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Chapter 1

Introduction

Metallic wires as used in standard microelectronic devices nowadays allow to be

fabricated with widths and heights of several tens of nanometers. Despite these

small dimensions, their electronic transport properties can be understood to a large

extent in terms of classical diffusive motion.

Recently, metallic contacts could be attached also to single molecules [1]. In contrast

to diffusive metal wires, molecules are well defined systems, both with respect to

their atomic structure and their electronic conduction properties: all molecules of

a given structure are identical on atomic scale, and electronic transport through a

single molecule is determined solely by it’s overall, coherent wavefunction.

Since their discovery in 1991, multiwall carbon nanotubes (MWNTs) take an in-

termediate position between the world of identical molecules and disordered solids.

[2]. On one hand, they can be considered as a set of seamlessly rolled up graphene

sheets (referred to as ’shells’), which are put one into another. With this respect,

they have to be classified as perfect molecules.

On the other hand, their typical length of several micrometers and diameters up to

50 nm exceed by far the dimensions of most other molecular systems. Their large

size allows the occurrence of imperfections of the atomic structure, without turning

the molecule into a completely different one, what would be the case for smaller

systems. Such imperfections are for example introduced by atomic displacements

and adsorbates on the outermost nanotube shell. In this sense MWNTs represent

a disordered molecular system, in which electronic transport is influenced both by

the molecular wavefunctions and the imperfections of the atomic structure.

In the last years, large effort has been made in order to clarify and characterize the

transport properties of MWNTs (for an overview see Ref. [3]). One main reason for

that is the fundamental interest in electronic transport on a molecular scale, which

is most easily accessed with MWNTs. Furthermore, also a variety of microelectronic

1



2 Chapter 1. Introduction

devices bear the perspective of being assembled by nanotubes, either completely or

by using the tubes as connection wires [4, 5].

Despite the large efforts, the electronic properties of MWNTs could not be clarified

to a satisfying extent. For example, the interaction of adjacent nanotube shells is

not clear, since in the measurement only the outermost shell is contacted. Here, the

question arises, to which extent electric current is carried also by the inner shells

[6].

Thus, the main goal of this thesis is to shed some more light on transport in MWNTs.

Especially the question of a possible interplay between the molecular structure and

the disorder is addressed, as well as the resulting consequences for the electronic

transport.

Experimentally, the main investigation tool in this work are conductance measure-

ments on single MWNTs at low temperatures and high magnetic fields. A very

efficient gate is used for a considerable variation of the nanotube’s Fermi level. The

results are compared to numerical tight-binding calculations, as performed by our

collaborators S. Roche and F. Triozon [7].

The thesis is organized as follows: A review of the electronic bandstructure within

the tight binding approach is given in Chapter 2. The tight-binding method repre-

sents a very efficient and successful tool for a basic understanding of the conduction

properties of carbon nanotubes. Furthermore, it allows a comparatively easy inclu-

sion of magnetic fields and disorder.

Subsequently, several mesoscopic transport effects are described, which are observed

in MWNTs (Chapter 3). Here only those effects are considered, which are crucial

for the interpretation of the measurements in this work.

After an overview on the sample-fabrication methods and the measurement setup

(Chapter 4), the first experimental results are presented (Chapter 5). These results

serve as a motivation for more extensive investigations, which are presented and

discussed in the following sections.

In Chapter 6, the intricate interplay between the electronic bandstructure and the

disorder of the system is addressed. This is done by means of magnetoconductance

measurements, where the Fermi level in the nanotube is changed within a large range

by means of a highly efficient backgate. The latter offers the possibility of tuning

the Fermi level across several nanotube subbands, which in turn strongly affects the

conduction properties.

Finally, Chapter 7 is concerned with the conduction properties of MWNTs with

large diameters of about 30 nm. If for such tubes the magnetic field is aligned with

the tube axis, it’s cylindrical shape is predicted to cause a variety of effects in the

conductance. All of these effects are closely related to the fundamental Aharonov-

Bohm effect [8], which predicts conductance oscillations of a ring-shaped conductor
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as a function of the magnetic flux through the surface enclosed by the ring. The

predictions are investigated again by magnetotransport measurements.

For nanotubes of large diameter in perpendicular fields, there exist several contradic-

tory theoretical models, predicting the occurence of Landau levels and conductance

oscillations. Thus, in the last section of Chapter 7 corresponding measurements are

reported and compared to numerical calculations.
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Chapter 2

Electronic Bandstructure of

Carbon Nanotubes

The electronic bandstructure of perfect, i.e. defect-free and infinitely long single

wall carbon nanotube can be derived from that of a single layer of graphite, or a

graphene. Therefore, first the electronic structure of graphene will be reviewed,

which will be specialized afterwards to carbon nanotubes in a magnetic field. This

section is mainly inspired by the book of R. Saito et al. [9].

2.1 Graphene

The carbon atoms in a graphene sheet form a planar hexagonal lattice. In real space,

the unit vectors of the sheet are given by

a1 =

(√
3

2
a,
a

2

)

, a2 =

(√
3

2
a,−a

2

)

, (2.1)

with a lattice constant of a = |a1| = |a2| = 2.46Å. The corresponding reciprocal

lattice is spanned by the vectors

b1 =

(

2π√
3a
,
2π

a

)

, b2 =

(

2π√
3a
,−2π

a

)

. (2.2)

Each unit cell contains two carbon atoms and can hence accomodate two valence

electrons. It has the shape of a rhomb, while the first Brillouin zone forms a hexagon,

as shown in Fig. 2.1.

For each carbon atom, three σ bonds hybridize in a sp2 configuration. The fourth

valence electron remains in an atomic pz state , perpendicular to the sheet, and hy-

bridizes with all other pz-orbitals to form a delocalized π-band. Only this, covalent,

5



6 Chapter 2. Electronic Bandstructure of Carbon Nanotubes

Figure 2.1: (A) Direct graphene lattice with primitive vectors a1 and a2.The

rhomb-shaped primitive cell contains two carbon atoms, denoted A and B. (B)

Corresponding reciprocal lattice (spanned by b1 and b2). The grey shaded

region marks the first Brillouin zone. The positions of some high-symmetry

points (Γ, K, M) are depicted. (Figure adapted from Ref. [9]).

π-band is considered for the bandstructure calculation, since it turned out to be

most important for determining the solid state properties of graphite.

2.2 Tight Binding Method for Graphene

The tight-binding scheme allows to calculate the π-electron bands of graphene. As

an ansatz, Bloch functions serve, as given by

Φj(k, r) =
1√
N

∑

Rα

eik·Rαϕj(r− Rα), j = 1...n, α = A,B (2.3)

where n denotes the number of atomic eigenfunctions per unit cell, Rα are the

positions of the inequivalent carbon atoms A and B in the unit cell and ϕj(r−Rα)

is the 2p-wavefunction of the atom at Rα. N denotes the number of unit cells.

From the Bloch functions, an eigenfunction ψ(k, r) of the sheet is expressed by

ψ(k, r) =

n
∑

j′=1

Cjj′(k)Φ(k, r), (2.4)
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where Cjj′ are the coefficients to be determined. Minimizing the energy functional

Ej(k) =
〈ψj |H|ψj〉
〈ψj|ψj〉

, (2.5)

where H is the Hamiltonian of the graphene sheet, leads to the secular equation

det[H− ES] = 0. (2.6)

Here, Hjj′ and Sjj′ are called the transfer integral matrix and the overlap integral

matrix, respectively:

Hjj′ = 〈ϕj|H|ϕj′〉, Sjj′ = 〈ϕj |ϕj′〉, j, j′ = 1...n. (2.7)

For graphene, n=2. In the nearest-neighbor approximation, H and S are given by

H =

(

ǫ2p tf(k)

tf(k)∗ ǫ2p

)

, S =

(

1 sf(k)

sf(k)∗ 1

)

, (2.8)

where

f(k) = eikxa/
√

3 + 2e−ikxa/2
√

3cos(kya/2), (2.9)

t = 〈ϕA(r− RA|H|ϕB(r −RB)〉, (2.10)

s = 〈ϕA(r −RA|ϕB(r − RB)〉. (2.11)

s and t are called the transfer integral and the overlap integral between nearest

neighbors A and B, respectively. Finally, the eigenvalues E(k) are given by

Eg2D(k) =
ǫ2p ± tw(k)

1 ± sw(k)
, (2.12)

where w(k) = |f(k)|. The positive/negative sign renders the bonding/antibonding

π/π∗-band, respectively. For convenience, ǫ2p is set to zero. If s is also set to

zero, which is referred to as the Slater-Koster-scheme, the π- and π∗-bands become

symmetric to each other with respect to E = 0. In this case, Eq.2.12 reads

Eg2D(kx, ky) = ±t
{

1 + 4cos

(√
3kxa

2

)

cos

(

kya

2

)

+ cos2

(

kya

2

)

}1/2

(2.13)

[10], where t = −3.033 eV is chosen in order to reproduce the first principles calcula-

tions for the graphite energy bands[11]. The bonding π-band is always energetically

below the antibonding π∗-band, except at the degeneracy points (K-points), where

the band splitting vanishes. Near the K-points, 2.13 is well approximated by

E(k) = ±~vF|k− kK−point|, (2.14)

with vF ≈ 0.8 · 105m/s, which is referred to as the “light cone approximation”. The

dispersion relation for graphene is depicted in Fig. 2.2
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Figure 2.2: Left: Energy dispersion of the tight binding π- and π∗-band of

graphene in units of E0=3.033 eV. Right: Contour-plot of the bonding π-band.

Lines denote the set of allowed k-vectors for a metallic (3,0) zigzag nanotube.

Dots correspond to the K-points in the first Brillouin zone.

2.3 Zone Folding

From a graphene sheet, a nanotube is obtained by wrapping it into a seamless

cylinder. Topologically, the wrapping is determined uniquely by the identification

of two unit cells, which are connected by the so-called chiral vector

Ch ≡ (m,n) = ma1 + na2, (2.15)

with positive integers m and n. The nomenclature is “armchair tube” for m=n,

“zigzag tube” for n=0, and “chiral tube” otherwise. The names reflect the shape of

the cross-section of the tube, which is shown in Fig. 2.3.

The wrapping is equivalent to the imposing of periodic boundary conditions on the

electronic wavefunction in the direction of Ch. This leads to a quantization of the

electron wave vector k along the circumference of the tube:

k · Ch = 2πn, (2.16)

where n is an integer. For the component of k, which is parallel to the tube axis,

continuous values k‖ are allowed. This results in a backfolding of the graphene

dispersion and thus the set-up of quasi-one dimensional subbands with index n.

These 1D dispersion relations are given by substituting Eq. 2.16 into Eq.2.13. In

reciprocal space, the set of allowed k-vectors corresponds to parallel lines in the
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Figure 2.3: Classification of singlewall carbon nanotubes, corresponding to

the shape of the π-bonds along the tube circumference. (A) An (m,m) arm-

chair nanotube, (B) an (m,0) zigzag nanotube and (C) an (m,n) chiral nan-

otube. (Figure adapted from Ref. [9]

direction of the tube axis. In Fig. 2.2, the procedure is depicted for a (metallic)

(3,0) zigzag nanotube. The 1D bands show a gap, if the K-points are not contained

in the set of k-vectors. This is the case if (2n + m) is a multiple of 3. Otherwise

the tube behaves like a 1D metal, or, more exact, as a zero-gap semiconductor.

For example, all armchair tubes are metallic, while one third of all zigzag tubes is

metallic. In Fig. 2.4, the dispersion of the one-dimensional subbands with positive

energy (with respect to the graphene Fermi level) are shown for a metallic (12,0)

zigzag nanotube. The (π-orbital-)bands with negative energies are symmetric to the

positive bands with respect to the graphene Fermi level. This energy level is referred

to as the “charge neutrality point” in the following, since here the bands originating

from the graphene π-band are completely filled, while the corresponding π∗-bands

are empty.

2.4 Density of States

The one-dimensional dispersion relation allows to calculate the density of states

(DoS). The result for a (12,0) nanotube is shown also in Fig. 2.4. The DoS shows
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Figure 2.4: Left: Dispersion of the one-dimensional subbands of a (12,0)

nanotube. Middle: Corresponding density of states. Right: Corresponding

dispersion for k‖=0 as a function of the magnetic flux through the tube cross

section in units of Φ0 = h/e.

sharp van-Hove singularities, which are typical for one-dimensional systems. They

arise at the energies of the onset of the (one-dimensional) subbands.

In the light-cone approximation (Eq. 2.14), the dispersion of the n-th one-dimensional

subband for a tube with diameter dtube is given by

En(k) = ±E0

√

(

n− β

3

)2

+

(

kdtube

2

)2

, (2.17)

where E0 = (2~vF)/(dtube) and β=0 for metallic and β=±1 for semiconducting

tubes, respectively. k denotes the component of the k-vector in the direction of the

tube axis. Each band contributes to the density of states ν via

νn(E) =
1

π

(

dEn

dk

)−1

=
4

πdtubeE0

E
E0

√

(

E
E0

)2

− n2

, (2.18)

giving rise to van-Hove singularities at the subband bottoms at E = nE0. Thus,

the subband spacing is given by E0. For a given energy E, the number of electrons
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Nn(E) in the band n is obtained by integration,

Nn(E) = 4L

∫ E

nE0

νn(E ′)dE ′ = 4
2L

πdtube

√

E

E0

2

− n2, (2.19)

where L is the length of the tube. Here, the prefactor 4 takes into account a fourfold

band degeneracy, which originates from the spin degeneracy and from two K-points.

The total number of electrons is then given by the sum over all bands between zero

energy and the Fermi energy.

These approximations are valid in the limit of both large tube diameters and Fermi

levels close to E = 0, since here only states near the K-points are occupied.

2.5 Magnetic Field

The tight-binding calculation for the electronic bandstructure of carbon nanotubes

also allows for the inclusion of a static magnetic field. It has been shown that the

Bloch functions in a static magnetic field can be expressed as

Φ(k, r) =
1√
N

∑

R

exp(ik · R + i
e

~
GR)ϕ(r− R), (2.20)

where R is a lattice vector and the phase factor GR accounts for the Aharonov-Bohm

phase of the electrons in the magnetic field [12]:

GR(r) =

∫

R

0

A(ξ)dξ =

∫ 1

0

(r − R) ·A(R + λ[r −R])dλ. (2.21)

Here, A(r) is the vector potential associated to the magnetic field B, A = ∇× B.

The operation of the field dependent Hamiltonian

H =
1

2m
(p− eA)2 + V (2.22)

on the Bloch function 2.21 yields (finally)

HΦ(k, r) =
1√
N

∑

R

exp(ik ·R + i
e

~
GR)

[

p2

2m
+ V

]

ϕ(r − R). (2.23)

This means that the Hamiltonian matrix element in a magnetic field is obtained by

multiplying the corresponding matrix element in zero field by a phase factor.
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2.5.1 Parallel Field: Aharonov-Bohm effect

For a magnetic field pointing in the direction of the tube axis, the tight-binding

calculation gives a transparent result. An electron can gain an Aharonov-Bohm

phase only by propagation around the tube. Thus, the wave vector component k‖
parallel to the tube axis remains unchanged, while the quantization condition for

the transverse component k⊥ becomes magnetic-field dependent:

k‖ −→ k‖, (2.24)

k⊥ −→ k⊥ +
Φ

LΦ0
, (2.25)

where Φ is the magnetic flux, Φ0 = h/e is the flux quantum and L is the nanotube

circumference.

