. 3.9: The relative change r of the electric field inside the superlattice if it
is smaller than 0.1. It is plotted as a function of the applied frequency f and
AC amplitude E1 for three different DC fields E0. The graphs are rotated with
respect to Fig. 3.8 to improve the visibility of the regions where r ≈ 0. For
small frequencies one can see the domain suppression due to the LSA mode.
For frequencies around f = 1.6 THz ×E0/Ec one can see the suppression of
the domains via photon resonances.

in the numerical results. Since it is numerically rather costly to wait for the
possible formation of domains at each parameter point, the resolution is worse
and fewer multiphoton resonances are observed. The interesting question that
can be treated with the numerical model now is how the inclusion of boundaries
modifies the results. It was already pointed out by Kroemer that it may be
problematic to take advantage of the photon resonances, if the situation ceases
to be homogeneous through the boundary effects. This question will be treated
after the inclusion of the boundary model in section 3.2.

3.2 Inclusion of the boundaries

In this section the results for a superlattice with boundaries are presented. Two
different models were introduced in Chapter 2 for the boundary region, but in
this section mainly results for the discontinuous transition from the bulk material
to the superlattice region are presented. The transition region extends usually
only over several superlattice constants. In the simulation this region corresponds
only to several points, and a finer grid in the transition region would be necessary
to resolve the region. It is also questionable whether the assumption of a smooth
transition is justified then. For the continuous transition it is also necessary
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to introduce additional parameters like the doping profile and the band edge
behavior in the transition region. These parameters are difficult to determine.
The continuous model was therefore only used for the short superlattices with
which higher harmonics are created (see table 3.2). As in the homogeneous case
first the DC transport properties are investigated before the influence of external
radiation is studied.

3.2.1 DC transport

It was explained in section 1.4.2 that depending on the field at the boundary one
can distinguish two different scenarios: for subcritical field E < Ec the resulting
accumulation layers travel to the anode where a standing anode domain is formed
and no oscillating behavior can be seen. For supercritical field E > Ec at the
boundary the resulting depletion layer merges with an accumulation layer to form
a dipole domain which travels to the anode where it is annihilated and a new
dipole domain is formed.

Since the contact voltage depends crucially on the difference of the chemical
potentials in the contact region and the superlattice, I will first present the results
for the standard superlattice if the lower edge of the lowest miniband is artificially
shifted to higher and lower positions. The electric field at the boundary becomes
larger in the first case which results in a higher applied voltage that is necessary
to start the dipole domain. In the second case the electric field at the boundary
becomes smaller which can lead to the disappearance of oscillations if E < Ec

at the boundary. In the real superlattices the contact field will depend on the
exact design of the transition region. As will be seen the contact field resulting
from the chemical potential difference changes drastically for only little changes
in the lower edge of the miniband. Since the parameters of the superlattices like
doping, well and barrier width will be known only approximately, the position of
the lower edge of the miniband is known only approximately too.

In Fig. 3.10 the current-voltage curves are shown for the standard superlattice
with a band edge difference of ε0off = 130 meV resulting from the Kronig-Penney
model (b) and for a shift to a lower value of εoff = 105 meV by 25 meV (a)
and to a higher value of εoff = 155 meV by 25 meV (c). Despite the small
changes in band offset the changes in the behavior are quite dramatic. In the
case where the miniband edge is lowered the small contact field introduces an
accumulation that travels to the anode where it forms a static anode domain.
In the other cases the high contact field leads to periodic behavior according to
the mechanism described in section 1.4.2, if the voltage is high enough that the
depletion layer detaches from the cathode. The voltage necessary for that is high
for a raised miniband edge since there the electric field at the contact is higher.
On the other hand the high contact field supports the formation of new dipole
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Fig. 3.10: The current density j in units of n0v0 and the oscillating frequency
for the standard superlattice (Tab. 1.1) (b,d) and for the same superlattice if
energy difference between the miniband edge and the conduction band edge
in GaAs εoff is shifted to a lower (a) or higher value (c,e). In the case of
lowered miniband edge the electric field at the boundary is not sufficient to
create a depletion layer and no oscillating behavior is observed. In the other
two cases the electric field is sufficient to create domains which travel to
the anode where they are annihilated and a new domains are formed (shaded
regions). As could already be expected from the results for infinite superlattices
the frequency drops with rising voltage. For the raised miniband edge a high
voltage is necessary for the dipole domain to start propagating. Dashed (solid,
dotted) arrows indicate voltage values for which the field distribution is shown
in Fig. 3.11.

domains when the old one reaches the anode. Therefore in this case even for high
voltages oscillating behavior can be observed while in the case without shift a
standing anode domain is formed for high voltages. The arrows indicate voltage
values for which the electric field profiles are shown in Fig. 3.11.

The regions for which oscillating behavior is observed are indicated by the shaded
regions in Fig. 3.10, and the respective frequencies are plotted below (d,e). In
section 3.1 the frequency that would result from the drift velocity of the domains
in infinite superlattices was shown. A strong decrease of the drift velocity with
rising voltage was observed and this dependence becomes even stronger with
boundaries since the annihilation of the domains at the anode takes more and
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Fig. 3.11: The field profiles for the voltage values Ui indicated by the arrows
in Fig. 3.10 for the unshifted (b) and the lowered (a) and raised (c) miniband
edge corresponding to Fig. 3.10. Dashed (solid, dotted) lines correspond to
the dashed (solid, dotted) arrows in Fig. 3.10. (a) A standing anode domain
forms in the unshifted case. (b,c) A depletion layer is formed which is trav-
eling deeper and deeper into the superlattice for increasing voltage. Above
the voltage U2 the depletion merges with an accumulation and travels to the
anode as dipole domain. A standing anode domain is formed above U3.

more time until the accumulation layer resides inside the superlattice above some
voltage.

This strong dependence of the drift velocity and frequency from the voltage was
also observed in simulations using an extended drift-diffusion model [Per04]. It is
in striking contrast to the experimentally observed voltage dependence shown in
Fig. 3.3. The frequency in the experiment is constant or nearly constant between
two current jumps, while in the simulation it is rapidly changing with applied
voltage. It is futile to reproduce the experimental frequencies of superlattices
with the existing models as attempted in [Bon03] since with changing electric
field a wide range of frequencies can be observed and any frequency inside this
wide range can be reproduced at an appropriate voltage.

Fig. 3.11 shows the field profiles for the voltage values Ui indicated by the arrows
in Fig. 3.10 for the unshifted (b) and the lowered (a) and raised (c) miniband
edge corresponding to Fig. 3.10. Dashed (solid, dotted) lines correspond to the
dashed (solid, dotted) arrows in Fig. 3.10. One can see how the standing anode
domain forms if the field inside the superlattice becomes supercritical for voltages
larger than U2 for the lowered miniband edge. As soon as it is formed it continues
growing for rising voltage, but a new domain is never formed. A depletion layer
is formed for the unshifted and raised miniband edge which is traveling deeper
and deeper into the superlattice for increasing voltage. In the field distribution
it is indicated by the dropping field value. Above the voltage U2 the depletion
merges with an accumulation and travels to the anode as dipole domain. This
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process is repeated until a standing anode domain is formed above U3. For the
raised miniband edge this voltage value is beyond the investigated voltage region.

Apart from the voltage dependence of the frequency a second large difference
between the experiment and the simulation is that in the experiment several
current jumps are observed. They are accompanied by jumps of the frequency
and the emitted power. Therefore it seems that in the experiment there are
different oscillation modes, while in the simulation only the dipole domain mode
is observed. I will try to summarize the reasons that could be responsible for the
discrepancies between simulation and experiment.

The main reason for the failure in reproducing the observed voltage dependence
of the frequency may be the neglect of the surroundings, the description of which
was attempted in section 2.3.1. One can easily imagine that the coupling of
the superlattice device to a cavity with certain eigenfrequencies can lead to a
locking of the frequency to one of the eigenfrequencies and therefore to a constant
frequency as a function of the applied voltage. But even if that is an explanation
for the constant frequency values over rather wide voltage ranges, the frequency
should at least jump to lower values for increasing voltage, while the opposite is
the case in the experiment.

In addition to that the jumps in the frequencies in the experiments are at most
several per cent, while in the calculated curves the frequency changes by a factor
of two from its highest to its lowest values. In fact the frequency drops to zero
for increasing voltage since the anode domain requires more and more time to
disappear and therefore the frequency goes to zero, but this happens in a tiny
voltage range and is probably not a realistic assumption for the experiment. In
all simulations for semiconductor superlattices that I know of the principle of
microwave creation rests on the propagation of dipole domains and therefore the
trend of dropping frequency with increasing voltage is observed. In my opinion
the question why in the experiments the frequency is only weakly dependent on
the voltage and often rises with increasing voltage remains unsolved up to now.

The other question that needs to be addressed is why there are more than two
jumps observed in the experiments while in the calculations only two are found,
where one indicates the transition to the oscillating state and the other one
the transition to the state with the standing dipole domain. The number of
jumps usually depends on the surrounding which indicates that again the main
ingredient missing in the model is the surrounding of the superlattice device.
To get an idea which effects can be seen if one includes an inductance in series
with the superlattice device an inductance of 180 pH was placed in series with
the superlattice device in the region with negative differential conductivity in
Fig. 3.10a and b between the current peak (U1) and the onset of the dipole
domain oscillations (U2). The inductance of 180 pH may be rather small for an
actual circuit, but without additional damping the oscillations tend to have too
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large amplitudes with higher inductances for the applied simulation procedure.
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Fig. 3.12: The current and frequency for the standard superlattice (b,d) and
the same superlattice with miniband edge increased by 25 meV (c,e) if either
an inductance is put in parallel (thick solid lines) with the superlattice or if
the voltage is turned on in a steplike manner (dotted lines). The device can
act as microwave source in the region with negative differential conductivity
in which it is stable without the additional inductance. One can also produce
oscillations if the voltage is turned on steplike and not smoothly (dotted lines).
The observed frequencies are rather high then and drop rapidly with increasing
voltage.

Fig. 3.12 shows the calculated currents and frequencies of the oscillations that
arise if an inductance (180 pH) is put in series with the superlattice (thick solid
lines) for the standard superlattice (b,d) and for this superlattice with slightly
increased value of the miniband edge (c,e). The frequencies can be calculated
only up to the point where the current voltage curves from Fig. 3.10 become flat.
Beyond the point where the current voltage curve of Fig. 3.10 becomes flat the
numerical simulation becomes unstable with inductance. Then the oscillations
tend to grow too much and a dissipation mechanism would be necessary to limit
the growth.

