Naturwissenschaftliche Fakultät IV – Chemie und Pharmazie der Universität Regensburg

Supramolekulare Chemie mit Ammoniak – Strukturchemie neuer Ammoniak-Proton-Komplexe

Dissertation
zur Erlangung des Doktorgrades (Dr. rer. nat.)
der Naturwissenschaften

vorgelegt von Thomas Roßmeier aus Regensburg

Regensburg, im Juli 2005

Die vorliegende Arbeit wurde von August 2002 bis Dezember 2004 am Arbeitskreis von Prof. Dr. N. Korber angefertigt.

Dank gebührt:

Herrn Prof. Dr. N. Korber für die wissenschaftliche Anleitung nach Humboldtschen Prinzipien.

Den Kollegen aus dem Arbeitskreis von Prof. Dr. N. Korber und den Kollegen bzw. wissenschaftlichen/technischen Angestellten der Lehrstühle von Prof. Dr. A. Pfitzner und Prof. Dr. M. Scheer, die mir mit Rat und Tat zur Seite standen.

Herrn M. Siegert.

Meinen Eltern und meiner Patin.

Frau T. Böhm, die außerordentlich zum Gelingen dieser Arbeit beigetragen hat.

Inhaltsverzeichnis

1.	Einl	eitung	9
2.	Metl	hodischer Teil	18
3.	Stru	kturbeschreibungen	23
	3.1	$[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$	23
	3.2	$NH_4(NH_3)_{13}[B(Ph-Ph)_4]$	32
	3.3	$[NH_4(NH_3)_3][B(p\text{-tolyl})_4] \cdot NH_3 \dots$	49
	3.4	NH ₄ (NH ₃) ₂ N ₃	57
	3.5	[NH ₄ (NH ₃) ₃][SCN]	65
	3.6	$(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$	74
	3.7	$(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$	84
	3.8	$(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$	95
	3.9	$[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3.$	18
	3.10	NH ₄ HCN ₂ 12	26
4.	Neu	tronenbeugung an ND ₄ (ND ₃) ₃ CI1	34
5.	Abs	chließende Diskussion. Zusammenfassung und Ausblick	50

6.	Aı	nhang	154
	6.1	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von [$NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$	154
	6.2	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von 1	$NH_4(NH_3)_{13}B(Ph-Ph)_4$	158
	6.3	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von [$NH_4(NH_3)_3][B(p-tolyl)_4] \cdot NH_3$	165
	6.4	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von 1	NH ₄ (NH ₃) ₂ N ₃	169
	6.5	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von [NH ₄ (NH ₃) ₃][SCN]	171
	6.6	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von ($NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$	173
	6.7	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von ($NH_4)_3[Fe(CN)_6] \cdot 11NH_3$	175
	6.8	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von ($NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$	177
	6.9	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von [$NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$	195
	6.10	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von 1	NH ₄ HCN ₂	202
	6.11	Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparamete	r
	von N	ND4(ND3)3CI	203

Einleitung

Die Natur weist eine Reihe anziehender bzw. abstoßender Wechselwirkungsarten auf. Dazu zählen Van-der-Waals-, Dipol-, Coulomb- und ionische Wechselwirkungen. All diese Wechselwirkungsenergien der Bildung abstandsabhängigen spielen bei von Wasserstoffbrückenbindungen Rolle, die sich eine entscheidende durch Zusammensetzung der Wasserstoffbrücke aus mehreren separierbaren Beiträgen¹ erklärt. Diese Beiträge sind Energieformen der Elektrostatik, der Polarisation, des Ladungstransfers, der Dispersion und der Austauschabstoßung. Aufgrund der unterschiedlichen Abstands- und Winkeleigenschaften dieser Energiebeiträge ändert sich auch der Charakter Wasserstoffbrücke bei verändertem Proporz. Daher machen es die unterschiedlichen Erscheinungsformen einer Wasserstoffbrücke nicht einfach, eine stichhaltige Definition zu finden. Zu Beginn des 20. Jahrhunderts sprachen Werner² und Hantzsch³ bei der Beschreibung von Salzen des Ammoniaks von Nebenvalenz. Pfeiffer⁴ bezeichnete eine interne O-H···O-Wasserstoffbrücke als "innere Komplexsalzbildung". Auch Ausdrücke wie "weak union" und "weak bond" wurden benutzt. Erst 1935 verwendet Pauling⁵ den Begriff "hydrogen bond" zur strukturellen und energetischen Beschreibung von Eis- und anderen Kristallen. Von "bridge", also Brücke, spricht Huggins⁶ ein Jahr später. Ab diesem Zeitpunkt hat sich auch der Begriff Wasserstoffbrückenbindung bzw. Wasserstoffbrücke im deutschsprachigen Raum etabliert.

Diese allgemeine wissenschaftshistorische Einordnung der Wasserstoffbrückenbindungen soll im Folgenden durch die Diskussion des Bindungscharakters und der physikalischen Konsequenzen der Wasserstoffbrückenbindungen ergänzt werden. Zusätzlich erfolgt eine Erörterung der strukturchemisch bekannten $H_3O^+(H_2O)_n$ -Komplexe, die ein Pendant zu den $NH_4^+(NH_3)_n$ -Komplexen bilden.

Bei der Diskussion von Donor-Proton···Akzeptor-Abständen (D-H···A) wird durchwegs das Van-der-Waals-Kriterium (VdW) benutzt, was besagt, dass H···A-Abstände, die geringer als der VdW-Abstand sind, einen Hinweis für eine Wasserstoffbrückenbindung darstellen. Aus diesem Grund ist es naheliegend, zunächst auf den Bindungscharakter der VdW-Wechselwirkungen⁷ einzugehen. Wie die Atom- und die Ionenbindung beruhen auch die VdW-Kräfte auf der Anziehung zwischen entgegengesetzten elektrischen Ladungen. In einem Atom befinden sich die Elektronen in energetisch und örtlich diskreten Zuständen, bewegen sich also - vereinfacht dargestellt - in bestimmten Räumen um den Atomkern. Nun kann es kurzzeitig zu einer unsymmetrischen Ladungsverteilung kommen, so dass das Atom kurzfristig als Dipol erscheint. Beeinflusst dieses Atom ein anderes nicht-polares Atom (oder

¹ K. Morokuma, Acc. Chem. Res., 1977, 10, 294-300

² A. Werner, Liebig's Annalen der Chemie, 1902, 322, 261-97

³ A. Hantzsch, *Chemische Berichte*, **1910**, 43, 3049-76

⁴ P. Pfeiffer, Liebig's Annalen der Chemie, 1913, 398, 137-96

⁵ L. Pauling, Journal of the American Chemical Society, **1935**, 57, 2680-4

⁶ M. L. Huggins, Journal of Organic Chemistry, **1936**, 1, 405-46

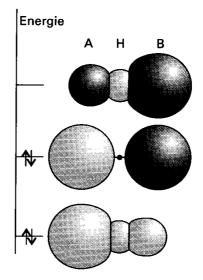
⁷ H. R. Christen, G. Meyer, Grundlagen der Allgemeinen und Anorganischen Chemie, Otto Salle Verlag GmbH & Co., Frankfurt am Main, Verlag Sauerländer AG, Aarau, 1997.

Atom eines Moleküls) auch zu einer inhomogenen Verteilung der Elektronen in der Elektronenhülle, so entsteht ein induzierter Dipol. Demnach sind VdW-Kräfte elektrostatische Kräfte zwischen induzierten Dipolen. Aufgrund der ständigen Bewegung der Elektronen ändert sich die Ladungsverteilung in den Atomen rasch und ist somit für die geringe Stärke der VdW-Wechselwirkungen, die noch dazu bei zunehmender Entfernung beider Atome stark abnimmt, verantwortlich. Die Anziehungskräfte werden umso größer, je größer die Polarisierbarkeit eines Teilchens ist. Diese wiederum hängt von der Oberfläche und der Elektronenzahl der Teilchen sowie von der Elektronegativität der darin vorhandenen Atome ab. Teilchen mit größerer Oberfläche bzw. mit relativ vielen Elektronen sind leichter polarisierbar als kleinere Teilchen. Elektronegative Atome binden die Elektronen stärker, so dass die Polarisierbarkeit geringer wird. Im allgemeinen wachsen die VdW-Kräfte mit steigender Atom- bzw. Molekülmasse. Der Einfluss der Elektronegativität zeigt sich z.B. beim Vergleich der Siedepunkte von Fluor (86 K) und von Sauerstoff (90 K).

Vergleicht man nun die Siedepunkte (Abb. 4) der vier Halogenwasserstoffverbindungen oder der Wasserstoffverbindungen von Sauerstoff, Schwefel, Selen und Tellur miteinander, so erkennt man, dass jeweils die erste Verbindung einer solchen Reihe einen abnorm hohen Siedepunkt besitzt. Folglich sind in diesen Fällen die Anziehungskräfte zwischen den Molekülen besonders groß. Dies lässt sich dadurch erklären, dass die HF-, H₂O- und NH₃-Moleküle wegen ihrer stark polaren Atombindung permanente Dipole darstellen. Diese Dipolkräfte sind wesentlich größer als die VdW-Kräfte, weil die Ladungsverteilung im HF, H₂O- und NH₃-Molekül permanent unsymmetrisch ist. Diese Dipolkräfte erweisen sich als besonders stark, wenn ein H-Atom mit einem stark elektronegativen F-, O- oder N-Atom verbunden ist. Das unter diesen Umständen positiv polarisierte H-Atom wirkt auf ein anderes, negativ polarisiertes Atom stark anziehend. Diese stark ausgeprägte Wirkung der Polarität Wasserstoffbrückenbindung Dieser Beschreibung genannt. dass kovalente⁸ Anteile auch Wasserstoffbrückenbindung fehlt die Tatsache, berücksichtigen sind. So kann man die Wasserstoffbrückenbindung im Eis als Hybrid der drei Grenzstrukturen

> A O-H :O B O: H⁺:O C O: H—O

auffassen. Die Striche sollen hier rein kovalente Bindungen darstellen. Für die Wasserstoffbrückenbindungen im Eis kann geschlossen werden, dass die drei Grenzstrukturen A, B und C mit 61%, 34% und 5% beitragen⁹.


-

⁸ L. Pauling, Die Natur der chemischen Bindung, Verlag Chemie, GmbH, Weinheim/Bergstr., 1968.

⁹ L. Pauling, *J. chem. Physics* **1949**, 46, 435.

Eine ganz andere Betrachtungsweise ermöglicht das HOMO/LUMO-Konzept¹⁰. In diesem Modell wird die Wasserstoffbrücke Elektronendonor-Akzeptor-Komplex¹¹ beschrieben, in dem das Elektronenpaar des HOMOs der Lewisbase mit dem LUMO der Lewissäure wechselwirkt. Eine gute Wechselwirkung resultiert. wenn das Elektronenpaar eine geeignete Hybridisierung aufweist und das Akzeptororbital axialsymmetrisch ist, sodass eine möglichst große Überlappung der Orbitale zustande kommt.

Dieser Betrachtungsweise ähnelt die in Abb. 1 beschriebene Betrachtungsweise¹². Dort

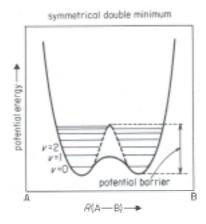
Abb. 1: Die Molekülorbitaldarstellung der Bildung einer Wasserstoffbrückenbindung A-H···B. ¹²

wird die Bildung eines delokalisierten Molekülorbitals dargestellt. A, H und B tragen jeweils ein Atomorbital bei, aus denen drei Molekülorbitale konstruiert werden können. In den getrennten Molekülen wird die A-H-Bindung aus den Orbitalen von A und H gebildet, während das B-Orbital durch das freie Elektronenpaar besetzt ist. In dem Komplex aus beiden Teilchen hat man vier Elektronen (zwei aus der A-H-Bindung und zwei aus dem freien Elektronenpaar von B) auf die drei Molekülorbitale zu verteilen, die die beiden tiefsten Molekülorbitale des AHB-Fragments besetzen. Da das höchste, d. h. das am stärksten antibindende Orbital unbesetzt bleibt, kann als Nettoeffekt eine Absenkung der Energie der beiden Moleküle und somit die Ausbildung einer Wasserstoffbrückenenergie eintreten.

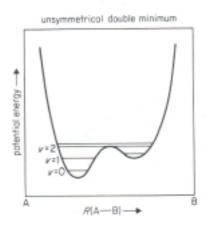
Eine weitere Beschreibung einer Wasserstoffbrücke bietet das Bild einer beginnenden Protonentransferreaktion. Die Wechselwirkung D-H···A (D: Donor, A: Akzeptor) wird dabei als ein "eingefrorenes" Stadium der chemischen Reaktion D-H···A — D-···H-A+ angesehen. Dabei ist eine partielle Bindung H···A bereits gebildet, während D-H entsprechend ist¹³. Bei starken geschwächt Wasserstoffbrücken kann das Stadium $Protonent ransfer reaktion ^{14} \\$ schon deutlich fortgeschritten sein. In manchen Wasserstoffbrücken ist die Lage des Protons nicht stabil, entweder bei A oder bei B. Dann findet ein Transfer zwischen zwei Positionen tatsächlich mit hohen Geschwindigkeiten statt¹⁵. Die Interpretation als beginnende chemische Reaktion ist komplementär zu elektrostatischen Bildern der Wasserstoffbrücke. Sie bringt Säure-Base-Betrachtungen (A: acid, B: base), Protonenaffinitäten sowie die partiell kovalente Natur der H···B-Bindung ins Spiel und ist besonders für das Verständnis der stärksten Wasserstoffbrücken ein sehr wichtiges Konzept.

_

¹⁰ F. A. Baiocchi; W. Reiher; W. Klemperer, J. Chem. Phys. **1983**, 79, 6428.


¹¹ T. R. Dyke, *Top. Curr. Chem.* **1984**, 120, 85.

¹² P.W. Atkins, Physikalische Chemie Weinheim, New York, Basel, Cambridge, Tokyo; VCH; 2. Aufl.; 1996.


¹³ H.-B. Bürgi, *Angew. Chem.* **1975**, 87, 461.

¹⁴ S. N. Vinogradov, R. H. Linnell, *Hydrogen Bonding*, Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne, **1971**.

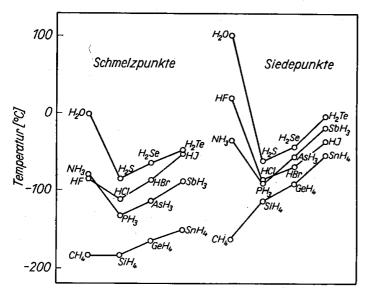
¹⁵ H.-B. Bürgi, J. D Dunitz, Acc. Chem. Res. 1983, 16, 153.

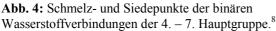
Abb. 2: Potentialenergiediagramm einer A-H···B-Wasserstoffbrücke (A: acid, B: base). 14

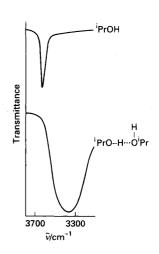
Abb. 3: Potentialenergiediagramm einer A-H···B-Wasserstoffbrücke (A: acid, B: base). 14

Beispielsweise folgt daraus, dass die H···B-Bindung nur dann stark werden kann, wenn ihre Orientierung zumindest grob mit der Orientierung der fertigen H-B-Bindung übereinstimmt. Im Gegensatz zu einem gewöhnlichen Brønstedsäure-Base-Gleichgewicht ist der Protonentransfer nicht abgeschlossen. Vielmehr befindet sich das Proton in einem Potentialminimum nahe an A (vgl. Abb. 2 und 3). Trotzdem ist dieses Minimum dann, wenn eine Wasserstoffbrückenbindung miteinberechnet wird, näher an A, als wenn keine Wasserstoffbrücke angenommen wird.

Da die pK_a- und die pK_b-Werte in wässrigen Lösungen¹⁶ bestimmt wurden, können sie nicht zur experimentellen Bestimmung der Wechselwirkungsenergie herangezogen werden, weil die A-H···B-Wechselwirkungen durch die Wasserstoffbrücken mit den Wassermolekülen gestört bzw. durch die hohe Dielektrizitätskonstante des Wassers geschwächt werden. Zur Lösung dieses Problems wurden viele Untersuchungen an nichtwässrigen, apolaren Systemen unternommen. Hierbei wurde ein linearer Zusammenhang zwischen der Verschiebung $(\Delta v_{01}(A-H))$ der A-H-Schwingung eines konjugierten Säure(A)-Base(B)-Systems A-H···B und dem pK_a-Wert der Säure festgestellt. Dieser Zusammenhang ist jedoch auch mit Ungenauigkeiten¹⁷ behaftet und wird in den Reviewartikeln von Davis¹⁸ und von Schleyer¹⁹ eingehend diskutiert. In diesem Zusammenhang zeigt sich als wichtiges Problem, dass der Protonentransfer entweder durch quantenmechanisches Tunneln (Abb. 2 und 3), durch eine Potentialbarriere oder durch den direkten Transfer über die Barriere beschrieben werden kann. besprochenen Definitionen bzw. Beschreibungen Wasserstoffbrückenbindungen machen deutlich, dass jede für sich genommen diese Art von Wechselwirkung nur unzureichend beschreibt. Womöglich ist dies auch der Grund für die immer wieder auftretenden Zweifel an Wasserstoffbrückenbindungen. Deshalb ist es angebracht, die experimentellen Befunde, die mit den Wasserstoffbrückenbindungen in Zusammenhang gebracht werden, aufzuzeigen. Ursprünglich²⁰ wurden die ungewöhnlich


¹⁶ Albert and Serjeant, *Ionisation Constants of Acids and Bases*, Methuen, 1962.


¹⁷ Hadzi, Klofutar, Oblak, *J. Chem. Soc.* (A), **1968**, 905.


¹⁸ Davis, *Nat. Bur. Std.* Monograph No. 105, **1968**.

¹⁹ Joris, von Schleyer, *Tetrahedron*, **1968**, 24, 5991.

²⁰ W. M. Latimer, W. H. Rodebusch, J. Am. Chem. Soc. **1912**, 42, 1635.

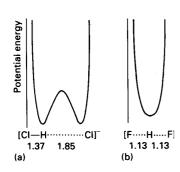


Abb. 5: IR-Spektrum von Isopropanol; obere Kurve: verdünnt, unter Kurve: unverdünnt.21

hohen Leitfähigkeiten von Wasser und anderen Flüssigkeiten durch Wasserstoffbrücken erklärt.

Besonders die Schmelz- und Siedepunkte von Wasser, Ammoniak und Fluorwasserstoff legen das Vorhandensein von Wasserstoffbrücken nahe (Abb.4). Obwohl die Wasserstoffbrücken deutlich schwächer als die kovalenten Bindungen sind, haben sie doch erheblichen Einfluss (Dichte, Viskosität, Dampfdruck und Säure-Base-Eigenschaften) auf die elektronenreichen Wasserstoffverbindungen der zweiten Periode. So werden die Rotverschiebung und die Verbreiterung der A-H-Streckschwingungsbanden in der IR-Spektroskopie (Abb. 5) ebenfalls den Wasserstoffbrücken zugeordnet. Auch die Abstände und Winkel der Strukturdaten sind als Hinweis bzw. Charakterisierungsmöglichkeit für Wasserstoffbrücken zu werten. Beispielsweise befindet sich das H-Atom des linearen ClHCl⁻-Ions (Abb. 6) nicht in der Mitte der beiden Cl-Atome und gibt somit einen Hinweis auf ein energetisch schwaches

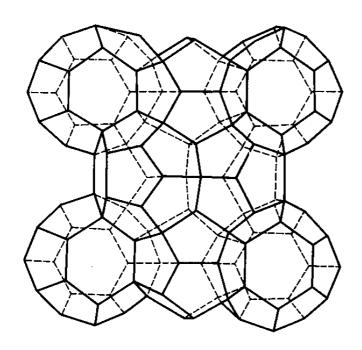


Abb. 6: Die Änderung der Potentialenergie mit der Position des Protons in Einfachoder Doppelminimumpotentialen.²¹

Doppelminimumpotential. Im Gegensatz dazu zeigt das FHF-Ion ein Einzelminimumpotential, das bei starken, symmetrischen Wasserstoffbrücken aufzufinden ist²¹.

Den wohl eindeutigsten Beleg für die Existenz von Wasserstoffbrückenbindungen liefert das Wasser selbst. Nicht nur die bekannte Anomalie des Wassers, sondern auch die veranschaulichen Clathrat-Hydrate die strukturdeterminierenden Eigenschaften dieser Wechselwirkungsart. Clathrat-Hydrate bestehen aus wasserstoffbrückengebundenen Wasserkäfigen, die Fremdmoleküle wie Cl₂, Ar, Xe und CH₄ beinhalten können. Dies sieht man z. B. an $Cl_2 \cdot (H_2O)_{7.25}$ (Abb. 7), das aus 14flächigen und 12-flächigen Polyedern im Verhältnis 3:2

²¹ D. F. Shriver, P. W. Atkins, *Inorganic Chemistry*, Oxford University Press, Oxford, New York, 1999

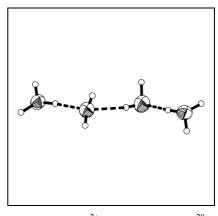


Abb. 7: Die Wasserkäfige des Clathrathydrats $\text{Cl}_2 \cdot (\text{H}_2\text{O})_{7.25}$.

besteht. Die 14-flächigen Polyeder werden von den Cl2-Molekülen besetzt. Aber nicht nur das Verhalten der Hydrate Molekülen, neutralen sondern auch Wechselwirkungen zu geladenen Teilchen wie dem Proton zeigen interessante Strukturmotive. So sind die einkernigen Proton-Hydratkomplexe $[H_5O_2]^+$ 22, 23,24 , $[H_9O_4]^+$ 25 $[H_7O_3]^+$ $\left[H_{13}O_{6}\right]^{+}$ seit geraumer Zeit bekannt, wie durch eine Vielzahl von Strukturdaten in der ICSD und der CSD aufgezeigt wird. Deutlich

weniger Strukturen beinhalten mehrkernige Proton-Hydratkomplexe. Beispielsweise wurde $[H_{10}O_4]^{2+}$ in $HNO_3 \cdot 2$ H_2O ²⁸ (Abb. 8), $[H_{16}O_7]^{2+}$ in $H_2SO_4 \cdot 6.5$ H_2O ²⁹ und $[H_{14}O_6]^{2+}$ in $HSbBr_6 \cdot 3$ H_2O ^{30,31} jeweils als isolierter zweikerniger Komplex nachgewiesen. Isolierte drei-

oder höherkernige Komplexe sind in der Strukturchemie nicht bekannt, jedoch können Proton-Hydratkomplexe ausgedehnte Strukturmotive bilden. So bildet sich in $HNO_3 \cdot 3~H_2O^{32}$ eine unendliche Spirale aus $^1_{\ \ }[H_7O_3]^+$ -Kationen. In $HNO_3 \cdot 2~H_2O^{33}$ hingegen bildet $^1_{\ \ \ }[H_{10}O_4]^{2+}$ eine unendlich ausgedehnte Kette aus. Ein ausgedehntes Band aus gewellten Sechsringen $(^1_{\ \ \ \ }[H_9O_4]^+)$ kann in $[H_9O_4]_2[TeBr_6]^4$ beobachtet werden. Auch voluminöse Stränge sind durch den $^1_{\ \ \ \ }[H_9O_4]^+$ -Komplex realisierbar, wie in $[H_9O_4]^+Cl^- \cdot 2~H_2O^{34}$ zu sehen ist (Abb. 9). Die Proton-Hydratkomplexe sind

Abb. 8 $[H_{10}O_4]^{2+}$ in $HNO_3 \cdot 2 H_2O.^{28}$

14

²² Th. Dahlems, D. Mootz, Z. Anorg. Allg. Chem. **1996**, 622, 1319.

²³ R. Attig, D. Mootz, *Acta Cryst.* **1976**, B32, 435.

²⁴ W. Czado, U. Müller, Z. Kristallogr.-New Cryst. Struct. 2002, 217, 339.

²⁵ B. Krebs, S. Bonmann, K. Erpenstein, Z. Naturforsch. 1991, 46b, 919.

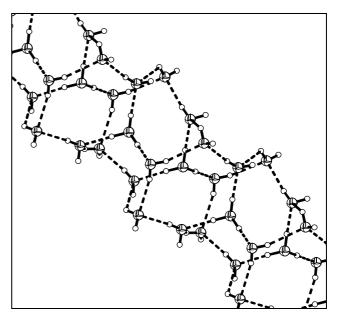
²⁶ R. A. Bell, G. G. Christoph, F. R. Fronczek, R. E. Marsh, *Science* **1975**, 190, 151.

²⁷ J.-H. Choi, T. Suzuki, S. Kaizaki, *Acta Cryst. C* **2002**, 58, 539.

²⁸ N. Lebrun, F. Mahe, J. Laminot, M. Foulon, J. C. Petit D. Prevost, Acta Cryst. B 2001, B57, 27.

²⁹ D. Mootz, A. Merschenz-Quack, Z. Naturforsch. **1987**, 42b, 1231.

³⁰ H. Henke, W. F. Kuhs, Z. Krist. **1987**, 181, 113.


³¹ A. V. Virovets, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, W. Clegg, J. Struct. Chem. 2001, 42, 384.

³² R. G. Delaplane, I. Taesler, I. Olovsson, *Acta Cryst. B* **1975**, B31, 1486.

³³ N. Lebrun, F. Mahe, J. Lamiot, M. Foulon J. C. Petit, Acta Cryst. C 2001, C57, 1129.

³⁴ I. Taesler, J.-O. Lundgren, *Acta Cryst.* **1978**, B34, 2424.

nicht nur in der Lage, Ketten, Bänder oder Stränge auszubilden, sondern auch zweidimensionale Schichten wie z. B. in $HClO_4 \cdot 2 H_2O^{35}$. In dieser Verbindung bildet ${}^{2}_{m}[H_{9}O_{4}]^{2+}$ ein Netzwerk aus Vier- und 20-Ringen. In der Verbindung HClO₄ · 3 H₂O ergibt das Komplexkation ${}^{2}_{\infty}[H_{7}O_{3}]^{+}$ eine aus Achtringen bestehende Schicht (Abb. 10). Bisher wurden nur Arbeiten erwähnt, die Proton-Wasser-Komplexe aufgrund ihrer Kristallstruktur behandeln. Nun sollen weitere theoretische bzw. physikalische Arbeiten in Bezug auf protonierte

Abb. 9: ${}^1_{\infty} [H_9O_4]^+$ in $[H_9O_4]^+Cl^- \cdot 2 H_2O.^{34}$

Hydratkomplexe ergänzt werden. Schon früh wurden von Eigen und Zundel die nach ihnen Komplexe H₅O₂⁺ und $H_9O_4^+$ 37 untersucht. benannten Weiterhin wurden Molekülorbitalberechnungen³⁸ des H₅O₂⁺-Kations, Ab-initio-Molekulardynamikberechnungen³⁹ des Zundel- bzw. Eigenkomplexes, eine Untersuchung des Protonentransportes in Wasser (MS-EVB)⁴⁰ und in Eis (QM/MM)⁴¹, eine Analyse der quantenmechanischen Eigenschaften des Protons in H₅O₂⁺ ⁴², sowie *Ab-initio-*Berechnungen eines Überschusses von Protonen in Wasser⁴³ durchgeführt. Weniger theoretischer Natur sind die Berechung der IR-Spektren von H⁺(H₂O)_n zur Bestimmung des Protonierungsmusters von Wassernetzwerken in Bakteriorhodopsin⁴⁴ und die IR-spektroskopische Untersuchung von $H^{+}(H_{2}O)_{n}$ (n = 6-27)⁴⁵ bzw. $H^{+}(H_{2}O)_{n}$ (n = 4 - 27)⁴⁶.

Im Gegensatz zu den protonierten Hydraten ist die Anzahl theoretischer bzw. physikalischer Arbeiten über protonierte Ammoniakate deutlich geringer. Dennoch wurde das Verhalten von Ammoniumionen in gasförmigem Ammoniak⁴⁷ bzw. die Dissoziation der Komplexe⁴⁸ schon früh untersucht. Weiterhin wurden Untersuchungen über die Mobilität von $NH_4^+(NH_3)_n$ (n = 0-5)⁴⁹ und über die IR-angeregte Photodissoziation von $NH_4^+(NH_3)_n$ (n = 3-9)⁵⁰ angestellt.

³⁵ J. Almlöf, J.-O, Lundgren I. Olovsson, *Acta Cryst.* **1971**, B27, 898.

³⁶ E. Wicke, M. Z. Eigen, J. Phys. Chem. **1954**, 1, 515.

³⁷ G. Zundel, H. Metzger, Z. Phys. Chem. **1968**, 58, 225.

³⁸ J. E. Del Bene, M. J. Frisch, J. A. Pople, *J. Phys. Chem.* **1985**, 89, 3669.

³⁹ A. A. Tulup, *J. Chem. Phys.* **2004**, 120, 1227.

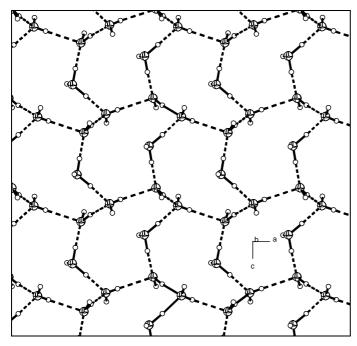
⁴⁰ U. W. Schmitt, G. A. Voth, J. Chem. Phys. **1999**, 111, 9361.

⁴¹ C. Kobayashi, S. Saito, I. Ohime, J. Chem. Phys. **2000**, 113, 9090.

⁴² M. E. Tuckerman, D. Marx, M. L. Klein, M. Parrinello, *Science*, **1997**, 275, 817.

⁴³ D. Marx, M. E. Tuckerman, Jürg Hutter, M. Parrinello, *Nature*, **1999**, 397, 601.

⁴⁴ R. Rousseau, V. Kleischmidt, U. W. Schmitt, D. Marx, Angew. Chem. 2004, 116, 4908.


⁴⁵ J.-W. Shin, N. I. Hammer, E. G. Diken, M. A. Johnson, R. S. Walters, T. D. Jaeger, M. A. Duncan, R. A. Christie, K. D. Jordan, *Science*, **2004**, 304, 1137.

⁴⁶ M. Miyazaki, A. Fujii, T. Ebata, N. Mikami, *Science*, **2004**, 304, 1134.

⁴⁷ I. N. Tang, A. W. Castleman Jr. *J. Chem. Phys.* **1975**, 62, 4576.

⁴⁸ S. Wie, W. B. Tzeng, A. W. Castleman Jr., *J. Chem . Phys.* **1990**, 93, 2506.

⁴⁹ A. J. Midey, A. A. Viggiano, J. Chem. Phys. **2001**, 114, 6072.

Abb. 10: $_{m}^{2}$ [H₇O₃]⁺ HClO₄ · 3 H₂O.³⁵

Auch sind Ab-initio-Studien am $NH_4^+(NH_3)_{0-6}$ -Komplex⁵¹ bzw. Ab-initio-Monte Carlo-Simulationen am $HCl(NH_3)_{1-4}$ -Komplex⁵² bekannt.

Bisher wurden mit Hilfe von folgende Beugungsmethoden Komplexe nachgewiesen: in $NH_4(NH_3)_4I^{53}$, $NH_{4}^{+}(NH_{3})_{4}$ $NH_4^+(NH_3)_3$ in $NH_4(NH_3)_3X$ (X = Cl, Br, I)⁵⁴ und $NH_4^+(NH_3)$ in $NH_4(NH_3)I^{55}$ bzw. $ND_4(ND_3)I^{56}$ Die Forschung vorausgehenden Diplomarbeit⁵⁷, in der das $NH_{4}^{+}(NH_{3})_{2}$ -Komplexkation in $(NH_4)_3[AsS_4]$. 5 NH₃ und in $(NH_4)_3[SbS_4] \cdot 8$

NH₃⁵⁸ nachgewiesen wurde, soll nun weitergeführt werden. Hierbei sollen die N-H···N-Wasserstoffbrücken von Ammonium-Ammoniakaten mit Hilfe der Röntgenstrukturanalyse eingehender untersucht werden, d.h. isolierte ein- oder mehrkernige bis hin zu ausgedehnten Ammoniak-Proton-Komplexkationen sollen strukturchemisch charakterisiert werden.

Hierbei werden zwei Möglichkeiten zur Erzeugung entsprechender Festkörper in Betracht gezogen. Einerseits betrifft dies die Ammoniumsalze selbst, die nur durch die Umkristallisation in flüssigem Ammoniak Ammonium-Ammoniakat Kristalle liefern sollen. Andererseits können im flüssigen Ammoniak die Ammonolysegleichgewichte benutzt werden, um Amid- bzw. Ammoniumionen zu generieren und dadurch wiederum Ammonium-Ammoiakat-Kristalle zu bekommen. Bei der dritten Methode werden Alkalimetallsalze durch situ zu Ionenaustauscher in Ammoniumsalzen umgewandelt, wobei Ionenaustauschprozess auch in flüssigem Ammoniak stattfindet und somit die Bildung der Ammoniak-Proton-Komplexkationen nahe liegt. Als stark saurer Ionenaustauscher soll Amberlyst 15 (A15) von FLUKA benutzt werden, dessen Sulfonsäuregruppen Protonen abgeben und im Gegenzug Alkalimetallkationen binden können. Die durch die Auskristallisation gebildeten Salze der Komplexkationen und der entsprechenden Anionen werden mit Hilfe eines IPDS-Röntgendiffraktometers kristallographisch untersucht. Anhand der gewonnen N-H···N-Abstände und Winkel kann dann eine energetische Einstufung der N-

⁵⁰ I. Masahiko, Y. Junsei, M. Kanae, N. Shinji, H. Kimihiko, K. Tamotsu, Front. Scien. Ser. **1996**, 16, 389.

⁵¹ B.-C. Wang, J.-C. Chang, J.-C. Jiang S.-H. Lin, *Chem. Phys.* **2002**, 276, 93.

⁵² D. E. Bacelo, S. E. Fiorissi, *J. Chem. Phys.* **2003**, 119, 11695.

⁵³ I. Olovsson, *Acta Chem. Scand.* **1960**, 14, 1466.

⁵⁴ I. Olovsson, *Acta Chem. Scand.* **1960**, 14, 1453.

⁵⁵ H. J. Berthold, W. Preibsch, E. Vonholdt, *Angew. Chem.* **1988**, 100, 1581.

⁵⁶ H. J. Berthold, E. Vonholdt, R. Wartchow, Z. Krist. **1992**, 200, 225.

⁵⁷ T. Rossmeier, *Diplomarbeit*, Universität Regensburg, **2002**.

⁵⁸ T. Rossmeier, N. Korber, *Z. Naturforsch.* **2003**, 58b, 672.

H···N-Wasserstoffbrücken untereinander vorgenommen werden bzw. können die Wechselwirkungen zu anderen Protonenakzeptoren eingehender untersucht werden.

Darüber hinaus soll eine neue Methode entwickelt werden, die es ermöglicht, Ammoniakat-Kristalle, die bei Raumtemperatur nicht existent sind, einer Einkristallneutronenbeugung zuzuführen. Als Modellsystem dient das NH₄(NH₃)₄Cl bzw. die deuterierte Form ND₄(ND₃)₄Cl.

2. Methodischer Teil

Schon die in dieser Arbeit untersuchten Edukte weisen oftmals eine Oxidations- bzw. Feuchtigkeitsempfindlichkeit auf, für die erhaltenen Produkte gilt dies fast ausnahmslos. Dieses allgegenwärtige Problem erfordert für viele experimentelle Aufgaben, wie die Trocknung von Reagenzien und Glasgeräten, die Einkondensation von Ammoniak in Schlenkgefäßen, das Kristallwachstum, die Kristallpräparation und die Röntgenstrukturanalyse, Inertbedingungen. Das Arbeiten unter Luft- und Wasserausschluss wird zum einen durch einen Handschuhkasten (Labmaster MB 130 G, Fa. M. BRAUN, Garching), zum anderen durch eine Schutzgasanlage (Abb. 1) ermöglicht.

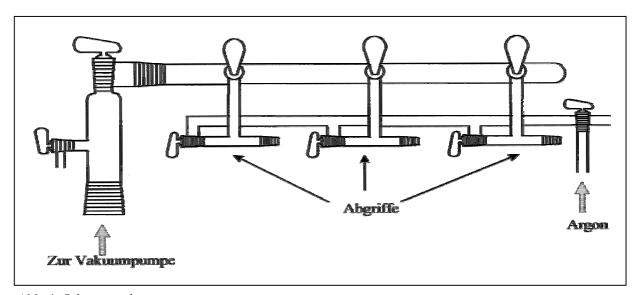


Abb. 1: Schutzgasanlage

Eine Drehschieberölpumpe (Labovac[®], Typ Pk 4D, Saskia, Ilmenau) evakuiert die Apparatur bis auf <10⁻³ mbar. Zur Sicherheit sind ein mit Quecksilber gefülltes Überdruckventil und ein Blasenzähler integriert. Als Inertgas dieser Anlage wird Argon (4.6 MESSER Grießheim, 99.8%) verwendet (Abb. 2).

Das aus der Stahlflasche kommende Argon wird, bevor es in die Schutzgasanlage strömen kann, noch von Stickstoff-, Sauerstoff- und Wasserspuren befreit. Um das Argon zu trocknen, lässt man es nacheinander durch mit Kieselgel (2), Kaliumhydroxidplätzchen (3), Molekularsieb (Porengröße 0.3mm) (4) und Phosphorpentoxid (5) befüllte Säulen strömen.

Die abschließende Entfernung von Sauerstoff- bzw. Stickstoffverunreinigungen wird durch ein mit Titanschwammgranulat gefülltes Quarzglasrohr (7) bewerkstelligt. Die Aktivität des porösen Granulats beginnt bei ca. 923 K. Dieses Temperaturniveau hält ein permanent betriebener Röhrenofen mit Temperaturkontrolle aufrecht.

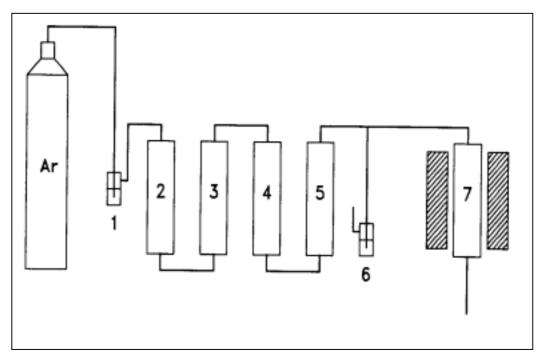
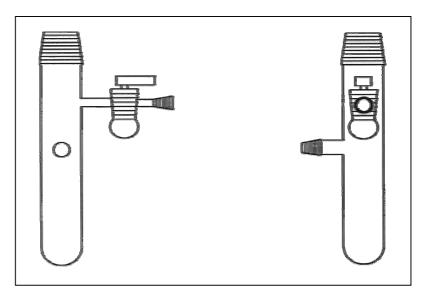



Abb. 2: Reinigungsstrecke

Der experimentelle Teil wird von der Schlenktechnik dominiert, dabei dienen Schlenkrohre (Abb. 3) als Reaktions- bzw. Kristallisationsgefäße, die an eine Schutzgasanlage oder Ammoniakanlage angeschlossen werden können.

Die aus Duranglas bestehenden und mit Normschliffverbindungen versehenen Schlenkrohre werden wie alle Glasgefäße, die mit empfindlichen Stoffen in Berührung kommen, dreimal ausgeheizt bzw. evakuiert. Um die Trockenheit der Edukte sicherzustellen, werden die gefüllten Schlenkrohre evakuiert und über mehrere Stunden hinweg erhitzt. Hierbei wurde die Zersetzungstemperatur der Edukte um mindestens 293 K unterschritten.

Abb. 3: Schlenkrohr mit Abgriff

Das Lösungsmittel Ammoniak wird in einer Kühlfalle (Abb.4) über elementarem Natrium aufbewahrt. Die Kühlfalle ist so mit der Schutzgasanlage verbunden, dass das Ammoniak

ohne Luft- oder Wasserverunreinigungen von der Kühlfalle in das Schlenkgefäß kondensiert werden kann. Als Kühlmittel werden Trockeneis-Ethanol-Mischungen (195 K) oder auch flüssiger Stickstoff (77 K) benutzt. Ammoniak liegt bei den Temperaturen des flüssigen Stickstoffes als Feststoff vor, wodurch die Reaktivität herabgesetzt wird.

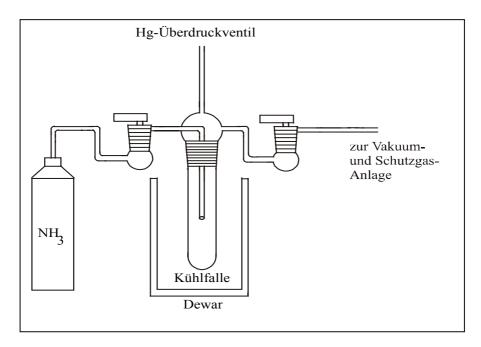


Abb. 4: Ammoniakanlage

Die mit Edukt und Ammoniak gefüllten Schlenkrohre werden in Tiefkühlschränken bis zu mehreren Wochen gelagert um Kristalle zu erhalten. Die so gewonnenen Kristalle sind nicht nur oxidations- und feuchtigkeitsempfindlich, sondern aufgrund des "Kristallammoniaks" auch thermisch leicht zersetzbar.

Trotz dieser Erschwernisse ist es unter Verwendung der Methode von T. Kottke und D. Stalke⁵⁹ möglich, Einkristalle zu präparieren und mit Hilfe der Röntgenstrukturanalyse zu untersuchen.

Dieses Verfahren ermöglicht eine Einkristallpräparation (Abb. 5) unterhalb der Zersetzungstemperatur, indem der Kristall durch gekühltes Öl (AUSIMONT, Galden HAT 230) vor seiner Zersetzung geschützt wird. Der Stickstoffstrom wird durch eine in flüssigen Stickstoff eintauchende Kupferspirale abgekühlt, bevor er dann auf ein klammerförmig gebogenes Uhrglas trifft. In der Mitte des Uhrglases befindet sich eine kleine Vertiefung, in die der zu kühlende Öltropfen gegeben wird.

Nachdem eine ausreichende Zähigkeit des gekühlten Öls erreicht ist, wird mit einem kleinen Metallöffel die zu untersuchende Substanz mit möglichst wenig Solvens aus dem Schlenkrohr in das Öl getaucht.

Ein Stereomikroskop ermöglicht die Auswahl der geeigneten Kristalle und deren Positionierung auf der ausgezogenen Glasspitze des Goniometerkopfes. Die Spitze der nun mit einem in Öl gehüllten Kristall versehenen Glaskapillare wird über verdampfenden

-

⁵⁹ T. Kottke, D. Stalke, J. Appl. Cryst., 26 (1993), 615

flüssigen Stickstoff gehalten und dadurch gekühlt bzw. unter Inertbedingungen zum Röntgendiffraktometer (STOE) gebracht. Dort wird der Goniometerkopf im 123 K kalten Stickstoffstrom (Kühlgerät Fa. OXFORD) befestigt.

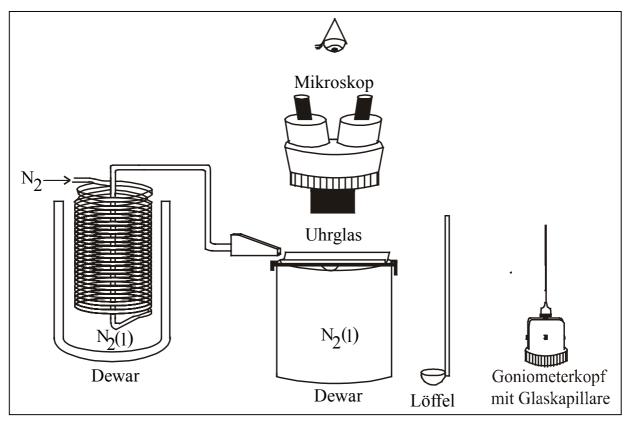


Abb. 5: Apparatur zur Einkristallpräparation

Die Einkristall-Datensätze des Diffraktometers werden mit dem IPDS-Paket (Imaging Plate Diffraction Systems) der Firma STOE erstellt, zur Strukturlösung bzw. Verfeinerung werden die Programme Shelxs-97⁶⁰ und Shelxl-97⁶¹ verwendet.

Das Programm Platon⁶² führt die bei Schweratomstrukturen nötige Absorbtionskorrektur durch.

Bei einem Großteil der Ansätze ist es nötig, das Kation durch einen Ionenaustauscher⁶³ zu entfernen und das Proton zur Bildung eines Ammoniumions bereitzustellen. Als Ionenaustauscher stand Amberlyst 15 (H⁺-Form, 20-50 mesh, FLUKA) zur Verfügung. Um die Schwermetall- und besonders Eisenverunreinigungen zu entfernen, wurden die Kügelchen zweimal mit Methanol (p.a.) gewaschen und danach zwei Stunden bei 378 K unter Hochvakuum getrocknet. Die Amberlyst-Ionenaustauscher⁶⁴ weisen eine ungewöhnlich hohe

64 Amberlite-Typenprogramm der Rohm und Haas Company, Philadelphia, USA

 $^{^{60}}$ M. G. Sheldrick, SHELXS-97, "Programm zur Bestimmung von Kristallstrukturen", Universität Göttingen 1997

⁶¹ M. G. Sheldrick, SHELXL-97, "Programm zur Bestimmung von Kristallstrukturen", Universität Göttingen **1997**

⁶² A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, **2001**

⁶³ Konrad Dorfner, *Ion Exchangers*, WALTER DE GRUYTER, New York **1991**

Porösität und somit eine große spezifische Oberfläche auf. Weiterhin werden sie als stark saure Kationenaustauscher beschrieben, die zur Katalyse organischer Reaktionen in nichtwässrigen Lösungen und zur Entfernung der Kationen aus solchen Lösungen verwendet werden. Dieser Kunstharz-Ionenaustauscher hat Sulfonsäuregruppen als aktive Gruppen. Die nachstehende Gleichung zeigt die angenommene Gleichgewichtsreaktion, die zum gewünschtem Ammonium-Ammoniakat führt.

Kation⁺Anion⁻ +
$$[H^+/A15]$$
 +x NH₃ \longrightarrow (NH₄)⁺Anion⁻ · (x-1) NH₃ + $[Kation^+/A15]$

Die Anionen werden nach folgenden Gesichtspunkten ausgesucht: Größe, Ladung, Löslichkeit in flüssigem Ammoniak und Vorhandensein von Stickstoffatomen in den Anionenmolekülen. Letzteres ist von Interesse, da N-H···N-Wasserstoffbrückenbindungen besonders zu den Anionen beobachtet werden können. So werden die Verbindungen NH₄N₃, NH₄SCN und H₂CN₂ mit flüssigem Ammoniak umkristallisiert. Um jedoch große Komplexkationen zu erhalten, ist es notwendig, große, möglichst einfach geladene Anionen zu wählen. Daher wurden die Alkalimetallverbindungen von $[B(C_6H_5)_4]^-$, $[B(Ph-Ph)_4]^-$, $[B(p-tolyl)_4]^-$, $[Fe(CN)_6]^{3-}$, $[Co(C_2B_9H_{11})_2]^-$ und $[P(Mo_{12}O_{40})]^{3-}$ nach dem obigen Gleichgewicht in Ammoniumverbindungen umgewandelt.

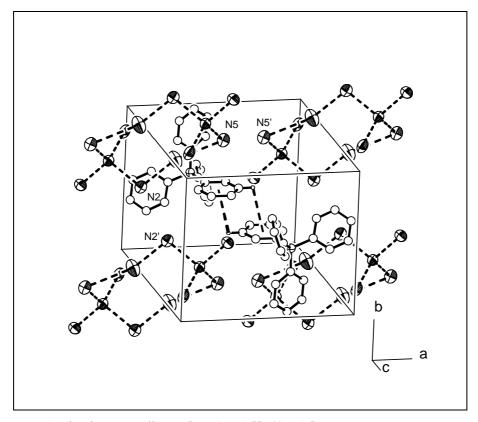
Die folgenden Strukturbeschreibungen sind jeweils als eigener Abschnitt aufzufassen, d. h. die Abbildungsnummerierung beginnt bei jeder Strukturbeschreibung mit der Ziffer 1.

3. Strukturbeschreibungen

3.1 $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$

Darstellung und Röntgenstrukturanalyse

Natriumtetraphenylborat (0.300 g (0.877 mmol)) wird über Nacht bei 80°C getrocknet. Das Molverhältnis NaBPh₄/Ionenaustauscher beträgt 1/2, d.h. zu den 0.300 g (0,877 mmol) NaBPh₄ werden 0.4 g (4.6 meq/g) Amberlyst 15 (FLUKA) gegeben. Danach werden ca. 20 ml Ammoniak einkondensiert (195 K). Nach zwei Monaten haben sich farblose Kristalle gebildet.


Die im Orientingmodus aufgenommenen Reflexe können anhand einer monoklinen Elementarzelle indiziert werden. Nach Integration und Datenreduktion Intensitätsdatensatzes weisen die nicht vorhandenen integralen Auslöschungen, die zonalen Auslöschungen h0l l≠2n und die seriellen Auslöschungen 0k0 k≠2n in Verbindung mit der monoklinen Metrik auf die Raumgruppe P2₁/c hin. In dieser Raumgruppe gelingt die Lösung und Verfeinerung der Kristallstruktur, wobei die Lagen von sechs Stickstoff-, 24 Kohlenstoffatomen und einem Boratom in der asymmetrischen Einheit ermittelt werden. isotroper Lageverfeinerung wird der Datensatz einer Absorptionskorrektur und einer anisotropen Verfeinerung unterworfen. Das Programm ADDSYMM des Programmpacketes PLATON wurde benutzt, um eventuell fehlende Symmetrien zu finden, jedoch ohne Erfolg. Weiterhin können die Lagen aller an Stickstoffatome gebundenen Wasserstoffatome der Differenzfouriersynthese entnommen und isotrop verfeinert werden.

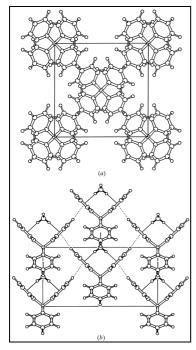
Kristallstrukturdaten von [NH4(NH3)4][B(C6H5)4] \cdot NH3

Summenformel	$C_{24}H_{39}BN_6$
Anzahl der Frames	265
φ-Inkrement (°)	1.2
Belichtungszeit (min)/Frame	1.0
Messtemperatur (K)	123
Kristallsystem	monoklin
Raumgruppe	P2 ₁ /c (Nr. 14)
a (Å)	12.4693(9)
b (Å)	9.9918(4)
c (Å)	21.144(1)
ß(°)	97.942(8)
Volumen (Å ³)	2609.2(2)
Z	4
M (g·mol ⁻¹)	422.42
$\rho_{c} (g \cdot cm^{-3})$	1.075
F (000)	920
$\mu (\text{MoK}_{\alpha})(\text{Å})$	0.71073
θ-Bereich (°)	1.94 - 25.95
Gesamtzahl der Reflexe	20126
Zahl der unabhängigen Reflexe (R _{int})	5010 (0.0925)
Zahl der Parameter	436
$R_1 (I > 2\sigma(I))$	0.0423
$wR_2 (I > 2\sigma(I))$	0.0734
R ₁ (alle Daten)	0.1142
wR ₂ (alle Daten)	0.0860
GooF	0.720
Restelektronendichte	0.170/-0.121

Tabelle 1: Einkristallstrukturdaten von $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$.

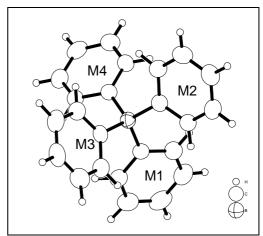
Strukturbeschreibung und Diskussion

Abb. 1: Die Elementarzelle von $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$.


Der saure Ionenaustauscher Amberlyst 15 (A15) dient zum einen als Protonenspender und zum anderen als Na⁺-Akzeptor, wobei die Protonen sofort mit dem flüssigen Ammoniak reagieren und Ammoniumionen bilden. Die durch den Ionenaustauscher ermöglichte Gleichgewichtsreaktion ist letztendlich für die Bildung von Ammonium-Ammoniakaten aus Alkalimetallsalzen verantwortlich. Es wird folgende Gleichgewichtsreaktion angenommen:

$$NaBPh_4 + [H^+/A15] + 6 NH_3 \longrightarrow NH_4[B(Ph)_4] \cdot 5 NH_3 + [Na^+/A15]$$

Steiner & Mason⁶⁵ führten Neutronenbeugungsexperimente an NH₄BPh₄ (Abb. 2) durch. Es zeigte sich, dass Anionen und Kationen alternierend Stränge bilden, wobei das Ammoniumion tetraedrisch von vier Phenylringen zweier Anionen umgeben wird (N···M: 3.023 Å, H···M: 2.067 Å, N-H···M: 173.8°, N-B: 4.017(4) Å). Die Kationen werden durch die Anionen so gut abgeschirmt, dass die Stränge untereinander nur noch Phenyl····Phenyl-Wechselwirkungen ausbilden, und zwar in der Art und Weise, dass ein Phenylring des einen Stranges senkrecht über der Mitte des Phenylringes des Nachbarstranges steht (C···M: 3.751 Å, H···M: 2.670 Å, C-H···M: 172.0°, B-B: 8.823 Å). Weiterhin werden N-H-Abstände von 0.960(7) Å und H-N-H-Winkel von 107(1)° und 110.6(7)° beobachtet. Das Tetraphenylborat zeigt B-C-Abstände von 1.641(1) Å, C-C-Abstände von durchschnittlich 1.400(1) Å und C-H-

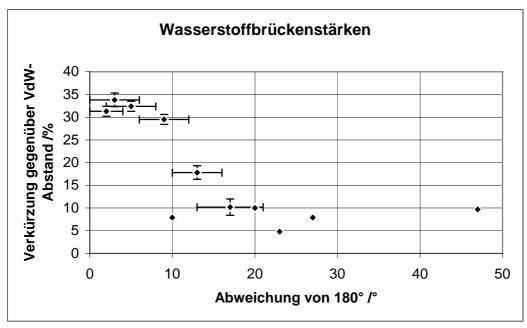

-

⁶⁵ Steiner, T.; Mason, Acta Cryst.. 2000 B56, 254.

Abb. 2: Die Elementarzelle von NH₄B(C₆H₅)₄ (20 K). N-H···Ph-Kontakte (Linien), C-H···Ph-Kontakte (gestrichelte Linien).

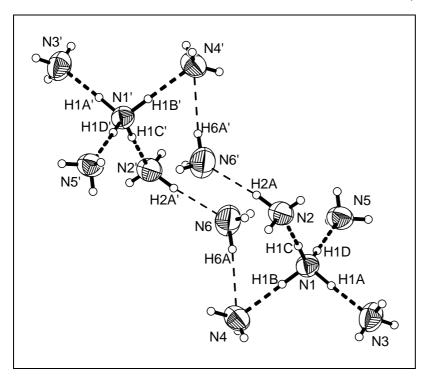
Abstände von durchschnittlich 1.090(3) Å. Der C-B-C-Winkel beträgt 103.6(1) und 112.76(5)°.

Abb. 3: Das Tetraphenylborat-Anion in $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$.


In dem hier beschriebenen Ammoniumtetraphenylborat-Pentaammoniakat werden C-B-C-Winkel von 102.9(1) bis 113.7(2)° beobachtet. Die B-C-Abstände liegen bei 1.642(4)-1.655(4) Å, die C-C-Abstände sind 1.380(4)-1.402(3) Å, die C-H-Abstände sind 0.92(2)-0.97(3) Å.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
(1)(1-)(2)	1 00 (4)	1 00/4)	0.005(4)	100/0)
N(1)-H(1A)N(3)	1.09(4)	1.82(4)	2.906(4)	177(3)
N(1)-H(1B)N(4)	1.05(3)	1.89(3)	2.940(3)	178(2)
N(1)-H(1C)N(2)	1.02(3)	1.86(3)	2.882(3)	175(3)
N(1)-H(1D)N(5)	1.02(3)	1.94(3)	2.952(3)	171(3)
N(2)-H(2A)N(6)	1.01(4)	2.26(4)	3.252(4)	167(3)
N(6)-H(6A)N(4)	0.95(5)	2.47(5)	3.384(4)	163(4)
N(3)-H(3B)M(4)	0.94	2.61	3.50	160
N(4)-H(4B)M(4)	0.86	2.62	3.26	133
N(2)-H(2B)M(1)	0.93	2.67	3.52	153
N(5)-H(5B)M(2)	0.87	2.67	3.52	170
N(5)-H(5C)M(3)	0.93	2.76	3.61	157
N(4)-H(4A)M(1)	0.92	3.21	3.37	92
N(4)-H(4B)M(1)	0.86	3.13	3.37	99
N(4)-H(4C)M(1)	0.84	3.09	3.37	102
C(15)-H(15)M(3)	1.00	3.43	3.80	104

Tab. 2: Protonendonor···Akzeptor-Abstände und deren Winkel in $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$ Das Ammoniumion (N1) zeigt N-H-Abstände von 1.02(3) bis 1.09(4) Å sowie H-N-H-Winkel von 106(2) bis 113(2)°. Die N-H-Abstände stimmen mit den Rotationsenergien, die einen N-H-Abstand von 1.03 Å postulieren, gut überein⁶⁶.

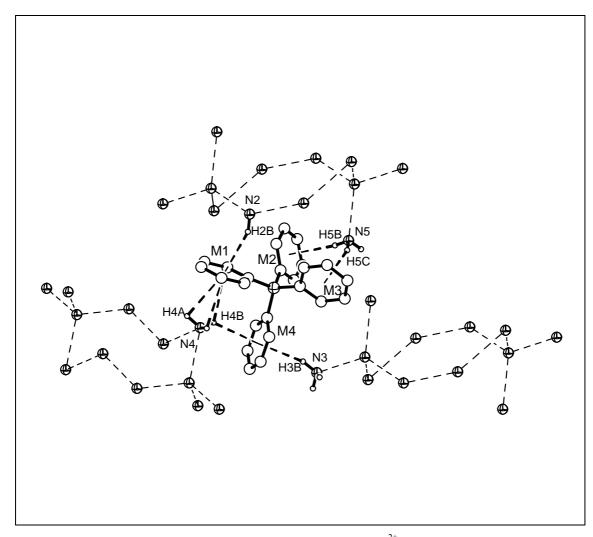

_

⁶⁶ G. C. Pimentel, A. L. McClellan, *The Hydrogen Bond*, Freeman, San Francisco, **1960**.

Abb. 4: Wasserstoffbrückenstärken in $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$.

Es bildet einen pseudotetraedrischen [NH₄(NH₃)₄]⁺-Komplex mit vier Ammoniakmolekülen (N2, N3, N4, N5), der durch Wasserstoffbrücken zusammengehalten wird (Abb. 5). Die N1-H···N-Wasserstoffbrücken (Tab. 2) sind um 33.8 bis 29.5 % kürzer als der N-H···N-Van-der-Waals-Abstand (2.75 Å). Der N···N-Abstand stimmt mit 2.88 - 2.95 Å gut mit dem von Olovsson⁶⁷ berichteten N···N-Abstand in der Struktur von NH₄I · 4 NH₃ (2.95 Å) überein, in

Abb. 5: Der Ammonium-Ammoniak-Komplex $[\{NH_4(NH_3)_4\}_2(\mu-NH_3)_2]^{2+}$ in $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$.


welcher jedoch Wasserstofflagen nicht bestimmt wurden, sowie dem mit bereits berichteten N···N-Abstand in der Struktur von $(NH_4)_3AsS_4 \cdot 5 NH_3$ (2.84 - 2.88 Å) und $(NH_4)_3SbS_4 \cdot 8 NH_3$ $(2.88 - 2.92 \text{ Å})^{68}$. Die H···N-Abstände des N1-Ammoniumions zu den vier

Ammoniakmolekülen betragen 1.82(4) – 1.94(3) Å, die DHA-Winkel sind mit 171(3) – 178(2)° auffallend nahe an 180°. Zwei

⁶⁸ T. Roßmeier, N. Korber, Z. Naturforsch B. **2003** 58b, 672.