This leads to the important result that for both metallic and semiconducting tubes,

a gap opens and closes as a function of magnetic flux through the tube with a

period of Φ0. The position of the subband onsets as a function of the magnetic

field is depicted in Fig. 2.4. At zero energy, a gap opens and closes periodically.

Hence, a parallel magnetic field is predicted to periodically turn a metallic tube into

a semiconducting one and back.

2.5.2 Perpendicular Field: Quantum Oscillations

If the magnetic field is perpendicular to the tube axis, the tight binding calculation

is no more straight-forward. In the limit of large fields, where the magnetic length

ℓm =

√

~

eB
(2.26)

becomes much smaller than the tube diameter, the tight binding calculation predicts

a decreasing dispersion of the subbands n, i.e. dEn/dk is decreasing for all values of

k. The positions of the bands are predicted to oscillate as the field is increased. The

amplitude of the oscillations is getting smaller, but never vanishes completely (see

[9]). This results in a considerable variation of the density of states as a function of

the magnetic field.

In the framework of k · p-perturbation theory, the formation of Landau levels with

a vanishing dispersion is predicted. The energy of the Landau levels is predicted to

converge to the energies of the graphene Landau levels [13].



Chapter 3

Transport Properties of Carbon

Nanotubes

In this section a few effects concerning electronic transport in mesoscopic systems

are described. Since in carbon nanotubes a huge amount of such effects seem to

be present, a comprehensive review is beyond the scope of this thesis. Therefore

only those have been selected, which are substantially necessary to understand the

results of the measurements, which are presented in the subsequent sections.

3.1 Quantum Interference

In diffusive mesoscopic samples, where electronic transport is coherent, quantum

interference effects contribute significantly to the conductance. We report briefly

the conductance changes introduced by the closely related phenomena of weak lo-

calization, the Aharonov-Bohm effect and universal conductance fluctuations. The

following subsections are adapted mainly from the article by Beenakker and van

Houten [14].

3.1.1 Weak localization

Being developed in 1979 by Anderson et al. [15] and Gorkov et al. [16], the the-

ory of weak localization gives an explanation for the negative magnetoresistance of

disordered conductors. In addition, it represents an elegant and direct measure of

the phase coherence length of the electrons. The latter is defined as the length on

which the electron can interfere with itself or, in other words, the length on which

13
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the electron motion can be described by a single particle Schrödinger equation.

In the Feynman path description [17] of diffusive transport, the basic idea of weak

localization is given as follows: The probability P (r, r′, t) for motion from point r

to r’ during the time t is given by

P (r, r′, t) =

∣

∣

∣

∣

∣

∑

i

Ai

∣

∣

∣

∣

∣

2

=
∑

i

|Ai|2 +
∑

i6=j

AiA
∗
j , (3.1)

where Ai are the probabilities for each single trajectory i connecting r and r’. As-

suming that the Fermi wavelength is small compared to the separation between the

scattering events, the sum can be restricted to classical paths. If r 6= r′, the right

hand term in 3.1 averages out and P (r, r′, t) equals the classical value. If begin-

ning and end point coincide, the contributions to the sum in 3.1 can be grouped

in time-reversed pairs A+ and A−. Time reversal implies that the amplitudes of

the two paths are identical, A+ = A− = A. Therefore, the probability of coherent

backscattering

P (r, r, t) =
∣

∣A+ + A−∣
∣

2
= 4 |A|2 (3.2)

is twice the classical value, which reduces the diffusion constant and hence the

conductivity. This is the basic principle of weak localization.

The number of paths participating in coherent backscattering is limited by the phase

coherence length Lϕ =
√

Dτϕ, where D is the diffusion constant and τϕ is the phase

coherence time. For a rectangular conductor of width W one speaks of 2D or 1D

weak localization if Lϕ > W or Lϕ < W . For this work, only 1D weak localization

will be of interest. The conductance change ∆GWL due to weak localization is given

by ∆GWL = (e2/h)(Lϕ/L) [18], where L is the length of the conductor.

Application of a magnetic field perpendicular to the closed electron orbits breaks the

time reversal invariance and hence reduces the enhanced backscattering. In their

way around the loop the electrons gain the Aharonov Bohm phase

ΦAB =
1

~

∮

p · dl , (3.3)

where p = mv − eA is the canonical momentum and A is the vector potential of

the magnetic field. For a pair of time reversed loops this leads to a phase difference

∆ΦAB =
1

~

∮

+

p+ · dl− 1

~

∮

−
p− · dl (3.4)

=
2e

~

∫

(∇× A) · dS =
2eBS

~
=

2S

L2
m

= 4π
Φ

Φ0
(3.5)

where S is the loop area, Lm = (~/eB)1/2 is the magnetic length, Φ is the mag-

netic flux and Φ0 = h/e is the flux quantum for normal conductors. In a mag-

netic field, loops enclosing areas S > L2
m do no longer contribute, since on average
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the counterpropagating loop does not interfere constructively. Therefore the mag-

netic length enters into the full expression for the 1D weak localization correction

(Lϕ, Lm ≫W ≫ Lel)

∆G1D
WL = − e2

π~

1

L

[

3

2

(

1

Dτϕ
+

4

3DτSO
+

1

DτB

)−1/2

− 1

2

(

1

Dτϕ
+

1

DτB

)−1/2
]

,

(3.6)

where τB = (3L4
m)/(W 2D), τSO is the spin-orbit scattering time andD is the diffusion

constant [18]. Note that the theory of weak localization was developed for planar

metal films. In the case of a (cylindrical) nanotube in a magnetic field perpendicular

to the tube axis, this expression is, strictly speaking, not correct. Since no theory

of weak localization for this geometry exists, the above expression is used as an

approximation, which turns out to work rather good.

3.1.2 Aharonov-Bohm effect

If we consider a ring-shaped conductor, only Feynman paths along the two arms of

the ring are allowed. Assume that the magnetic flux through the ring is changed by

∆Φ = S · ∆B = h/e, where S is the area enclosed by the ring. Thereby the phase

difference between the two paths changes by 2π. This means that the conductance

of the ring is periodically modulated by Φ with a period h/e:

G(Φ) = G

(

Φ + n

(

h

e

))

, (3.7)

which is referred to as the h/e Aharonov-Bohm effect [8]. The second harmonic

with a period of ∆Φ = h/2e is caused by the interference between trajectories

which interfere after one revolution around the ring. This oscillation contains a

contribution from time-reversed trajectories which also cause the weak localization

effect. Hence, the h/2e-oscillation can be seen as a periodic modulation of the weak

localization effect.

An important point is that, the coherent backscattering by pairs of time-reversed

trajectories, the h/2e oscillation results always in a conductance minimum at B = 0

and thus a sample independent phase. This must be contrasted with the h/e-

oscillations, whose phase varies randomly for different impurity configurations. For

cylinder-shaped conductors, which can be regarded as many rings in parallel, the

h/e-oscillations are thus predicted to average out, while the h/2e-oscillations remain.

An exact theoretical treatment of the h/2e-oscillations in cylinders was performed by

Altshuler, Aronov and Spivak in 1981 [19]. The calculation also takes into account a

non-vanishing magnetic flux inside the cylinder walls, which corresponds to a finite
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wall thickness. The result for the conductance change ∆G1(B) is

∆G(B) = − e2

π2~

2πR

L

[

ln
Lϕ(B)

Lel
+ 2

∞
∑

n=1

K0

(

n
2πR

Lϕ(B)

)

× cos

(

2πn
2Φ

Φ0

)

]

, (3.8)

where K0 is the McDonald function and

1

L2
ϕ(B)

=
1

L2
ϕ

+
1

3

(

2πaB

Φ0

)2

, (3.9)

where a is the cylinder wall thickness. If the cylinder is tilted by a small angle Θ

with respect to the magnetic field, a is rescaled to an effective wall thickness a∗ by

a∗ =
√

a2cos2Θ + 6R2sin2Θ . (3.10)

For a > 0, Eq. 3.8 predicts that the oscillation amplitude of ∆G(B) decreases

with increasing magnetic field. In addition, a monotonic component appears in the

magnetic field dependence of the conductance, which originates from conjugated

paths which do not enclose the cylinder axis. For phase coherence lengths smaller

than the cylinder circumference, the amplitude of the oscillations is exponentially

damped.

3.1.3 Universal Conductance Fluctuations

In a classical diffusive conductor, sample-to-sample fluctuations in the conductance

can be neglected. If one assumes a narrow wire of length L, which consists of in-

dependently fluctuating segments of the elastic mean free path Lel, then the root

mean square (rms) δG of the conductance fluctuations is given by 〈G〉× (Lel/L)1/2.

Therefore, the fluctuations are suppressed with an increasing number of segments.

Quantum interference on the other hand leads to significant sample-to-sample fluc-

tuations, if the sample size is of the order of the phase coherence length Lϕ. Then

the conductance depends crucially on the exact impurity configuration. Altshuler,

Lee and Stone derived that for a phase coherent conductor of length L and width

W the rms conductance fluctuations are given by

δG = 0.73

(

2e2

h

)

, (3.11)

if Lϕ > W,L and L ≫ W [20, 21] . The magnitude of the fluctuations is indepen-

dent of both the sample size and the degree of disorder. Hence they are referred to

as “universal conductance fluctuations”.
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In the experimental situation conductance fluctuations can also be induced by chang-

ing the Fermi energy EF or the magnetic field B. In order to achieve an equivalent

to the complete change of the impurity configuration, the change in EF and B must

be larger than the correlation energy ∆EF or the correlation field ∆B. Note that

the correlation field/energy must be small enough not to change the statistical prop-

erties of the ensemble.

At nonzero temperatures, the amplitude of the fluctuations is reduced for two rea-

sons. On one hand, the phase coherence length becomes shorter with increasing

temperature. On the other hand, thermal averaging occurs, which is expressed by

the thermal length LT = (~D/kBT )1/2. An exact calculation gives the magnitude

of the fluctuations at finite temperatures for two different regimes. If Lϕ ≪ L,LT ,

the thermal length does not enter and

δGrms =
√

12
2e2

~

(

Lϕ

L

)3/2

. (3.12)

If LT ≪ Lϕ ≪ L, then

δGrms =

(

8π

3

)1/2
2e2

~

LTL
1/2
ϕ

L3/2
(3.13)

[22, 23] . Note that Lϕ enters these relations with a different exponent. Hence, from

the experimental results for Lϕ one can decide which transport regime is actually

present in the sample.

3.2 Coulomb Interaction

The electron-interference mechanisms described in the preceding sections only ac-

count for single particle effects. If Coulomb interaction between electrons is con-

sidered, additional transport features arise. Three, conceptually different approaches

are mentioned here: Nyquist dephasing describes the phase breaking due to weak

electron-electron interactions in a perturbative way. Zero bias anomalies of the con-

ductance occur at tunneling into a gas of interacting electrons, while the Coulomb

blockade describes the interaction via the electrostatic energy of an additional charge

on a small conducting island. The introduction into Coulomb blockade follows the

lines of L. Kouwenhoven [24] and H. Grabert et al. [25].

3.2.1 Nyquist Dephasing

If one has measured the phase coherence length, the question arises, which phase

breaking mechanism dominates. In carbon nanotubes, possible candidates are the
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electron-phonon scattering, scattering from magnetic impurities, which are left from

the nanotube growth process, and electron-electron scattering. The latter has turned

out to be the most appropriate mechanism for diffusive metal films and also for nan-

otubes at low temperatures. Thus, we will summarize the corresponding theoretical

predictions as given by Altshuler, Aronov and Khmelnitskii [26].

The calculation first takes into account the action of an external high frequency

electric field on quantum corrections to conductivity. The result is then generalized

to thermal electromagnetic fluctuations of the electron gas.

Consider a closed electron path and let the motion start at time −t and be ac-

complished at t. An alternating electric field E(t) induces a phase difference ∆ϕ

between the clockwise and counterclockwise propagating path, which equals

∆ϕ =
e

~

∫ t

−t

dτ

∫ τ

−τ

dτ ′ [E(τ ′)v(τ ′) − E(τ ′)v(−τ ′)] , (3.14)

where v(τ) is the electron velocity at time τ .

Application of diagrammatic perturbation theory on the electron motion in the

electric field fluctuations of the sample yields a characteristic phase breaking time

τϕ of the order of

τϕ ∼
(

~
2D1/2νa2

T

)2/3

, (3.15)

and a characteristic length

Lϕ =
√

Dτϕ ∼
(

~
2D2νa2

T

)1/3

, (3.16)

where D is the diffusion constant and ν is the density of states at the Fermi level.

The result is valid if a ≪ Lϕ, where a is both the sample width and height (1D

case). Introducing the conductance σ = e2Dνa2 yields, finally

Lϕ ∼
(

~
2Dσ

e2T

)1/3

. (3.17)

Note that T enters with a characteristic exponent of −1/3, which is a hallmark of

electron-electron scattering as the dominating dephasing mechanism in the experi-

ment.

3.2.2 Zero Bias Anomalies

In single wall carbon nanotubes, the electron transport is predicted to be one-

dimensional and ballistic, even in the presence of weak disorder [27, 28], which
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gives rise to a strong effect of electron-electron interactions, resulting in the estab-

lishment of a Luttinger liquid. A Luttinger liquid is predicted to emerge in 1D

systems, where Coulomb interaction between the electrons leads to the breakdown

of the Fermi liquid state. The excitations of the system are rather of bosonic nature

(charge/spin-density waves) with a linear dispersion relation. This leads to a power

law behavior of the system’s tunneling density of states (TDOS),

ν(E) ∝ Eα , (3.18)

with a positive exponent α, which reflects the interaction strength as well as the

tunneling geometry [29]. For metallic tunneling contacts, one also obtains power

laws for the tunneling conductance from the TDOS:

G(T ) ∝ T α , (3.19)

G(V ) ∝ V α , (3.20)

where T is the temperature and V is the bias voltage of the tunnel junction. Zero

bias anomalies are typical for Luttinger liquid behavior have been indeed been ob-

served for singlewall nanotubes [30].

The subband spacing of multiwall tubes is by a factor of the order 10 smaller than

that of singlewall tubes, and a strong doping is reported [31]. Hence, transport is

likely to occur through more than one channel and the 1D LL picture is probably

not applicable. Both the nature of the excitations and the power law scaling are re-

produced also by the unconventional Coulomb blockade theory [32], which describes

an interacting, disordered conductor coupled to high-impedance transmission lines

by a single tunnel junction. Here the quasiparticle tunneling into the conductor

is suppressed at bias voltages V < e/2C, where C is the total capacitance of the

conductor, and charge is transferred by 1D plasmon modes. A zero-bias anomaly

similar to that in Luttinger liquids is also predicted with an exponent

α =

(

R

hDν0

)

log(1 + ν0U0) , (3.21)

where D is the diffusion constant, ν0 = M/(hvF) is the noninteracting density of

states, and M is the number of transport channels. U0 is an effective short 1D

interaction and R denotes the tube radius. For weak interactions, the logarithmic

term is of order unity and with D ≈ vFLel one obtains

α ≈ R

MLel
(3.22)

and α represents a measure of the elastic mean free path Lel.