This dissipation mechanism could be provided by inductively coupled resonance
circuits with damping which are an equivalent description of a cavity as shown in
section 2.3.2, but this mechanism was not included in the calculations. It turns
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out that the frequency of the resulting current oscillations is strongly dependent
on the inductance value, as one could probably expect, and therefore the absolute
value of the frequency is maybe not to be taken seriously. It is difficult to make an
estimate for the inductance in the measurements and the one used here is maybe
a little too small. Nonetheless, it is interesting to see how even without the
inclusion of the resonance circuits coupled to the inductance, which would give
a full description of a surrounding cavity as shown in section 2.3.2, the behavior
and the current voltage curve of the device are changed.

The oscillating state that is observed with inductance can be understood as fol-
lows. The formation of the depletion layer that is formed for high contact field
quenches the current and therefore the inductance produces an additional voltage
to maintain the current. The depletion grows and starts to propagate, but then
the current starts being constant and the additional voltage by the inductance
disappears and the dipole domain disappears. Unfortunately the amplitude of
this process becomes large as the voltage is increased and diverges close to the
point where the current voltage curve becomes flat. Beyond that point the simu-
lation is stable only for much smaller inductance values, which are probably not
realistic. While it is commonly accepted that dipole domain motion is a cause of
microwave emission, it is not clear whether this oscillation type that is coupled
to the inductance value is realized in the experiments. While the frequency of
the dipole domain oscillations should be roughly proportional to the length, this
oscillations should depend not only on the length but also on the inductance.

In the voltage region beyond the flat part of the current voltage curve in which
the simulations were unstable with inductance it is also possible to observe os-
cillations. This happens if the voltage is turned on steplike and not smoothly.
Then dipole domains will be formed which travel only a short distance into the
superlattice before they are annihilated since the overall voltage is not sufficient
to sustain the domains. This leads to oscillations with rather high-frequencies
(dotted lines). This frequency drops rapidly with increasing voltage since the
distance from the cathode at which the dipole domains are annihilated grows
rapidly with voltage. The current and frequency curves merge finally with the
quasistatic current voltage curves (dashed lines) from Fig. 3.10.

As already mentioned using an inductance only is a rather crude approximation
of the circuit. For a full description of the surrounding a model would have to be
devised for each experimental setup since the properties of a cavity in which the
superlattice is situated described in section 2.3.2 is rather different from other
measurement setups. One experimental possibility is to contact the superlattice
from the top with a needle. The inductance of the needle can be estimated
to be on the order of one nH. The influence of an inductance which has this
order of magnitude was described above, but it is not clear, whether this model
is sufficient to describe the experiments. At least a dissipation mechanism is
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necessary since otherwise the oscillations become too large to be treatable by the
numerical integration procedure.

Summing up the results of this section the following picture can be drawn. The
model introduced in Chapter 2 has some advantages compared to previous mod-
els. Since a part of the contact region is included in the numerical simulation, it
is not necessary to introduce a capacity parallel to the superlattice as in [Sch02a].
It is also not necessary to make ad hoc assumptions about the behavior of the
contacts. The contact field follows from the difference in chemical potentials be-
tween the superlattice and the contact region. Other ad hoc assumptions like the
introduction of a doping notch or statistical fluctuations of the doping density
were tested, but none of them resulted in the creation of dipole domains and
current oscillations if the contact field was subcritical. This is a difference to the
Gunn diode simulations where these assumptions are usually sufficient to create
dipole domains and to reproduce the experiments.

Unfortunately even the inclusion of a inductance in series with the superlattice
is not sufficient to explain the experiments in superlattices. The rather wide
voltage ranges with constant current oscillation frequencies suggest that the res-
onance frequencies of the environment are interacting with the oscillations of the
superlattice. The inclusion of only an inductance gives a hint how this inter-
acting mode could look like, but to get a conclusive picture a full description
of the current circuit and cavities is necessary which was not achieved in this
work. Nonetheless, the inclusion should be rather straightforward and might be
a project for future research if further understanding is necessary for the devel-
opment of high-frequency devices.

An advantage of the solution of the Boltzmann equation compared to the drift-
diffusion model is that for frequencies beyond f ¿ 1/2πτ ≈ 1 THz the drift-
diffusion model becomes unrealistic. Sometimes microwave radiation at frequen-
cies around several hundred GHz is applied to the superlattices and therefore one
needs to go beyond the drift-diffusion model. In the next section the results for
interaction with high-frequency radiation are presented.

3.2.2 Interaction with external radiation

The results of the last section suggest that the model developed in Chapter 2
still lacks some crucial ingredients to arrive at a model which can reproduce the
experimental results. In spite of this it is attempted in this section to understand
which processes set in when microwave radiation is shined on the superlattices.
Two effects have been described in section 3.1.2, frequency multiplication and
domain suppression. It is attempted here to understand which effects the bound-
aries have in these modes.
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Frequency multiplication

In section 3.1 the creation of higher harmonics upon high-frequency irradiation
was shown for a periodic system. Now we can extend the considerations to super-
lattices with boundaries. Intuitively one expects that the formation of domains
happens faster since the domains need not grow out of small fluctuations but
can develop at the boundaries also. The applied frequency can now be as high
as 100 GHz for the standard superlattice and for the highly doped superlattice
(Tab. 3.2) this frequency is also used. Fig. 3.13 shows the amplitude of the third
harmonic as a function of the applied voltage. Since a fraction of the applied
voltage drops at the boundaries, the curve lies below the curve for the superlat-
tice with boundary. Of course the field is due to the boundaries not given by
U/L, but the curves are still plotted with respect to the field that corresponds
to the applied voltage E = U/L in the homogeneous case to make a comparison
with the earlier calculations possible.

0.1 1 10
E

1
/E

c

0.001

0.01

0.1

(n
v d) 3ω

[1
017

cm
-3

v 0]

numerical curve
with boundaries

0.1 1
E

1
/E

c

0.01

0.1

1

numerical curve
with boundaries
with low-doped
boundaries

(a) (b)

Fig. 3.13: Amplitude of the third harmonic of nvd as a function of the irra-
diation amplitude E1 for the standard superlattice (a) and for the superlattice
from Tab. 3.2 (b). With boundaries the amplitude increases appreciably for
the standard superlattice as soon as the the domain formation sets in for
E0 = 2.5 Ec (dashed line). For the highly doped superlattice this is only ob-
served if the doping in the boundaries is lowered (dotted line) compared to the
experimental value of the doping (dashed line).

In Fig. 3.13a one can see that the amplitude of the third harmonic rises above
E1 = 2.5 Ec. This is the point where the creation of domains sets in. For the
highly doped superlattice one encounters the problem that the chemical potential
in the superlattice is lower than in the boundaries due to the high doping level in
the boundary region (6×1018/cm3). This produces a negative contact voltage and
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the domains form at the anode where the field is already high in the unbiased case
instead of the cathode (Fig. 3.14, dashed curves). One cannot determine a certain
point where domain formation sets in, the process is rather smooth and therefore
no structure can be seen in the dashed harmonics amplitude (Fig. 3.13b). If the
doping in the boundaries is lowered to n = 4 × 1018/cm3, the contact voltage
becomes positive at the cathode and one can see a rise of the amplitude of the
third harmonic when the domain formation sets in slightly above Ec (dotted
curve).
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Fig. 3.14: The field profiles for the highly doped superlattice from Fig. 3.5b
for a doping of n = 6 × 1018/cm3 (left side) and n = 4 × 1018/cm3 (right
side) in the boundaries for zero (black) and critical (grey) applied voltage. In
the first case an anode domain develops, while in the second case a depletion
layer is created at the cathode.

In Fig. 3.14 the field profiles for the highly doped superlattice of Fig. 3.5b are
plotted for the experimental doping value (left side) and a lower doping value
(right side) in the boundaries. For the doping that was used in the experiment
the contact field is negative and no dipole domains are produced, only an anode
domain can be observed which grows with increasing voltage. In the simulation
the chemical potential can be artificially lowered in the boundary region by re-
ducing the doping. The contact field is supercritical then and a depletion layer
is formed which finally develops into a dipole domain.

In a frequency multiplication experiment using a superlattice with the parame-
ters in Tab. 3.2 an increase of the emitted power by an order of magnitude was
observed at a certain input power and was attributed to the onset of domain
formation [Kla04a]. The results of the simulation indicates that the onset of do-
main creation indeed increases the output power at the third harmonic frequency,
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but the increase by an order of magnitude cannot be reproduced. A mechanism
enhancing the emitted radiation suddenly could be coupling of the emitted radi-
ation to a surrounding cavity which then produces also irradiation at the third
harmonic. That additionally produces radiation at the third harmonic which is
resonantly enhanced by this mechanism. A conclusive answer to the question
whether this is the cause of the sudden onset or whether it is just the onset of
domain formation cannot be given at this point.

Domain suppression

In Chapter 1 we introduced a mechanism that was capable of suppressing do-
mains when high-frequency radiation is shined onto the superlattices: the LSA
mode that was initially suggested for Gunn diodes and extended by Kroemer to
frequencies above the inverse scattering time. It was shown that the numerical
treatment reproduces for a system with periodic boundary conditions the ana-
lytical results. Now the calculations are repeated with boundaries to see whether
the low-frequency stability can also be observed in this case.

We use again the relative change r = Emax−Emin

Eaverage
, with obvious definitions of

the quantities, as a convenient measure for the homogeneity. Even if the dif-
ferential mobility is positive and the system is perfectly stable there will be in-
homogeneities at the boundaries, therefore r will not be close to zero even if
the superlattice is homogeneous. I considered the first and last ten wells of the
superlattice structure as boundary regions and did not consider them for the
calculation of r.

Fig. 3.15 shows r as a function of the applied frequency f and amplitude E1 for
different DC fields. One can see that in the region f < 1/2πτ = 1.6 THz and
E1 > E0 − Ec, where the classical LSA mode description applies, the positive
mobility leads to a homogeneous situation (r < 0.2) in the case E = 2 Ec also
when the boundaries are included. In the classical LSA regime one also observes
a rather homogeneous state (r < 0.5) for E = 5 Ec, but for E = 10 Ec the
electric field becomes hardly homogeneous for any set of parameters f and E1.
In the resonance regions f = 1.6 THz ×E0/Ec in which the superlattices without
boundaries were homogeneous even for small AC amplitudes E1 one can see only
a slight suppression of the field inhomogeneity in the superlattice, but a value
of r > 2.5 corresponds to a well developed domain inside the superlattice. The
proposition of Kroemer to take advantage of those resonances may therefore not
be possible in the experiment. One has to resort to the regime of the originally
proposed LSA mode.