⁶⁷ Olovsson, I. Acta Chem. Scand. **1960** 14, 1466.

symmetrieäquivalente Ammonium-Ammin-Komplexe werden durch das N6-Ammoniakmolekül verknüpft, welches als Protonenakzeptor zum N2-Ammoniakmolekül und als Protonendonor zum N4-Ammoniakmolekül dient. Diese H-Brücken (Tab. 2, Abb. 4) sind

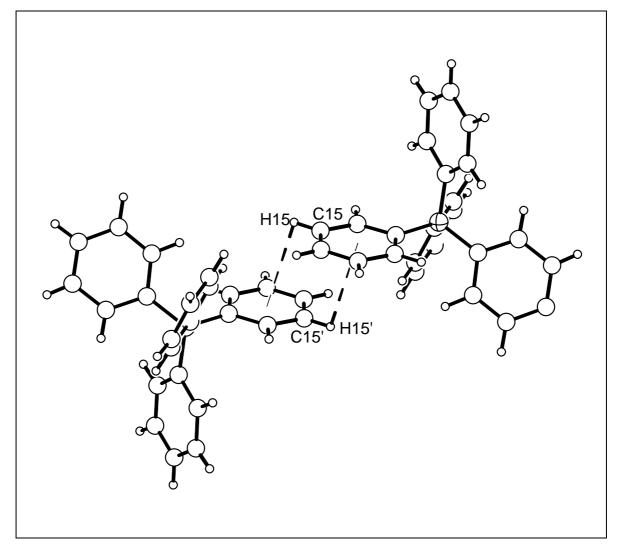


Abb. 6: Das $[B(Ph)_4]^-$ -Anion, umgeben von $[\{NH_4(NH_3)_4\}_2(\mu-NH_3)_2]^{2+}$ in $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$.

um 17.8 bzw. 10.2 % kürzer als der N-H···N-VdW-Abstand, was für die Existenz einer Wasserstoffbrückenwechselwirkung spricht. Jedoch sind sie als schwächer einzustufen als die vorher genannten. Der N6···N4-Abstand (3.384(4) Å) ist etwas größer als der N···N-Abstand in festem Ammoniak, der H6A···N4-Abstand (2.47(5) Å) und der DHA-Winkel (163(4)°) aber Indizien für eine vorhandene Wechselwirkung. Weitere N-H···Nsind Wasserstoffbrückenbindungen als die bisher beschriebenen sind nicht mehr zu beobachten. Zusätzlich liegen in dieser Struktur D-H··· π -Kontakte (D = N oder C) vor, wobei der Mittelpunkt des Benzolrings als Bezugspunkt genommen wird (Abb. 5). Die kürzesten dieser H···π-Kontakte (Tab. 3) gehen von den Ammoniakmolekülen N2, N3, N4, N5 bzw. den dazugehörigen Protonen aus und betragen 2.61–2.76 Å, die N-H···π-Winkel liegen zwischen 133 und 170°.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3B)M(4)	0.94	2.61	3.50	160
N(4)-H(4B)M(4)	0.86	2.62	3.26	133
N(2)-H(2B)M(1)	0.93	2.67	3.52	153
N(5)-H(5B)M(2)	0.87	2.67	3.52	170
N(5)-H(5C)M(3)	0.93	2.76	3.61	157
N(4)-H(4A)M(1)	0.92	3.21	3.37	92
N(4)-H(4B)M(1)	0.86	3.13	3.37	99
N(4)-H(4C)M(1)	0.84	3.09	3.37	102
C(15)-H(15)M(3)	1.00	3.43	3.80	104

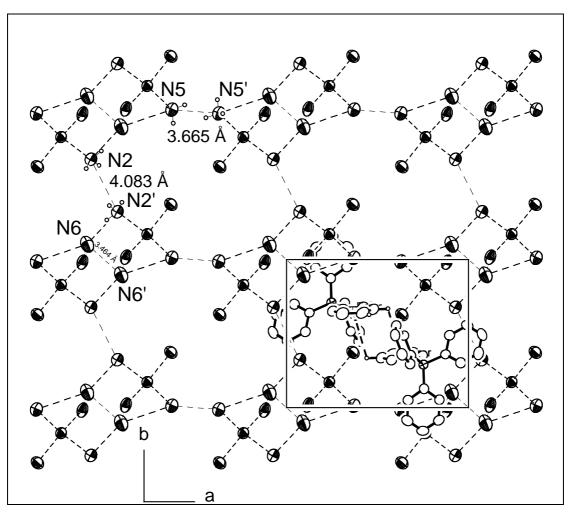

Tab. 3: Protonendonor···Akzeptor-Abstände und deren Winkel in [NH₄(NH₃)₄][B(C₆H₅)₄] · NH₃.

Abb. 7: "offset face-to-face-"Wechselwirkung von zwei $[B(Ph)_4]^-$ -Anionen in $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$.

Den kürzesten D··· π -Abstand (3.26 Å) zeigt die N4-H4B···M4-Brücke, der DHA-Winkel jedoch ist mit 133° sehr weit von 180° entfernt. Ein möglicher Grund für diesen auffällig schlechten DHA-Winkel sind die drei anderen Wasserstoffbrücken des N4-Ammoniakmoleküls zu der Ringmitte M1. Das N4-Ammoniakmolekül zeigt H···M1-Abstände von 3.09 – 3.21 Å und N-H···M1-Winkel von 92 – 102°, was auf eine gabelförmige

Wasserstoffbrücke deutet. Ob jedoch eine solche Wechselwirkung vorliegt, kann durch das H···M1-Abstandskriterium nicht bestätigt werden, da der H···π-VdW-Abstand mit 2.9 Å kleiner ist als der hier beobachtete. Der N···M1-Abstand ist mit 3.37 Å der zweitkürzeste in stellt somit ein weiteres Indiz für das Vorhandensein Wasserstoffbrückenbindung dar. Um einfache Wasserstoffbrücken handelt es sich bei den Kontakten N2-H2B···M1 und N3-H3B···M4. Die N···M-Abstände sind mit 3.50 und 3.52 Å etwas lang für eine eindeutige Wasserstoffbrückenbindung. Nur die DHA-Winkel (160° und 153°) und N···M-Abstände (2.61 und 2.67 Å) zeigen, dass die Protonen H2B und H3B sich zu den Ringmitten M1 bzw. M4 hin orientieren. Demnach greift dass Abstandskriterium hier. Folglich sind nicht nur Packungseffekte für die Orientierung der Protonen zu den Ringmitten hin verantwortlich. Dieser Argumentation folgen auch die beiden VdW-Kontakte des N5-Ammoniakmoleküls. Es liegt zwischen zwei Phenylringen M2 und M3 eines Anions. Die

Abb. 8: Der Ammonium-Ammoniak-Komplex $[\{NH_4(NH_3)_4\}_2(\mu-NH_3)_2]^{2+}$ und zwei $[B(Ph)_4]^-$ -Anionen in $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$

Protonen H5B und H5C zeigen DHA-Winkel von 170° und 157°, sind aber nicht zu weit von M2 bzw. M3 entfernt (2.67 und 2.76 Å), was einen Protonentransferprozess nahelegt.

Zu den bekanntermaßen schwachen Wechselwirkungen gehören die C-H··· π -Wechselwirkungen (Abb. 7, Tab. 3), wobei Phenylringe "vertex-to-face", "edge-to-face" oder

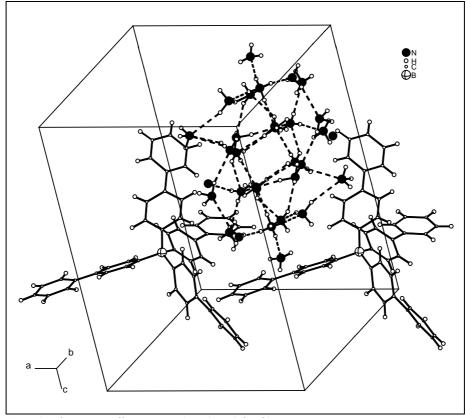
"face-to-face" ausgerichtet sein können. Diese Struktur zeigt eine "offset face-to-face"-Wechselwirkung zwischen zwei Tetraphenylboratanionen, die zur Ausbildung eines zweifach negativ geladenen Dimers ([B(Ph)₄]₂²⁻) führt (Abb. 6). Der C-C-Abstand zweier paralleler Phenylringe beträgt 3.38 Å, ist also minimal kürzer als der C-C-VdW-Abstand (3.4 Å). Der H15-C15-C15'-Winkel beträgt 82° und zeigt somit, dass die beiden meta-Kohlenstoffatome der beiden überlappenden Phenylringe fast genau übereinander stehen. Im Vergleich mit der Phenyl-Phenyl-Wechselwirkung in (Ph₄P)₂[Fe(SPh)₄]⁷⁰ stellt man dort Phenyl-Phenyl-Abstände von 3.2 Å fest. Hierbei handelt es sich jedoch um Wechselwirkungen zwischen [Fe(SPh)₄]²⁻ und Ph₄P⁺-Ionen, die wegen Coulombanteile der Wasserstoffbrückenenthalpie stärker ausgeprägt sein müssen. Die Anionendimere werden von isolierten [(NH₄)₂(NH₃)₁₀]²⁺-Kationen umgeben, wobei die Kation-Kation-Abstände zwischen 3.665 und 4.083 Å liegen (Abb. 8).

 $_{70}^{69}$ Nishio, M.; Hirota, M.; Umezawa Y. *The CH/\pi interaction*; Wiley-VCH: New York **1998**. Scheiner, S. *Molecular Interactions*; John Wiley & Sons: Chichester **1997**.

3.2 NH₄(NH₃)₁₃B(Ph-Ph)₄

Darstellung und Röntgenstrukturanalyse

Kaliumtetrakis-(4-Biphenylyl)-Borat (0.250 g (0.377 mmol)) wird zwei Stunden lang bei 393 K einem Druck von 10⁻² mbar ausgesetzt. Das Molverhältnis KB(Ph-Ph)₄/Ionenaustauscher beträgt 1/3, d. h. zu den 0.250 g (0,377 mmol) KB(Ph-Ph)₄ werden 0.260 g (4.6 meq/g) Amberlyst 15 (FLUKA) gegeben. Danach werden ca. 20 ml Ammoniak einkondensiert (195 K). Nach zwei Monaten bildeten sich farblose Kristalle, die der Röntgenstrukturanalyse zugeführt wurden.


Die Indizierung der im Orientingmodus aufgenommenen Reflexe hat eine trikline Elementarzelle zur Folge. Die Lösung und Verfeinerung der Kristallstruktur gelingt in der Raumgruppe $P\bar{1}$, wobei die Lagen von einem Bor-, 48 Kohlenstoff- und 14 Stickstoffatomen in der asymmetrischen Einheit ermittelt werden. Nach der isotropen Lageverfeinerung wird der Datensatz einer anisotropen Verfeinerung unterworfen. Das Programm ADDSYMM des Programmpaketes PLATON wurde benutzt, um eventuell fehlende Symmetrien zu finden, jedoch ohne Erfolg. Weiterhin können die 79 Lagen der an Kohlenstoff- und Stickstoffatome gebundenen Wasserstoffatome der Differenzfouriersynthese entnommen und isotrop verfeinert werden.

Kristallstrukturdaten von NH₄(NH₃)₁₃B(Ph-Ph)₄

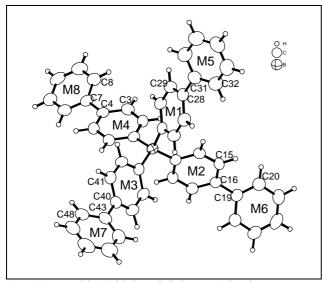
Summenformel	$C_{48}H_{79}BN_{14}$
Anzahl der Frames	360
φ-Inkrement (°)	1.0
Belichtungszeit (min)/Frame	0.5
Messtemperatur (K)	123
Kristallsystem	triklin
Raumgruppe	P1 (Nr. 2)
a (Å)	12.978(1)
b (Å)	13.420(1)
c (Å)	18.569(2)
α(°)	98.97(1)
β(°)	103.52(1)
γ(°)	116.76(1)
Volumen (Å ³)	2677.6(4)
Z	2
M (g·mol ⁻¹)	863.06
$\rho_{\rm c}~({\rm g\cdot cm^{-3}})$	1.070
F (000)	940
$\mu (MoK_{\alpha})(\mathring{A})$	0.71073
θ-Bereich (°)	2.11 - 25.92
Gesamtzahl der Reflexe	38355
Zahl der unabhängigen Reflexe (R _{int})	9723 (0.0515)
Zahl der Parameter	884
$R_1 (I > 2\sigma(I))$	0.0438
$wR_2 (I > 2\sigma(I))$	0.0932
R ₁ (alle Daten)	0.0750
wR ₂ (alle Daten)	0.1008
GooF	0.840
Restelektronendichte	0.340/-0.141

Tabelle 1: Einkristallstrukturdaten von NH₄(NH₃)₁₃B(Ph-Ph)₄.

Strukturbeschreibung und Diskussion

Abb. 1: Elementarzelle von NH₄(NH₃)₁₃B(Ph-Ph)₄.

Bisher wurden keine Strukturdaten des Tetrakis-(4-Biphenylyl)-Borat-Anions veröffentlicht, sodass hier auch das Anion eingehend untersucht werden soll. Der B-C-, der C-C- und der C-H-Abstand, sowie der C-B-C- und der C-C-C-Winkel sind mit den entsprechenden Abständen und Winkeln in $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$ vergleichbar. Daher kann vereinfacht von


einem Boratom, das tetraedrisch von vier 1,1'-Biphenylmolekülen umgeben ist, gesprochen werden. Phenyl-Phenyl-Abstand Der von nahezu 1.50 Å stimmt mit den Erwartungen überein. Die Verdrehung zweier Phenylringe zueinander ist auf Packungseffekte zurückzuführen, wobei anzumerken ist, dass ein negativer Wert eine Drehung des äußeren Phenylringes im Uhrzeigersinn bedeutet. Zugrundegelegt wird eine Blickrichtung entlang der Tetraederspitze Richtung in Boratom, also äußerer Phenylring,

```
Abstände /i:
B-C: 1.644(2) - 1.659(2)
C-C: 1.383(2) - 1.412(2)
C-H: 0.94(2) - 1.01(2)
Phenyl-Phenyl: 1.489(3) - 1.494(2)

Winkel /o:
C-B-C: 105.7(1) - 112.0(1)
C-C-C: 114.4(2) - 123.6(2)

Torsionswinkel /o:
C3-C4-C7-C8: -24.2(2)
C15-C16-C19-C20: -32.1(2)
C29-C28-C31-C32: 33.0(3)
C41-C40-C43-C48: 35.5(2)
```

Tab. 2: Abstände und Winkel des Tetrakis(4-Biphenylyl)-Borat-Anions in NH₄(NH₃)₁₃B(Ph-Ph)₄.

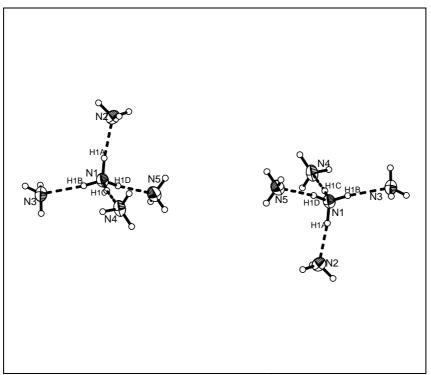


Abb. 2: Tetrakis-(4-biphenylyl)-borat-Anion in NH₄(NH₃)₁₃B(Ph-Ph)₄.

innerer Phenylring, dann Boratom. Die kristallchemischen Gründe dieser Verdrehung werden später erörtert. Zunächst soll die polykationische Struktur näher untersucht werden. Ein wichtiger Bestandteil der polykationischen Struktur Ammoniumion, wobei die Protonen des Ammoniumions 0.92(3) - 0.98(3) Å Ammoniumstickstoff vom (N1)entfernt sind und H-N-H-Winkel von 105(2) - 114(2)° ergeben. Aufgrund $(171-174^{\circ})$ nahezu linearen Wasserstoffbrücken (Abb. 3) ist das Ammoniumion von vier

Ammoniakmolekülen (N2, N3, N4 und N5) pseudotetraedrisch umgeben (Tab. 3). Energetisch sind diese Wasserstoffbrückenbindungen als stark einzuordnen (Abb. 4), da ihre H···N-Abstände um 22.5 - 32.7% kürzer als der VdW-Abstand (2.75 Å) sind. Die stärkste dieser vier Wechselwirkungen stellt die N1-H1A···N2-Wasserstoffbrücke dar. Zum einen zeigt sie den kürzesten H···N-Abstand (1.85 Å) und zum anderen ist der N-H-Abstand des Ammoniumions mit 0.98(3) Å der längste N-H-Abstand aller Wasserstoffbrücken in Tab. 3, die eine H···N-Abstandsverkürzung von mehr als 5.0 % vorweisen können.

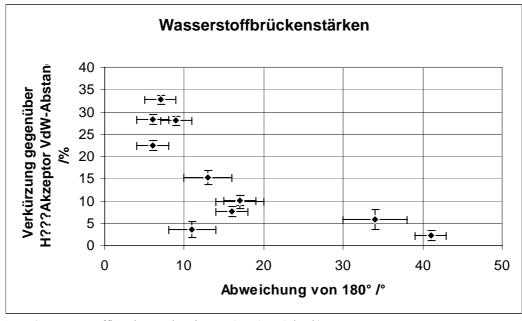
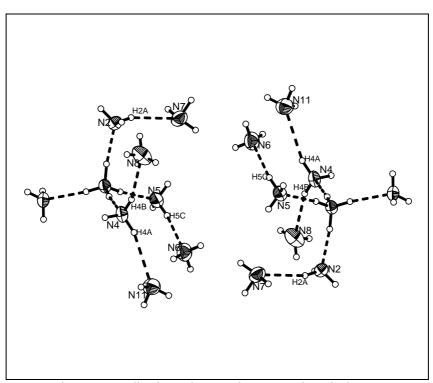
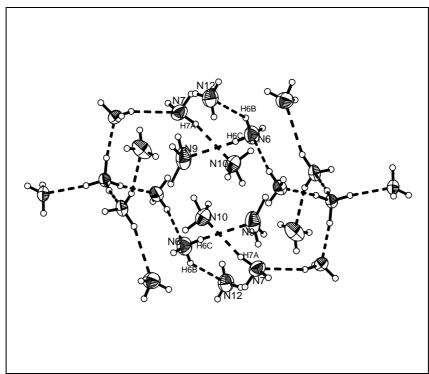

Der DHA-Winkel entspricht mit 173(2)° einer linearen Anordnung von Donor-

Abb. 3: Zwei symmetrieäquivalente $[NH_4(NH_3)_4]^+$ -Kationen in $NH_4(NH_3)_{13}B(Ph-Ph)_4$.

Proton···Akzeptor. Die beiden Wasserstoffbrücken N1-H1C···N4 und N1-H1D···N5 sind mit H···N-Abstandsverkürzungen von 28.4 und 28.0% energetisch gesehen hinter der vorher genannten Wasserstoffbrücke einzuordnen, doch die N-H-Abstände (0.96(3) Å und 0.97(3) Å) und die DHA-Winkel (174(2)° und 171(2)°) machen deutlich, dass es sich um nahezu identische Wechselwirkungen handelt. Davon kann bei der vierten Wasserstoffbrücke (N1-H1B···N3), die das Ammoniumion ausbildet, nicht gesprochen werden. Obwohl der N-H-Abstand (0.92(3) Å) und der DHA-Winkel (174(2)°) den Werten der vorher genannten Wasserstoffbrücken sehr ähneln, steht der H···N-Abstand von 2.13(3) Å (H···N-Abstandsverkürzung: 22.5%) einer energetischen Gleichstellung entgegen.


D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)N(2)	0.98(3)	1.85(3)	2.833(3)	173(2)
N(1)-H(1B)N(3)	0.92(3)	2.13(3)	3.041(3)	174(2)
N(1)-H(1C)N(4)	0.96(3)	1.97(3)	2.928(3)	174(2)
N(1)-H(1D)N(5)	0.97(3)	1.98(3)	2.940(3)	171(2)
N(2)-H(2A)N(7)	0.86(4)	2.48(4)	3.312(3)	163(3)
N(2)-H(2B)N(13)	0.91(4)	2.69(3)	3.438(4)	139(2)
N(4)-H(4A)N(11)	0.96(3)	2.54(3)	3.471(4)	164(2)
N(4)-H(4B)N(8)	0.92(3)	2.47(3)	3.361(5)	163(2)
N(5)-H(5C)N(6)	0.95(4)	2.33(4)	3.270(4)	167(3)
N(6)-H(6A)N(11)	1.00(5)	2.65(5)	3.643(5)	169(3)
N(6)-H(6B)N(12)	0.93(6)	2.59(6)	3.404(5)	146(4)
N(6)-H(6C)N(9)	0.83(5)	2.44(5)	3.259(4)	167(4)
N(7)-H(7A)N(10)	0.89(3)	2.39(3)	3.252(4)	164(2)
N(8)-H(8C)N(14)	1.01(6)	2.65(6)	3.596(7)	156(5)
N(9)-H(9A)N(8)	1.05(3)	2.67(3)	3.604(6)	148(2)
N(9)-H(9B)N(7)	0.97(4)	2.82(4)	3.359(4)	116(3)
N(10)-H(10A)N(11)	0.97(5)	2.67(6)	3.598(4)	160(4)
N(10)-H(10B)N(14)	0.99(4)	2.64(4)	3.299(5)	124(2)
N(12)-H(12A)N(13)	0.81(10)	2.61(10)	3.391(4)	164(9)
N(12)-H(12C)N(13)	0.82(5)	2.46(5)	3.270(4)	170(4)


Abb. 4: Wasserstoffbrückenstärken in NH₄(NH₃)₁₃B(Ph-Ph)₄.

Tab. 3: Protonendonor···Akzeptor-Abstände und deren Winkel in NH₄(NH₃)₁₃B(Ph-Ph)₄.

Um die Struktur des Polykations zu untersuchen, werden die Wasserstoffbrückenbindungen der Ammoniakmoleküle N2, N3, N4 und N5 zu weiteren Stickstoffatomen dargestellt. Hierbei wird deutlich, dass nur die Ammoniakmoleküle N2, N4 und N5 Wechselwirkungen zu anderen Ammoniakmolekülen ausbilden, das Ammoniakmolekül N3 hingegen nicht. Dieses Faktum aber wird bei der Diskussion der Koordinationssphäre des Anions eingehender besprochen. Nun werden die vier Wechselwirkungen der drei zuvor genannten Ammoniakmoleküle untersucht (Abb. 5). Explizit handelt es sich um die N2-H2A···N7-, N4-H4A···N11-, N4-H4B···N8- und die N5-H5C···N6-Wasserstoffbrücke. Die N-H-Abstände sind 0.86(4), 0.96(3), 0.92(3) und 0.95(4) Å, die DHA-Winkel sind 163(3) - 167(3)°. Die H···N-Abstandsverkürzungen betragen 7.6 – 15.3%, wobei die geringste Verkürzung der N4-H4A···N11-Brücke und die größte Verkürzung der N5-H5C···N6-Brücke zuzuordnen ist.

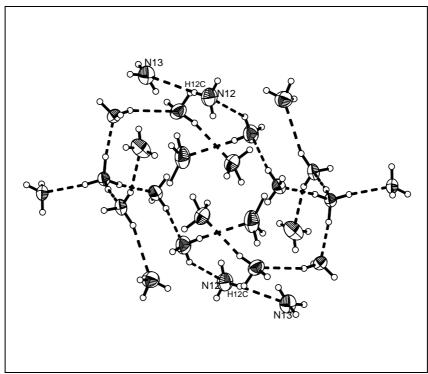


Abb. 5: Die erste Koordinationssphäre zweier symmetrieäquivalenter [NH₄(NH₃)₄]⁺-Kationen in NH₄(NH₃)₁₃B(Ph-Ph)₄.

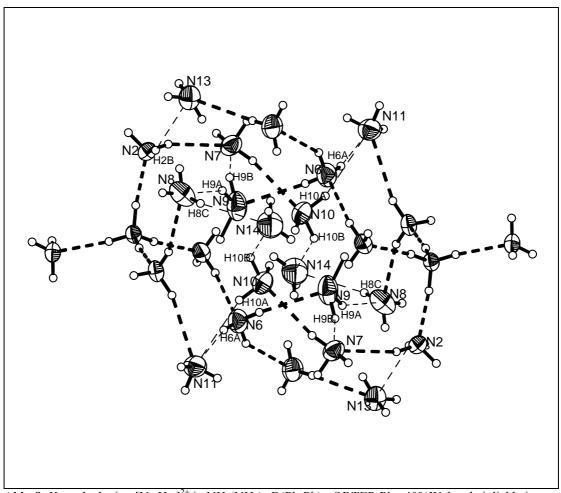


Abb. 6: Die zweite Koordinationssphäre zweier symmetrieäquivalenter [NH₄(NH₃)₄]⁺-Kationen in NH₄(NH₃)₁₃B(Ph-Ph)₄.

Die Ammoniakmoleküle N6 und N7 fungieren ihrerseits aber auch als Protonendonoren zu den Ammoniakmolekülen N12, N9 und N10. Daher können folgende drei Wasserstoffbrücken festgestellt werden: N6-H6B···N12, N6-H6C···N9, N7-H7A···N10 (Abb. 6). Die erstgenannte Wasserstoffbrücke unterscheidet sich deutlich von den anderen beiden. Zum einen ist der DHA-Winkel mit 146(4)° deutlich weiter von 180° entfernt als der DHA-Winkel der beiden

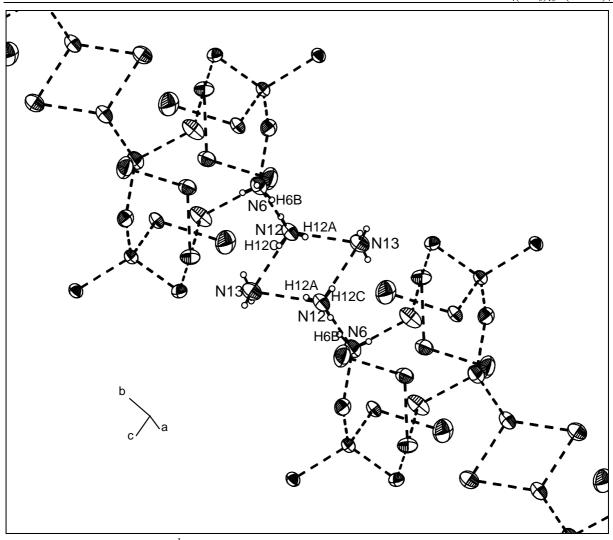

Abb. 7: Die dritte Koordinationssphäre zweier symmetrieäquivalenter $[NH_4(NH_3)_4]^+$ -Kationen in $NH_4(NH_3)_{13}B(Ph-Ph)_4$.

Abb. 8: Komplexkation [N₂₈H₈₆]²⁺ in NH₄(NH₃)₁₃B(Ph-Ph)₄, ORTEP-Plot 40%Wahrscheinlichkeit, schwache Wasserstoffbrückenbindungen sind dünn eingezeichnet.

letzteren (164(2) und 167(4)°), zum anderen ist der H···N-Abstand um nur 5.8% kürzer als der VdW-Abstand (2.75 Å) Die H···N-Abstandsverkürzungen der beiden anderen Brücken sind 11.3 und 13.1%. Auch die Tatsache, dass der N6···N12-Abstand mit 3.404(5) Å etwas größer ist als der entsprechende Abstand (3.377 Å) im festen Ammoniak, macht deutlich, dass es sich bei dieser Wechselwirkung nur im geringen Maße um eine Wasserstoffbrückenbindung handelt. Hingegen handelt es sich bei der N12-H12C···N13-Brücke sicherlich um eine Wasserstoffbrücke (Abb. 7). Der DHA-Winkel beträgt 170(4)° und der H···N-Abstand ist um 12.4 Å kürzer als der VdW-Abstand. Obgleich der N-H-Abstand (0.82(5) Å) der kürzeste seinesgleichen in Tab. 3 ist, würde auch eine Normalisierung dieses Abstandes auf 1.03 Å nichts an dem Faktum ändern, dass der H···N-Abstand kürzer als der VdW-Abstand ist. Weiterhin zeigt der N···N-Abstand (3.270(4) Å), dass es sich eindeutig um eine Wasserstoffbrücke handelt. Bis hierhin wurde die Verknüpfung von einem Ammoniumion und zwölf Ammoniakmolekülen erklärt. Die Position des dreizehnten Ammoniakmoleküles und die Verknüpfung zu der polykationischen Kette ${}^{1}_{\infty}[\{N_{26}H_{80}\}^{2+}(\mu-NH_{3})_{2}]$ wird in Abb. 9 beschrieben. Alle dünn eingezeichneten Wechselwirkungen entsprechen Abstandsverkürzungen von weniger als 5%. Die DHA-Winkel sind 124(2) – 169(3)°, N-H-Abstände sind 0.91(4) – 1.05(3) Å. Als Beispiel für das Versagen des VdW-Kriteriums soll die N9-H9B···N7-Brücke dienen. Bei dieser Wechselwirkung beträgt der H···N-Abstand 2.82(4) Å, ist also größer als der VdW-Abstand (2.75 Å), Auch der DHA-Winkel differiert mit 116(3)° deutlich von 180°, jedoch ist der N···N-Abstand (3.359(4) Å) kürzer als der N···N-Abstand in festem Ammoniak, wobei grundsätzlich davon ausgegangen wird, dass in festem Ammoniak wie auch in festem Wasser Wasserstoffbrückenbindungen vorliegen.

Bisher wurde der Aufbau des Komplexkations [{NH₄(NH₃)₄}₂(μ-NH₃)₁₈]²⁺ erläutert, doch die einzelnen Kationen bilden auch Wasserstoffbrücken untereinander aus. Somit kann von einer polykationischen Kette $-\frac{1}{\infty} [\{N_{26}H_{80}\}^{2+}(\mu-NH_3)_2]$ – gesprochen werden. Ursächlich für das Kette sind die N12-H12A···N13- und die N12-H12C···N13-Wasserstoffbrücken (DHA-Winkel: 169(9) und 170(4)°; N-H: 0.8(1) und 0.82(5) Å). Die Untersuchung der beiden Wasserstoffbrückenbindungen zeigt, dass das verbrückende Ammoniakmolekül N13 nicht symmetrisch zwischen zwei Kationen ({N₂₆H₈₀}²⁺) liegt, sondern eher zu einem Komplexkation zu rechnen ist und zusätzlich eine schwache Wechselwirkung mit dem Nachbarkation ausbildet. Der H12A···N13-Abstand ist mit 2.6(1) Å um nur 5.1% kürzer als der VdW-Abstand, ganz im Gegensatz zu dem H12A···N13-Abstand (2.46(5) Å), bei dem eine Verkürzung von 12.4% beobachtet werden kann. Auch die Fehler der bisher erwähnten Abstands- und Winkelwerte sind bei der N12-H12A···N13-Brücke doppelt so groß wie bei der N12-H12C···N13-Brücke. Dies ist ein deutlicher Hinweis auf die schlechtere Lokalisierung des H12A-Protons bzw. die schwächere Interaktion mit einem Akzeptoratom, wobei gerade diese Interaktion für eine Wasserstoffbrückenbindung unabdingbar ist. Somit sprechen diese Argumente für das Bild von isolierten zweimal positiv geladenen Komplexkationen $([N_{28}H_{86}]^{2+})$, die sehr schwache Wasserstoffbrückenbindungen untereinander ausbilden. Der Grad dieser Isoliertheit der Komplexkationen wird im Folgenden anhand der Koordinationssphäre der Anionen untersucht. Die Anionen können selbst als Protonendonoren bzw. als Protonenakzeptoren wirken. Zuerst soll die Akzeptorfähigkeit überprüft werden, wobei die aromatischen Ringe aufgrund ihrer partiellen negativen Ladung für solche Wechselwirkungen prädestiniert sind. Deshalb wird die Koordinationssphäre jedes einzelnen Ringes in Bezug auf seinen Ringmittelpunkt (M1 – M8) untersucht. Hierbei wird für Wasserstoffbrückenbindungen ein VdW-Kriterium von 2.4 Å (sp²C-Atom: 1.2 Å; H-Atom: 1.2 Å) gewählt. Alle deutlich größeren Abstände sind als VdW-Kontakte zu werten.

Abb. 9: Polykationische Kette: $\int_{\infty}^{1} [\{N_{26}H_{80}\}^{2+}(\mu-NH_3)_2]$ in $NH_4(NH_3)_{13}B(Ph-Ph)_4$, ORTEP-Plot: 50%.

In Abb. 10 sind die Ringmitten M1 und M5 dargestellt. M1 wird von den Ammoniakmolekülen N11 und N14, M5 hingegen von den Ammoniakmolekülen N8, N11 und N13 umgeben. Den kürzesten H···M-Abstand (2.79 Å) findet man zwischen M1 und H11A. Auch wenn der DHA-Winkel von 159° und der N-H-Abstand von 0.96(5) Å eine Wechselwirkung vermuten lassen, ist die Distanz zwischen dem Ammoniakmolekül und dem Ring zu groß für eine Wasserstoffbrückenbindung. Interessanterweise gibt es noch einen zweiten VdW-Kontakt des N11-Ammoniakmoleküls, und zwar zwischen H11B und M5 (H···M: 3.07 Å). Der DHA-Winkel ist 147°. In Anbetracht der beiden DHA-Winkel (159 und 147°) kann davon ausgegangen werden, dass das Ammoniakmolekül N11 auf der M1···M5-Verbindungslinie liegt. Da der M1···M5-Abstand 7.03 Å beträgt und das Ammoniakmolekül sich etwa äquidistant zu beiden Ringzentren befindet, darf letztendlich nur auf einen VdW-Kontakt geschlossen werden. Der nächstkürzeste Kontakt ist mit 3.25 Å zwischen H14C und M1 festzustellen. Die nächsten Kontakte des M5-Ringes zu H13A, H8B und H8A sind 3.65 Å, 3.67 Å und 3.68 Å. Diese vier genannten Abstände weisen keine Wasserstoffbrückenanteile auf und können somit als VdW-Kontakte bezeichnet werden.

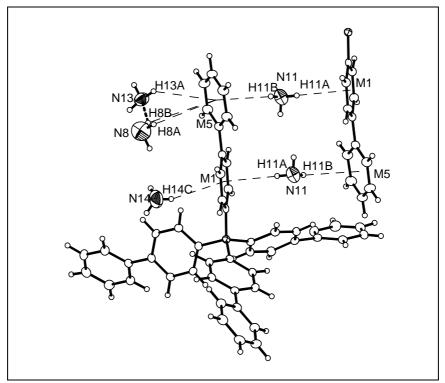


Abb. 10: Koordinationssphäre der Ringe M1 und M5 in NH₄(NH₃)₁₃B(Ph-Ph)₄.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(8)-H(8A)M5 N(8)-H(8B)M5 N(11)-H(11A)M1 N(11)-H(11B)M5 N(13)-H(13A)M5	0.88(4) 0.84(5) 0.96(5) 0.90(4) 0.90(4)	3.68 3.67 2.79 3.07 3.65	4.25 4.25 3.70 3.86 4.40	125 128 159 147 144
N(14)-H(14C)M5	0.80(8)	3.25	3.99	155

Tab. 3: Van-der-Waals-Kontakte /Å und deren Winkel /° in NH₄(NH₃)₁₃B(Ph-Ph)₄.

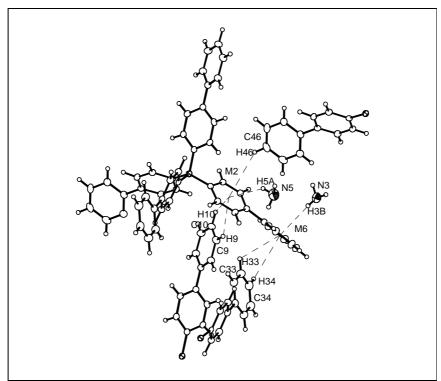


Abb. 11: Koordinationssphäre der Ringe M2 und M6 in NH₄(NH₃)₁₃B(Ph-Ph)₄.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3B)M6	0.85(4)	2.69	3.46	150
N(5)-H(5A)M2	1.00(5)	3.43	4.29	145
C(9)-H(9)M2	0.94(2)	3.07	3.79	135
C(33)-H(33)M6 C(34)-H(34)M6	0.99(2) 0.96(2)	3.53 3.38	4.07 4.00	117 124
C(46)-H(46)M2	0.95(2)	3.44	4.15	133

Tab. 3: Van-der-Waals-Kontakte /Å und deren Winkel /° in NH₄(NH₃)₁₃B(Ph-Ph)₄.

In Abb. 11 sind die Ringmitten M2 und M6 dargestellt. M2 wird von dem Ammoniakmolekül N5 und den Kohlenstoffatomen C46 und C9, M6 hingegen von dem Ammoniakmolekül N3 und den Kohlenstoffatomen C34 umgeben. Den kürzesten H····M-Abstand (2.69 Å) findet man zwischen M6 und H3B. Weiterhin geben der DHA-Winkel von 150° und der N-H-Abstand von 0.85(4) Å keinen zusätzlichen Hinweis auf einen Protonentransferprozess. In summa ist die Distanz zwischen dem Ammoniakmolekül und dem Ring zu groß für eine eindeutige Wasserstoffbrückenbindung. Der nächstkürzeste Kontakt ist mit 3.07 Å zwischen H9 und M2 festzustellen. Der dritte Kontakt des M2-Ringes besteht zum H46-Wasserstoffatom (H46···M2: 3.44 Å, C46···M2: 4.15 Å, DHA: 133°). Auch der M6-Ring kann eine Koordination mit ähnlichen Abstands- und Winkelwerten vorweisen (H34···M6: 3.38 Å, C34···M6: 4.00 Å, DHA: 124°). Diese beiden genannten Abstände weisen keine Wasserstoffbrückenanteile auf und können somit als VdW-Kontakte bezeichnet werden. Trotzdem zeigt sich, dass die Anionen bei direkten Anionenkontakten eine Koordination in der Art und Weise aufzeigen, dass ein Ring eher senkrecht als parallel auf dem Nachbarring steht. Somit wird der M2-Ring von zwei Anionen (vertex-to-face) und einem

Ammoniakmolekül, der M6-Ring von einem Anion (vertex-to-face) und einem Ammoniakmolekül umgeben.

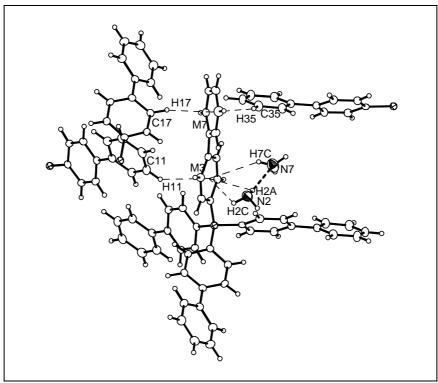


Abb. 12: Koordinationssphäre der Ringe M3 und M7 in NH₄(NH₃)₁₃B(Ph-Ph)₄.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2)-H(2A)M3	0.86(4)	3.49	3.93	114
N(2)-H(2B)M3	0.91(4)	3.58	3.93	107
N(7)-H(7C)M3	0.88(6)	3.01	3.78	147
C(11)-H(11)M3	0.96(2)	2.86	3.68	143
C(17)-H(17)M7	1.01(2)	2.66	3.64	166
C(35)-H(35)M7	0.96(2)	3.37	4.25	152

Tab. 3: Van-der-Waals-Kontakte /Å und deren Winkel /° in NH₄(NH₃)₁₃B(Ph-Ph)₄.

In Abb. 12 sind die Ringmitten M3 und M7 dargestellt. M3 wird von den Ammoniakmolekülen N2 und N7 und dem Kohlenstoffatom C11, M7 hingegen von den Kohlenstoffatomen C17 und C35 umgeben. Den kürzesten H···M-Abstand (2.66 Å) findet man zwischen M7 und H17. Auch wenn der DHA-Winkel von 166° und der C17-H17-Abstand von 1.01(2) Å eine Wechselwirkung vermuten lassen, so ist die Distanz zwischen dem Ring des C17-Kohlenstoffs und der Ringmitte M7 (C17···M7: 3.64 Å) zu groß für eine Wasserstoffbrückenbindung. Der nächstkürzeste Kontakt ist mit 2.86 Å zwischen H11 und M3 festzustellen. Der DHA-Winkel ist mit 143° deutlicher von 180° entfernt als der DHA-Winkel des vorhergehenden VdW-Kontaktes (C17-H17···M7). Die Ringmitte M3 ist 3.68 vom C11-Atom entfernt, weist also eine nahezu gleich große Distanz wie der C17-H17···M7-Kontakt auf. Die nächsten Kontakte des M3-Ringes zu H7C, H2A und H2C sind 3.01 Å, 3.49 Å und 3.58 Å, der nächste Kontakt des M7-Ringes zu H35 ist 3.37 Å. Aufgrund der großen

Distanzen der Protonen zu den Akzeptoren (aromatische Ringe, Bezugspunkt: Ringmittelpunkt M) weisen die vier genannten Abstände keine Wasserstoffbrückenanteile auf und können somit als VdW-Kontakte bezeichnet werden.

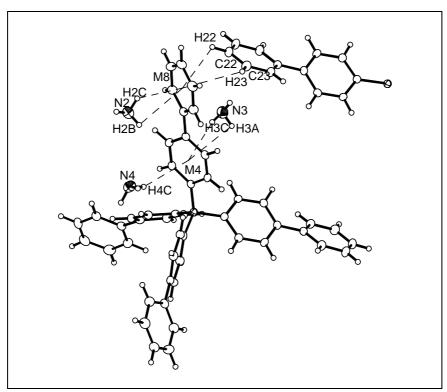


Abb. 12: Koordinationssphäre der Ringe M4 und M8 in NH₄(NH₃)₁₃B(Ph-Ph)₄.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
D 1111	Q(D 11)	α(1111)	a(D11)	(DIIII)
N(2)-H(2B)M8	0.91(4)	3.45	3.42	81
N(2)-H(2C)M8	0.88(3)	2.82	3.42	128
N(3)-H(3A)M4	0.87(6)	3.62	3.68	87
N(3)-H(3C)M4	0.77(4)	2.96	3.68	155
N(4)-H(4C)M4	0.92(4)	2.82	3.61	145
C(22)-H(22)M8	0.92(2)	3.39	3.92	118
C(23)-H(23)M8	0.98(2)	3.31	3.90	120

Tab. 3: Van-der-Waals-Kontakte /Å und deren Winkel /° in NH₄(NH₃)₁₃B(Ph-Ph)₄.

In Abb. 12 sind die Ringmitten M4 und M8 dargestellt. M4 wird von den Ammoniakmolekülen N3 und N4, M8 hingegen von dem Ammoniakmolekül N2 und den Kohlenstoffatomen C22 und C23 umgeben. Die kürzesten H···M-Abstände (2.82 Å) findet man zwischen M8 und H2C sowie zwischen M4 und H4C, die DHA-Winkel betragen 128° und 145°. Auch die N-H-Abstände (N2-H2C: 0.88(3) Å und N4-H4C: 0.92(4) Å) geben für eine Wasserstoffbrückenbindung keinen Anhaltspunkt. Der nächstkürzeste Kontakt ist mit 2.96 Å zwischen H3C und M4 festzustellen. Der DHA-Winkel ist mit 155° deutlich näher an 180° als die beiden vorher genannten DHA-Winkel. Die Ursache für diese Diskrepanz stellt der N3-H3C-Abstand (0.77(4) Å) dar. Er ist um 0.15 Å kürzer als der N4-H4C-Abstand, was bei ähnlichen N···M-Abständen und ähnlichen DHA-Winkeln zu längeren H···M-Abständen

führt. Somit ist es naheliegend, dass die Ammoniakmoleküle N4 und N3 einen äquivalenten VdW-Kontakt zu M4 haben, wobei die fast gleich langen (Differenz: 0.07 Å) N···M-Abstände selbst das wichtigste Argument darstellen. Die bisher noch nicht besprochenen H···M-Kontakte sind der M8···H23- und der M8···H22-Kontakt (3.31 Å und 3.39 Å). Die sehr ähnlichen DHA-Winkel (120° und 118°) und C···M-Abstände (3.90 Å und 3.92 Å) zeigen, dass beide H···M-Abstände energetisch gesehen als gleichwertig zu betrachten sind. Natürlich kann es sich schon wegen der zu großen Distanz zwischen potentiellen Protonendonoren und Akzeptoren nicht um Wasserstoffbrückenbindungen handeln. Trotzdem ist es notwendig zu erörtern, inwiefern sich die aromatischen Ringe nähern und ob parallele, "vertex-to-face"-, oder, wie in diesem Fall, "edge-to-face"-Packungen vorliegen.

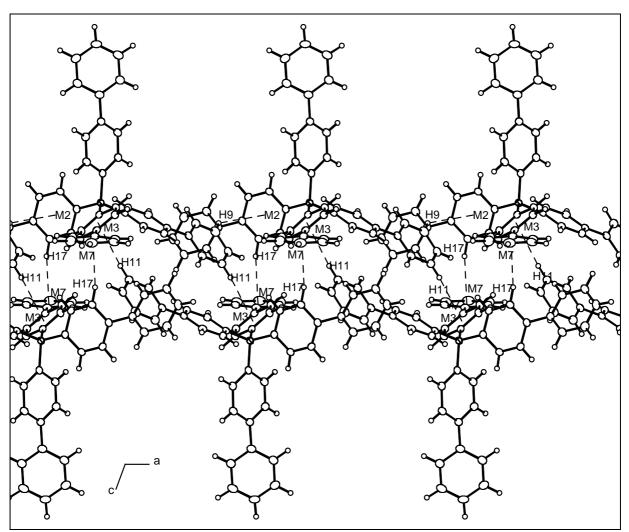
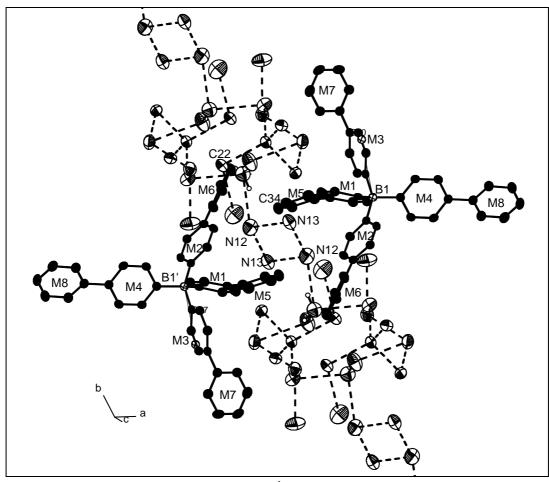


Abb. 13: Van-der Waals-Kontakte aufgrund der drei kürzesten Anion-Anion-Abstände in NH₄(NH₃)₁₃B(Ph-Ph)₄.


D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(9)-H(9)M2	0.94(2)	3.07	3.79	135
C(11)-H(11)M3	0.96(2)	2.86	3.68	143
C(17)-H(17)M7	1.01(2)	2.66	3.64	166

Tab. 3: Van-der-Waals-Kontakte /Å und deren Winkel /° in NH₄(NH₃)₁₃B(Ph-Ph)₄.

In Abb. 13 sind die drei kürzesten Anion-Anion-Abstände dargestellt. Diese Abstände sind jeweils C-H···M-Abstände und wurden schon in den Abb. 11 und 12 diskutiert, wobei die Winkel und Abstandskriterien eindeutig auf VdW-Kontakte schließen lassen.

Die Untersuchung der Verbindung [NH₄(NH₃)₄][B(C₆H₅)₄] · NH₃ zeigt zwischen den Anionen " π - π -stacking" und mehrere Wasserstoffbrücken zwischen den Phenylringen und Ammoniakmolekülen. Daher ist es bei dieser hier diskutierten Verbindung auffällig, dass keine Wasserstoffbrückenbindungen zwischen den Anionen auftreten, und noch weniger verständlich erscheint es, dass es auch keine solchen zwischen Anionen Ammoniakmolekülen gibt. Bei dieser nun besprochenen Verbindung sind die einzigen Wasserstoffbrückenbindungen diejenigen zwischen Stickstoffatomen, Wechselwirkungen, die für die Struktur der polykationischen Kette $-\frac{1}{m} [\{N_{26}H_{80}\}^{2+}(\mu-NH_3)_2]$ - verantwortlich sind. Das zweimal positiv geladene Komplexkation ($[N_{28}H_{86}]^{2+}$) selbst liegt zwischen zwei Phenylringen (M1 und M5) jeweils zweier Anionen. Die schon früher besprochenen sehr schwachen Wasserstoffbrückenbindungen zwischen den Komplexkationen sind entlang der b-Richtung zu finden. Somit erstreckt sich die polykationische Kette entlang der b-Richtung.

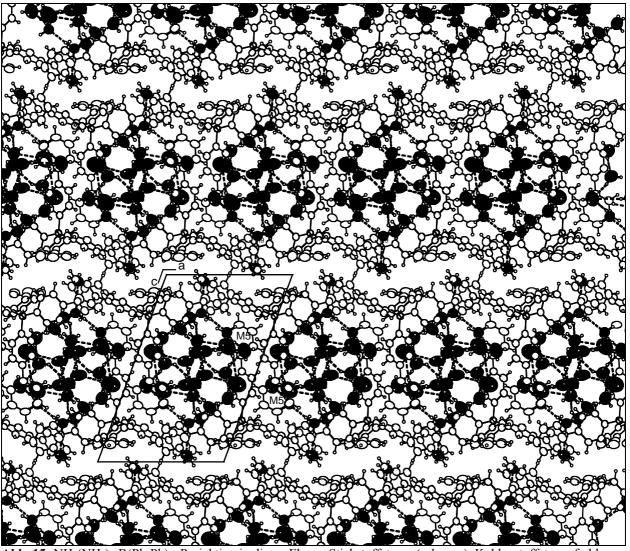

Die "Engstelle" (Abb. 14) dieser polykationischen Ketten bilden zwei Anionen, die jeweils mit den Phenylringen M1, M5, M2 und M6 die Ammoniakmoleküle N12 und N13 umgeben. Dass die "Zwickel" der tetraedrischen Anionen etwas ineinandergreifen, ist daran zu

Abb. 14: "Engstelle" der polykationischen Ketten $\int_{\infty}^{1} [\{N_{26}H_{80}\}^{2+}(\mu-NH_3)_2]$ in $NH_4(NH_3)_{13}B(Ph-Ph)_4$.

erkennen, dass B1 und C34 8.83 Å voneinander entfernt sind und der B1'-C34-Abstand, also der Abstand zum Boratom des Nachbaranions, 8.43 Å beträgt. Die Überlappung der Tetraederzwickel ist bei den anderen beiden Phenyl(M2)-Phenyl(M6)-Liganden nicht so deutlich ausgeprägt, denn der B1-C22-Abstand ist erwartungsgemäß 8.81 Å, der B1'-C22-Abstand jedoch beträgt 12.25 Å. Darüber hinaus macht der B1-B1'-Abstand von 12.86 Å deutlich, dass sich die Anionen nicht allzu nahe kommen, da der kürzeste Bor-Bor-Abstand 9.50 Å ist. Diesen kurzen Abstand findet man bei den schon oben erwähnten sehr kurzen Anion-Kontakten.

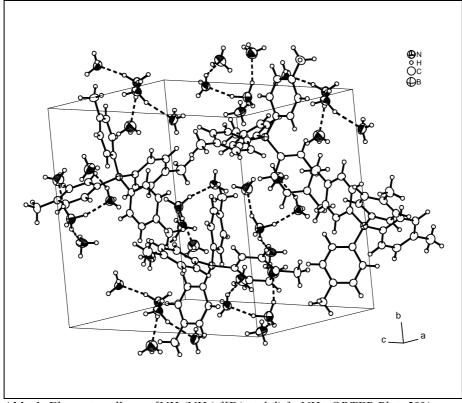
Alle Wasserstoffbrücken der Verbindung NH₄(NH₃)₁₃B(Ph-Ph)₄ sind in Abb. 15 dargestellt. Die Projektion in die ac-Ebene zeigt, dass zwischen den einzelnen Komplexkationen keine starken Wechselwirkungen auftreten.

Abb. 15: NH₄(NH₃)₁₃B(Ph-Ph)₄; Projektion in die ac-Ebene, Stickstoffatome (schwarz), Kohlenstoffatome farblos.

3.3 $[NH_4(NH_3)_3][B(p-tolyl)_4] \cdot NH_3$

Darstellung und Röntgenstrukturanalyse

Natriumtetra-(p-tolyl)-borat (0.250 g (0.628 mmol)) wird zwei Stunden lang bei 120 °C einem Druck von 10⁻² mbar ausgesetzt. Das Molverhältnis NaB(p-tolyl)₄/Ionenaustauscher beträgt 1/3, d.h. zu den 0.250 g (0,628 mmol) NaB(p-tolyl)₄ werden 0.390 g (4.6 meq/g) Amberlyst 15 (FLUKA) gegeben. Danach werden ca. 40 ml Ammoniak einkondensiert (195 K). Nach zwei Monaten haben sich farblose Kristalle gebildet, die der Röntgenstrukturanalyse zugeführt wurden.


Die im Orientingmodus aufgenommenen Reflexe können anhand einer orthorhombischen Elementarzelle indiziert werden. Nach Integration Datenreduktion und Intensitätsdatensatzes weisen die nicht vorhandenen integralen Auslöschungen, die nicht vorhandenen zonalen Auslöschungen und die vorhandenen seriellen Auslöschungen h00 h≠2n, 0k0 k≠2n und 001 l≠2n in Verbindung mit der orthorhombischen Metrik auf die Raumgruppe P2₁2₁2₁ hin. In dieser Raumgruppe gelingt die Lösung und Verfeinerung der Kristallstruktur. Dabei werden die Lagen von fünf Stickstoff-, 28 Kohlenstoffatomen und einem Boratom in der asymmetrischen Einheit ermittelt. Nach deren isotroper Lageverfeinerung wird der Datensatz einer anisotropen Verfeinerung unterworfen. Das Programm ADDSYMM des Programmpaketes PLATON wurde benutzt, um eventuell fehlende Symmetrien zu finden, was jedoch ohne Erfolg blieb. Weiterhin können die Lagen bzw. Stickstoffatome Kohlenstoffgebundenen Wasserstoffatome Differenzfouriersynthese entnommen und isotrop verfeinert werden.

Kristallstrukturdaten von $[NH_4(NH_3)_3][B(p\text{-tolyl})_4] \cdot NH_3$

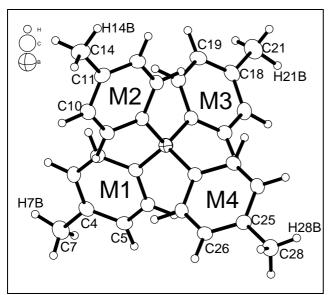
Summenformel	$C_{28}H_{44}BN_5$
Anzahl der Frames	239
φ-Inkrement (°)	1.0
Belichtungszeit (min)/Frame	0.25
Messtemperatur (K)	123
Kristallsystem	orthorhombisch
Raumgruppe	P 2 ₁ 2 ₁ 2 ₁ (Nr. 19)
a (Å)	10.9981(7)
b (Å)	14.749(1)
c (Å)	17.611(1)
Volumen (Å ³)	2856.7(3)
Z	4
M (g·mol ⁻¹)	461.49
$\rho_{\rm c} ({\rm g\cdot cm}^{-3})$	1.073
F (000)	1008
$\mu (\text{MoK}_{\alpha})(\text{Å})$	0.71073
θ-Bereich (°)	2.18 - 25.93
Gesamtzahl der Reflexe	27099
Zahl der unabhängigen Reflexe (R _{int})	5462 (0.0533)
Zahl der Parameter	483
$R_1 (I > 2\sigma(I))$	0.0349
$wR_2 (I > 2\sigma(I))$	0.0776
R ₁ (alle Daten)	0.0444
wR ₂ (alle Daten)	0.0799
GooF	0.936
Restelektronendichte	0.335/-0.149

 $\textbf{Tabelle 1:} \ Einkristall strukturdaten \ von \ [NH_4(NH_3)_3][B(p\text{-tolyl})_4] \cdot NH_3.$

Strukturbeschreibung und Diskussion

Abb. 1: Elementarzelle von [NH₄(NH₃)₃][B(p-tolyl)₄] · NH₃, ORTEP-Plot: 50% Wahrscheinlichkeit.

Die B-C-, die C-C- und die C-H-Abstände (Tab. 2), sowie die C-B-C- und die C-C-C-Winkel sind mit den entsprechenden Abständen und Winkeln, in $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$ und $[NH_4(NH_3)_{13}][B(PhPh)_4]$ vergleichbar. Der einzige Unterschied zwischen diesem Anion und den beiden anderen Anionen besteht darin, dass sich in para-Position ein Methylrest befindet. Ein Proton des Methylrestes nimmt, bezogen auf den dahinter liegenden Phenylring, eine


ekliptische Konformation ein. Die Torsionswinkel (Abb. 2) der vier Methylgruppen zu den entsprechenden Phenylringen sind zwischen 171° und 177°. Somit erweist sich die ekliptische Konformation als nahezu ideal. Weiterhin ist es einleuchtend, dass das Boratom tetraedrisch von vier para-Tolyl-Resten umgeben ist und der Phenyl-Methyl-Abstand dieser p-Tolyl-Reste etwa 1.5 Å beträgt.

```
Abstände /å:
B-C: 1.644(3) - 1.649(2)
C-C: 1.386(2) - 1.409(2)
C-H: 0.93(3) - 1.02(2)
Phenyl-Methyl: 1.502(2) - 1.513(2)

Winkel /°:
C-B-C: 104.1(1) - 113.0(1)
C-C-C: 114.6(1) - 123.2(2)

Torsionswinkel /°:
H7B-C7-C4-C5: -177
H14B-C14-C11-C10: 171
H21B-C21-C18-C19: -177
H28B-C28-C25-C26: 176
```

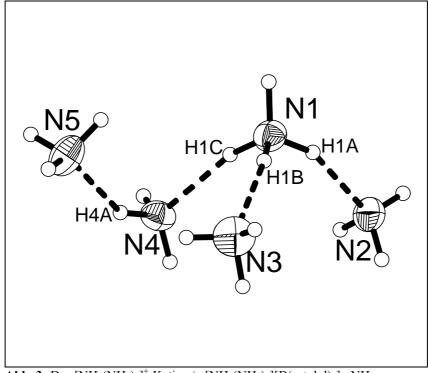

Tab. 2: Abstände und Winkel des Tetra-(p-tolyl)-borat-Anions in $[NH_4(NH_3)_3][B(p-tolyl)_4] \cdot NH_3$.

Abb. 2: Tetra-(p-tolyl)-borat-Anion in [NH₄(NH₃)₃][B(p-tolyl)₄] · NH₃.

Das kationische Strukturelement in Abb. 3 beinhaltet ein Ammoniumion, die Protonen des Ammoniumions sind 0.97(3)1.01(3) Å Ammoniumstickstoff (N1) entfernt und zeigen H-N-H-Winkel von 101(2) -116(2)°. Auffällig ist, dass nur drei der vier Protonen Wasserstoffbrückenbindungen zu anderen Ammoniakmolekülen (N2, N3 und N4) aufweisen. Energetisch sind diese Wasserstoffbrückenbindungen als stark einzuordnen (Abb. 4), da ihre H···N-Abstände um 27.6 - 31.6% kürzer sind als der VdW-Abstand (2.75

Å). Die stärkste dieser vier Wechselwirkungen stellt die N1-H1C···N4-Wasserstoffbrücke dar. Zum einen zeigt sie den kürzesten H···N-Abstand (1.88 Å) und zum anderen ist der N-H-Abstand des Ammoniumions mit 1.01 Å der längste N-H-Abstand aller Wasserstoffbrücken in Tab. 3. Der DHA-Winkel entspricht mit 160(2)° keiner linearen Anordnung von Donor-Proton···Akzeptor. Die beiden Wasserstoffbrücken N1-H1A···N2 und N1-H1B···N3 sind mit H···N-Abstandsverkürzungen von 29.1 und 27.6% energetisch gesehen nach der vorher genannten Wasserstoffbrücke einzuordnen, doch die N-H-Abstände (0.97(3) Å und 1.00(3) Å) sowie die DHA-Winkel (156(2)° und 158(2)°) machen deutlich, dass es sich um identische Wechselwirkungen handelt. Davon kann bei der vierten eindeutigen Wasserstoffbrücke (N4-

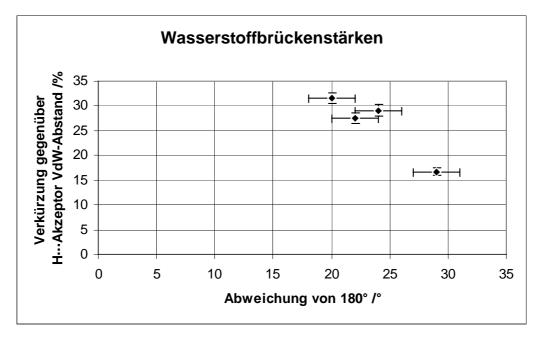
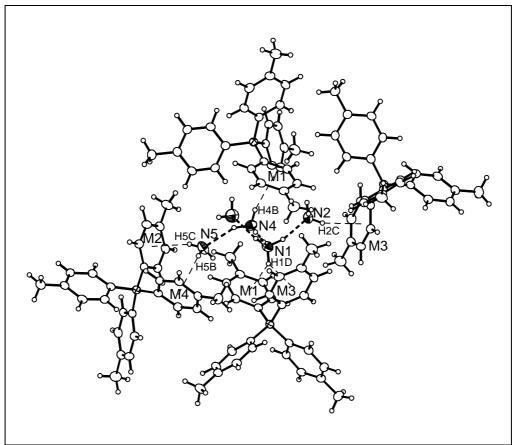


Abb. 3: Das $[NH_4(NH_3)_4]^+$ -Kation in $[NH_4(NH_3)_3][B(p-tolyl)_4] \cdot NH_3$.