This model seems more appropriate for (multichannel) multiwall tubes, since it
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additionally predicts a transition from a power law to Ohmic behavior at high bias

voltages. This has been observed experimentally [33]. In addition, Kanda et al.

reported a strong variation of the tunneling exponent with Fermi energy [34], which

also favors Coulomb blockade beyond the orthodox theory.

3.2.3 Coulomb Blockade

For a carbon nanotube, which is only weakly coupled to the leads, static Coulomb

interactions may affect the electronic transport properties. The energy scale for

adding an extra electron to the tube is given by

ECh =
e2

2CΣ
, (3.23)

where CΣ is the total capacitance of the system. Coulomb blockade arises if ECh

exceeds the thermal energy kBT .

A nanotube with weak coupling to the leads can be modeled by a single electron

transistor (SET). A SET consists of a metallic island with two tunnel contacts (L/R)

and a gate electrode (See Fig. 3.1). Neglecting the discrete levels in the tube, the

VL VR

CL CR

CG

VG

n

Figure 3.1: Single electron transistor. A metallic island containing n excess

electrons is coupled to source/drain voltages VL/R via tunnel junctions with

capacitances CL/R. A gate voltage VG is applied by a capacitor CG.

charging energy is given by

ECh =
(ne−QG)2

2CΣ

, (3.24)

where CΣ = CL + CR + CG is the total capacitance of the tube, consisting of the

capacitances CL/R of the left and right tunnel junction and the gate capacitance CG

[24]. In the case of a quantum dot with discrete electron levels, this is modified to

EDot
Ch = ECh + δE, (3.25)
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where δE is the level spacing. Accounting for spin, one level can accomodate two

electrons and hence δE equals zero for the second electron in the level. For carbon

nanotubes one expects even four lectrons per level, due to spin- and band-degeneracy

(see Chap. 2).

If an additional electron (n+ 1) tunnels into the tube, ECh changes by

∆ECh(n+ 1, QG) = ECh(n+ 1, QG) −ECh(n,QG) =

(

n+
1

2
− QG

e

)

e2

CΣ
. (3.26)

The energy differences are equally spaced and are tuned by the gate voltage, as

depicted in Fig. 3.2. An electron can enter/leave the tube if the chemical potential

eVL

eVR

eVG

D ECh(n+1,QG)

D ECh(n,QG)

D ECh(n-1,QG)

D ECh(n-2,QG)

Figure 3.2: Addition energies ∆ECh(n,QG) for n excess electrons on an

island, which is coupled by tunneling barriers to metallic leads with chemical

potentials eVL/R. VG is the gate voltage.

µL/R of the left/right lead is larger/smaller than ∆ECh(n + 1, QG). Hence current

can flow through the transistor only if

eVL > ∆ECh(n+ 1, QG) > eVR (3.27)

is satisfied. Thus, by variation of the gate voltage UG, periodic current oscillations

are produced (Coulomb oscillations). Alternatively, transport can be established by

applying a sufficient bias voltage difference VBias = VL − VR. Otherwise, the current

flow will be suppressed (Coulomb blockade). Quantitatively, the regions in the

(UG, VBias)-plane, where current is suppressed, have a diamond-like shape (Coulomb

diamonds), whose edges are given by the conditions

e(n− 1

2
) < CGUG + (CL +

1

2
CG)VBias < e(n− 1

2
) (3.28)

e(n− 1

2
) < CGUG − (CR +

1

2
CG)VBias < e(n− 1

2
) (3.29)
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C V/e

CGU/e
n =-1 n=0 n=1

1

1

S

2

Figure 3.3: Coulomb diamonds: regions of current suppression of a SET in

the (Ugate,Vbias)-plane for n excess electrons on the island. CΣ and CG are the

gate capacitance and the total capacitance, respectively.

[25]. This is also shown in Fig. 3.3. From 3.28 and 3.29 we derive that the gate

capacitance CG is given by CG = e/UD, where UD is the width of the Coulomb

diamonds, while the total capacitance is given by their height VD by CΣ = e/VD.

From the slope of the edges, the junction capacitances can also be extracted. Hence,

Coulomb blockade is an effective tool to investigate the electrostatic quantities of a

given sample.
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Sample Preparation and

Measurement Setup

4.1 Nanotube Material

All nanotubes used in this work are multiwall carbon nanotubes (MWNTs), which

consist of several concentric singlewall shells. The MWNT diameters range from 3

nm to 50 nm, while the lengths are a few 100 nm up to 10 µm.

The tubes were grown by arc-discharge [2]. This method has the advantage that

no ferromagnetic catalyst particles are required, which could contaminate the tubes

with magnetic impurities. The material was produced by the group of L. Forró

at the EPFL (Lausanne). After the growth, the material was purified for a large

nanotube yield, with respect to the remaining amorphous carbon particles [35].

4.2 Device Fabrication by Random Dispersion

The devices required for this work consisted of a single MWNT with ohmic contacts

and a gate electrode. The basic design of the samples is mainly inspired by Refs.

[36, 37].

As a starting point, an oxidized Si wafer with an oxide thickness of 600 nm was

coated with Cr/Au alignment marks. Afterwards, Al strips of width 10 µm, length

100 µm, thickness 40 nm and bonding pads were evaporated on the chip. By ex-

posure to air, these strips have been covered by an electrically insulating, native

oxide layer (Al2O3). Thus, the Al strips served as gate electrodes for the MWNTs,

which were deposited in the next step. Therefore, the tubes had been dispersed in

23
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chloroform by the aid of supersonic vibration. The suspension was brought on the

chip and removed immediately by nitrogen flow. As a result, individual MWNTs

are deposited randomly on the chip. Afterwards the chip was cleaned in propanol,

in order to remove unwanted deposits like amorphous carbon.

Next, isolated MWNTs were detected in a scanning electron microscope and the

tube’s coordinates with respect to the alignment marks were notified. Subsequently,

the chip was spin-coated with a layer of PMMA (polymethylmethacrylate), in which

the structure of the source and drain contacts was patterned by electron beam lithog-

raphy. The exposed PMMA was then removed by a mixture of MIBK (methyl-

isobutylketone) and propanol (1:3) and rinsing in pure propanol. In order to remove

the residual developed resist, a short (3 s) oxygen plasma treatment was performed.

Then, 80 nm of Au were evaporated thermally in vacuum (≈ 10−6 mbar) and a

lift-off was done in acetone. The chip was then glued into a commercially available

chip-carier and wired by ultrasonic bonding. A typical sample obtained this way is

shown in Fig. 4.1.
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Figure 4.1: Left: Scanning-electron microscopy image of a sample as pro-

duced by random nanotube dispersion. Single multiwall carbon nanotubes

were deposited on an Al strip and contacted with 300 nm spaced Au fin-

gers from above. The Al strip under the tube serves as a backgate. Right:

Schematic view of the sample. A constant bias voltage U is applied and the

current I is measured. A gate voltage Ugate is applied to the Al backgate.

4.3 Device Fabrication by Electrostatic Trapping

For a controlled placement of MWNTs on top of a gate electrode, an ac electric field

was used. The procedure performed in this work is similar to that of Krupke [38],

and uses the fact that a nanotube is dragged into the direction of the gradient of an

external electric field by the induced (electric) dipole momentum.
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For our samples, a narrow Al strip of width ∼ 2µm was produced, which is located

between two fan-shaped Al electrodes. The fan-shaped electrodes were used to

create a strong “trapping”-field in order to align nanotubes between them. The

medium strip serves as a backgate, similar to the Al backgate in the preceding

section. At this stage, the chip was bonded into a chip carrier and connected in

series with a 350 MΩ resistor. MWNTs were suspended in propanol, and a droplet

of the suspension was put on the chip. A voltage of Vrms = 10 V at a frequency

of 3 MHz was applied to the fan-shaped electrodes for 3 min. Afterwards, the

suspension was removed and the voltage was turned off. As a result, nanotubes

are trapped between the electrodes and spanned across the gate. The suspension

was then removed from the chip carrier and the nanotube was equipped with Au

contacts as described above.

The trapping appears to be self-stopping, i.e. usually only one tube at maximum is

trapped at one pair of electrodes. We assume that the tube causes a capacitative

shortcut, which leads to the breakdown of the trapping field and thus prevents

other tubes from attaching. Note that no current can flow through the tube, since

the electrodes are covered with insulating Al2O3 native oxide. A typical sample as

processed this way is presented in Fig. 4.2.
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Figure 4.2: Left: Scanning-electron microscopy image of a sample as pro-

duced by nanotube trapping. A single multiwall carbon nanotube is trapped

between two Al electrodes and contacted with 600 nm spaced Au fingers from

above. The Al finger under the tube serves as a backgate. Right: Sketched

trapping procedure. A high frequency voltage Uhf is applied to the fan-shaped

trapping electrodes, which spans a nanotube across the central Al gate elec-

trode.



26 Chapter 4. Sample Preparation and Measurement Setup

4.4 Measurement Circuitry and Cryostats

The electronic transport measurements on multiwall carbon nanotubes, as described

in this work, were carried out in two dilution refrigerators. The dilution systems

were a toploading refrigerator from Oxford Cryogenics with a base temperature of

25 mK and a conventional refrigerator from Air Liquide, base temperature 20 mK.

Both systems were equipped with radio-frequency (RF) filters at room temperature

(π-filters). In order to keep the electron temperature close to the bath temperature,

the Air Liquide system was equipped additionally with two stages of copper powder

RF filters. The first stage was located at the still level (T∼1K), while the second one

was mounted directly above the sample holder at base temperature. These filters

provided a cutoff frequency of f ≈ 300 MHz. This was sufficient to shield the 4.2 K

blackbody radiation of the helium bath, since fmax(4.2K) = 2.82 · (4.2K) · kB/h ≈
245 GHz according to Wien’s law. The conductance of the nanotube was measured

Vac
(SR 830)

Udc
(Yokogawa7561)

UGate
(Yokogawa7561)

1 MW

100 W 100 nF

1 kW

100 W 17mF

2 kW
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T=4.2 KT=20 mK
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Amplifier
(Ithaco 1211)

Voltage
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(SR 830)

Lock-In
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Figure 4.3: Measurement circuitry as used with the Air-Liquide refriger-

ator. Voltage dividers and low-pass filters, as well as current and voltage

pre-amplifiers are used for noise reduction.

in a two-point geometry with a lock-in technique: a constant low bias ac voltage

Vac was applied and the current through the sample was converted to a voltage by

a current amplifier (Ithaco 1211 Current Amplifier), which in turn was read out by

a lock-in amplifier (EG&G 7265 for the Oxford system, Stanford Research 830 for
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the Air Liquide refrigerator).

Additionally, a dc bias voltage Vdc was applied by a Yokogawa 7651 voltage source.

An identical device was used to apply a gate voltage Ugate. A detailled diagram

of the circuitry is presented in Fig. 4.3. Note that all voltage sources have been

equipped with voltage dividers and low-pass filters for noise reduction.

The construction of the sample holders including the wiring and RF filtering was

also done within this thesis. The sample holder for the Air Liquide system was built

up in collaboration with J. Bentner.

Magnetic fields are applied with superconducting magnets and Oxford IPS 120 power

supplies. The maximum fields available were 8 T (Air Liquide) and 19 T (Oxford).

In addition, for the Oxford system a rotatable sample holder has been used, which

allows in-situ change of the angle of the magnetic field with respect to the tube axis.

The collection of the large amount of data in this thesis required the development of

a fast data-acquisition scheme. Eventually, it turned out that slow charge relaxation

processes, most probably in the oxide layer, limited the speed of the data acquisition

to 5 samples/sec. At higher rates, the sweeps of the gate voltage Ugate resulted in a

poor reproducibility of the G vs. Ugate-traces.
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Chapter 5

Motivation and Preliminary

Measurements

In this section, motivations for the measurements done within this work are given.

One of them is the lack of comprehensive transport studies on multiwall carbon nan-

otubes in literature. In addition, the results of preliminary measurements indicate

the direction for the focus of the main investigations in this thesis.

Apart from this work, the present section has been published in New Journal of

Physics [39].

5.1 Motivation

Quantum transport in multiwall carbon nanotubes has been intensely studied in re-

cent years [3, 40]. Despite some indications of ballistic transport even at room tem-

perature [41, 42], the majority of experiments revealed typical signatures of diffusive

quantum transport in a magnetic field B such as weak localization (WL), univer-

sal conductance fluctuations (UCF) and the h/2e-periodic Altshuler-Aronov-Spivak

(AAS) oscillations [3, 43, 44, 45]. These phenomena are caused by the Aharonov-

Bohm phase, either by coherent backscattering of pairs of time-reversed diffusion

paths (WL and AAS) or by interference of different paths (UCF), see Chap. 3. In

addition, zero bias anomalies caused by electron-electron interactions in the differ-

ential conductance have been observed [46]. In those experiments, the multiwall

tubes seemed to behave as ordinary metallic quantum wires. On the other hand,

bandstructure calculations for singlewall and doublewall nanotubes predict strictly

one-dimensional transport channels, which give rise to van Hove singularities in the

density of states (see Chap. 2), even if inter-wall couping is taken into account [47].

29
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Experimental evidence for this has been obtained mainly by electron tunneling spec-

troscopy on single wall nanotubes [48]. In this picture of strictly one-dimensional

transport, a quasiclassical trajectory cannot enclose magnetic flux and no low-field

magnetoconductance is expected. Hence, the question arises how the specific band

structure is reflected in the conductance as well as in its quantum corrections and

how those on first glance contradictory approaches can be merged into a consistent

picture of electronic transport.

From the experimental point of view, addressing these problems is only possible, as

soon as the electronic Fermi level can be shifted over a considerably large energy

range. This allows for studying the electronic transport properties in the vicinity

of the charge neutrality point, where bands with negative energy are completely

occupied, whereas those with positive energies are completely empty. This regime

could not be accessed in most of the electronic transport studies up to now, due to

two reasons: on one hand, multiwall carbon nanotubes appear to be strongly doped,

which requires too high gate voltages for depletion. On the other hand, conventional

backgate techniques using degenerately doped Si/SiO2 layers provide only a weak

capacitative coupling of the gate electrode to the tube due to the large distance of

∼100 nm. Thus, in this work the Si backgate has been replaced by a highly effective

Al/Al2O3-layer. This provides a drastically larger coupling, since the distance is

determined only by the thickness of the native oxide (∼ 3 nm). Additionally, the

oxide has a high dielectric constant ǫ ∼10, compared to SiO2 (ǫ ∼2).

5.2 Preliminary Measurements

Electronic transport measurements at low temperatures have been performed for a

single multiwall nanotube with diameter 28 ±1 nm and a length of 2.1 ±0.1 µm.

The sample has been produced by spanning the nanotube across a Al gate finger

by the use of high frequency electric fields, as described in Sec. 4.3. The spacing

between the Au contact electrodes was 400 nm. Fig. 5.1 shows the linear response

resistance R as a function of the Al backgate voltage for temperatures ranging from

40 K down to 1.7 K in zero magnetic field and gate voltages between -3 V and 2 V.

An aperiodic fluctuation pattern in R arises with decreasing temperature. This pat-

tern has previously been interpreted as universal conductance fluctuations (UCF)

[3], which are thermally averaged as temperature is increased. The conductance

fluctuations as a variation of gate voltage arise from the shift of the Fermi wave

length in a static scattering potential.