On the other hand one problem of the numerical simulations was the fact that
for frequencies above 4 THz a large fraction of the oscillating field dropped in the
boundary region. The reason for that is not fully clear and further investigations
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Fig. 3.15: The relative change r of the electric field as a function of frequency
f in THz and amplitude E1 in units of Ec for different applied DC fields E0.
The range of r is magnified compared to Fig. 3.9 since in the parameter
regions with positive differential conductivity the domain formation is slightly
suppressed, but the superlattice is not homogeneous.

are necessary to decide whether this is reasonable. This shielding of the high-
frequency radiation from the superlattice is a reason for the fact that the domains
cannot be suppressed for those large frequencies. If it turns out that this scenario
is unrealistic, it may in the end be possible to work also in the extended LSA
mode.

To summarize, the results presented in this chapter indicate that the rather elab-
orate model developed in Chapter 2 is not yet sufficient to explain the observed
behavior in detail. Nevertheless many phenomena could be found with it and
it is possible to determine which process could be responsible for the observed
behavior. The inclusion of the boundary region is a major step towards a realistic
description since the interesting phenomena in the superlattices, like microwave
emission and frequency multiplication, are all caused by processes at the bound-
aries. The calculations indicate where inhomogeneities can form and how they
propagate, but it seems to be necessary to include the interaction with the sur-
rounding to observe additional modes that seem to give the complicated structure
of the measured curves. Some proposals how to suppress the domains have been
recently put forward and with the developed model it can be tested whether the
mechanisms which are often predicted for homogeneous systems persist under
realistic boundary conditions.



Chapter 4

Summary and Outlook

4.1 Summary

In this thesis the transport properties of semiconductor superlattices under the
influence of DC and AC fields were investigated using a semiclassical model of the
electron dynamics. A model for the boundary region between the superlattice and
the bulk medium was developed and its influence on the properties was studied.

Method

The starting point of a semiclassical treatment of the electron dynamics in semi-
conductors is the Boltzmann equation which describes the time evolution of the
electron distribution f in phase space. It was shown [Wac02] that for the super-
lattice parameter regime that is considered in this thesis the quantum mechanical
description reduces to this semiclassical model. For inhomogeneous semiconduc-
tor samples the Monte Carlo method is widely used to solve the Boltzmann equa-
tion [Jac83]. However, the Monte Carlo method is numerically rather costly and
requires knowledge of the microscopic scattering probabilities. A major simpli-
fication is the relaxation time approximation which summarizes the effect of the
scattering events under the assumption that they tend to restore the equilibrium
distribution f0.

While giving up the possibility of a precise quantitative description of the sys-
tem, the differential equation can now be solved numerically via a discretization
procedure. The canonical way of simplifying the equation further is to go to the
moment-balance equations which describe the time evolution of averaged quan-
tities 〈a〉 =

∫
f(k)a(k)dk. The final simplifying step is then the derivation of

the drift-diffusion model which had been used previously to describe transport in
semiconductor superlattices [Bon03, Sch02b]. Unfortunately, the last step is valid
only if relaxation processes are faster than the external or internal dynamics in
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the samples which will not be the case for applied high-frequency fields or fast-
moving inhomogeneities. In addition to that, it is difficult to derive boundary
conditions at the interface between the superlattice and the bulk semiconductor
material for the moment-balance equations and the drift-diffusion model.

The boundary conditions in semiconductor superlattices are crucial for the be-
havior since the transport is suppressed above some critical field Ec resulting in
negative differential conductivity (NDC). It was already realized in the late 1960’s
that the boundary conditions are crucial for the behavior in NDC materials since
the materials are unstable with respect to the formation of inhomogeneities. Ei-
ther fluctuations inside the sample or discontinuities at the boundaries will be the
nucleation points of charge accumulation or depletion layers which travel through
the system. When the layers approach the boundaries of the system the boundary
conditions determine whether they will disappear or form stable charged layers.

The boundary conditions for the Boltzmann equation can be formulated for a
discontinuous and a continuous transition from the superlattice to the bulk ma-
terial starting from nonequilibrium Green functions in the first and from a tight-
binding ansatz in the second case. Only the superlattice parameters enter the
model, in contrast to earlier models where ad hoc assumptions about the bound-
aries were used to produce behavior that is in agreement with the experiment.
The self-consistent solution of the boundary region suggests to consider tunneling
processes through the triangular barriers which form at the beginning and at the
end of the superlattice region. These processes were included in our calculations.
The discontinuous model was used for the boundaries in nearly all cases in the
simulations since the transition region cannot be resolved for the grid spacing
that was used in the calculations.

The next step towards a realistic description is the inclusion of the current circuit
and the superlattice surrounding which is necessary since the moving charge lay-
ers create high-frequency currents and radiation which will couple to the resonant
properties of the surrounding. A model for the current circuit and a surrounding
cavity was developed. However, only the circuit was implemented numerically
since the equivalent description of a cavity results in a rather complicated model
and the inclusion of an inductance in the current circuit already produced diver-
gences caused by oscillating behavior with increasing amplitude.

Results

To separate the influence of the boundaries from the properties of the superlat-
tices we first investigated the properties of artificial superlattices with periodic
boundary conditions so that the system is homogeneous without applied field.
All three semiclassical approaches, the Boltzmann equation, the moment-balance



4.1. Summary 79

equations, and the drift-diffusion model were solved numerically and the results
compared. For voltages larger than the critical voltage Uc = EcL a traveling
dipole domain is formed in all three cases as was already observed in earlier drift-
diffusion simulations. The shape and velocity vdom of the domain is similar in all
cases. The Boltzmann equation has a stronger diffusion effect and the domain is
broader.

From the drift velocity one can extract the time t0 = L/vdom that is needed for one
cycle of the periodic motion of the dipole domain through the superlattice. This
time depends strongly on the applied voltage in the simulation and drops by as
much as 20 per cent if one increases the voltage from 1.5 Uc to 2 Uc (Fig. 3.2). In
contrast to that, in the experiment the frequency is constant within large voltage
intervals. It jumps to larger values for increasing voltage, but the frequency values
usually change only by several per cent. While locking to a resonance frequency
provided by the surrounding could be an explanation for the constant frequency
intervals, it is not clear why the frequency rises slightly while it drops strongly
in the simulations.

Having established a comparison of the different semiclassical models for DC
transport, the behavior under external radiation was investigated as a next step.
Since the drift-diffusion model is not a good description for high-frequency prop-
erties and the solution of the moment-balance equations was unstable for large
applied electric fields, these calculations were done only with the Boltzmann
equation. One can separate three different regimes if a high-frequency electric
field is applied. As a result, totally different questions can be investigated.

For vanishing DC voltage one can create higher harmonics due to the nonlinearity
of the relation between the drift velocity and the electric field. Especially the
onset of domain formation for AC fields E1 > Ec is expected to influence the
amplitude of higher harmonics. This is indeed the case in the calculations where
the amplitude of the third harmonic rises when domains are allowed to form
compared to the homogeneous case (Fig. 3.5). The formation of domains is of
course strongly influenced by the presence of boundaries which will be discussed
later.

The change in the current density-voltage relation when the superlattice is irradi-
ated is the next interesting feature. The peak current density is suppressed and
moves to higher voltages if the superlattice stays homogeneous [Ign95]. If the
superlattice is sufficiently long in the supercritical field region during one high-
frequency cycle, the formation of domains may on the other hand be possible for
subcritical DC voltages, leading to a current suppression for subcritical voltages.
For large applied frequencies we could observe the first case where the maximum
shifts to the left while for small applied frequencies the second case where the
maximum shifts to the right was observed (Fig. 3.6). It was experimentally at-
tempted to determine the time of domain formation by determining the frequency
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above which the maximum shifts to the left [Kla04]. The frequency of 3 THz de-
termined there was much larger than the frequency of 200 GHz determined in our
simulations for the homogeneous superlattices. This is no contradiction since the
formation of domains from fluctuations in the homogeneous case will take much
longer than the formation in superlattices with boundaries. We did not attempt
to investigate the situation in superlattices with boundaries since with bound-
aries the situation is already rather complicated in the pure DC case (Fig. 3.10)
and it is questionable whether the experimental situation is modeled well enough
to allow predictions around the current peak including an AC field.

It has been first derived by Ktitorov et al. [Kti72] that the negative differential
conductivity for supercritical field E > Ec persists up to the Bloch frequency
which is typically on the order of several Terahertz. The problem in taking
advantage of this gain mechanism for the design of a microwave emitter is the
instability with respect to domain formation. In the LSA mode of operation
proposed by Copeland for Gunn diodes [Cop66] the domains are suppressed by
the incident radiation that is supposed to be enhanced. A generalization of
this mechanism to higher frequencies was proposed for superlattices by Kroemer
[Kro00a]. A crucial question for the applicability of this mechanism is whether
the domains can be suppressed in a real device.

We have, therefore, in a third step investigated the behavior of a supercritically
biased system with periodic boundary conditions under the influence of external
radiation to see for which parameters the system will be homogeneous. It is
not clear from the outset that this region coincides with the region for which
positive differential conductivity was proposed from the homogeneous model,
but good agreement has been found. The next step is the inclusion of boundaries
which introduce inhomogeneities so that one expects that the homogeneity is less
probable to persist. Before the results of this are presented the DC properties of
superlattices with boundaries are described.

With boundaries one can calculate the current density-voltage relation and com-
pare it to the experimental curves. The result depends strongly on the exact
boundary model which again supports the assumption that the boundary con-
ditions are crucial for the behavior. The best agreement with the experimental
curves can be observed if the electric field at the cathode is slightly supercritical.
If it is smaller, anode domains are formed and no oscillations are observed. If
it is larger, the oscillations do not set in before the applied voltage is very high.
The frequency is even more voltage dependent than without boundaries which
makes the agreement with the experiment, where the frequency is only slightly
voltage dependent, even worse. In addition to that, the voltage region in which
periodic behavior can be observed is rather small compared to the experiment.

This region can be extended if one introduces an inductance, which models the
experimental setup, in series with the superlattice. Unfortunately, the simulation
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was only stable in a small region where self-sustained oscillations were not ob-
served since otherwise the results diverged. Another way of extending the region
with oscillations is the application of a voltage jump. This jump introduces fluc-
tuations which support the detachment of the depletion layer from the cathode.
Even with both mechanisms the experimental observations cannot be explained.

The suppression of the domains via external radiation for supercritical applied
field was only possible for frequencies below 4 THz if boundaries are introduced.
The reason is that for frequencies above this value the oscillating field drops in
the boundary region and not in the superlattice so that the domain formation
is not suppressed in the superlattice. It is not clear whether this is physically
reasonable or an artefact of the simulation algorithm.

4.2 Outlook

The discrepancy between the experimentally measured and calculated depen-
dence of the frequency on the applied voltage suggests that a crucial ingredient is
still missing in the attempt to model the experimental setup. Several simplifying
steps were undertaken to arrive at a model which is numerically tractable and in
the following we try to assess the validity of the simplifications.