H4A···N5), die in dieser Verbindung zu finden ist, nicht gesprochen werden. Obwohl der N-H-Abstand (0.99(3) Å) und der DHA-Winkel (151(2)°) den Werten der vorher genannten Wasserstoffbrücken stark ähneln, steht der H···N-Abstand von 2.29(3) Å (H···N-Abstandsverkürzung: 16.7%) einer energetischen Gleichstellung entgegen. Dieser energetische Unterschied stellt aber keinen Widerspruch dar, sondern ist nur eine logische Konsequenz. Das N5-Ammoniakmolekül befindet sich nämlich in der zweiten Koordinationssphäre des Ammoniumions und entzieht sich somit Wechselwirkungsanteilen, die auf Coulombwechselwirkungen zurückzuführen sind. Deshalb ist das N5-Ammoniakmolekül als Kristallammoniak aufzufassen, das eine Wasserstoffbrücke zu dem Komplexkation [NH₄(NH₃)₃]⁺ ausbildet.


D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)N(2)	0.97(3)	1.95(3)	2.871(3)	156(2)
N(1)-H(1B)N(3)	1.00(3)	1.99(3)	2.946(3)	158(2)
N(1)-H(1C)N(4)	1.01(3)	1.88(3)	2.851(2)	160(2)
N(4)-H(4A)N(5)	0.99(2)	2.29(2)	3.196(3)	151(2)

Tab. 3: Protonendonor···Akzeptor-Abstände und deren Winkel in [NH₄(NH₃)₃][B(p-tolyl)₄] · NH₃.

Abb. 4: Wasserstoffbrückenstärken in [NH₄(NH₃)₃][B(p-tolyl)₄] · NH₃.

Nun sollen die Wechselwirkungen des Komplexkations [NH₄(NH₃)₃]⁺ und des Kristallammoniaks (N5) untersucht werden. Hierbei ist das Ammoniumion bzw. Ammoniakmolekül der Protonendonor und der Phenylring der Protonenakzeptor. Der Ringmittelpunkt (M1 – M4) der Phenylringe wird als Bezugspunkt genommen, da der Ringmittelpunkt den ganzen Phenylring mit seiner delokalisierten Ladung repräsentiert, auch wenn dort keine negative Ladung zu finden ist. Für die Wasserstoffbrückenbindungen wird ein VdW-Kriterium von 2.4 Å (sp²C-Atom: 1.2 Å; H-Atom: 1.2 Å) gewählt, alle deutlich größeren Abstände sind als Van-der-Waals-Kontakte zu werten.

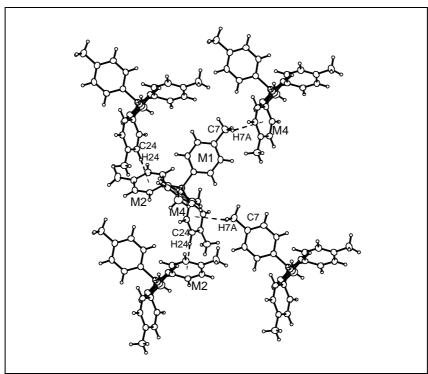


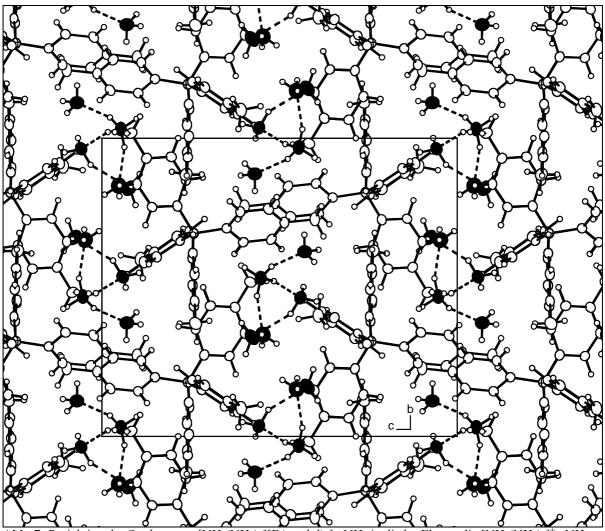
Abb. 5: Die erste Koordinationssphäre eines $[NH_4(NH_3)_4]^+$ -Kations in $[NH_4(NH_3)_3][B(p-tolyl)_4] \cdot NH_3$.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(4)-H(4A)M1	0.91(3)	2.71	3.52	148
N(1)-H(1D)M1'	0.99(3)	2.64	3.33	126
N(1)-H(1D)M3'	0.99(3)	2.77	3.33	115
N(5)-H(5C)M2	0.90(3)	2.58	3.45	162
N(2)-H(2C)M3	0.87(4)	2.52	3.29	146
N(5)-H(5B)M4	0.84(5)	2.69	3.46	152

Tab. 4: Van-der-Waals-Kontakte /Å und deren Winkel /° in [NH₄(NH₃)₃][B(p-tolyl)₄] · NH₃.

In der direkten Umgebung des [NH₄(NH₃)₃]⁺ · NH₃-Kations gibt es sechs Kontakte zu den Ringmitten M1 – M4 (Abb. 5). Den kürzesten H···M-Abstand (2.52 Å) findet man zwischen M3 und H2C, den längsten H···M-Abstand (2.77 Å) zwischen M1' und H1D (Tab. 4). Die DHA-Winkel nicht gegabelter VdW-Kontakte sind zwischen 146° und 162°. Die DHA-Winkel der gegabelten VdW-Kontakte betragen 115° und 125°. Diese beiden Winkel weichen nur geringfügig von 120° ab, der der ideale DHA-Winkel einer symmetrischen, zweifach gegabelten Wechselwirkung ist. Dass eine solche symmetrische Wechselwirkung vorliegen könnte, zeigt der N1···M1'- bzw. der N1···M3'-Abstand. Die beiden Abstände sind mit 3.33 Å äquidistant und zusätzlich sind sie die kürzesten N···M-Abstände in dieser Struktur, was durch die Coulombwechselwirkungen zwischen Ammoniumion und Anion erklärt werden kann.

Abb. 6: Die Koordinationssphäre eines $[B(p-tolyl)_4]^-$ -Anions in $[NH_4(NH_3)_3][B(p-tolyl)_4] \cdot NH_3$.


Letztendlich verdeutlichen der H1D···M1'- (2.64 Å) und der H1D···M3'-Abstand (2.77 Å), dass das Proton H1D symmetrisch zwischen zwei Tolylringen eines Anions lokalisiert ist.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(24)-H(24)M2	1.01(1)	2.73	3.69	158
C(7)-H(7A)M4	0.95(3)	2.70	3.49	140

Tab. 5: Van-der-Waals-Kontakte /Å und deren Winkel /° in [NH₄(NH₃)₃][B(p-tolyl)₄] · NH₃.

Auch wenn in der Koordinationssphäre der oben genannten Komplexkationen sehr kurze VdW-Kontakte vorkommen und elektrostatische Überlegungen es nahelegen, von Wasserstoffbrückenbindungen zu sprechen, so widerspricht dennoch der H···M-Abstand einer solchen Einordnung.

Die Anionen selbst können VdW-Kontakte vorweisen, die ähnlich kurz sind (2.70 Å) wie die bisher diskutierten VdW-Kontakte zwischen Kationen und Anionen (Tab. 5). Hierbei handelt es sich zum einen um einen VdW-Kontakt zwischen dem Proton (H7A) des Methylrestes und dem Tolylring M4 und zum anderen zwischen dem meta-Proton (H24) und dem Tolylring M2 (Abb. 6). Dass die Wasserstoffbrücken zwischen Anionen eher die Ausnahme als die Regel sind, ist in Bezug auf die oben schon diskutierte Elektrostatik einleuchtend. Die Tatsache, dass die H···M-Abstände zwischen Anionen und Kationen sowie die H···M-Abstände der Anionen sich untereinander in etwa gleichen bzw. nicht signifikant kürzer sind, lässt jedoch den Schluss zu, dass es sich um isolierte [NH₄(NH₃)₃]⁺· NH₃-Kationen handelt. Die Packung dieser isolierten Komplexkationen mit den Anionen ist in Abb. 7 dargestellt.

Abb. 7: Projektion der Struktur von [NH₄(NH₃)₃][B(p-tolyl)₄] · NH₃ in die bc-Ebene; die [NH₄(NH₃)₃]⁺ · NH₃-Kationen und die Anionen bilden keine Wasserstoffbrücken zueinander aus.

3.4 NH₄(NH₃)₂N₃

Darstellung und Röntgenstrukturanalyse

Ammoniumazid wurde durch eine Metathesereaktion von Natriumazid (1.70 g, 76.9 mmol) und Ammoniumnitrat (2.00 g, 75.0 mmol) bei 503 K in einer Sublimationsapparatur dargestellt⁷¹. In der Glovebox konnten 1.36 g (22.6 mmol) Ammoniumazid vom Kühlfinger entfernt werden, was einer Ausbeute von 30.1 % entspricht. Ohne weitere Manipulationen wurde die Ausbeute quantitativ in ein Schlenkgefäß gegeben, und etwa 3ml Ammoniak wurden einkondensiert (195 K). Bei der Lagerung des Schlenkgefäßes bei ~ 238 K resultierte nach wenigen Stunden eine farblose Lösung. Um der temperaturabhängigen Löslichkeit von Ammoniumazid in Ammoniak Folge zu leisten, wurde das Schlenkgefäß bei 203 K gelagert (Löslichkeit von NH₄N₃ in 100g NH₃: 70 g bei 243 K, 58 g bei 213 K, 43 g bei 195 K⁷²). Nach zwei Wochen konnten große (3 mm), farblose, prismenförmige Kristalle beobachtet werden. Ein Splitter (~ 0.1 mm) eines in Öl zerdrückten Kristalls wurde der Röntgenstrukturanalyse zugeführt.

Die im Orientingmodus aufgenommenen Reflexe können anhand einer monoklinen Elementarzelle indiziert werden. und Nach Integration Datenreduktion Intensitätsdatensatzes weisen die nicht vorhandenen integralen Auslöschungen und die zonalen Auslöschungen 0k0 k≠2n in Verbindung mit der monoklinen Metrik auf die Raumgruppen P 2₁ oder P 2₁/m hin. In der höhersymmetrischen dieser beiden Raumgruppen gelingt die Lösung der Kristallstruktur, wobei die Lagen von fünf N-Atomen in der asymmetrischen Einheit ermittelt werden. Nach der isotropen Lageverfeinerung wird der Datensatz einer anisotropen Verfeinerung unterworfen. Das Programm ADDSYMM des Programmpacketes PLATON wurde benutzt, um eventuell fehlende Symmetrien zu finden, jedoch ohne Erfolg. Weiterhin können die sieben Lagen der an Stickstoffatome gebundenen Wasserstoffatome der Differenzfouriersynthese entnommen und isotrop verfeinert werden.

-

⁷¹ W. J. Frierson, *Inorganic Syntheses II* **1946**, 39, 136-138.

⁷² G. Jander, H. Spandau, C. C. Addison, *Anorganische und allgemeine Chemie in flüssigem Ammoniak, Band 1* Friedr. Vieweg & Sohn, Brauschweig, 1966.

Kristallstrukturdaten von $NH_4(NH_3)_2N_3$

Summenformel	N_6H_{10}
Anzahl der Frames	180
φ-Inkrement (°)	2.0
Belichtungszeit (min)/Frame	1
Messtemperatur (K)	123
Kristallsystem	monoklin
Raumgruppe	P 2 ₁ /m (Nr. 11)
a (Å)	6.335(1)
b (Å)	6.925(1)
c (Å)	6.601(1)
β(°)	101.13(2)
Volumen (Å ³)	284.14(7)
Z	2
M (g·mol ⁻¹)	94.14
$\rho_{c} \left(g \cdot cm^{-3} \right)$	1.100
F (000)	104
$\mu (MoK_{\alpha})(\mathring{A})$	0.71073
θ-Bereich (°)	3.15 - 25.99
Gesamtzahl der Reflexe	4031
Zahl der unabhängigen Reflexe (R _{int})	601 (0.0408)
Zahl der Parameter	58
$R_1 (I > 2\sigma(I))$	0.0325
$wR_2 (I > 2\sigma(I))$	0.0786
R ₁ (alle Daten)	0.0390
wR ₂ (alle Daten)	0.0806
GooF	1.038
Restelektronendichte	0.148/-0.121

Tabelle 1: Einkristallstrukturdaten von $NH_4(NH_3)_2N_3$.

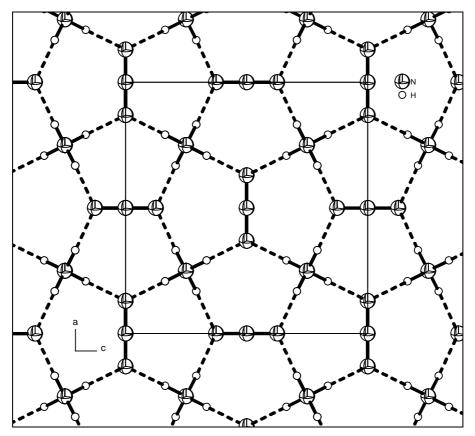
Strukturbeschreibung und Diskussion

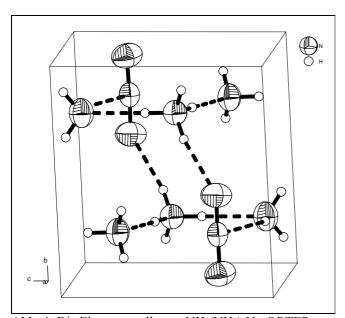
Prince & Choi⁷³ bestimmten 1978 die Struktur von NH₄N₃. Die Daten der von ihnen durchgeführten Neutronenbeugung ergaben die orthorhombische Raumgruppe *P*nma. Hierbei wurden für das Anion N-N-Abstände von 1.168(4) und 1.171(4) Å und ein N-N-N-Winkel von 180° beobachtet. Die N-H-Abstände des Kations sind 1.001(9)-1.037(10) Å, die H-N-H-Winkel liegen zwischen 106(1) und 112.5(1)°. Das Kation und das Anion bilden ein Wasserstoffbrückennetzwerk (Abb. 1) entlang der ac-Ebene aus, wofür zwei verschiedene N-H···N-Brücken ursächlich sind. Dabei handelt es sich um starke Wechselwirkungen (Tab. 2), da der H···N-Abstand um 28.2-29.8% kürzer ist als der entsprechende VdW-Abstand (H···N: 2.75 Å).

Hydrate des Ammoniumazides und der Alkaliazide sind nicht bekannt, jedoch werden die Abstände und Winkel des Anions in der Struktur von $CaCs(N_3)_3 \cdot H_2O^{74}$ in etwa bestätigt.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(5)-H(1)N(2)	1.037(10)	1.930(9)	2.967(3)	177.9(9)
N(5)-H(2)N(4)	1.001(9)	1.974(9)	2.975(4)	177.2(7)

Tab. 2: Protonendonor···Akzeptor-Abstände und deren Winkel in NH₄N₃.




Abb. 3: Die Elementarzelle von NH₄N₃.

⁷⁴ H. Krischner, F. A. Mautner, C. Kratky, *Acta Cryst.* **1983**, 39, 941-943.

7

⁷³ E. Prince, C. S. Choi, *Acta Cryst.* **1978**, B34, 2606-2608.

Das hier vorgestellte Ammoniakat des Ammoniamazides (Abb. 2) zeigt einen N-N-Abstand von 1.1747(9) Å und einen N-N-Winkel von 178.3(1)°. Die Protonen des Ammoniamions sind 0.90(1)-0.95(2) Å vom Ammoniamstickstoff (N1) entfernt und ergeben H-N-H-Winkel von 108(1)-110(1)°. Aufgrund von nahezu linearen (169-177°) Wasserstoffbrücken (Abb. 3)

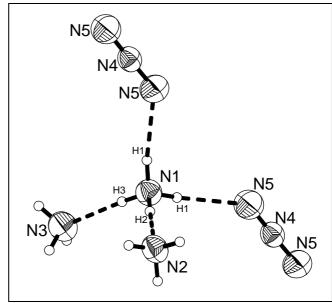


Abb. 4: Die Elementarzelle von NH₄(NH₃)₂N₃. ORTEP-Plot: 50% Wahrscheinlichkeit.

ist das Ammoniumion von zwei Stickstoffatomen (N5) des Azidions und zwei Ammoniakmolekülen (N2 und N3) pseudotetraedrisch umgeben (Tab. 3). Energetisch sind diese Wasserstoffbrückenbindungen als stark einzuordnen (Abb. 4), da ihre H···N-Abstände um 24.4-29.5% kürzer sind als der VdW-Abstand (2.75 Å). Die stärkste dieser vier Wechselwirkungen stellt die N1-H2···N2-Wasserstoffbrücke dar. Denn zum einen zeigt sie den kürzesten H···N-Abstand (1.94 Å), zum anderen der N-H-Abstand ist des Ammoniumions mit 0.95(2) Å der

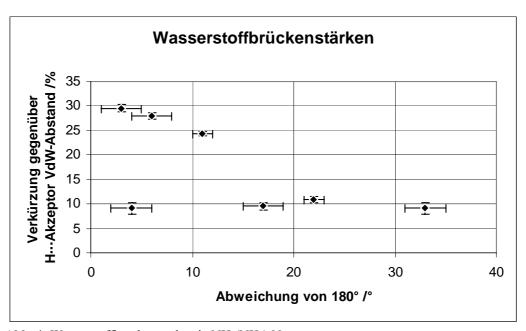
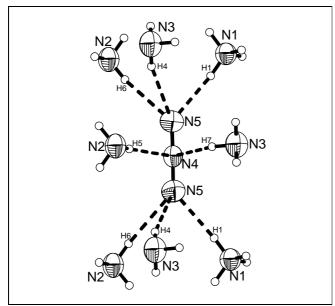
längste N-H-Abstand aller sieben Wasserstoffbrücken in Tab. 3, und auch der DHA-Winkel entspricht mit 177° am ehesten einer linearen Anordnung von Donor-Proton···Akzeptor. Die zwei N1···N5-Abstände (2.971 Å) sind die größten D···A-Abstände der vier N···N-Abstände des Ammoniumions, obwohl es sich um eine Wasserstoffbrücke mit ionischen Anteilen handelt. Auch die Tatsache, dass der N1-H1-Abstand (0.90 Å) nicht signifikant länger ist als

die anderen zwei N-H-Abstände, lässt keine bevorzugte Wechselwirkung vermuten. Demnach ergeben die starken Wechselwirkungen die Komplexverbindung NH₄(NH₃)₂]⁺N₃⁻.

Abb. 3: NH₄(NH₃)₂N₃.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)N(5)	0.90(1)	2.08(1)	2.971(1)	169(1)
N(1)-H(2)N(2)	0.95(2)	1.94(2)	2.891(2)	177(2)
N(1)-H(3)N(3)	0.92(2)	1.98(2)	2.897(2)	174(2)
N(3)-H(4)N(5)	0.86(2)	2.49(2)	3.335(1)	163(2)
N(2)-H(5)N(4)	0.88(3)	2.50(3)	3.382(2)	176(2)
N(2)-H(6)N(5)	0.88(2)	2.45(2)	3.289(1)	158(1)
N(3)-H(7)N(4)	0.90(3)	2.50(3)	3.295(2)	147(2)

Tab. 3: Protonendonor···Akzeptor-Abstände und deren Winkel in NH₄(NH₃)₂N₃.

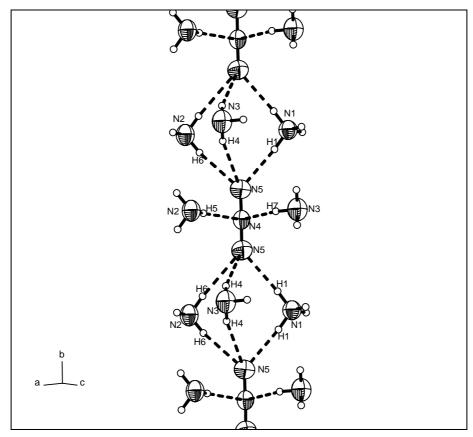
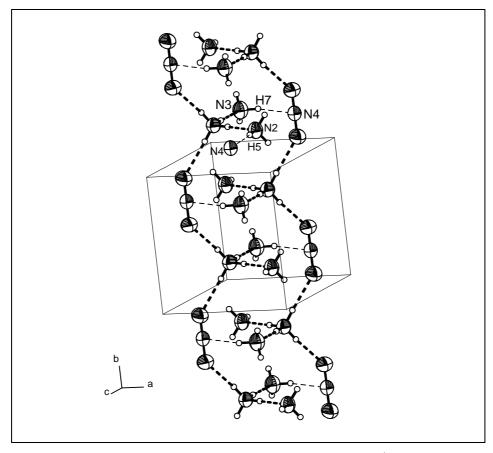

Abb. 4: Wasserstoffbrückenstärken in NH₄(NH₃)₂N₃.

Abb. 5: Die koordinative Umgebung des Azidions in $NH_4(NH_3)_2N_3$.


Abb. 5 zeigt die Koordination des Es ist Anions. von acht Protonendonoren umgeben, wobei die Stickstoffatome (N5) ieweils einem Ammoniumion und zwei Ammoniakmolekülen umgeben werden. Das Stickstoffatom (N4) des **Azidions** wird von zwei Ammoniakmolekülen koordiniert. Wie zu erwarten, ist die Wasserstoffbrücke des Ammoniumions zum Azidion die stärkste Wechselwirkung aller Wasserstoffbrücken des Anions. Die anderen vier möglichen Wasserstoffbrückenbindungen zeigen eine Verkürzung des H···N-Abstandes

von 9.1-10.9%. Hierbei stellt die stärkste Wechselwirkung die N2-H6···N5-Brücke dar. Jedoch entspricht der DHA-Winkel (158°) nicht den geforderten 180°. Ursächlich für diese Diskrepanz ist u. a. die N3-H4···N5-Brücke, deren Interaktion nur geringfügig schwächer (Verkürzung um 9.5%) ist. Doch auch der DHA-Winkel (163°) weicht deutlich von 180° ab.

Abb. 6: Kette aus Azidionen in NH₄(NH₃)₂N₃, die durch ein Ammoniumion und zwei Ammoniakmoleküle verbrückt werden.

Weiterhin stellt sich bei der Analyse der dritten Wechselwirkung des N5-Atoms, der N1-H1···N5-Wasserstoffbrücke (<DHA: 169°), heraus, dass es sich bei der Koordination des N5-Atoms um eine dreifach gegabelte Wasserstoffbrückenbindung handelt. Oder anders ausgedrückt, die Ammoniumionen und die Ammoniakmoleküle verbrücken die Azidionen zu einer Kette. Bei dieser Kettenverbrückung werden pro Ammoniakmolekül zwei Protonen involviert, das dritte Proton des N2- bzw. N3-Moleküles geht eine attraktive Wechselwirkung mit dem N4-Atom des Azidions ein. Bei den N2-H5···N4- und N3-H7···N4-Brücken werden deutliche Verkürzungen des H···N-Abstandes (jeweils 9.1%) festgestellt. Die erstgenannte Wasserstoffbrücke kann einen nahezu linearen DHA-Winkel (176°) vorweisen, ganz im Gegenteil zu der zweitgenannten, bei der mit 147° die größte Abweichung von einer linearen Anordnung beobachtet wird.

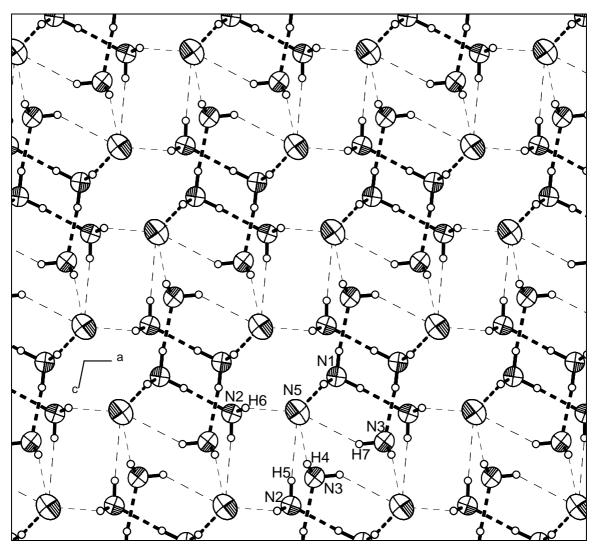


Abb. 7: Kette aus Azidionen und den Komplexkationen [NH₄(NH₃)₂]⁺ in NH₄(NH₃)₂N₃.

Eine energetische Einordnung der sieben Wasserstoffbrückenbindungen wurde bis hierhin vorgenommen. In Abb. 7 werden starke Interaktionen dargestellt. Die Kettenausbildung in b-Richtung basiert im Grunde auf der Verbrückung zweier Azidionen durch das Ammoniumion des Komplexkations [NH₄(NH₃)₂]⁺. Somit zeigt Abb. 7 die starken Wechselwirkungen, die schon für sich allein genommen eine unendliche Kette formieren, was zusätzlich durch schwächere Wechselwirkungen verbrückender Ammoniakmoleküle unterstützt wird (Abb. 6). Darüber hinaus wird aber hier die Lage dieser Ketten zueinander deutlich. Sie entspricht in etwa dem Bild zweier Nockenwellen, die passgenau ineinander liegen. Jedoch veranschaulichen die dünn gestrichelten Linien, dass nur eine schwache Wasserstoffbrücke

(N3-H7···N4, 9.1% H···N-Verkürzung) die beiden Ketten beieinander hält. Das andere Ammoniakmolekül (N2) bildet eine gleich starke Wasserstoffbrücke (N2-H5···N4) zu einer anderen Kette. Diese Wechselwirkung und die schon besprochenen verbrückenden Wechselwirkungen der Ammoniakmoleküle N3 und N2 in Abb. 6 sind für den dreidimensionalen Aufbau verantwortlich.

Abb. 8 veranschaulicht diesen Zusammenhang, wobei nun die schwachen dünngestrichelten Wasserstoffbrückenbindungen im Vordergrund stehen. Die starken Wechselwirkungen sind aufgrund der Projektion in b-Richtung nur unvollständig zu erkennen, aber es ist eindeutig zu beobachten, dass die starken Wechselwirkungen (H···N-Verkürzung >20%) nur entlang der b-Richtung aufzufinden sind. Senkrecht zu b findet man die N2-H5···N4- und die N3-H7···N4-Brücke. Hierbei ist zu beachten, dass sich das N4-Atom des Azidions genau hinter dem N5-Atom befindet, da die Azidionen parallel zu b ausgerichtet sind. Die beiden noch verbleibenden schwachen Wechselwirkungen N3-H4···N5 und N2-H6···N5 wurden in Abb. 6 behandelt und verbrücken die Azidionen und somit auch die erwähnten Ketten miteinander.

Abb. 8: Projektion der Struktur von NH₄(NH₃)₂N₃ in die ac-Ebene. Starke (dick) und schwache (dünn) Wasserstoffbrücken sind eingezeichnet.

3.5 [NH₄(NH₃)₃][SCN]

Darstellung und Röntgenstrukturanalyse

Ammoniumthiocyanat bzw. Ammoniumrhodanid (1.000 g, 0.013 mmol) wird über sechs Stunden bei Raumtemperatur einem Druck von 10⁻² mbar ausgesetzt. Danach werden ca. 40 ml Ammoniak einkondensiert (195 K). Trotz mehrerer Wochen der Lagerung (233 K) und mehrmaligem Einengen bildeten sich keine Kristalle. Erst bei der einstündigen Lagerung des Schlenks bei 195 K resultierte ein lösungsmittelfreier, leicht gelb gefärbter, transparenter Festkörper. Dieser Feststoff wurde im gleichen Schlenkrohr zerstoßen. Erst die dadurch gewonnen Splitter waren für eine Röntgenstrukturanalyse geeignet.

Die Indizierung der im Orientingmodus aufgenommenen Reflexe ergibt eine trikline Elementarzelle. Sowohl die Lösung als auch die Verfeinerung der Kristallstruktur gelingt in der Raumgruppe $P\bar{1}$, wobei die Lagen von einem Schwefelatom, fünf Stickstoffatomen und einem Kohlenstoffatom in der asymmetrischen Einheit ermittelt werden. Nach deren isotroper Lageverfeinerung wird der Datensatz einer anisotropen Verfeinerung unterworfen. Das Programm ADDSYMM des Programmpacketes PLATON wurde benutzt um eventuell fehlende Symmetrien zu finden, was jedoch ohne Erfolg blieb. Weiterhin können die 13 Lagen der an Stickstoffatome gebundenen Wasserstoffatome der Differenzfouriersynthese entnommen und isotrop verfeinert werden.

Kristallstrukturdaten von [NH₄(NH₃)₃][SCN]

Cymrus on forms of	CHAC		
Summenformel	$CH_{13}N_5S$		
Anzahl der Frames	345		
φ-Inkrement (°)	0.8		
Belichtungszeit (min)/Frame	0.10		
Messtemperatur (K)	123		
Kristallsystem	triklin		
Raumgruppe	<i>P</i> 1 (Nr. 2)		
a (Å)	6.5926(6)		
b (Å)	6.6148(6)		
c (Å)	9.5805(8)		
α(°)	90.26(1)		
β(°)	108.09(1)		
γ(°)	95.47(1)		
Volumen (Å ³)	395.08(6)		
Z	2		
M (g·mol ⁻¹)	127.22(6)		
$\rho_{c} \left(g \cdot cm^{-3} \right)$	0.535		
F (000)	70		
$\mu (MoK_{\alpha})(\mathring{A})$	0.71073		
θ-Bereich (°)	2.24 - 25.75		
Gesamtzahl der Reflexe	4245		
Zahl der unabhängigen Reflexe (R _{int})	1400 (0.0522)		
Zahl der Parameter	116		
$R_1 (I > 2\sigma(I))$	0.0362		
$wR_2 (I > 2\sigma(I))$	0.0956		
R ₁ (alle Daten)	0.0318		
wR ₂ (alle Daten)	0.0968		
GooF	1.078		
Restelektronendichte	0.374/-0.179		

Tabelle 1: Einkristallstrukturdaten von [NH₄(NH₃)₃][SCN].

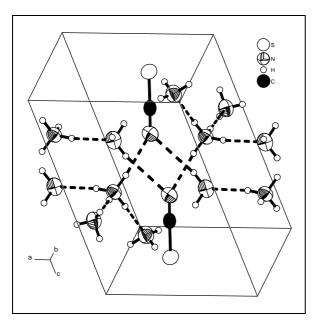
Strukturbeschreibung und Diskussion

Bats & Coppens⁷⁵ bestimmten 1977 die Struktur von NH₄SCN bei 81 K. Die Daten der von ihnen durchgeführten Neutronenbeugung ergaben die monokline Raumgruppe *P*2₁/c. Hierbei wurde für das Anion ein S-C-Abstand von 1.6456(9) Å, ein C-N-Abstand von 1.1736(5) Å und ein S-C-N-Winkel von 179.60(4)° beobachtet. Die N-H-Abstände des Kations sind 1.0276(8)-1.0301(8) Å, die H-N-H-Winkel liegen zwischen 108.59(8) und 110.53(8)°. Das Kation und das Anion bilden ein Wasserstoffbrückennetzwerk (Abb. 1) entlang der bc-Ebene aus. Ursächlich dafür sind jeweils zwei N-H···N- und N-H···S-Brücken. Dabei handelt es sich um starke Wechselwirkungen (Tab. 2), da der H···N-Abstand um 28.6-29.6% und der H···S-Abstand um 21.4-21.7% kürzer ist als der jeweils entsprechende VdW-Abstand (H···N: 2.75 Å, H···S: 3.00 Å).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2)-H(1)N(1)	1.0301(8)	1.936(1)	2.948(1)	166.53(7)
N(2)-H(4)N(1)	1.0276(8)	1.964(1)	2.959(1)	162.19(8)
N(2)-H(2)S(1)	1.0296(8)	2.235(1)	3.373(1)	172.47(8)
N(2)-H(3)S(1)	1.0291(9)	2.358(1)	3.383(1)	173.67(8)

Tab. 2: Protonendonor···Akzeptor-Abstände und deren Winkel in NH₄SCN.




Abb. 5: Die Elementarzelle von NH₄SCN.

-

⁷⁵ J. W. Bats, P. Coppens, *Acta Cryst.* **1977**, B33, 1542-1548.

Hydrate des Ammoniumthiocyanates sind nicht bekannt. Jedoch werden die Abstände und Winkel des Anions in der Struktur von NaSCN \cdot 2 H_2O^{76} bestätigt.

Das hier vorgestellte Ammoniakat des Ammoniumthiocyanates (Abb. 2) zeigt einen S-C-Abstand von 1.645(1) Å, einen C-N-Abstand von 1.164(1) Å und einen S-C-N-Winkel von

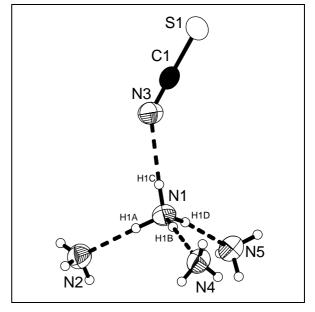
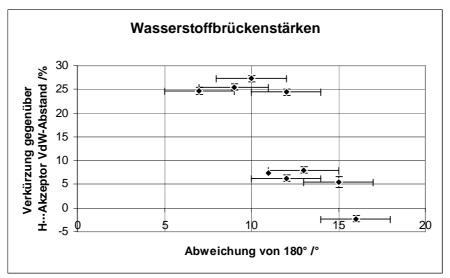


Abb. 6: Die Elementarzelle von [NH₄(NH₃)₃][SCN].

178.7(1)°. Die Protonen Ammoniumions sind 0.85(2)-0.93(2) Å vom Ammoniumstickstoff (N1) entfernt und ergeben H-N-H-Winkel von 104(2)-110(2)°. Aufgrund nahezu linearer (168-173°) Wasserstoffbrücken (Abb. 3) ist das Ammoniumion von einem Stickstoff (N3) des Thiocyanates und drei Ammoniakmolekülen (N2, N4 und N5) pseudotetraedrisch umgeben (Tab. 3). Energetisch sind diese Wasserstoffbrückenbindungen als stark einzuordnen (Abb. 4), da ihre H···N-Abstände um 27.3-24.4% kürzer sind als der VdW-Abstand (2.75 Å). Die stärkste dieser vier Wechselwirkungen stellt die

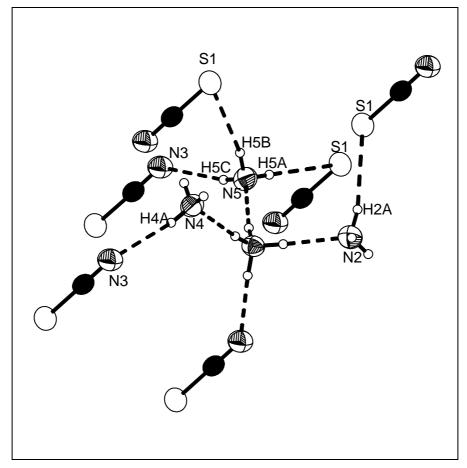
N1-H1A···N2-Wasserstoffbrücke dar. Zum einen zeigt sie den kürzesten H···N-Abstand (2.00 Å) und zum anderen ist der N-H Abstand des Ammoniumions mit 0.92(2) Å signifikant länger als die entsprechenden N-H-Abstände der anderen drei Wasserstoffbrücken, was einen deutlicheren Protonentransferprozess anzeigt. Der N1···N3-Abstand (2.961 Å) ist der größte D···A-Abstand der vier N···N-Abstände des Ammoniumions, obwohl es sich um eine

Wasserstoffbrücke mit ionischen Anteilen handelt. Auch die Tatsache, dass der N1-H1C-Abstand (0.89 Å) nicht signifikant länger ist als die anderen drei N-H-Abstände, lässt keine bevorzugte Wechselwirkung vermuten. Demnach ergeben die starken Wechselwirkungen die Komplexverbindung [NH₄(NH₃)₃]⁺SCN⁻.

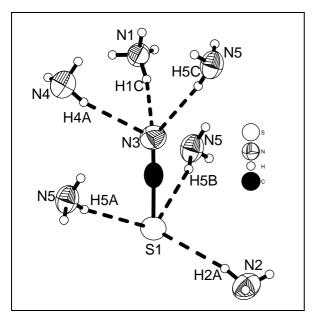

Abb. 3: $[NH_4(NH_3)_3][SCN]$.

_

⁷⁶ K. Mereiter, A. Preisinger, W. Mikenda, Z. Krist. **1984**, 169, 95-107.


D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)N(2) N(1)-H(1B)N(4) N(1)-H(1C)N(3) N(1)-H(1D)N(5) N(2)-H(2A)S(1) N(4)-H(4A)N(3) N(5)-H(5A)S(1)	0.93(2) 0.85(2) 0.89(2) 0.85(2) 0.89(2) 0.87(3) 0.83(2)	2.00(2) 2.07(2) 2.08(2) 2.05(2) 2.76(2) 2.60(3) 2.81(2) 3.07(2)	2.915(2) 2.929(2) 2.961(2) 2.894(2) 3.642(1) 3.453(2) 3.622(1)	170(2) 173(2) 168(2) 171(2) 167(2) 165(2) 168(2)
N(5)-H(5B)S(1) N(5)-H(5C)N(3)	0.90(2) 0.87(2)	2.54(2)	3.944(1) 3.405(2)	164(2) 169(2)

Tab. 3: Protonendonor···Akzeptor-Abstände und deren Winkel in [NH₄(NH₃)₃][SCN].


Abb. 4: Wasserstoffbrückenstärken in [NH₄(NH₃)₃][SCN].

Die bisherigen Ausführungen haben die Koordinationssphäre des Ammoniumions beschrieben, das als Protonendonor zu vier Protonenakzeptoren fungiert. Nun soll die Koordinationssphäre der Akzeptoren (Abb. 5), insbesondere diejenige Ammoniakmoleküle (N2, N4 und N5), eingehender untersucht werden. Die drei Ammoniakmoleküle gehen mit fünf weiteren SCN-Anionen Wasserstoffbrückenbindungen ein. Die Stärke dieser Wechselwirkungen ist deutlich niedriger einzustufen als diejenigen der oben genannten. Obgleich die Verkürzung des H···A-Abstandes (A = N oder S) maximal 8% beträgt, sind alle DHA-Winkel größer als 164(2)°. Dieses Linearitätskriterium ist auch ein Grund dafür, die N5-H5B···S1-Brücke nicht außer Acht zu lassen. Sicherlich ist der H···S-Abstand (3.07(2) Å) größer als der VdW-Abstand (3.00 Å). Trotzdem sind der DHA-Winkel (164(2)°) und der N-H-Abstand (0.90(2) Å), der der zweitlängste aller N-H-Abstände in Tab. 3 ist, Hinweise für eine vorhandene attraktive Wechselwirkung. Aber erst die Betrachtung der anderen beiden Protonen des N5-Ammoniaks zeigt das kompetitive Verhalten der drei Wasserstoffbrücken untereinander. Zum einen handelt es sich bei den drei Wechselwirkungen um etwa gleich große DHA-Winkel (169(2)°, 168(2)° und 164(2)°), was ein Bestreben nach möglichst linearer Anordnung signalisiert. Zum anderen ist jedoch die N5-H5A···S1- (2.81(2) Å) und die N5-H5C···N3-Brücke (2.54(2) Å) deutlich kürzer als der entsprechende VdW-

Abb. 5: Die koordinative Umgebung von $[NH_4(NH_3)_3]^+$ in $[NH_4(NH_3)_3][SCN]$.

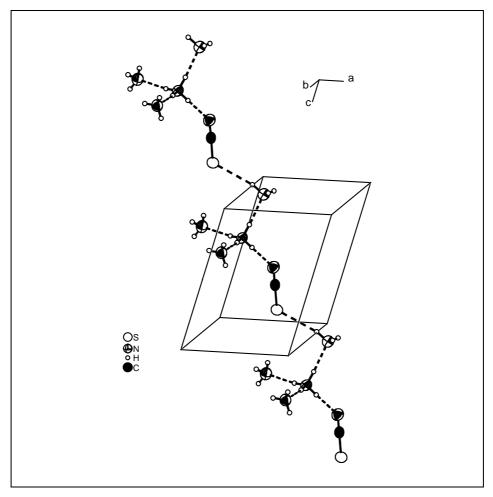

Abstand, was zu einer Richtungspräferenz führt, die entgegengesetzt zu der N5-H5B···S1-Brücke wirkt. Bei den Wasserstoffbrücken, die die Ammoniakmoleküle N2 und N4 zu S1 bzw. N3 ausbilden, handelt es sich um eindeutige, nahezu lineare Wechselwirkungen. Die N2-H2A···S1-Brücke ist unter allen fünf schwachen Wasserstoffbrücken die mit dem kürzesten H···A-Abstand (Verkürzung um 8.0%). Die N4-H4A···N3-Brücke hingegen zeigt

Abb. 6: Die koordinative Umgebung von SCN⁻ in [NH₄(NH₃)₃][SCN].

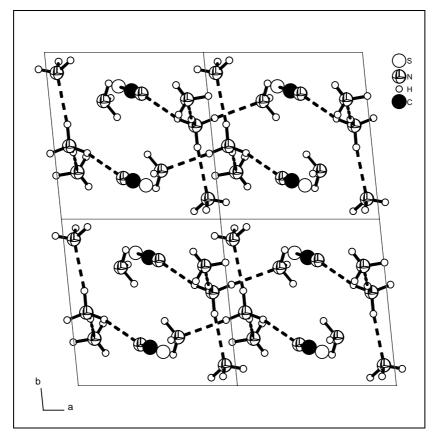

die geringste Verkürzung des H···A-VdW-Abstandes (5.5%).

Abb. 6 zeigt die Koordination des Anions. Es ist von sechs Protonendonoren umgeben, wobei das Schwefelatom (S1) von drei Ammoniakmolekülen und das Stickstoffatom (N3) des Thiocyanates von Ammoniumion und einem zwei Ammoniakmolekülen koordiniert wird. Wie erwarten. ist die **Z**11 Wasserstoffbrücke des Ammoniumions zum Thiocyanation die stärkste Wechselwirkung aller Wasserstoffbrücken des Anions. Eine energetische Einordnung dieser sechs Brücken wurde bereits

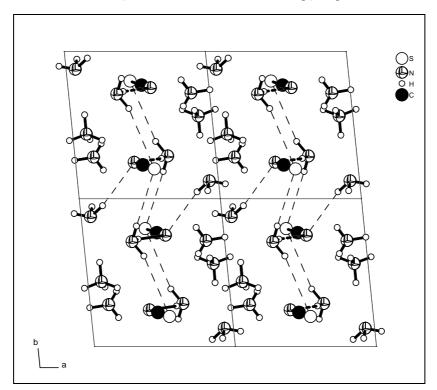
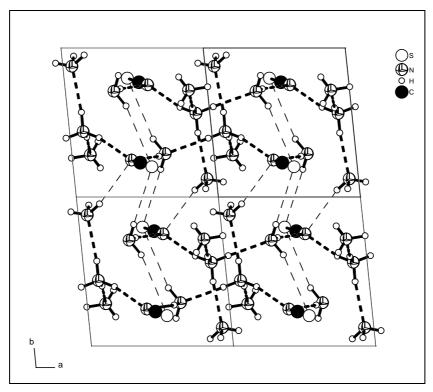


Abb. 7: Kette aus N2 und SCN⁻ verknüpften Tetraedereinheiten in [NH₄(NH₃)₃][SCN].


vorgenommen. In Abb. 7 sind starke Interaktionen, die zu einer Kette führen, dargestellt. Die Kette basiert im Grunde auf der Eckenverknüpfung einzelner Nachbartetraeder in [101]-Richtung. Diese N2-H2A···S1-Wasserstoffbrücke (8% H···S-Abstandsverkürzung) ist nach den vier N-H···N-Wasserstoffbrücken des Ammoniumions die nächstkürzere und deshalb für den Netzwerkaufbau hauptverantwortlich. Der Aufbau des dreidimensionalen Netzwerkes wird durch die schwächeren N4-H···N- und N5-H···N,S-Wasserstoffbrücken, die senkrecht zur Kettenbildungsrichtung wirken, verursacht. Diese Wechselwirkungen sind nur um 5.5 bis 7.3% kürzer als der zugehörige VdW-Abstand und gehen Protonendonorwechselwirkungen mit den Anionen benachbarter Ketten ein. Das Netzwerk aus Wasserstoffbrückenbindungen wird in Abb. 8 - 10 gezeigt. In Abb. 8 sind nur die starken Wasserstoffbrücken, also diejenigen, die das Ammoniumion als Protonendonor aufweisen, dargestellt. Deutlich ist zu erkennen, dass keine starken Wechselwirkungen entlang der b-Achse vorhanden sind. Entlang dieser b-Achse sind nur schwache Wechselwirkungen zu beobachten, die aber ihrerseits nicht entlang der a-Achse zu finden sind (Abb. 9). Erst beim Aufeinanderlegen beider Abbildungen und dem Einbeziehen der Kettenverknüpfung des Kationenkomplexes und des Anions entlang [101] (Abb. 7) wird das dreidimensionale Wasserstoffbrückennetzwerk in Abb. 10 deutlich.

 $\label{eq:Abb. 8: Vierfachzelle von [NH_4(NH_3)_3][SCN], in der nur starke Wasserstoffbrücken (> 20% H···A-Abstandsverkürzung) eingezeichnet sind.}$

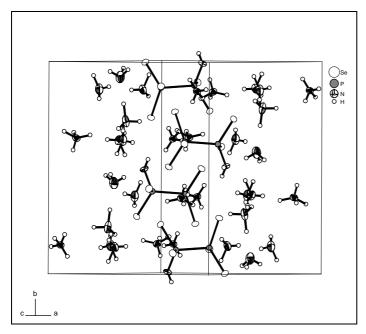
Abb. 9: Vierfachzelle von [NH₄(NH₃)₃][SCN], in der nur schwache Wasserstoffbrücken (< 10% H···A-Abstandsverkürzung) eingezeichnet sind.

 $\label{eq:Abb.10:} \textbf{Abb. 10:} \ \ Vierfachzelle \ \ von \ [NH_4(NH_3)_3][SCN], \ in \ der \ die \ schwachen \ (dünn) \ und \ die \ starken \ (dick) \ Wasserstoffbrücken \ eingezeichnet \ sind.$

$3.6 (NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$

Darstellung und Röntgenstrukturanalyse

Farbloser Phosphor und Selengranulat werden im Verhältnis 1:1 in ein Duranglasrohr gegeben und unter Argon eine Ampulle abgeschmolzen. Die Duranglasampulle wird innerhalb von 12 Stunden auf 623 K erhitzt und innerhalb von 24 Stunden auf Raumtemperatur abgekühlt. Danach wird die Ampulle in der Glovebox geöffnet, der Inhalt innig verrieben, anschließend erneut in ein Duranglasrohr gegeben und unter Argon abgeschmolzen. Die Ampulle wird innerhalb von sieben Stunden auf 653 K (Schmelze) erhitzt und langsam (8.5 Stunden) auf 573 K (Festkörper) abgekühlt. Nachdem die Ampulle durch Ausschalten des Ofens auf Raumtemperatur abgekühlt ist, wird sie in der Glovebox geöffnet und der Inhalt zu einem roten Pulver zerrieben. Von dem Pulver der Zusammensetzung PSe werden 0.501 (4.564 mmol) in ein Schlenkgefäß gegeben und ca. 50 ml Ammoniak einkondensiert (195 K). Die über dem braunen Bodenkörper stehende Lösung war orange gefärbt. Nach mehreren Wochen der Lagerung (233 K) bildeten sich farblose Kristalle, die der Röntgenstrukturanalyse zugeführt wurden.


aufgenommenen Reflexe können mit einer monoklinen Die im Orientingmodus Elementarzelle indiziert werden. Nach Integration und Datenreduktion des Intensitätsdatensatzes weisen die nicht vorhandenen integralen Auslöschungen, die zonalen Auslöschungen h0l h+l≠2n und die seriellen Auslöschungen 0k0 k≠2n in Verbindung mit der monoklinen Metrik auf die Raumgruppe P2₁/n hin. In dieser Raumgruppe gelingt die Lösung und Verfeinerung der Kristallstruktur, wobei die Lagen von fünf Selen-, zwei Phosphor- und sieben Kohlenstoffatomen in der asymmetrischen Einheit ermittelt werden. Nach deren isotroper Lageverfeinerung wird der Datensatz einer anisotropen Verfeinerung unterworfen. Das Programm ADDSYMM des Programmpakets PLATON wurde benutzt, um eventuell fehlende Symmetrien zu finden, was jedoch ohne Erfolg blieb. Weiterhin können die 23 Lagen der an Stickstoffatome gebundenen Wasserstoffatome der Differenzfouriersynthese entnommen und isotrop verfeinert werden. Die Angleichung des WGHT-Faktors am Ende der Strukturverfeinerung hat zur Folge, dass jeweils ein Proton der Ammoniumionen N2, N5 und des Ammoniakmoleküls N6 deutlich schlechtere U(eq)-Werte zeigt. Auch der N-H-Abstand vergrößert sich von anfänglich 1.0 auf teilweise über 1.4 Å. Deshalb wird das "riding"-Modell SADI (s = 0.2 Å) bei den insgesamt elf Protonen der beiden Ammoniumionen und des Ammoniakmoleküls angewendet, was die 15 restraints in Tab. 1 erklärt.

Kristallstrukturdaten von $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$

Summenformel	$H_{23}N_7P_2Se_5$
Anzahl der Frames	360
φ-Inkrement (°)	1.0
Belichtungszeit (min)/Frame	0.5
Messtemperatur (K)	123
Kristallsystem	monoklin
Raumgruppe	P 1 2 ₁ /n 1 (Nr. 14)
a (Å)	10.8295(5)
b (Å)	13.7935(7)
c (Å)	12.2910(6)
β(°)	112.565(5)
Volumen (Å ³)	1709.2(1)
Z	4
M (g·mol ⁻¹)	577.99
$\rho_{c} (g \cdot cm^{-3})$	2.246
F (000)	1088
$\mu (MoK_{\alpha})(\mathring{A})$	0.71073
θ-Bereich (°)	2.13 – 25.90
Gesamtzahl der Reflexe	23836
Zahl der unabhängigen Reflexe (R _{int})	3298 (0.0749)
Zahl der Parameter	219
Zahl der "restraints"	15
$R_1 (I > 2\sigma(I))$	0.0248
$wR_2 (I > 2\sigma(I))$	0.0465
R ₁ (alle Daten)	0.0446
wR ₂ (alle Daten)	0.0491
GooF	0.793
Restelektronendichte	0.557/-0.645

Tabelle 1: Einkristallstrukturdaten von $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$.

Strukturbeschreibung und Diskussion

Abb. 7: Die Elementarzelle von $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$.

Die Kristallstruktur von $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$ ist aus isolierten Ammoniumionen, $[(NH_4)_2(NH_3)_3]^{2+}$ -Komplexen und Amidopentaselenodiphosphatanionen aufgebaut. Das Anion $[P_2(NH_2)Se_5]^{3-}$ entspricht der gestaffelten Anordnung des Ethanmoleküls. Der P-N-Abstand (1.681(4) Å) ist mit dem P-N-Abstand (1.663(5) Å) in $(NH_4)_2[P_2(NH_2)_2O_4]^{77}$ vergleichbar. Hierbei handelt es sich auch um die einzige bisher beschriebene Struktur

eines zweikernigen Phosphates, dessen Chalkogenliganden durch Amidgruppen Die substituiert wurden. N-H-Abstände betragen 0.94 – 1.50 Å und die P-N-H-Winkel sind 79° und 115°, wobei die beiden die gleiche Orientierung Amidprotonen aufweisen wie im hier besprochenen Anion. Auch der Effekt, dass der Se2-P1-Se4-Winkel größer als die Se-P2-Se-Winkel ist, wird dort beschrieben, was jedoch mit der größeren Abstoßung der Chalkogenatome (O) aufgrund kürzerer Bindungsabstände zum Phosphoratom begründet wird. Dieses Argument gilt hier nicht in diesem Maße, da die Phosphor-

Abstände /å: P1-P2: 2.254(1)

P1-N1: 1.681(4)

N1-H1A: 0.70(5)

N1-H1B: 0.85(6)

P1-Se2: 2.145(1)

P1-Se4: 2.150(1)

P2-Se1: 2.183(1)

P2-Se3: 2.178(1)

P2-Se5: 2.165(1)

Winkel /°:

N1-P1-P2: 105.8(2)

P1-N1-H1A: 115(4)

P1-N1-H1B: 108(3)

N1-P1-Se2: 108.9(2)

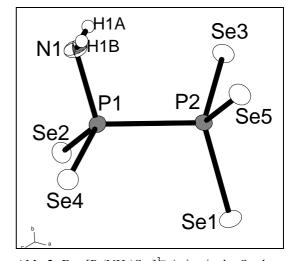
N1-P1-Se4: 107.1(2)

Se2-P1-Se4: 116.5(6)

Se2-P1-P2: 107.84(6)

Se4-P1-P2: 110.14(5) Se5-P2-Se3: 112.83(5)

565-62-563 112.03(5)


Se5-P2-Se1: 112.80(5) Se3-P2-Se1: 113.21(5)

Se5-P2-P1: 107.86(5)

Se3-P2-P1: 104.11(5)

Sel-P2-P1: 105.19(5)

Tab. 2: Abstände und Winkel des Ammoniumaminopentaselenodiphos phates.

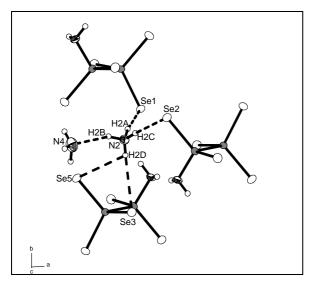


Abb. 2: Das $[P_2(NH_2)Se_5]^{3-}$ -Anion in der Struktur von $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$.

-

⁷⁷ W. S. Sheldrick, *ZAAC* **1974**, 408, 175.

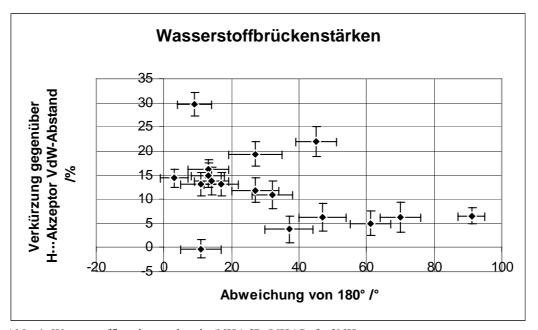
Chalkogen-Abstände größer sind als die P-N-Abstände. Die P-Se-Abstände sowie die Se-P-Se-Winkel in dieser Verbindung stimmen mit den entsprechenden Abständen und Winkeln in $K_2Mg(P_2Se_6)$, $Mg_2(P_2Se_6)$ $Sn_2(P_2Se_6)$, $AgV(P_2Se_6)$, $CuAl(P_2Se_6)$, $CuCr(P_2Se_6)$ und $Tl_4(P_2Se_6)$ in etwa überein. Die P-P-Abstände der genannten Verbindungen reichen von 2.0 bis 2.3 Å. Von den einkernigen Amindochalkogenophosphaten sind folgende Verbindungen bekannt: $SP(NH_2)_3^{78}$, $(NH_4)_2[PO_2S(NH_2)]^{79}$, $NH_4[POS(NH_2)_2]^{80}$ und $(NH_4)[Li(NH_3)_4][P(NH_2)S_3]$ · NH_3^{81} . Der P-N-Abstand beträgt 1.657(3) – 1.702(2) Å.

Abb. 3: Die koordinative Umgebung des Ammoniumions N2 in $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$.

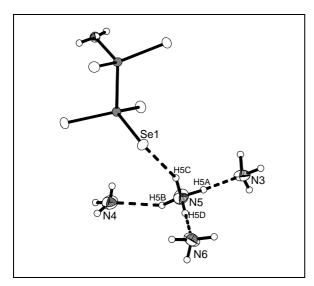
Die Protonen des Ammoniumions sind Å 0.78(6)1.19(8)vom Ammoniumstickstoff (N2) entfernt und ergeben H-N-H-Winkel von 93(7) -124(7)°. Dieses Ammoniumion bildet fast lineare $(171(5)^{\circ}$ 159(5)°) Wasserstoffbrücken zu einem Ammoniakmolekül und zu zwei Selenatomen zweier Anionen aus. Energetisch sind diese Wasserstoffbrückenbindungen als stark einzuordnen (Abb. 4), da ihre H···N/Se-Abstände um 29.7-16.3% kürzer als der VdW-Abstand (N···H: 2.75 Å, Se···H: 3.20

Å) sind. Die vierte Wechselwirkung in Form einer gegabelten Wasserstoffbrücke bezieht sich auf zwei Selenatome eines Anions. Die H···Se-Abstände sind 2.82(8) und 3.04(8) Å, die dazugehörigen DHA-Winkel betragen 153(7)° und 119(6)°. Somit wird eine bevorzugte Orientierung zum Se3-Atom deutlich. Die stärkste dieser vier Wechselwirkungen stellt die N2-H2A···Se1-Wasserstoffbrücke dar. Zum einen zeigt sie den kürzesten H···Se-Abstand (2.25 Å), und zum anderen ist der N-H Abstand des Ammoniumions mit 1.19(8) Å signifikant länger als die entsprechenden N-H-Abstände der anderen drei Wasserstoffbrücken, was einen deutlicheren Protonentransferprozess anzeigt. Der N2···N4-Abstand beträgt 3.063(7) Å und die N···Se-Abstände reichen von 3.425(5) Å bis 3.587(5) Å.

⁷⁸ W. Schnick, *Z. Naturforsch.* **1989**, 44b 942.


⁷⁹ D. Mootz, J. Golgmann, *Acta Cryst.* **1969**, B25, 1256.

⁸⁰ D. Mootz, W. Look, G. Sassmannshausen, ZAAC **1968**, 358, 282.


⁸¹ K. Pfisterer, N. Korber, ZAAC **2002**, 628, 762.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)Se(3)	0.70(5)	3.00(5)	3.581(5)	143(5)
N(1)-H(1B)Se(1)	0.85(6)	2.74(6)	3.409(4)	137(4)
N(1)-H(1B)Se(4)	0.85(6)	2.99(5)	3.094(5)	89(4)
N(2)-H(2A)Se(1)	1.19(8)	2.25(8)	3.425(5)	171(5)
N(2)-H(2B)N(4)	0.93(6)	2.18(6)	3.063(7)	159(5)
N(2)-H(2C)Se(2)	0.78(6)	2.68(6)	3.451(5)	167(6)
N(2)-H(2D)Se(3)	0.83(8)	2.82(8)	3.578(5)	153(7)
N(2)-H(2D)Se(5)	0.83(8)	3.04(8)	3.522(5)	119(6)
N(3)-H(3A)Se(1)	1.01(8)	2.78(8)	3.759(6)	163(5)
N(3)-H(3B)Se(4)	0.74(6)	3.21(6)	3.939(5)	169(6)
N(3)-H(3C)Se(4)'	1.05(8)	2.72(8)	3.745(5)	167(5)
N(4)-H(4B)Se(2)	0.85(9)	3.08(9)	3.791(8)	143(7)
N(4)-H(4C)Se(5)	1.13(9)	2.85(9)	3.855(6)	148(6)
N(5)-H(5A)N(3)	1.06(7)	1.85(7)	2.909(7)	177(6)
N(5)-H(5B)N(4)	1.09(8)	2.20(8)	3.160(8)	145(5)
N(5)-H(5C)Se(1)	0.90(8)	2.58(8)	3.408(4)	153(8)
N(5)-H(5D)N(6)	1.12(7)	1.77(7)	2.890(8)	179(6)
N(6)-H(6A)Se(3)	1.10(9)	3.0(1)	3.587(6)	110(6)
N(6)-H(6B)Se(4)	0.84(8)	3.00(9)	3.632(6)	133(7)
N(6)-H(6C)N(1)	1.0(1)	2.7(2)	3.441(6)	127(14)
N(7)-H(7A)Se(4)	0.74(6)	2.75(6)	3.469(5)	164(6)
N(7)-H(7B)Se(4)'	0.91(9)	2.76(9)	3.643(5)	166(6)
N(7)-H(7C)Se(3)	0.73(8)	2.78(8)	3.505(5)	169(6)
N(7)-H(7D)Se(1)	1.2(1)	2.8(1)	3.611(5)	121(6)
N(7)-H(7D)Se(2)	1.2(1)	2.5(1)	3.548(5)	135(6)
N(7)-H(7D)Se(5)	1.2(1)	3.0(1)	3.502(5)	102(6)

Tab. 3: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P₂(NH₂)Se₅] · 3NH₃.

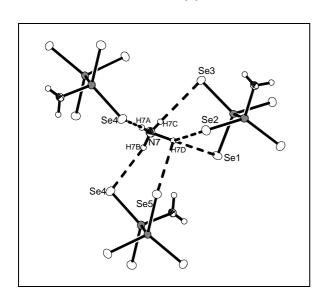
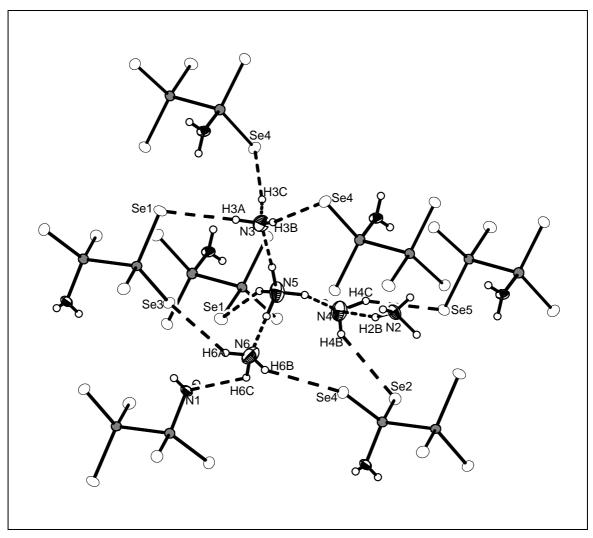

Abb. 4: Wasserstoffbrückenstärken in $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$.