As described in Sec.3.1.3, the root-mean-square amplitude δGrms of fluctuations al-

lows us to extract the phase coherence length Lϕ. If Lϕ is smaller than both the
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Figure 5.1: Two-terminal resistance of a single MWNT as a function of gate

voltage for temperatures of 1.7, 5, 10, 15, 20 and 40 K from top to bottom.

The curves are offset for clarity.

contact spacing and the thermal length LT = (D~/kBT )1/2, where D is the diffusion

constant, then δGrms =
√

12(e2/h)(Lϕ/L)3/2, as given in Eq. 3.12. This way, one

obtains Lϕ as a function of temperature. The result is shown in Fig. 5.2. Note

that for the scenario LT ≪ Lϕ ≪ L, the temperature dependence of δGrms is given

by Eq. 3.13. From this, Lϕ ∝ δG2
rmsT follows. Inserting the measured values for

δGrms would result in an (unphysical) increase of Lϕ with temperature, and hence

this regime can be ruled out.

These first measurements allow the estimation of mesoscopic lengthscales present

in the tube. Fig. 5.2 shows that Lϕ is smaller than 120 nm for T > 2 K. This

implies that W < Lϕ < L, where W and L is the tube width and the contact spac-

ing, respectively. Hence, phase coherence is preserved over the tube width and the

electronic transport is effectively quasi-one-dimensional. Note that above 3 K, Lϕ is

smaller than the tube circumference, which is an important fact for Aharonov-Bohm

type experiments.

The temperature dependence of Lϕ gives insight into the dephasing mechanism.

For Nyquist dephasing, Lϕ ∝ T−1/3 is predicted (see Sec. 3.2.1). This behavior is

sketched in Fig. 5.2 as a line fit. For temperatures above 5 K, the data agree fairly

well with theory. The exact functional form (Eq. 3.17) enables us to estimate the



32 Chapter 5. Motivation and Preliminary Measurements

1 10

50

100

150

30

 

 

L
 (n

m
)

T (K)
3

Figure 5.2: Temperature dependence of the phase coherence length derived

from weak localization measurements (dots). Line: T−1/3 power law fit to the

data points above 10 K.

diffusion constant D ≈ 70 cm2/s and, using the Fermi velocity vF = 106 m/s, the

elastic mean free path Lel = 2D/vF ≈ 10 nm. The thermal wavelength turns out to

be of the order 180 nm at 2 K and 40 nm a 40 K. This leads to the conclusion that

electronic transport in MWNTs is diffusive or, at best, quasiballistic.

Fig. 5.3 shows a gate sweep of the same sample under similar conditions, but mea-

sured one day later. Thermal cycling to about 80 K results in significant changes

of the gate characteristics compared to 5.1, which is a typical signature of UCF.

It indicates a partial scrambling of the interference pattern by thermally activated

motion of scatterers between two cooldowns.

Magnetoresistance (MR) traces provide information on both quantum interference

and the electronic bandstructure of MWNTs, since their shape is predicted to de-

pend strongly on both the contribution of weak localization (see section 3.1.1) and

the (field dependent) density of states.

In order to obtain a first impression, MR curves have been taken for various fixed

gate voltages and perpendicular fields from -10 to 10 T at a temperature of 1.7 K.

The values of the gate voltage are marked as arrows in the left panel of Fig. 5.3.

Note that the field sweeps have been performed at gate voltages corresponding to

UCF peaks and dips as well as intermediate points. The resulting set of MR curves

is also plotted in Fig. 5.3. Each curve reveals a symmetric peak in the MR located

at B = 0 T. This negative MR can be well explained in terms of weak localization

(WL) [3, 43]. The characteristic field for the suppression of WL has a value of about

1 T for all curves in Fig. 5.3. The peak amplitude is varying with gate voltage. This

implies that the phase coherence length is not a constant, but rather also depends

on the gate voltage and hence the Fermi energy.
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Figure 5.3: Left: Gate sweep after thermal cycling to 300 K of the same

MWNT as in Fig. 5.1. The temperature was T = 1.7 K. The arrows indicate

the positions of the magnetic field sweeps shown in the right figure. Right,

upper panel: Magnetoresistance at T = 1.7 K. Different voltages were applied

to the Al backgate and the magnetic field was applied perpendicular to the

tube axis. The curves are offset for clarity. Lower panel: Ensemble average of

all magnetoresistance traces.

For higher fields aperiodic fluctuations appear, which again resemble UCFs. A

closer look at these oscillations reveals that peaks in the MR primarily appear that

correspond to enhanced backscattering, while comparable dips are absent in the

investigated ranges of magnetic fields and gate voltages. Each value of the gate

voltage, and hence the Fermi level of the tube, corresponds to a different Fermi

wave length and thus a change of the phase shifts between the different scatterers.

Provided that the change in gate voltage, and hence in EF, is sufficiently large, a

complete scrambling of the interference pattern can be achieved. The magnetofin-

gerprints of adjacent peaks and dips sometimes show a similar magnetofingerprint,

differing mainly in the average resistance. The latter seems to be more sensitive to

small changes of the gate voltage than the pattern of the magnetofingerprint itself.

Hence, the oscillations also might originate from the nanotube bandstructure. This
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behavior may be caused by the effect of a transversal magnetic field on the density

of states and hence the MR, as discussed in Ref. [9].

The ensemble average over all MR curves is plotted in the lower panel of Fig. 5.3.

In this curve, all UCF contributions are expected to average out. The zero field

peak remains, as well as the high resistance region between 3 and 6 T. This leads

to the assumption that both weak localization and bandstructure effects have to be

considered.

In conclusion, the preliminary measurements revealed the necessity for a systematic

and detailed investigation of the (inter)action of the MWNT bandstructure and the

quantum interference. This has to be achieved by low temperature measurements

in magnetic fields both parallel and perpendicular to the nanotube axis. Thereby,

the highly efficient gate can be used to cover a large fraction of the electron energy

spectrum.



Chapter 6

Bandstructure Effects in Multiwall

Carbon Nanotubes

In this section conductance measurements on multiwall carbon nanotubes in a per-

pendicular magnetic field are reported. An Al backgate with large capacitance is

used to considerably vary the nanotube Fermi level. This allows to search for sig-

natures of the unique electronic band structure of the nanotubes in the regime of

diffusive quantum transport. We find an unusual quenching of the magnetocon-

ductance and the zero bias anomaly in the differential conductance at certain gate

voltages, which can be linked to the onset of quasi-one-dimensional subbands.

The present section has been submitted for publication in Physical Review Letters.

6.1 Gate Efficiency and Transport Regimes

The samples, as used for the measurements in this section, are prepared by random

dispersion of multiwall carbon nanotubes on prepatterned Al gate fingers and sub-

sequent contacting with Au, as described in Section 4.2. Two-terminal conductance

measurements were carried out for two samples, called ’A’ and ’B’ in the following.

The lengths of the samples are 5 µm and 2 µm and their diameters are 19 nm and

14 nm, respectively. A scanning electron micrograph of sample B is presented in

Fig. 6.1. In order to characterize the dependence of the differential conductance of

sample A on the gate voltage UGate, a small ac bias voltage of 2 µV ≪ kBT was

applied and the current was measured at several temperatures T . Fig. 6.1 shows the

conductance G as a function of UGate at 300 K, 10 K, 1 K and 30 mK. The conduc-

tance at room temperature exhibits a shallow minimum located at UGate ≈ −0.2 V.

The position of the conductance minimum can be attributed to the charge neutral-

35
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Figure 6.1: (A) Scanning electron micrograph of sample B: an individual

multiwall nanotube is deposited on a prestructured Al gate electrode and

contacted by four Au fingers, which are deposited on top of the tube. The

electrode spacing is 300 nm. For the measurements, only the two inner elec-

trodes are used. The scalebar corresponds to 2 µm. Note that on the right

outermost electrode, a second tube has atached to the tube under inspection.

(B) Conductance G of sample A as a function of the gate voltage in units

of the conductance quantum 2e2/h for 300 K. The estimated position of the

charge neutrality point (CNP) corresponds to the minimum of conductance

and is indicated. (C) Same as in (B), but for 10 K, 1 K and 30 mK (top to

bottom). For the 10K curve, both the positions of the CNP (grey line) and

the regions of quenched magnetoconductance (black lines) as observed in Sec.

6.3 are indicated.

ity point (CNP), where bands with positive energy are unoccupied while those with

negative energies are completely filled (see also the results of Krüger et al. , Ref.

[31]). When the Fermi level is tuned away from the CNP, more and more subbands

can contribute to the transport and an increase of the conductance is expected. This

matches well with the experimental observation and reveals the high efficiency of

the gate as well as an intrinsic n-doping of the tube. Note that apart from this

work no systematic transport studies for multiwall carbon nanotubes in the vicinity

of the charge neutrality point could be performed, mainly due to the small capac-

itance between the nanotubes and the conventional Si backgate. The location of

the minimum varied from sample to sample. We observed p- as well as n-doping

at UGate = 0 V in several samples.

The G(UGate) curves in Fig. 6.1 show an increasing amplitude of the conductance

fluctuations as the temperature is lowered, while the average conductance decreases.



6.2. Irregular Coulomb Blockade 37

At 30 mK, the current through the sample is completely suppressed for many values

of the gate voltage. This can be interpreted as a gradual transition from a coex-

istence of band structure effects, universal conductance fluctuations and charging

effects at 10 K and 1 K to the dominance of Coulomb blockade at 30 mK. These

transport features do not show up independently of each other. Nevertheless, the

variation of temperature enables us to study the samples in the dominant presence

of a single regime.

6.2 Irregular Coulomb Blockade

As described in Sec. 3.2.3, at the lowest temperatures a first approximation of a

single nanotube with two contacts and a gate electrode is given by the model of a

single electron transistor (SET). Recording the differential conductance as a function

of both the bias voltage Vbias and the gate voltage Ugate allows to extract information

on the charging energy and the capacitances of the system. Such measurements were

performed for both samples, A and B. The result for sample A in a small interval

of gate voltage ranging from -40 to 100 mV and for dc bias voltages of ±0.8 mV

are presented in Fig. 6.2. As already indicated by the linear-response conductance
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Figure 6.2: Greyscale coded conductance as a function of gate voltage and

dc bias voltage. Blue regions correspond to current suppression, while red

regions indicate high current.

curve for a temperature of 30 mK (see Fig. 6.1), an irregular pattern of regions

occurs, where current is suppressed (“Coulomb diamonds”).

The average density of transmission resonances along the Ugate-axis is of the order

1000 per Volt, which demonstrates the high efficiency of the Al backgate (see also

Sec. 6.4).
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The height ∆Vdc of the diamonds varies between ∼0.2 mV and 1 mV. In the SET

model, ∆Vdc measures the charging energy Ech and the level spacing δE (see Section

3.2.3).

∆Vdc =
4Ech

e
+ 2δE. (6.1)

For a one-dimensional dot with length L and one linear electronic band with Fermi

velocity vF, δE is given by

δE =
hvF

2L
. (6.2)

Using vF=106 m/s (graphite) and the tube length of 5 µm, we obtain δE=0.4 meV.

Hence, at the largest diamonds, the level spacing originating from the finite length

of the nanotube may be involved, while the vast majority of the features indicate a

high density of levels (i.e. δE=0).

The width ∆Ugate takes values between ∼1 mV and 4 mV. Within the SET model,

this corresponds to gate capacitances Cgate=e/Ugate ranging from 40 aF to 160 aF.

This is only a fraction of the sum capacitance CΣ = Cgate + Cleads, which will turn

out to be of the order 1500 aF (see Sec. 6.4).

The irregularity of the pattern, as well as the small capacitances, show that trans-

port does not occur through a single quantum dot of constant size. It suggests that

the tube decomposes into a series of dots due to defects and/or disorder. Such a

behavior has also been observed in singlewall tubes by other groups [49]. If only

single-electron tunneling is considered, the serial-dot model predicts a vanishing

conductance near zero dc bias for all gate voltages, because the dots cannot be si-

multaneously driven into transmission. This is indeed the case for the singlewall

tubes (see Ref. [49]), while in our measurement regions with high zero-bias con-

ductance are present. Therefore, strongly coupled dot series as well as transport by

higher order tunneling processes must be considered, in order to explain the obser-

vations at least qualitatively.

In Fig. 6.3, the differential conductance is plotted as a function of gate volt-

age Ugate and a magnetic field B perpendicular to the tube axis. The gate region

matches the one depicted in Fig. 6.2. As can be seen from the graph, some Coulomb

blockade peaks show a shift with increasing magnetic field, especially in the region

Ugate = 0...25 mV. This behavior has been attributed to the Zeeman splitting origi-

nating from even/odd filling of a quantum dot [50]. Again, the conductance pattern

is irregular. It includes field dependent transitions from well defined transmission

resonances to large conducting regions and vice versa. This is another indication

for the presence of strong disorder, which leads to a change of the level structure by

the magnetic field.

At this point, one can ask for the origin of the disorder potential, which creates

a decomposition of the tube into strongly coupled segments. One of the possible
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Figure 6.3: Greyscale coded conductance as a function of gate voltage and

a perpendicular magnetic field B = −2...7 T.

sources is the contact region of the tube and the gate dielectric. The gate layer is

not grown epitactically, but rather has a granular surface. The average grain size

amounts ∼ 30 nm, which is of the same order as the estimated quantum dot dimen-

sions. These problems can be overcome by preparing freely suspended nanotubes, at

the cost of a decreased gate efficiency. Nevertheless, future experiments of this kind

are highly desirable, for a deeper insight into the quantum dot behavior of multiwall

carbon nanotubes.

6.3 Magnetoconductance

In order to explore the interplay between the bandstructure of the nanotube and

quantum interference effects, the differential conductance G has been measured as a

function of the gate voltage Ugate and a magnetic field B perpendicular to the tube.

B was changed in steps, while Ugate was swept continuously. Fig. 6.4 shows the

results for sample A at temperatures of 1 K, 3 K and 10 K in a greyscale representa-

tion. We have checked for several gate voltages that G(B) is symmetric with respect

to magnetic field reversal as required in a two point configuration (not shown). In

addition, most of the curves show a conductance minimum at zero magnetic field.

A closer look at the data reveals that both the amplitude and the width of the con-

ductance dip vary strongly with gate voltage. The “frequency” of this modulation

with gate voltage increases with decreasing temperature. As shown in the previous

section, the conductance fluctuations at low temperatures are caused to a large ex-

tent by Coulomb blockade. In addition, universal conductance fluctuations are also

superimposed, whose amplitude also grows as temperature is lowered (see Section

3.1.3). Hence, the search for bandstructure effects seems most rewarding at higher
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Figure 6.4: Greyscale representation of the differential conductance dI/dV

of sample A as a function of the gate voltage and the magnetic field B at 1 K

(A), 3 K (B) and 10 K (C). Dark regions correspond to low conductance and

white regions to high conductance.

temperatures, i.e. 10 K or more, since there Coulomb blockade is nearly lifted, while

bandstructure effects should still be present.