The usage of the semiclassical transport model is a good approximation if a :=
τ∆/2~ À 1 and E/Ec ¿ a [Wac02]. Since a ≈ 5 for our standard superlat-
tice, these requirements are fulfilled if the field enhancement inside the dipole
domain is not too strong. The lateral dimensions of the superlattice structure
are usually several µm and the length of the superlattice is below one µm so that
the assumption of homogeneity in the lateral directions is also reasonably well
fulfilled. The boundary models developed in this thesis may not be adequate to
describe the transition region. The reason may be the lack of knowledge about
the exact microscopic structure. Since minor adjustments in the boundary have
a huge effect on the results of the calculations, we may not possess a sufficiently
exact knowledge of the crystal structure in the boundary region where diffusion of
doping atoms and other processes might obscure the desired superlattice design.

The most severe simplification may be the neglect of the surrounding. The
strongest evidence for that is the existence of rather large voltage regions in
which the emitted frequency is constant. The coupling of the superlattice to
the surrounding, which provides different resonance frequencies to which the fre-
quency of the superlattice locks, could be the reason for this. We have presented
a model which describes the influence of a surrounding cavity, but the numeri-
cal implementation was not achieved since already the inclusion of an external
inductance caused numerical difficulties.
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It seems that for the development of a device relying on the gain mechanism
proposed by Ktitorov a sufficiently precise model including the boundary region
would be extremely helpful. An analytical solution of the time-dependent inho-
mogeneous problem is very difficult, if not impossible, so that one has to resort to
numerical methods. Since a Monte Carlo solution of the full Boltzmann equation
is rather costly and in my opinion not necessary, the model developed in this
thesis seems to be a good candidate for that purpose.

The rapidly emerging field of Terahertz technology asks for the development of a
cheap and small solid state source in that frequency range. Since it may not be
possible to enter the Terahertz regime with quantum cascade laser technology at
room temperature, the superlattices are a suitable candidate if one overcomes the
problem of the inhomogeneities. There have been several proposals over the last
few years how to avoid the inhomogeneities [Fei04, Sav04, Kro00a, Ryn03] which
shows that, despite the fact that the original ideas are more than thirty years
old, there are still emerging new design ideas. It remains to be seen whether the
Bloch laser will be finally realized.



Appendix A

Derivation of the driving term in the
Boltzmann equation

Consider a one-dimensional Hamiltonian1

H(x) = − 1

2m

∂

∂x2
+ V (x) + U(x) . (A.1)

V (x) is a quasiperiodic function with periodicity length d and varies slowly on the
length scale of several lattice constants d. We write the quasiperiodic potential
in the form

V (x) = f(x)Ṽp(x) (A.2)

as a product of a slowly varying function f(x) and a periodic potential Ṽp(x).
U(x) is a slowly varying external potential. Around some expansion point x̄ the
Hamiltonian can locally be written as

Hp(x, x̄) = −
1

2m

∂

∂x2
+ f(x̄)Ṽp(x) + U(x) . (A.3)

Hp(x, x̄) is the Hamiltonian with a potential Vp(x, x̄) := f(x̄)Ṽp(x) that resembles
the local potential around x̄, but this potential extends over the whole lattice.
The Hamiltonian is then

H(x) = Hp(x, x̄) + δV (x, x̄) + U(x) (A.4)

with

δV (x, x̄) = V (x)− Vp(x, x̄) = (f(x)− f(x̄))Ṽp(x) = δf(x̄)Ṽp(x) . (A.5)

δV (x, x̄) is close to zero around the expansion point x̄ in a region that extends over
several lattice periods d. One can define a Bloch basis ϕnk(x, x̄) = unk(x, x̄)e

ikx

of eigenstates for each expansion point x̄ for the Hamiltonian Hp(x, x̄)

Hp(x, x̄)ϕn(k, x̄) = εn(k, x̄)ϕn(k, x̄) . (A.6)

1 Planck’s constant ~ = 1 in this Appendix
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From the difference of the Dyson equations one gets
[

i
∂

∂T
− (H(x1)−H(x2))

]

G(x1, x2, ω, T ) = 0 . (A.7)

For our Hamiltonian H(x) this equals to
[

i
∂

∂T
− (Hp(x1, x̄) + δV (x1, x̄) + U(x1)−Hp(x2, x̄)− δV (x2, x̄)− U(x2))

]

(A.8)

G(x1, x2, ω, T ) = 0 .

Inserting the definition

G(x1, x2, ω, T ) =
∑

nn′kk′

ϕnk(x1, x̄)ϕ
∗
n′k′(x2, x̄)G(nk, n′k′, ω, T, x̄) (A.9)

in the equation above we get

i
∂

∂T
G(nk, n′k′, x̄)− (εn(k, x̄)− εn′(k′, x̄))G(nk, n′k′, x̄)−

−
∑

n1k1

[〈nk|δV |n1k1〉G(n1k1, n
′k′, x̄)−G(nk, n1k1, x̄)〈n1k1|δV |n′k′〉]−

−
∑

n1k1

[〈nk|U |n1k1〉G(n1k1, n
′k′, x̄)−G(nk, n1k1, x̄)〈n1k1|U |n′k′〉] = 0, (A.10)

where the arguments ω and T are suppressed and the definitions

〈nk|δV |n′k′〉 =
∫ L

0

ϕ∗nk(x
′, x̄)δV (x′, x̄)ϕn′k′(x

′, x̄)dx′ (A.11)

and

〈nk|U |n′k′〉 =
∫ L

0

ϕ∗nk(x
′, x̄)U(x′)ϕn′k′(x

′, x̄))dx′ (A.12)

were used. The Green function is transferred to a local Wannier basis with the
definition

G(n, n′, x1, x2) =
1

N

∑

k,k′

G(nk, n′k′, x̄)eikx1e−ik′x2 , (A.13)

where the Wannier states centered around the site x0 in a periodic lattice are
given by the definition

an(x− x0) =
1√
N

∑

k∈BZ

e−ikx0ϕnk(x) . (A.14)

With the definition

Hp(n, x1, x2) =
1

N

∑

k∈BZ

εn(k)e
ik(x1−x2) , i = 1, 2 (A.15)
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the energy terms in Eq. (A.10) can be transformed

A :=
∑

k,k′

(εn(k)− εn′(k′))G(nk, n′k′)eikx1e−ik′x2 = (A.16)

=
∑

x3

(Hp(n, x1, x3)G(n, n′, x3, x2)−Hp(n
′, x3, x2)G(n, n′, x1, x3)) . (A.17)

In an analogous way the Fourier transform of the potential term in Eq. (A.10)
can be written as

B :=
∑

n1x3

S(n, n1, x1, x3)G(n1, n
′, x3, x2)− S(n1, n′, x3, x2)G(n, n1, x1, x3) ,

(A.18)
with the definition

S(n, n′, x1, x2) :=
1

N

∑

kk′

〈nk|U |n′k′〉eikx1e−ik′x2 . (A.19)

Now use the properties of the Wannier states. S(n, n′, x1, x2) describes the overlap
of two Wannier functions centered around x1 and x2 folded with the potential U .
Only if the distance x1 − x2 between the two Wannier function centers is on the
order of several lattice constants both functions will have a finite overlap. In the
overlap region, which extends only over several lattice constants around X :=
(x1+x2)/2, the potential can be approximated by U(x) = U(X)+U ′(X)(x−X).
We get with this

S(n, n′, x1, x2) = U(X)δn,n′δ(x1−x2)+
1

N

∑

kk′

U ′(X)〈nk|(x−X)|n′k′〉eikx1−ik′x2 .

(A.20)
Now we use

ϕ∗nk(x)xϕn′k′(x) =
1

2

(

i
∂ϕ∗nk
∂k

ϕn′k′ − i
∂u∗nk
∂k

e−ikxϕn′k′+

+iϕ∗nk

(
∂un′k′

∂k′

)

eik
′x − iϕ∗nk

∂ϕn′k′

∂k′

)

(A.21)

to simplify the term

〈nk|x|n′k′〉 =
i

2

∫ L

0

(

u∗nk(x
′)
∂un′k′

∂k′
(x′)− ∂u∗nk

∂k
(x′)un′k′(x

′)

)

ei(k
′−k)x′dx′ −

− i
2

∫ L

0

(

ϕ∗nk(x
′)
∂ϕn′k′

∂k′
(x′)− ∂ϕ∗nk

∂k
(x′)ϕn′k′(x

′)

)

dx′ . (A.22)

u∗n′k′(x
′, x̄)∂unk

∂k
(x′, x̄) and

∂u∗nk

∂k
(x′)un′k′(x

′) are periodic in the lattice and therefore
the first integral vanishes unless k = k′. The second term can be simplified with
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a partial integration to get altogether

〈n1k|(x−X)|n′k′〉 = iδk,k′Xn,n′(k) + δn,n′δk,k′

[
i

2

(
∂

∂k′
− ∂

∂k

)

−X
]

, (A.23)

with Xn,n′ =
1
2

∫ L

0

(

u∗nk(x
′)

∂un′k

∂k
(x′)− ∂u∗nk

∂k
(x′)un′k(x

′)
)

dx′. The term Xn,n(k) is

only an energy shift for the n-th band and will be neglected in the following. Now
get for S

S(n, n′, x1, x2) = U(X)δn,n′δ(x1−x2)+
1

N

∑

k∈BZ

iU ′(X)Xn,n′(k)e
ik(x1−x2) . (A.24)

Get for the periodic potential term in Eq. (A.10)

C :=
∑

n1x3

F (n, n1, x1, x3)G(n1, n
′, x3, x2)− F (n1, n′, x3, x2)G(n, n1, x1, x3)

(A.25)
with the definition

F (n, n′, x1, x2) :=
1

N

∑

kk′

〈nk|δV |n′k′〉eikx1e−ik′x2 . (A.26)

The same reasoning as for S leads to

〈nk|(x−X)Ṽp|n′k′〉x̄ = iδk,k′X
Vp

n,n′(k) + 〈nk|Ṽp|n′k〉δk,k′
[
i

2

(
∂

∂k′
− ∂

∂k

)

−X
]

.

(A.27)
and

F (n, n′, x1, x2) = δf(X)
1

N

∑

k

〈nk|Ṽp|n′k〉eik(x1−x2) +

1

N

∑

k∈BZ

iδf ′(X)X
Vp

n,n′(k)e
ik(x1−x2) (A.28)

with X
Vp

n,n′ =
1
2

∫ L

0
Ṽp(x

′)
(

u∗nk(x
′)

∂un′k′

∂k′
(x′)− ∂u∗nk

∂k
(x′)un′k′(x

′)
)

dx′. X
Vp
n,n is again

only an energy shift and will be neglected.