Abb. 5: Die koordinative Umgebung des Ammoniumions N5 in (NH₄)₃[P₂(NH₂)Se₅] · 3NH₃.

Die Protonen des N5-Ammoniumions sind Å 0.90(8)1.12(7)vom Ammoniumstickstoff (N5) entfernt und ergeben H-N-H-Winkel von 99(6) -115(7)°. Nahezu lineare (145 - 179°) Wasserstoffbrücken (Abb. 3) bildet das Ammoniumion zu einem Selenatom (Se1) des Amidoselenophosphates und drei Ammoniakmolekülen (N3, N4 und N6) aus (Tab. 3). Energetisch sind diese Wasserstoffbrückenbindungen als stark einzuordnen (Abb. 4), da die H···N-Abstände um 35.6 - 20.0% und der H...Se-Abstand um 19.4% kürzer als die entsprechenden VdW-Abstände sind. Die stärkste dieser vier Wechselwirkungen

stellt die N5-H5D···N6-Wasserstoffbrücke dar. Zum einen zeigt sie den kürzesten H···N-Abstand (1.77 Å), zum anderen ist der N-H-Abstand des Ammoniumions mit 1.12(7) Å der längste alle vier N-H-Abstände. Die N5···N-Abstände sind 2.890(8) – 3.160(8) Å, der N5···Se1-Abstand ist 3.408(4) Å.


Abb. 6: Die koordinative Umgebung des Ammoniumions N7 in (NH₄)₃[P₂(NH₂)Se₅] · 3NH₃.

Die Protonen des N7-Ammoniumions sind Å 0.73(8)1.22(12) vom Ammoniumstickstoff (N7) entfernt und ergeben H-N-H-Winkel von 77(7) -124(7)°. Dieses Ammoniumion bildet fast $(164(6)^{\circ}$ lineare Wasserstoffbrücken zu drei Selenatomen (Se3, Se4 uns Se4') von drei verschiedenen Anionen. Energetisch sind diese Wasserstoffbrückenbindungen als mittelstark einzuordnen (Abb. 4), da ihre H···Se-Abstände um 13.1-14.1% kürzer als der VdW-Abstand sind. Die vierte Wechselwirkung in Form einer dreifach gegabelten Wasserstoffbrücke bezieht sich auf drei Selenatome (Se1, Se2 und Se5)

zweier Anionen. Die H····Se-Abstände sind 2.8(1), 2.5(1) und 3.0(1) Å, die dazugehörigen DHA-Winkel betragen 121(6)°, 135(6)° und 102(6)°. Somit wird eine bevorzugte Orientierung zu den Selenatomen Se1 und Se2 eines Anions deutlich. Die stärkste dieser vier Wechselwirkungen stellt die N7-H7D····Se2-Wasserstoffbrücke dar. Zum einen zeigt sie den kürzesten H····Se-Abstand (2.5 Å), zum anderen ist der N-H Abstand des Ammoniumions mit

1.22(12) Å deutlich länger als die entsprechenden N-H-Abstände der anderen drei Wasserstoffbrücken. Die N…Se-Abstände reichen von 3.469(5) Å bis 3.643(5) Å.

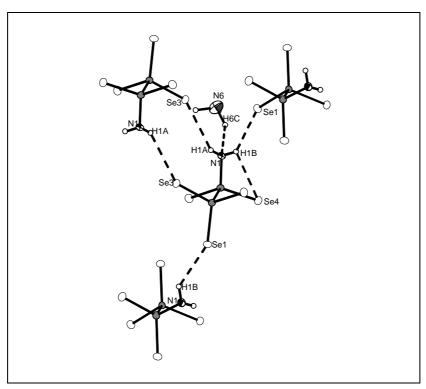

Die bisherigen Ausführungen haben die Koordinationssphäre der Ammoniumionen N2, N5

Abb. 7: Die koordinative Umgebung des Komplexkations $[NH_4(NH_3)_3]^+$ in $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$ mit dem Ammoniumion N5 im Zentrum.

und N7 beschrieben. Dabei zeigte sich, dass die Anion-Kation-Wechselwirkung gegenüber den Kation-Ammoniak-Wechselwirkungen dominiert. So bildet das N2-Ammoniumion nur eine Wasserstoffbrücke zu einem Ammoniakmolekül aus, aber die drei anderen Wasserstoffbrücken des N2-Ammoniumions sind zu Selenatomen von drei benachbarten Anionen zu beobachten. Das N7-Ammoniumion bildet sogar gar keine Wasserstoffbrücken zu Ammoniakmolekülen aus, sondern nur zu drei Anionen, die das Ammoniumion vollständig umgeben. Dies ist deshalb bemerkenswert, weil die N-H···N-Wechselwirkungen stärker als die N-H···Se-Wechselwirkungen sind, wobei dies wiederum von Kristallbaueffekten kompensiert werden kann. Gegensätzlich zu diesem nicht mit Ammoniakmolekülen wechselwirkenden N7-Ammoniumion ist das N5-Ammoniumion. Es wird nur von einem Anion und von drei Ammoniakmolekülen (N3, N4 und N6) umgeben, was einen [NH₄(NH₃)₃]⁺-Komplex ergibt. Dieser Komplex wiederum wird von sieben Anionen und dem N2-Ammoniumion umgeben. Die N2-H2B···N4-Wechselwirkung wurde schon in Abb. 3

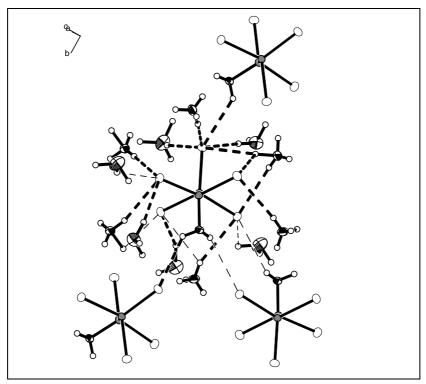
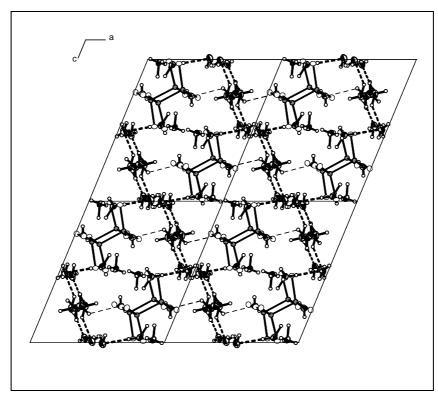
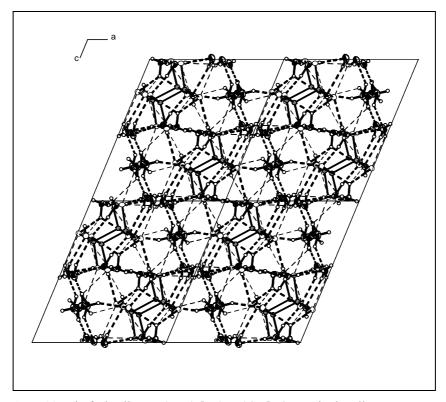

besprochen. In Abb. 7 wird deutlich, dass das Ammoniakmolekül N4 als Protonenakzeptor für die beiden Ammoniumionen N2 und N5 fungiert. Das N4-Ammoniakmolekül selbst ist ein Protonendonor zu den Selenatomen Se2 und Se5 zweier Anionen. Auch die anderen beiden Ammoniakmoleküle (N3 und N6) des [NH₄(NH₃)₃]⁺-Komplexes agieren selbst als Protonendonoren. So bilden alle drei Protonen des N3-Ammoniaks Wasserstoffbrücken zu den Selenatomen Se1, Se4 und Se4' aus. Auch alle Protonen des N6-Ammoniaks sind Bestandteil jeweils einer Wasserstoffbrückenbindung. Zwei Wechselwirkungen bestehen zu den Selenatomen Se3 und Se4 zweier Anionen, eine Wechselwirkung zu dem N1-Stickstoffatom der Amidgruppe eines Anions. Hierbei handelt es sich um eine sehr schwache Interaktion, da der H···N-Abstand mit 2.7(2) Å um nur 1.8% kürzer als der H···N-VdW-Abstand ist. Zusätzlich ist der N···N-Abstand (3.441(6) Å) deutlich größer als der N···N-Abstand (3.377 Å) in festem Ammoniak. Auch von einer linearen Anordnung (DHA-Winkel: 127(14)°) wird stark abgewichen.

Abb. 8: Die koordinative Umgebung der Amidgruppe des Anions $[P_2(NH_2)Se_5]^{3-}$ in $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$.

Diese Daten zeigen, dass die Protonenakzeptoreigenschaften der Amidgruppe in diesem System sehr schwach sind. Im Gegensatz dazu sind die Donoreigenschaften der Amidgruppe wesentlich stärker ausgebildet (Abb. 8). Die H···Se-Abstände der N1-H1A···Se3-, der N1-H1B···Se1- und der N1-H1B···Se4-Wasserstoffbrücke sind um 6.3%, 14.4% bzw. 6.6% kürzer als der H···Se-VdW-Abstand. Die ersten zwei Wechselwirkungen sind zu Selenatomen zweier Anionen, die dritte Wechselwirkung ist zu dem Selenatom des gleichen Anions zu beobachten. Der DHA-Winkel dieser Interaktion ist mit 89(4)° eher ein Argument gegen eine tatsächlich vorhandene Wechselwirkung. Ein weiteres Winkel-Indiz für eine Wechselwirkung ist der DHA-Winkel (137(4)°) der N1-H1B···Se1-Wasserstoffbrücke. Dieser DHA-Winkel ist etwas kleiner als der DHA-Winkel (143(5)°) der N1-H1A···Se1-Wasserstoffbrücke, wobei


dieses H1A-Proton nur eine Wasserstoffbrücke ausbildet. Somit liegt es nahe, eine H1B···Se4-Wechselwirkung anzunehmen, die die H1B···Se1-Wechselwirkung etwas ablenkt. Weiterhin sind in Abb. 8 alle Donor- bzw. Akzeptorwechselwirkungen der Amidgruppe dargestellt. In Abb. 9 sind die Wechselwirkungen des Anions abgebildet. Insgesamt wird das Anion von


Abb. 9: Alle Wechselwirkungen des Anions $[P_2(NH_2)Se_5]^{3-}$ in $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$. Darstellung in der Newman-Projektion.

sieben Ammoniumionen, acht Ammoniakmolekülen und drei Anionen umgeben. H···Se-Abstände, die mehr als 2.86 Å betragen, sind dünn gestrichelt eingezeichnet.

In Abb. 10 ist eine Projektion der Vierfachzelle in die ac-Ebene dargestellt. Die starken N-H···N-Wechselwirkungen sind dick eingezeichnet, also alle Wechselwirkungen, die im [(NH₄)₂(NH₃)₃]²⁺-Komplexkation zu finden sind. Darüber hinaus ist die sehr schwache N6-H6C···N1-Wechselwirkung dünn gestrichelt eingezeichnet. Diese Wechselwirkung ist die einzige Interaktion zwischen Anionen und den [(NH₄)₂(NH₃)₃]²⁺-Komplexkationen. Weiterhin ist das N7-Ammoniumion zu erkennen, das keine N-H···N-Wechselwirkungen aufweist. Die fehlenden H···Se-Wechselwirkungen werden in Abb. 10 auch dargestellt. Die H···Se-Abstände, die weniger als 2.86 Å betragen, sind dick gestrichelt. Die H···Se-Abstände, die größer als 2.86 Å sind, also schwache Wechselwirkungen, sind dünn gestrichelt.

Abb. 10: Vierfachzelle von $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$, in der die starken Wasserstoffbrücken (dick) des $[(NH_4)_2(NH_3)_3]^{2+}$ -Komplexkations und die sehr schwache (dünn) N6-H6C···N1-Wechselwirkung eingezeichnet sind.

Abb. 11: Vierfachzelle von $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$, in der alle Wechselwirkungen eingezeichnet sind. Die H···Se-Abstände, die weniger als 2.86 Å betragen, sind dick gestrichelt

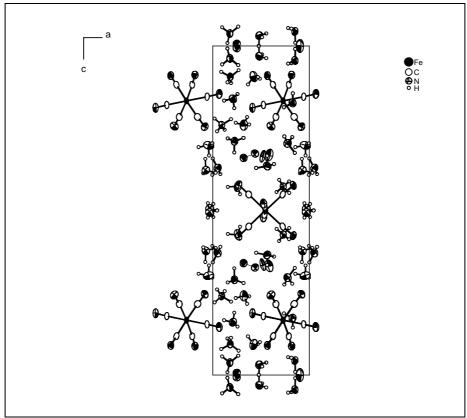
$3.7 (NH_4)_3 [Fe(CN)_6] \cdot 11NH_3$

Darstellung und Röntgenstrukturanalyse

Hexacyanoferrat(III)-Säure wird nach Brauer⁸² aus Kaliumhexacyanoferrat(III) und Salzsäure dargestellt. Nach Trocknung (12 h) des Produkts bei Raumtemperatur und einem Druck von 10^{-2} mbar wird in der Glovebox eine Spatelspitze (Kunststoff) der Hexacyanoferrat(III)-Säure in ein Schlenkgefäß gegeben. Danach werden ca. 15 ml Ammoniak einsublimiert (78 K). Das Schlenkgefäß wird abwechselnd bei 238 und 208 K gelagert, trotzdem bilden sich aus der schwach gelben Lösung keine Kristalle, weshalb das Lösungsmittelvolumen halbiert und die Lagertemperatur im Dreitagesrhythmus variiert wird. Nach mehreren Tagen konnten trigonal planare Kristalle beobachtet werden. Die einzelnen Kristalle waren nicht homogen gefärbt, sondern wiesen Farbverläufe von Gelb nach Braun auf. Der Röntgenstrukturanalyse wurde ein nahezu homogen gelb gefärbter Kristall zugeführt.

Die im Orientingmodus aufgenommenen Reflexe können mit einer hexagonalen Elementarzelle indiziert werden. Nach Integration und Datenreduktion Intensitätsdatensatzes weisen die vorhandenen integralen Auslöschungen und vorhandenen seriellen Auslöschungen l≠3n in Verbindung mit der hexagonalen Metrik auf Raumgruppen mit den Laueklassen 3, 3 m, 6/m und 6/mmm hin. Die Lösung und Verfeinerung der Kristallstruktur gelingt in der Raumgruppe P 3₁ 1 2, wobei die Lagen von einem Eisen-, elf Stickstoff- und drei Kohlenstoffatomen in der asymmetrischen Einheit ermittelt werden. Zwei spezielle Stickstofflagen sind nur halb besetzt und resultieren in einer Lagefehlordnung. Nach der isotropen Lageverfeinerung wird der Datensatz einer anisotropen Verfeinerung unterworfen. Das Programm ADDSYMM des Programmpaketes PLATON wurde benutzt, um eventuell fehlende Symmetrien zu finden, jedoch ohne Erfolg. Weiterhin können die Wasserstoffatome, die an nicht fehlgeordnete Stickstoffatome gebunden sind, der Differenzfouriersynthese entnommen und isotrop verfeinert werden.

⁻


⁸² Brauer, G. Handbuch der Präparativen Anorganischen Chemie, Ferdinand Enke Verlag Stuttgart: Stuttgart, 1981

Kristallstrukturdaten von $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$

Summenformel	$C_6H_{38}FeN_{20}$
Anzahl der Frames	347
φ-Inkrement (°)	0.8
Belichtungszeit (min)/Frame	2.00
Messtemperatur (K)	123
Kristallsystem	trigonal
Raumgruppe	P 3 ₁ 1 2 (Nr. 151)
a (Å)	9.2627(7)
b (Å)	9.2627(7)
c (Å)	27.262(3)
Volumen (Å ³)	2025.6(3)
Z	3
M (g·mol ⁻¹)	446.42
$\rho_{c} (g \cdot cm^{-3})$	1.098
F (000)	720
$\mu (\text{MoK}_{\alpha})(\text{Å})$	0.71073
θ-Bereich (°)	2.24 - 25.88
Gesamtzahl der Reflexe	21591
Zahl der unabhängigen Reflexe (R _{int})	2524 (0.2049)
Zahl der Parameter	208
$R_1 (I > 2\sigma(I))$	0.0802
$wR_2 (I > 2\sigma(I))$	0.1657
R ₁ (alle Daten)	0.0842
wR ₂ (alle Daten)	0.1681
GooF	1.21536
Restelektronendichte	0.760/-0.403

Tabelle 1: Einkristallstrukturdaten von (NH₄)₃[Fe(CN)₆] · 11NH₃.

Strukturbeschreibung und Diskussion

Abb. 1: Elementarzelle von (NH₄)₃[Fe(CN)₆] · 11NH₃; ORTEP-Plot: 50% Wahrscheinlichkeit.

Die Fe-C-Abstände, die C-N-Abstände (Tab. 2) sowie die C-Fe-C-Winkel und die N-Fe-N-Winkel sind mit den entsprechenden Abständen und Winkel in $K_3[Fe(CN)_6]^{83}$ und $(NH_4)_4$ $Fe(CN)_6 \cdot 1.5H_2O^{84}$ vergleichbar. Die Fe(II)-C-Abstände der letztgenannten Verbindung sind 1.90 Å lang. Diese Verkürzung gegenüber den Fe(III)-C-Abständen in $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$ ist wegen der voll besetzten Valenzschale des Fe(II)-Komplexes einsichtig. Die kürzesten Fe-Fe-Abstände in $K_3[Fe(CN)_6]$ betragen 6.50 Å. Die Struktur von Ammoniumhexacyanoferrat(III) oder eines Hydrats ist nicht bekannt, die Struktur des Ammoniumhexacyanoferrat(III)-

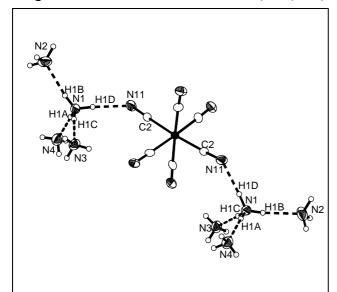
Hydrates jedoch schon. Zwar ist die Kationenzahl pro Anion größer und die Kristallpackungsenergien somit nicht zu vergleichen, trotzdem ist das Studium von Hydratverbindungen eine nützliche Hilfe, um Ammoniakatverbindungen

herzustellen und strukturelle Vergleiche anzustellen. Demnach

Abstände /å:

Fe-C: 1.943(6) - 1.966(6) C-N: 1.143(6) - 1.175(7) kürzester Fe-Fe: 9.24

Winkel /°:

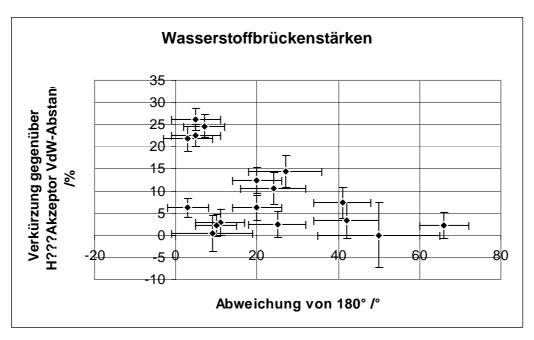

C-Fe-C: 88.1(2) - 94.2(2) N-Fe-N: 176.8(5) - 177.4(5)

Tab. 2: Abstände und Winkel des Hexacyano-ferrat(III)-Anions in $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$.

⁸³ Morioka, Y.; Toriumi, K.; Ito, T.; Saito, A.; Nakagawa, I. J. Phys. Soc. of Jap. 1985, 54, 2184.

⁸⁴ Hellner, E.; Koch, E. Acta Cryst. B 1982, 38, 376.

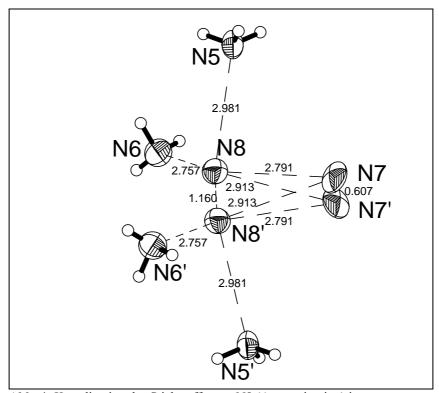
beträgt der kürzeste Fe-Fe-Abstand in (NH₄)₄Fe(CN)₆ · 1.5H₂O 7.90 Å, der kürzeste Fe-Fe-

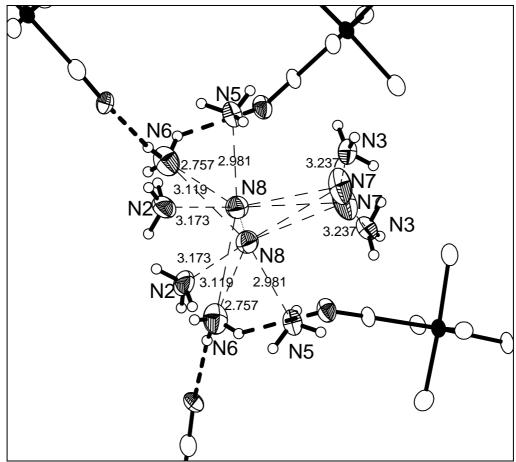

Abb. 2: Koordination des Ammoniumions N1 in $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$.

Abstand in dem hier beschriebenen Ammoniakat ist 9.24 Å. Die kationischen Strukturelemente in Abb. werden naturgemäß Ammoniumion dominiert, die Protonen des Ammoniumions sind 0.82(7) -0.93(7) Å vom Ammoniumstickstoff (N1) entfernt und zeigen H-N-H-99(6) - 122(6)°. Drei Winkel von Wasserstoffbrückenbindungen werden zu Ammoniakmolekülen (N2, N3 und N4) ausgebildet. Energetisch sind diese Wasserstoffbrückenbindungen als stark einzuordnen (Abb. 3), da ihre H···N-Abstände um 21.8 - 24.7% kürzer als

der VdW-Abstand (2.75 Å) sind. Die stärkste dieser drei Wechselwirkungen stellt die N1-H1B···N2-Wasserstoffbrücke mit einem H···N-Abstand von 2.07 Å dar. Der kürzeste N···N-Abstand in der Umgebung des Ammoniumions ist jedoch zwischen Kation und Anion zu beobachten. Der H···N-Abstand der N1-H1D···N11-Brücke ist mit 2.03 Å um 26.2% kürzer als der VdW-Abstand. Der Vergleich mit anderen Wasserstoffbrücken in Tab. 3 zeigt, dass dies die stärkste Wechselwirkung des Ammoniumions zu einem Protonenakzeptor in der Verbindung (NH₄)₃[Fe(CN)₆] · 11NH₃ ist. Die DHA-Winkel aller vier Wasserstoffbrücken des Ammoniumions sind 173 – 177°. Somit reichen die DHA-Winkel etwa gleich nahe an 180° heran, daher kann nicht von einer bevorzugten Bildung eines [NH₄(NH₃)₃]⁺-Komplexkations ausgegangen werden.

D-НА	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)N(4)	0.82(7)	2.15(8)	2.973(8)	177(6)
N(1)-H(1B)N(2)#1	0.88(6)	2.07(7)	2.951(8)	173(5)
N(1)-H(1C)N(3)#3	0.86(7)	2.13(7)	2.988(7)	175(6)
N(1)-H(1D)N(11)#3	0.93(7)	2.03(7)	2.948(7)	175(6)
N(2)-H(2A)N(10)	0.85(19)	2.75(19)	3.368(9)	130(15)
N(2)-H(2B)N(10)#4	0.84(8)	2.68(8)	3.463(7)	155(7)
N(2)-H(2C)N(9)	0.94(10)	2.55(10)	3.313(8)	139(7)
N(2)-H(2B)N(5)#5	0.84(8)	2.69(8)	3.133(8)	114(6)
N(3)-H(3A)N(10)	0.82(6)	2.58(6)	3.404(8)	177(5)
N(3)-H(3B)N(9)#6	0.87(8)	2.41(8)	3.242(8)	160(6)
N(3)-H(3C)N(9)#4	0.94(6)	2.69(7)	3.618(7)	170(5)
N(4)-H(4B)N(3)	0.80(11)	2.74(11)	3.529(9)	171(10)
N(5)-H(5A)N(9)	0.82(9)	2.46(10)	3.222(7)	156(8)
N(5)-H(5B)N(10)#7	0.90(8)	2.58(8)	3.442(7)	160(6)
N(5)-H(5C)N(5)#2	1.01(10)	2.35(10)	3.276(11)	153(9)
N(6)-H(6B)N(11)#8	0.82(10)	2.66(11)	3.310(9)	138(8)
N(6)-H(6C)N(10)#9	0.81(8)	2.67(8)	3.470(9)	169(6)


Tab. 3: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[Fe(CN)₆] · 11NH₃.


Abb. 3: Wasserstoffbrückenstärken in (NH₄)₃[Fe(CN)₆] · 11NH₃.

Vielmehr dominiert bei den Wasserstoffbrückenbindungen des Ammoniumions N1 der stark basische Charakter der Stickstoffatome des Hexacyanoferrat(III)-Anions.

Das dritte Ammoniumion kann nur indirekt nachgewiesen werden. Der Grund hierfür ist die Lagefehlordnung des N8-Stickstoffatoms, die eine Lokalisierung der Protonen unmöglich macht. Als numerisches Indiz für die Einstufung als Ammoniumion spricht die Halbbesetzung einer allgemeinen Lage mit Wyckoff-Symbol 6c, was zu einem zusätzlichen Ammoniumion

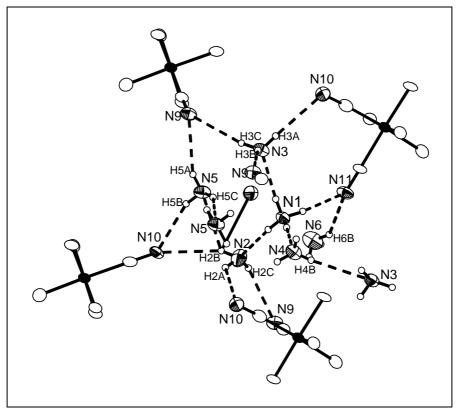
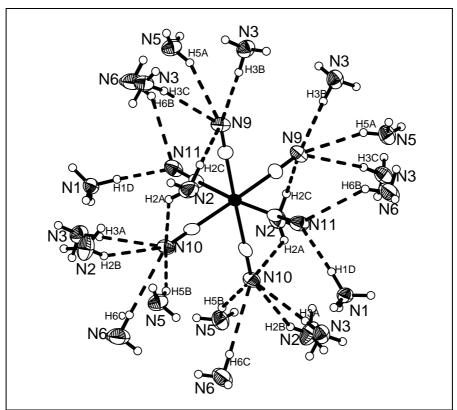

Abb. 4: Koordination des Stickstoffatoms N8 (Ammoniumion) in $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$.

Abb. 5: Die übernächste Koordinationssphäre des Stickstoffatoms N8 (Ammoniumion) in $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$.

pro Anion in der asymmetrischen Einheit führt. Diese Vorgehensweise trifft allerdings auch für das N7-Stickstoffatom zu. Da man aber davon ausgehen kann, dass das Ammoniumion versucht, so viele Protonenakzeptoren wie möglich um sich zu gruppieren, und das N7-Stickstoffatom nur am N8-Stickstoff nahe genug für eine Wechselwirkung ist, so ist es logisch, das fehlgeordnete N8-Atom als Stickstoffatom eines Ammoniumions zu bezeichnen. In Abb. 4 ist nun das fehlgeordnete Stickstoffatom N8 bzw. N8' (N8-N8': 1.16 Å) und das ebenfalls fehlgeordnete Stickstoffatom N7 bzw. N7' (N7-N7': 0.61 Å) dargestellt. Die kürzesten N···N-Abstände sind 2.76 – 2.98 Å, also in etwa so lang wie die N···N-Abstände des Ammoniumions N1. Die N···N-Abstände zwischen N8 und N7 bzw. N8 und N7' sind 2.79 2.91 Å. Somit würden beide Abstände kurz und genug Wasserstoffbrückenwechselwirkungen sprechen zu können. Der längere N8···N7'-Abstand ist bei einer gleichzeitigen Koordination von drei Protonenakzeptoren wahrscheinlicher, jedoch kann kein stichhaltiger Beweis geführt werden. Die Abstände des N8-Atoms zu den nicht fehlgeordneten Stickstoffatomen N5 und N6 entsprechen den Erwartungen. Die Protonen dieser beiden resultierenden Ammoniakmoleküle ordnen sich mit einer möglichst großen Distanz zum N8 bzw. N8', dem potenziellen Ammoniumion, an. Dadurch wird die These, dass N8 ein Stickstoffatom eines Ammoniumions ist, noch weiter bekräftigt. Zudem wurden alle Wasserstofflagen ohne "restraints" oder "constraints" der Differenzfouriersynthese entnommen.

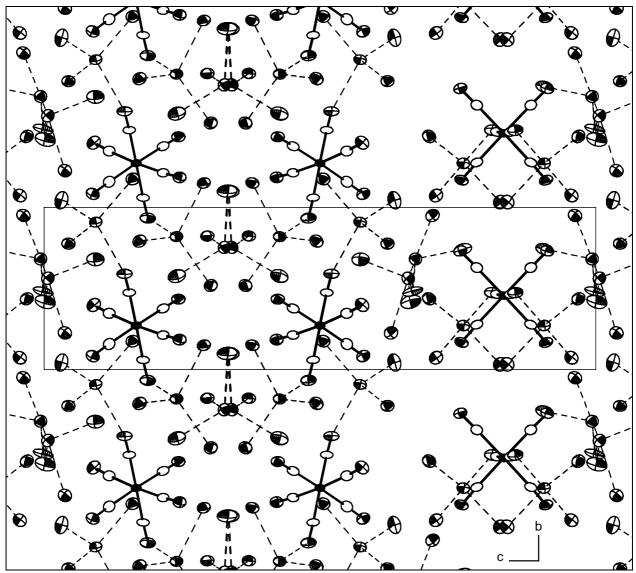
In Abb. 5 ist die erweiterte Koordinationssphäre des N8-Ammoniumions dargestellt. Das N8-Atom kann auch noch mit dem N2-Ammoniak eine Wasserstoffbrücke eingehen, wobei der N···N-Abstand mit 3.17 Å deutlich länger als die bisher besprochenen N···N-Abstände, aber kürzer als der N···N-Abstand (3.377 Å) in festem Ammoniak ist. Eine mögliche Wechselwirkung wird auch durch die Orientierung der Protonen in Bezug auf das Stickstoffatom N8 verdeutlicht. Wie bei den Ammoniakmolekülen N5 und N6 sind die Protonen des N2-Ammoniaks so angeordnet, dass das freie Elektronenpaar des Ammoniaks zum N8-Atom hin ausgerichtet ist. Nur das N6-Ammoniakmolekül unter den Ammoniakmolekülen N2, N5, N6 und N7, die das Stickstoffatom N8 koordinieren, agiert

Abb. 6: Die übernächste Koordinationssphäre des Ammoniumions N1 in $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$.


selbst als Protonendonor. Zwei schwache Wasserstoffbrücken (H6B···N11-Abstand: 2.6(1) Å, H6C···N10-Abstand: 2.67(8) Å) zu Stickstoffatomen von jeweils zwei Anionen sind feststellbar. Die DHA-Winkel sind 138(8)° und 169(6)°, wobei der bessere DHA-Winkel einen längeren N···N-Abstand (3.470 Å) aufweist. Dieser Abstand ist um 0.1 Å länger als der N···N-Abstand in festem Ammoniak. Folglich handelt es sich um einen Grenzfall, bei dem man gerade noch Wasserstoffbrücken sprechen kann. Jedoch sind N···H-Abstand und DHA-Winkel Argumente dafür.

In Abb. 6 ist die zweite Koordinationssphäre des Ammoniumions N1 dargestellt. Jedes der drei Ammoniakmoleküle (N2, N3 und N4), die als Protonenakzeptor zum Ammoniumion wirken, gehen nun ihrerseits Wechselwirkungen mit Akzeptoren ein. Das N2-Ammoniakmolekül bildet mit den Protonen H2A und H2C schwache Wechselwirkungen (Verkürzung gegenüber VdW-Abstand: 0 und 7.3%) zu den Stickstoffatomen N10 und N9

eines Anions aus. Das dritte Proton H2B ist von dem Ammoniakmolekül N5 und dem Stickstoffatom N10 eines Anions 2.69(8) bzw. 2.68(8) Å entfernt. Somit ergibt sich eine gabelförmige Wasserstoffbrücke mit DHA-Winkeln von 114(6)° und 155(7)°. Die Verkürzung gegenüber dem VdW-Abstand beträgt jeweils 2.2% und zeigt mit den anderen beiden Wasserstoffbrücken, die vom Ammoniakmolekül N2 ausgehen, dass es sich um schwache Wechselwirkungen handelt. Ähnlich schwache Wechselwirkungen (VdW-Verkürzung: <12.4%) können bei den Wasserstoffbrücken gefunden werden, die das Ammoniakmolekül N3 zu den Protonenakzeptoren N9, N9' und N10 ausbildet. Trotz der geringen Wechselwirkungsenergien sind die DHA-Winkel 177(5)°, 170(5)° und 160(6)°, wobei der schlechteste Winkel mit dem kürzesten N···H-Abstand (2.41(8) Å) und N···N-Abstand (3.242(8) Å) einhergeht.


Das N4-Ammoniakmolekül zeigt nur eine Wasserstoffbrücke zu dem Ammoniakmolekül N3. Der DHA-Winkel der N4-H4B···N3-Brücke ist mit 171(11)° nahe an 180°, ein Indiz für eine deutliche Wechselwirkung. Der H4B···N3-Abstand (2.74(11) Å) entspricht jedoch dem N···H-VdW-Abstand, weshalb nur von einer schwachen Wechselwirkung gesprochen werden kann. Bis hierhin wurden die Wasserstoffbrücken diskutiert, die von den Protonendonoren N2, N3 und N4 ausgehen, also Ammoniakmoleküle, die an das Ammoniumion N1 über Wasserstoffbrückenbindungen geknüpft sind. Der Einfachheit halber werden die Wasserstoffbrücken, die vom Ammoniakmolekül N5 ausgehen, in Abb. 6 besprochen, obwohl dieses Ammoniakmolekül als Protonenakzeptor zum N8-Ammoniumion fungiert. Zwei der drei Donorwechselwirkungen des Ammoniakmoleküls N5 führen zu den Stickstoffatomen N9 und N10 zweier Hexacyanoferrat(III)-Anionen. Die N···H-Abstände betragen 2.4(1) und 2.58(8) Å, die DHA-Winkel sind 156(8)° und 160(6)°. Folglich sind diese Ammoniak...Anion-Wechselwirkungen als schwache, aber deutliche Wasserstoffbrücken einzuordnen. Die stärkste Wasserstoffbrücke, bei der der Ammoniak und nicht das Ammoniumion als Protonendonor erscheint, ist die N5-H5C···N5'-Brücke. Die VdW-Verkürzung beträgt 14.5% (DHA-Winkel. 153(9)°). Noch überraschender ist der N5-H5C-Abstand (1.0(1) Å), und zwar deswegen, weil es der längste N-H-Abstand in Tab. 3 ist. Nun würde die Diskussion eines schon sehr fortgeschrittenen Protonentransferprozesses als naheliegend erscheinen, was aber der zu große Abstandsfehler aufgrund mangelnder Signifikanz verbietet. Darüber hinaus werden deutliche Protonentransferprozesse der Wasserstoffbrücken zwischen Ammoniumionen und Protonenakzeptoren schon wegen der Coulombanteile eher erwartet als zwischen Ammoniakmolekülen.

Alle Wasserstoffbrücken in Tab. 3 wurden nun besprochen, die Basizität der Hexacyanoferrat(III)-Anionen wird in den Abb. 4 und 5 schon deutlich. Da aber zehn der 17 Wasserstoffbrücken in Tab. 3 ein Stickstoffatom eines Anions als Protonenakzeptor vorweisen, zeigt Abb. 7 die Koordinationssphäre des Anions.

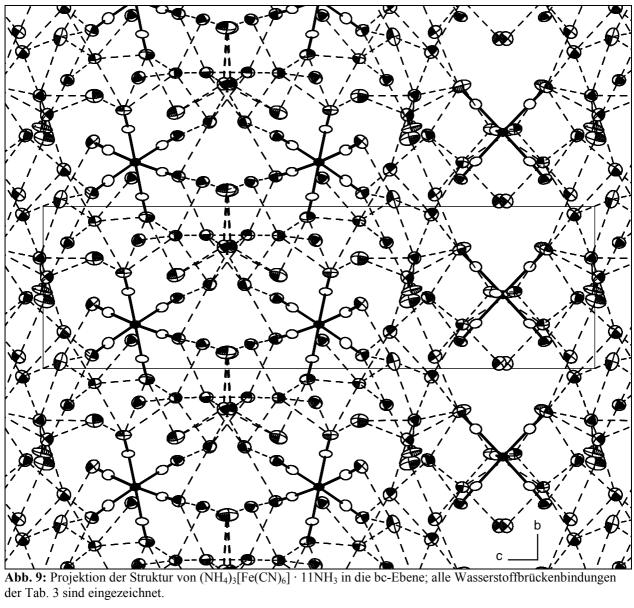


Abb. 7: Koordinationssphäre des Hexacyanoferrat(III)-Anions in (NH₄)₃[Fe(CN)₆] · 11NH₃.

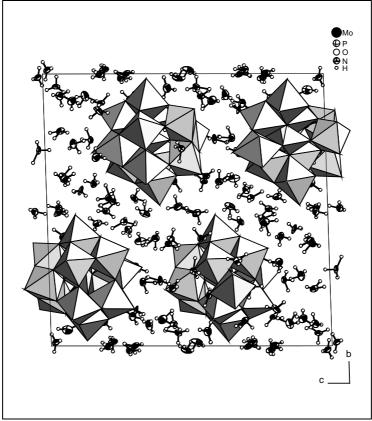
Bis auf die Ammoniakmoleküle N4 und N7 sowie das Ammoniumion N8 interagieren alle anderen Protonendonoren mit den Stickstoffatomen N9, N10 und N11 des Anions. Diese Beobachtung ist eine vorhersagbare, logische Konsequenz des HSAB-Prinzips und bekräftigt die These, dass große, einfach geladene Anionen zu bevorzugen sind, wenn ausgedehnte Proton-Ammoniakat-Komplexe im Einkristall stabilisiert werden sollen. Abb. 8 zeigt die N···N-Abstände bis 3.1 Å, also nur N···N-Abstände starker Wasserstoffbrückenbindungen der Ammoniumionen. Es werden nur isolierte Komplexe vorgefunden, wie sie in Abb. 2 und 4 beschrieben sind. Die Projektion in die bc-Ebene zeigt die wenig zur dreidimensionalen Vernetzung beitragenden starken Wechselwirkungen und den geringen Raum zwischen den Anionen, der jedoch für große Ammoniumammoniakat-Komplexe unabdingbar wäre. Wenn alle Wasserstoffbrücken der Tab. 3 in die bc-Projektion (Abb. 9) eingezeichnet werden, wird der hohe Vernetzungsgrad bzw. die Dominanz der schwachen Wechselwirkungen im Vergleich zu Abb. 8 deutlich, in der nur die starken Wechselwirkungen eingezeichnet sind. (N···H-Verkürzung: >20%)

Abb. 8: Projektion der Struktur von $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$ in die be-Ebene (ohne Protonen) mit den isolierten Baueinheiten $\{[NH_4(NH_3)_3]_2[Fe(CN)_6]\}^-$ und $[NH_4(NH_3)_3]^+$ (fehlgeordnet), N···N-Abstände bis 3.1 Å.

$3.8 (NH_4)_3 [P(Mo_{12}O_{40})] \cdot 27NH_3$

Darstellung und Röntgenstrukturanalyse

Eine Spatelspitze Dodecamolybdophosphorsäure(V) wird 12 Stunden lang bei 343 K und einem Druck von 10⁻² mbar getrocknet. Danach werden ca. 30 ml Ammoniak einkondensiert (195 K). Das Schlenkgefäß wird abwechselnd bei 238 und 208 K gelagert. Nach mehreren Wochen konnten Kristalle mit isometrischen Habitus beobachtet werden. Der Röntgenstrukturanalyse wurde ein kleines, farbloses Bruchstück zugeführt (~Ausmaße: 0.1*0.1*0.1 mm).


Die im Orientingmodus aufgenommenen Reflexe können anhand einer triklinen Elementarzelle werden. Nach Integration Datenreduktion indiziert und des Intensitätsdatensatzes weisen die vorhandenen integralen Auslöschungen auf die Raumgruppen P 1 und P $\bar{1}$ hin. Die Lösung und Verfeinerung der Kristallstruktur gelingt in der zentrosymmetrischen Raumgruppe, wobei die Lagen von 24 Molybdän-, zwei Phosphor-, 80 Sauerstoff- und 60 Stickstoffatomen in der asymmetrischen Einheit ermittelt werden. Zusätzlich wurde das Programm ADDSYMM des Programmpakets PLATON benutzt, um eventuell fehlende Symmetrien zu finden, jedoch ohne Erfolg. Daraufhin werden die Atomlagen anisotrop verfeinert. Die an Stickstoff gebunden Wasserstoffatome können der Differenzfourier nicht entnommen oder gar isotrop verfeinert werden. Auch die Anwendung von "riding"-Modellen war nicht von Erfolg gekrönt. Deshalb wurden die Protonen aus den Verfeinerungsschritten herausgenommen (L.S. 0), um die sich abhebenden Elektronendichten um die Stickstoffatome im Ist-file zu erkennen. Auf diese Weise wurden 186 Wasserstoffatome lokalisiert, die größtenteils physikalisch sinnvolle Wasserstoffbrücken erkennen lassen. Da keine konsistente Verfeinerung dieser Wasserstofflagen möglich ist, wurden die Ortsund Temperaturparamenter nicht freigegeben.

Kristallstrukturdaten von $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$

$H_{93}Mo_{12}N_{30}O_{40}P$
514
0.7
0.25
123
triklin
P 1 (Nr. 2)
13.5998(8)
22.180(1)
23.049(1)
88.093(7)
83.632(7)
89.290(7)
6905.6
4
2336.3
2.246
4565
0.71073
2.20- 25.95
96726
25029(0.0878)
1496
0.0371
0.0669
0.1016
0.0757
0.722
0.764/-0.727

 $\textbf{Tabelle 1:} \ Einkristallstrukturdaten \ von \ (NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$

Strukturbeschreibung und Diskussion

Abb. 1: Elementarzelle von (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃, ORTEP-Plot: 50% Wahrscheinlichkeit.

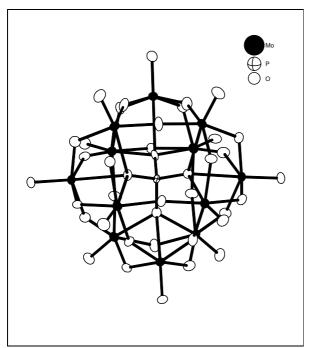
Die Abstände und Winkel in Tab. 2 stimmen mit den entsprechenden Abständen und Winkeln in $H_3[P(Mo_{12}O_{40})] \cdot 30H_2O$ ⁸⁵, in $H_3[P(Mo_{12}O_{40})] \cdot 13H_2O$ ⁸⁶ und in $NH_4[P(Mo_{12}O_{40})] \cdot 21H_2O$ ⁸⁷ überein. Die 12 exo-Sauerstoffatome (terminal) befinden sich außerhalb des $[P(Mo_{12}O_{40})]^{3-}$ -Anions. Vier endo-Sauerstoffatome koordinieren das Phosphoratom, wie von

PO₄³⁻ bekannt (Abb. 2). Die kürzesten P-P-Abstände in ¹ sind 10.094 Å, in ² 9.667 Å und in ³ 10.940 Å. Der P-P-Abstand in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃ ist mit 12.924 Å deutlich länger als in den oben genannten Proton-Hydrat- bzw. Ammonium-Hydrat-Verbindungen. Folglich nimmt das Proton-Ammoniakat-Netzwerk mehr Raum in der Kristallstruktur ein. Dies kann aber nicht als bevorzugte Tendenz

Abstände /å:

Mo-Mo: 3.416(1) - 3.440(1) Mo-O: 1.863(7) - 1.996(7) Mo-O(exo): 1.672(8) - 1.718(8) Mo-O(endo): 2.418(7) - 2.487(8) P-O: 1.525(8) - 1.559(6) kürzester P-P: 12.924

Winkel /°:


O-P-O: 108.7(4) - 110.4(5)

Tab. 2: Abstände und Winkel des Dodecamolybdo-phosphat(V)-Anions in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.

⁸⁵ R. Allmann, Acta Chem. Scand. 1976, 30, 152.

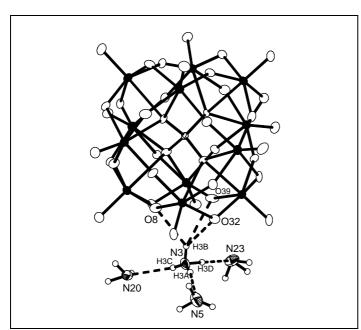
⁸⁶ H. d'Amour, R. Allmann, Z. Krist. **1976**, 143, 1.

⁸⁷ Xu, Y.;Xu, J.-Q.;Yang, G.-Y.;Yang, G.-D.;Xing, Y.;Lin, Y.-H.;Jia, H.-Q., Acta Cryst. C 1998, 54, 9.

Abb. 2: Dodecamolybdophosphat(V)-Anion in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.

zur Bildung von Proton-Ammoniakat-Komplexen gewertet werden, da das Hydratsystem sich bei höheren Temperaturen bildet. bei denen die Ammoniaksysteme nicht stabil sind. Entscheidender die sind Wechselwirkungen zwischen Wassermolekülen und den Sauerstoffatomen der Anionen. die deutlich größer sind als diejenigen zwischen Ammoniakmolekülen und den Sauerstoffatomen.

Die kationischen Strukturelemente in Abb.


1 beinhalten neben 54

Ammoniakmolekülen die sechs

Ammoniumionen N3, N22, N50, N2, N16

und N52. Wie schon erwähnt wurde,

konnte keine Verfeinerung der aus der Differenzfourier gefundenen Protonenlagen durchgeführt werden. Deshalb wurden die Ammoniumionen auf möglichst kurze N···N-Abstände, eine Koordinationszahl von vier und geringe thermische Auslenkungsparameter (N3, N22, N50, N2, N16 und N52) hin untersucht. Diese indirekte Bestimmung der Ammoniumionen stimmt mit dem Ergebnis überein, wenn die Protonen ohne Verfeinerung gegen F_c der Differenzfourier entnommen werden. Die Protonen des N3-Ammoniumions (Abb. 3, Tab. 3) sind 0.72(1) - 1.05(1) Å vom Ammoniumstickstoff (N3) entfernt und zeigen H-N-H-Winkel von 108(1) - $129(1)^\circ$. Drei Wasserstoffbrückenbindungen werden zu

Abb. 3: Die Koordinationssphäre des Ammoniumions N3 in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.

Ammoniakmolekülen (N5, N20 und N23) ausgebildet. Die N···N-Abstände (2.84(2) - 2.91(2) Å)stimmen mit den N···N-Abständen in $[NH_4(NH_3)_3]^+$ -Komplexen gut überein. Die stärkste dieser drei Wechselwirkungen stellt die N3-H3D···N23-Wasserstoffbrücke mit einem H···N-Abstand von 1.79(1) Å und einem DHA-Winkel von 178.5(7)° dar. Die geringste Annäherung Protonenakzeptoren ist beim H3B-Atom zu beobachten. Es ist etwa gleich weit (2.489(8) - 2.547(9))Å) von den drei Sauerstoffatomen (O8, O32 und O39) entfernt und stellt somit eine zweifach gegabelte Wasserstoffbrücke dar. Nicht nur die H···N-Abstände sind nahezu äquivalent, sondern auch die DHA-Winkel (126.9(8)° – 145.8(7)°). Dieser Befund bekräftigt das Bild einer nahezu idealen zweifach gegabelten Wasserstoffbrücke.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N3-H3AN5 N3-H3BO32 N3-H3BO39 N3-H3BO8 N3-H3CN20 N3-H3DN23 N5-H5BN31	0.85(1) 0.772(9) 0.772(9) 0.772(9) 0.72(1) 1.05(1) 0.77(1)	2.07(1) 2.489(8) 2.501(6) 2.547(9) 2.21(1) 1.79(1) 2.59(1)	2.91(2) 3.01(1) 3.170(9) 3.12(1) 2.90(2) 2.84(2) 3.32(2)	168.5(7) 126.9(8) 145.8(7) 133.0(7) 161.1(9) 178.5(7)
N20-H20B013 N20-H20C07 N23-H23A047 N23-H23A058	0.90(1) 0.83(1) 0.99(1) 0.99(1)	2.590(6) 2.435(9) 2.467(8) 2.344(9)	3.094(9) 3.22(1) 3.35(1) 3.16(1)	115.9(6) 157.3(7) 148.7(7) 139.6(8)

Tab. 3: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

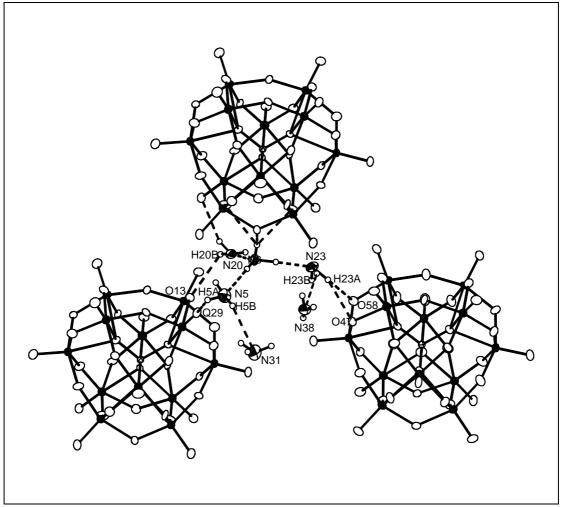
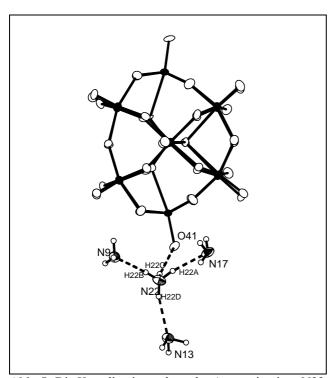



Abb. 4: Die übernächste Koordinationssphäre des Ammoniumions N3 in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

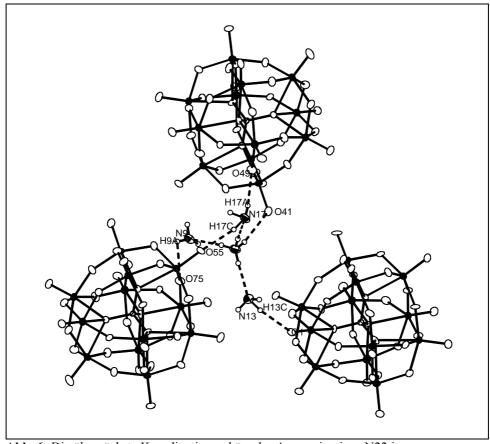
Nun werden die Wasserstoffbrückenbindungen der Ammoniakmoleküle N5, N20 und N23, die das Ammoniumion N3 koordinieren, untersucht (Abb. 4, Tab. 3). Das Ammoniakmolekül

N5 hat zum N31 Ammoniak einen N···N-Abstand von 3.32(2) Å. Dieser ist also kürzer als der N···N-Abstand in festem Ammoniak (3.377 Å). Die Verkürzung des H···N-Abstandes beträgt 5.8% und der DHA-Winkel ist 157.4(9)°. Folglich ergibt sich eine typische Wasserstoffbrückenbindung, wie sie zwischen Ammoniakmolekülen beobachtet wird. Die Wechselwirkungen der anderen beiden Ammoniakmoleküle sind nur zu den Sauerstoffatomen zu beobachten. Das N20-Ammoniakmolekül ist 3.22(1) und 3.094(9) Å von den Sauerstoffatomen O7 und O13 zweier Anionen entfernt. Es weist H···O-Abstände von 2.435(9) und 2.590(6) Å zu den Protonen H20C und H20B auf. Bezogen auf den H···O-VdW-Abstand (2.6 Å) ergeben sich Verkürzungen von 6.3 und 0.4%. Obwohl die N···O-Abstände nicht mit den H···O-Abständen korrelieren, stimmen die H···O-Abstände mit den DHA-Winkeln überein (157.3(7)° und 115.9(6)°). D. h. nahe an 180° liegende Winkel sind bei

Abb. 5: Die Koordinationssphäre des Ammoniumions N22 in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.

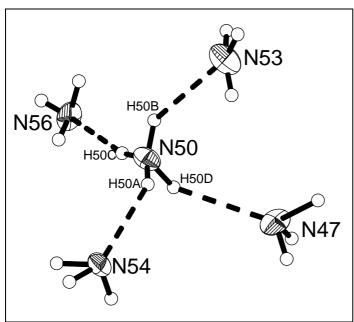
Wasserstoffbrücken zu finden, die kurze H···O-Abstände zeigen. Auch das N23-Ammoniakmolekül bildet eine gegabelte Wasserstoffbrücke zu den Sauerstoffatomen O47 und O58 eines Anions. Hierbei handelt es sich eine nahezu symmetrische um Wechselwirkung, da die DHA-Winkel (148.7(7)° und 139.6(8)°) und die H···O-Abstände (2.467(8) und 2.344(9) Å) der beiden Wasserstoffbrücken in etwa gleich sind.

Das N22-Stickstoffatom hat drei Stickstoffatome (N9, N13 und N17) und ein Sauerstoffatom (O41) als nächste Nachbarn (Abb. 5, Tab. 4). Da die N···N-Abstände 2.84(2) – 2.96(2) Å und der N···O-Abstand


2.97(1) Å betragen, ist es schlüssig davon auszugehen, dass es sich bei dem N22-Stickstoffatom um ein Ammoniumion handelt. Die Protonen des N22-Ammoniumions sind 0.80(1) – 0.86(1) Å vom Ammoniumstickstoff (N22) entfernt und zeigen H-N-H-Winkel von 89.0(9) - 126(1)°. Die Abstände der Protonen zu den Ammoniakmolekülen (N9, N13 und N17) sind etwa gleich groß (1.98(1) – 2.17(1) Å), wie auch die DHA-Winkel (163(1) – 175.0(8)°) etwa gleich groß sind. Im Gegensatz dazu ist das H22C-Proton der N22-H22C···O41-Wasserstoffbrücke deutlich weiter vom Sauerstoffatom entfernt. Die Verkürzung des H···O-Abstandes gegenüber dem VdW-Abstandes (2.6 Å) ist nur 13.9%, die Verkürzungen der drei N-H···N-Wasserstoffbrücken belaufen sich hingegen auf 21.1 – 28.0%. Nun werden die Wasserstoffbrückenbindungen der Ammoniakmoleküle N9, N13 und N17, die selbst das Ammoniumion N22 koordinieren, untersucht (Abb. 6, Tab. 4). Von diesen Ammoniakmolekülen ausgehend, treten nur Wechselwirkungen zu Sauerstoffatomen dreier

Anionen auf. Das Ammoniakmoleküle N9 hat zum O75 Sauerstoffatom einen N···O-Abstand von 3.03(1) Å, die Verkürzung des H···O-Abstandes beträgt 0.3% und der DHA-Winkel ist 113.9(9)°. Es liegt also eine sehr schwache Protonendonor···Akzeptorwechselwirkung vor. Dahingegen scheint das O1-Sauerstoffatom ein besserer Protonenakzeptor zu sein, da die Verkürzung des H···O-Abstandes 8.7% beträgt und der DHA-Winkel 1168.9(8)° ist.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N22-H22AN17	0.86(1)	2.08(1)	2.94(2)	172(1)
N22-H22BN9 N22-H22DN13	0.86(1) 0.82(1)	1.98(1) 2.17(1)	2.84(2) 2.96(2)	175.0(8) 163(1)
N22-H22C041	0.80(1)	2.239(8)	2.97(1)	153.3(8)
N9-H9AO75 N13-H13AN32	0.84(1) 0.94(1)	2.591(9) 2.79(1)	3.03(1) 3.36(2)	113.8(9) 119.7(8)
N13-H13C01	0.95(1)	2.374(8)	3.31(1)	168.9(8)
N17-H17AO49 N17-H17BN9	0.81(1) 0.81(1)	2.52(1) 2.52(1)	3.33(2) 3.33(2)	170.2(8) 170.2(8)
N17-H17CO55	1.07(1)	2.44(1)	3.50(2)	168.8(8)


Tab. 4: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

Der N17···O1-Abstand von 3.31(1) Å ist um 0.3 Å größer als der N9···O75-Abstand, wobei diese Wechselwirkung als sehr schwach zu bezeichnen ist. Beim Vergleich dieser beiden Wechselwirkungen wird die Bedeutung der guten Lokalisation der Protonen augenscheinlich. Jedoch kann diese Voraussetzung in diesem Fall nur unzureichend erfüllt werden, so dass

Abb. 6: Die übernächste Koordinationssphäre des Ammoniumions N22 in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.

energetische Einordnungen teilweise fehlerhaft sind und sie nur der Vollständigkeit halber erwähnt werden. Solche grenzwertigen Wechselwirkungen sind auch zwischen dem N17-Ammoniakmolekül und den Sauerstoffatomen O49 und O55 jeweils verschiedener Anionen zu erkennen. Die N···O-Abstände sind 3.33(2) und 3.10(2) Å. Obwohl diese Abstände schon zu den längeren Abständen gehören, die bei Wasserstoffbrücken beobachtet werden, so zeigen die DHA-Winkel (170.2(8)° und 165.1(8)°) und die N···O-Abstände von 2.52(1) und 2.20(1) Å, dass das Ammoniakmolekül N17 mit den Sauerstoffatomen O49 und O55 wohl doch eine Wechselwirkung eingeht. Das Stickstoffatom N50 wird von den vier Ammoniakmolekülen

Abb. 7: Die Koordinationssphäre des Ammoniumions N50 in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.

N47, N53, N54 und N56 in pseudotetraedrischer Weise umgeben (Abb. 7, Tab. 5). Die N···N-Abstände sind mit 2.84(1) – 3.02(1) Å noch kurz genug, um als N···N-Abstände eines

[NH₄(NH₃)₄]⁺-Komplexkations gewertet zu werden. Darüber hinaus werden die anderen Stickstoffatome N4 und N8, die aufgrund kurzer

Donor···Akzeptorabstände potentielle Ammoniumionen sind, nie deutlich genug von vier Protonenakzeptoren umgeben. Zusätzlich ist die Zuordnung von vier physikalisch sinnvollen

Protonen dort nicht möglich. Die vier Protonen um das Stickstoffatom N50 sind 0.794(8) – 0.926(9) Å von ihm entfernt. Die H-N-H-Winkel von 84.7(8) – 133(1)° zeigen, dass die tetraederische Koordinationssphäre der Protonen um das Stickstoffatom N50 stark verzerrt ist. Dies setzt sich bei den DHA-Winkeln (128.9(7)° - 166.4(6)°) der vier Wasserstoffbrücken fort und äußert sich in einer teilweise starken Abweichung von 180°.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N50-H50AN54	0.794(8)	2.153(8)	2.84(1)	146.0(6)
N50-H50BN53	0.807(8)	2.38(1)	2.95(1)	128.9(7)
N50-H50CN56	0.842(8)	2.204(8)	3.02(1)	166.4(6)
N50-H50DN47	0.926(9)	2.246(9)	2.96(1)	133.9(6)
N47-H47A059	0.73(1)	2.479(9)	3.12(1)	148.4(7)
N47-H47CN59	1.13(1)	2.16(1)	3.26(1)	161.8(7)
N53-H53AO22	0.80(1)	2.46(1)	3.15(1)	143.8(8)
N56-H56A027	1.055(7)	2.510(8)	3.13(1)	141.0(8)
N54-H54A077	0.871(9)	2.441(8)	3.29(1)	167.8(6)
N54-H54B024	0.882(8)	2.316(7)	3.14(1)	155.6(7)

Tab. 5: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

Es ist keine Korrelation zwischen kurzem N···N-Abstand und nahe an 180° liegendem DHA-Winkel zu beobachten. So zum Beispiel hat die N50-H50A···N54-Brücke einen sehr kurzen N···N-Abstand (2.84(1) Å), der DHA-Winkel jedoch ist mit 146.0(6)° auffällig weit von einer linearen Anordnung entfernt. Die H···N-Abstände sind 2.153(8) – 2.38(1) Å, also um 13.5 – 21.7% kürzer als der H···N-VdW-Abstand. Dass die durchschnittlichen Verkürzungen der H···N-Abstände bei Ammoniakmolekülen bei etwa 10% liegen und somit die beim Ammoniumion N50 beobachteten im Durchschnitt deutlich größer sind, lässt sich als weiteres Indiz für die Einordnung als Ammoniumion werten.