In order to make the variation of the magnetoconductance with gate voltage more

visible, we subtracted the curve at zero magnetic field (see Fig. 6.1) from all gate

traces at finite fields. The deviation from the zero-field conductance at T=10 K

is presented as a greyscale plot in Fig. 6.5A. Fig. 6.5B shows the result of this

procedure for sample B at T=17 K. The most striking observation is that the mag-

netoconductance (MC) nearly disappears at certain gate voltages U∗, as indicated

by arrows. These voltages U∗ are grouped symmetrically around the conductance

minimum at Ugate ≈ −0.2 V (sample A) in Fig. 6.1, which we have assigned to the

charge neutrality point (CNP). The position of the CNP, as well as the gate volt-

ages of MC quenches have been indicated also in the linear response conductance

curve (Fig. 6.1) by grey and black vertical lines, respectively. The latter always

coincide with conductance maxima. Sample B shows an equivalent behavior: here

the MC quenches are also grouped symmetrically around the CNP, which is located
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Figure 6.5: (A) Greyscale plot of the deviation of the conductance G of

sample A from the zero-field conductance as a function of the gate voltage U

and the magnetic field B: ∆G(U,B) = G(U,B) − G(U, 0). Arrows indicate

the regions of quenched magnetoconductance. (B) Same for sample B.

at Ugate = +0.5 V.

These observations lead us to the conjecture that the quenched MC may occur at

the onset of subbands of the outermost nanotube shell, which is believed to carry

the major part of the current at low temperatures [45]. This is supported by the

argument that in the present experiment the tube is contacted by finger electrodes,

which are only in contact with the outermost shell.

6.4 Relation to Electronic Bandstructure

To confirm the idea of a quenched magnetoconductance at the subband onsets, a

simple bandstructure model is applied. The black line in Fig. 6.6A shows the density

of states of a singlewall (140,140) armchair nanotube in the light-cone approximation

(see Sections 2.1, 2.4), which matches the diameter of sample A (19 nm). Typical

van Hove singularities arise at the energies, where the subband bottoms are located

[47]. By integration over energy one obtains the number ∆N of excess electrons on

the tube, plotted as a grey line in Fig. 6.6 for the parameters of sample A. In this



42 Chapter 6. Bandstructure Effects in Multiwall Carbon Nanotubes

-2000 0 2000
-2

-1

0

1

-200 -100 0 100 200
0

4

8

 

E (meV)

D
O

S 
(a

.u
.)

-2000

0

2000

N

BA

 

 

U
*  (V

)

N*

Figure 6.6: (A) Calculated π-orbital density of states (DOS) for a (140,140)

armchair nanotube of diameter of 19 nm (grey line) as a function of energy.

Number of excess electrons N(E) (black line) as obtained from the integration

of the DOS from 0 to E. The subband spacing for this diameter is 66 meV. (B)

Measured gate voltage values ∆U∗ of nanotube subband onsets vs. calculated

numbers of electrons ∆N∗ at subband onsets for sample A (circles, diameter

19 nm) and B (triangles, diameter 14 nm). The lines correspond to linear fits

of the data. The slopes of the lines correspond to gate capacitances per length

of 300 aF/µm and 330 aF/µm for sample A and B, respectively.

way, we can determine the number ∆N∗ of electrons at the onset of the nanotube

subbands. If we assume as usual a capacitative coupling between the gate and the

tube, ∆N can be converted into a gate voltage via

CUGate = e∆N. (6.3)

In Fig. 6.6 the measured gate voltages U∗ of quenched magnetoconductance are

plotted versus the calculated ∆N∗ for both samples. Both data sets fit very well

into straight lines, which demonstrates that most of the positions U∗ of the quenched

magnetoconductance agree very well with the expected subband onsets. In addition,

the gate capacitances C are provided by the slope of U∗ vs. ∆N∗. The capacitances

per length are nearly identical, i.e. 300 aF/µm and 330 aF/µm for samples A and

B, respectively. These values agree astonishingly well with simple geometrical esti-

mates of C, indicating the consistency of the interpretation1. From the capacitance

C and the calculated dependence of the number of electrons N on energy, one can

convert the gate voltage into an equivalent Fermi energy. For sample A, the first line

1Modelling the system as a plate capacitor gives a capacitance of C=ε0εAl2O3
A/d. Inserting

εAl2O3
≈9, A = 14nm× 1µm (tube diameter × unit length) and d=3 nm (oxide thickness) results

in Cgate =370 aF/µm for sample B.
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of quenched magnetoconductance is equivalent to the subband spacing of 66 meV

with respect to the CNP (see Sec. 2.4), the second line corresponds to 2×66 meV,

and so on. For sample B, the subband spacing is 89 meV.

From the above discussion, the interpretation of the flat regions in the magnetocon-

ductance as a “fingerprint” of the bandstructure of the outermost nanotube shell

seems reasonable. Nevertheless, many questions remain. For example, one can ask

why the differential conductance does not show steps, since this would be exactly the

behavior of a few-channel ballistic conductor, whose transport channels are opened

one by one by means of a gate voltage. Such anomalies could come from the disor-

der in the system. Hence, questions of this kind represent a motivation for a closer

look at the quantum interference properties of the tube, which will be done in the

following sections.

6.5 Contribution of Weak Localization

The typical dip in the magnetoconductance at B = 0 in Fig. 6.4 has been observed

earlier and can be explained in terms of quasi one-dimensional weak localization

in absence of spin-orbit scattering [3, 44, 33]. The weak localization correction

∆GWL to conductance provides information on the phase coherence length Lϕ of

the electrons. With W being the measured diameter and L the electrode spacing

of the nanotube (L = 300 nm for both samples), ∆GWL is given in the quasi-one-

dimensional case (Lϕ > W ) by

∆GWL = − e2

π~L

(

1

L2
ϕ

+
W 2

3ℓ4m

)−1/2

, (6.4)

where ℓm = (~/eB)1/2 is the magnetic length (see Sec. 3.1.1 and Ref. [18]). In Fig.

6.4 each row displays a dip around zero magnetic field, where both the amplitude

and the width of the dip vary strongly with gate voltage. Here the question arises,

to which extent the properties of the conductance dip can be described by weak

localization. Thus, we have used the weak localization expression above to fit the

low field magnetoconductance with Lϕ and G(B = 0) as free parameters. The

conductance ∆GWL as calculated using the fit parameters is plotted in Fig. 6.7B

and D for sample A and B, respectively. Three representative magnetoconductance

traces for sample A, together with fitted curves are presented in Fig. 6.7A. For both

samples, we find that conductance traces are reproduced very well by the fit for fields

up to 2 T. For higher fields deviations occur, most probably due to residual universal

conductance fluctuations and modifications of the density of states (DoS) by the

magnetic field. The properties of a magnetic field-dependent DoS will be addressed
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Figure 6.7: (A) Black lines: representative magnetoconductance traces of

sample A at gate voltages U=0.5 V, -0.6 V and 0 V (top to bottom). Grey

lines represent 1D weak localization fits. (B) Reproduction of the magneto-

conductance of sample A by 1D weak localization fits. The parameters Lϕ

and G(B = 0) are used as obtained by fitting the data in Fig. 6.4. (C) Phase

coherence length Lϕ vs. gate voltage as obtained from the fit for sample A.

The positions of the charge neutrality point (grey line) and the regions of

quenched magnetoconductance (black lines) are indicated. (D) and (E): same

for sample B, but at 20 K.

in Chap. 7. In this way, we obtain an energy dependent phase coherence length

Lϕ(EF), which is also plotted in Fig. 6.7. Lϕ varies from 20 to 60 nm (sample A) and

from 30 to 90 nm (sample B), respectively. It turns out that Lϕ displays pronounced

minima which correspond to the regions of nearly flat magnetoconductance in Fig.

6.5. The positions of the minima are marked in Fig. 6.7 (black lines), as well as the

CNP (grey line). From the preceding discussion, we can say that weak localization

seems to be suppressed at the onset of nanotube subbands.

6.6 Dephasing Mechanism

Studies of the magnetoconductance at different temperatures allow an insight into

the temperature dependence of the phase coherence length. This, in turn, gives
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indications for the main inelastic scattering processes involved.

In former experiments, quasielastic electron-electron scattering has been identified

as the dominating dephasing mechanism [3, 39, 44]. Dephasing by electron-phonon
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Figure 6.8: Phase coherence length Lϕ vs. gate voltage for sample B as

obtained from weak localization fits at 20 K, 10 K and 4.5 K (top to bottom).

Note that the curves for 10 K and 20 K are offset by 100 nm and 200 nm,

respectively. Lines denote the positions of the subband onsets (black) and of

the charge neutrality point (grey).

scattering is negligible since the corresponding mean free path exceeds 1 µm even

at 300 K [51, 52]. The theory by Altshuler, Aronov and Khmelnitzky [26] predicts

Lϕ =

(

GDL~
2

2e2kBT

)1/3

, (6.5)

where G is the conductance, D is the diffusion constant and L is the contact spacing

(see also Sec. 3.2.1). Thus, electron-electron-scattering dominates if Lϕ depends on

temperature via Lϕ ∼ T−1/3.

The magnetoconductance measurements have been repeated for temperatures rang-

ing from 1 K to 60 K and for both samples, cf. Fig. 6.4. The fitting of weak local-

ization behavior, as described in the preceding section, gives values for Lϕ(Ugate, T ).

The result for sample B at temperatures 4.5 K, 10 K and 20 K is shown in Fig. 6.8.

For all temperatures, Lϕ diplays a strong modulation with gate voltage. As dis-

cussed above, the dips of Lϕ at certain gate voltages correspond to the onset on the



46 Chapter 6. Bandstructure Effects in Multiwall Carbon Nanotubes

nanotube subbands. These gate voltages are marked with lines in Fig. 6.8 as well

as the CNP. The variation amplitude of Lϕ increases with decreasing temperature.

Additional features arise, which come most probably from charging effects and uni-

versal conductance fluctuations. Note that the average Lϕ is at least of the order

of the tube circumference for all investigated temperatures, which corresponds to

quasi-one-dimensional quantum transport.

The large variation of Lϕ makes it hard to determine its detailed temperature de-

pendence as a function of the gate voltage. Instead, the average of the magnetocon-

ductance traces for all gate voltages has been performed for each temperature. As

described in Chapter 5, with this method an ensemble average is done, where the

contribution of universal conductance fluctuations is averaged out. The results at

1 K, 3 K, 10 K and 60 K are presented in 6.9. For the comparison of the curves
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Figure 6.9: (A) Averaged magnetoconductance of sample A (circles) at tem-

peratures of 60 K, 10 K, 3 K and 1K (top to bottom) and fits of 1D weak

localization behavior (lines). (B) Double-logarithmic plot of the temperature

dependence of the phase coherence length Lϕ as obtained from the weak lo-

calization fit (black dots). The red line corresponds to a power law fit with an

exponent -0.31.
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with theory, one has to bear in mind that the average runs also on curves with

suppressed MC. Hence, for the fit an averaged weak localization contribution of the

form ∆G∗
WL = A · ∆GWL with a scaling factor 0 < A < 1 has been taken into

account. Strictly speaking, this procedure is only correct for the case that Lϕ(Ugate)

only assumes two values, namely Lϕ and 0. Otherwise, it serves as a good approx-

imation for the average phase coherence length Lϕ. The fitted curves are included

in Fig. 6.9. They match the data very well, even up to magnetic fields of 7 T. In

Fig. 6.9, also the resulting values Lϕ(T ) are presented. The contribution of the

universal conductance fluctuations is completely suppressed by ensemble averaging.

The temperature dependence matches a power law with exponent −0.31, which is

close to the theoretical prediction of −1/3. This leads to the conclusion, that the

main dephasing mechanism is indeed quasielastic electron-electron scattering.

6.7 Elastic Mean Free Path

Apart from the phase coherence length Lϕ, the most important length scale in

diffusive conductors is imposed by the elastic mean free path Lel. The knowledge of

Lel gives a quantitative insight into the actual diffusivity of the system, and hence the

efficiency of the disorder. The determination of Lel from conductance measurements

requires the knowlegde of the number of conductance channels, which participate in

transport. Up to now, exactly this condition could not be met for multiwall carbon

nanotubes, mainly due to the complex structure of the conductance traces and the

too small variation of the Fermi energy. Consider a conductor of length L and

transverse dimensions W ≪ L. In the quasi-one dimensional case W ≪ Lϕ ≪ L,

the conductance in presence of (1D) weak localization is given by

G =
2e2

h

(

NLel

L
− Lϕ

L

)

, (6.6)

where N is the number of conducting channels [54]. According to Eq. , the total

conductance G is composed by the classical Drude conductance, which contains Lel,

and the weak localization contribution given by Lϕ/L.

The analysis of the data in this chapter provides us with knowledge of the conduc-

tance G(Ugate) and the phase coherence length Lϕ(Ugate), both as a function of the

gate voltage Ugate. The determination of the nanotube subband positions (see sec.

6.4) gives immediately the number of subbands N(Ugate). Thus, Eq. 6.7 allows to

calculate Lel(Ugate).

The result is presented in Fig. 6.10A for the data from sample A at 10 K. At

the subband positions, the number of channels is not assumed to change in sharp
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A B

Figure 6.10: (A) Estimated elastic mean free path Lel, measured phase

coherence length Lϕ and calculated number of conduction channels vs. gate

voltage for sample A at T = 10 K. (B) Numerical calculation of Lel with

Anderson disorder W vs. energy for a (5,5)-tube (dashed line), (15,15)-tube

(solid line) and a (30,30)-tube (dotted line) by F. Triozon [53]. Inset: Lel at

the CNP vs. 1/W 2 for a (5,5)-tube.

steps. Instead, the band edges were smeared to account for disorder, which is also

supported by Ref. [55]. Both the number of channels and Lϕ(Ugate) are shown in

Fig. 6.10A, as well as the resulting elastic mean free path Lel(Ugate). The fact that

G(Ugate) varies only weakly implies that Lel(Ugate) is dominated by the inverse chan-

nel number at a given gate voltage, which leads to a maximum at the CNP as well

as to a steep decrease at the band edges. Quantitatively, the maximal value of Lel

amounts ∼ 100nm, and it is reduced stepwise to about 10 nm.

Thus, the variation of the Fermi energy drives the system into several transport

regimes: Apart from the CNP, transport in the nanotube appears to be diffusive,

since Lel is much smaller than the nanotube length (the contact spacing is 300 nm),

and also smaller than the tube circumference of ∼60nm. In the vicinity of the CNP,

a quasiballistic regime is entered, where Lel exceeds both Lϕ and the tube diameter.

As a contrast, at some subband edges Lϕ drops to values which are comparable to

Lel.

Strictly speaking, the previous analysis only provides a lower limit for Lel, since the

contact resistances are not taken into account. Nevertheless, there are arguments

that the latter are indeed well below the quantum resistance of h/2e2. One of them

is the weak localization dip of the conductance as a function of the magnetic field,

which originates most probably from the sample conductance alone. The amplitude

of the dip amounts up to 20 percent of the total conductance (see, e.g. Fig. 6.7).

This ratio can only be attained if the contact resistances are low. Otherwise, the

ratio would be much lower. Hence, the above analysis provides a reasonable estima-
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tion of Lel.

The results of this section were predicted by numerical calculations by F. Triozon

[53], which are presented in Fig. 6.10B. Here, Lel is calculated as a function of

the Fermi energy EF for disordered singlewall nanotubes with small diameters. The

on-site Anderson disorder W was set to W ∼ 0.6 eV. Like the measurement, the cal-

culations reveal that Lel(EF) decreases with increasing population of the subbands.