Further define central and relative coordinates and the Fourier transform

A(p,X) =
∑

(x1+x2)/2=X

A(x1, x2)e
−ip(x1−x2) . (A.29)

With the help of the gradient expansion

C(p,X) = A(p,X)B(p,X)− i

2
(∂A

p · ∂B
X − ∂A

X · ∂B
p ) (A.30)
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for a folded function

C(x1, x2) =
∑

x3

A(x1, x3)B(x3, x2) (A.31)

we get

∑

x

[
∑

x3

Hp(n,X + x/2, x3)G(n, n′, x3, X − x/2)
]

e−ipx ≈ (A.32)

εn(p)G(n, n′, p,X)− i

2

∂εn(p)

∂p

G(n, n′, p,X)

∂X
(A.33)

and so on. With this the left-hand side of equation (A.10) becomes

i
∂G(n, n′, p,X)

∂T
− (εn(p)− εn′(p))G(n, n′, p,X) +

+
i

2

∂(εn(p) + εn′(p))

∂p

∂G(n, n′, p,X)

∂X
+

+
∑

n1

[

− (S/F (n, n1, p,X)G(n1, n
′, p,X)−G(n, n1, p,X)S/F (n1, n

′, p,X))

+
i

2

(
∂S/F (n, n1, p,X)

∂p

∂G(n1, n
′, p,X)

∂X
− ∂S/F (n, n1, p,X)

∂X

∂G(n1, n
′, p,X)

∂p

)

− i

2

(
∂G(n, n1, p,X)

∂p

∂S/F (n1, n
′, p,X)

∂X
− ∂G(n, n1, p,X)

∂X

∂S/F (n1, n
′, p,X)

∂p

)]

.

Now we need the Fourier transforms of S and F

S(n, n′, p,X) = U(X)δn,n′ + iU ′(X)Xn,n′(p) (A.34)

F (n, n′, p,X) = δf(X)〈np|Ṽp|n′p〉+ iδf ′(X)X
Vp

n,n′(p) . (A.35)

Considering only two bands 0 and 1 and omitting the arguments p and X we get
for the diagonal part (n = n′ = 0)

i
∂

∂T
G(0) + i

∂ε0(p)

∂p

∂G(0)

∂X
+ i

(
∂S/F (0, 0)

∂p

∂G(0)

∂X
− ∂S/F (0, 0)

∂X

∂G(0)

∂p

)

−

− (S/F (0, 1)G(1, 0)−G(0, 1)S/F (1, 0)) +

+
i

2

(
∂S/F (0, 1)

∂p

∂G(1, 0)

∂X
+
∂S/F (1, 0)

∂p

∂G(0, 1)

∂X

)

−

− i

2

(
∂S/F (0, 1)

∂X

∂G(1, 0)

∂p
+
∂S/F (1, 0)

∂X

∂G(0, 1)

∂p

)

= 0 (A.36)
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and for the non-diagonal part

i
∂

∂T
G(0, 1)− [ε0 − ε1]G(0, 1) +

i

2

∂(ε0 + ε1)

∂p

∂G(0, 1)

∂X
−

− [S(0, 0)− S(1, 1)]G(0, 1)− S(0, 1) [G(1, 1)−G(0, 0)]

+
∑

j=1,2

i

2

(
∂S(0, j)

∂p

∂G(j, 1)

∂X
+
∂S(j, 1)

∂p

∂G(0, j)

∂X

)

−

− i
2

(
∂S(0, j)

∂X

∂G(j, 1)

∂p
+
∂S(j, 1)

∂X

∂G(0, j)

∂p

)

= 0 . (A.37)

Using Eq. (A.34) and Eq. (A.35) we get for the diagonal equation

i
∂

∂T
G(0) + i

∂ε0(p)

∂p

∂G(0)

∂X
− i∂F (0, 0)

∂X

∂G(0)

∂p
−

−iU ′∂G(0)

∂p
− iU ′X0,1 (G(1, 0) +G(0, 1)) = 0 (A.38)

where the derivation of the off-diagonal Green function G(0, 1) with respect to
X and the interband contribution of the quasiperiodic potential were neglected.
Now we take a closer look at the diagonal element

F (n, n, p,X) = δf(X)〈np|Ṽp|np〉 (A.39)

where δf(X) = f(X)− f(x̄). As the total Hamiltonian does not depend on the
expansion point, we can choose the expansion point arbitrarily. For a given X
let us choose x̄ = X. Then δf(X) vanishes and F (n, n′, p,X) = 0. However we
also need ∂δf(X)/∂X at that point. We have

∂F (n, n, p,X)

∂X
=
∂δf(X)

∂X
〈np|Ṽp|np〉 . (A.40)

Using
∂δf(X)

∂X
=
∂(f(X)− f(x̄))

∂X
=
∂f(x̄)

∂x̄
(A.41)

one obtains

∂F (n, n, p,X)

∂X
=
∂f(x̄)

∂x̄
〈np|Ṽp|np〉 = 〈np|

∂f(x̄)

∂x̄
Ṽp|np〉 . (A.42)

The potential f(x̄)Ṽp(x) is the periodic potential belonging to the periodic Hamil-
tonian Hp(x, x̄) with the eigenfunctions ϕnk(x, x̄). As in the Hamiltonian only
the potential depends on the expansion point we can write

∂F (n, n, p,X)

∂X
= 〈np|∂Hp(x, x̄)

∂x̄
|np〉|x̄=X . (A.43)
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Now we use the Helman-Feynman theorem which states

〈np|∂Hp(x, x̄)

∂x̄
|np〉 = ∂

∂x̄
〈np|Hx̄|np〉 =

∂εn(x̄)

∂x̄
(A.44)

for the matrix elements of a Hamiltonian depending on a parameter x̄ and its
eigenstates |n〉x̄. Therefore we get finally

∂F (n, n, p,X)

∂X
=
∂εn(x̄)

∂x̄
|x̄=X =

∂εn(X)

∂X
. (A.45)

Inserting this into equation (A.38) we get

i
∂

∂T
G(0) + i

∂ε0(p)

∂p

∂G(0)

∂X
− i∂ε0(p)

∂X

∂G(0)

∂p
−

−iU ′∂G(0)

∂p
− iU ′X0,1 (G(1, 0) +G(0, 1)) = 0 (A.46)

For the non-diagonal equation get

i
∂

∂T
G(0, 1)− [ε0(p)− ε1(p)]G(0, 1)− iU ′X0,1(G(1)−G(0))− iU ′∂G(0, 1)

∂p
= 0

(A.47)
where derivations with respect to the coordinate X were neglected. The coupling
of the the diagonal and off-diagonal components will be treated in Appendix D.1.
Neglecting this contribution and using the quasi-particle approximation for the
lesser Green function

G(0)<(p,X) = 2πiδ(ω − ε0(p)− U(X))f(p) , (A.48)

we get for the diagonal equation after an integration
∫

dω
2π

∂f

∂T
+
∂ε0(p)

∂p

∂f

∂X
− ∂ε0(p,X)

∂X

∂f

∂p
+ eE

∂f

∂p
= 0 (A.49)

which is the Boltzmann equation that we were looking for.
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Appendix B

Derivation of the Ktitorov model

Alternative to the approach in Appendix A it is possible to derive the Boltzmann
equation in a heuristic way, which is the original way in which it was introduced.
In order to describe the kinetics of an ensemble of electrons Boltzmann intro-
duced in 1872 a probabilistic description for the evolution of the distribution.
He introduced a single particle probability distribution in the phase space of the
variables r and k. This distribution function is usually denoted as f(r,k, t). The
total change of this distribution function in time is

df(r,k, t)

dt
=
∂f

∂t
+
dr

dt
· ∇rf +

dk

dt
· ∇kf =

∂f

∂t

∣
∣
∣
∣
coll

. (B.1)

∂f/∂t|coll describes the change of the distribution through collision events be-
tween the particles of the distribution or between a particle and an external scat-
terer, like phonons or impurities. Using Eq. (1.13) and the fact that the velocity
is given by the derivative of the dispersion with respect to the quasimomentum
get

∂f

∂t
+
∂ε

∂k
· ∇rf +

1

~
eE · ∇kf =

∂f

∂t

∣
∣
∣
∣
coll

. (B.2)

The scattering probabilities of the different scattering mechanisms can be calcu-
lated via a Golden rule approach. The equation can then be solved numerically
with the Monte Carlo method, but this is rather costly and therefore done in most
cases for homogeneous systems only. To proceed one needs to simplify the non-
linear scattering term on the right-hand side of Eq. (B.2). The most frequently
used approximation to simplify this term is the relaxation time approximation

∂f

∂t

∣
∣
∣
∣
coll

= − 1

τε

(

f(k)− n

n0
f0(k)

)

− 1

τel

1

2
(f(k)− f(−k)) . (B.3)

The first term describes the relaxation towards the equilibrium distribution func-
tion f0 via inelastic scattering events, e. g. phonon scattering. The prefactor n/n0

ensures conservation of particle number in inhomogeneous systems. The second
term describes elastic scattering events, e. g. impurity scattering. In a strictly
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one-dimensional model the only point in k-space with the same energy would be
−k and therefore the elastic scattering term is assumed to have the same form in
three dimensions also. If one assumes homogeneity of the superlattice in x- and
y-direction, for symmetry reasons

∇rf =





0
0
∂f
∂z



 E =





0
0
E



 (B.4)

and the Boltzmann equation reduces to

∂f

∂t
+ vp

∂f

∂z
+
eE

~
∂f

∂k
= − 1

τε

(

f − n

n0
f0

)

− 1

τel

1

2
(f(k)− f(−k)) (B.5)

with f = f(z,k). Now carry out the summations over the wave-vectors kx and
ky to get

∂f ′

∂t
+ vp

∂f ′

∂z
+ eE

∂f ′

∂k
= − 1

τε
(f ′ − n

n0
f ′0)−

1

τel

1

2
(f ′(k)− f ′(−k)) (B.6)

with the definition f ′(0)(z, k) =
∑

kx,ky
f(0)(z,k). The sum in the first term can be

cast into an integral

∑

kx,ky

f(0)(kx, ky, k) =
L2

2π2

∫

f(0)(kx, ky, k)dkxdky , (B.7)

where on the right hand side spin degeneracy is taken into account. This shows
that the effect of the x-y-dimension is that for f0 one has to use the integrated
function f ′0. Assuming a Fermi-Dirac distribution for f0

f0(k) = f0(k⊥, k) =

(

1 + exp

[

β

(
~2k2⊥
2m∗

+
∆

2
[1− cos (kd)]− µ

)])−1

, (B.8)

one obtains

f ′(0)(z, k) =
L2

π

∫ ∞

0

k⊥dk⊥

(

1 + exp

[

β

(
~2k2⊥
2m∗

+
∆

2
[1− cos(kd)]− µ

)])−1

=
L2

π

2m∗

β~2

∫ ∞

0

rdr

1 + exp [r2 + β(ε(k)− µ)] (B.9)

with ε(k) = [∆/2(1− cos(kd))]. The integral can be solved analytically to give

∫ ∞

0

rdr

1 + exp [r2 + β(ε(k)− µ)] = −
1

2

[

ln(1 + e−r2−β(ε−µ))
]∞

0
=

1

2
ln(1 + e−β(ε−µ))