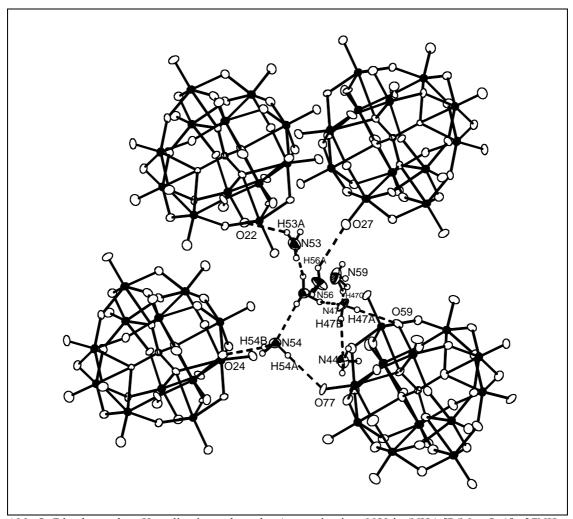
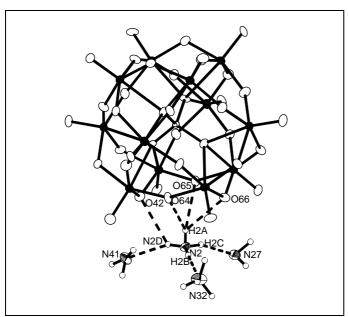



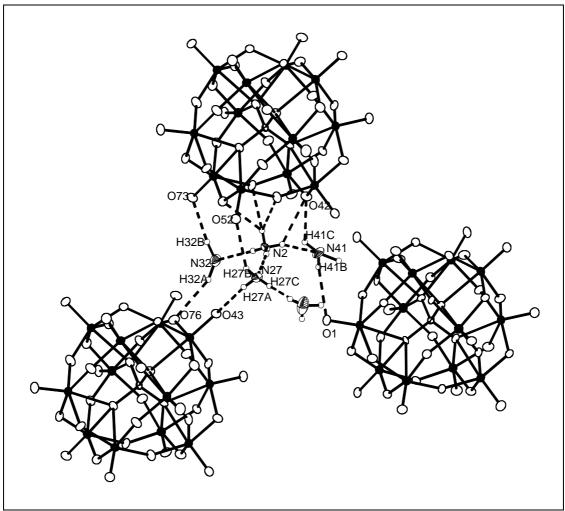
Abb. 8: Die übernächste Koordinationssphäre des Ammoniumions N50 in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

Nun werden die Wasserstoffbrückenbindungen der Ammoniakmoleküle N47, N53, N54 und N56, die selbst das Ammoniumion N50 koordinieren, untersucht (Abb. 8, Tab. 5). Von diesen Ammoniakmolekülen bildet nur das Ammoniakmolekül N47 Wasserstoffbrückenbindungen zu einem Stickstoffatom (N59) aus, die anderen Wechselwirkungen beziehen sich auf Sauerstoffatome vierer verschiedener Anionen. Der N47···N59-Abstand beträgt 3.26(1) Å und der H47C···N59-Abstand ist mit 2.16(1) Å um 21.5% kürzer als der N···N-VdW-Abstand. Dass es sich um eine deutliche Wechselwirkung handelt, wird durch den DHA-Winkel (161.8(7)°) bekräftigt. Der zweite Kontakt zu einem Protonakzeptor besteht zu dem Sauerstoffatom O59. Der N···O-Abstand ist 3.12(1) Å und hat einen DHA-Winkel von

148.4(7)°, der H47A···O59-Abstand ist mit 2.479(9) Å um 4.7% kürzer als der VdW-Abstand. Die H···O-Abstände der vier Wasserstoffbrücken, die die drei Ammoniakmoleküle N53, N56 und N54 zu den Sauerstoffatomen O22, O27, O77 und O24 ausbilden, sind zwischen 2.316(7) und 2.510(8) Å (H···O-Abstandsverkürzung: 3.5% – 10.9%). Da die N···O-Abstände (3.13(1) – 3.29(1) Å) und die DHA-Winkel (141.0(8)° - 167.8(6)°) in etwa gleich sind, wird davon

Abb. 9: Die Koordinationssphäre des Ammoniumions N2 in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.

ausgegangen, dass ähnliche Wechselwirkungen vorliegen.


Protonen des N2-Ammoniumions sind 0.75(1) -Å 1.06(1)vom Ammoniumstickstoff (N2) entfernt und zeigen H-N-H-Winkel von 93.1(7) - 122(1)° (Abb. 9, Tab. 6). Drei Wasserstoffbrückenbindungen werden zu Ammoniakmolekülen (N27, N32 und N41) ausgebildet. Die N···N-Abstände (2.88(2) – 2.97(2) Å) stimmen mit den N···N- $[NH_4(NH_3)_3]^+$ Abständen in überein. Komplexen gut stärkste dieser drei Wechselwirkungen stellt die N2-

H2C···N27-Wasserstoffbrücke mit einem H···N-Abstand von 1.88(1) Å und einem DHA-Winkel von 156.8(5)° dar. Die geringste Annäherung an Protonenakzeptoren ist beim H3B-Atom zu beobachten. Es ist etwa gleich weit (2.405(7) – 2.539(8) Å) von den drei Sauerstoffatomen (O64, O65 und O66) entfernt und stellt somit eine zweifach gegabelte Wasserstoffbrücke dar. Nicht nur die H···N-Abstände sind nahezu äquivalent, sondern auch die DHA-Winkel (129.6(8) – 146.2(8)). Somit bekräftigt sich das Bild einer nahezu idealen zweifach gegabelten Wasserstoffbrücke. Dahingegen bildet das H2D-Proton nur eine unsymmetrische einfach gegabelte Wasserstoffbrücke zu dem Sauerstoffatom O42 und dem Stickstoffatom N41 aus. Die Präferenz zum N41-Ammoniak ist eindeutig, da der H2D···N41-Abstand (2.08(1) Å) deutlich kürzer als der H2D···O42-Abstand (2.509(6) Å) ist.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N2-H2A064 N2-H2A065	0.808(9) 0.808(9)	2.405(7) 2.528(8)	3.10(1) 3.10(1)	146.2(8) 129.6(8)
N2-H2A066	0.808(9)	2.539(8)	3.17(1)	136.1(7)
N2-H2BN32 N2-H2CN27	0.75(1) 1.06(1)	2.21(1) 1.88(1)	2.97(2) 2.89(1)	177.8(9) 156.8(5)
N2-N2DN41 N2-N2DO42	0.855(9) 0.855(9)	2.08(1) 2.509(6)	2.88(2) 3.076(9)	155.3(7) 124.6(6)

Tab. 6: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

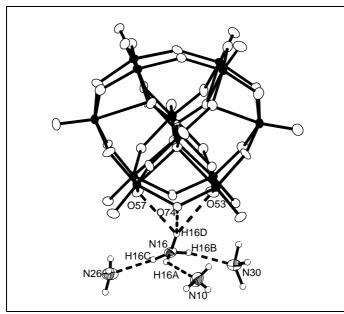

Nun werden die Wasserstoffbrückenbindungen der Ammoniakmoleküle N27, N32 und N41, die selbst das Ammoniumion N2 koordinieren, untersucht (Abb. 10, Tab. 7). Das Ammoniakmolekül N27 hat zum N39-Ammoniak einen N···N-Abstand von 3.18(2) Å. Die Verkürzung des H···N-Abstandes beträgt 17.5% und der DHA-Winkel ist 176.4(6)°. Alle anderen Wechselwirkungen sind nur zu Sauerstoffatomen (O43, O52, O76, O73, O1 und O42) zu beobachten. Die N···O-Abstände sind 2.92(1) – 3.40(1) Å, die H···O-Abstände sind 2.190(8) – 2.554(8) Å und die DHA-Winkel sind 120.4(9) – 171.0(8)°. Das Komplexkation wird somit von drei Anionen und einem Kristallammoniak umgeben.

Abb. 10: Die übernächste Koordinationssphäre des Ammoniumions N2 in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

N27-H27AO43	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N32-H32B073 0.97(1) 2.190(8) 3.15(1) 171.0(8) N41-H41B01 0.78(1) 2.58(1) 3.18(2) 134.7(8) N41-H41C042 0.79(1) 2.439(8) 2.92(1) 120.4(9)	N27-H27B052 N27-H27CN39 N32-H32A076 N32-H32B073 N41-H41B01	0.92(1) 0.91(1) 1.00(1) 0.97(1) 0.78(1)	2.455(7) 2.27(1) 2.460(7) 2.190(8) 2.58(1)	3.19(1) 3.18(2) 3.40(1) 3.15(1) 3.18(2)	137.0(5) 176.4(6) 156.0(7) 171.0(8) 134.7(8)

Tab. 7: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

Abb. 11: Die Koordinationssphäre des Ammoniumions N16 in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.

Die Protonen des N16-Ammoniumions sind 0.88(1) – 0.93(1) Å vom Ammoniumstickstoff (N16) entfernt und zeigen H-N-H-Winkel von 87(1) - 124(1)° (Abb. 11, Tab. 8).

Drei Wasserstoffbrückenbindungen werden zu Ammoniakmolekülen (N10, N26 und N30) ausgebildet. Die N···N-Abstände (2.88(2) – 3.00(2) Å) stimmen mit den N···N-Abständen in [NH₄(NH₃)₃]⁺-Komplexen überein. Die stärkste dieser drei Wechselwirkungen stellt die N16-H16B···N30-

Wasserstoffbrücke mit einem H···N-Abstand von 2.06(1) Å und einem DHA-Winkel von 156.9(6)° dar.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N16-H16AN10	0.93(1)	2.18(1)	2.88(2)	131.2(8)
N16-H16BN30	0.88(1)	2.06(1)	2.90(2)	156.9(6)
N16-H16CN26	0.90(1)	2.10(2)	3.00(2)	174.0(8)
N16-H16D074	0.92(1)	2.242(8)	3.04(1)	145.8(7)
N16-H16D053	0.92(1)	2.407(9)	3.18(1)	141.8(7)
N16-H16D057	0.92(1)	2.475(8)	2.98(1)	115.2(7)

Tab. 8: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

Die geringste Annäherung an Protonenakzeptoren ist beim H16D-Atom zu beobachten. Es ist etwa gleich weit (2.407(9) und 2.475(8) Å) von den zwei Sauerstoffatomen O53 und O57 entfernt. Doch die dritte Wechselwirkung ist deutlich stärker, da der H16D···O74-Abstand (2.242(8) Å) um 0.2 Å kürzer ist als die beiden anderen H···O-Abstände. Daraus resultiert eine zweifach gegabelte Wasserstoffbrücke, die nicht idealsymmetrisch ist, was durch die DHA-Winkel, die um 30° differieren, noch bekräftigt wird.

Nun werden die Wasserstoffbrückenbindungen der Ammoniakmoleküle N10, N26 und N30, die selbst das Ammoniumion N16 koordinieren, untersucht (Abb. 12, Tab. 9). Die Ammoniakmoleküle N10 und N30 haben zum N19-Ammoniak N···N-Abstände von 3.31(2) und 3.45(2) Å. Die Verkürzung des H···N-Abstandes beträgt 2.2 bzw. 6.5% und die DHA-Winkel sind 157(1) und 144.4(7)°. Das freie Elektronenpaar des N19-Ammoniakmoleküls wirkt somit gleichermaßen als Protonenakzeptor für die beiden Ammoniakmoleküle N10 und N30.

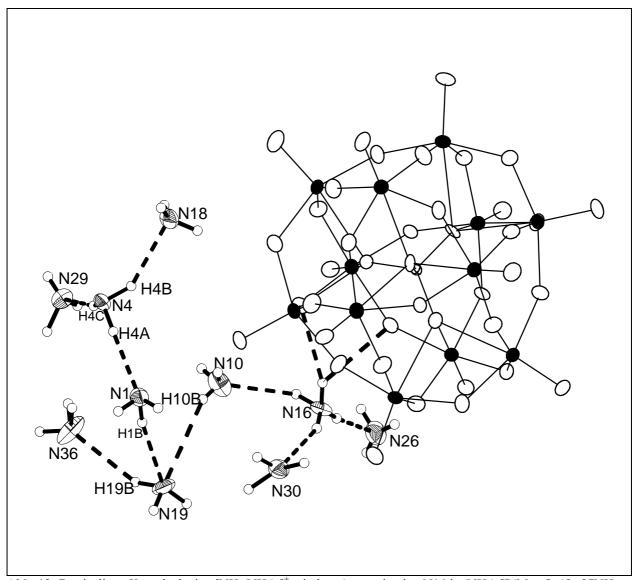


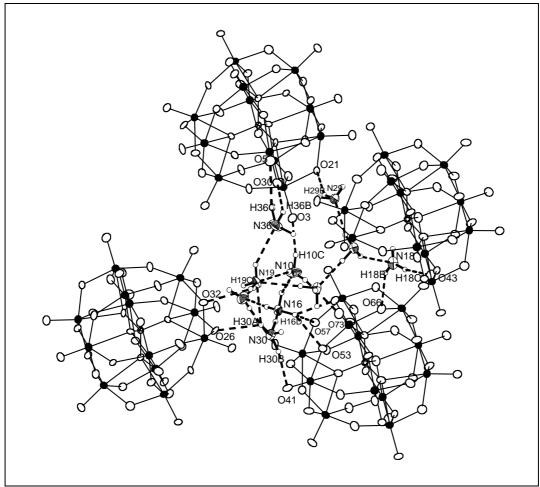
Abb. 12: Die übernächste Koordinationssphäre des Ammoniumions N16 in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N10-H10A073 N10-H10BN19 N10-H10C03 N26-H26B048 N30-H30AN19 N30-H30A026	0.76(2) 0.65(1) 0.95(1) 0.69(1) 1.02(1) 1.02(1)	2.556(9) 2.69(1) 2.095(9) 2.602(8) 2.57(1) 2.448(8)	3.29(2) 3.31(2) 3.01(1) 3.29(1) 3.45(2) 3.04(1)	162.8(8) 157(1) 163.1(9) 175(1) 144.4(7) 116.5(6)
N30-H30BО41	1.01(1)	2.223(7)	3.20(1)	163.3(6)

Tab. 9: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

Alle anderen Wechselwirkungen sind nur zu Sauerstoffatomen (O73, O3, O48, O26 und O41) zu beobachten. Die N···O-Abstände sind 3.01(1) - 3.29(1) Å, die H···O-Abstände sind 2.095(9) - 2.602(8) Å und die DHA-Winkel sind $116.5(6) - 163.1(9)^{\circ}$. Das Komplexkation wird somit von drei Anionen und einem Kristallammoniak umgeben.

Abb. 13: Das isolierte Komplexkation $[NH_4(NH_3)_9]^+$ mit dem Ammoniumion N16 in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.


D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N4-H4AN1	0.93(1)	2.01(1)	2.94(2)	177.4(8)
N4-H4BN18	0.92(1)	2.15(1)	2.97(2)	147.8(6)
N4-H4CN29	0.85(1)	2.00(1)	2.84(2)	163.8(6)
N1-H1BN19	0.86(1)	2.42(1)	3.28(2)	169.1(8)
N19-H19BN36	0.95(1)	2.39(1)	3.25(1)	148.8(8)

Tab. 10: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

Bei der Berücksichtigung der übernächsten N-H···N-Wasserstoffbrücken stellt man fest, dass ein isoliertes Komplexkation [NH₄(NH₃)₉]⁺ vorliegt (Abb. 13, Tab. 10). Die nächsten N···N-

Abstände sind bei 3.41 Å, also deutlich länger als der N···N-Abstand in festem Ammoniak. Auch der entsprechende H···N-Abstand ist mit 2.82 Å zu lang, um zweifelsfrei als möglicher Kandidat für eine Wasserstoffbrückenbindung gewertet zu werden. Bisher wurde das Komplexkation [NH₄(NH₃)₃]⁺ mit dem Ammoniumion N16 beschrieben. Auch die Wechselwirkung des Komplexkations zu dem Ammoniakmolekül N19 wurde erwähnt. Diese Ammoniakmolekül fungiert als Protonendonor zu dem Ammoniakmolekül N36, aber auch als Protonenakzeptor zu dem Ammoniakmolekül N1. Die H···N-Abstände sind um 12.0% bzw. 13.1% kürzer als der H···N-VdW-Abstand. Deutlich kürzer sind die H···N-Abstände der drei Wasserstoffbrücken, die das Ammoniakmolekül N4 zu den Ammoniakmolekülen N1, N18 und N29 ausbildet. Hier beträgt die H···N-Verkürzung 21.8 - 27.3%. Somit liegt ein deutlicher Hinweis für Wasserstoffbrückenenergien vor, die von Ammoniumionen herrühren. Trotz vieler Versuche konnte kein viertes Proton lokalisiert werden. Als möglicher Protonenakzeptor würde das Nachbaranion in der nächsten Abbildung (Abb. 14) in Frage kommen. Der kürzeste N···O-Abstand ist 3.11 Å, wobei dieser Abstand um nur 0.01 Å länger ist als der längste N···O-Abstand, der bei einem der sechs Ammoniumionen beobachtet wird. Auch wenn es sich bei dem N4-Ammoniakmolekül tatsächlich um ein Ammoniumion handelt, so würde sich an der Isoliertheit des Komplexkations nichts ändern, da als mögliche Protonenakzeptoren nur die Sauerstoffatome des benachbarten Anions zur Verfügung stehen.

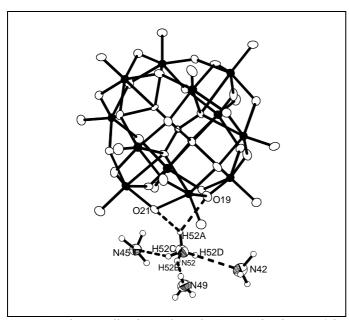

Insgesamt bildet das [NH₄(NH₃)₉]⁺-Komplexkation zehn Wasserstoffbrücken zu vier Anionen aus, wobei das Komplexkation in der Tetraederlücke der vier Anionen liegt (Abb. 14, Tab. 11). Die P-P-Abstände dieser Anionen sind 12.78 – 16.22 Å. Die N···O-Abstände sind 3.01(1) – 3.41(1) Å, die H···O-Abstände sind 2.095(9) – 2.609(8) Å und die DHA-Winkel sind 116.5(6) – 163.3(6)°. Wie schon oben beschrieben, bildet das N10-Ammoniakmolekül die stärkste Wechselwirkung des [NH₄(NH₃)₉]⁺-Komplexkations zu einem Anion aus.

Abb. 14: Die Koordinationssphäre des isolierten Komplexkations $[NH_4(NH_3)_9]^+$ in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.

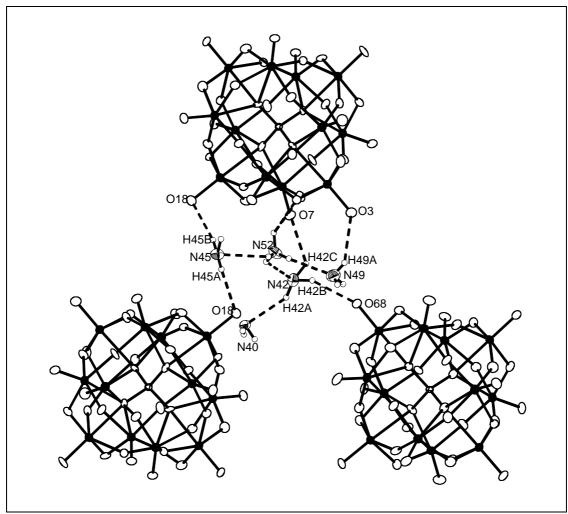
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N18-H18B066 N18-H18C043 N30-H30A026 N30-H30B041 N36-H36B030 N36-H36C05 N19-H19C032 N10-H10C03 N10-H10A073 N29-H29B021	0.852(9) 0.87(1) 1.02(1) 1.01(1) 0.93(2) 1.03(1) 0.84(1) 0.95(1) 0.76(2) 0.85(1)	2.255(6) 2.438(8) 2.448(8) 2.223(7) 2.418(9) 2.462(8) 2.609(8) 2.095(9) 2.556(9) 2.483(8)	3.04(1) 3.25(1) 3.04(1) 3.20(1) 3.24(2) 3.41(1) 3.18(1) 3.01(1) 3.29(2) 3.24(1)	153.3(9) 155.8(7) 116.5(6) 163.3(6) 146.6(8) 152(1) 126.2(8) 163.1(9) 162.8(8) 148.0(8)

Tab. 11: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

Abb. 15: Die Koordinationssphäre des Ammoniumions N52 in $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$.

Das N52-Stickstoffatom hat drei Stickstoffatome (N42, N45 und N49) und zwei Sauerstoffatome und O21) als Nachbarn (Abb. 15, Tab. 12). Da N···N-Abstände 2.88(1) – 3.13(2) Å und die N···O-Abstände 3.04(1) und 3.06(1) Å betragen, ist es schlüssig davon auszugehen, dass es sich bei dem N52-Stickstoffatom um ein Ammoniumion handelt. Die Protonen des N22-Ammoniumions $\sin 0.691(9) - 1.01(1) \text{ Å vom}$ Ammoniumstickstoff (N52)entfernt und zeigen H-N-H-Winkel von 72.8(9) - 133(1)°. Die Abstände

der Protonen zu den Ammoniakmolekülen (N42, N45 und N49) sind etwa gleich lang (2.224(9) - 2.43(1) Å).

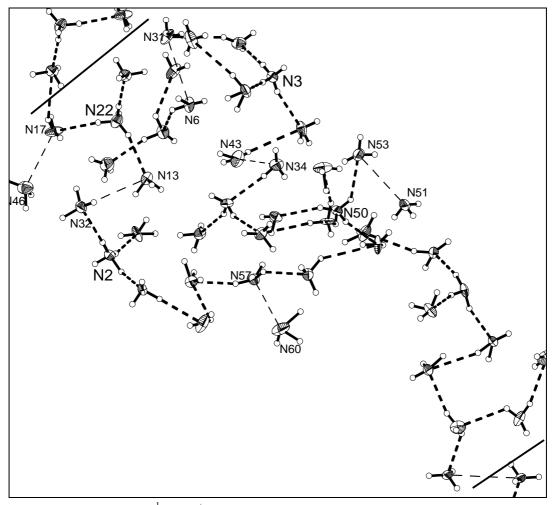

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N52-H52A019	0.91(1)	2.326(8)	3.04(1)	134.6(6)
N52-H52A021	0.91(1)	2.452(8)	3.06(1)	124.2(7)
N52-H52BN49	0.90(1)	2.28(1)	3.13(2)	157.1(6)
N52-H52CN45	0.691(9)	2.43(1)	2.92(1)	129.9(9)
N52-H52DN42	1.01(1)	2.224(9)	2.88(1)	121.2(6)

Tab. 12: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

Im Gegensatz zu den drei Protonen, die Wasserstoffbrücken zu den drei Ammoniakmolekülen ausbilden, bildet das H52A-Proton eine einfach gegabelte Wasserstoffbrücke zu den Sauerstoffatomen O19 und O21 aus. Eine leichte Präferenz zum O19-Sauerstoffatom ist wegen des um 0.1 Å kürzeren H52A····O19-Abstandes zu beobachten. Die DHA-Winkel sind mit 124.2(7)° und 134.6(6)° in etwa gleich.

Nun werden die Wasserstoffbrückenbindungen der Ammoniakmoleküle N42, N45 und N49, die das Ammoniumion N52 selbst koordinieren, untersucht (Abb. 16, Tab. 13). Von diesen Ammoniakmolekülen ausgehend treten fast nur Wechselwirkungen zu Sauerstoffatomen dreier Anionen auf. Die einzig feststellbare N-H···N-Wechselwirkung ist zwischen dem N42-und dem N40-Ammoniakmolekül. Der N···N-Abstand ist mit 3.42(1) Å deutlich größer als der vergleichbare in festem Ammoniak, der H···N-Abstand (2.572(9) Å) jedoch entspricht dem VdW-Kriterium für Wasserstoffbrückenbindungen. Die H···N-Verkürzung ist 6.5%, zeigt also eine schwache Wechselwirkung an, was durch den DHA-Winkel von 149.1(8)° bestätigt wird. Die anderen Wechselwirkungen des [NH₄(NH₃)₃]⁺-Komplexes sind nur

Protonendonorwechselwirkungen zu Sauerstoffatomen (O18, O18', O7, O3 und O68). Die N···O-Abstände sind 3.12(1) - 3.33(1) Å, die H···O-Abstände sind 2.32(1) - 2.611(9) Å und die DHA-Winkel sind $121.0(9) - 167.6(7)^{\circ}$.


Abb. 16: Die übernächste Koordinationssphäre des Ammoniumions N52 in (NH₄)₃[P(Mo₁₂O₄₀)] ·

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N42-H42AN40 N42-H42BO68	0.95(1) 0.95(1)	2.572(9) 2.32(1)	3.42(1) 3.18(1)	149.1(8) 148.8(8)
N42-H42CO7 N45-H45AO18	1.08(1)	2.463(8) 2.520(7)	3.23(1) 3.33(1)	127.4(5) 175.8(7)
N45-H45B018	0.864(9)	2.436(7)	3.28(1)	167.6(7)
N49-H49AO3	0.84(1)	2.611(9)	3.12(1)	121.0(9)

Tab. 13: Protonendonor···Akzeptor-Abstände und deren Winkel in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃.

Zusammenfassend lässt sich sagen, dass die Ammoniumionen N2, N3, N16, N22 und N52 [NH₄(NH₃)₃]⁺-Komplexkationen bilden, die deutlich schwächere Wechselwirkungen zu wenigen Ammoniakmolekülen, aber besonders zu den Anionen ausbilden. Das N50-Ammoniumion ist im Zentrum eines [NH₄(NH₃)₄]⁺-Komplexkations und geht daher keine direkten Wasserstoffbrückenbindungen mit einem Anion ein. Das [NH₄(NH₃)₃]⁺-

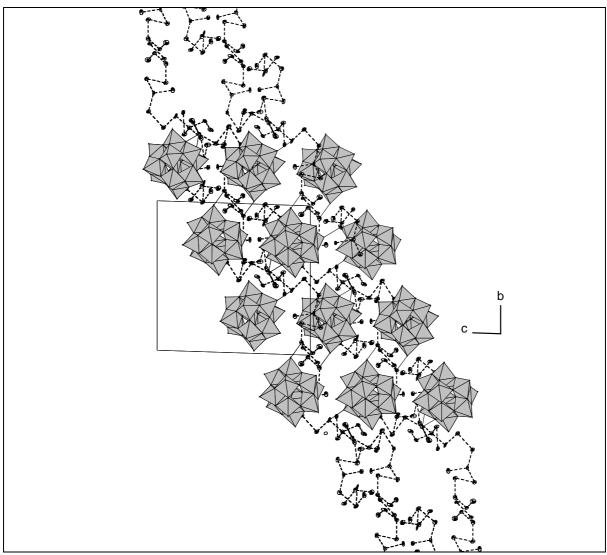

Komplexkation des N52-Ammoniumions zeigt keine Wasserstoffbrücken zu anderen Stickstoffatomen, sondern nur zu einem Anion. Wie dieses Komplexkation ist auch das Komplexkation [NH₄(NH₃)₉]⁺ des N16-Ammoniumions als isoliert aufzufassen. Nur die [NH₄(NH₃)₃]⁺-Komplexkationen (N2, N3 und N22) und das Komplexkation [NH₄(NH₃)₄]⁺ (N50) sind selbst Teil einer ausgedehnten Komplexkationenkette, d.h. zu den vier Ammoniumionen und 13 Ammoniakmolekülen kommen noch 29 Ammoniakmoleküle. Die N···N-Abstände in dem ausgedehnten [NH₄(NH₃)₄₂]-Kation sind kleiner als 3.377 Å, entsprechen also N···N-Abständen, die bei Wasserstoffbrückenbindungen auftreten. Zwischen den Ammoniakmolekülen N17 und N46, N13 und N32, N6 und N31, N34 und N43, N57 und N60, N53 und N51 können keine Protonen lokalisiert werden, die geometrisch nachvollziehbare Wasserstoffbrücken ergeben würden. Die N···N-Abstände jedoch sind als klares Indiz für eine solche Wechselwirkung zu werten. Die energetische Einordnung jeder einzelnen Wasserstoffbrücke ist wegen der schon erwähnten Mängel der Bestimmung der Protonenlagen nur mit geringer Verlässlichkeit vorzunehmen. Dies gilt insbesondere

Abb. 17: Das ausgedehnte ${}^{1}_{\infty}[(NH_{4}^{+})_{4}(NH_{3})_{42}]$ -Komplexkation in $(NH_{4})_{3}[P(Mo_{12}O_{40})] \cdot 27NH_{3}$.

deswegen, da es sich fast ausschließlich um Wechselwirkungen zwischen Ammoniakmolekülen um bekanntermaßen schwachen Bindungskräfte handelt.

In Abb. 18 ist eine Projektion von zwei parallelen $^1_\infty$ [(NH₄⁺)₄(NH₃)₄₂]-Ketten in die bc-Ebene dargestellt. Die Taschen, die die beiden Ketten aufspannen, werden von den Anionen besetzt. Dieser entlang der b-Achse ausgedehnte Komplex beinhaltet die vier Ammoniumionen N2, N3, N20 und N50.

Abb. 18: Projektion von zwei parallelen $^1_\infty$ [(NH₄⁺)₄(NH₃)₄₂]-Ketten, in (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃ in die bc-Ebene.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N1-H1BN19	0.86(1)	2.42(1)	3.28(2)	169.1(8)
N2-H2A064	0.808(9)	2.405(7)	3.10(1)	146.2(8)
N2-H2A065	0.808(9)	2.528(8)	3.10(1)	129.6(8)
N2-H2A066	0.808(9)	2.539(8)	3.17(1)	136.1(7)
N2-H2BN32	0.75(1)	2.21(1)	2.97(2)	177.8(9)
N2-H2CN27	1.06(1)	1.88(1)	2.89(1)	156.8(5)
N3-H3AN5	0.85(1)	2.07(1)	2.91(2)	168.5(7)
N3-H3BO32	0.772(9)	2.489(8)	3.01(1)	126.9(8)
N3-H3BO39	0.772(9)	2.501(6)	3.170(9)	145.8(7)
N3-H3BO8	0.772(9)	2.547(9)	3.12(1)	133.0(7)
N3-H3CN20	0.72(1)	2.21(1)	2.90(2)	161.1(9)
N3-H3DN23	1.05(1)	1.79(1)	2.84(2)	178.5(7)
N4-H4AN1	0.93(1)	2.01(1)	2.94(2)	177.4(8)
N4-H4BN18	0.92(1)	2.15(1)	2.97(2)	147.8(6)
N4-H4CN29	0.85(1)	2.00(1)	2.84(2)	163.8(6)
N5-H5AO29	0.90(1)	2.616(8)	3.21(1)	124.8(9)
N5-H5BN31	0.77(1)	2.59(1)	3.32(2)	157.4(9)
N5-H5CO33	0.81(1)	2.621(8)	3.41(1)	166.1(7)
N7-H7AO4	0.91(1)	2.609(9)	3.06(1)	111.4(7)
N7-H7BN36	0.84(1)	2.78(1)	3.53(2)	148.0(9)
N7-H7CO33	0.79(1)	2.63(1)	3.37(2)	156.2(9)
N8-H8AN33	0.87(1)	2.06(1)	2.91(2)	165.0(7)
N8-H8BN14	0.90(1)	2.09(1)	2.95(2)	159.6(7)
N9-H9A075	0.84(1)	2.591(9)	3.03(1)	113.8(9)
N10-H10A073	0.76(2)	2.556(9)	3.29(2)	162.8(8)
N10-H10BN19	0.65(1)	2.69(1)	3.31(2)	157(1)
N10-H10C03	0.95(1)	2.095(9)	3.01(1)	163.1(9)
N11-H11BO2 N11-H11BO35	0.79(1) 0.79(1)	2.379(8) 2.501(8)	3.05(1) 3.10(1)	143(1) 133(1)
N11-H11B035 N11-H11B026	0.79(1)	2.554(7)	3.10(1)	125.9(8)
N11-H11B031	0.79(1)	2.577(8)	3.08(1)	122.8(7)
N12-H12AN14	0.96(1)	2.41(1)	3.30(2)	154.0(8)
N12-H12C03	0.79(1)	2.500(7)	3.09(1)	132.8(8)
N13-H13AN32	0.94(1)	2.79(1)	3.36(2)	119.7(8)
N13-H13CO1	0.95(1)	2.374(8)	3.31(1)	168.9(8)
N14-H14AN12	1.06(1)	2.40(1)	3.30(2)	141.4(6)
N14-H14B033	1.02(1)	2.457(8)	3.39(1)	152.2(6)
N14-H14CO29	0.82(1)	2.362(7)	3.12(1)	155.0(7)
N15-H15AN21	0.74(1)	2.48(1)	2.90(2)	117(1)
N15-H15BN48	0.86(1)	2.39(2)	3.23(2)	165.2(8)
N15-H15CO14	0.76(1)	2.606(8)	3.34(2)	155.7(9)
N16-H16AN10	0.93(1)	2.18(1)	2.88(2)	131.2(8)
N16-H16BN30	0.88(1)	2.06(1)	2.90(2)	156.9(6)
N16-H16CN26	0.90(1)	2.10(2)	3.00(2)	174.0(8)
N17-H17A049	0.81(1)	2.52(1)	3.33(2)	170.2(8)
N17-H17BN9	0.81(1)	2.52(1)	3.33(2)	170.2(8)
N17-H17CO55	1.07(1)	2.44(1)	3.50(2)	168.8(8)
N18-H18B066	0.852(9)	2.255(6)	3.04(1)	153.3(9)
N18-H18CO43	0.87(1)	2.438(8)	3.25(1)	155.8(7)
N19-H19BN36	0.95(1)	2.39(1)	3.25(1)	148.8(8)
N19-H19BN36	0.95(1)	2.39(1)	3.25(1)	148.8(8)
N19-H19C032	0.84(1)	2.609(8)	3.18(1)	126.2(8)
N20-H20B013 N20-H20C07	0.90(1)	2.590(6)	3.094(9)	115.9(6)
N20-H20CO7 N21-H21AN12	0.83(1)	2.435(9)	3.22(1)	157.3(7)
N21-H21AN12 N21-H21BO28	0.80(1) 0.95(1)	2.18(1) 2.173(8)	2.96(2) 2.99(1)	163(1) 143.4(8)
N21-H21BO26 N21-H21CO33	0.95(1)	2.173(8) 2.638(9)	3.15(1)	143.4(8)
N21-H21CN7	0.81(1)	2.28(1)	2.91(2)	134(1)
1121 1121011/	J. UI (I)	2.20(I)	2.71(2)	TO 1 (T)

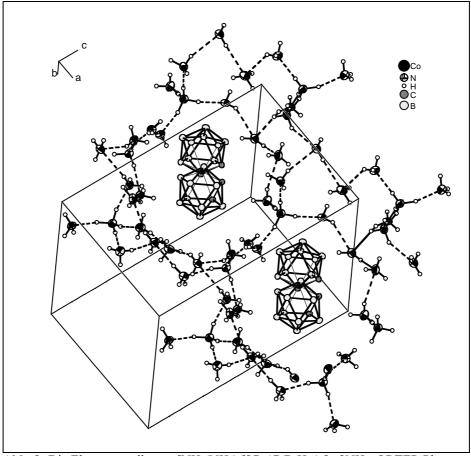
N22-H22AN17	0.86(1)	2.08(1)	2.94(2)	172(1)
N22-H22BN9	0.86(1)	1.98(1)	2.84(2)	175.0(8)
N22-H22DN13	0.82(1)	2.17(1)	2.96(2)	163(1)
N22-H22CO41	0.80(1)	2.239(8)	2.97(1)	153.3(8)
N23-H23A058	0.99(1)	2.344(9)	3.16(1)	139.6(8)
N23-H23A047	0.99(1)	2.467(8)	3.35(1)	148.7(7)
N23-H23AO58	0.99(1)	2.344(9)	3.16(1)	139.6(8)
N23-H23BN38	0.91(1)	2.74(1)	3.55(2)	147.5(7)
N24-H24CO1	0.72(1)	2.555(7)	3.25(1)	163.4(7)
N26-H26BO48	0.69(1)	2.602(8)	3.29(1)	175(1)
N27-H27A043	0.767(9)	2.554(8)	3.15(1)	137.2(8)
N27-H27B052	0.92(1)	2.455(7)	3.19(1)	137.0(5)
N27-H27B052	0.92(1)	2.455(7)	3.19(1)	137.0(5)
N27-H27CN39	0.91(1)	2.27(1)	3.18(2)	176.4(6)
N28-H28AO11	0.83(1)	2.315(7)	3.14(1)	169.3(8)
N28-H28BN40	0.92(1)	2.40(1)	3.30(2)	163.0(8)
N28-H28CO7	0.901()	2.556(8)	3.29(1)	139.9(7)
N29-H29BO21	0.85(1)	2.483(8)	3.24(1)	148.0(8)
		2.57(1)		
N30-H30AN19	1.02(1)		3.45(2)	144.4(7)
N30-H30A026	1.02(1)	2.448(8)	3.04(1)	116.5(6)
N30-H30B041	1.01(1)	2.223(7)	3.20(1)	163.3(6)
N31-H31AN5	0.79(1)	2.66(1)	3.32(2)	140.3(9)
N30-H30AN19	1.02(1)	2.57(1)	3.45(2)	144.4(7)
N31-H31B069	0.80(2)	2.577(8)	3.11(1)	125.3(9)
N31-H31CN38	0.89(1)	2.46(1)	3.22(2)	143.8(9)
N32-H32A076	1.00(1)	2.460(7)	3.40(1)	156.0(7)
N33-H33C034	0.88(1)	2.326(7)	3.07(1)	142.7(8)
N34-H34AN37	0.83(1)	2.12(1)	2.94(2)	164.2(7)
N34-H34CO17	0.86(1)	2.536(7)	3.22(1)	137.1(9)
N35-H35AN31	0.85(1)	3.09(1)	3.52(2)	114.0(9)
N34-H34CO17	0.85(1)	2.537(7)	3.22(1)	137.1(9)
N35-H35BO28	0.89(1)	2.318(9)	3.14(1)	153(1)
N35-H35C056	0.82(1)	2.45(1)	3.08(2)	133(1)
N36-H36BO30	0.93(2)	2.418(9)	3.24(2)	146.6(8)
N36-H36CO5	1.03(1)	2.462(8)	3.41(1)	152(1)
N39-H39AN27	0.68(1)	2.74(1)	3.18(2)	125(1)
N39-H39CN58	0.91(1)	2.713(9)	3.34(2)	126.4(8)
N40-H40CN56	0.79(1)	2.703(8)	3.35(1)	141.0(8)
N41-H41CO42	0.79(1)	2.439(8)	2.92(1)	120.4(9)
N41-H41CN2	0.79(1)	2.36(1)	2.88(2)	123.2(8)
N42-H42BN52	0.82(1)	2.331(9)	2.89(1)	125.5(8)
N42-H42CO68	0.95(1)	2.32(1)	3.18(1)	148.8(8)
N43-H43AN20	0.75(1)	2.69(1)	3.33(2)	144.1(8)
N43-H43BO45	1.13(1)	2.129(9)	3.19(1)	154.4(6)
N44-H44CO77	0.92(1)	2.221(9)	3.13(1)	171.3(7)
N44-H44C061	0.92(1)	3.545(7)	4.20(1)	130.3(5)
N45-H45A018	0.814(9)	2.520(7)	3.33(1)	175.8(7)
N46-H46B064	0.94(2)	2.587(9)	3.48(2)	158.9(9)
N46-H46C071	0.92(1)	2.462(9)	3.28(1)	147.6(9)
N47-H47A059	0.73(1)	2.479(9)	3.12(1)	148.4(7)
N47-H47BN44	0.91(1)	2.70(1)	3.61(2)	172.9(7)
N47-H47CN59	1.13(1)	2.16(1)	3.26(1)	161.8(7)
N48-H48AO29	0.99(3)	2.578(9)	3.37(2)	137.2(9)
N48-H48BO5	0.83(2)	2.526(9)	3.22(2)	143(1)
N48-H48CN15	0.75(2)	2.58(1)	3.22(2)	145(1)
N49-H49A03	0.73(2)	2.611(9)	3.12(1)	121.0(9)
N50-H50AN54	0.794(8)	2.153(8)	2.84(1)	146.0(6)
N50-H50BN53	0.807(8)	2.38(1)	2.95(1)	128.9(7)
N50-H50CN56	0.842(8)	2.204(8)	3.02(1)	166.4(6)
N50-H50DN47	0.926(9)	2.246(9)	2.96(1)	133.9(6)
N51-H51A051	0.78(1)	2.449(8)	3.20(1)	163.8(8)
N52-H52A019	0.91(1)	2.326(8)	3.04(1)	134.6(6)
N52-H52A021	0.91(1)	2.452(8)	3.06(1)	124.2(7)
	. ,	- (- /	- \	. (. /

N52-H52BN49	0.90(1)	2.28(1)	3.13(2)	157.1(6)
N52-H52CN45	0.691(9)	2.43(1)	2.92(1)	129.9(9)
N53-H53AO22	0.80(1)	2.46(1)	3.15(1)	143.8(8)
N54-H54AO77	0.871(9)	2.441(8)	3.29(1)	167.8(6)
N54-H54BO24	0.882(8)	2.316(7)	3.14(1)	155.6(7)
N55-H55AN54	0.638(9)	2.79(1)	3.36(1)	150.7(9)
N55-H55B060	0.91(1)	2.499(8)	3.34(1)	153.3(5)
N55-H55BO70	0.91(1)	2.579(7)	3.32(1)	138.6(5)
N56-H56AO27	1.055(7)	2.510(8)	3.13(1)	141.0(8)
N56-H56BN50	0.680(7)	2.722(8)	3.02(1)	110.6(8)
N57-H57AO15	1.060(9)	2.205(8)	3.24(1)	167.1(4)
N57-H57AO20	1.060(9)	2.290(6)	2.956(9)	119.2(4)
N57-H57BN55	0.983(7)	2.147(8)	2.88(1)	130.2(6)
N58-H58BO1	0.97(1)	2.436(9)	3.30(1)	148.4(5)
N60-H60A018	1.22(1)	2.257(9)	3.22(2)	133.8(6)

 $\textbf{Tab. 14:} \ Alle \ Protonendonor \cdots Akzeptor-Abstände \ und \ deren \ Winkel \ in \ (NH_4)_3[Fe(CN)_6] \cdot 11NH_3 \ .$

3.9 $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$

Darstellung und Röntgenstrukturanalyse


Natriumcobalt(III)carboran (0.500 g (1.44 mmol)) wird zwölf Stunden lang bei 393 K einem Druck von 10⁻² mbar ausgesetzt. Das Molverhältnis Na[Co(C₂B₉H₁₁)₂/Ionenaustauscher beträgt 1/3, d.h. zu den 0.500 g (1.44 mmol) NaB(p-tolyl)₄ werden 0.930 g (4.6 meg/g) Amberlyst 15 (FLUKA) gegeben. Danach werden ca. 40 ml Ammoniak einkondensiert (195 K), die eine leicht gelb gefärbte Lösung ergeben. Nach mehreren Monaten Lagerung bei 238 K haben sich farblose Kristalle gebildet, die der Röntgenstrukturanalyse zugeführt wurden. Die im Orientingmodus aufgenommenen Reflexe können anhand einer orthorhombischen Elementarzelle indiziert werden. Nach Integration Datenreduktion und Intensitätsdatensatzes weisen die nicht vorhandenen integralen Auslöschungen, die nicht vorhandenen zonalen Auslöschungen und die vorhandenen seriellen Auslöschungen h00 h≠2n, 0k0 k≠2n und 001 l≠2n in Verbindung mit der orthorhombischen Metrik auf die Raumgruppe P2₁2₁2₁ hin. In dieser Raumgruppe gelingt die Lösung und Verfeinerung der Kristallstruktur, wobei die Lagen von einem Cobalt-, sieben Stickstoff-, vier Kohlenstoff- und 18 Boratomen in der asymmetrischen Einheit ermittelt werden. Nach deren isotropen Lageverfeinerung wird der Datensatz einer anisotropen Verfeinerung unterworfen. Das Programm ADDSYMM des Programmpaketes PLATON wurde benutzt, um eventuell fehlende Symmetrien zu finden, jedoch ohne Erfolg. Der Flack-Parameter x (x=-0.0157 esd 0.0137) zeigt, dass es sich bei diesem Strukturmodell um das richtige Enantiomorph handelt. Weiterhin können die Lagen aller an Bor-, Kohlenstoff- bzw. Stickstoffatome gebundenen 44 Wasserstoffatome der Differenzfouriersynthese entnommen und isotrop verfeinert werden.

$Kristallstrukturdaten\ von\ [NH_4(NH_3)_4][Co(C_2B_9H_{11})_2]\cdot 2NH_3$

Summenformel	$C_4H_{44}B_{18}CoN_7$
Anzahl der Frames	300
φ-Inkrement (°)	1.2
Belichtungszeit (min)/Frame	0.5
Messtemperatur (K)	123
Kristallsystem	orthorhombisch
Raumgruppe	P 2 ₁ 2 ₁ 2 ₁ (Nr. 19)
a (Å)	11.1127(6)
b (Å)	13.9866(8)
c (Å)	16.730(1)
Volumen (Å ³)	2600.3(3)
Z	4
M (g·mol⁻¹)	443.97
$\rho_{\rm c} \left({\rm g \cdot cm}^{-3} \right)$	1.134
F (000)	936
$\mu (MoK_{\alpha})(\mathring{A})$	0.71073
θ-Bereich (°)	2.20 - 25.94
Gesamtzahl der Reflexe	37076
Zahl der unabhängigen Reflexe (R _{int})	5051 (0.0686)
Zahl der Parameter	447
$R_1 (I > 2\sigma(I))$	0.0365
$wR_2 (I \ge 2\sigma(I))$	0.0713
R ₁ (alle Daten)	0.0418
wR ₂ (alle Daten)	0.0727
GooF	1.074
Restelektronendichte	0.660/-0.348

Tabelle 1: Einkristallstrukturdaten von $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$.

Strukturbeschreibung und Diskussion

Abb. 8: Die Elementarzelle von [NH₄(NH₃)₄][Co(C₂B₉H₁₁)₂] · 2NH₃; ORTEP-Plot: 50% Wahrscheinlichkeit.

Die Co-C-, die Co-B-, C-X- (X = C oder B) und die B-B-Abstände (Abb. 2, Tab. 2), sowie die

Abstände /å:

Co-C: 2.047(2) - 2.063(2)

Co-B: 2.091(3) - 2.126(3)

C-X: 1.619(3) - 1.743(3)

(X = C oder B)

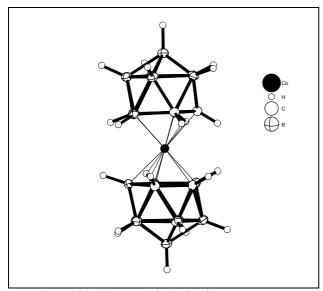
X-H: 0.94(3) - 1.17(3)

B-B: 1.770(4) - 1.861(4)

Co-Co: 7.87

Winkel /°:

C-Co-C: 46.4(1) - 133.3(1)


H-Co-C: 102.1(1) - 109.9(1)

Tab. 2: Abstände und Winkel des $[Co(C_2B_9H_{11})_2]^\text{-}$ -Anions in $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2]\cdot 2NH_3.$

C-Co-C- und die H-C-Co-Winkel sind mit den entsprechenden Abständen und Winkeln in $\{(Na[2.2.2]kryptat)[CTV][Co(C_2B_9H_{11})_2]]_2\text{-}(MeCN) \quad (CTV = Cycloveratrylen) \\ ^{88} \quad und \quad in \\ [(C_2H_5)_4N]^+\{Co[(B_{10}C_2H_{10})_2]_2\}^- \\ ^{89} \quad vergleichbar.$

⁸⁸ M. J. Hardie, C. L. Raston, *Chem. Comm.* **2001**, 905.

⁸⁹ R. A. Love, R. Bau, J. Am. Chem. Soc. 1972, 94, 8274.

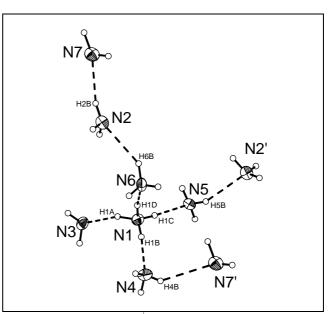


Abb. 9: Das $[Co(C_2B_9H_{11})_2]^-$ -Anion in $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$.

Die Protonen des Ammoniumions sind Å 0.87(4)1.08(2)vom Ammoniumstickstoff (N1) entfernt und ergeben H-N-H-Winkel von 103(3)-117(3)°. Aufgrund von nahezu linearen (163-176°) Wasserstoffbrücken (Abb. 3) Ammoniumion von Ammoniakmolekülen (N3, N4, N5 und N6) pseudotetraedrisch umgeben (Tab. Energetisch 3). sind diese Wasserstoffbrückenbindungen als stark einzuordnen (Abb. 4), da ihre H···N-Abstände um 24.7-30.2% kürzer sind als der VdW-Abstand (2.75 Å). Die stärkste dieser vier Wechselwirkungen

stellt die N1-H1A···N3-Wasserstoffbrücke dar. Zum einen zeigt sie den kürzesten H···N-Abstand (1.92 Å), und zum anderen ist der N-H-Abstand des Ammoniumions mit 1.08(4) Å der längste N-H-Abstand aller acht Wasserstoffbrücken in Tab. 3, während der DHA-Winkel jedoch mit 163° eher weniger einer linearen Anordnung von Donor, Proton und Akzeptor entspricht. Die schwächste vom N1-Ammoniumion ausgehende Wasserstoffbrücke ist die zum Ammoniakmolekül N4 (H···N-Abstand: 2.07 Å). Der N1···N4-Abstand ist aber mit 2.920(4) Å der kleinste N···N-Abstand in Tab. 3. Dies und die Tatsache, dass die vier N···N-Abstände (2.92 – 2.97 Å) des Ammoniumions zu den vier Ammoniakmolekülen nahezu gleich sind, zeigt, dass das Ammoniumion keine bevorzugten Wechselwirkungen zu einem bestimmten Protonenakzeptor ausbildet. Die vier N-H···N-Wasserstoffbrücken in Tab. 3 und Abb. 3, die noch nicht besprochen wurden, sind als deutlich schwächer einzustufen (N2-

N4-H4B···N7', H2B…N7, H5B···N2' und N6-H6B···N2). Die N···N-Abstände sind 3.26 - 3.37 Å, die H···N-Verkürzung beträgt bei H···N-Abständen von 2.45 - 2.71 Å1.5 – 10.9%. Weitere Hinweise für Wechselwirkungen, die im Vergleich denen des zu Ammoniumions deutlich schwächer ausfallen, sind die N-H-Abstände (0.77(7) - 0.97(4) Å) und DHA-Winkel die (136(6))155(3)°). Der Vergleich der entsprechenden Abstände und Winkel zeigt, dass der DHA-Winkel stärker von 180° abweicht

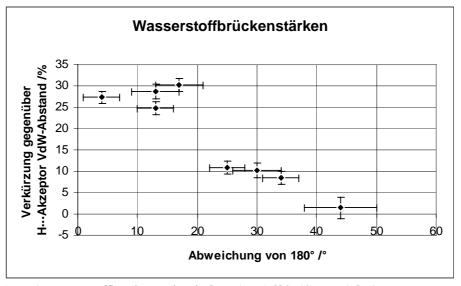
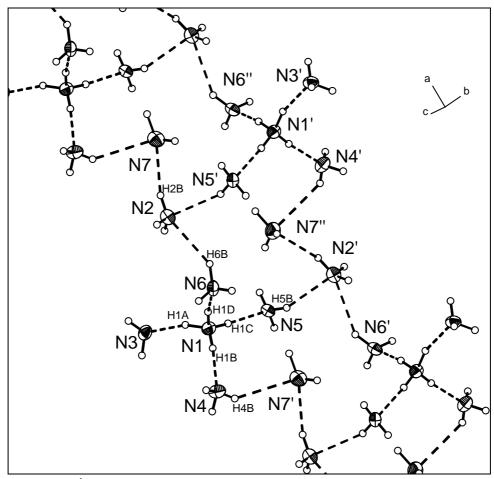


Abb. 3: Das $[NH_4(NH_3)_4]^+$ -Komplexkation und die Ammoniakmoleküle N2 und N7 in $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$.

und der N-H-Abstand tendenziell kürzer ist, also statistisch gesehen ein geringerer Protonentransferprozess vorliegen muss als bei den Ammonium-Ammoniak-Wasserstoffbrücken. Unter den vier Ammoniak-Ammoniak-Wechselwirkungen hat die N4-H4B···N7'-Brücke den größten H···N-Abstand (2.71(7) Å). Da der N···N-Abstand (3.310(5) Å) kürzer ist als der N···N-Abstand (3.377 Å) in festem Ammoniak, kann von einer Wasserstoffbrückenbindung zwischen den beiden Ammoniakmolekülen ausgegangen werden.

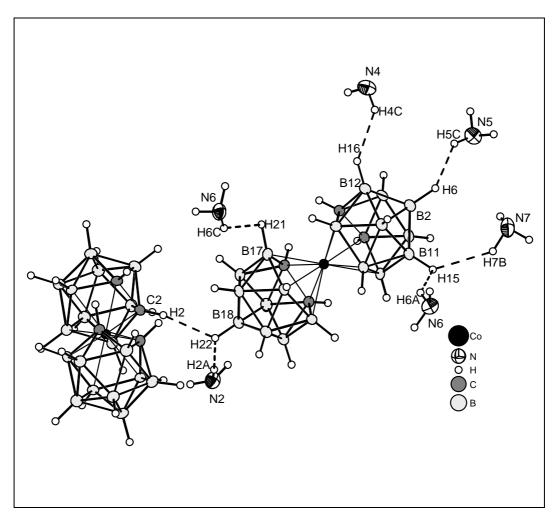

D. II 3	3(D II)	-1/11 7)	-1 (D - 7)	. (DIII)
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)N(3)	1.08(4)	1.92(4)	2.969(4)	163(4)
N(1)-H(1B)N(4)	0.87(4)	2.07(4)	2.920(4)	167(3)
N(1)-H(1C)N(5)	0.96(4)	2.00(4)	2.959(4)	176(3)
N(1)-H(1D)N(6)	1.01(5)	1.96(5)	2.948(4)	167(4)
N(2)-H(2B)N(7)	0.92(5)	2.47(5)	3.299(5)	150(4)
N(4)-H(4B)N(7)	0.77(7)	2.71(7)	3.310(5)	136(6)
N(5)-H(5B)N(2)	0.87(4)	2.45(4)	3.260(4)	155(3)
N(6)-H(6B)N(2)	0.97(4)	2.52(4)	3.373(4)	146(3)

Tab. 3: Protonendonor···Akzeptor-Abstände und deren Winkel in [NH₄(NH₃)₄][Co(C₂B₉H₁₁)₂] · 2NH₃.

Abb. 4: Wasserstoffbrückenstärken in $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$.

Die Ammoniakmoleküle N2 und N7 in Abb. 3 koordinieren nicht nur das $[NH_4(NH_3)_4]^+$ -Komplexkation, sondern zeigen auch Wasserstoffbrücken zu Nachbarkomplexkationen $([NH_4(NH_3)_4]^+)$, was zu einem ausgedehnten $\frac{1}{\infty}[NH_4(NH_3)_4^+(\mu-NH_3)_2]$ -Komplexkation entlang der a-Richtung führt. Hierbei fungiert das N2-Ammoniakmolekül als Protonenakzeptor zu den Ammoniakmolekülen N6 und N5 $(H\cdots N-Verkürzung gegenüber VdW-Abstand: 10.9 und 8.4\%)$, aber auch als Protonendonor zu dem N7-Ammoniakmolekül $(H\cdots N-Verkürzung gegenüber VdW-Abstand: 10.2\%)$.

Abb. 5: Das $_{\infty}^{1}$ [NH₄(NH₃)₄⁺(μ -NH₃)₂]-Komplexkation, ein unendlich ausgedehntes Band in [NH₄(NH₃)₄][Co(C₂B₉H₁₁)₂] · 2NH₃.


Die Ursache für die Ausbildung eines solchen ausgedehnten Ammonium-Ammoniakats ist das Anion. Auf das HSAB-Konzept bezogen ist das Anion eine schwache Base und kann deshalb keine starken Wechselwirkungen zum Ammoniumion oder den Ammoniakmolekülen ausbilden. Somit ist das $Co(C_2B_9H_{10})_2$ -Anion nur ein "Zuschaueranion" in der Kristallstruktur von $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$. Auch wenn zwischen anionischen und kationischen Strukturteilen nur so geringe Wechselwirkungen auftreten, dass zum ersten Mal ein ausgedehntes Ammonium-Ammoniakat strukturchemisch nachgewiesen werden kann, so sind doch sehr schwache Dihydrogenbindungen zu beobachten.

_

⁹⁰ R. G. Pearson, J. Am. Chem. Soc. **1963**, 85, 3533.

Diese Art von Wechselwirkungen sind zwischen den Anionen untereinander und zwischen Anionen und Ammoniakmolekülen feststellbar. Sie beruhen auf der negativen Polarisierung der Protonen der Borane.

Den kürzesten Abstand der Anionen zueinander bildet die C2-H2•••H22-B18 Dihydrogenbindung (Tab. 4). Der H2•••H22-Abstand beträgt 2.3 Å, der C2-H2•••H22-Winkel ist 170° und der H2•••H22-B18-Winkel ist 125°. Die N-H•••H-B-Kontakte haben H•••H-Abstände von 2.3 - 2.4 Å, N-H•••H-Winkel von 138 - 175° und H•••H-B-Winkel von 103 - 125°.

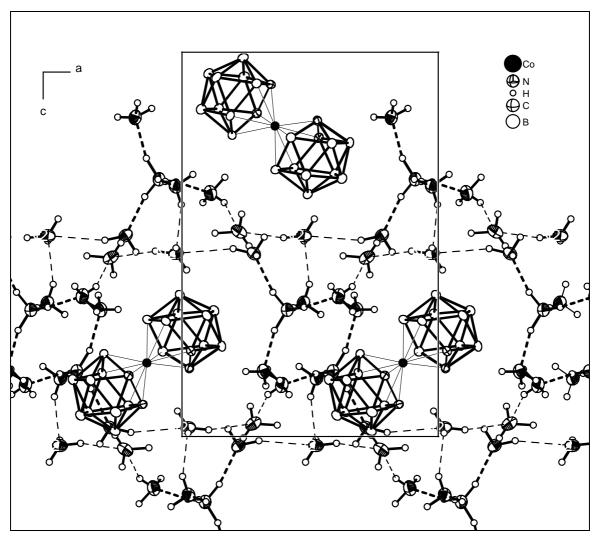


Abb. 6: $Co(C_2B_9H_{10})_2^-$ -Anionen und Dihydrogenbindungen in $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$

X-HH-B (X=C,N)	d(X-H)	d(HH)	d(H-B)	<(XHH)	<(HHB)
C(2)-H(2)H(22)-B(18)	0.98(3)	2.3	1.07(3)	170	125
N(2)-H(2A)H(22)-B(18)	0.90(6)	2.3	1.07(3)	175	119
N(6)-H(6A)H(15)-B(11)	0.87(6)	2.3	1.13(3)	141	111
N(7)-H(7B)H(15)-B(11)	1.06(8)	2.3	1.13(3)	138	125
N(5)-H(5C)H(6)-B(2)	0.89(5)	2.4	1.15(3)	144	119
N(4)-H(4C)H(16)-B(12)	0.94(5)	2.3	1.10(3)	144	120
N(6)-H(6C)H(21)-B(17)	0.91(6)	2.3	1.13(3)	139	103

 $\textbf{Tab. 4:} \ Protonendonor \cdots Akzeptor - Abstände \ und \ deren \ Winkel \ in \ [NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3.$

Die Abstände dieser Dihydrogenbindungen sind nahe am VdW-Abstand (2.4 Å) und stellen folglich nur einen Hinweis für sehr schwache Wechselwirkungen. Ähnliche C-H•••H-B-Abstände können in der Verbindung {(Na[2.2.2]kryptat)[CTV][Co(C₂B₉H₁₁)₂]}₂(MeCN)¹ beobachtet werden. Eine frühere Untersuchung⁹¹ der Cambridge Structure Database (CSD)

Abb. 7: Projektion der Struktur von $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$ in die ac-Ebene. Zwei ausgedehnte $^1_\infty[NH_4(NH_3)_4^+(\mu\text{-}NH_3)_2]$ -Komplexkationen entlang der a-Richtung. Starke (dick) und schwache (dünn) Wasserstoffbrücken sind eingezeichnet.

ergibt für die N-H•••H-Winkel Durchschnittswerte von 149° und für die H•••H-B-Winkel Durchschnittswerte von 120°. Wie schon erwähnt, sind diese sehr schwachen Interaktionen zwischen kationischem und anionischem Strukturteil für die Stabilisierung des $^1_{\infty}$ [NH₄(NH₃)₄ $^+$ (µ-NH₃)₂]-Komplexkations von besonderer Bedeutung. In Abb. 7 sind zwei solcher Bänder dargestellt. Sie bilden Taschen, in denen sich die Anionen befinden. Es ist klar ersichtlich, dass die schwachen Ammoniak-Ammoniak-Wechselwirkungen (dünn eingezeichnet) für die Ausbildung eines Bandes hauptverantwortlich sind.