In addition, Lel(EF) has pronounced dips at the subband onsets.

It must be stressed that for constant disorder W , Lel is predicted to show an un-

usual energy dependence, namely sharp drops at the subband onsets. This can be

attributed mainly to the increased number of scattering channels, as soon as a new

subband is populated.

In addition, also Lel at the CNP is predicted to to be proportional 1/W 2, where W is

the amplitude of the on-site Anderson disorder in the tube (see inset of Fig. 6.10B).

This could be used in order to extract a value for the equivalent Anderson disorder

from the measured data and to compare the results from different measurements.

6.8 Zero Bias Anomalies

In the preceding sections, only single particle quantum interference corrections like

weak localization have been taken into account, as well as weak electron-electron

scattering as a source of dephasing. By the electron-electron-interaction another

quantum correction to the conductance is induced and reduces the density of states

near the Fermi energy [32]. This leads to a zero bias suppression (the so-called

Coulomb gap) in the differential conductance dI/dV [46], from which information

on the strength of the interaction can be extracted. In the case of tunneling into an

interacting electron system with an ohmic environment, the differential conductance

dI/dV is given by a power law, i.e. dI/dV ∝ V α for eV ≫ kBT , where the exponent

α depends both on the interaction strength and the sample geometry [29], see also

Sec. 3.2.2. In order to obtain complementary information, we have examined the

dependence of the ZBA on the gate voltage UGate. The differential conductance has

been measured as a function of UGate and VBias at 10 K. The result is presented in

Fig. 6.11 for both samples. For each gate voltage, the conductance shows a dip at

zero bias. The zero bias anomaly has a strongly varying width and amplitude with

gate voltage and nearly vanishes at the same gate voltages UGate = U∗ as the mag-

netoconductance, cf. Fig. 6.11. For each value of the gate voltage, a power law fit

for the bias voltage dependence of the differential conductance has been performed.

The fit was done in the region eV ≫ kBT , since below deviations from the power law

behavior occur, in accordance with the theoretical predictions [46]. The resulting
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Figure 6.11: (A) Greyscale representation of the differential conductance of

sample A as a function of gate voltage and dc bias voltage VBias at T=10 K. (B)

Exponent α vs. gate voltage as obtained from fitting a power law V α to the

differential conductance in the range eV ≫ kBT . The positions of the charge

neutrality point (grey line) and the regions of quenched magnetoconductance

(see Fig. 6.5) (black lines) are indicated. (C) and (D): same for sample B.

exponent α(UGate) is also plotted in Fig. 6.11. For sample A, α varies between 0.03

and 0.3 and shows pronounced minima at the gate voltages U∗. This behavior is in

principle also shown by sample B, but here the differential conductance shows off-

sets and larger deviations from the power law behavior. Since the fitting procedure

is less stable in the limit of small exponents, the offsets here lead to (unphysical)

negative exponents.

The behavior of the zero-bias conductance G(Ugate, T ) with varying temperature

allows to extract α(UGate) in an independent way, since G ∝ T α with the same

exponent as for the dependence on the dc bias voltage [29]. Thus, the fitting pro-

cedure as described above was applied to G(Ugate, T ), where T ranged between 3 K

and 60 K. The result for sample A is presented in Fig. 6.12A. For comparison,

the exponent as obtained from G(Ugate, Vbias), is also included. The absolute values

of the exponents agree reasonably well within the measurement’s accuracy. Both

curves display peaks and dips at nearly the same positions. Thus, the results from
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the dc bias measurement are confirmed by the temperature dependence.

In summary, the investigation of the differential conductance at both finite dc
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Figure 6.12: (A) Exponent α vs. gate voltage as obtained from fitting a

power law V α to the differential conductance in the range eV ≫ kBT for

sample A (black line). Grey line: dependence on gate voltage of the power

law fit Tα for zero bias conductance traces at temperatures ranging from 3 K

to 60 K (also for sample A). The positions of the subband onsets and the CNP

are included as vertical lines (CNP: bulk line). (B) Exponent α obtained from

Lel and the number of transport channels.

bias voltages and temperatures lead to the folllowing result: for all gate voltages, a

power law in the conductance is observed with an exponent α. This indicates that

indeed tunneling into an interacting electron gas occurs. The magnitude of α varies

strongly and correlates with the onset of the nanotube subband bottoms. Since α is

proportional to the interaction strength g of the electrons, the measurement suggests

that g depends on the gate voltage. Weak interaction is present, as soon as a new

nanotube subband is populated. Both the variation of g and its low values at the

subband bottoms do not agree very well with conventional theoretical approaches.

This will be discussed in the following section.

The exponent α allows to be estimated by a different approach. Eq. 3.22 predicts

that α is determined by the elastic mean free path Lel and the number of transport

channels M . Both have been derived for sample A in Sec. 6.7. Thus, α has been
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determined and the result is presented in Fig. 6.12B. Qualitatively, the behavior

of α(Ugate) agrees very well with the results from the other approaches. Quanti-

tatively, in Fig. 6.12B the values for the exponent are smaller by a factor of ∼5.

From Eq. 3.21, this would mean that the logarithmic term does no more equal unity.

Thus, α could be taken as a measure for the interaction strength U0 of the electrons.

From the factor of 5, ν0U0 ≈ e5 is derived, where ν0 is the noninteracting density of

states. Thus, the regime of weak interactions appears to be no more valid.

6.9 Critical Discussion

The experiments in the preceding sections revealed a strong correlation between the

single particle interference effects (expressed by the phase coherence length Lϕ) and

the interaction effects (expressed by the exponent α). Both are strongly reduced at

certain positions of the Fermi level, which match well the positions of the van Hove

singularities estimated from simple bandstructure models.

At this stage, one can ask to which extent the diffusion properties of the system are

influenced by the band structure. Both the results for the elastic mean free path

Lel (see Sec. 6.7) and numerical calculations by Triozon et al. [53] indicate that Lel

is not a constant as a function of EF . Lel rather displays a pronounced decrease

at the onset of new subbands. At these points strong scattering occurs, resulting

from the opening of a highly efficient scattering channel. This has a direct effect on

Lϕ =
√

D(EF )τϕ. Of course, τϕ may also be affected.

Can the energy dependence of Lel(EF) also explain the suppression of the interaction

effects? This question has already been raised by Kanda et al. [34], who also

observed a pronounced gate modulation of α. For weak electron-electron-interaction

the theory of Ref. [32] predicts α ∝ 1/Lel. This is definitely incompatible with the

observed suppression of α at Fermi levels, where diffusion is slow.

The observed strong modulations of Lϕ and α are accompanied by a rather weak

modulation of the zero bias conductance G at 10 K (see Fig. 6.1). One may thus ask,

whether the assumption of weak interactions is valid. From Eq. 6.7, one concludes

that for weak modulations of G the increase of the electron density at new subands

is apparently compensated by a strong reduction of Lel. An equivalent conclusion

is derived for the diffusion coefficient D: taking the simple Drude formula

σ = e2ν(EF)D(EF) (6.7)

as an orientation, the ’flatness’ of G can be explained by a partial compensation of

the variation of the electron density ν and D when tuning the Fermi energy EF.
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However, a quantitative explanation of the observed interplay between bandstruc-

ture effects and quantum corrections to the conductance requires a realistic model

calculation for a thick, e.g., (140,140) nanotube including disorder and interaction

effects. The simple model of strictly one-dimensional conductance channels is ob-

viously incompatible with the observed weak-localization-like magnetoconductance

close to the CNP. The disorder must be strong enough to mix the channels without

completely smearing the density of states.

If this interpretation is correct, weak localization should also occur in singlewall

nanotubes. Indeed, very recent magnetoconductance measurements by Morpurgo

[56] and Bouchiat [57] confirm that this is indeed the case.

In conclusion, the electronic transport measurements on multiwall carbon nan-

otubes, as presented in this chapter, reveal an interplay of bandstructure effects

originating from the geometry of the tube and quantum interference induced by dis-

order. The results demonstrate the necessity of a systematic theoretical approach

which can account both for disorder and bandstructure effects on the same level.
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Chapter 7

Aharonov-Bohm Effect and

Landau Levels

In this section, electronic transport measurements on individual multiwall nanotubes

with large diameter (∼ 30 nm) are reported. Magnetic fields are applied both

perpendicular and parallel to the tube axis. The large diameters allow us to study

the electronic transport in a regime, where several multiples of the magnetic flux

quantum Φ0 = h/e penetrate the tube cross section. In addition, an Al backgate is

used for a variation of the doping level across several nanotube subbands.

The conductance of the nanotube was recorded as a function of the magnetic field B

and the gate voltage U . For parallel fields, both h/e- and h/2e-periodic oscillations in

the magnetoconductance occur and lead to rhomb-shaped regions of low conductance

in the B-U-plane . In the perpendicular case, a region of low conductance forms at

small gate voltages, which grows with increasing magnetic field.

The experimental observations are explained well by tight-binding bandstructure

calculations for the outermost shell of a multiwall nanotube in a magnetic field.

7.1 Motivation

The cylindrical topology of carbon nanotubes gives rise to several theoretical pre-

dictions for the electronic conduction properties in magnetic fields, which are aligned

parallel to the tube axis. In terms of diffusive quantum transport, Altshuler-Aronov-

Spivak (AAS) oscillations of the conductance with a magnetic flux period of h/2e are

predicted [19] for metallic, cylindrical samples. Both the shape and the amplitude

of the AAS-oscillations depend strongly on the phase coherence length and the wall

thickness. The Aharonov-Bohm effect with a period of h/e is supposed to average

55
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out, since the cylindrical samples can be regarded as many ring shaped conductors

in parallel [58]. The zero-field phase difference of the electrons is different for each

ring, and thus the interference disappears in the average (see also Sec. 3.1.2). The

h/2e-periodic oscillations have been found in thin-walled diffusive metallic cylinders

and their properties agree very well with theory [59].

For carbon nanotubes, only very few experimental evidences are reported. First

indications for the h/2e-oscillations in multiwall carbon nanotubes have been found

by Bachtold et al. [45]. Fujiwara et al. report oscillations with a flux periodicity of

h/3e and attribute this to inter-shell coupling [60].

In contrast, bandstructure calculations for a ballistic singlewall nanotube in a par-

allel field predict a h/e-periodic dispersion of the nanotube subbands, including an

opening and closing of a bandgap with the same period (see Sec. 2.5.1). Exper-

imental evidence for this have been obtained by photoluminescence measurements

on singlewall tubes in a pulsed magnetic field [61], and by Coulomb blockade mea-

surements on suspended multiwall tubes [62].

For the case that the magnetic field direction is perpendicular to the tube axis, the

situation is not clear from both the theoretical and the experimental side. To our

knowledge, all calculations show that the bandstructure is not modified much for

small fields, where the magnetic length ℓm =
√

~/eB is larger than the tube diam-

eter D. Extensive bandstructure calculations have been performed by Ando et al.

in the framework of k ·p-perturbation theory [13]. Here, for ℓm < D, flat electronic

energy bands are predicted to form, which in turn approach the (flat) Landau levels

of (2D) graphene in the limit of high fields. In addition, the electron density is

predicted to be localized at two diametral points of the tube circumference, where

the magnetic flux through the tube surface is maximal.

Calculations within the tight-binding approach have been performed by Saito et al.

[63]. Here, the electronic energy bands also become less dispersive with increasing

magnetic field. The main difference to the findings of Ando et al. is that the en-

ergy bands oscillate as a function of the magnetic field, rather than approaching the

graphene Landau levels. Although the oscillation amplitude decreases, no explicit

Landau levels are predicted to form, even at high fields.

From the experimental side, there have not been made many attempts to measure

bandstructure properties at high transversal magnetic fields. Kanda et al. report in-

dications of bandstructure fingerprints in the Coulomb blockade pattern [64], while

Lee et al. report indications of a change of the density of states with increasing

perpendicular field [65]. Thus, no conclusive observations could be achieved up to

now.

The majority of the experiments, both for parallel and perpendicular magnetic fields,

suffers from the following fact: the diameter D of the investigated carbon nanotubes
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is too small in order to have at least one flux quantum Φ0 = h/e in the tube’s cross

section area D2π/4. Especially for single walled tubes, the required magnetic fields

are of the order ∼1000 T, which is far above the capability of a standard laboratory

system.

Thus, it is highly desirable to investigate nanotubes with a sufficiently large diame-

ter, which allow to determine the dominant electronic transport regime, and hence

the appropriate theoretical approaches. Similar to the analysis in the preceding

chapter, especially the interplay between bandstructure and disorder is of particular

interest.

7.2 Sample Characterization and Doping State

The samples used for the measurements in this section were prepared by the random

dispersion method (see Sec. 4.2), similar to those discussed in the preceding chapter.

The Aharonov-Bohm field period ∆BAB = (h/e)/(r2π) depends inversely propor-

tional on the squared tube radius r. The same holds for the magnetic length, in order

to match the tube radius: BLandau = ~/eℓ2m. For this reason, two tubes with large

cross-sections have been investigated: sample C has a diameter of 29 nm and a length

of 1.6 µm, while sample D has a diameter of 36 nm and a length of also 1.6 µm. We

observe that large diameter tubes (>25 nm) are generally shorter (<2 µm) than the

ones with smaller diameters (up to 10 µm). In addition, inspection in the scanning

electron microscope (SEM) yields an increased number of growth irregularities and

defects for the large diameter tubes. Both features are probably intrinsic properties

of the arc-discharge growth method and make it harder to find clean tubes of a

sufficient length.

A SEM image of sample D is presented in Fig. 7.1. The tube is located on an

Al backgate and contacted by three Au finger electrodes from above. Two-terminal

conductance measurements have been carried out, using the two upper electrodes.

In Fig. 7.1, also the conductance of sample D as a function of the gate voltage at sev-

eral temperatures is presented. Note that the curves for 6.5 K, 300 K (He) and 300 K

(air) are offset by 0.1×G0, 0.2×G0 and 0.3×G0, respectively, where G0 = 2e2/h. For

all measurements, a low-frequency (f=37 Hz) ac bias voltage V with eVrms < kBT

has been applied, and the resulting ac current has been recorded. The uppermost

trace shows the conductance G at 300 K in air at room pressure. The decrease of G

with increasing gate voltage indicates a strong p-doping of the tube, in accordance

with our former measurements. The second curve at 300 K shows the conductance

after evacuation and application of a He atmosphere (∼200 mbar). Note that the
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A B

Figure 7.1: (A) Scanning electron micrograph of sample D. The tube is

located on top of an Al gate and contacted by 3 Au finger electrodes. Only

the two upper ones are used for the measurement. The scalebar is 1 µm.

(B) Conductance vs. gate voltage for sample D at 300 K (in air and in He

atmosphere), 6.5 K and 20 mK (top to bottom). Curves are offset for clarity.

same behavior is displayed in vacuum (not shown). Here the doping has decreased

and changed from p to n. The trace shows a minimum, which can be assigned to

the charge neutrality point, as in the preceding chapter. Monitoring the conduc-

tance during the evacuation procedure shows a gradual change of the doping on a

timescale of ∼5 min (not shown). These observations lead us to the hypothesis that

adsorbates on the tube may create a strong p-doping. These adsorbates are removed

by the evacuation and a weak n-doping remains.