(B.10)
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and finally

f ′(0)(z, k) =
L2

2π

2m∗

β~2
ln(1 + e−β(ε−µ)) . (B.11)

In the following the prime will be omitted again in the equations. Under the
assumption that elastic scattering does not couple to the transverse degrees of
freedom one gets

∂f

∂t
+ vp

∂f

∂z
+
eE

~
∂f

∂k
= − 1

τε

(

f(k)− n

n0
f0(k)

)

− 1

τel

1

2
(f(k)− f(−k)) . (B.12)

If the system is also homogeneous in the z-direction this equation reduces to

∂f

∂t
+
eE

~
∂f

∂k
= − 1

τε
(f(k)− f0(k))−

1

τel

1

2
(f(k)− f(−k)) (B.13)

which was proposed by Ktitorov et al. in 1972 [Kti72]. Of course the exten-
sion of the simple one-dimensional elastic scattering term to three dimensions is
somewhat arbitrary. The effect of the two perpendicular dimensions on the elas-
tic scattering has been investigated in [Ger93]. It is shown that the qualitative
behavior stays the same as in the strictly one-dimensional description, while the
maximum of the vd-E relation and the critical field Ec where the curve reaches
its maximum are changed. In my numerical simulations Eq. (B.12) was mostly
used without the elastic scattering term.
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Appendix C

The drift-diffusion model

Consider the one-dimensional Boltzmann equation in the form of Eq. (B.12) in
Appendix B

∂f

∂t
+ vk

∂f

∂x
+ eE

∂f

∂k
= −ν(f − n

n0
f0) (C.1)

without the elastic scattering term. Here vk = ∆d/2~ sin(kd) = v0 sin(kd) is
the quasiparticle group velocity and εp = −∆/2 cos(kd). The average 〈· · ·〉 is
determined by

〈· · ·〉 = 1

n

∫

· · · f(k, x, t)dk .

The moment-balance equations are obtained by multiplying both sides of the
Boltzmann equation with 1, v, ε and integrating over k-space. One gets the
continuity equation and

∂(n〈v〉)
∂t

+
∂(n〈v2〉)
∂x

− en
〈
∂v

∂p

〉

E = −νn〈v〉 (C.2)

∂(n〈ε〉)
∂t

+
∂(n〈vε〉)
∂x

− en〈v〉E = −νn(〈ε〉 − εT ) . (C.3)

If one uses the solution of the homogeneous Boltzmann equation to calculate the
higher momenta one obtains

∂(n〈v〉)
∂t

+
v20
2

∂

∂x







1− I2
I0

(

1 +

(
2E

Ec

)2
)−1



n



+
ed2

~2
n〈ε〉E = −νn〈v〉(C.4)

∂(n〈ε〉)
∂t

− ∆

2
v0
I2
I0

∂

∂x

[

E/Ec

1 +
(
2E
Ec

)2n

]

− en〈v〉E = −νn(〈ε〉 − εT )(C.5)

where Im are the modified Bessel functions. In the homogeneous and time-
independent case these equations can be solved to give (omitting the averaging
brackets from now on)

vd = v0
I1
I0

E/Ec

1 + (E/Ec)2
(C.6)
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and

εd =
ε0

1 + (E/Ec)2
= −∆

2

I1
I0

1

1 + (E/Ec)2
(C.7)

where we have used Ec = ~ν/ed and that the equilibrium energy of the electrons
is given by ε0 = −∆/2〈cos(pd/~)〉 = −∆/2× I1/I0.
From equation (C.5) we get

nε = nε0 −
1

ν

(
∂(nε)

∂t
− ∆

2
v0
I2
I0

∂

∂x

[
E ′

1 + (2E ′)2
n

]

− envE
)

(C.8)

where E ′ = E/Ec, and inserting this into equation (C.5) we get finally

nv(1 + E ′
2

) = nv0
I1
I0
E ′ − v20

2ν

∂

∂x

[(

1− I2
I0

1

1 + (2E ′)2

)

n

]

−

−v
2
0E

′

2ν

I2
I0

∂

∂x

[
2E ′

1 + (2E ′)2
n

]

− 1

ν

∂n

∂t

(

v − dE ′

~
ε

)

− n

ν

(
∂v

∂E ′
− dE ′

~
∂ε

∂E ′

)
∂E ′

∂t
.

Now assume to have a slowly varying problem in space and time. Inserting the
static solutions vd and εd for v and ε we get

− 1

ν

∂n

∂t

(

v − dE ′

~
ε

)

=
1

ν

∂nv

∂x
2vd =

2v2d
ν

∂n

∂x
+

2nvd
ν

∂v

∂E ′
∂E ′

∂x
(C.9)

and
(
∂v

∂E ′
− dE ′

~
∂ε

∂E ′

)
∂E ′

∂t
=

(

v0
I1
I0

1− E ′2
(1 + (E ′)2)2

+ v0
I1
I0

2E ′2

(1 + (E ′)2)2

)
∂E ′

∂t
= v0

I1
I0

1

1 + (E ′)2
∂E ′

∂t
(C.10)

and we get altogether

nv(1 + E ′
2

) = nv0
I1
I0
E ′ − v20

2ν

(

1− I2
I0

1− 2E ′2

1 + (2E ′)2

)
∂n

∂x
+

2v2d
ν

∂n

∂x
−

v20
2ν

I2
I0
n
2E ′(5− 4E ′2)

(1 + (2E ′)2)2
∂E ′

∂x
+

2nvd
ν

∂v

∂E ′
∂E ′

∂x
− n

ν
v0
I1
I0

1

1 + (E ′)2
∂E ′

∂t
. (C.11)

Now we define

D :=
1

1 + E ′2
v20
2ν

(

1− I2
I0

1− 2E ′2

1 + (2E ′)2
− 4

(
I1
I0

E ′

1 + (E ′)2

)2
)

(C.12)

and

C :=
n

ν
v0
I1
I0

1

(1 + (E ′)2)2
, (C.13)
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Neglecting the ∂E
∂x

-terms in equation (C.11) we get

nv = nvd −D
∂n

∂x
− C∂E

′

∂t
. (C.14)

The ratio of the mobility and the diffusion coefficient is given by

D

µ
=

D

vd/E
=

1
1+E′2

v2
0

2ν

(

1− I2
I0

1−2E′2

1+(2E′)2
− 4

(
I1
I0

E′

1+(E′)2

)2
)

v0
I1
I0

1/Ec

1+(E/Ec)2

=

=
v0Ec

2ν

I0
I1

(

1− I2
I0

)




1 +

I2
I0

6E′2

1+(2E′)2
− 4

(
I1
I0

E′

1+(E′)2

)2

(

1− I2
I0

)




 =

=
kBT

e




1 +

I2
I0

6E′2

1+(2E′)2
− 4

(
I1
I0

E′

1+(E′)2

)2

(

1− I2
I0

)




 , (C.15)

using Bessel function identities. This coincides with the result from [Ign84]. In
the low-field limit E ′ → 0 or the small miniband limit β∆/2→ 0 this reduces to
the Einstein relation D/µ = kBT/e. Fig. C.1 shows the ratio D/µ for different

0.6
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D/ [k T/e]µ

c

B

Fig. C.1: The diffusion coefficient D over the mobility µ as a function of
the normalized applied field E ′ = E/Ec and different miniband widths ∆ for
room temperature.

miniband widths at room temperature. In the limit E ′ →∞ get

D

µ
=

(
3

4

I0
I1

β∆

2
− 1

2

)
kBT

e
, (C.16)
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i. e. the curves saturate for large E ′. For not too large minibands (β∆/2 ≤ 1) we

get D/µ =
(

1 + 3
16

(
β∆
2

)2
)

kBT
e

for the saturation value.



Appendix D

Tunneling

D.1 Zener tunneling

I first consider the simplest conceivable model for Zener tunneling, that is a
periodic potential with only one Fourier component of the potential not equal to
zero1

V (x) = 2VQ cos(Qx) = VQ

(
eiQx + e−iQx

)
with VQ ¿

(Q/2)2

2m
. (D.1)

Around the point k = Q/2 in the reciprocal space the dispersion is linearized and
the potential couples approximately only the two bands depicted in Fig. D.1.

ε
ε

εk−Qk

k
−Q/2 Q/2

 

 

Fig. D.1: The free electron parabola
and the same parabola shifted by a
reciprocal lattice vector Q.

If an electric field E is applied, the quantum mechanical eigenstates will travel
through the reciprocal space according to the relation k̇ = eE. The energy of the
free electron is linearized by

ε(k) =
(Q/2)2

2m
+
Q/2

m
(k −Q/2), (D.2)

1 Planck’s constant ~ = 1 in this Appendix
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or as a function of time, shifting the zero energy to (Q/2)2/2m and setting k =
Q/2 at t = 0

ε(t) =
Q/2

m
eEt = ε̇t . (D.3)

The state εk−Q(t) ≈ −ε̇t is coupled to the state εk via the amplitude VQ. For the
amplitude of the two states of the crossing bands one has to solve the Schrödinger
equation

(
ε(t) VQ

VQ −ε(t)

)(
a
b

)

= i
∂

∂t

(
a
b

)

. (D.4)

This problem was considered by Zener in 1932 [Zen32]. He considered the problem
of two crossing energy levels with linear dependence of the energy difference in
time and constant coupling matrix element. Starting with the system in one
state a(−∞) = 1 and |b(−∞)| = 0 one can calculate the probability P that the
electron stays in the initial state, i. e. |a(∞)|, solving the coupled differential
equations resulting from Eq. D.4. The result is

P = exp

(

−
πV 2

Q

ε̇

)

. (D.5)

Zener did not refer in his paper to the fact that tunneling between energy bands
might be described by the model. He rather published two years later his clas-
sical paper [Zen34] which attributed the high-field breakdown in dielectrics to
tunneling processes between bands. The model he uses there has at first sight
nothing to do with the previous model, but the connection will be established in
the following.