_

⁹¹ T. B. Richardson, S. de Gala, R. H. Grabtree, E. M Siegbahn, *J. Am. Chem. Soc.* **1995**, *117*,12875.

3.10 NH₄HCN₂

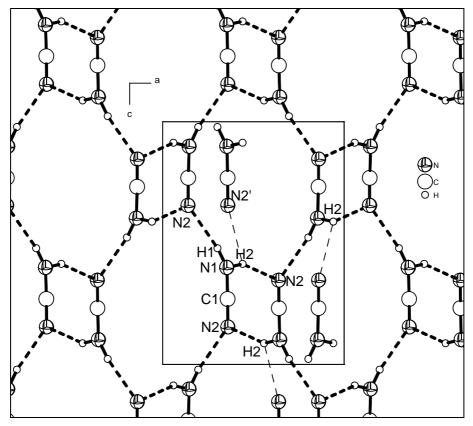
Darstellung und Röntgenstrukturanalyse

Cyanamid (1.000 g, 24.8 mmol) wird über drei Stunden bei Raumtemperatur einem Druck von 10⁻² mbar ausgesetzt. Danach werden ca. 30 ml Ammoniak einkondensiert (195 K). Das Schlenkgefäß wird abwechselnd bei 238 und 208 K gelagert. Nach mehreren Tagen konnten prismatische Kristalle beobachtet werden. Der Röntgenstrukturanalyse wurde ein farbloser Splitter eines Kristalls zugeführt.

Die im Orientingmodus aufgenommenen Reflexe können anhand einer orthorhombischen Elementarzelle indiziert werden. Nach Integration und Datenreduktion Intensitätsdatensatzes weisen die nicht vorhandenen integralen Auslöschungen, die nicht vorhandenen zonalen Auslöschungen und die vorhandenen seriellen Auslöschungen h00 h≠2n, 0k0 k≠2n und 001 l≠2n in Verbindung mit der orthorhombischen Metrik auf die Raumgruppe $P2_12_12_1$ hin. In dieser Raumgruppe gelingt die Lösung und Verfeinerung der Kristallstruktur, wobei die Lagen von drei Stickstoff- und einem Kohlenstoffatom in der asymmetrischen Einheit ermittelt werden. Nach deren isotroper Lageverfeinerung wird der Datensatz einer anisotropen Verfeinerung unterworfen. Das Programm ADDSYMM des Programmpaketes PLATON wurde benutzt, um eventuell fehlende Symmetrien zu finden, was jedoch ohne Erfolg blieb. Der Flack-Parameter x (x = -0.0609 esd 3.5813) zeigt, dass es sich bei diesem Strukturmodell um das richtige Enantiomorph handelt. Weiterhin können die Lagen aller an Stickstoffatome gebundenen Wasserstoffatome der Differenzfouriersynthese entnommen und isotrop verfeinert werden.

Kristallstrukturdaten von NH₄HCN₂

Summenformel	CH ₅ N ₃
Anzahl der Frames	360
φ-Inkrement (°)	1.0
Belichtungszeit (min)/Frame	1.2
Messtemperatur (K)	123
Kristallsystem	orthorhombisch
Raumgruppe	P 2 ₁ 2 ₁ 2 ₁ (Nr. 19)
a (Å)	6.4399(8)
b (Å)	6.5761(7)
c (Å)	7.4020(7)
Volumen (Å ³)	313.47(6)
Z	4
M (g·mol ⁻¹)	59.08
$\rho_{\rm c}({\rm g\cdot cm^{-3}})$	0.313
F (000)	32
$\mu (MoK_{\alpha})(\mathring{A})$	0.71073
θ-Bereich (°)	4.15 - 25.85
Gesamtzahl der Reflexe	4360
Zahl der unabhängigen Reflexe (R _{int})	597 (0.0519)
Zahl der Parameter	57
$R_1 (I > 2\sigma(I))$	0.0271
$wR_2 (I > 2\sigma(I))$	0.0645
R ₁ (alle Daten)	0.0293
wR ₂ (alle Daten)	0.0652
GooF	1.206
Restelektronendichte	0.184/-0.124


 $\textbf{Tabelle 1:} \ Einkrist all strukturdaten \ von \ NH_4HCN_2.$

Strukturbeschreibung und Diskussion

Denner, Luger & Buschmann⁹² bestimmten die Struktur von H₂CN₂ bei 108 K. Die Daten der Röntgenstrukturanalyse ergaben die monokline Raumgruppe *P*bca. Hierbei wurden ein N-C-Abstand von 1.152(1) Å, ein C-NH₂-Abstand von 1.315(1) Å und ein N-C-N-Winkel von 178.1(1)° beobachtet. Die N-H-Abstände betragen 0.90(1) und 0.88(1) Å, der H-N-H-Winkel ist 117(1)° und die C-N-H-Winkel sind 123.6(7) und 115.8(9). Cyanamid bildet ein Wasserstoffbrückennetzwerk (Abb. 1) entlang der ac-Ebene aus. Ursächlich sind jeweils zwei N-H···N-Brücken. Dabei handelt es sich um starke Wechselwirkungen (Tab. 2), da der H···N-Abstand um 22.9 und 19.3% kürzer als der entsprechende VdW-Abstand (H···N: 2.75 Å) ist. Zusätzlich sind in Abb. 1 beispielhaft drei Cyanamidmoleküle der darüber bzw. darunter liegenden Schicht dargestellt. Die Wechselwirkungen zwischen den Schichten sind als sehr schwach einzustufen, da der H2···N2'-Abstand um nur 1.8% verkürzt ist.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)N(2)	0.90(1)	2.12(1)	3.014(1)	171.1
N(1)-H(2)N(2)	0.88(1)	2.22(1)	3.037(1)	154.9
N(1)-H(2)N(2)'	0.88(1)	2.70	3.14	112.1

Tab. 2: Protonendonor···Akzeptor-Abstände und deren Winkel in H₂CN₂.

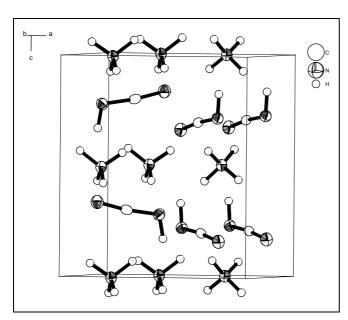


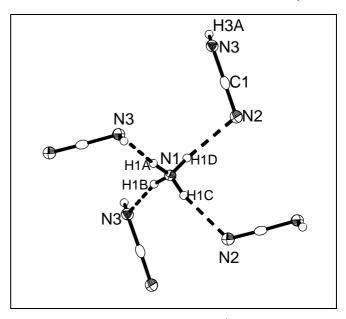
Abb. 10: Die Elementarzelle von H₂CN₂, schwache Wechselwirkungen (zwischen den Schichten) sind dünn gestrichelt.

_

⁹² L. Denner, P. Luger, J. Buschmann *Acta Cryst C.* **1988**, C44, 1979.

Vom Cyanimid (HCN₂⁻) sind die Strukturen der Alkalimetalle Natrium⁹³, Kalium⁹⁴ und Rubidium⁹⁵ bekannt. Das Cyanamidion (CN₂²⁻) zeigt eine Vielzahl von Verbindungen mit Alkali- und Erdalkalimetallen sowie ein- bzw. zweiwertigen Übergangsmetallen⁹⁶. Hydrate des Cyanamids oder des Cyanamidions oder des Cyanamids sind nicht bekannt. Dies ist u. a.

Abb. 11: Die Elementarzelle von NH₄HCN₂.


auf die Dimerisierung von alkalischen Cyanamidlösungen zu Dicyandiamid ("Cyanoguanidin" NC-NH-C(NH₂)=NH)

zurückzuführen⁹⁷.

Das hier vorgestellte Ammonium cyanimid (Abb. 2) zeigt einen N-C-Abstand von 1.181(2) Å, einen C-NH-Abstand von 1.294(2) Å und einen N-C-N-Winkel von 174.3(1)°. Der N3-H3A-Abstand ist 0.84(2) Å und der C1-N3-H3A-Winkel beträgt 111.3(1)°. Protonen des Ammoniumions sind 0.86(2)-0.92(2)Å vom Ammoniumstickstoff (N1) entfernt

und ergeben H-N-H-Winkel von 106(1) - 113(2)°. Aufgrund nahezu linearer (164 - 176°) Wasserstoffbrücken (Abb. 3) ist das Ammoniumion von den vier Stickstoffatomen (N2 und

N3 plus zwei symmetrieäquivalente Stickstoffatome) vier verschiedener Anionen pseudotetraedrisch umgeben (Tab. 3). Energetisch sind diese Wasserstoffbrückenbindungen stark einzuordnen (Abb. 4), da ihre H···N-Abstände um 22.2-27.3% kürzer als der VdW-Abstand sind. stärksten dieser Die zwei vier Wechselwirkungen sind die N1-H1B···N3- und die N1-H1A···N3-Wasserstoffbrücke. Zum einen sind die H···N-Abstände mit 2.00 und 2.01 Å die kürzesten in Tab. 3, zum anderen sind die N-H-Abstände des

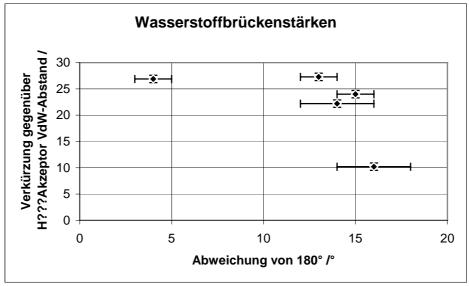
Abb. 3: Das von HCN₂⁻ umgebene NH₄⁺ in NH₄HCN₂.

129

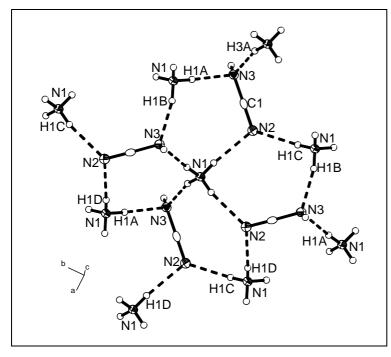
⁹³ M. G. Barker, A. Harper, P. J. Hubberstey, *Chem. Res.* **1978**, 432.

⁹⁴ W. Schnick, H. Huppertz, *ZAAC* **1995**, 621, 1703.

⁹⁵ M. Becker, M. Jansen, Z. Naturforsch. B 1999, 54, 1375.


⁹⁶ O. Reckeweg, A. Simon, Z. Naturforsch. B **2003**, 58, 1097.

⁹⁷ Hollemann, Wiberg, *Lehrbuch der Anorganischen Chemie*, 91. – 100. Auflage, Walter de Gruyter, Berlin-New York 1985


Ammoniumions mit 0.90(2) und 0.92(2)Å deutlich bzw. signifikant länger als die entsprechenden N-H-Abstände der anderen zwei Wasserstoffbrücken, was einen deutlicheren Protonentransferprozess anzeigt. Die vier N···N-Abstände betragen 2.893(2) – 2.994(2) Å.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)N(3)	0.92(2)	2.01(2)	2.942(2)	176(1)
N(1)-H(1B)N(3)	0.90(2)	2.00(2)	2.893(2)	167(1)
N(1)-H(1C)N(2)	0.86(2)	2.09(2)	2.946(2)	165(2)
N(1)-H(1D)N(2)	0.86(2)	2.14(2)	2.994(2)	166(2)
N(3)-H(3A)N(2)	0.84(2)	2.47(2)	3.286(2)	164(1)

Tab. 3: Protonendonor···Akzeptor-Abstände und deren Winkel in NH₄HCN₂.

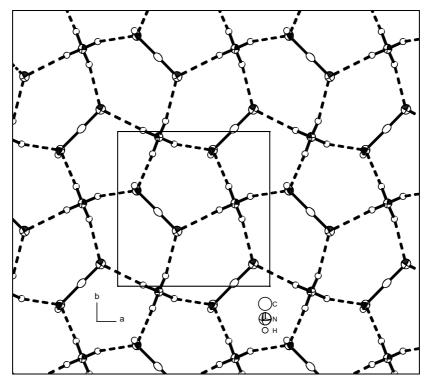


Abb. 4: Wasserstoffbrückenstärken in NH₄HCN₂.

Abb. 5: Die übernächste Umgebung des Ammoniumions in NH₄HCN₂.

Die bisherigen Ausführungen haben erste Koordinationssphäre des Ammoniumions beschrieben, das als Protonendonor vier zu Protonenakzeptoren fungiert. Nun soll Koordinationssphäre dieser (Abb. Akzeptoren 5) eingehender untersucht werden. Insgesamt wird der Strukturausschnitt in Abb. 3 acht weitere um Ammoniumionen ausgedehnt. Vier davon

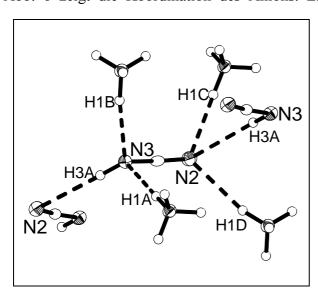


Abb. 6: Netzwerk aus starken Wasserstoffbrückenbindungen zwischen NH₄⁺ und HCN₂⁻ entlang der ab-Ebene, in NH₄HCN₂.

bilden Wasserstoffbrücken zu den Stickstoffatomen aus, zu dem das Ammoniumion in Abb. 3 schon Wasserstoffbrücken ausgebildet hat. Somit ergeben sich vier gewellte Fünfecke.

Die anderen vier Ammoniumionen, die nicht mit Stickstoffatomen koordinieren, aber mit dem zentralen Ammoniumion in Wechselwirkung treten, bilden ihrerseits Wasserstoffbrücken in die ab-Ebene aus. Diese alternierende Verknüpfung von Anionen und Kationen führt zu einem zweidimensionalen Wasserstoffbrückennetzwerk entlang der ab-Ebene (Abb. 6).

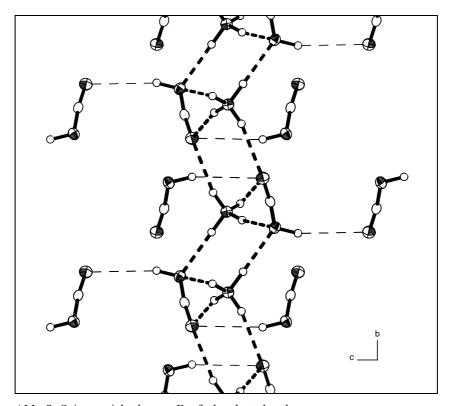

Abb. 6 zeigt die Koordination des Anions. Es ist von fünf Protonendonoren und einem

Abb. 7: Die koordinative Umgebung von HCN_2^- in NH_4HCN_2 .

Protonenakzeptor umgeben. Vier der fünf Protonendonoren sind Ammoniumionen, die sehr kurze H···N-Abstände (2.00(2) – 2.14(2)Å) zeigen. Die fünfte Protonendonorwechselwirkung geht von einem Nachbaranion Diese aus. Wechselwirkung ist wegen des H3A···N2-Abstandes von 2.47(2) Å (Verkürzung um 10.2%) als deutlich schwächer einzustufen als die bisher besprochenen Wasserstoffbrücken. Natürlich wurden Wechselwirkungen bisher zwischen Kationen und Anionen diskutiert, also Wasserstoffbrücken mit erheblichen Coulombanteilen. Nun werden

Wasserstoffbrückenbindungen zwischen Anionen untersucht. Energetisch gesehen ist diese Anion-Anion-Wechselwirkung mit derjenigen zwischen Ammoniakmolekülen vergleichbar. Folglich muss das freie Elektronenpaar am N2-Stickstoffatom ähnlich wechselwirken können. Doch beim Vergleich der N···N-Abstände in festem Ammoniak (3.377 Å) mit den N3···N2-Abständen (3.286(2) Å) zwischen den Anionen in NH₄HCN₂ stellt man eine Verkürzung von 0.09 Å fest. Dies weist auf eine stärkere Wechselwirkung zwischen Anionen als zwischen Ammoniakmolekülen hin. Dies kann auf Kristallpackungseffekte zurückgeführt werden, aber auch auf eine Wechselwirkung mit höheren Coulombanteilen. Letzteres ist der Fall, wenn folgende mesomere Grenzstruktur angenommen wird: [H-N=C=N]⁻. Folglich muss die Dreifachbindung in H₂CN₂ etwas länger und die Einfachbindung etwas kürzer sein, so dass die elektronischen Zustände am Cyanidstickstoffatom eher denen von zwei freien

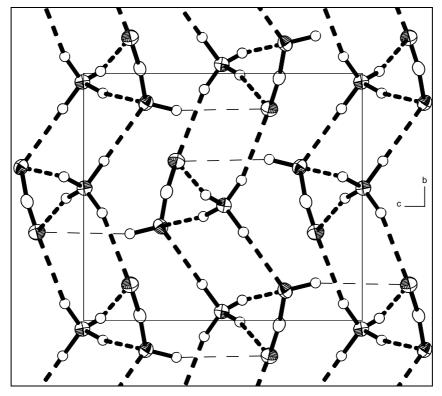


Abb. 8: Seitenansicht des aus Fünfecken bestehenden Wasserstoffbrückennetzwerks (Abb. 6) in NH₄HCN₂. Die schwachen Wechselwirkungen zu den Anionen der Nachbarnetzwerke sind dünn gestrichelt eingezeichnet.

Elektronenpaaren entsprechen. Die zu beobachtenden Verlängerungen bzw. Verkürzungen betragen 0.03 bzw. 0.02 Å, wie auch in den Verbindungen NaHCN₂ und KHCN₂ festzustellen ist.

Die sechste Wechselwirkung des Anions ist diejenige als Protonendonor zu einem N2-Stickstoffatom eines Nachbaranions. Aufgrund der Symmetrie entspricht es der eben besprochenen Wechselwirkung. Diese Wechselwirkung verbindet die aus Fünfecken aufgespannten Schichten, die in Abb. 6 in der Draufsicht und in Abb. 8 in der Seitenansicht dargestellt sind. Das so entstehende dreidimensionale Raumnetz ist in Abb. 9 abgebildet. Die erwähnten Schichten sind entlang der 001-Richtung gestapelt und bestehen nur aus starken

Wechselwirkungen (dick gestrichelt). Deutlich schwächere Wasserstoffbrücken (dünn gestrichelt) verbinden diese Schichten untereinander.

 $\label{eq:Abb.9:equation:bab.9:equ$

4 Neutronenbeugung an ND₄(ND₃)₃CI

Einführung in die Neutronenstrahlung und die experimentellen Anforderungen

Im Gegensatz zu den gut untersuchten H₃O⁺-H₂O-Komplexen ist über die analogen wasserstoffbrückengebundenen NH₄⁺-NH₃-Komplexe des Ammonosystems strukturchemisch sehr wenig bekannt, was auf die geringe thermische Stabilität solcher Ammoniakate zurückzuführen ist. Inzwischen ermöglichen die modernen Methoden der Tieftemperaturröntgenstrukturanalyse die Präparation entsprechender Kristalle. Trotzdem ist es nicht möglich, durch diese Methode exakt die Protonenlagen zu bestimmen, welche zur Diskussion von Wasserstoffbrückenbindungen bzw. zu theoretischen Berechnungen (AIM) nötig sind. Diese Ergebnisse können nur durch die Neutronenbeugung mit entsprechender Genauigkeit ermittelt werden.

Vergleich: Röntgenstrahlung

- Gute Verfügbarkeit
- Messzeit: h-d
- Temperatur: > 110 K
- H-Atomposition ist mit einer Genauigkeit von ~ 0.1 Å bestimmbar
- Isotrope Temperaturfaktoren für H
- Fehlordnung nicht bestimmbar
- Parameter: 9N+4H+1
- Absorptionskorrektur
- Strahlenschäden

Neutronenstrahlung

- Reaktor oder Beschleuniger
- Wochen (bei Einkristallen)
- < 10 K
- H-Atomposition $\sim 0.001 \text{ Å}$
- Anisotrope Temperaturfaktoren für H
- Fehlordnung bestimmbar
- 9N+10
- Nur Absorptionskorrektur, wenn B, Cd, Sm oder Li vorhanden
- Keine Strahlenschäden
- Einsatz von Deuterium verringert die inkohärente Streuung

Folgende Bedingungen sind aufgrund der Anwendung von Neutronenstrahlen zu erfüllen:

- Das Containermaterial kann wegen der geringen Abschirmung Aluminium sein. Aluminium aber erzeugt Reflexe, wohingegen Vanadium die Neutronenstrahlung auch wenig abschirmt, aber zusätzlich neutronenamorph ist.
- Der Probenort ist invariabel und befindet sich 2.0 cm über dem Closed-cycle-Kryostaten, auf dem der Probencontainer aufgeschraubt werden muss.
- Der Neutronenstrahl kann mit einer Blende auf einen Durchmesser von 5.0 mm definiert werden

- Der Kristall muss fixiert werden, so dass jede Position am Vier-Kreis-Diffraktometer angefahren werden kann. Hierbei kann eine geringe Menge kommerziell erhältlicher Kunststoffkleber benutzt werden, der aber eine Aushärtezeit von mindestens zehn Minuten bei Raumtemperatur verlangt. Ein gutes Aushärten bei Temperaturen von < -243 K erscheint auch bei Zweikomponentenklebern als nicht möglich. Zusätzlich treten die organischen Bestandteile aller Klebstoffe mit der Neutronenstrahlung in Wechselwirkung.
- Eine Probengröße bis zu 7.0 mm ist möglich und sollte auch erreicht werden, da bei kleineren Kristallen die schwachen Reflexe sich kaum vom "Untergrundrauschen" abheben. Kristallmaße kleiner als 1 mm sind nicht geeignet.
- Die maximale Messzeit beträgt 21 Tage. Dies wird durch die Betriebsdauer des 10 MW-Reaktors beschränkt.
- Die Belichtungszeit (abhängig von Größe, Kristallstruktur, elementarer Zusammensetzung und Habitus) eines Reflexes beträgt 10 (±5) min. Folglich ergibt sich eine maximale Reflexzahl von 6000 Reflexen.
- Bei vielen Protonen in der asymmetrischen Einheit ist es notwendig, deuteriertes Material einzusetzen, um die Protonen bzw. Deuteriumlagen besser bestimmen zu können.
- Um eine Messtemperatur von 10 K zu erreichen, ist es notwendig, die Umgebung des Probencontainers auf 10⁻⁸ mbar zu evakuieren, d.h. der Probencontainer und die Probe müssen diesen Bedingungen standhalten.
- Eine Probentemperatur von 230 K ist nach etwa fünf Minuten erreicht. Hierbei ist die Evakuierungszeit des Closed-cycle-Kryostaten (Abb. 1 und 2) der limitierende Faktor.

Folgende Bedingungen sind aufgrund der Probe NH₄(NH₃)₃Cl bzw. ND₄(ND₃)₃Cl zu erfüllen: (Die Gründe für die Wahl dieser Probe werden weiter unten erläutert.)

- Bei einer Umgebungstemperatur von größer als 263 K sind die Kristalle trüb bzw. zerfallen zu einem Pulver. Bei Temperaturen von über 243 K treten Schäden wie Trübung, Zerbrechen und der Geruch nach Ammoniak auf.
- Die farblosen Kristalle weisen einen tafligen Habitus (5.0 x 3.5 x 1.5) auf.
- Obwohl die Kristalle im Vergleich zu anderen Ammoniakaten als robust bezeichnet werden können, sind sie doch zerdrückbar und sollten nicht zu großen Belastungen ausgesetzt werden.
- Lagerung und Transport der Kristalle erfolgen am besten in flüssigem Stickstoff.
- Es sollen keine anhaftenden Lösungsmittelrückstände (ND₃) vorhanden sein, da ND₃-Reflexe zu vermeiden sind und zusätzlich Amnomiumchlorid sehr gut in flüssigem Ammoniak löslich ist, was bei Temperaturschwankungen, die während der Abkühlphase des Closed-cycle-Kryostaten auftreten, zur Bildung von Ammoniumchloridpulver bzw. zur Beschädigung des Einkristalls führt.

Abb. 1: Closed-cycle-Kryostat: CC-AP, 300 – 10 K.

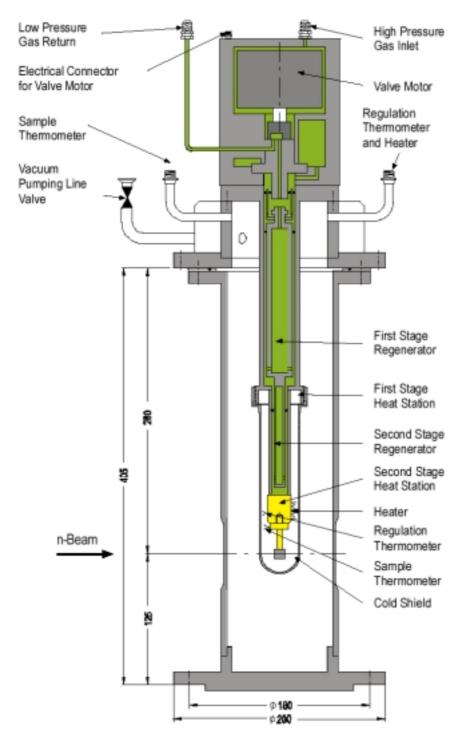


Abb. 2: Technische Bauskizze des Closed-cycle-Kryostaten CC-AP.

Diese oben genannten Bedingungen führen zu den in Abb. 3 abgebildeten Container. Er besteht aus Vanadium mit einer Reinheit von 99.9% (Haines & Maassen, Bonn; $1 \text{kg} \sim 350 \in$). Bild 1 in Abb. 3 zeigt die Maße des Vanadiumcontainers, wobei die beiden Kegel ober- und unterhalb des Probenraumes auffallen. Sie haben die Aufgabe, den Probenraum zu kühlen, wenn der Container aus dem flüssigen Stickstoff genommen wird und der Raumtemperatur ausgesetzt ist. Die spitzen Winkel der beiden Kegel betragen 20° , so dass $2\theta = 140^{\circ}$ ist. Dadurch wird eine zu starke Absorption der Neutronenstrahlung durch das Vanadium vermieden. Dies ist auch die Ursache für die sehr dünne Wand (0.5 mm) des Probenraumes,

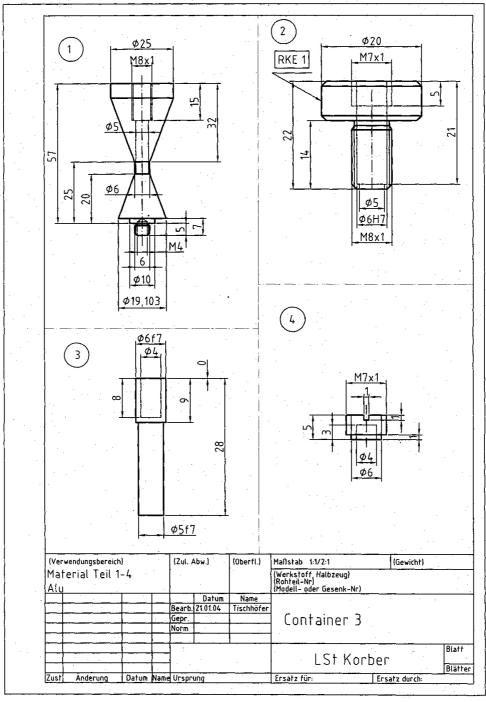
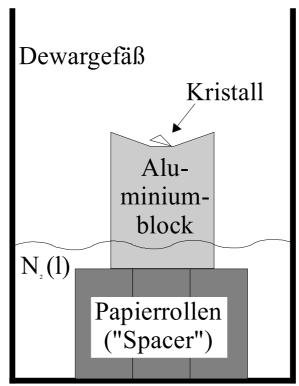


Abb. 3: Die technische Skizze der vier Vanadiumbauteile des Probencontainers.

dessen Boden sich an der Spitze des unteren Kegels in 2.0 cm Höhe befindet. Der 0.5 cm hohe Probenraum ist durch eine Bohrung (Durchmesser: 0.5 cm) durch den oberen Kegel zugänglich. Natürlich würde ein Zugang durch den unteren Kegel eine geringere Gewichtsverminderung und somit eine bessere Eigenkühlung bedeuten, konstruktionstechnisch ist das nicht zu verwirklichen. Trotzdem kann die Aufwärmrate durch die Stufe, die sich zwischen Gewinde und unterem Kegel befindet, zu unserem Gunsten beeinflusst werden. Dadurch wird die Kontaktfläche zwischen dem anfangs kalten (N₂(1)) Vanadiumcontainer und der anfangs warmen (RT) Aluminiumhalterung des Closed-cycle-Kryostaten verringert, was zur Folge hat, dass der Wärmeaustausch geringer ist. Die Bilder 2 - 4 in Abb. 3 zeigen die Maße der Bauteile des Containerverschlusses, der bis auf eine sehr dünne Stahlfeder (ähnlich der Feder eines Kugelschreibers) aus Vanadium besteht. Die erwähnte 2.0 cm lange Feder befindet sich in der 8 mm tiefen und 4 mm breiten Aussparung des insgesamt 3.3 cm langen Stempels (Bild 3). Dieser Stempel wird in die 0.5 cm breite Bohrung des Teilstücks in Bild 2 geschoben. Die in Bild 4 dargestellte Vanadiumschraube wird in die obere Öffnung des Teilstücks 2 geschraubt, was zu Folge hat, dass die Feder zusammengestaucht wird und somit dafür sorgt, dass der Stempel auf den zu fixierenden Kristall im Probenraum drückt. Die Länge des Stempels reicht aus, um den Probenraum vollständig auszufüllen, um auch sehr kleine Kristalle zu fixieren. Als Modelsystem für die Neutronenbeugung an ammoniakhaltigen Kristallen bietet das thermisch relativ stabile Ammonium-Ammoniakat NH₄(NH₃)₃Cl (Tab. 1) einen möglichen Einstieg. Diese Verbindung wurde schon von Olovsson ohne Lokalisation der Protonenlagen bestimmt. In der Diplomarbeit, die dieser Dissertation vorausging, wurde die Verbindung erneut hergestellt, und es wurden die Protonenlagen bestimmt. Damals konnte die Löslichkeit des Ammoniumchlorids in Ammoniak nicht über einen Temperaturgradienten gesteuert werden. So wurde eine Reaktion zu Hilfe genommen, bei der sich Ammoniumchlorid bildet.

$$(NH_4)_2[CuCl_4] + 10 NH_3 \longrightarrow 2 NH_4(NH_3)_3Cl + Cu(NH_3)_4^{2+} + 2 Cl^{-1}$$

Auf 0.870 g (3.14 mmol) im Hochvakuum bei 40 °C getrocknetes Ammoniumtetrachlorocuprat werden bei 195 K ca. 15 ml Ammoniak aufkondensiert. Nach zweimonatiger Lagerung des Ansatzes bei 238 K befinden sich in der blauen Lösung rhombenförmige Kristalle.


Bei der Aufnahme des Datensatzes treten keine integralen hkl-Auslöschungen auf. Die seriellen Auslöschungsbedingungen weisen mit h00 h≠2n, 0k0 k≠2n und 00l l≠2n eindeutig auf die orthorhombische, azentrische Raumgruppe P2₁2₁2₁ hin. Die Strukturlösung ergibt die Lagen von zwei Cl- und acht N-Atomen in der asymmetrischen Einheit. Nach einer anisotropen Verfeinerung der Atome konnten alle an N-Atome gebundenen H-Atome in der Differenzfouriersynthese aufgefunden werden. Da jedoch bei der Röntgenstrukturanalyse die Protonenlagen zu ungenau bestimmt werden, ist es schwierig, N-H-Abstände, die Differenzen kleiner 0.1 Å aufweisen, miteinander zu vergleichen, was auch wegen der Forderung nach signifikanten Abstandsunterschieden kaum möglich ist.

Summenformel	H ₁₃ ClN ₄
Anzahl der Frames	144
φ-Inkrement (°)	2.5
Belichtungszeit (min)/Frame	1.5
Kristallgröße (mm)	ca. 0.1 x 0.1 x 0.1
Messtemperatur (K)	123
Kristallsystem	orthorhombisch
Raumgruppe	P2 ₁ 2 ₁ 2 ₁ (Nr. 19)
a (Å)	8.549(1)
b (Å)	8.929(1)
c (Å)	8.737(1)
Volumen (Å ³)	666.9(1)
Z	4
M (g·mol ⁻¹)	104.59
ρ _c (g·cm ⁻³)	1.042
F (000)	232
μ (MoK _α)(Å)	0.71073
θ-Bereich (°)	2.26 - 26.09
Gesamtzahl der Reflexe	9477
Zahl der unabhängigen Reflexe (R _{int})	1322 (0.0851)
Zahl der Parameter	98
$R_1 (I > 2\sigma(I))$	0.0264
$wR_2 (I > 2\sigma(I))$	0.0697
R ₁ (alle Daten)	0.0317
wR ₂ (alle Daten)	0.0738
GooF	1.058
Restelektronendichte	0.330/-0.235

Tabelle 1: Einkristallstrukturanalyse von NH₄(NH₃)₃Cl

Darstellung und methodische Handhabung von ND₄(ND₃)₃Cl-Einkristallen

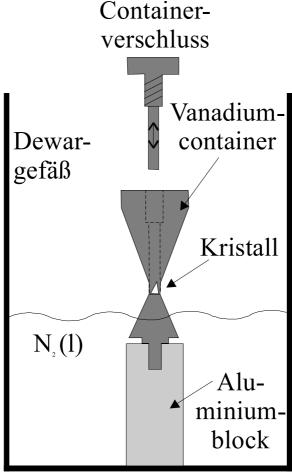

Drei Schlenkgefäße werden mit je 0.5 g ND₄Cl (zwecks Reinigung sublimiert) befüllt. In jeweils zwei Schlenkgefäße werden ca. 10 ml ND₃, in das dritte Schlenkgefäß 15 ml ND₃ einkondensiert. Die Lagerung erfolgt abwechselnd bei 206 K bzw. 240 K. Nach zwei Wochen können farblose Kristalle mit planarem Habitus beobachtet werden. Die Kantenlänge beträgt bis zu 0.7 cm. Die Kristalle werden mittels eines Sieblöffels aus den Schlenkgefäßen genommen. Das flüssige Ammoniak wird entfernt, indem der Sieblöffel kurzzeitig gegen ein Papiertuch gedrückt wird. Die Kristalle werden auf einen Aluminiumblock, der bis zur Hälfte in flüssigem Stickstoff steht, gelegt. Das Ganze befindet sich in einem Dewargefäß, wobei die Konvektionsströmung des verdampfenden Stickstoffs dazu führt, dass der Alublock und somit auch die daraufliegenden Kristalle frei von auffrierendem Wasser bzw. ohne Umgebungsluftkontakt bleiben (Abb. 4).

Abb. 4: Apparatur zur Kristallselektion, T(Aluminiumblock) < 200 K, verdampfender Stickstoff schützt die Kristalle vor feuchter Umgebungsluft.

Geeignete Kristalle werden mit einer gekühlten Pinzette in die Vanadiumcontainer (Abb. 5) gegeben, d.h. die Kühlkette ist zweimal unterbrochen: erstmals, wenn die Kristalle mit dem Löffelsieb aus dem Schlenkgefäß auf den Aluminiumblock gebracht werden, und das zweite Mal, wenn ausgewählte Kristalle vom Aluminiumblock in die gekühlten Vanadiumcontainer gegeben werden. Hier ist zu beachten, dass die Verdampfungskälte beim ersten Transferschritt für zusätzliche Kühlung und Schutz vor Wasser und Luft sorgt. Der zweite Transferschritt ist wegen der Abkühlung der Kristalle und der Transportpinzette auf ca. 81 K und einer Transportstrecke von 30 cm bei oxidationsunempfindlichen Kristallen kein Problem. Die Kristalle sollten etwas länger als 5 mm sein, da sie dann "windschief" im

zylindrischen Probenraum (r = 2.5mm, h = 5mm) zu liegen kommen. Die maximale Länge eines Kristalls beträgt 7.01mm, da darüber hinaus der Kristall aus dem Probenraum herausragt und sich folglich nicht mehr vollständig im Neutronenstrahl (r = 2.5 mm) befindet. Um das Verrutschen des Kristalls zu verhindern, drückt vom oberen Ende des Probenraums ein hohler, gefederter Vanadiumstift auf den Kristall. Die Federstärke wurde so gering wie möglich gewählt, um den Kristall nicht zu zerdrücken bzw. zu erreichen, dass die Kräfte, die während des Landtransportes auf den Vanadiumcontainer wirken, so gering wie möglich sind. Als Federmaterial kann nicht 99.9% Vanadium genommen werden, da dieses Material zu spröde ist, um als Feder eingesetzt zu werden. Deshalb wurde eine dünne Stahlfeder verwendet. Um die Zerstörung der Kristalle aufgrund von Stößen zu vermeiden, wurden die Vanadiumcontainer an einer Stahlfeder frei schwebend in einen gefülltem Stickstoffdewar befestigt.

Abb. 5: Vorrichtung zur Kühlung des Vanadiumcontainers bei der Befüllung mit Kristallen, T(Vandiumcontainer) < 200 K.

Die mit Kristallen gefüllten Vanadiumcontainer befinden sich nach dem Befüllen und während des Transports immer in flüssigem Stickstoff. Am Hahn-Meitner-Institut ist nach dem Aufschrauben des Vanadiumcontainers eine Abkühlung des Closed-cycle-Kryostaten auf 243 K in frühestens 5 min möglich. Dies kann beschleunigt werden, indem eine Vorkühlung des Sockels des Closed-cycle-Kryostaten vorgenommen wird. Jedoch ist dann mit Problemen beim Aufschrauben des Containers zu rechnen, da Wasser sehr schnell auffriert.

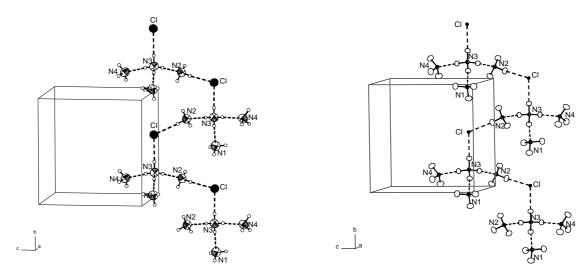
Strukturbestimmung von ND₄(ND₃)₃Cl am Hahn-Meitner-Institut

Das Experiment wird bei 10 K am 4-Kreis-Diffraktometer des BER II Reaktors am Hahn-Meitner-Institut in Berlin durchgeführt. Der monochromatische Neutronenstrahl mit λ = 0.8902 Å wird durch Reflektion an der (220) Fläche eines Kupfereinkristalls erzeugt. Die Daten werden mit einem ³He-Flächendetektor (90 x 90 mm²) gesammelt. Die Einheitszellparameter der ND₄(ND₃)₃Cl-Struktur werden auf der Grundlage von 200 Reflexen bestimmt. Die Intensitäten der Reflexe werden durch zufällige Überlagerung mit den Reflexen des Aluminiumschildes des Closed-cycle-Kryostaten verfälscht. Dieser Effekt wird bei etwa 10% aller Reflexe beobachtet, wobei diese Reflexe nicht zur Strukturbestimmung bzw. Verfeinerung herangezogen werden. Die Integration des Datensatzes erfolgt mit dem Programm RACER⁹⁸, wobei die Form der schwachen Reflexe der Form der starken Reflexe angepasst wird, um die Integration der schwachen Reflexe zu optimieren, so dass die relative Standardabweichung σ(I)/I minimiert wird. Strukturlösung und Strukturverfeinerung erfolgen Streulängen⁹⁹ SHELXL-97. Folgende werden mit SHELXS-97 bzw. Strukturbestimmung benützt: b(N) = 9.36 fm, b(D) = 6.67 fm, b(C1) = 9.58 fm. Eine Absorptionskorrektur wird nicht durchgeführt.

_

⁹⁸ Wilkinson, C.; Khamis, H. W.; Stansfield, R. F. D.; McIntyre, G. J.; Integration of single crystal reflections using area multidetectors. *J. Appl. Crystallogr.*, **1988**, 21, 471.

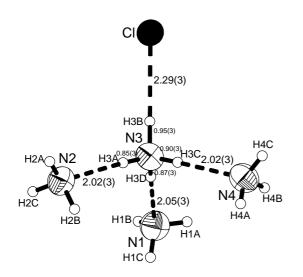
⁹⁹ Sears, V. F.: Neutron Scattering length. In: *International Tables of Crystallography*, Ed. A. J. C. Wilson, Kluwer Academic Press, Dordrecht, **1992**, Vol. C, p. 383.


Kristallstrukturdaten von ND₄(ND₃)₃Cl

Summenformel	D ₁₃ ClN ₄
Belichtungszeit (min)/Reflex	10
Kristallgröße (mm)	ca. 5.0 x 3.5 x 1.5
Messtemperatur (K)	10
Kristallsystem	orthorhombisch
Raumgruppe	P2 ₁ 2 ₁ 2 ₁ (Nr. 19)
a (Å)	8.496(1)
b (Å)	8.890(1)
c (Å)	8.732(1)
Volumen (Å ³)	659.6(1)
Z	4
M (g·mol⁻¹)	104.49
ρ _c (g·cm ⁻³)	1.052
F (000)	535
μ (Å)	0.88390
θ-Bereich (°)	5.50 - 51.68
Gesamtzahl der Reflexe	1868
Zahl der unabhängigen Reflexe (R _{int})	1672 (0.0242)
Zahl der Parameter	165
$R_1 (I \ge 2\sigma(I))$	0.0548
$wR_2 (I > 2\sigma(I))$	0.1432
R ₁ (alle Daten)	0.0554
wR ₂ (alle Daten)	0.1433
GooF	1.225
Reststreudichte	2.076/-1.993
Extinktionskoeffizient	0.084(5)

Tabelle 2: Einkristallstrukturdaten von ND₄(ND₃)₃Cl.

*Vergleich der Strukturen von NH*₄(*NH*₃)₃*Cl und ND*₄(*ND*₃)₃*Cl*


Die Struktur von NH₄(NH₃)₃Cl wurde schon ausführlich in der Diplomarbeit beschrieben und

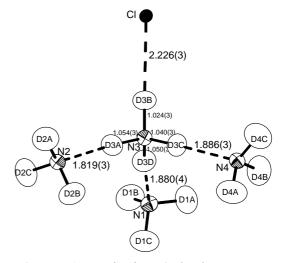
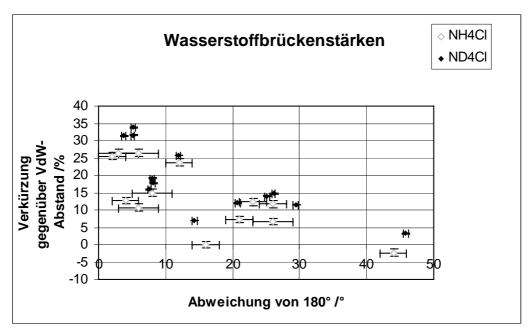

Abb. 6: Elementarzelle von [NH₄(NH₃)₃]Cl.

Abb. 7: Elementarzelle von $[ND_4(ND_3)_3]Cl$.

entspricht der ND₄(ND₃)₃Cl-Struktur (Kristallographische Daten: Tab. 1 und Tab. 2). Die Elementarzellen der Röntgenstruktur von NH₄(NH₃)₃Cl und der Neutronenstruktur von ND₄(ND₃)₃Cl sind in den Abbildungen 6 und 7 dargestellt. Das Stickstoffatom N3 ist pseudotetraedrisch (Abb. 8 und 9) von den drei Stickstoffatomen N1, N2 und N4 sowie von dem Chloridion umgeben. Beim N3-Stickstoff handelt es sich um das Ammoniumion und bei den anderen drei Stickstoffatomen (N1, N2 und N4) um Ammoniakmoleküle. Die N-H- bzw. N-D-Abstände sind in Tab. 3 aufgelistet. Wie zu erwarten ist, entsprechen die N-D-Abstände eher als die N-H-Abstände dem durch spektroskopische Methoden bestimmten N-Wasserstoff-Abstand von 1.03 Å. Wesentlich wichtiger jedoch sind die Fehlerwerte der

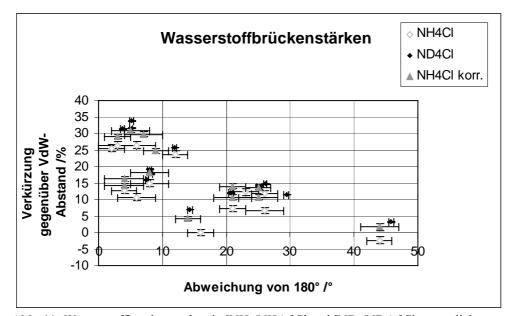
Abb. 8: Das Ammoniumion N3, das das Komplexkation [NH₄(NH₃)₃]⁺ ergibt und mit dem Cl⁻-Ion interagiert, Abstände in Å.

Abb. 9: Das Ammoniumion N3, das das Komplexkation [ND₄(ND₃)₃]⁺ ergibt und mit dem Cl⁻Ion interagiert, Abstände in Å.


Donor-Deuterium-, Deuterium···Akzeptor-Abstände und der Donor-Deuterium-Akzeptor-Winkel, die etwa um das Zehnfache kleiner als die vergleichbaren Fehlerwerte der Röntgenstruktur von NH₄(NH₃)₃Cl sind. Dies hat zur Folge, dass der bei Wasserstoffbrückenbindungen auftretende Protonentransfer diskutiert werden kann. So betragen die N3-D-Abstände der D-Atome, die jeweils eine Wasserstoffbrücke zu den Ammoniakmolekülen N1, N2 und N4 ausbilden, 1.040(3) – 1.054(3) Å. Signifikant kürzer ist der N3-D3B-Abstand (1.024(3) Å), was besagt, dass bei dieser N-D···Cl-Wasserstoffbrücke der Protonentransfer nicht so ausgeprägt ist wie bei den anderen drei N-D···N-Wasserstoffbrücken des Ammoniumions (N3).

D-DeuteriumA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-D(1A)Cl	1.005(4)	2.655(4)	3.565(2)	150.6(4)
N(1)-D(1B)Cl	1.011(4)	2.520(4)	3.525(2)	172.4(3)
N(1)-D(1C)Cl	1.005(4)	2.791(4)	3.772(2)	165.7(4)
N(2)-D(2A)Cl	1.012(4)	2.465(4)	3.470(2)	171.9(3)
N(2)-D(2B)Cl	1.010(4)	2.559(4)	3.494(2)	153.9(3)
N(2)-D(2C)Cl	1.015(4)	2.425(4)	3.433(2)	172.0(3)
N(3)-D(3A)N(2)	1.054(3)	1.819(3)	2.872(2)	175.8(3)
N(3)-D(3B)Cl	1.024(3)	2.226(3)	3.234(2)	168.1(3)
N(3)-D(3C)N(4)	1.040(3)	1.886(3)	2.924(2)	176.3(3)
N(3)-D(3D)N(1)	1.050(3)	1.880(4)	2.928(2)	174.9(3)
N(4)-D(4A)Cl	1.008(4)	2.903(5)	3.678(2)	134.2(4)
N(4)-D(4B)Cl	1.011(4)	2.578(4)	3.520(2)	154.9(4)
N(4)-D(4C)Cl	1.012(4)	2.641(4)	3.604(2)	159.3(4)
D-ProtiumA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)Cl	0.85(3)	2.80(3)	3.583(2)	154(3)
N(1)-H(1B)Cl	0.87(3)	2.68(3)	3.551(2)	174(3)
N(1)-H(1C)Cl	0.84(3)	3.00(3)	3.814(2)	164(2)
N(2)-H(2A)Cl	0.87(3)	2.62(3)	3.490(2)	176(2)
N(2)-H(2B)Cl	0.93(3)	2.65(3)	3.510(2)	154(2)
N(2)-H(2C)Cl	0.91(3)	2.55(3)	3.450(2)	172(3)
N(3)-H(3A)N(2)	0.85(3)	2.02(3)	2.865(3)	177(3)
N(3)-H(3B)Cl	0.95(3)	2.29(3)	3.231(2)	168(2)
N(3)-H(3C)N(4)	0.90(3)	2.02(3)	2.915(3)	174(3)
N(3)-H(3D)N(1)	0.87(3)	2.05(3)	2.920(3)	178(2)
N(4)-H(4A)Cl	0.81(3)	3.07(3)	3.695(2)	136(2)
N(4)-H(4B)Cl	0.95(3)	2.63(3)	3.526(2)	157(2)
N(4)-H(4C)Cl	0.89(3)	2.78(3)	3.622(2)	159(2)

Tab. 3: Protonendonator···Akzeptor-Abstände und deren Winkel in NH₄(NH₃)₃Cl und in ND₄(ND₃)₃Cl.


Folglich sind die N-D···N-Wasserstoffbrücken stärker als die N-D···Cl-Wasserstoffbrücke. Dieses Ergebnis wird auch durch den Vergleich der H···N- und der H···Cl-Abstände (Röntgenstrukturdaten) erhalten, kann aber nicht durch strukturchemische Argumente wie Donor-Proton-Abstand oder DHA-Winkel untermauert werden. Demnach zeigt die Neutronenstruktur von $ND_4(ND_3)_3Cl$ nicht nur N-D-Abstände, die eine Diskussion des Protonentransferprozesses zulassen, sondern auch die Donor-Deuterium-Akzeptor-Winkel sind gut genug, um einen Vergleich der linearen Anordnung durchzuführen. So zeigen die drei N-D···N-Wasserstoffbrücken Donor-Deuterium-Akzeptor-Winkel von 174.9(3) –

176.3(3)°. Sie sind signifikant näher an 180° als die N-D···Cl-Wasserstoffbrücke. Daher kann das Winkelkriterium als drittes Argument für die energetische Einordnung der Wasserstoffbrücken angeführt werden. Doch auch mit den aus der Röntgenstruktur gewonnen Daten kann man dieses Ergebnis erhalten, da zum einen prinzipielle Tendenzen erkennbar sind und zum anderen eine Normalisierung der N-H-Abstände auf 1.03 Å (Abb.9) die energetischen Unterschiede deutlicher hervorhebt.

Abb. 10: Wasserstoffbrückenstärken in [NH₄(NH₃)₃]Cl und [ND₄(ND₃)₃]Cl.

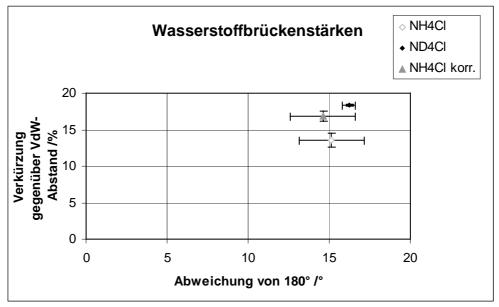

Somit ergibt schon die Röntgenstruktur von NH₄(NH₃)₃Cl ein [NH₄(NH₃)₃]⁺-Komplexkation. Auch Wasserstoffbrückenbindungen, die geringfügig zu große H···A-Abstände zeigen, um noch als Wasserstoffbrückenbindung klassifiziert werden zu können, werden, wie aus Abb. 10

Abb. 11: Wasserstoffbrückenstärken in $[NH_4(NH_3)_3]Cl$ und $[ND_4(ND_3)_3]Cl$, zusätzlich wurden die N-H-Abstände in der $[NH_4(NH_3)_3]Cl$ -Struktur auf 1.03 Å normiert und die Wasserstoffbrückenstärken als NH4Cl-Reihe dargestellt.

hervorgeht, nicht einfach weggelassen.

Demnach ist die Korrektur der N-H-Abstände ein hilfreiches Mittel, um schwache Wechselwirkungen, die kaum kürzer als der VdW-Abstand sind, aufzufinden. Da aber die

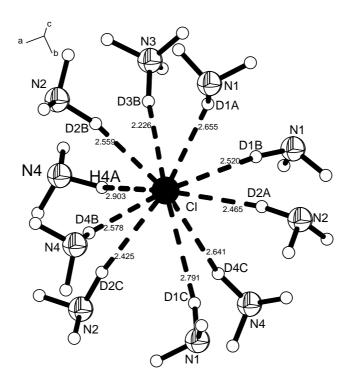
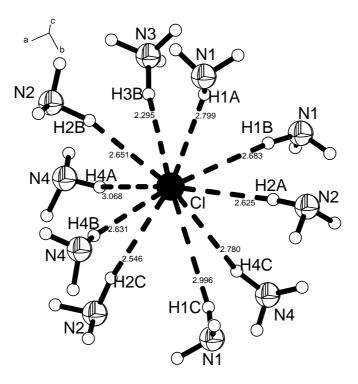


Abb. 12: Die Durchschnittswerte der drei Wertereihen (NH₄Cl, ND₄Cl und NH₄Cl korr.) in Abb. 11.


DHA-Winkel bei der Korrektur des N-H-Abstandes auch verändert werden, ist eine generelle Korrektur mit nachfolgender Diskussion der Wechselwirkungen schwierig. Abb. 11 zeigt, dass die prozentualen Werte der Verkürzung gegenüber dem VdW-Abstand zwischen den Neutronendaten und den korrigierten Daten sich eher entsprechen als ohne Korrektur. Doch die DHA-Winkel zeigen diese Korrelation nicht. Vielmehr macht Abb. 12, die den Durchschnitt der DHA-Winkel der korrigierten NH₄(NH₃)₃Cl-Struktur darstellt, deutlich, dass die DHA-Werte der ND₄(ND₃)₃Cl-Struktur eher den DHA-Werten der nicht korrigierten NH₄(NH₃)₃Cl-Struktur entspricht als der korrigierten.

Bisher wurden nur die starken Wechselwirkungen (Verkürzung > 20%), die das Ammoniumion ausbildet, miteinander verglichen. Die restlichen Wasserstoffbrücken sind allesamt N-H···Cl- bzw. N-D···Cl Wasserstoffbrücken.

In Abb. 13 und 14 soll die Umgebung des Chloridions verglichen werden. Es zeigt sich, dass ein Ammoniumion und neun Ammoniakmoleküle jeweils ein Protium bzw. Deuterium auf das Anion ausrichten. Den kürzesten N-Cl-Abstand weist die Ammonium-Chlorid-Hantel auf. Sie ist 3.231(2) Å lang und hat einen N3-H6···Cl1-Winkel von 168°.

Abb. 13: Die koordinative Umgebung des Chloridions in der $[ND_4(ND_3)_3]Cl$ -Struktur, D····Cl-Abstände in Å.

Abb. 14: Die koordinative Umgebung des Chloridions in der $[NH_4(NH_3)_3]Cl$ -Struktur, H····Cl-Abstände in Å.

5. Abschließende Diskussion, Zusammenfassung und Ausblick

Das ausgedehnte $\frac{1}{\infty}[(NH_4^+)_4(NH_3)_{42}]$ -Komplexkation ist in der Kristallstruktur von $(NH_4)_3[P(Mo_{12}O_{40})]$ · 27NH₃ zu finden. Es setzt sich aus drei $[NH_4(NH_3)_3]^+$ Komplexkationen, einem $[NH_4(NH_3)_4]^+$ -Komplexkation und 29 Ammoniakmolekülen zusammen. Die N···N-Abstände der ausgedehnten Komplexkationenkette sind kleiner als 3.377 Å (N···N-Abstand in festem Ammoniak). Zwei parallele [(NH₄)₄(NH₃)₄₂]-Ketten ergeben Taschen, die von den Anionen besetzt werden. Zusätzlich liegt in dieser Verbindung ein isoliertes $[NH_4(NH_3)_9]^+$ -Komplexkation $(N \cdot \cdot \cdot \cdot N$ -Abstände: 2.84(2) – 3.31(2) Å) vor, wobei zehn Wasserstoffbrücken zu vier Anionen ausgebildet werden und das Komplexkation sich in der Tetraederlücke dieser vier $[P(Mo_{12}O_{40})]^{3-}$ -Anionen befindet. Die P-P-Abstände der Anionen um die Tetraederlücke betragen 12.78 – 16.22 Å. Dieses Komplexkation besteht aus einem [NH₄(NH₃)₃]⁺-Kation und sechs Ammoniakmolekülen. Es wird als isoliert bezeichnet, da die nächstmöglichen N···N-Abstände bei 3.41 Å, also deutlich länger als der N···N-Abstand in festem Ammoniak sind. Auch der entsprechende H···N-Abstand ist mit 2.82 Å zu lang, um zweifelsfrei als möglicher Kandidat für eine Wasserstoffbrückenbindung gewertet zu werden. Weiterhin kann noch ein isoliertes $[NH_4(NH_3)_3]^+$ -Komplexkation $(N \cdot \cdot \cdot \cdot N$ -Abstände: 2.88(1) – 3.13(2) Å) in dieser Verbindung gefunden werden. Der nächstmögliche N···N-Abstand dieses Kations zu benachbarten Stickstoffatomen beträgt 3.42(1) Å.

Das ausgedehnte $^1_\infty[NH_4(NH_3)_4^+(\mu\text{-NH}_3)_2]$ -Komplexkation ist in der Kristallstruktur von $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3^{107}$ zu finden. Es setzt sich aus einem $[NH_4(NH_3)_4]^+$ -Komplexkation und zwei Ammoniakmolekülen zusammen. Die N···N-Abstände des ausgedehnten Komplexkationenbandes (zwei Knoten) betragen 2.969(4) - 3.373(4) Å. Zwei benachbarte Bänder bilden Taschen, in denen sich die $[Co(C_2B_9H_{11})_2]^-$ -Anionen befinden. Das Besondere an diesen Anionen ist, dass sie Dihydrogenbindungen zu den Komplexkationen ausbilden, wobei die N-H•••H-B-Kontakte H•••H-Abstände von 2.3 - 2.4 Å haben.

¹⁰⁰ J. O. Lundgren, Acta Chrystallogr. B 1978, B34, 2432.

¹⁰¹ J. O. Lundgren, I. Olovsson, *J. Chem. Phys.* **1968**, *49*, 1068.

¹⁰² Olovsson, I. Acta Chem. Scand. **1960** 14, 1453.

¹⁰³ Olovsson, I. Acta Chem. Scand. **1960** 14, 1466.

¹⁰⁴ H. J. Berthold, W. Preibsch, E. Vonholdt, *Angew. Chem.* **1988**, *100*, 1581; *Angew. Chem. Int. Ed. Engl.* **1988**, 27, 1524.

¹⁰⁵ H. J. Berthold, E. Vonholdt, R. Wartchow, *Z. Kristallogr.* **1993**, *203*, 199.

¹⁰⁶ T. Roßmeier, N. Korber, Z. Naturforsch B. **2003** 58b, 672.

¹⁰⁷ T. Roßmeier, N. Korber, ZAAC **2004**, 630, 2665.

Das letzte in dieser Arbeit beschriebene ausgedehnte Komplexkation ist das $_{\infty}^{1}$ [$\{N_{26}H_{80}\}^{2^{+}}$ (μ -NH₃)₂]-Komplexkation in der Kristallstruktur von NH₄(NH₃)₁₃B(Ph-Ph)₄. Es setzt sich aus [$\{NH_4(NH_3)_4\}_2(\mu$ -NH₃)₁₈]²⁺-Komplexkationclustern (N···N-Abstände: 2.833(3) – 3.643(5) Å), die untereinander einen N···N-Abstand von 3.391(4) Å haben, zusammen. Der kürzeste Bor-Bor-Abstand der [B(Ph-Ph)₄]⁻-Anionen ist 9.50 Å.

Die bisher erwähnten ausgedehnten Komplexkationen sind die ersten ihrer Art, die in dem Proton-Ammoniak-System strukturanalytisch nachgewiesen werden konnten. Das zuletzt beschriebene Komplexkation stellt eine Besonderheit dar, da diese zweifach positiv geladenen "Cluster" nur sehr geringe Wechselwirkungen zueinander aufweisen und deswegen die Tendenz zur Kettenbildung als gering bezeichnet werden kann. Zusätzlich können anziehende Wechselwirkungen dieser "Cluster" zu den Anionen nicht festgestellt werden. Somit werden die N-H···N-Wasserstoffbrücken nur in sehr geringem Umfang beeinflusst, was dazu führt, dass die schwachen Ammoniak···Ammoniak-Wechselwirkungen ausreichen, Ammonium-Ammoniakate zu bilden, die hauptsächlich aus Ammoniak bestehen. Bisher gibt es keine vergleichbaren "Cluster" in den anderen Proton-Lösungsmittel-Systemen wie etwa dem Proton-Wasser-System. Dort sind ausgedehnte Ketten und Bänder in weitaus größerem Umfang bekannt als im Proton-Ammoniak-System. Als Ursache für die große Tendenz, Verknüpfungen im Festkörper auszubilden, ist zweifellos die hohe Energie bzw. Stabilität von O-H···O-Wasserstoffbrücken zu nennen.