At lower temperatures, conductance oscillations arise, which are again attributed

to an interplay of the bandstructure, one-particle quantum interference and two-

particle Coulomb interaction effects. The trace at 20 mK shows that the conduc-

tance is not suppressed to zero at any gate voltage. This means that the sample

does not enter the regime of dominating Coulomb blockade, down to the base tem-

perature of the refrigerator. Instead, the conductance has a minimum in the vicinity

of the charge neutrality point even at low temperatures, although large conductance

fluctuations are present. This behavior is shown by both samples. It seems to occur

preferably for nanotubes with large diameter, while thinner tubes enter the Coulomb

blockade regime at temperatures of ∼200 mK. An enlarged lead capacitance could

originate from the larger tube diameter, which reduces the charging energy of the

tube. Thus, the Coulomb blockade regime may only be accessed at a temperature

way below the base temperature of the system.
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7.3 Conductance Oscillations in a Parallel Field

When a magnetic field is applied parallel to the axis of a nanotube, the conduction

electrons can gain an Aharonov-Bohm phase only by moving around the tube cir-

cumference. In both the bandstructure and the quantum interference descriptions of

transport, this leads to periodic oscillations in the magnetoconductance (see. Chap-

ters 2, 3). Hence, for a first check, a single magnetoconductance trace has been
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Figure 7.2: Differential conductance of sample C as a function of the mag-

netic field parallel to the tube axis. The temperature was 5 K.

recorded at zero gate voltage at a temperature of 5 K for sample C. The result for

magnetic fields up to ±17 T is presented in Fig. 7.2. The trace is symmetric with

respect to magnetic field reversal, as expected for a two-terminal configuration. The

conductance shows a minimum at zero field, as well as an oscillation with a period

∆B of ∼3.2 T. Starting from B = 0, the conductance maxima at ±0.5∆B, ±2.5∆B

and ±4.5∆B display an enhanced amplitude, while the amplitude at ±1.5∆B and

±3.5∆B is smaller.

For the measured tube diameterD of 29 ±1 nm, a flux of h/2e through the tube cross

section area D2π/4 corresponds to ∆B=3.1 T. Thus, the periodicity ∆B agrees well

with multiples of a flux of h/2e. The regular alternation of enhanced and reduced

conductance peaks indicates that, in addition, h/e-periodic features are present.

At this stage, the origin of the oscillations cannot be determined: on one hand, h/2e

is the periodicity of the Altshuler-Aronov-Spivak oscillations, and thus suggests the

dominance of quantum interference.

For a detailled insight in the flux periodicity of the conductance, magnetoconduc-

tance traces have to be taken for different values of the Fermi energy. Therefore,

the linear response conductance has been recorded as a function of the gate voltage

and the magnetic field. Similar to the procedure of sec. 6.3, the field was changed
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in steps, while the gate voltage was swept continuously. The result for sample C is

shown in Fig. 7.3, at temperatures of 1 K, 4.5 K and 20 K. The conductance G shows
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Figure 7.3: Color coded differential conductance of sample C as a function of

the gate voltage and a magnetic field parallel to the tube axis at temperatures

1 K (A), 4.5 K (B) and 20 K (C). Red regions correspond to high conductance,

while blue regions indicate low conductance.

a rich variety of structures. For each value of the magnetic field, G is minimal in the

vicinity of Ugate ∼ −0.2 V, which coincides with the position of the charge neutrality

point (CNP), cf. Fig. 7.1. When the Fermi energy is tuned away from the CNP,

the overall conductance increases. Around zero magnetic field, G has a minimum

for most values of Ugate. In contrast to the measurements in a perpendicular field,

additional minima arise with a field periodicity of ∼ 3.1 T, which could be identified

with multiples of a flux of h/2e in the previous section. Additionally, conductance

features with the double flux period, h/e, occur. The most intriguing observation

is the presence of rhomb-shaped regions of high conductance, in the vicinity of the

CNP. These features become smoother as the temperature is increased. Even at a

temperature of 20 K, Fig. 7.3C, the two periodicities are still prominent, although

the finest conductance fluctuations are washed out.

Figure 7.4 shows the result of the corresponding measurement for sample D at a

temperature of 4.5 K. In order to elucidate the structure and the amplitude of the

conductance oscillations, the data are also shown in a surface representation. The

charge neutrality point is located at Ugate = −0.6 V, where a pronounced valley in
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Figure 7.4: Left: Color coded differential conductance of sample D as a

function of the gate voltage and a magnetic field parallel to the tube axis at

4.5 K. Red regions correspond to high conductance, while blue regions indicate

low conductance. Right: Same data, but in a colored surface representation.

G(Ugate, B) is located. Again, two specific field periodicities are identified, namely

∆B = 2.1 T and 2∆B. Also here, ∆B is in good agreement with a flux of h/2e: For

the measured tube radius of 36 nm ±1 nm, the latter corresponds to 2.0 T ±0.3 T.

The surface plot shows that the oscillations are present up to the highest magnetic

fields, while their amplitude decreases. Note that the range of the gate voltage for

sample D is more than twice as large as for sample C. Thus the ’frequency’ of the

conductance variations with gate voltage appears to be much higher than it actually

is.

Based on these measurements, we would like to clarify, whether the data allow a

decomposition into bandstructure- and interference contributions. Similar to the

preceding chapter, it would be desirable to elucidate the modification of the quan-

tum interference by the band structure and vice versa.

7.4 Field Dependence of the Magnetic Bandstruc-

ture

Bandstructure considerations have been applied successfully to the magnetoconduc-

tance, when the field is oriented perpendicular to the tube axis (see Chap. 6). Thus,

similar approaches for the parallel field seem rewarding. In this case, one conceptual
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difficulty arises from the fact that even small fields have a large effect on the density

of states. Already the tight binding calculation shows that the van Hove singulari-

ties are splitted and shifted linearly in energy with increasing magnetic field. This

results in a periodic magnetic dispersion, with a periodicity given by the Aharonov-

Bohm flux h/e (see Sec. 2.5.1).

In accordance with most works in literature, the previous chapter has revealed that
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Figure 7.5: (A) Color representation of the calculated density of states for a

(22, 22)-singlewall nanotube without disorder as a function of energy (in units

of γ0 ∼ 3 eV) and a magnetic flux parallel to the tube axis. (B) Corresponding

ballistic conductance. (C) Color representation of the conductance of the same

tube as in A) and B), but with Anderson disorder of strength W = γ0/5. (D)

Zero-field conductance of the disordered tube as a function of energy.

multiwall carbon nanotubes appear to be strongly diffusive systems. Therefore, it

is highly desirable to have theoretical estimates for the conductance of a disordered

tube in a parallel magnetic field. This represents the basis for a qualitative and

quantitative analysis of the measurements.

Such calculations have been performed by S. Roche and F. Triozon, using a recursive

Green’s function approach for the tight binding bandstructure [7]. This framework

allows the inclusion of static on-site Anderson disorder (see Refs. [66, 67] and refer-

ences therein).

The result of the calculation for a (22, 22) nanotube with a diameter of 3 nm is

presented in Fig. 7.5. Fig. 7.5A shows a color representation of the density of

states (DoS) as a function of energy and the magnetic flux through the tube. In
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this case, the disorder is set to zero and lines of high density of states appear, in

accordance with the simple bandstructure calculations in Sec. 2.5.1. These lines can

be assigned to the (field dependent) positions of the subband onsets. They enclose

diamond-shaped regions of constant conductance, as can be seen from Fig. 7.5B.

There, a calculation of the corresponding (ballistic) conductance is presented.

This graph has to be compared now to Fig. 7.5C, which shows the conductance in

the presence of on-site Anderson disorder of strength W ∈ [−γ0/5, γ0/5]. The dis-

order does not scramble the conductance pattern completely. The diamond-shaped

regions are still visible, while the conductance at the diamond edges is suppressed

to about half of the value on the plateau. Furthermore, the conductance does not

anymore increase in steps as in the ballistic case, but even decreases slightly with

the number of occupied channels. For illustration, a single conductance trace at

zero field is shown in Fig. 7.5D. This behavior can be understood qualitatively by

the behavior of the elastic mean free path Lelastic, as discussed in Sec. 6.7: both

the numerical calculations and the experimental data indicate a strong decrease of

Lelastic at the subband edges. This compensates the rise of the conductance due to

the opening of new conduction channels.

In summary, the calculated conductance of a moderately disordered tube still re-

veals structural similarity to its DoS without disorder. Hence, it seems legitimate to

compare calculations for the DoS directly to the measured data. This is especially

important for large tube diameters: here in presence of disorder, the computational

cost for the conductance calculation becomes quickly prohibitive with increasing

tube diameter. In contrast, the clean DoS can be investigated up to large diameters.

7.5 Density of States vs. Measured Conductance

In order to find ’fingerprints’ of the nanotube’s bandstructure in the magnetoconduc-

tance patterns, the calculated density of states (DoS) is compared to the measured

conductance. The procedure is to a large extent identical to the one performed for

the perpendicular field case, cf. Sec. 6.4.

The major problem is to convert the energy axis E of the DoS, ν(E), into an

equivalent (nonlinear) gate voltage scale Ugate, in order to extract ν(Ugate). In turn,

ν(Ugate) gives information on the gate voltages, which are necessary in order to

populate given nanotube subbands. This is done (again) by assuming a constant

capacitance Cgate between the tube and the gate electrode. Then the number of

excess electrons n(EF) at a given Fermi energy EF (with respect to the charge neu-
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Figure 7.6: (A) Color representation of the calculated density of states (DoS)

for a (260,260)-singlewall nanotube without disorder as a function of gate

voltage and a magnetic flux parallel to the tube axis. Some diamond-shaped

lines of high DoS are indicated. (B) Color representation of the measured

conductance of sample D at 4.5 K for a magnetic flux from 0 to Φ0 (left), Φ0

to 2Φ0 (middle) and 2Φ0 to 3Φ0 (right), where Φ0 = h/e. Diamond-shaped

lines of enhanced conductance are marked.

trality point) is connected to the gate voltage Ugate by

Ugate(EF) =
e

Cgate
n(EF), (7.1)

where n(EF) is given by the integral over the DoS,

n(EF) = L

∫ EF

0

ν(E)dE. (7.2)

Here, L is the length of the nanotube. Hence, plotting ν(EF) vs. Ugate(EF) gives

the desired result. The procedure has been performed for the calculated DoS of a

(260, 260) nanotube and for a magnetic flux from 0 to h/e.

For a quantitative comparison with the measurement, the knowlegde of the coupling

capacitance Cgate is crucial. In Sec. 6.4, Cgate was obtained from an explicit assign-

ment of the subband onsets to certain gate voltages. Unfortunately, this procedure

does not work for large diameter tubes, mainly due to the complexity of the mag-

netoconductance for both parallel and perpendicular fields1. Therefore, a typical

1The magnetoconductance of sample C in a perpendicular field will be discussed in Sec. 7.7
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capacitance of 300 aF/µm has been used. Since both samples in Sec. 6.4 rendered

a capacitance of this magnitude, we take it as an approximation also in the present

case.

The result is presented in Fig. 7.6 as a color representation, together with the magne-

toconductance measurement for sample D at 4.5 K. The magnetic field scale has been

converted into a flux scale in units of h/e. In order to highlight h/e-periodicities,

the data have been split up into three segments. The rescaled calculation shows

diamond-shaped lines of high DoS, which are superposed on an increasing back-

ground, identical to Fig. 7.5. Due to the rescaling, the diamonds are distorted as a

function of gate voltage. Some diamonds close to the charge neutrality point (CNP)

are marked with lines. The CNP is located at the experiental value of −600 mV.

A closer look at the data reveals, that also here diamond-shaped lines of high con-

ductance can be identified. As a guide to the eye, some of them have been marked

by lines.

Although these similarities are not sufficient for a one-to-one assignment of calcu-

lation and experiment, they nevertheless demonstrate that the position, the shape

and also the size of the diamonds agree well. Therefore, the value of the capacitance

seems roughly correct, as well as the bandstructure model. Furthermore, the assign-

ment is supported by the following fact: in the case, where an exact assignment of

van-Hove singularities and quenched magnetoconductance was possible (Sec. 6.4),

the peaks in the DoS also appeared to correspond to small peaks in the conductance,

rather than to conductance steps expected in ballistic conductors.

At higher multiples of h/e, the data show indeed a repetition of the conductance

pattern, although with a smaller amplitude. This can also be taken for an argument

for the presence of bandstructure effects, since weak localization-like quantum in-

terference alone would just give a h/2e-modulation.

In conclusion, the nanotube’s bandstructure seems to strongly affect its conduc-

tance also in the case of a parallel magnetic field. Due to the strong variation of

the DoS with the magnetic flux, the effects here are even more pronounced than

in the perpendicular case and for smaller tube diameters. An exact assigment of

calculated van-Hove singularities and experimental magnetoconductance peaks is

not possible. Nevertheless, the strong similarity with the measured conductance

patterns reveals first clear signatures of the specific nanotube bandstructure effects

in the magnetoconductance.
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7.6 Contribution of Quantum Interference

The h/2e-periodic modulation of the magnetoconductance in Fig. 7.4 gives rise to

the question, to which extent coherent backscattering is involved into the transport

properties, similar to the discussion of Sec. 6.5 for the perpendicular field.

Much insight can be gained by averaging over magnetoconductance traces for many

0 1 2 3

0.20

0.25

0.30

200 mK

5 K

 

 

C
on

du
ct

an
ce

 (2
e2 /h

)

Magnetic Flux (h/e)

10 K

1 K

Figure 7.7: Magnetoconductance of sample D (triangles) averaged over the

interval [−2.3 V, 2.3 V] of gate voltage at temperatures 10 K, 5 K, 1 K and

200 mK (top to bottom).

gate voltages. Bandstructure effects are expected to be smoothed by the average,

as well as universal conductance fluctuations. Thus, averages over the whole gate

bandwidth has been done for both samples. The result for sample D is presented in

Fig. 7.7. For all temperatures, the averages show a strong h/2e-periodic modula-

tion. The amplitude of the oscillation decreases both with increasing temperature

and increasing magnetic flux. Especially at small fields, the oscillations are anhar-

monic, i.e. sharp dips appear, while the peaks are smoother.

All these curves bear a strong similarity to Altshuler-Aronov-Spivak (AAS) oscilla-

tions in diffusive metallic cylinders [59]. The theory predicts an anharmonicity of the
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magnetoconductance oscillations. It is explained in terms of time-reversed, diffusive

and phase coherent electron paths, which revolve the cylinder circumference more

than one time. Thus, several multiples of the ’AAS-flux’ h/2e are enclosed, which in

turn leads to higher harmonics in the Fourier expansion of the magnetoconductance

trace.

In analogy to the weak-localization fits for the averaged magnetoconductance traces

in a perpendicular field (see 6.5), the averaged trace at 10 K has been fitted with

AAS oscillations, cf. Eq. 3.8. The fitting was done in the range [−2h/e, 2h/e],

with two free parameters, namely the phase coherence length Lϕ and the angle Θ

between the tube axis and the magnetic field, cf. Eq. 3.10. The result is presented

in Fig. 7.11. The best fit was achieved for Lϕ=30 nm and Θ = 2 degrees. These
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Figure 7.8: Averaged magnetoconductance at 10 K (open triangles). The

line is a fit of AAS-oscillations to the data.

parameters are reasonable for the temperature of 10 K (Lϕ) and the experimental

accuracy for the alignment of the tube with respect to the field (Θ).