Starting from the model in Fig. D.1 one can approach the problem as follows.
One can transform the basis in Eq. (D.4) locally in time since the Hamiltonian

ε
ε εk k−Q

2V

k
−Q/2 Q/2

Q

E

E

1

0

 

 

Fig. D.2: The crossing of the two
energy parabola (dotted lines) with
the eigenenergies E0/1(k) of the lo-
cal eigenstates (solid lines).
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is time-dependent to the eigenstates (Fig. D.2) and denote the corresponding
amplitudes by α and β:

(
a
b

)

=

(
x y
y −x

)(
α
β

)

. (D.6)

The columns of the unitary matrix are the eigenvectors with time-dependent
entries, for which one has

x2(t) =
(

1 +
ε

W

)

/2, y2(t) =
(

1− ε

W

)

/2 and x(t)y(t) =
VQ

2W (t)
(D.7)

where W (t) =
√

ε2 + V 2
Q. The corresponding eigenvalues are E0/1(k) = ±W .

Then Eq. (D.4) can be written in the new basis as

(

−iW (t) ε̇
VQ

2W 2

ε̇
VQ

2W 2 iW (t)

)(
α
β

)

=
∂

∂t

(
α
β

)

. (D.8)

The equations for the density matrix are

∂

∂t
(ββ∗ − αα∗) = −2S(βα∗ + αβ∗) (D.9)

∂

∂t
βα∗ = 2iWβα∗ + S(ββ∗ − αα∗) (D.10)

∂

∂t
αβ∗ = −2iWαβ∗ + S(ββ∗ − αα∗) (D.11)

with S = ε̇
VQ

2W 2 . Defining U1 := βα∗ + αβ∗, U2 := i(βα∗ − αβ∗) and U3 :=
ββ∗ − αα∗ one obtains

d

dt
U = Ω×U (D.12)

with Ω = 2Se2 − 2We3. This describes the rotation of U around the direction
of Ω. The coupled differential equations can be solved e. g. with Maple and
the result in Eq. (D.5) is reproduced numerically. We described this alternative
way of getting the Zener transition probability since one can relate the equations
resulting from the Boltzmann equation and the equations in the literature easier
with it.

To make the transition to a general system with a periodic potential we start
with equations (A.38) and (A.47) for a homogeneous situation

∂

∂T
G0 + eEX0,1 (G10 +G01) + eE

∂G0

∂p
= 0 (D.13)

∂

∂T
G01 + i [E0(p)− E1(p)]G01 + eEX0,1(G1 −G0) + eE

∂G01

∂p
= 0 . (D.14)
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Now we transform the equations into a moving frame. Define x = p − eET ,
G̃0(x, T ) = G0(p− eET, T ) and so on. We get

∂G0

∂T
= −eE∂G̃0

∂x
+
∂G̃0

∂T
(D.15)

∂G0

∂p
=
∂G̃0

∂x
(D.16)

and therefore
∂G̃0

∂T
+ eEX0,1(G̃10 + G̃01) = 0 . (D.17)

The coupling constant W has to be evaluated at the point p = x+ eET . Trans-
forming the equations for G1 we get

∂G̃1

∂T
− eEX0,1(G̃10 + G̃01) = 0 . (D.18)

For the off-diagonal part we get

∂G̃01

∂T
+ eEX0,1(G̃1 − G̃0)− i [E1(p)− E0(p)] G̃01 = 0 (D.19)

and the complex conjugate for G̃10. The diagonal equations can be written

∂G̃1 − G̃0

∂T
= 2eEX0,1(G̃10 + G̃01) . (D.20)

Specializing these equations to the case considered before, namely the crossing
of two free-electron parabolas coupled via a constant matrix element, one can
calculate X0,1. The Bloch states are given for this case by

ϕk,1 = xeikx + yei(k−Q)x and ϕk,0 = yeikx − xei(k−Q)x (D.21)

so that

X0,1 =
1

2

∫ L

0

(

u∗nk(x
′)
∂un′k′

∂k′
(x′)− ∂u∗nk

∂k
(x′)un′k′(x

′)

)

dx′ = − VQ

2W 2

∂ε

∂k
. (D.22)

Then one has eEX0,1 = k̇X0,1 = −S and the equations for the Green functions
are in this limit equivalent to Eqs. (D.9, D.10, D.11) identifying G01 with α∗β
and so on.

In the following it is assumed that the diagonal Green functions are only slightly
affected by the transition, i. e. in Eq. (D.19) one approximates G̃1 = 0 and
G̃0 = 1. We get then for the off-diagonal part

G̃01(t) =

∫ t

−t0

eEX0,1(t
′)e−i

∫ t′

t
(E1−E0)dτ ′dt′ . (D.23)
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The occupation in the upper band is therefore at a time t0

G̃1(t0) =
1

2

∫ t0

−t0

∂
(

G̃1 − G̃0

)

∂t
dt = (D.24)

∫ t0

−t0

eEX0,1(t)

∫ t

−t0

eEX0,1(t
′)e−i

∫ t′

t
(E1−E0)dτ ′dt′dt+ c.c. = (D.25)

=

∫ t0

−t0

eEX0,1(t)

∫ t0

t

eEX0,1(t
′)ei

∫ t′

t
(E1−E0)dτ ′dt′dt+ c.c. (D.26)

which can be written as

G̃1(t0) =

∣
∣
∣
∣

∫ t0

−t0

eEX0,1(t)e
i
∫ t′

−t0
(E1−E0)(τ ′)dτ ′dt

∣
∣
∣
∣

2

. (D.27)

This is exactly the tunneling probability given in [Kri86] and applied to inter-
miniband tunneling in [Sib89]. Since k and t are linearly related the probability
for a transition for the transversal of the Brillouin zone can be written as

G̃1(t0) =

∣
∣
∣
∣
∣

∫ Q/2

−Q/2

X0,1(k)e
i/(eE)

∫ k
0
(E1−E0)(k′)dk′dk

∣
∣
∣
∣
∣

2

=: |M0,1|2 . (D.28)

Here it is assumed that the Brillouin zone is transversed in the time interval
−t0 · · · t0. Kane [Kan59, Kan60] has shown that the integral over the Brillouin
zone in Eq. (D.28) is the overlap of two Wannier-Stark states in different bands.
At this point it is also possible to make a connection to the description of tun-
neling by Zener [Zen34].

Let us take a close look at the integralM0,1 =
∫ Q/2

−Q/2
X0,1(k)e

i/(eE)
∫ k
0
(E1−E0)(k′)dk′dk

in the tunneling probability for one zone crossing. If we are only interested in the
exponential factor, neglecting the interband matrix element X0,1, the integral can
be solved with the help of the method of steepest descent. Apart from prefactors,
which we do not care about at the moment, the integral can be approximated by

M0,1 = ei/(eE)
∫ k0
0 (E1−E0)(k′)dk′ (D.29)

where a complex k0 is given by the condition E0(k0) = E1(k0) = 0 and the
zero-point of the energy was put to the middle of the bandgap. Since the two
bands are not degenerate in one dimension this equation can only be solved in the
complex k-plane. Define the parameters z0 and z1 for a given complex k-value
by the relations

z0 =
E0(k)

eE
where z < 0 and z1 =

E1(k)

eE
where z > 0 . (D.30)



104 Appendix D. Tunneling

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������Egap

z
−g

2

g 2

ε
∆

Fig. D.3: The miniband gap with
the local energy shifted by the electric
field.

It can be interpreted as the position, where the total energy Ei(k)−eEz of a par-
ticle with given k is zero (Fig. D.3). Of course the energy values −∆gap/2 < E <
∆gap/2 can be only reached for complex k-values which belong to exponentially
growing or decaying states in the bandgap. Get

M0,1 = exp

(

i

∫ k0

0

(z1 − z0)(k′)dk′
)

. (D.31)

The integrals can also be written as integral over the new parameter z

M0,1 = exp

(

i

∫ 0

g/2

z1
dk′

dz1
dz1 − i

∫ 0

−g/2

z0
dk′

dz0
dz0

)

, (D.32)

with g = Egap/(eE). Using an integration by parts yields

M0,1 = exp

(

i

∫ g/2

0

k′dz1 + i

∫ 0

−g/2

k′dz0

)

. (D.33)

Here k′ can be deduced by inverting Eqs. (D.30). This is exactly the expression
used by Zener in [Zen34] to calculate the interband transition probability. A
complex k-value is deduced from inverting the energy dispersions in the forbidden
region and then one integrates over the energetically forbidden region in the spirit
of a WKB approximation.

Now let us specialize again to the crossing of two free-electron parabola. Here

the relations (D.30) can be easily inverted using E0/1(k) = ∓
√

α2k2 + V 2
Q with

α = ∂ε/∂k to get

k =
i

α

√

V 2
Q − (eEz)2 . (D.34)

Evaluating the integral we get

M0,1 = exp

(

−
πV 2

Q

2αeE

)

(D.35)
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or for the transition probability of one zone crossing

P = exp

(

−
πV 2

Q

ε̇

)

(D.36)

which reproduces the result found earlier. It is interesting to note that this
approximation reproduces the exact probability even though we have thrown
away all prefactors during the derivation.

The Zener tunneling probability through the miniband gap for a typical super-
lattice can be estimated as follows:
For a GaAs/AlGaAs superlattice with standard parameters (Tab. 1.1) one ob-
tains for the gap energy εgap = 340 meV. For a typical value of the field E = 106

V/m we get πV 2
Q/~ε̇ ≈ 100. The probability becomes appreciable if either the

field is much larger or the gap becomes smaller. Therefore interband transitions
can normally be neglected.

D.2 Tunneling through triangular barriers

With the help of the approximation derived above the tunneling probability out of
the miniband through the triangular barrier at the right end of the superlattice
was estimated. Fig. D.4 shows the scenario. If the barrier is only penetrated
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Fig. D.4: Electrons can tunnel
through the triangular barriers at
both ends of the superlattice with ap-
plied field. At the left side the en-
ergy difference δε of an electron to
the miniband bottom is determining
the tunneling probability and at the
right side the distance to the super-
lattice end y is determining the prob-
ability.

slightly, the imaginary k at the point z = −g/2 + δz can be approximated by

k =
i
√

2VQeE

α

√
δz (D.37)

which results integrated from 0 to y in a transition probability

P = exp

(

−
√

2VQeE

α

4

3
y3/2

)

. (D.38)



106 Appendix D. Tunneling

It is interesting to note that for a fixed position y the tunneling probability
decreases with increasing field which is plausible since the triangular barrier grows
with rising field. In Chapter 3 the implications of this tunneling on the transport
for realistic device parameters is investigated.