Wechselwirkungsenergie Da die der Wasserstoffbrückenbindungen zwischen Ammoniakmolekülen deutlich geringer ist, werden wesentlich häufiger isolierte Komplexkationen in den Festkörpern gefunden. Doch auch diese isolierten Einheiten zeigen Tendenzen, sich zu verknüpfen. Beispielsweise besteht das [{NH₄(NH₃)₄}₂(μ-NH₃)₂]²⁺-Komplexkation in der Verbindung $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3^{108}$ pseudotetraedrischen [NH₄(NH₃)₄]⁺-Komplexen, die aufgrund von zwei Ammoniakmolekülen miteinander durch Wasserstoffbrücken verknüpft werden. Die N···N-Abstände der [NH₄(NH₃)₄]⁺-Komplexe stimmen mit 2.88-2.95 Å gut mit dem von Olovsson¹⁰⁹ berichteten N···N-Abstand (2.95 Å) in der Struktur von NH₄I · 4 NH₃ (2.95 Å) überein. Die N···N-Abstände der beiden verbrückenden Ammoniakmoleküle zu den Ammoniakmolekülen der beiden Komplexkationen sind 3.252(4) und 3.384(4) Å.

Als weiteres isoliertes, zweikerniges Komplexkation kann das $[(NH_4)_2(NH_3)_3]^{2^+}$ -Komplexkation $(N\cdots N-Abstände: 2.890(8) - 3.160(8) Å)$. in der Verbindung $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$ nachgewiesen werden. Es besteht aus einem $[NH_4(NH_3)_3]^+$ -Komplex, der ein Ammoniakmolekül mit einem weiteren Ammoniamion teilt, d. h. das freie Elektronenpaar eines Ammoniakmoleküls des $[NH_4(NH_3)_3]^+$ -Komplexes agiert als Protonenakzeptor zu zwei Ammoniamionen $(N\cdots N-Abstände: 3.063(7) \text{ und } 3.160(8) Å)$. Das $[(NH_4)_2(NH_3)_3]^{2^+}$ -Komplexkation selbst wird von sieben $[P_2(NH_2)Se_5]^{3^-}$ -Anionen umgeben. Hierbei entspricht das Amidopentaselenodiphosphatanion der gestaffelten Anordnung des Ethanmoleküls. Der P-N-Abstand (1.681(4) Å) ist mit dem P-N-Abstand (1.663(5) Å) in

-

¹⁰⁸ T. Roßmeier, M. Reil, N. Korber, *Inorg. Chem.* **2004**, *43*, 2206.

¹⁰⁹ Olovsson, I. Acta Chem. Scand. **1960** 14, 1466.

 $(NH_4)_2[P_2(NH_2)_2O_4]^{110} \ vergleichbar. \ Bis \ dato \ war \ dies \ die \ einzig \ bekannte \ Struktur \ eines zweikernigen \ Phosphates, \ dessen \ Chalkogenliganden \ durch \ Amidgruppen \ substituiert werden. \ Von \ den \ einkernigen \ Amindochalkogenophosphaten \ sind \ folgende \ Verbindungen bekannt: <math display="block"> SP(NH_2)_3^{111}, \quad (NH_4)_2[PO_2S(NH_2)]^{112}, \quad NH_4[POS(NH_2)_2] \qquad ^{113} \quad und \ (NH_4)[Li(NH_3)_4][P(NH_2)S_3] \cdot NH_3^{114}, \ wobei \ der \ P-N-Abstand \ beträgt \ 1.657(3) - 1.702(2) \ Å beträgt.$

Bisher waren nur verbrückende Ammoniakmoleküle bekannt, die zwischen zwei Komplexkationen eine Verbrückung herstellen. Als einziges bekanntes Beispiel für einen einkernigen Komplex, der eine Ammoniak····Ammoniak-Wechselwirkung besitzt, ist das $[NH_4(NH_3)_4]^+$ -Komplexkation in der Verbindung $[NH_4(NH_3)_3][B(p\text{-tolyl})_4] \cdot NH_3$ zu nennen. Erstaunlicherweise handelt es sich nicht um ein Ammoniumion, das pseudotetraedrisch von vier Ammoniakmolekülen umgeben ist, sondern um ein $[NH_4(NH_3)_3]^+$ -Komplexkation $(N\cdots N\text{-Abstände}: 2.851(2) - 2.946(3) Å)$, das ein Ammoniakmolekül aufweist, welches als Protonendonor zu einem benachbarten vierten Ammoniakmolekül fungiert. Dieses vierte Ammoniakmolekül zeigt keine Wechselwirkung zu dem Ammoniumion, obwohl die Komplexstabilisierungsenergie dies vermuten lassen würde. Es hat den Anschein, dass hier die Kristallpackungsenergie die Komplexstabilisierungsenergie überkompensiert und somit einen $\{[NH_4(NH_3)_3]^+ \cdot NH_3\}$ -Komplex ermöglicht.

Weiterhin konnte der isolierte, einkernige Komplex $[NH_4(NH_3)_3]^+$ in den Verbindungen $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$ $(N\cdots N-Abstände: 2.88(1) - 3.13(2) Å)$, $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$ $(N\cdots N-Abstände: 2.951(8)$ und 2.988(7) Å) und $[NH_4(NH_3)_3][SCN]$ $(N\cdots N-Abstände: 2.894(2)$ und 2.929(2) Å) nachgewiesen werden. In den beiden letzten Verbindungen wird die vierte Koordinationsstelle des Ammoniumions vom Stickstoffatom des Anions $[Fe(CN)_6]^{3-}$ bzw. SCN^- besetzt. Beim Ammoniumion der Verbindung $NH_4(NH_3)_2N_3$ werden sogar zwei Koordinationsstellen durch die endständigen Stickstoffatome des Azidions besetzt, was letztendlich zu einer Kette von $[NH_4(NH_3)_2]^+$ -Komplexen, die durch Azidionen verknüpft sind, führt.

Ein weiteres wichtiges Ergebnis dieser Dissertation ist die Durchführung der Strukturbestimmung mittels Neutronenstrahlung¹¹⁵. Die experimentelle Umgebung wurde dergestalt verändert, dass an Einkristallen, die nicht raumtemperaturbeständig sind, Neutronenbeugung angewandt werden kann. Als Modellsystem diente dass Ammoniakat des Ammoniumchlorids ([NH₄(NH₃)₃]Cl), das die Eigenschaft hat, rasch große Kristalle mit einer orthorhombischen Kristallstruktur zu liefern. Zusätzlich kann die deuterierte Form ([ND₄(ND₃)₃]Cl) leicht über die käuflichen Edukte (ND₃ und ND₄Cl) dargestellt werden. Die Strukturbestimmung zeigt, dass das Ammoniumion pseudotetraedrisch von den drei Ammoniakmolekülen sowie einem Chloridion umgeben ist. Die N-D-Abstände der [ND₄(ND₃)₃]Cl-Verbindung entsprechen eher den durch spektroskopische Methoden

¹¹⁰ W. S. Sheldrick, ZAAC 1974, 408, 175.

¹¹¹ W. Schnick, Z. Naturforsch. 1989, 44b 942.

¹¹² D. Mootz, J. Golgmann, Acta Cryst. 1969, B25, 1256.

¹¹³ D. Mootz, W. Look, G. Sassmannshausen, ZAAC 1968, 358, 282.

¹¹⁴ K. Pfisterer, N. Korber, ZAAC **2002**, 628, 762.

¹¹⁵ Roßmeier, T. Report 2004, Hahn-Meitner-Institut 2005.

bestimmten N-H-Abständen¹¹⁶ (1.03 Å) als die N-H-Abstände der Röntgenstrukturanalyse von ([NH₄(NH₃)₃]Cl). Wesentlich wichtiger jedoch sind die Fehlerwerte der Donor-Deuterium-, Deuterium···Akzeptor-Abstände und der Donor-Deuterium-Akzeptor-Winkel, die etwa um das Zehnfache kleiner als die vergleichbaren Fehlerwerte der Röntgenstruktur von NH₄(NH₃)₃Cl sind. Dies hat zur Folge, dass der bei Wasserstoffbrückenbindungen auftretende Protonentransfer diskutiert werden kann. Diese Diskussion bekräftigt den Befund aus der Röntgenstrukturanalyse und zeigt deutlich, dass die N-H····N-Wasserstoffbrücken stärker als die N-H····Cl-Wechselwirkungen sind.

Der Vergleich der Abstände und Winkel der Wasserstoffbrücken der durch Röntgenstrahlung erhaltenen NH₄(NH₃)₃Cl-Struktur mit der normierten NH₄(NH₃)₃Cl-Struktur (N-H-Abstand: 1.03 Å) und der ND₄(ND₃)₃Cl-Struktur zeigt, dass die Normierung der Röntgendaten nicht als Ersatz für die Neutronendaten ausreicht. Die DHA-Werte der ND₄(ND₃)₃Cl-Struktur entsprechen eher den DHA-Werten der nicht normierten NH₄(NH₃)₃Cl-Struktur als denjenigen der normierten, obwohl die N-H-Abstände angeglichen wurden.

Eine weitere physikalische Möglichkeit, das Ammonium-Ammmoniakat-System zu untersuchen, stellt die Schwingungsspektroskopie dar. Damit wären genaue Aussagen über die Stärke der Wechselwirkungen, also der Wasserstoffbrückenbindungen, möglich, wobei temperaturabhängige IR- oder Raman-Messungen von Lösungen bzw. Kristallen Einblick in den Flüssig-Fest-Phasenübergang geben. Hierbei bietet die LASER-Raman-Spektroskopie experimentelle Vorteile. So betragen die Substanzmengen wenige Milligramm, die Messzeit ist im Zeitraum von Sekunden bis Minuten und das Signal-Rausch-Verhältnis ist aufgrund der hohen Bestrahlungsdichte sehr gut. Der größte Anwendungsbereich der Raman-Spektroskopie liegt bei Interpretations- und Zuordnungsproblemen. Die Zuordnung einer Bande zu einem Symmetrietyp einer Schwingung kann durch die Raman-Spektroskopie vorgenommen werden, da neben der Bandenlage, -intensität und -form auch die Bestimmung des Depolarisationsgrades ρ der Ramanbanden möglich ist.

Neben den experimentellen physikalischen Methoden sind auch die theoretischen Methoden ein wichtiges wissenschaftliches "tool" um die Zusammensetzung der Cluster in Zukunft voraussagen zu können. Bisher wurden diese Proton-Ammoniakat- bzw. Hydrat-Komplexe auf der Grundlage der Dichtefunktionaltheorie behandelt, wobei diese Theorie Schwierigkeiten bei der Beschreibung von Dispersionswechselwirkungen hat. Da aber Wasserstoffbrücken zum Teil als Dispersionswechselwirkungen beschrieben werden können, ist es offensichtlich, dass die Dichtefunktionaltheorie durch die Møller-Plesset-Theorie (MP2) ersetzt werden sollte, um besonders die Ammoniak-Ammoniak-Wechselwirkungen besser beschreiben zu können.

153

¹¹⁶ G. C. Pimentel, A. L. McClellan, *The Hydrogen Bond*, W. H. Freeman and Company, San Francisco and London, **1960**.

6. Anhang

6.1 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$

	х	У	Z	U(eq)
N(1)	7638(2)	-1724(3)	3917(1)	37(1)
N(2)	10727(2)	1769(3)	288(1)	43(1)
N(3)	3660(2)	1272(3)	1835(2)	52(1)
N(4)	8809(2)	-170(4)	3050(1)	48(1)
N(5)	6285(2)	5127(3)	-324(1)	46(1)
N(6)	9069(2)	3963(3)	-441(1)	67(1)
C(1)	6869(2)	1445(2)	1885(1)	24(1)
C(2)	6793(2)	2052(3)	2475(1)	29(1)
C(3)	6348(2)	1406(3)	2961(1)	33(1)
C(4)	5969(2)	110(3)	2877(1)	33(1)
C(5)	6029(2)	-523(3)	2299(1)	31(1)
C(6)	6459(2)	142(3)	1820(1)	26(1)
C(7)	7555(2)	3738(3)	1341(1)	26(1)
C(8)	6680(2)	4500(3)	1480(1)	31(1)
C(9)	6639(2)	5875(3)	1423(1)	38(1)
C(10)	7489(2)	6566(3)	1221(1)	37(1)
C(11)	8369(2)	5853(3)	1071(1)	35(1)
C(12)	8398(2)	4470(3)	1131(1)	28(1)
C(13)	6906(2)	1736(2)	615(1)	25(1)
C(14)	5775(2)	1794(3)	473(1)	30(1)
C(15)	5230(2)	1632(3)	-143(1)	36(1)
C(16)	5809(2)	1400(3)	-644(1)	38(1)
C(17)	6917(2)	1342(3)	-527(1)	39(1)
C(18)	7454(2)	1514(3)	89(1)	31(1)
C(19)	8737(2)	1402(2)	1490(1)	25(1)
C(20)	9569(2)	1975(3)	1913(1)	31(1)
C(21)	10546(2)	1339(3)	2106(1)	38(1)
C(22)	10734(2)	70(3)	1884(1)	39(1)
C(23)	9927(2)	-541(3)	1471(1)	38(1)
C(24)	8958(2)	117(3)	1276(1)	30(1)
B(1)	7524(2)	2095(3)	1334(1)	26(1)

Atomkoordinaten (•10 4) und isotrope Auslenkungsparameter (Å 2 • 10 3) von $[NH_4(NH_3)_4][B(C_6H_5)_4]$ • NH_3

N(1)-H(1A)	1.09(4)	N(4)-H(4B)	0.84(5)
N(1)-H(1B)	1.05(3)	N(4)-H(4C)	0.86(6)
N(1)-H(1C)	1.02(3)	N(5)-H(5A)	0.93(4)
N(1)-H(1D)	1.02(3)	N(5)-H(5B)	0.85(3)
N(2)-H(2A)	1.01(4)	N(5)-H(5C)	0.90(5)
N(2)-H(2B)	0.93(4)	N(6)-H(6A)	0.95(5)
N(2)-H(2C)	0.86(3)	N(6)-H(6B)	0.86(4)
N(3)-H(3A)	0.91(4)	C(1)-C(6	1.398(3)
N(3)-H(3B)	0.94(3)	C(1)-C(1.402(3)
N(3)-H(3C)	0.86(4)	C(1)-B(1)	1.648(4)
N(4)-H(4A)	0.92(4)	C(2)-C(3)	1.392(3)

C(2)-H(2)	0.97(3)	H(6A)-N(6)-H(6B)	106(4)
C(3)-C(4)	1.381(4)	C(6)-C(1)-C(2)	115.0(2)
C(3)-H(3)	0.95(2)	C(6)-C(1)-B(1)	120.48(19)
C(4)-C(5)	1.387(3)	C(2)-C(1)-B(1)	124.0(2)
C(4)-H(4)	0.96(2)	C(3)-C(2)-C(1)	122.5(2)
C(5)-C(6)	1.380(3)	C(3)-C(2)-H(2)	119.7(15)
C(5)-H(5)	0.94(3)	C(1)-C(2)-H(2)	117.6(15)
C(6)-H(6)	0.96(2)	C(4)-C(3)-C(2)	120.2(2)
C(7)-C(8)	1.395(3)	C(4)-C(3)-H(3)	117.1(16)
C(7)-C(12)	1.401(3)	C(2)-C(3)-H(3)	122.6(16)
C(7)-B(1)	1.642(4)	C(3)-C(4)-C(5)	118.8(2)
C(8)-C(9)	1.380(4)	C(3)-C(4)-H(4)	122.7(14)
C(8)-H(8)	0.97(2)	C(5)-C(4)-H(4)	118.5(14)
C(9)-C(10)	1.380(4)	C(6)-C(5)-C(4)	120.0(3)
C(9)-H(9)	0.92(2)	C(6)-C(5)-H(5)	121.3(14)
C(10)-C(11)	1.382(4)	C(4)-C(5)-H(5)	118.5(14)
	0.96(3)	C(5)-C(6)-C(1)	
C(10)-H(10)			123.3(2)
C(11)-C(12)	1.388(4)	C(5)-C(6)-H(6)	119.3(13)
C(11)-H(11)	0.97(3)	C(1)-C(6)-H(6)	117.3(13)
C(12)-H(12)	0.96(2)	C(8)-C(7)-C(12)	115.1(2)
C(13)-C(18)	1.400(3)	C(8)-C(7)-B(1)	122.0(2)
C(13)-C(14)	1.403(3)	C(12)-C(7)-B(1)	122.5(2)
C(13)-B(1)	1.646(3)		
		C(9)-C(8)-C(7)	123.1(3)
C(14)-C(15)	1.393(3)	C(9)-C(8)-H(8)	117.7(14)
C(14)-H(14)	0.960(19)	C(7)-C(8)-H(8)	119.2(14)
C(15)-C(16)	1.383(3)	C(8)-C(9)-C(10)	120.3(3)
C(15)-H(15)	1.00(2)	C(8)-C(9)-H(9)	120.1(16)
C(16)-C(17)	1.372(4)	C(10)-C(9)-H(9)	119.6(16)
C(16)-H(16)	0.94(2)	C(9)-C(10)-C(11)	118.7(3)
C(17)-C(18)	1.390(3)	C(9)-C(10)-H(10)	121.8(17)
C(17)-H(17)	0.95(2)	C(11)-C(10)-H(10)	119.3(17)
C(18)-H(18)	1.00(2)	C(10)-C(11)-C(12)	120.2(3)
C(19)-C(20)	1.395(3)	C(10)-C(11)-H(11)	120.5(16)
C(19)-C(24)	1.401(3)	C(12)-C(11)-H(11)	119.2(16)
C(19)-B(1)	1.655(4)	C(12) $C(11)$ $C(12)$	122.6(2)
C(20)-C(21)	1.385(3)	C(11)-C(12)-H(12)	117.7(14)
C(20)-H(20)	0.95(2)	C(7)-C(12)-H(12)	119.8(14)
C(21)-C(22)	1.383(4)	C(18)-C(13)-C(14)	115.1(2)
C(21)-H(21)	0.90(2)	C(18)-C(13)-B(1)	123.4(2)
C(22)-C(23)	1.381(4)	C(14)-C(13)-B(1)	121.1(2)
C(22)-H(22)			
	0.96(2)	C(15)-C(14)-C(13)	122.8(2)
C(23)-C(24)	1.387(3)	C(15)-C(14)-H(14)	116.8(12)
C(23)-H(23)	0.98(3)	C(13)-C(14)-H(14)	120.5(12)
C(24)-H(24)	0.97(2)	C(16)-C(15)-C(14)	119.9(2)
		C(16)-C(15)-H(15)	121.4(12)
H(1A)-N(1)-H(1B)	108(2)	C(14)-C(15)-H(15)	118.7(12)
H(1A)-N(1)-H(1B) H(1A)-N(1)-H(1C)		C(17)-C(15)-H(15) C(17)-C(16)-C(15)	119.2(2)
	109(2)		
H(1B)-N(1)-H(1C)	106(2)	C(17)-C(16)-H(16)	119.9(13)
H(1A)-N(1)-H(1D)	113(2)	C(15)-C(16)-H(16)	120.9(13)
H(1B)-N(1)-H(1D)	108(2)	C(16)-C(17)-C(18)	120.5(2)
H(1C)-N(1)-H(1D)	112(2)	C(16)-C(17)-H(17)	121.4(14)
H(2A)-N(2)-H(2B)	98(3)	C(18)-C(17)-H(17)	118.1(14)
H(2A)-N(2)-H(2C)	113(3)	C(17)-C(18)-C(13)	122.6(2)
H(2B)-N(2)-H(2C)	106(3)	С(17)-С(18)-Н(18)	119.3(11)
H(3A)-N(3)-H(3B)	101(3)	C(13)-C(18)-H(18)	118.1(11)
H(3A)-N(3)-H(3C)	96(3)	C(20)-C(19)-C(24)	114.9(2)
H(3B)-N(3)-H(3C)	115(3)	C(20)-C(19)-B(1)	122.3(2)
H(4A)-N(4)-H(4B)	119(4)	C(24)-C(19)-B(1)	122.3(2)
H(4A) - N(4) - H(4C)	103(4)	C(21)-C(20)-C(19)	123.2(3)
H(4B)-N(4)-H(4C)	99(4)	C(21)-C(20)-H(20)	118.3(13)
H(5A)-N(5)-H(5B)	99(3)	C(19)-C(20)-H(20)	118.6(13)
H(5A)-N(5)-H(5C)	104(4)	C(22)-C(21)-C(20)	120.2(3)
H(5B)-N(5)-H(5C)	101(3)	C(22)-C(21)-H(21)	121.9(15)
		· · · · · ·	

C(20)-C(21)-H(21) C(23)-C(22)-C(21) C(23)-C(22)-H(22) C(21)-C(22)-H(22) C(22)-C(23)-C(24) C(22)-C(23)-H(23) C(24)-C(23)-H(23)	117.8(15) 118.5(3) 122.3(15) 119.1(15) 120.5(3) 119.6(14) 119.9(14)	C(23)-C(24)-H(24) C(19)-C(24)-H(24) C(7)-B(1)-C(13) C(7)-B(1)-C(1) C(13)-B(1)-C(1) C(7)-B(1)-C(19) C(13)-B(1)-C(19)	119.1(14) 118.0(14) 103.50(19) 113.7(2) 110.7(2) 113.4(2) 113.04(19)
C(24)-C(23)-H(23) C(23)-C(24)-C(19)	122.7(2)	C(13)-B(1)-C(19)	102.88(18)

Bindungslängen und Winkel von $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$

	U11	U22	U33	U23	U13	U12
N(1)	35(1)	38(2)	37(1)	2(1)	2(1)	2(1)
N(2)	43(1)	48(2)	39(1)	-2(1)	7(1)	-4(1)
N(3)	48(2)	45(2)	61(2)	-8(2)	-3(1)	10(1)
N(4)	37(1)	65(2)	44(1)	19(2)	8(1)	11(2)
N(5)	46(1)	56(2)	37(1)	1(1)	9(1)	-5(1)
N(6)	54(2)	81(2)	69(2)	34(2)	21(1)	17(2)
C(1)	21(1)	26(2)	25(1)	1(1)	-1(1)	4(1)
C(2)	29(1)	30(2)	29(1)	-5(1)	4(1)	-1(1)
C(3)	33(1)	41(2)	25(1)	-2(1)	4(1)	2(1)
C(4)	26(1)	42(2)	32(1)	10(1)	7(1)	2(1)
C(5)	28(1)	31(2)	32(1)	4(1)	1(1)	-2(1)
C(6)	27(1)	26(2)	23(1)	1(1)	3(1)	-1(1)
C(7)	27(1)	28(2)	20(1)	0(1)	0(1)	0(1)
C(8)	31(1)	28(2)	34(1)	2(1)	8(1)	1(1)
C(9)	38(2)	32(2)	44(2)	-2(1)	9(1)	7(1)
C(10)	45(2)	25(2)	42(1)	2(1)	5(1)	0(1)
C(11)	35(2)	30(2)	41(2)	2(1)	7(1)	-6(1)
C(12)	27(1)	28(2)	28(1)	-1(1)	3(1)	-1(1)
C(13)	31(1)	15(1)	29(1)	3(1)	4(1)	-2(1)
C(14)	33(1)	29(2)	28(1)	2(1)	4(1)	-2(1)
C(15)	35(2)	33(2)	36(1)	7(1)	-3(1)	-6(1)
C(16)	48(2)	38(2)	24(1)	0(1)	-5(1)	-12(1)
C(17)	49(2)	43(2)	25(1)	-2(1)	8(1)	-6(1)
C(18)	33(1)	31(2)	30(1)	1(1)	3(1)	-5(1)
C(19)	29(1)	25(2)	23(1)	3(1)	8(1)	-1(1)
C(20)	32(1)	31(2)	29(1)	2(1)	4(1)	0(1)
C(21)	30(1)	50(2)	32(1)	4(1)	-1(1)	-4(1)
C(22)	29(1)	44(2)	47(2)	16(1)	8(1)	10(1)
C(23)	40(2)	30(2)	46(2)	8(1)	15(1)	7(1)
C(24)	32(1)	28(2)	30(1)	3(1)	9(1)	-1(1)
B(1)	25(1)	25(2)	27(1)	0(1)	3(1)	-1(1)

Anisotrope Auslenkungsparameter $(\mathring{A}^2 \cdot 10^3)$ von $[NH_4(NH_3)_4][B(C_6H_5)_4] \cdot NH_3$

	x	У	z	U(eq)
H(1A)	7140(30)	-2450(30)	3626(15)	77(10)
H(1B)	8050(20)	-1150(30)	3614(12)	55(8)
H(1C)	8220(30)	-2220(30)	4217(13)	64(9)
H(1D)	7190(20)	-1090(30)	4155(14)	73(10)
H(2A)	10150(30)	2330(30)	21(16)	75(11)
H(2B)	10280(30)	1360(40)	545(17)	105(14)
H(2C)	10970(30)	1130(30)	72(14)	65(11)
H(3A)	3610(30)	490(40)	1613(17)	96(14)
H(3B)	4420(30)	1350(30)	1943(13)	62(9)
H(3C)	3330(30)	990(40)	2141(19)	114(18)
H(4A)	9550(30)	-70(40)	3141(17)	102(13)
H(4B)	8440(40)	450(60)	2850(20)	150(20)
H(4C)	8740(50)	-760(60)	2750(30)	200(30)
H(5A)	5580(30)	5450(40)	-328(17)	105(14)
H(5B)	6500(20)	5160(40)	75(16)	74(11)
H(5C)	6200(40)	4240(50)	-380(20)	130(20)
H(6A)	8970(40)	4480(50)	-820(20)	170(20)
H(6B)	8450(30)	3930(40)	-306(19)	122(17)
H(6C)	12290(120)	7710(150)	-1420(60)	550(80)
H(2) H(3) H(4) H(5) H(6) H(8) H(9) H(10) H(11)	7120(20)	2930(30)	2552(12)	46(8)
	6320(20)	1810(30)	3368(12)	46(7)
	5676(18)	-380(20)	3205(10)	31(6)
	5726(19)	-1380(30)	2233(11)	35(7)
	6496(16)	-300(20)	1423(10)	24(6)
	6076(19)	4050(20)	1632(10)	33(7)
	6038(19)	6330(20)	1510(10)	29(6)
	7470(20)	7520(30)	1161(12)	49(8)
	8980(20)	6310(30)	929(11)	43(7)
H(12)	9032(19)	4010(20)	1030(10)	27(6)
H(14)	5339(16)	1970(20)	804(9)	12(5)
H(15)	4420(19)	1660(20)	-209(10)	32(6)
H(16)	5453(18)	1260(20)	-1060(11)	32(6)
H(17)	7342(18)	1220(20)	-862(11)	32(6)
H(18)	8265(17)	1480(20)	165(9)	16(5)
H(20)	9456(17)	2840(20)	2082(9)	21(6)
H(21)	11039(19)	1770(20)	2384(10)	26(6)
H(22)	11410(20)	-370(30)	2034(10)	37(7)
H(23)	10031(19)	-1460(30)	1327(10)	36(7)
H(24)	8384(17)	-350(20)	1006(10)	28(6)
-1 (2 1 /	0301(17)	330(20)	1000(10)	20(0)

Wasserstoffatomkoordinaten ($\cdot 10^4$) und isotrope Auslenkungsparameter ($\mathring{A}^2 \cdot 10^3$) von [NH₄(NH₃)₄][B(C₆H₅)₄] \cdot NH₃

6.2 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von NH₄(NH₃)₁₃B(Ph-Ph)₄

	x	У	Z	U(eq)
C(31)	11738(2)	3162(2)	5691(1)	27(1)
N(1)	13899(2)	9189(2)	2064(1)	41(1)
N(2)	13109(2)	828(2)	2301(1)	48(1)
N(3)	13166(2)	7882(2)	371(1)	46(1)
N(4)	6483(2)	580(2)	3074(1)	47(1)
N(5)	12678(3)	7602(3)	2905(2)	62(1)
N(6)	15283(3)	8125(3)	4095(2)	72(1)
N(7)	11527(2)	-389(3)	3395(2)	65(1)
N(8)	6921(5)	3234(4)	3856(3)	110(1)
N(9)	14579(3)	755(3)	4172(1)	88(1)
N(10)	7540(3)	1363(2)	5245(1)	65(1)
N(11)	8392(3)	-302(3)	4052(2)	73(1)
N(12)	14045(3)	5641(3)	4624(2)	80(1)
N(13)	15638(3)	6410(3)	6464(2)	70(1)
N(14)	11191(5)	5768(3)	4135(2)	99(1)
C(1)	8456(2)	2049(2)	1891(1)	20(1)
C(2)	8400(2)	3083(2)	2060(1)	22(1)
C(3)	7304(2)	3088(2)	1839(1)	23(1)
C(4)	6175(2)	2054(2)	1420(1)	21(1)
C(5)	6215(2)	1022(2)	1237(1)	23(1)
C(6)	7325(2)	1034(2)	1467(1)	22(1)
C(7)	5001(2)	2067(2)	1163(1)	23(1)
C(8)	4876(2)	2967(2)	1552(1)	29(1)
C(9)	3802(2)	3003(2)	1293(1)	33(1)
C(10)	2826(2)	2149(2)	646(1)	31(1)
C(11)	2924(2)	1235(2)	263(1)	30(1)
C(12)	4002(2)	1202(2)	520(1)	27(1)
C(13)	10826(2)	3178(2)	2019(1)	20(1)
C(14)	11916(2)	4105(2)	2581(1)	23(1)
C(15)	12829(2)	4985(2)	2406(1)	23(1)
C(16)	12702(2)	4982(2)	1635(1)	21(1)
C(17)	11594(2)	4094(2)	1061(1)	22(1)
C(18)	10689(2)	3231(2)	1251(1)	21(1)
C(19)	13730(2)	5843(2)	1438(1)	23(1)
C(20)	14566(2)	6971(2)	1939(1)	29(1)
C(21)	15550(2)	7747(2)	1758(1)	34(1)
C(22)	15709(2)	7410(2)	1066(1)	35(1)
C(23)	14893(2)	6294(2)	559(1)	32(1)
C(24)	13920(2) 10216(2)	5511(2)	746(1)	27(1) 20(1)
C(25) C(26)	11178(2)	2328(2) 2160(2)	3169(1) 3534(1)	26(1)
C(20)	11661(2)	2410(2)	4334(1)	26(1)
C(27)	11190(2)	2841(2)	4829(1)	24(1)
C(29)	10212(2)	2982(2)	4478(1)	27(1)
C(30)	9745(2)	2733(2)	3673(1)	24(1)
C(32)	12991(2)	3598(2)	6056(1)	33(1)
C(33)	13501(2)	3905(2)	6858(1)	38(1)
C(34)	12775(2)	3799(2)	7315(1)	37(1)
C(35)	11540(2)	3372(2)	6966(1)	38(1)
C(36)	11015(2)	3043(2)	6162(1)	34(1)
C(37)	9655(2)	834(2)	1839(1)	21(1)
C(38)	10218(2)	620(2)	1320(1)	24(1)
C(39)	10151(2)	-447(2)	1078(1)	25(1)

C(40)	9504(2)	-1386(2)	1338(1)	22(1)
C(41)	8897(2)	-1208(2)	1833(1)	24(1)
C(42)	8978(2)	-135(2)	2073(1)	23(1)
C(43)	9491(2)	-2512(2)	1149(1)	25(1)
C(44)	10540(2)	-2543(2)	1098(1)	31(1)
C(45)	10550(2)	-3588(2)	993(1)	38(1)
C(46)	9524(2)	-4621(2)	931(1)	36(1)
C(47)	8475(2)	-4607(2)	959(1)	32(1)
` '	` ,	` '	` '	` '

Atomkoordinaten $(\cdot 10^4)$ und isotrope Auslenkungsparameter $(\mathring{A}^2 \cdot 10^3)$ von $NH_4(NH_3)_{13}B(Ph-Ph)_4$

N(1)-H(1A)	0.98(3)	C(2)-C(3)	1.388(2)
N(1)-H(1B)	0.92(3)	C(2)-H(2)	0.99(2)
N(1)-H(1C)	0.96(3)	C(3)-C(4)	1.406(3)
N(1)-H(1D)	0.97(3)	C(3)-H(3)	0.970(18)
N(2)-H(2A)	0.86(4)	C(4)-C(5)	1.401(2)
N(2)-H(2B)	0.91(4)	C(4)-C(7)	1.494(2)
N(2)-H(2C)	0.88(3)	C(5)-C(6)	1.396(2)
N(3)-H(3A)	0.87(6)	C(5)-H(5)	0.99(2)
N(3)-H(3B)	0.85(4)	C(6)-H(6)	0.954(18)
N(3)-H(3C)	0.77(4)	C(7)-C(12)	1.394(3)
N(4)-H(4A)	0.96(3)	C(7)-C(8)	1.404(2)
N(4)-H(4B)	0.92(3)	C(8)-C(9)	1.389(3)
N(4)-H(4C) N(5)-H(5A)	0.92(4) 1.00(5)	C(8)-H(8) C(9)-C(10)	0.95(2) 1.383(3)
N(5) - H(5A) N(5) - H(5B)	0.85(3)	C(9)-E(10) C(9)-H(9)	0.94(2)
N(5) - H(5C)	0.95(4)	C(3) - C(11)	1.391(3)
N(6)-H(6A)	1.00(5)	C(10)-H(10)	0.985(19)
N(6)-H(6B)	0.93(6)	C(10) H(10) C(11)-C(12)	1.392(2)
N(6)-H(6C)	0.83(5)	C(11)-H(11)	0.96(2)
N(7)-H(7A)	0.89(3)	C(12)-H(12)	0.966(18)
N(7)-H(7B)	0.96(5)	C(13)-C(14)	1.399(2)
N(7)-H(7C)	0.88(6)	C(13)-C(18)	1.412(2)
N(8)-H(8A)	0.88(4)	C(13)-B(1)	1.644(2)
N(8)-H(8B)	0.84(5)	C(14)-C(15)	1.394(2)
N(8)-H(8C)	1.01(6)	C(14)-H(14)	0.956(18)
N(9)-H(9A)	1.05(3)	C(15)-C(16)	1.401(2)
N(9)-H(9B)	0.97(4)	C(15)-H(15)	0.980(19)
N(9)-H(9C)	1.34(11)	C(16)-C(17)	1.403(2)
N(10)-H(10A)	0.97(5)	C(16)-C(19)	1.491(2)
N(10)-H(10B)	0.99(4)	C(17)-C(18)	1.394(2)
N(10)-H(10C)	0.94(3)	C(17)-H(17)	1.010(17)
N(11)-H(11A)	0.96(5)	C(18)-H(18)	0.974(19)
N(11)-H(11B)	0.90(4)	C(19)-C(20)	1.395(3)
N(11)-H(11C)	0.88(4)	C(19)-C(24)	1.406(2)
N(12)-H(12A)	0.81(10)	C(20)-C(21)	1.392(3)
N(12)-H(12B)	0.84(5)	C(20)-H(20)	0.97(2)
N(12)-H(12C)	0.82(5)	C(21)-C(22) C(21)-H(21)	1.388(3)
N(13)-H(13A)	0.90(9) 0.87(8)	C(21) - R(21) C(22) - C(23)	0.98(2)
N(13)-H(13B) N(13)-H(13C)	0.87(8)	C(22)-C(23) C(22)-H(22)	1.384(3) 0.94(2)
N(14)-H(14A)	1.04(11)	C(22) - C(24)	1.395(3)
N(14) -H(14B)	0.87(9)	C(23)-H(23)	0.98(2)
N(14)-H(14C)	0.80(8)	C(24)-H(24)	0.98(2)
C(1)-C(6)	1.398(3)	C(21) - C(30)	1.397(2)
C(1)-C(2)	1.412(2)	C(25)-C(26)	1.405(2)
C(1)-B(1)	1.652(2)	C(25)-B(1)	1.659(2)
. , , ,	,	, , ,	

C(26)-C(27)	1.390(2)	H(6B)-N(6)-H(6C)	104(4)
C(26)-H(26)	0.957(17)	H(7A)-N(7)-H(7B)	92(3)
C(27)-C(28)	1.402(2)	H(7A)-N(7)-H(7C)	127(4)
C(27)-H(27)	0.982(18)	H(7B)-N(7)-H(7C)	85(4)
C(28)-C(29)	1.394(2)	H(8A)-N(8)-H(8B)	83(4)
C(28)-C(31)	1.494(2)	H(8A)-N(8)-H(8C)	87(4)
C(29)-C(30)	1.397(2)	H(8B)-N(8)-H(8C)	112(5)
C(29)-H(29)	0.96(2)	H(9A)-N(9)-H(9B)	59(2)
C(30)-H(30)	0.996(17)	H(9A)-N(9)-H(9C)	120(5)
C(31)-C(32)	1.396(3)	H(9B)-N(9)-H(9C)	132(5)
C(31)-C(36)	1.401(2)	H(10A)-N(10)-H(10B)	104(3)
C(32)-C(33)	1.389(3)	H(10A)-N(10)-H(10C)	114(4)
C(32)-H(32)	0.97(2)	H(10B)-N(10)-H(10C)	81(2)
C(33)-C(34)	1.385(3)	H(11A)-N(11)-H(11B)	95(3)
C(33)-H(33)	0.99(2)	H(11A)-N(11)-H(11C)	97(3)
C(34)-C(35)	1.375(3)	H(11B)-N(11)-H(11C)	91(3)
	0.96(2)		141(7)
C(34)-H(34)		H(12A)-N(12)-H(12B)	
C(35)-C(36)	1.391(3)	H(12A)-N(12)-H(12C)	104(7)
C(36)-H(36)	0.97(2)	H(12B)-N(12)-H(12C)	112(4)
C(37)-C(38)	1.406(2)	H(13A)-N(13)-H(13B)	127(6)
C(37)-C(42)	1.406(2)	H(13A)-N(13)-H(13C)	99(5)
C(37)-B(1)	1.648(2)	H(13B)-N(13)-H(13C)	111(6)
C(38)-C(39)	1.389(2)	H(14A)-N(14)-H(14B)	106(7)
C(38)-H(38)	0.964(19)	H(14A)-N(14)-H(14C)	97(7)
C(39)-C(40)	1.397(2)	H(14B)-N(14)-H(14C)	122(7)
C(39)-H(39)	0.97(2)	C(6)-C(1)-C(2)	114.77(15)
C(40)-C(41)	1.401(2)	C(6)-C(1)-B(1)	125.14(15)
C(40)-C(43)	1.489(2)	C(2)-C(1)-B(1)	120.06(16)
C(41)-C(42)	1.387(2)	C(3)-C(2)-C(1)	122.66(18)
C(41)-H(41)	0.979(19)	C(3)-C(2)-H(2)	118.5(9)
C(42)-H(42)	0.996(18)	C(1)-C(2)-H(2)	118.8(9)
C(43)-C(48)	1.399(3)	C(2)-C(3)-C(4)	121.60(16)
C(43)-C(44)	1.405(2)	C(2)-C(3)-H(3)	118.7(11)
C(44)-C(45)	1.391(3)	C(4)-C(3)-H(3)	119.6(11)
C(44)-H(44)	1.00(2)	C(5)-C(4)-C(3)	116.54(15)
C(45)-C(46)	1.387(3)	C(5)-C(4)-C(7)	121.95(17)
C(45)-H(45)		C(3)-C(4)-C(7)	121.48(15)
	0.98(2)		
C(46)-C(47)	1.383(3)	C(6) - C(5) - C(4)	121.03(18)
C(46)-H(46)	0.95(2)	C(6)-C(5)-H(5)	120.2(10)
C(47)-C(48)	1.389(3)	C(4)-C(5)-H(5)	118.8(10)
C(47)-H(47)	0.95(2)	C(5)-C(6)-C(1)	123.39(16)
C(48)-H(48)	0.953(18)	C(5)-C(6)-H(6)	117.4(11)
		C(1)-C(6)-H(6)	119.2(11)
H(1A)-N(1)-H(1B)	114(2)	C(12)-C(7)-C(8)	117.51(16)
H(1A)-N(1)-H(1C)	105(2)	C(12)-C(7)-C(4)	121.44(15)
H(1B)-N(1)-H(1C)	113(2)	C(8)-C(7)-C(4)	121.03(17)
H(1A)-N(1)-H(1D)	109.2(19)	C(9)-C(8)-C(7)	120.94(19)
H(1B)-N(1)-H(1D)	106(2)	C(9)-C(8)-H(8)	119.9(11)
H(1C)-N(1)-H(1D)	109(2)	C(7)-C(8)-H(8)	119.2(11)
H(2A)-N(2)-H(2B)	103(3)	C(10)-C(9)-C(8)	120.82(18)
H(2A)-N(2)-H(2C)	110(3)	C(10)-C(9)-H(9)	122.2(13)
H(2B)-N(2)-H(2C)	104(3)	C(8)-C(9)-H(9)	116.9(14)
H(3A)-N(3)-H(3B)	110(4)	C(9)-C(10)-C(11)	119.04(17)
H(3A)-N(3)-H(3C)	83(4)	C(9)-C(10)-H(10)	120.9(11)
H(3B)-N(3)-H(3C)	119(3)	C(11)-C(10)-H(10)	120.0(11)
H(4A)-N(4)-H(4B)	105(2)	C(10)-C(11)-C(12)	120.16(19)
H(4A)-N(4)-H(4C)	104(2)	C(10)-C(11)-H(11)	119.8(11)
H(4B)-N(4)-H(4C)	99(3)	C(12)-C(11)-H(11)	120.0(11)
H(5A)-N(5)-H(5B)	103(3)	C(12) $C(11)$ $R(11)C(11)$ $-C(12)$ $-C(7)$	121.50(17)
H(5A)-N(5)-H(5C)	107(3)	C(11)-C(12)-H(12)	117.2(11)
H(5B)-N(5)-H(5C)	112(3)	C(7)-C(12)-H(12)	121.3(11)
H(6A)-N(6)-H(6B)	110(4)	C(14)-C(13)-C(18)	114.40(15)
H(6A)-N(6)-H(6C)	99(4)	C(14)-C(13)-B(1)	123.92(14)
			1.60

C(18)-C(13)-B(1	121.67(15)	C(33)-C(32)-C(31)	121.00(17)
C(15)-C(14)-C(13)	123.65(15)	C(33)-C(32)-H(32)	119.6(12)
C(15)-C(14)-H(14)	115.8(11)	C(31)-C(32)-H(32)	119.4(12)
C(13)-C(14)-H(14)	120.4(11)	C(34)-C(33)-C(32)	120.44(19)
C(14)-C(15)-C(16)	120.81(17)	C(34)-C(33)-H(33)	119.4(12)
C(14)-C(15)-H(15)	120.2(10)	C(32)-C(33)-H(33)	120.1(12)
C(16)-C(15)-H(15)	119.0(10)	C(32) - C(33) - R(33)	119.28(17)
C(15) - C(15) - C(17)	116.89(15)	C(35) - C(34) - H(34)	122.6(12)
C(15)-C(16)-C(19)	121.07(16)	C(33)-C(34)-H(34)	118.1(12)
C(17)-C(16)-C(19)	121.95(14)	C(34)-C(35)-C(36)	120.80(18)
C(18)-C(17)-C(16)	121.13(15)	C(35)-C(36)-C(31)	120.70(19)
C(18)-C(17)-H(17)	118.9(10)	C(35)-C(36)-H(36)	119.3(11)
C(16)-C(17)-H(17)	119.9(10)	C(31)-C(36)-H(36)	120.0(11)
C(17)-C(18)-C(13)	122.97(16)	C(38)-C(37)-C(42)	114.54(15)
C(17)-C(18)-H(18)	118.2(10)	C(38)-C(37)-B(1)	126.36(15)
C(13)-C(18)-H(18)	118.8(10)	C(42)-C(37)-B(1)	119.02(13)
C(20)-C(19)-C(24)	117.74(16)	C(39)-C(38)-C(37)	122.99(16)
C(20)-C(19)-C(16)	122.06(15)	C(39)-C(38)-H(38)	120.2(10)
C(24)-C(19)-C(16)	120.12(16)	C(37)-C(38)-H(38)	116.8(10)
C(21)-C(20)-C(19)	121.18(17)	C(38)-C(39)-C(40)	121.36(15)
C(21)-C(20)-H(20)	117.5(12)	C(38)-C(39)-H(39)	119.3(12)
C(19)-C(20)-H(20)	121.3(12)	C(40)-C(39)-H(39)	119.2(12)
C(22)-C(21)-C(20)	120.2(2)	C(39)-C(40)-C(41)	116.71(15)
C(22)-C(21)-H(21)	119.7(12)	C(39)-C(40)-C(43)	123.44(14)
C(20)-C(21)-H(21)	120.0(12)	C(41)-C(40)-C(43)	119.77(15)
C(23)-C(22)-C(21)	119.69(18)	C(42)-C(41)-C(40)	121.17(16)
C(23)-C(22)-H(22)	123.3(13)	C(42)-C(41)-H(41)	119.5(10)
C(21)-C(22)-H(22)	117.0(13)	C(40)-C(41)-H(41)	119.3(10)
C(21) $C(22)$ $II(22)$ $C(22)$ $-C(24)$	120.06(17)	C(41) - C(42) - C(37)	123.16(15)
C(22)-C(23)-C(24) C(22)-C(23)-H(23)	121.2(13)	C(41)-C(42)-C(37) C(41)-C(42)-H(42)	119.0(11)
	118.7(13)		117.9(11)
C(24)-C(23)-H(23)		C(37)-C(42)-H(42)	
C(23)-C(24)-C(19)	121.06(18)	C(48)-C(43)-C(44)	117.63(16)
C(23)-C(24)-H(24)	119.5(10)	C(48) - C(43) - C(40)	120.97(15)
C(19)-C(24)-H(24)	119.4(10)	C(44)-C(43)-C(40)	121.27(17)
C(30)-C(25)-C(26)	114.69(14)	C(45)-C(44)-C(43)	120.6(2)
C(30)-C(25)-B(1)	125.94(14)	C(45)-C(44)-H(44)	120.1(11)
C(26)-C(25)-B(1)	119.32(13)	C(43)-C(44)-H(44)	119.3(11)
C(27)-C(26)-C(25)	123.34(15)	C(46)-C(45)-C(44)	120.87(19)
С(27)-С(26)-Н(26)	117.5(10)	C(46)-C(45)-H(45)	119.2(13)
C(25)-C(26)-H(26)	119.2(10)	C(44)-C(45)-H(45)	119.8(13)
C(26)-C(27)-C(28)	120.87(15)	C(47)-C(46)-C(45)	119.11(18)
C(26)-C(27)-H(27)	119.4(10)	C(47)-C(46)-H(46)	121.4(13)
C(28)-C(27)-H(27)	119.8(10)	C(45)-C(46)-H(46)	119.4(13)
C(29)-C(28)-C(27)	116.76(15)	C(46)-C(47)-C(48)	120.5(2)
C(29)-C(28)-C(31)	121.90(15)	C(46)-C(47)-H(47)	120.0(11)
C(27)-C(28)-C(31)	121.32(15)	C(48)-C(47)-H(47)	119.5(11)
C(28)-C(29)-C(30)	121.47(16)	C(47)-C(48)-C(43)	121.33(18)
C(28)-C(29)-H(29)	120.7(11)	C(47)-C(48)-H(48)	119.8(11)
C(30)-C(29)-H(29)	117.8(11)	C(43)-C(48)-H(48)	118.9(11)
C(25)-C(30)-C(29)	122.83(16)	C(13)-B(1)-C(37)	112.00(13)
C(25)-C(30)-H(30)	119.1(9)	C(13)-B(1)-C(1)	108.59(13)
C(29)-C(30)-H(30)	118.0(9)	C(37)-B(1)-C(1)	111.02(14)
C(32)-C(31)-C(36)	117.76(16)	C(37) - B(1) - C(25)	108.92(14)
C(32) - C(31) - C(38)	121.06(15)	C(37)-B(1)-C(25)	105.72(12)
C(32)-C(31)-C(28) C(36)-C(31)-C(28)	121.18(17)	C(37)-B(1)-C(23) C(1)-B(1)-C(25)	110.56(12)
C(30)-C(31)-C(20)	121.10(1/)	C(1)-B(1)-C(23)	TTO.30(TZ)

Bindungslängen und Bindungswinkel von NH₄(NH₃)₁₃B(Ph-Ph)₄

	U11	U22	U33	U23	U13	U12
N(1)	38(1)	47(1)	35(1)	9(1)	13(1)	20(1)
N(2)	51(1)	48(2)	49(1)	21(1)	17(1)	26(1)
N(3)	53(1)	43(1)	36(1)	12(1)	16(1)	19(1)
N(4)	40(1)	53(1)	35(1)	7(1)	14(1)	15(1)
N(5)	80(2)	69(2)	60(1)	26(1)	40(1)	46(2)
N(6)	83(2)	73(2)	50(1)	11(1)	18(1)	37(2)
N(7)	54(2)	82(2)	68(2)	34(1)	19(1)	38(2)
N(8)	135(4)	127(3)	110(3)	33(3)	67(3)	88(3)
N(9)	66(2)	121(3)	53(1)	17(2)	16(1)	32(2)
N(10)	63(2)	68(2)	54(1)	19(1)	10(1)	29(2)
N(11) N(12)	77(2) 98(2)	69(2) 87(2)	90(2) 45(1)	37(2) 4(1)	40(2) 8(1)	41(2)
N(12) N(13)	51(2)	78(2)	62(1)	17(1)	13(1)	51(2) 23(2)
N(13) N(14)	141(4)	58(2)	99(2)	19(2)	46(2)	49(2)
C(1)	22(1)	24(1)	17(1)	9(1)	10(2)	11(1)
C(2)	21(1)	20(1)	22(1)	7(1)	8(1)	7(1)
C(3)	30(1)	22(1)	23(1)	8(1)	11(1)	15(1)
C(4)	23(1)	25(1)	18(1)	9(1)	10(1)	13(1)
C(5)	22(1)	23(1)	23(1)	5(1)	8(1)	9(1)
C(6)	25(1)	20(1)	22(1)	6(1)	10(1)	11(1)
C(7)	25(1)	29(1)	24(1)	12(1)	13(1)	15(1)
C(8)	29(1)	32(1)	29(1)	9(1)	12(1)	18(1)
C(9)	38(1)	37(1)	37(1)	14(1)	18(1)	26(1)
C(10)	27(1)	47(1)	33(1)	21(1)	16(1)	25(1)
C(11)	25(1)	40(1)	24(1)	9(1)	9(1)	16(1)
C(12)	28(1)	32(1)	24(1)	8(1)	12(1)	17(1)
C(13) C(14)	20(1) 24(1)	19(1) 24(1)	24(1) 20(1)	6(1) 6(1)	9(1) 9(1)	12(1) 11(1)
C(14)	24(1)	20(1)	22(1)	2(1)	5(1)	7(1)
C(16)	23(1)	20(1)	25(1)	8(1)	11(1)	12(1)
C(17)	24(1)	24(1)	21(1)	9(1)	9(1)	13(1)
C(18)	18(1)	21(1)	22(1)	5(1)	5(1)	9(1)
C(19)	22(1)	24(1)	25(1)	10(1)	9(1)	12(1)
C(20)	30(1)	27(1)	29(1)	8(1)	13(1)	12(1)
C(21)	29(1)	25(1)	35(1)	8(1)	10(1)	6(1)
C(22)	26(1)	37(1)	41(1)	21(1)	16(1)	10(1)
C(23)	29(1)	38(1)	30(1)	12(1)	15(1)	14(1)
C(24)		26(1)	26(1)	7(1)	9(1)	10(1)
C(25)	19(1)	15(1)	24(1)	8(1)	9(1)	5(1)
C(26)		26(1)	26(1)		12(1)	13(1)
C(27)	24(1)	30(1)	25(1)	11(1)	8(1)	15(1)
C(28) C(29)	24(1) 28(1)	22(1) 29(1)	22(1) 24(1)	8(1)	8(1) 12(1)	7(1)
C(29)	23(1)	26(1)	26(1)	7(1) 9(1)	10(1)	13(1) 13(1)
C(31)	32(1)	26(1)	23(1)	9(1)	10(1)	14(1)
C(32)	34(1)	39(1)	27(1)	13(1)	13(1)	17(1)
C(33)	32(1)	45(1)	29(1)	11(1)	4(1)	15(1)
C(34)	43(1)	38(1)	20(1)	10(1)	6(1)	14(1)
C(35)	43(1)	45(1)	27(1)	14(1)	16(1)	20(1)
C(36)	32(1)	41(1)	28(1)	14(1)	12(1)	16(1)
C(37)	17(1)	23(1)	20(1)	5(1)	4(1)	10(1)
C(38)	22(1)	25(1)	26(1)	11(1)	12(1)	11(1)
C(39)	25(1)	28(1)	26(1)	9(1)	13(1)	15(1)
C(40)	20(1)	23(1)	20(1)	4(1)	3(1)	10(1)
C(41) C(42)	22(1)	23(1) 27(1)	23(1) 21(1)	8(1) 7(1)	8(1) 10(1)	9(1)
C(42) C(43)	23(1) 30(1)	26(1)	17(1)	5(1)		14(1) 15(1)
C(43)	29(1)	25(1)	35(1)		8(1)	14(1)
O(11)	27 (1)	20(1)	33(1)	J (± /	O(±/	(-/

C(45)	41(1)	41(1)	39(1)	8(1)	11(1)	29(1)
C(46)	54(1)	28(1)	30(1)	8(1)	11(1)	27(1)
C(47)	45(1)	24(1)	23(1)	8(1)	13(1)	14(1)
C(48)	33(1)	28(1)	19(1)	7(1)	10(1)	16(1)
B(1)	21(1)	22(1)	20(1)	7(1)	9(1)	11(1)

Atomkoordinaten $(\cdot 10^4)$ und isotrope Auslenkungsparameter $(\mathring{A}^2 \cdot 10^3)$ von $NH_4(NH_3)_{13}B(Ph-Ph)_4$

	x	У	Z	U(eq)
H(1A)	13630(20)	9770(20)	2105(13)	56(7)
H(1B)	13730(20)	8800(20)	1562(15)	58(7)
H(1C)	14760(30)	9620(20)	2366(15)	65(8)
H(1D)	13470(20)	8600(20)	2294(13)	48(6)
H(2A)	12630(30)	610(30)	2569(19)	94(11)
H(2B)	13790(30)	1500(30)	2637(19)	88(11)
H(2C)	12800(30)	1050(30)	1930(18)	78(9)
H(3A)	12370(50)	7470(50)	170(30)	155(19)
H(3B)	13460(30)	7430(30)	394(19)	100(12)
H(3C)	13100(40)	8100(40)	10(20)	113(14)
H(4A)	6920(30)	320(20)	3417(16)	72(8)
H(4B)	6600(30)	1260(30)	3381(17)	75(9)
H(4C)	6990(30)	900(30)	2800(19)	99(11)
H(5A)	12090(40)	6750(40)	2640(20)	126(15)
H(5B)	12270(30)	7820(30)	3111(19)	91(11)
H(5C)	13360(40)	7670(30)	3280(20)	108(12)
H(6A)	16090(40)	8610(40)	4040(20)	124(14)
H(6B)	15200(50)	7420(50)	4160(30)	180(20)
H(6C)	15410(40)	8520(40)	4530(30)	128(16)
H(7A)	11630(30)	-700(30)	3773(17)	71(9)
H(7B)	11150(50)	-30(40)	3640(30)	154(18)
H(7C)	10860(50)	-680(50)	2980(30)	180(20)
H(8A)	7400(40)	3690(30)	3640(20)	98(14)
H(8B)	6550(50)	3600(40)	3770(30)	150(20)
H(8C)	7650(60)	3670(60)	4360(40)	200(30)
H(9A)	14980(30)	1560(30)	4059(15)	59(8)
H(9B)	14100(40)	1110(40)	3990(20)	114(14)
H(9C)	14660(100)	-140(100)	3810(60)	410(60)
H(10A)	7660(50)	960(50)	4820(30)	180(20)
H(10B)	7450(30)	1990(30)	5065(19)	100(11)
H(10C)	6700(30)	1080(30)	5184(16)	73(9)
H(11A)	9080(40)	320(40)	3990(20)	120(14)
H(11B)	8530(30)	-870(40)	3850(20)	111(13)
H(11C)	8770(30)	-250(30)	4530(20)	106(14)
H(12A)	14270(90)	5230(90)	4430(60)	340(50)
H(12B)	13690(50)	6020(40)	4500(30)	150(20)
H(12C)	14490(40)	5920(40)	5080(30)	119(15)
H(13A)	15200(80)	5990(70)	6730(40)	270(40)
H(13B)	15550(70)	6930(70)	6270(50)	270(40)
H(13C)	16400(50)	6740(50)	6830(30)	162(19)
H(14A)	12090(100)	5930(90)	4310(50)	320(50)
H(14B)	11140(80)	6110(70)	3780(50)	270(40)
H(14C)	10850(80)	5070(70)	4040(40)	240(40)
H(2)	9172(17)	3835(17)	2333(10)	18(4)
H(3)	7330(16)	3831(16)	1953(9)	20(4)
H(5)	5434(19)	273(18)	951(11)	27(5)
Н(б)	7296(16)	304(16)	1332(9)	20(4)

H(8)	5534(19)	3554(19)	2001(12)	34(5)
H(9)	3780(20)	3640(20)	1567(12)	46(6)
H(10)	2074(18)	2185(17)	453(10)	29(5)
H(11)	2258(19)	644(18)	-192(11)	31(5)
H(12)	4032(16)	557(17)	230(10)	24(4)
H(14)	12096(16)	4136(16)	3116(11)	25(4)
H(15)	13589(17)	5597(17)	2822(10)	22(4)
H(17)	11435(16)	4084(16)	500(10)	24(4)
H(18)	9923(17)	2648(16)	835(10)	21(4)
H(20)	14474(18)	7252(18)	2420(12)	36(5)
H(21)	16140(20)	8540(20)	2121(12)	39(6)
H(22)	16390(20)	7966(19)	970(11)	37(5)
H(23)	14997(19)	6029(19)	70(12)	43(6)
H(24)	13360(17)	4712(18)	391(10)	24(5)
H(26)	11511(16)	1840(16)	3222(10)	23(4)
H(27)	12324(17)	2260(16)	4553(10)	24(4)
H(29)	9854(18)	3277(18)	4785(11)	34(5)
H(30)	9073(17)	2889(15)	3455(9)	21(4)
H(32)	13511(19)	3685(18)	5743(11)	37(5)
H(33)	14390(20)	4220(20)	7109(12)	44(6)
H(34)	13161(19)	4024(19)	7868(13)	42(6)
H(35)	9000(20)	-3308(19)	2737(12)	45(6)
H(36)	10139(19)	2729(17)	5929(10)	29(5)
H(38)	10694(17)	1267(17)	1150(10)	25(4)
H(39)	10610(20)	-526(19)	750(12)	42(6)
H(41)	8405(17)	-1854(17)	2011(10)	24(4)
H(42)	8543(17)	-37(16)	2431(10)	28(5)
H(44)	11290(20)	-1802(19)	1160(11)	35(5)
H(45)	11300(20)	-3590(18)	989(11)	40(5)
H(46)	9566(19)	-5315(19)	887(11)	37(5)
H(47)	7760(20)	-5315(19)	904(11)	33(5)
H(48)	7720(18)	-3574(16)	1065(10)	26(5)

Wasserstoffatomkoordinaten (*10 4) und isotrope Auslenkungsparameter (Å 2 * 10 3) von NH $_4$ (NH $_3$) $_{13}$ B(Ph-Ph) $_4$

6.3 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von [NH₄(NH₃)₃][B(p-tolyl)₄] · NH₃

	х	У	Z	U(eq)
N(1)	8134(2)	9690(1)	4467(1)	38(1)
N(2)	4363(2)	6192(1)	4299(1)	45(1)
N(3)	8966(3)	11587(2)	4527(1)	58(1)
N(4)	6480(2)	10349(1)	5584(1)	37(1)
N(5)	4245(2)	6672(2)	780(1)	48(1)
C(1)	7328(2)	9018(1)	2527(1)	21(1)
C(2)	6994(2)	9937(1)	2552(1)	23(1)
C(3)	7836(2)	10638(1)	2585(1)	25(1)
C(4)	9081(2)	10463(1)	2609(1)	25(1)
C(5)	9438(2)	9553(1)	2605(1)	25(1)
C(6)	8586(2)	8859(1)	2559(1)	24(1)
C(7)	10011(2)	11212(1)	2633(1)	34(1)
C(8)	5011(2)	8452(1)	2203(1)	22(1)
C(9)	4930(2)	8980(1)	1538(1)	25(1)
C(10)	3833(2)	9161(1)	1177(1)	27(1)
C(11)	2735(2)	8829(1)	1458(1)	26(1)
C(12)	2793(2)	8286(1)	2106(1)	25(1)
C(13)	3897(2)	8106(1)	2461(1)	23(1)
C(14)	1538(2)	9056(1)	1083(1)	34(1)
C(15)	6247(2)	8015(1)	3508(1)	22(1)
C(16)	7085(2)	7463(1)	3893(1)	25(1)
C(17)	7093(2)	7371(1)	4684(1)	29(1)
C(18)	6252(2)	7824(1)	5133(1)	28(1)
C(19)	5425(2)	8389(1)	4768(1)	27(1)
C(20)	5430(2)	8486(1)	3977(1)	24(1)
C(21)	6232(2)	7714(2)	5987(1)	41(1)
C(22)	6758(2)	7270(1)	2121(1)	22(1)
C(23)	6438(2)	6398(1)	2361(1)	24(1)
C(24)	6708(2)	5622(1)	1950(1)	26(1)
C(25)	7318(2)	5672(1)	1254(1)	24(1)
C(26)	7607(2)	6535(1)	987(1)	23(1)
C(27)	7345(2)	7305(1)	1412(1)	23(1)
C(28)	7662(2)	4828(1)	827(1)	33(1)
B(1)	6329(2)	8188(1)	2584(1)	23(1)