Note that the fitting procedure is not capable of delivering an estimate for the actual

wall thickness in which the transport takes place, or, in other words, the number

of current carrying nanotube shells. The reason is revealed in the equation for the

effective wall thickness, Eq. 3.10. There, even a small misalignment Θ of tube and

field leads to an effective width a∗ of several nanometers, which is much larger than

the intershell distance of ∼ 0.3 nm. Thus, a∗ is predominantly determined by Θ.

Recent experiments by Bourlon et al. revealed that for multiwall nanotubes the in-

tershell conductance is of the same order as the longitudinal conductance of a single

shell [6]. Our experimental data do not allow the extraction of any explicit number

of nanotube shells, which carry the current. Nevertheless, a coarse indication is

given by the oscillation period ∆B of the AAS-like conductance oscillations. ∆B

reflects the average shell diameter, where transport takes place. Since this diameter

matches very well the measured tube radius, it is very likely that only the outermost
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shell is involved, together with few neighboring shells.

Within the fitting range, the accordance of data and fit is fairly good. For higher

fields, large deviations occur. The fitted curve shows a rising background originating

from weak localization in a slightly misaligned field: here also a significant number

of time-reversed trajectories contribute, which do not enclose the cylinder axis. The

rising background is an intrinsic property of the AAS-oscillations, which is obviously

not met by the measurement. Additionally, the oscillation amplitude of the theo-

retical curve decays much slower at higher fields.

At this point, two questions arise. Firstly, one can doubt, whether the origin of
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Figure 7.9: (A) Black lines: representative magnetoconductance traces at

gate voltages Ugate= 0.6 V, 0 V and -0.6 V (top to bottom). Grey lines

represent fits of AAS theory. (B) Phase coherence length vs. gate voltage

for sample D at 4.5 K. For parallel (top) and perpendicular fields (bottom),

AAS-theory and quasi-1D WL-theory is applied, respectively.

the oscillations is indeed AAS-type quantum interference, since the overall quality

of the fit is not very good. Secondly, it is not clear, if an averaged conductance

trace conceptually allows a fit by a single AAS-type curve. With respect to the

second question, consider a set of AAS-type conductance traces with different phase

coherence lengths. Then, the average trace cannot be expressed in terms of a single

AAS-trace with an average phase coherence length.

Both questions can be overcome by the following approach. Like in Sec. 6.5, the

phase coherence length has to be determined for each value of the gate voltage sep-
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arately. This, in turn has to be performed for a magnetic field both parallel and

perpendicular to the tube axis. For the perpendicular case, ’conventional’ 1D weak

localization theory is applied , while AAS-oscillations are fitted in the parallel case.

For a given gate voltage Ugate, the phase coherence length Lϕ(Ugate) in zero mag-

netic field should not depend on the tube orientation. Since the weak localization

approach is nearly established for perpendicular fields, both fitting procedures are

supposed to give the same value , if the AAS-description is correct. In addition, by

this procedure also the problem of interpreting an averaged trace is avoided.

The corresponding magnetoconductance measurement in a perpendicular field has

also been performed for samples C and D. The result will be shown and discussed

in Sec. 7.7. For small fields, the data allow fitting of 1D weak localization the-

ory. For the measurement in a parallel field, AAS theory has been fitted in a range

[−2h/e, 2h/e], where there is a good accordance of theory and experiment. The

result is presented in Fig. 7.9. Three representative magnetoconductance traces

are also presented, together with the corresponding fitted AAS-traces. It turns out

that the extracted phase coherence lengths agree very well within the accuracy of

the fitting procedure, which is of the order 5–10 nm. Both traces show the same

qualitative behavior, i.e. the occurence of peaks and dips. The same holds for the

absolute values for Lϕ, which vary between 20 nm and 40 nm. This result confirms

that the h/2e-periodic oscillations are indeed explained by the AAS theory.

Note that all observed phase coherence lengths are much smaller than the tube cir-

cumference, which amounts ∼110 nm. Thus, the samples are already in the regime,

for which the AAS oscillations are predicted to be damped exponentially. Therefore,

experiments with tubes with less defects are very likely to produce more pronounced

AAS-oscillations.

In summary, the partial interpretation of the experimental results in terms of quan-

tum interference appears to be justified also for parallel magnetic fields. The peri-

odicity of the oscillations favors diffusive electron transport through few outermost

nanotube shells.

7.7 Conductance Variations in a Perpendicular

Field

For multiwall carbon nanotubes with large diameters of the order ∼ 30 nm, band-

structure calculations predict some modulations of the bandstructure with perpen-

dicular magnetic field, starting already at B ∼2 T. Such measurements are described

in the following. The results are compared to numerical bandstructure calculations

carried out by S. Roche and F. Triozon [7].
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Magnetoconductance measurements in perpendicular fields up to 15 T have been car-

ried out for sample C, which has a tube diameter of ∼ 29 nm. The relevant field scale

is given by the ratio of the tube radius R and the magnetic length Lm =
√

~/eB,

which is referred to as the dimensionless magnetic field b:

b =
R2

L2
m

= R2 eB

~
. (7.3)

For the given tube diameter, b=1 corresponds to B = 1.7 T, while for the maximum

field of 16 T, b=3.

In order to have a quantitative theoretical prediction, numerical bandstructure
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Figure 7.10: (A) Tight-binding bandstructure calculation for a (210, 210)

armchair nanotube: Energy levels at the K-point as a function of a magnetic

field perpendicular to the tube axis. (B) Greyscale representation of the calcu-

lated density of states vs. magnetic field at smaller energies (Figure adapted

from [7]).

calculations for ballistic (210,210)-nanotubes have been performed, using the tight-

binding approach [7]. The result is presented in Fig. 7.10. Fig. 7.10A shows the

evolution of the energy levels at the K-point with increasing perpendicular field. A

shift of the energy levels towards higher energies occurs. Note that the states at the

K-point denote the bottoms of the one-dimensional subbands in zero magnetic field.

Thus, Fig. 7.10A provides a guideline for the shift of all levels. Starting from zero

field, the energy shift is becoming significant as soon as the dimensionless magnetic

field b approaches unity, i.e. already below 2 T.

The corresponding density of states is presented in Fig. 7.10B. Its shape is partially

anticipated by the K-point dispersion. For fields above 5 T, the regions of high

density of states are also shifted towards higher energies. At the same time, a state
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of high density of states forms around zero energy. This regions resembles a Landau

level at zero energy. Nevertheless, the tight binding approach does not predict an

explicit Landau level formation, cf. Sec. 7.1.

The conductance of sample C has been measured as a function of gate voltage and

perpendicular magnetic field. The result for T=1K is presented in Fig. 7.11A in

a color representation. The graph bears some similarities with the analogous mea-

surement for thinner tubes, cf. Sec. 6.3. The conductance is reduced at B = 0 for

all values of the gate voltage. This is again attributed to weak localization, that

should be the dominating contribution to magnetotransport fingerprints especially

at low fields. Conversely to the parallel case, no effects of the bandstructure at

low fields are expected. For magnetic fields above 2 T, a strong shift of regions of

high conductance towards higher gate voltages with magnetic field is observed. The

shifting appears to be much more significant for the region of positive gate voltages,

than for the negative region. Note that such a shift is not observed for the thinner

tubes in a perpendicular field (see the preceding chapter).

For comparison, in Fig. 7.11B the calculated density of states has been rescaled

with the gate voltage. The procedure is the same as in Sec. 7.5, and again an aver-

age gate capacitance of 300 aF/µm is used. Again, the result represents a distorted

reproduction of the DoS (see Fig. 7.10B). The corresponding nonlinear energy scale

is also presented in Fig. 7.11B. Thus, a range of 3 V for the gate voltage yields a

shift of the Fermi energy of about 400 meV.

The preceding chapters revealed strong similarities of the regions of high conduc-

tance in the experiment to those with high density of states in the calculation. In

particular, at positive gate voltages the experimental ’bands’ of high conductance

are shifted towards higher voltages, as the field is increased. Also, several regions

of high conductance appear to be shifted towards the charge neutrality point (CNP,

located at Ugate = −200 mV), as the magnetic field is increased. On the other hand,

several features do not match. Most prominent is the asymmetry of the experimen-

tal conductance pattern: the ’bands’ for negative gate voltages rather move towards

the CNP than to more negative values. In addition, several regions of high density

of states coincide with regions of conductance minima.

In conclusion, it is safe to say that the results of experiment and calculation at

least point into the same direction. The numerical simulation can qualitatively ex-

plain the strong magnetic field dispersion of the conductance. Like in the case of

the parallel magnetic field, an exact assignment of conductance peaks to van-Hove

singularities in the density of states is not possible within our experimental scope.

This may be related to the smaller subband spacing of the thicker tubes.

The measurement demonstrates that the magnetic dispersion of large diameter nan-

otubes in a perpendicular field is now experimentally accessible. Thus, systematic



72 Chapter 7. Aharonov-Bohm Effect and Landau Levels

G (2e /h)2 DoS (a.u.)
0.1      0.6 0         1

1

0

-1

G
at

e
V

o
lt

ag
e 

(V
)

0       4      8      12 0       4      8     12     16
Magnetic Field (T)

A B
E

n
erg

y
 (m

eV
)

80

120

160

200

-160

-80

-120

0

Figure 7.11: (A) Color representation of the conductance of sample C as

a function of gate voltage and perpendicular magnetic field at 1 K. (B) Nu-

merical calculation of the density of states as a function of gate voltage and

perpendicular magnetic field. Therefore, the energy scale of the DoS has been

converted into a gate voltage by the use of a gate capacitance of Cgate =300

aF. The energy scale is attached on the right.

future experiments are necessary to clarify the situation.

7.8 Discussion

In this chapter, measurements for large diameter multiwall carbon nanotubes in high

parallel and perpendicular fields have been reported. The results have been com-

pared to existing theoretical approaches, namely the Altshuler-Aronov-Spivak the-

ory for quantum interference and tight-binding calculations for the bandstructure.

It turned out that for a successful explanation of the results, both bandstructure

and quantum interference effects have to be jointly taken into account, since each

approach only partly covers the observed magneto-fingerprints.
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Now the question arises, if the interference properties are modified by the bandstruc-

ture and vice versa, like the quench of the weak localization at subband onsets for

the small diameter tubes, see Sec. 6.5. Here, this is much more difficult to detect.

The main reason is the fast change of both the predicted band dispersion and the

observed conductance with magnetic field.

At least, the overall shape of the conductance traces finds itself in accordance with

the ones from Sec. 6.3. Especially, the conductance shows a relatively weak overall

modulation, with small peaks at the tentative subband onsets. The latter can be

identified to some extent by the rhomb-shaped conductance features for a parallel

field. This observation again favors a sharp drop of the elastic mean free path Lel at

the subband onsets, which in turn leads to a compensation of the increased density

of states in the conductance, cf. Sec. 6.7.

Thus, we are left with the insight that there is still a lot of work to do in order to

understand the conductance properties of multiwall nanotubes at low temperatures.

In order to elucidate these features more clearly, experiments with less diffusive

tubes would be highly desirable, since there the bandstructure effects are expected

to become more prominent.
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Chapter 8

Summary and Outlook

This thesis has been focused on electronic transport properties of multiwall carbon

nanotubes.

To study those properties experimentally, single nanotubes have been placed on an

oxidized Al backgate electrode, which provides a strong electrostatic coupling. As

source and drain, Au electrodes with low contact resistance have been attached af-

terwards.

The differential conductance of the nanotubes was measured at low temperatures,

as a function of the magnetic field, the dc bias voltage, and the position of the

Fermi energy. The latter was shifted over a large energy range by means of the gate

voltage.

Already the preliminary measurements, as presented in Chap. 5, indicate the pres-

ence of strong disorder in the nanotubes. The successful interpretation of the data

in terms of quantum interference effects like universal conductance fluctations and

weak localization allows an estimation of mesoscopic lengthscales in the sample,

such as the phase coherence length Lϕ. One important observation is that the weak

localization contribution to the conductance, and hence Lϕ varies strongly with the

position of the Fermi energy.

This fact served as the main motivation for more extensive and systematic mag-

netoconductance measurements, as descibed in Chap. 6. By these measurements,

the values for the gate voltage, which are necessary to populate the nanotube’s sub-

bands, could be identified. These positions match well with the positions of the van

Hove singularities in the density of states, as estimated from simple bandstructure

models.

From the experimental magnetoconductance traces, Lϕ was derived as a function of

the Fermi energy. Lϕ(EF) was found to be strongly reduced at the subband onsets,

which corresponds to a quench of weak localization. There, also the elastic mean
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free path Lel turned out to decrease steeply, in accordance with recent numerical

calculations. Thus, a strong increase of the diffusivity of the system at the sub-

band onsets was observed. This in turn allows the statement that a strong interplay

between the bandstructure and the diffusion properties of multiwall nanotubes is

present.

In addition, the study of the nonlinear conductance revealed a suppression of the

zero bias anomaly at the subband bottoms, which has been interpreted as a reduc-

tion of electron-electron interactions. A similar result is obtained by extracting the

interaction strength from the elastic mean free path.

Magnetoconductance measurements for large diameter nanotubes in a magnetic field

parallel to the tube axis have been presented in Chapter 7. The results confirm the

impression of the preceding sections: for a comprehensive understanding of the con-

ductance properties, both the bandstructure and quantum interference have to be

taken into account. The former manifests itself in a characteristic magnetic band

dispersion, whose flux periodicity of h/e originates from the Aharonov-Bohm phase

of the electrons. The latter appears as a superposition of h/2e-periodic oscillations

in the magnetoconductance, which are successfully explained in terms of coherent

backscattering.

Our interpretation of the results is strongly supported by numerical tight-binding

calculations for both the density of states and the conductance in presence of a

magnetic field and Anderson disorder.

Finally, complementary measurements for the large diameter nanotubes in a per-

pendicular magnetic field have been performed. The results provide the consistency

of the description of the conductance in terms of quantum interference. In addi-

tion, a strong dispersion of the conductance with magnetic field is observed. These

features partially match the predictions of numerical calculations for nanotubes in

large magnetic fields.

The measurements as presented in this thesis render some more insight into the

conductance properties of multiwall nanotubes. Nevertheless, there is still a lot of

work to be done. For example, experiments on less disordered tubes would be highly

desirable in order to study the transition from the ballistic to the diffusive regime.

In addition, a combination of tunneling spectroscopy experiments and conductance

measurements would allow to have a direct measure of the (tunneling) density of

states.
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[31] M. Krüger, I. Widmer andT. Nussbaumer, M. Buitelaar, C. Schönenberger,

New J. Phys. 5, 138 (2003).

[32] R. Egger, A. O. Gogolin, Phys. Rev. Lett. 87, 066401 (2001).

[33] R. Tarkiainen, M. Ahlskog, J. Penttilä, L. Roschier, P. Hakonen, M. Paalanen,
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ihrem Know-How über Nanoröhren-Probenherstellung teilhaben. Dafür herzlichsten

Dank.

Prof. Dr. Laszlo Forro und Edina Ljubivic stellten die besten Nanoröhren der Welt
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