To complete the considerations on tunneling let us finally consider the triangular
barrier that arises at the left side of the superlattice when a field is applied (see
Fig. D.4). Electrons with energy δε below the peak of the triangle can still tunnel
into the miniband region. Using δε = yeE in Eq. (D.38) we get

P = exp

(

− 4

3eE

√
2VQ

α
δε3/2

)

. (D.39)

Alternatively one can evaluate the WKB-integral

I =
√

2m?
l

∫ δε/eE

0

√
δε− eExdx =

2

3eE

√

2m?
l δε

3/2 (D.40)

to get for the probability

P = exp(−2I) = exp

(

− 4

3eE

√

2m?
l δε

3/2

)

(D.41)

which is equivalent to D.39 using the effective mass of electrons at the bottom of
the miniband

m?
l =

∂2ε

∂k2

∣
∣
∣
∣

−1

k=Q/2

=
VQd

2m2

π2
=
VQ

α2
. (D.42)



Appendix E

The upwind procedure

In this appendix the upwind procedure which was used to discretize the Boltz-
mann equation is described. The upwind procedure is illustrated first for the
discretization of the Boltzmann equation for a periodic potential without varia-
tion

∂f

∂t
= −v(p)∂f

∂z
− eE∂f

∂p
. (E.1)

The time derivative is discretized by

∂f

∂t
=
f(t+∆t)− f(t)

∆t
. (E.2)

The derivatives on the right side are calculated using the values at the time t
and therefore f(t+∆t) can be calculated from the values at time t, i. e. it is an
explicit scheme.

i+1 zii−1

f i−1j

f ij−1

∆ z

∆ p

j−1

j

j+1

n ni∆ ∆i−1

∆

∆ n

ijf

n j

j−1

p

Fig. E.1: The grid element at space
point i and momentum point j with den-
sity fij and the surrounding grid ele-
ments. The width of the elements is ∆z
in z-direction and ∆p in momentum di-
rection. The quantities ∆n show the flow
of particles to the neighboring elements
which results from the particle drift in
phase space.

The upwind discretization is used to describe a particle flow in phase space and
depends on the direction of the flow of the particles. Let us assume v > 0 and
eE > 0, the other cases can be deduced analogously. Fig. E.1 shows an arbitrary
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element of phase space with particle density fij where i and j denote the index in
real and momentum space. For positive velocity the number of particles flowing
out of the phase space element into the right neighboring element in space at
site i+ 1 is given by ∆ni = Afijv∆t, where A is the area of the surface through
which the particles stream. The number of particles flowing into the phase space
element from the left is given by ∆ni−1 = Afi−1jv∆t so that the change in density
is given by

∆f

∆t
=

∆n

A∆z∆t
=
−∆ni +∆ni−1

A∆z∆t
= −v(p)fij − fi−1j

∆z
. (E.3)

This suggests to discretize the derivative in equation (E.1) by

− v∂f
∂z

= −vfij − fi−1j
∆z

. (E.4)

rather than a central difference scheme ∂f
∂z

=
fi+1j−fi−1j

2∆z
or another discretizing

procedure. In the same way the flow direction in momentum space for positive
eE suggests to use the discretization

∂f

∂p
=
fij − fij−1

∆p
. (E.5)

Besides the intuitive justification for the upwind procedure it turned out that it
is very stable for the coupled Poisson-Boltzmann problem even if one introduces
discontinuities at boundaries between different regions. While a stability analysis
could be carried out for the Boltzmann equation alone, it is not clear to me how
to generalize this analysis to the coupled Poisson-Boltzmann system, which is
therefore not attempted here. A disadvantage of the upwind procedure is that it
introduces additional diffusion effects, which tend to smoothen sharp wave fronts.
But using the relaxation time approximation an exact quantitative analysis is
out of reach anyway and I am mainly interested in the dynamics rather than the
exact shape of the domains in the NDC material and therefore this disadvantage
is accepted. Other explicit integration schemes for equations of type (E.1) were
tested and turned out to be unstable especially at the boundaries, while implicit
schemes were not tested at all due to the effort necessary for the implementation.

The next question that needs to be addressed is how the extension to equation
(2.18) can be achieved. The derivative at constant energy necessitates to take the
density at the neighboring gridpoint with equal energy. Then one can discretize
∂ε(p)
∂p
|z ∂f̃

∂z
|ε using the upwind method

∂ε(p)

∂p
|z
∂f̃

∂z
|ε=

∂ε

∂p

∣
∣
∣
∣
z

f̃iε − f̃i−1ε
∆z

. (E.6)

The density f̃i−1ε is the density at the neighboring p-point with the same energy.
This discretization turned out to be more stable than using equation (2.14) where
∂ε/∂z appears if the dispersion changes on a short scale so that ∂ε/∂z is large.



Appendix F

Cavity

The derivation in this appendix follows [Ung89]. We assume that a resonator can
be described by a cavity with conducting walls, the source can be described by
a known current distribution. Furthermore there may be a hole in the cavity for
the emission of radiation. The idea is to expand the field in the cavity in the
absence of the source by a complete set of eigenmodes. We assume that all fields
have a time dependence of the form: E(x, t) = E(x) exp(−iωt).
We start from Maxwell’s equations

∇× E(x) = iωµ0H(x) (F.1)

∇×H(x) = J(x)− iωε0E(x) . (F.2)

For the fields we use the expansion with respect to eigenmodes with frequency ωn

of the cavity with ideal conducting walls in the absence of sources and holes. The
corresponding fields En andHn form an orthogonal set. They fulfill the boundary
conditions that the tangential component of En and the normal component of
Hn vanish on the surface. We assume that the fields are normalized as

ε0

∫

V

dvEnE
∗
n = µ0

∫

V

dvHnH
∗
n = 1 (F.3)

where V is the volume of the cavity. Defining expansion coefficients by

an = ε0

∫

V

dvEE∗n and bn = µ0

∫

V

dvHH∗
n , (F.4)

we obtain the approximate expansion for the true fields:

E '
∑

n

anEn and H '
∑

n

bnHn . (F.5)

This expansion is only approximate as it does not consider the penetration of the
true fields into the walls of the cavity. It is also incomplete in the description
of fields generated by the sources. The best approximation for the coefficients
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an, bn in the sense of a variational principle is obtained by taking matrixelements
of Maxwell’s equations:

∫

V

dvH∗
n(x) · (∇× E(x)) = iωbn (F.6)

∫

V

dvE∗n(x) · (∇×H(x)) = cn − iωan (F.7)

where

cn :=

∫

V

dvJ(x)E∗n(x) . (F.8)

Using ∇(a × b) = b(∇ × a) − a(∇ × b) the left hand sides can be rewritten.
Performing the volume integration we can transform the volume integral over the
divergence into a surface integral and obtain

∫

F

df n̂ · (E×H∗
n) + iωnan = iωbn (F.9)

−
∫

F

df n̂ · (E∗n ×H)− iωnbn = cn − iωan . (F.10)

Here n̂ is a normal vector pointing into the wall of the cavity. As the tangential
component of En vanishes on the surface due to the boundary condition, the
integral

∫

F
df n̂(E∗n×H) vanishes. On the other hand the true electric field E has

a small tangential component due to the finite conductivity and finite penetration
of the field into the wall. This small component can be estimated to be

n̂× E = ηH with η = (1− i)RA (F.11)

where RA =
√

ωµ0

2σ
is the surface resistance (for a derivation see e. g. [Jac62]1).

Then the integral over the surface, leaving out the holes, becomes

∫

F−F1

df n̂(E×H∗
n) =

∫

F−F1

dfH∗
n(n̂× E) = η

∫

F−F1

dfH∗
nH ' (F.12)

' (1− i)RA

∑

m

bm

∫

F−F1

dfH∗
nHm =:

∑

m

hnmbm . (F.13)

Let us assume that we know the fields on the holes and write

gn :=

∫

F1

df n̂(E∗n ×H) (F.14)

1 The normal vector n̂ is defined in [Jac62] pointing into the vacuum, while here it is pointing
into the metal.
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then we obtain the equations

gn +
∑

m

hn,mbm + iωnan = iωbn (F.15)

− iωnbn = cn − iωan . (F.16)

Eliminating an we obtain an equation for bn
(
ωn

ω
− ω

ωn

)

bn −
i

ωn

∑

m

hn,mbm = i
cn
ω

+ i
gn
ωn

. (F.17)

Let us assume further that the opening is very small so that gn ≈ 0. For ω near
a eigenfrequency ωk the coefficient bk is large and dominates the damping term.
Introducing the quality factor Qk by

hk,k

ωk

= (1− i)RA

∫
df |Hk|2
ωk

=:
(1− i)
Qk

(F.18)

we obtain

bn = i
cn
ω

[(
ωn

ω
− ω

ωn

)

− 1 + i

Qn

]−1

(F.19)

where 1/Qn introduces a shift and damping of the resonance frequency. For the
other modes with ωn away from ω we may neglect the damping.

Now let us discuss an example where the cavity is excited by a Bloch oscillator
device which is attached to the bottom of the cavity.

A H I

U

Fig. F.1: The cavity with the superlattice at-
tached to the bottom. A changing magnetic field
H in the area A creates a voltage U that extends
from the bottom to the top of the superlattice.

From the top of the oscillator a wire extends to the top of the cavity. Here it leaves
the cavity through a hole which isolates the DC current from the wall of the cavity,
but is a short for high-frequency currents. The high-frequency currents circulate
through the wire and back in the wall of the cavity. The coupling coefficients cn
between the current distribution and the electric fields of the eigenmodes of the
cavity are given by

cn =

∫

V

dvJ · E∗n = I

∫

E∗nds . (F.20)
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Since the electric fields of the (ideal) eigenmodes have no tangential components
along the wall of the cavity, the integral over the current density can be trans-
formed into a line integral forming a closed loop, and therefore can be transformed
into a surface integral over the flux of the eigenmode

cn = I

∫

A

(∇× E∗n)df = −iωnµ0I

∫

A

H∗
ndf . (F.21)

It does not matter which loop we choose, the result should be independent from
that. In the case of a circular cavity with the wire in the central axis only the
modes with circular symmetry should couple.

On the other hand the total flux through the loop produces a voltage drop

U(t) =
dΦ(t)

dt
(F.22)

with the amplitude

U = −iωµ0
∫

A

Hdf ' −iωµ0
∑

n

bn

∫

A

Hndf . (F.23)

Inserting the values of the expansion coefficients bn we find

Z :=
U

I
= −i

∑

n

ωnln

[(
ωn

ω
− ω

ωn

)

− 1 + i

Qn

]−1

(F.24)

with

ln := µ20

∣
∣
∣

∫

A

Hndf
∣
∣
∣

2

. (F.25)

This ratio Z can be considered as entrance resistance (entrance impedance) of
the cavity. It is the sum Z =

∑

n Zn of impedances from each mode

Zn = −iωnln

[(
ωn

ω
− ω

ωn

)

− 1 + i

Qn

]−1

. (F.26)

It is shown in Chapter 2 how this impedance can be modeled by an equivalent
circuit.
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