Atomkoordinaten $(\cdot 10^4)$ und isotrope Auslenkungsparameter $(\mathring{A}^2 \cdot 10^3)$ von $[NH_4(NH_3)_3][B(p-toly1)_4] \cdot NH_3$

N(1)-H(1D)	0.99(3)	N(5)-H(5A)	0.91(4)
N(1)-H(1C)	1.01(3)	N(5)-H(5B)	0.84(5)
N(1)-H(1B)	1.00(3)	N(5)-H(5C)	0.90(3)
N(1)-H(1A)	0.97(3)	C(1)-C(2)	1.404(2)
N(2)-H(2A)	0.91(5)	C(1)-C(6)	1.404(2)
N(2)-H(2B)	0.96(4)	C(1)-B(1)	1.648(2)
N(2)-H(2C)	0.87(4)	C(2)-C(3)	1.389(2)
N(3)-H(3A)	0.94(5)	C(2)-H(2)	0.935(19)
N(3)-H(3B)	0.89(5)	C(3)-C(4)	1.394(2)
N(3)-H(3C)	0.89(5)	C(3)-H(3)	0.974(17)
N(4)-H(4A)	0.99(2)	C(4)-C(5)	1.398(2)
N(4)-H(4B)	0.91(3)	C(4)-C(7)	1.506(2)
N(4)-H(4C)	0.84(3)	C(5)-C(6)	1.390(2)

C(5)-H(5)	0.97(2)	H(4A)-N(4)-H(4B)	114(2)
C(6)-H(6)	0.978(17)	H(4A)-N(4)-H(4C)	110(2)
C(7)-H(7A)	0.95(3)	H(4B)-N(4)-H(4C)	106(2)
C(7)-H(7B)	1.02(2)	H(5A) - N(5) - H(5B)	102(4)
C(7)-H(7C)	0.94(3)	H(5A)-N(5)-H(5C)	119(3)
C(8)-C(13)	1.403(2)	H(5B)-N(5)-H(5C)	102(3)
C(8)-C(9)	1.409(2)	C(2)-C(1)-C(6)	114.69(14)
C(8)-B(1)	1.644(3)	C(2)-C(1)-B(1)	122.74(15)
C(9)-C(10)	1.390(3)	C(6)-C(1)-B(1)	121.98(13)
C(9)-H(9)	1.003(19)	C(3)-C(2)-C(1)	123.03(16)
C(10)-C(11)	1.394(3)	C(3)-C(2)-H(2)	118.4(10)
C(10)-H(10)	1.02(2)	C(1)-C(2)-H(2)	118.5(10)
C(11)-C(12)	1.395(2)	C(2)-C(3)-C(4)	121.23(15)
C(11)-C(14)	1.510(3)	C(2)-C(3)-H(3)	118.3(10)
C(12)-C(13)	1.391(2)	C(4)-C(3)-H(3)	120.5(10)
C(12)-H(12)	0.974(18)	C(3)-C(4)-C(5)	116.92(15)
	0.957(18)		
C(13)-H(13)		C(3)-C(4)-C(7)	122.14(15)
C(14)-H(14A)	0.98(2)	C(5)-C(4)-C(7)	120.94(16)
C(14)-H(14B)	1.02(3)	C(6)-C(5)-C(4)	121.20(16)
C(14)-H(14C)	0.98(2)	C(6)-C(5)-H(5)	120.6(11)
C(15)-C(20)	1.404(2)	C(4)-C(5)-H(5)	118.2(11)
C(15)-C(16)	1.404(2)	C(5)-C(6)-C(1)	122.89(15)
		C(5)-C(6)-H(6)	119.4(10)
C(15)-B(1)	1.649(2)		
C(16)-C(17)	1.400(2)	C(1)-C(6)-H(6)	117.7(10)
C(16)-H(16)	0.97(2)	C(4)-C(7)-H(7A)	112.6(15)
C(17)-C(18)	1.388(3)	C(4)-C(7)-H(7B)	110.6(13)
C(17)-H(17)	1.01(2)	H(7A)-C(7)-H(7B)	111.3(19)
C(18)-C(19)	1.391(3)	C(4)-C(7)-H(7C)	111.2(16)
	1.513(2)		103(2)
C(18)-C(21)		H(7A)-C(7)-H(7C)	
C(19)-C(20)	1.400(2)	H(7B)-C(7)-H(7C)	108.0(19)
C(19)-H(19)	1.006(18)	C(13)-C(8)-C(9)	114.51(15)
C(20)-H(20)	0.974(19)	C(13)-C(8)-B(1)	123.49(13)
C(21)-H(21A)	0.95(4)	C(9)-C(8)-B(1)	121.73(14)
C(21)-H(21B)	1.06(3)	C(10)-C(9)-C(8)	122.80(15)
C(21)-H(21C)	0.96(2)	C(10)-C(9)-H(9)	119.8(10)
C(22)-C(23)	1.399(2)	C(8)-C(9)-H(9)	117.4(10)
C(22)-C(27)	1.408(2)	C(9)-C(10)-C(11)	121.45(14)
C(22)-B(1)	1.649(2)	C(9)-C(10)-H(10)	119.5(12)
C(23)-C(24)	1.386(2)	C(11)-C(10)-H(10)	119.1(12)
C(23)-H(23)	0.994(19)	C(10)-C(11)-C(12)	116.89(16)
C(24)-C(25)	1.400(2)	C(10)-C(11)-C(14)	121.46(15)
C(24)-H(24)	1.013(18)	C(12)-C(11)-C(14)	121.65(16)
C(25)-C(26)	1.393(2)	C(13)-C(12)-C(11)	121.16(16)
C(25)-C(28)	1.502(2)	C(13)-C(12)-H(12)	121.8(10)
C(26)-C(27)	1.389(2)	C(11)-C(12)-H(12)	117.1(10)
C(26)-H(26)	0.98(2)	C(12)-C(13)-C(8)	
			123.14(14)
C(27)-H(27)	0.995(18)	C(12)-C(13)-H(13)	116.3(11)
C(28)-H(28A)	0.93(3)	C(8)-C(13)-H(13)	120.6(11)
C(28)-H(28B)	0.95(2)	C(11)-C(14)-H(14A)	114.8(15)
C(28)-H(28C)	0.95(3)	C(11)-C(14)-H(14B)	110.4(13)
, , , , ,	` '	H(14A)-C(14)-H(14B)	105.5(19)
II/1D\ NI/1\ II/10\	110/2)		
H(1D)-N(1)-H(1C)	110(2)	C(11)-C(14)-H(14C)	112.4(13)
H(1D)-N(1)-H(1B)	116.4(18)	H(14A)-C(14)-H(14C)	107.3(17)
H(1C)-N(1)-H(1B)	107(2)	H(14B)-C(14)-H(14C)	105.9(18)
H(1D)-N(1)-H(1A)	110(2)	C(20)-C(15)-C(16)	115.04(13)
H(1C)-N(1)-H(1A)	101(2)	C(20)-C(15)-B(1)	122.59(14)
H(1B)-N(1)-H(1A)	112(2)	C(16)-C(15)-B(1)	121.99(14)
	96(3)	C(10) $C(13)$ $B(1)C(17)$ $-C(16)$ $-C(15)$	122.69(16)
H(2A) - N(2) - H(2B)			
H(2A)-N(2)-H(2C)	113(3)	C(17)-C(16)-H(16)	118.1(10)
H(2B)-N(2)-H(2C)	96(3)	C(15)-C(16)-H(16)	119.2(10)
H(3A)-N(3)-H(3B)	90(3)	C(18)-C(17)-C(16)	121.11(16)
H(3A)-N(3)-H(3C)	98(4)	C(18)-C(17)-H(17)	121.0(11)
H(3B)-N(3)-H(3C)	110(4)	C(16)-C(17)-H(17)	117.9(11)
, , , /	- , ,	, , , ,	, ,

C(17)-C(18)-C(19) C(17)-C(18)-C(21) C(19)-C(18)-C(21) C(18)-C(19)-C(20) C(18)-C(19)-H(19) C(20)-C(19)-H(19) C(19)-C(20)-C(15) C(19)-C(20)-H(20) C(15)-C(20)-H(20) C(18)-C(21)-H(21A) C(18)-C(21)-H(21B) H(21A)-C(21)-H(21B) C(18)-C(21)-H(21C) H(21A)-C(21)-H(21C) H(21A)-C(21)-H(21C) C(23)-C(22)-C(27) C(23)-C(22)-B(1) C(24)-C(23)-H(23) C(22)-C(22) C(24)-C(23)-H(23)	117.41(14) 121.65(17) 120.94(17) 121.24(16) 121.7(10) 117.0(10) 122.47(16) 120.0(10) 117.5(10) 110.4(19) 111.2(13) 96(2) 110.9(13) 117(2) 111(2) 114.63(14) 122.26(14) 122.69(14) 123.20(15) 117.0(10)	C(25)-C(24)-H(24) C(26)-C(25)-C(24) C(26)-C(25)-C(28) C(24)-C(25)-C(28) C(27)-C(26)-C(25) C(27)-C(26)-H(26) C(25)-C(26)-H(26) C(26)-C(27)-C(22) C(26)-C(27)-H(27) C(22)-C(27)-H(27) C(25)-C(28)-H(28A) C(25)-C(28)-H(28B) H(28A)-C(28)-H(28B) H(28A)-C(28)-H(28C) H(28B)-C(28)-H(28C) H(28B)-C(28)-H(28C) C(8)-B(1)-C(1) C(8)-B(1)-C(22) C(1)-B(1)-C(15)	117.8(10) 116.93(14) 122.08(15) 120.98(15) 121.22(15) 120.7(11) 118.0(11) 122.87(15) 120.7(10) 116.4(10) 110.8(17) 114.6(13) 104(2) 110.4(15) 107(2) 110(2) 112.76(12) 104.19(12) 112.89(13) 113.04(13)
C(24)-C(23)-H(23) C(22)-C(23)-H(23) C(23)-C(24)-C(25)	117.0(10) 119.8(10) 121.08(15)		
C(23)-C(24)-H(24)	121.1(10)		

Bindungslängen und Bindungswinkel von $[NH_4(NH_3)_3][B(p-tolyl)_4]$ · NH_3

	U11	U22	U33	U23	U13	U12
N(1)	38(1)	46(1)	30(1)	1(1)	-2(1)	1(1)
N(2)	48(1)	37(1)	49(1)	0(1)	13(1)	-10(1)
N(3)	61(2)	58(1)	54(1)	2(1)	2(1)	-5(1)
N(4)	40(1)	39(1)	33(1)	-4(1)	4(1)	-5(1)
N(5)	43(1)	55(1)	48(1)	-16(1)	-9(1)	-1(1)
C(1)	23(1)	26(1)	15(1)	0(1)	1(1)	-1(1)
C(2)	20(1)	28(1)	22(1)	1(1)	-1(1)	2(1)
C(3)	29(1)	22(1)	22(1)	1(1)	-2(1)	0(1)
C(4)	25(1)	30(1)	19(1)	2(1)	-2(1)	-4(1)
C(5)	19(1)	35(1)	21(1)	1(1)	-1(1)	1(1)
C(6)	27(1)	25(1)	20(1)	1(1)	0(1)	2(1)
C(7)	28(1)	37(1)	36(1)	4(1)	-8(1)	-8(1)
C(8)	26(1)	20(1)	19(1)	-3(1)	0(1)	1(1)
C(9)	25(1)	27(1)	23(1)	2(1)	1(1)	-2(1)
C(10)	30(1)	32(1)	21(1)	3(1)	-2(1)	1(1)
C(11)	26(1)	28(1)	23(1)	-5(1)	-2(1)	3(1)
C(12)	22(1)	28(1)	24(1)	-4(1)	1(1)	-3(1)
C(13)	28(1)	22(1)	21(1)	0(1)	1(1)	-1(1)
C(14)	27(1)	48(1)	28(1)	-2(1)	-4(1)	5(1)
C(15)	22(1)	22(1)	22(1)	0(1)	-2(1)	-2(1)
C(16)	29(1)	26(1)	20(1)	-1(1)	1(1)	1(1)
C(17)	32(1)	28(1)	25(1)	4(1)	-6(1)	1(1)
C(18)	33(1)	30(1)	20(1)	1(1)	-1(1)	-6(1)
C(19)	27(1)	29(1)	24(1)	-6(1)	5(1)	-4(1)
C(20)	24(1)	23(1)	23(1)	-2(1)	-3(1)	-1(1)
C(21)	56(2)	44(1)	23(1)	1(1)	1(1)	0(1)
C(22)	19(1)	27(1)	21(1)	2(1)	-4(1)	0(1)
C(23)	24(1)	27(1)	21(1)	1(1)	1(1)	-2(1)
C(24)	28(1)	23(1)	27(1)	1(1)	0(1)	-3(1)
C(25)	22(1)	26(1)	24(1)	-3(1)	-2(1)	-1(1)

C(26)	21(1)	29(1)	19(1)	-1(1)	-1(1)	-1(1)
C(27)	24(1)	22(1)	23(1)	2(1)	-3(1)	-2(1)
C(28)	40(1)	27(1)	32(1)	-5(1)	4(1)	0(1)
B(1)	23(1)	24(1)	20(1)	0(1)	-2(1)	0(1)

Atomkoordinaten $(\cdot 10^4)$ und isotrope Auslenkungsparameter $(\mathring{A}^2 \cdot 10^3)$ von $[NH_4(NH_3)_3][B(p-toly1)_4] \cdot NH_3$

	x	У	z	U(eq)
H(1D)	7830(20)	9349(16)	4018(14)	54(7)
H(1C)	7440(30)	9797(19)	4835(17)	81(9)
H(1B)	8510(20)	10297(17)	4363(12)	51(6)
H(1A)	8660(30)	9304(18)	4771(15)	66(7)
H(2A)	4890(40)	5850(30)	4030(20)	123(14)
H(2B)	3760(40)	6250(20)	3910(20)	102(12)
H(2C)	4560(30)	6770(30)	4306(19)	101(11)
H(3A)	9390(40)	11890(30)	4920(30)	132(16)
H(3B)	9520(40)	11770(30)	4190(30)	132(16)
H(3C)	8320(50)	11940(30)	4510(30)	148(19)
H(4A)	6180(20)	10890(15)	5314(12)	41(5)
H(4B)	6820(30)	10476(19)	6043(17)	73(8)
H(4C)	5910(30)	9992(19)	5672(14)	62(8)
H(5A)	3950(40)	6200(20)	1070(20)	98(12)
H(5B)	5000(40)	6600(30)	830(20)	117(15)
H(5C)	4140(30)	7240(20)	947(18)	82(9)
H(2)	6167(18)	10083(11)	2557(9)	22(4)
H(3)	7534(16)	11258(11)	2609(9)	21(4)
H(5)	10299(19)	9416(12)	2648(10)	29(5)
H(6)	8861(15)	8228(11)	2567(9)	19(4)
H(7A)	10600(20)	11127(16)	3024(15)	57(7)
H(7B)	9600(20)	11828(16)	2679(12)	50(6)
H(7C)	10490(30)	11217(17)	2189(16)	61(7)
H(9)	5706(18)	9229(11)	1325(9)	19(4)
H(10)	3826(19)	9559(13)	700(11)	39(5)
H(12)	2030(17)	8038(11)	2295(9)	18(4)
H(13)	3867(17)	7707(12)	2889(10)	24(4)
H(14A)	1510(20)	8931(15)	537(14)	55(6)
H(14B)	850(20)	8684(15)	1317(12)	48(6)
H(14C)	1310(20)	9694(16)	1155(11)	43(6)
H(16)	7674(18)	7117(12)	3601(10)	24(4)
H(17)	7736(19)	6971(13)	4918(11)	34(5)
H(19)	4779(17)	8727(12)	5056(9)	20(4)
H(20)	4842(17)	8883(12)	3731(9)	19(4)
H(21A)	5590(30)	7330(20)	6134(18)	86(10)
H(21B)	6950(30)	7282(18)	6174(14)	60(7)
H(21C)	6280(20)	8292(17)	6235(12)	50(6)
H(23)	5970(17)	6316(11)	2839(10)	26(5)
H(24)	6478(17)	4999(13)	2147(9)	25(4)
H(26)	8036(18)	6583(13)	502(11)	32(5)
H(27)	7596(18)	7915(12)	1231(10)	23(4)
H(28A)	7240(30)	4791(18)	368(17)	76(8)
	· · ·			
H(28B)	7460(20)	4276(17)	1079(13)	51(6)

Wasserstoffatomkoordinaten ($\cdot 10^4$) und isotrope Auslenkungsparameter ($\mathring{\rm A}^2$ · 10^3) von [NH₄(NH₃)₃][B(p-tolyl)₄] · NH₃

6.4 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von $NH_4(NH_3)_2N_3$

	х	У	Z	U(eq)
N(1)	6659(2)	-2500	4601(2)	27(1)
N(2)	7808(2)	2500	7451(2)	29(1)
N(3)	6773(2)	-2500	-989(2)	32(1)
N(4)	8477(2)	2500	2659(2)	23(1)
N(5)	8479(2)	804(1)	2634(1)	37(1)

Atomkoordinaten (•10 4) und isotrope Auslenkungsparameter (Å 2 • 10 3) von $NH_4(NH_3)_2N_3$

N(1)-H(1)	0.902(14)
N(1)-H(2)	0.95(2)
N(1)-H(3)	0.92(2)
N(2)-H(5)	0.88(3)
N(2)-H(6)	0.883(15)
N(3)-H(4)	0.865(17)
N(3)-H(7)	0.90(3)
N(4)-N(5)#1	1.1747(9)
N(4) - N(5)	1.1747(9)
, , ,	, ,
H(1)-N(1)-H(2)	108.3(10)
H(1)-N(1)-H(3)	110.9(10)
H(2)-N(1)-H(3)	109.9(16)
H(5)-N(2)-H(6)	103.7(13)
H(4)-N(3)-H(7)	104.2(15)
N(5) #1 - N(4) - N(5)	178.30(13)
	,

Bindungslängen und Bindungswinkel von $NH_4(NH_3)_2N_3$

	U11 	U22	U33	U23	U13	U12
N(1)	26(1)	28(1)	27(1)	0	5(1)	0
N(2)	27(1)	35(1)	24(1)	0	6(1)	0
N(3)	27(1)	40(1)	29(1)	0	3(1)	0
N(4)	22(1)	28(1)	20(1)	0	3(1)	0
N(5)	42(1)	28(1)	44(1)	-2(1)	16(1)	-3(1)

Atomkoordinaten $(\cdot 10^4)$ und isotrope Auslenkungsparameter $(\mathring{A}^2 \cdot 10^3)$ von $NH_4(NH_3)_2N_3$

	x	У	z	U(eq)
H(1)	7280(20)	-1441(19)	4180(20)	37(3)
H(2)	5180(30)	-2500	3960(30)	39(4)
H(3)	6790(30)	-2500	6010(30)	45(5)
H(4)	7330(30)	-1520(20)	-260(30)	69(5)
H(5)	8050(40)	2500	8820(40)	66(7)
Н(б)	8530(20)	1480(20)	7140(20)	55(4)
H(7)	5380(50)	-2500	-850(40)	86(9)

Wasserstoffatomkoordinaten (\cdot 10 4) und isotrope Auslenkungsparameter ($\mathring{\rm A}^2$ \cdot 10 3) von NH4(NH3)2N3

6.5 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von [NH₄(NH₃)₃][SCN]

	х	У	Z	U(eq)
S(1)	4455(1)	7970(1)	1248(1)	31(1)
N(1)	968(2)	4392(2)	3321(1)	27(1
N(2)	8686(2)	7175(2)	-564(2)	37(1
N(3)	5842(2)	7526(2)	4305(1)	33(1
N(4)	654(2)	8777(2)	3380(2)	32(1
N(5)	-3423(2)	2905(2)	3029(2)	32(1
C(1)	5247(2)	7700(2)	3038(2)	24(1

Atomkoordinaten ($\cdot 10^4$) und isotrope Auslenkungsparameter ($\mathring{A}^2 \cdot 10^3$) von $[NH_4(NH_3)_3][SCN]$

S(1)-C(1)	1.6457(14)	H(1A)-N(1)-H(1B)	109.0(15)
N(1)-H(1A)	0.93(2)	H(1A)-N(1)-H(1C)	106.9(16)
N(1)-H(1B)	0.857(18)	H(1B)-N(1)-H(1C)	110.5(16)
N(1)-H(1C)	0.893(19)	H(1A)-N(1)-H(1D)	110.8(17)
N(1)-H(1D)	0.85(2)	H(1B)-N(1)-H(1D)	104.6(15)
N(2)-H(2A)	0.89(2)	H(1C)-N(1)-H(1D)	115.0(17)
N(2)-H(2B)	0.75(2)	H(2A)-N(2)-H(2B)	111(2)
N(2)-H(2C)	0.81(2)	H(2A)-N(2)-H(2C)	110(2)
N(3)-C(1)	1.1641(17)	H(2B)-N(2)-H(2C)	101(2)
N(4)-H(4A)	0.87(3)	H(4A)-N(4)-H(4B)	115(2)
N(4)-H(4B)	0.74(3)	H(4A)-N(4)-H(4C)	97(3)
N(4)-H(4C)	0.84(4)	H(4B)-N(4)-H(4C)	95(3)
N(5)-H(5A)	0.83(2)	H(5A)-N(5)-H(5B)	105.9(18)
N(5)-H(5B)	0.90(2)	H(5A)-N(5)-H(5C)	106.3(19)
N(5)-H(5C)	0.87(2)	H(5B)-N(5)-H(5C)	104.8(18)
		N(3)-C(1)-S(1)	178.79(11)

 ${\tt Bindungsl\"{a}ngen\ und\ Bindungswinkel\ von\ [NH_4(NH_3)_3][SCN]}$

	U11	U22	П33	U23	U13	U12
S(1)	33(1)	36(1)	26(1)	1(1)	11(1)	3(1)
N(1)	25(1)	25(1)	29(1)	1(1)	5(1)	1(1)
N(2)	30(1)	46(1)	33(1)	-3(1)	7(1)	6(1)
N(3)	32(1)	35(1)	32(1)	4(1)	7(1)	6(1)
N(4)	29(1)	31(1)	36(1)	-2(1)	9(1)	5(1)
N(5)	29(1)	25(1)	39(1)	-3(1)	9(1)	1(1)
C(1)	20(1)	19(1)	33(1)	0(1)	10(1)	1(1)

Atomkoordinaten $(\cdot 10^4)$ und isotrope Auslenkungsparameter $(\mathring{A}^2 \cdot 10^3)$ von $[NH_4(NH_3)_3][SCN]$

	x	У	Z	U(eq)
H(1A)	1180(30)	4020(30)	2450(20)	40(4)
H(1A) H(1B)	990(20)	5690(30)	3371(18)	34(4)
H(1C)	2040(30)	3970(30)	4050(20)	35(4)
H(1D)	-280(30)	3940(30)	3330(20)	45(5)
H(2A)	10050(30)	7390(30)	20(20)	42(5)
H(2B)	8080(40)	8050(40)	-500(20)	61(7)
H(2C)	8050(40)	6280(40)	-260(30)	60(6)
H(4A)	1600(40)	9520(30)	4080(30)	61(6)
H(4B)	-470(50)	8980(40)	3240(30)	78(8)
H(4C)	840(60)	9450(60)	2670(50)	124(13)
H(5A)	-3850(30)	1850(30)	2510(20)	41(5)
H(5B)	-4160(30)	3890(30)	2520(20)	52(5)
H(5C)	-3880(30)	2740(30)	3780(30)	63(6)

Wasserstoffatomkoordinaten (\cdot 10 4) und isotrope Auslenkungsparameter ($\mathring{\rm A}^2$ \cdot 10 3) von [NH₄(NH₃)₃][SCN]

6.6 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von (NH₄)₃[P₂(NH₂)Se₅] · 3NH₃

	x	У	Z	U(eq
Se(1)	3866(1)	2339(1)	2454(1)	19(1)
Se(2)	100(1)	2663(1)	2312(1)	18(1
Se(3)	1607(1)	3834(1)	102(1)	18(1
Se(4)	2566(1)	3998(1)	4728(1)	20(1
Se(5)	4286(1)	4947(1)	2524(1)	19(1
P(1)	1470(1)	3856(1)	2875(1)	14(1
P(2)	2895(1)	3747(1)	1949(1)	13(1
N(1)	623(4)	4896(3)	2410(5)	19(1
N(2)	3025(4)	1411(4)	4644(5)	24(1
N(3)	1076(5)	6286(4)	5325(5)	35(1
N(4)	428(5)	1320(5)	5079(6)	41(1
N(5)	7013(4)	2800(4)	2587(5)	41(1
N(6)	2367(5)	4277(4)	7571(5)	43(1
N(7)	4096(5)	6363(4)	4802(4)	22(1

Atomkoordinaten ($\cdot 10^4$) und isotrope Auslenkungsparameter ($\mathring{A}^2 \cdot 10^3$) von $(NH_4)_3[P_2(NH_2)Se_5] \cdot 3NH_3$

Se(1)-P(2)	2.1823(12)	N(1)-P(1)-Se(4)	107.1(2)
Se(2)-P(1)	2.1450(12)	Se(2)-P(1)-Se(4)	116.53(6)
Se(3)-P(2)	2.1782(12)	N(1)-P(1)-P(2)	105.83(17)
Se(4)-P(1)	2.1508(13)	Se(2)-P(1)-P(2)	107.84(6)
Se(5)-P(2)	2.1658(11)	Se(4)-P(1)-P(2)	110.14(5)
P(1)-N(1)	1.681(4)	Se(5)-P(2)-Se(3)	112.83(5)
P(1)-P(2)	2.2543(14)	Se(5)-P(2)-Se(1)	112.80(5)
N(1)-H(1A)	0.70(5)	Se(3)-P(2)-Se(1)	113.21(5)
N(1)-H(1B)	0.85(6)	Se(5)-P(2)-P(1)	107.86(5)
N(2)-H(2A)	1.19(8)	Se(3)-P(2)-P(1)	104.11(5)
N(2)-H(2B)	0.93(6)	Se(1)-P(2)-P(1)	105.19(5)
N(2)-H(2C)	0.78(6)	P(1)-N(1)-H(1A)	115(4)
N(2)-H(2D)	0.83(8)	P(1)-N(1)-H(1B)	108(3)
N(3)-H(3A)	1.01(8)	H(1A)-N(1)-H(1B)	115(6)
N(3)-H(3B)	0.74(6)	H(2A)-N(2)-H(2B)	121(5)
N(3)-H(3C)	1.05(8)	H(2A)-N(2)-H(2C)	105(6)
N(4)-H(4A)	0.70(8)	H(2B)-N(2)-H(2C)	101(6)
N(4)-H(4B)	0.85(9)	H(2A)-N(2)-H(2D)	93(7)
N(4)-H(4C)	1.13(9)	H(2B)-N(2)-H(2D)	115(6)
N(5)-H(5A)	1.06(7)	H(2C)-N(2)-H(2D)	124(7)
N(5)-H(5B)	1.09(8)	H(3A)-N(3)-H(3B)	101(6)
N(5)-H(5C)	0.90(8)	H(3A)-N(3)-H(3C)	99(6)
N(5)-H(5D)	1.12(7)	H(3B)-N(3)-H(3C)	114(6)
N(6)-H(6A)	1.10(9)	H(4A)-N(4)-H(4B)	114(8)
N(6)-H(6B)	0.84(8)	H(4A)-N(4)-H(4C)	109(8)
N(6)-H(6C)	1.04(13)	H(4B)-N(4)-H(4C)	101(7)
N(7)-H(7A)	0.74(6)	H(5A)-N(5)-H(5B)	114(6)
N(7) - H(7B)	0.91(9)	H(5A)-N(5)-H(5C)	101(7)
N(7)-H(7C)	0.73(8)	H(5B)-N(5)-H(5C)	115(7)
N(7)-H(7D)	1.22(12)	H(5A)-N(5)-H(5D)	112(6)
		H(5B)-N(5)-H(5D)	114(6)
N(1)-P(1)-Se(2)	108.95(16)	H(5C)-N(5)-H(5D)	99(6)

H(6A)-N(6)-H(6B)	108(8)	H(7B)-N(7)-H(7C)	124(7)
H(6A)-N(6)-H(6C)	107(10)	H(7A)-N(7)-H(7D)	109(6)
H(6B)-N(6)-H(6C)	82(10)	H(7B)-N(7)-H(7D)	102(7)
H(7A)-N(7)-H(7B)	116(6)	H(7C)-N(7)-H(7D)	77(7)
H(7A)-N(7)-H(7C)	117(6)		

Bindungslängen und Bindungswinkel von $(NH_4)_3[P_2(NH_2)Se_5]$ · $3NH_3$

	U11	U22	U33	U23	U13	U12
G (1)	10/1)	14/1)	04/1)	0/1)	C (1)	2/1)
Se(1)	19(1)	14(1)	24(1)	2(1)	6(1)	3(1)
Se(2)	19(1)	17(1)	21(1)	-1(1)	9(1)	-3(1)
Se(3)	20(1)	19(1)	13(1)	1(1)	4(1)	0(1)
Se(4)	21(1)	22(1)	14(1)	-1(1)	5(1)	1(1)
Se(5)	20(1)	17(1)	19(1)	-1(1)	6(1)	-6(1)
P(1)	13(1)	14(1)	14(1)	1(1)	5(1)	2(1)
P(2)	14(1)	12(1)	13(1)	1(1)	5(1)	0(1)
N(1)	22(2)	13(2)	18(3)	-1(2)	4(2)	4(2)
N(2)	22(2)	20(2)	28(3)	-8(2)	7(2)	-2(2)
N(3)	34(3)	37(3)	43(3)	-5(3)	24(2)	3(2)
N(4)	34(3)	52(4)	43(4)	-5(3)	22(3)	-4(2)
N(5)	25(2)	60(4)	42(4)	7(3)	18(2)	-3(2)
N(6)	41(3)	60(4)	33(3)	13(3)	20(2)	5(2)
N(7)	18(2)	18(3)	25(3)	1(2)	5(2)	2(2)
	·					

Atomkoordinaten (\cdot 10⁴) und isotrope Auslenkungsparameter (\mathring{A}^2 \cdot 10³) von $(NH_4)_3[P_2(NH_2)Se_5]$ \cdot 3NH₃

	х	У	Z	U(eq)
H(1A)	330(50)	4950(40)	1800(50)	11(15)
H(1B)	1120(50)	5360(40)	2770(50)	26(15
H(2A)	3200(70)	1730(60)	3830(70)	90(20)
H(2B)	2250(60)	1550(50)	4760(50)	44(17
H(2C)	3560(60)	1670(50)	5190(60)	44(19
H(2D)	3080(70)	840(60)	4450(70)	70(20
H(3A)	890(60)	6600(50)	4540(70)	60(20
H(3B)	410(60)	6310(50)	5360(60)	42(19
H(3C)	1330(60)	5590(60)	5130(70)	70(20
H(4A)	70(70)	1210(60)	5430(70)	60(30
H(4B)	80(70)	1760(70)	4580(80)	70(30
H(4C)	380(70)	680(70)	4490(80)	90(30
H(5A)	7740(70)	3130(60)	3340(70)	80(20
H(5B)	6890(70)	3150(60)	1760(70)	90(30
H(5C)	6280(80)	2820(70)	2770(80)	100(30
H(5D)	7150(60)	1990(50)	2590(70)	70(20
H(6A)	2760(90)	4680(70)	8400(90)	120(40
H(6B)	2670(80)	4540(60)	7110(80)	90(30
H(6C)	1500(150)	4620(140)	7030(160)	300(100
H(7A)	4830(60)	6280(40)	5040(50)	28(16
H(7B)	3570(70)	5830(60)	4690(70)	80(20
H(7C)	3870(60)	6850(60)	4850(60)	40(20
H(7D)	3750(90)	6680(80)	3810(100)	130(40

Wasserstoffatomkoordinaten (\cdot 10⁴) und isotrope Auslenkungsparameter (Å² \cdot 10³) von (NH₄)₃[P₂(NH₂)Se₅] \cdot 3NH₃

6.7 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von (NH₄)₃[Fe(CN)₆] · 11NH₃

	х	У	Z	U(eq
Fe(1)	7282(1)	4564(1)	1667	21(1
C(1)	6235(6)	2769(8)	1178(2)	26(1
C(2)	9402(6)	4646(6)	1541(2)	23(1
C(3)	7871(6)	6294(7)	1177(2)	27(1
N(1)	10911(7)	2712(8)	2398(2)	30(1
N(2)	4809(7)	4369(9)	314(2)	48(2
N(3)	8499(7)	731(8)	440(2)	36(1
N(4)	8250(8)	326(8)	1729(3)	41(1
N(5)	11761(7)	9501(7)	376(2)	38(1
N(6)	4225(10)	7428(9)	929(3)	52(2
N(7)	-999(15)	4824(13)	17(12)	57(5
N(8)	2461(13)	6826(14)	66(4)	38(2
N(9)	8153(6)	7320(6)	880(2)	34(1
N(10)	5655(6)	1677(6)	900(2)	35(1
N(11)	10657(6)	4746(6)	1457(2)	36(1

Atomkoordinaten (•10 4) und isotrope Auslenkungsparameter (Å 2 • 10 3) von $(NH_4)_3[Fe(CN)_6]$ • 11NH $_3$

Fe(1)-C(3)#1	1.943(6)	C(3)#1-Fe(1)-C(2)	88.1(2)
Fe(1)-C(3)	1.943(6)	C(3)-Fe(1)-C(2)	89.1(2)
Fe(1)-C(2)	1.957(4)	C(3)#1-Fe(1)-C(2)#1	89.1(2)
Fe(1)-C(2)#1	1.957(4)	C(3)-Fe(1)-C(2)#1	88.1(2)
Fe(1)-C(1)#1	1.966(6)	C(2)-Fe(1)-C(2)#1	176.1(3)
Fe(1)-C(1)	1.966(6)	C(3)#1-Fe(1)-C(1)#1	92.8(2)
C(1)-N(10)	1.158(7)	C(3)-Fe(1)-C(1)#1	176.3(2)
C(2)-N(11)	1.143(6)	C(2)-Fe(1)-C(1)#1	94.2(2)
C(3)-N(9)	1.175(7)	C(2)#1-Fe(1)-C(1)#1	88.6(2)
N(1)-H(1A)	0.82(7)	C(3) #1-Fe(1)-C(1)	176.3(2)
N(1)-H(1B)	0.88(6)	C(3)-Fe(1)-C(1)	92.8(2)
N(1)-H(1C)	0.86(7)	C(2)-Fe(1)-C(1)	88.6(2)
N(1)-H(1D)	0.93(7)	C(2) #1-Fe(1)-C(1)	94.2(2)
N(2)-H(2A)	0.85(19)	C(1) #1-Fe(1)-C(1)	85.8(3)
N(2)-H(2B)	0.84(8)	N(10)-C(1)-Fe(1)	176.8(5)
N(2)-H(2C)	0.94(10)	N(11)-C(2)-Fe(1)	177.4(5)
N(3)-H(3A)	0.82(6)	N(9)-C(3)-Fe(1)	177.0(5)
N(3)-H(3B)	0.87(8)	H(1A)-N(1)-H(1B)	108(6)
N(3)-H(3C)	0.94(6)	H(1A)-N(1)-H(1C)	105(6)
N(4)-H(4A)	0.79(17)	H(1B)-N(1)-H(1C)	113(5)
N(4)-H(4B)	0.80(11)	H(1A)-N(1)-H(1D)	109(6)
N(4)-H(4C)	0.79(13)	H(1B)-N(1)-H(1D)	122(6)
N(5)-H(5A)	0.82(9)	H(1C)-N(1)-H(1D)	99(6)
N(5)-H(5B)	0.90(8)	H(2A)-N(2)-H(2B)	82(10)
N(5)-H(5C)	1.01(10)	H(2A)-N(2)-H(2C)	124(10)
N(6)-H(6B)	0.82(10)	H(2B)-N(2)-H(2C)	101(7)
N(6)-H(6C)	0.81(8)	H(3A)-N(3)-H(3B)	108(6)
N(7)-N(7)#2	0.61(3)	H(3A)-N(3)-H(3C)	110(5)
N(8)-N(8)#2	1.16(2)	H(3B)-N(3)-H(3C)	106(6)
		H(4A)-N(4)-H(4B)	90(10)
C(3) #1-Fe(1)-C(3)	88.8(3)	H(4A)-N(4)-H(4C)	105(10)

H(4B)-N(4)-H(4C)	119(10)	H(5B)-N(5)-H(5C)	126(8)
H(5A)-N(5)-H(5B)	101(7)	H(6B)-N(6)-H(6C)	100(8)
H(5A)-N(5)-H(5C)	105(8)		

Bindungslängen und Bindungswinkel von $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$

U11	U22	U33	U23	U13	U12
15(1)	17(1)	30(1)	0	1(1)	9(1)
. ,	. ,	` '			7(2)
13(2)	19(2)	40(2)	-3(2)	-2(2)	9(2)
17(2)	24(3)	34(2)	-3(2)	1(2)	5(2)
24(3)	27(2)	39(2)	2(3)	3(2)	13(3)
36(3)	39(3)	42(3)	-6(2)	4(2)	0(3)
28(3)	40(3)	44(3)	5(2)	4(2)	19(3)
35(3)	46(4)	46(3)	-3(2)	2(3)	21(3)
26(3)	39(3)	45(3)	5(2)	1(2)	13(2)
44(4)	32(4)	76(5)	12(3)	11(3)	17(3)
37(5)	22(8)	101(9)	22(11)	4(8)	6(5)
37(6)	36(5)	39(5)	0(4)	3 (4)	17(5)
29(3)	26(3)	43(2)	6(2)	0(2)	11(2)
25(3)	24(2)	45(3)	-8(2)	0(2)	3(2)
26(3)	27(3)	58(3)	-3(2)	-2(2)	16(2)
	15(1) 20(3) 13(2) 17(2) 24(3) 36(3) 28(3) 35(3) 26(3) 44(4) 37(5) 37(6) 29(3) 25(3)	15(1) 17(1) 20(3) 19(2) 13(2) 19(2) 17(2) 24(3) 24(3) 27(2) 36(3) 39(3) 28(3) 40(3) 35(3) 46(4) 26(3) 39(3) 44(4) 32(4) 37(5) 22(8) 37(6) 36(5) 29(3) 26(3) 25(3) 24(2)	15(1) 17(1) 30(1) 20(3) 19(2) 36(2) 13(2) 19(2) 40(2) 17(2) 24(3) 34(2) 24(3) 27(2) 39(2) 36(3) 39(3) 42(3) 28(3) 40(3) 44(3) 35(3) 46(4) 46(3) 26(3) 39(3) 45(3) 44(4) 32(4) 76(5) 37(5) 22(8) 101(9) 37(6) 36(5) 39(5) 29(3) 26(3) 43(2) 25(3) 24(2) 45(3)	15(1) 17(1) 30(1) 0 20(3) 19(2) 36(2) 6(2) 13(2) 19(2) 40(2) -3(2) 17(2) 24(3) 34(2) -3(2) 24(3) 27(2) 39(2) 2(3) 36(3) 39(3) 42(3) -6(2) 28(3) 40(3) 44(3) 5(2) 35(3) 46(4) 46(3) -3(2) 26(3) 39(3) 45(3) 5(2) 44(4) 32(4) 76(5) 12(3) 37(5) 22(8) 101(9) 22(11) 37(6) 36(5) 39(5) 0(4) 29(3) 26(3) 43(2) 6(2) 25(3) 24(2) 45(3) -8(2)	15(1) 17(1) 30(1) 0 1(1) 20(3) 19(2) 36(2) 6(2) 6(2) 13(2) 19(2) 40(2) -3(2) -2(2) 17(2) 24(3) 34(2) -3(2) 1(2) 24(3) 27(2) 39(2) 2(3) 3(2) 36(3) 39(3) 42(3) -6(2) 4(2) 28(3) 40(3) 44(3) 5(2) 4(2) 28(3) 46(4) 46(3) -3(2) 2(3) 26(3) 39(3) 45(3) 5(2) 1(2) 44(4) 32(4) 76(5) 12(3) 11(3) 37(5) 22(8) 101(9) 22(11) 4(8) 37(6) 36(5) 39(5) 0(4) 3(4) 29(3) 26(3) 43(2) 6(2) 0(2) 25(3) 24(2) 45(3) -8(2) 0(2)

Atomkoordinaten $(\cdot 10^4)$ und isotrope Auslenkungsparameter $(\mathring{A}^2 \cdot 10^3)$ von $(NH_4)_3[Fe(CN)_6] \cdot 11NH_3$

	х	У	Z	U(eq)
H(1A)	10190(90)	2080(90)	2200(20)	27(16)
H(1B)	10450(80)	3120(70)	2600(20)	25(14)
H(1C)	11230(80)	2100(80)	2550(20)	25(15)
H(1D)	11880(90)	3390(90)	2230(20)	32(17)
H(2A)	5100(300)	3700(200)	260(70)	190(90)
H(2B)	4770(100)	4370(100)	0(30)	46(19
H(2C)	5540(120)	5500(130)	380(30)	60(20
H(3A)	7810(70)	980(70)	540(19)	18(14
H(3B)	8150(90)	-300(100)	520(20)	36(18
H(3C)	8540(70)	770(80)	100(20)	23(14
H(4A)	8370(180)	-400(200)	1670(50)	130(60
H(4B)	8290(120)	510(130)	1440(40)	80(30
H(4C)	7380(160)	-60(140)	1870(40)	90(30
H(5A)	10970(120)	9210(110)	560(30)	60(20
H(5B)	12620(100)	10040(100)	580(20)	47(18
H(5C)	11500(130)	10010(130)	90(40)	80(30
H(6A)	2370(130)	37260(120)	2340(30)	60(30
H(6B)	3630(130)	7170(120)	1170(40)	70(30
H(6C)	4680(90)	8440(110)	950(20)	27(16

Wasserstoffatomkoordinaten (\cdot 10⁴) und isotrope Auslenkungsparameter (Å² \cdot 10³) von (NH₄)₃[Fe(CN)₆] \cdot 11NH₃

6.8 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von (NH₄)₃[P(Mo₁₂O₄₀)] · 27NH₃

	x	У	z	U(eq)
Mo11	1815(1)	9096(1)	1287(1)	14(1)
Mo21	-263(1)	6734(1)	2246(1)	13(1)
Mo31	-451(1)	8618(1)	979(1)	14(1)
Mo41	2604(1)	6727(1)	-53(1)	15(1)
Mo51	-926(1)	6986(1)	859(1)	14(1)
Mo61	888(1)	5939(1)	1100(1)	15(1)
Mo71	3061(1)	8240(1)	57(1)	15(1)
Mo81	2199(1)	7221(1)	2601(1)	13(1)
Mo91	798(1)	7782(1)	-262(1)	14(1)
Mo101 Mo111	242(1) 3769(1)	8373(1) 7967(1)	2356(1) 1552(1)	13(1) 14(1)
Mo111 Mo121	3353(1)	6446(1)	1445(1)	14(1)
Mo131	3889(1)	4069(1)	3911(1)	14(1)
Mo141	1473(1)	3523(1)	3574(1)	14(1)
Mo151	1851(1)	1717(1)	4935(1)	16(1)
Mo161	4645(1)	1676(1)	2623(1)	14(1)
Mo171	1114(1)	1995(1)	3439(1)	15(1)
Mo181	5062(1)	3303(1)	2755(1)	14(1)
Mo191	2247(1)	3245(1)	5052(1)	14(1)
Mo201	3137(1)	898(1)	3693(1)	14(1)
Mo211	4111(1)	2208(1)	5254(1)	14(1)
Mo221	2645(1)	2785(1)	2399(1)	14(1)
Mo231	5781(1)	3059(1)	4139(1)	14(1)
Mo241	5396(1)	1414(1)	3994(1)	15(1)
P11	3447(2)	2487(1)	3814(1)	11(1)
P21	1420(2)	7509(1)	1179(1)	11(1)
011	2317(5)	7112(3)	3322(3)	19(2)
021	1379(4)	7921(3)	2594(3)	16(2)
031 041	264(5) 189(5)	7919(4) 8352(3)	-886(4) 243(3)	21(2) 19(2)
051	3923(5)	8659(4)	-369(4)	23(2)
061	1047(4)	6765(3)	2503(3)	14(2)
071	-2042(4)	6854(3)	629(3)	20(2)
081	-1036(5)	7808(3)	1051(4)	19(2)
091	3765(4)	7998(3)	732(3)	19(2)
0101	3309(4)	6588(3)	639(3)	17(2)
0111	4158(4)	5856(3)	1460(3)	19(2)
0121	1596(4)	6243(3)	392(3)	15(2)
0131	4216(4)	7113(3)	1461(3)	17(2)
0141	2387(5)	8823(3)	549(4)	16(2)
0151	2102(4)	6049(3)	1441(3)	17(2)
0161	-281(5)	8633(3)	3005(3)	20(2)
0171	-946(4)	6450(3)	2871(3)	19(2)
0181	910(4)	5182(3)	1001(3)	20(2)
0191	-114(4)	7196(3)	160(3)	17(2)
0201	205(4)	5987(3)	1877(3)	13(2)
0211 0221	1609(4) -1212(4)	7053(3) 6781(3)	-488(3)	16(2) 18(2)
0221	-1212(4) -348(4)	6781(3) 6176(3)	1688(3) 802(3)	18(2) 18(2)
0241	2961(4)	6551(3)	2277(3)	21(2)
0251	543(5)	9222(3)	1008(4)	17(2)
0261	1111(5)	9009(4)	2083(3)	19(2)
0271	3164(5)	6214(3)	-527(3)	22(2)
0281	2247(5)	9810(3)	1290(4)	23(2)

Q291	4862(4)	8303(3)	1643(3)	18(2)
0301	1984(5)	8233(3)	-420(4)	22(2)
0311	3323(4)	7710(3)	2354(3)	21(2)
0321	-698(4)	8629(4)	1828(3)	18(2)
0331	-1402(5)	9054(4)	783(3)	21(2)
0341	3392(4)	7417(3)	-226(3)	18(2)
0351	2866(5)	8616(3)	1612(3)	17(2)
0361	1799(4)	7547(3)	521(3)	13(2)
0371	2284(4)	7352(3)	1532(3)	15(2)
0381	631(4)	7015(3)	1300(3)	15(2)
0391	-337(4)	7557(4)	2355(4)	20(2)
		8124(3)		
0401	969(4)		1363(3)	11(2)
0411	2750(5)	168(4)	3686(3)	20(2)
0421	1543(5)	2499(3)	5252(3)	22(2)
0431	6903(4)	3194(4)	4377(3)	23(2)
0441	5224(4)	2445(3)	2663(3)	17(2)
0451	4668(5)	2068(4)	5879(4)	22(2)
0461	4394(5)	792(4)	3985(4)	20(2)
0471	2969(4)	1714(3)	5407(3)	16(2)
0481	5184(5)	1404(3)	1978(3)	21(2)
0491	2582(5)	1145(4)	4454(4)	25(2)
0501	3232(5)	3740(4)	4656(3)	24(2)
0511	5770(5)	3590(3)	2173(3)	21(2)
0521	602(4)	4080(4)	3562(3)	26(2)
0531	2065(5)	1352(4)	3409(4)	23(2)
0541	1664(4)	3700(3)	5551(3)	24(2)
0551	6358(5)	983(3)	4194(4)	20(2)
0561	3850(5)	991(4)	2916(4)	19(2)
0571	3469(5)	2067(3)	2396(4)	22(2)
0581	3268(4)	2888(3)	5496(3)	20(2)
0591	6064(4)	3223(3)	3314(3)	18(2)
0601	1811(4)	3421(3)	2745(3)	20(2)
0611	5149(4)	3827(3)	4225(3)	20(2)
0621	4602(4)	4029(3)	3157(3)	21(2)
0631	4995(5)	2785(3)	4839(3)	18(2)
0641	1168(5)	1920(3)	4298(3)	22(2)
0651	1501(4)	3341(3)	4407(3)	23(2)
0661	638(4)	2799(3)	3582(3)	19(2)
0671	4215(4)	3001(3)	3698(3)	18(2)
0681	2474(5)	2892(3)	1679(3)	22(2)
0691	5583(4)	1378(3)	3154(3)	17(2)
0701	3801(4)	3231(3)	2467(4)	22(2)
0711	1057(5)	1287(3)	5369(4)	23(2)
0721	2672(4)	3950(3)	3607(3)	22(2)
0731	54(4)	1623(3)	3365(4)	23(2)
0741	1530(4)	2227(3)	2656(3)	18(2)
0751	4712(5)		4728(3)	
		1634(4)		21(2)
0761	5939(5)	2211(4)	3960(3)	19(2)
0771	3869(5)	4827(3)	4022(3)	22(2)
0781	3937(4)	1894(3)	3619(3)	18(2)
0791	3084(4)	2429(3)	4463(3)	15(2)
0801	2562(4)	2632(3)	3455(3)	16(2)
		933(5)		
N12	8141(6)		3075(5)	28(2)
N22	-511(5)	2750(4)	4857(4)	22(2)
N32	7451(6)	7907(4)	2168(4)	23(2)
N42	7433(6)	2162(4)	2806(5)	25(2)
N52	6712(7)	9109(5)	1893(5)	38(3)
N62	5198(7)	1312(5)	6943(5)	34(3)
N72	603(7)	9527(5)	-471(6)	29(3)
N82	5461(6)	7190(5)	222(3)	25(2)
N92	4407(7)	482(5)	5470(5)	30(3)
N102	-173(8)	8640(6)	-1962(6)	45(3)
N112	2726(7)	8916(6)	2924(5)	35(3)
	, ,	, ,	, ,	, ,

N122	-2008(6)	7901(5)	-575(5)	32(3)
N132	6927(7)	2108(5)	5609(5)	33(3)
N142	6649(6)	8135(5)	684(5)	30(3)
N152	-2871(7)	9863(5)	171(5)	33(3)
N162	2219(7)	1068(5)	2060(5)	28(2)
N172	7816(7)	165(5)	4814(7)	44(4)
N182	-1411(6)	3137(5)	3261(5)	34(3)
N192	-940(8)	10036(5)	2043(6)	37(3)
N202	6357(6)	6912(5)	1766(5)	32(3)
N212	-1431(7)	9188(6)	-580(5)	36(3)
N222	6374(7)	817(5)	5621(5)	34(3)
N232	7872(7)	7650(5)	3332(5)	34(3)
N242	3271(6)	6247(4)	4286(4)	28(2)
N252	1299(8)	-976(7)	3994(7)	48(4)
N262	3730(8)	999(6)	1009(6)	42(3)
N272	-1207(6)	3947(4)	4567(3)	25(2)
N282	-3941(6)	5960(4)	557(4)	31(2)
N292	2959(7)	7573(4)	-1639(4)	28(2)
N302	1125(7)	10150(5)	2780(5)	32(3)
N312	5871(9)	-1(6)	2972(6)	44(3)
N322	-1748(7)	1879(6)	4312(5)	34(3)
N332	5363(7)	7428(5)	-1022(5)	40(3)
N342	-3231(6)	6155(4)	3293(5)	46(3)
N352	3797(8)	-158(5)	2200(6)	40(3)
N362	2661(9)	9181(7)	-1485(6)	55(4)
N372	4578(6)	3936(4)	5619(4)	27(2)
N382	2396(8)	771(7)	6493(6)	48(4)
N392	-1298(9)	5133(5)	5315(5)	52(3)
N402	3430(7)	5096(5)	410(4)	38(3)
N412	-282(7)	2397(5)	6048(4)	37(3)
N422	2130(7)	3777(5)	603(4)	41(3)
N432	4973(7)	2903(5)	6946(5)	45(3)
N442	3752(6)	5102(4)	5354(4)	30(2)
N452	-1187(6)	4934(4)	429(4)	30(2)
N462	2(8)	526(6)	4414(6)	45(3)
N472	6749(7)	4562(4)	3118(4)	32(2)
N482	4907(9)	9405(6)	594(7)	55(4)
N492	98(7)	6934(5)	-1809(5)	44(3)
N502	5791(5)	5042(4)	2102(4)	28(2)
N512	7959(7)	4030(5)	1704(4)	38(2)
N522	1(7)	6140(4)	-653(4)	35(2)
N532	7821(6)	5493(4)	1783(5)	37(2)
N542	4480(5)	5730(4)	2877(4)	29(2)
N552	3109(6)	4667(4)	2352(4)	29(2)
N562	4903(6)	4288(4)	1224(4)	39(2)
N572	1461(5)	5442(4)	2726(4)	26(2)
N582	749(6)	6042(4)	3831(4)	34(2)
N592	-1215(7)	5140(4)	3478(5)	46(3)
N602	240(9)	4551(5)	2261(5)	54(3)

Atomkoordinaten (\cdot 10⁴) und isotrope Auslenkungsparameter (\mathring{A}^2 \cdot 10³) von $(NH_4)_3[P(Mo_{12}O_{40})]$ \cdot 27NH₃

Mo11-0281	1.696(9)	Mo101-0261	1.898(9)
Mo11-0141	1.904(8)	Mo101-0321	1.928(7)
Mo11-0251	1.925(6)	Mo101-O21	1.952(6)
Mo11-0351	1.971(6)	Mo101-0391	1.984(9)
Mo11-0261	1.979(8)	Mo101-0401	2.468(7)
Mo11-0401	2.448(8)	Mo111-Q291	1.708(7)
Mo11-Mo31	3.4266(12)	Mo111-0351	1.879(7)
Mo21-0171	1.731(8)	Mo111-091	1.889(8)
Mo21-0391	1.850(9)	Mo111-0311	1.951(9)
Mo21-0221	1.920(7)	Mo111-0131	1.993(8)
Mo21-061	1.941(6)	Mo111-0371	2.456(7)
Mo21-0201	1.955(7)	Mo121-0111	1.697(6)
Mo21-0381	2.441(8)	Mo121-0101	1.880(8)
Mo31-0331	1.699(6) 1.922(8)	Mo121-0131	1.904(8)
Mo31-0251 Mo31-041	1.922(8)	Mo121-0151 Mo121-0241	1.927(7) 1.953(8)
Mo31-041 Mo31-0321	1.950(8)	Mo121-0241 Mo121-0371	2.466(6)
Mo31-081	1.968(9)	Mo131-0771	1.709(8)
Mo31-0401	2.444(6)	Mo131-0721	1.892(7)
Mo31-Mo101	3.4354(15)	Mo131-0621	1.898(9)
Mo41-0271	1.717(8)	Mo131-0501	1.967(9)
Mo41-0341	1.885(8)	Mo131-0611	1.993(6)
Mo41-0211	1.895(6)	Mo131-0671	2.460(8)
Mo41-0121	1.932(8)	Mo131-Mo181	3.4400(14)
Mo41-0101	1.966(7)	Mo141-0521	1.701(7)
Mo41-0361	2.459(7)	Mo141-0721	1.906(8)
Mo41-Mo91	3.4328(12)	Mo141-0601	1.935(8)
Mo51-071	1.694(7)	Mo141-0651	1.955(9)
Mo51-081	1.893(8)	Mo141-0661	1.977(8)
Mo51-0191 Mo51-0221	1.898(8)	Mo141-0801 Mo141-Mo221	2.460(7)
Mo51-0221 Mo51-0231	1.947(9) 1.954(7)	Mo141-Mo221 Mo151-0711	3.4394(15) 1.674(9)
Mo51-0231 Mo51-0381	2.452(6)	Mo151-0711 Mo151-0641	1.862(7)
Mo61-0181	1.702(8)	Mo151-0491	1.909(8)
Mo61-0121	1.908(8)	Mo151-0421	1.926(9)
Mo61-0151	1.927(7)	Mo151-0471	1.965(7)
Mo61-0201	1.929(7)	Mo151-0791	2.455(8)
Mo61-0231	1.944(6)	Mo151-Mo211	3.4364(13)
Mo61-0381	2.459(8)	Mo161-0481	1.706(8)
Mo71-051	1.706(9)	Mo161-0441	1.897(8)
Mo71-0141	1.907(7)	Mo161-0571	1.925(6)
Mo71-0301	1.926(8)	Mo161-0561	1.935(9)
Mo71-091	1.973(7)	Mo161-0691	1.959(7)
Mo71-0341	1.989(8)	Mo161-0781	2.452(9)
Mo71-0361 Mo71-Mo91	2.451(8) 3.4166(13)	Mo171-0731 Mo171-0741	1.699(7) 1.888(9)
Mo81-011	1.696(8)	Mo171-0741 Mo171-0531	1.912(7)
Mo81-021	1.902(6)	Mo171-0661	1.916(8)
Mo81-0311	1.909(8)	Mo171-0641	1.990(8)
Mo81-061	1.913(7)	Mo171-0801	2.441(7)
Mo81-0241	1.924(8)	Mo181-0511	1.672(8)
Mo81-0371	2.463(8)	Mo181-0701	1.915(7)
Mo81-Mo121	3.4394(15)	Mo181-0441	1.930(8)
Mo81-Mo111	3.4397(15)	Mo181-0621	1.947(8)
Mo91-031	1.698(8)	Mo181-0591	1.979(7)
Mo91-041	1.870(7)	Mo181-0671	2.423(8)
Mo91-0301	1.903(8)	Mo191-0541	1.681(8)
Mo91-0191	1.965(8)	Mo191-0501	1.879(9)
Mo91-0211	1.996(7)	Mo191-0651	1.894(8)
Mo91-0361	2.418(7)	Mo191-0421	1.939(9)
Mo101-0161	1.697(8)	Mo191-0581	1.959(7)

Mo191-0791	2.487(8)	N112-H11B2	0.793(12)
Mo201-0411	1.710(9)	N112-H11C2	0.915(12)
Mo201-0461	1.914(6)	N122-H12A2	0.959(13)
Mo201-0531	1.924(6)	N122-H12B2	0.940(12)
Mo201-0491	1.924(9)	N122-H12C2	0.792(11)
Mo201-0561	1.946(9)	N132-H13A2	0.944(11)
Mo201-0781	2.467(9)	N132-H13B2	0.868(11)
Mo211-0451	1.718(8)	N132-H13C2	0.955(12)
Mo211-0751	1.902(8)	N142-H14B2	1.022(10)
Mo211-0471	1.905(8)	N142-H14C2	0.823(11)
Mo211-0631	1.925(9)	N152-H15A2	0.741(11)
Mo211-0531		N152 H15A2 N152-H15B2	
	1.942(8)		0.866(12)
Mo211-0791	2.450(7)	N152-H15C2	0.790(12)
Mo221-0681	1.711(8)	N162-H16A2	0.931(10)
Mo221-0701	1.892(8)	N162-H16B2	0.889(12)
Mo221-0571	1.934(7)	N162-H16C2	0.901(12)
Mo221-0601	1.937(7)	N182-H18A2	0.850(14)
Mo221-0741	1.994(8)	N182-H18B2	0.852(9)
Mo221-0741 Mo221-0801			
	2.435(8)	N182-H18C2	0.873(12)
Mo231-0431	1.712(7)	N192-H19A2	0.927(11)
Mo231-0611	1.905(7)	N192-H19B2	0.958(11)
Mo231-0631	1.920(9)	N192-H19C2	0.847(14)
Mo231-0591	1.921(8)	N212-H21A2	0.807(13)
Mo231-0761	1.942(8)	N212-H21B2	0.952(11)
Mo231-0671	2.466(7)	N212-H21C2	0.818(10)
Mo241-0551	1.708(6)	N212 H21C2 N222-H22A2	0.866(11)
Mo241-0751	1.913(8)	N222-H22B2	0.867(11)
Mo241-0761	1.920(9)	N222-H22C2	0.803(12)
Mo241-0691	1.929(8)	N222-H22D2	0.822(12)
Mo241-0461	1.954(8)	N232-H23A2	0.992(12)
Mo241-0781	2.465(6)	N232-H23B2	0.918(13)
P11-0781	1.525(8)	N232-H23C2	0.975(11)
P11-0791	1.525(9)	N242-H24C2	0.723(10)
P11-0671	1.553(8)	N252-H25A2	0.751(13)
P11-0801	1.559(6)	N252 H25A2 N252-H25B2	0.882(15)
P21-0371	1.533(6)	N252-H25C2	1.044(17)
P21-0381	1.540(9)	N262-H26A2	0.771(13)
P21-0401	1.542(7)	N262-H26B2	0.695(12)
P21-0361	1.547(8)	N262-H26C2	0.830(14)
N12-H1A2	0.868(11)	N272-H27A2	0.767(9)
N12-H1B2	0.866(11)	N272-H27B2	0.928(10)
N12-H1C2	0.958(11)	N272-H27C2	0.910(11)
N22-H2A2	0.808(9)	N282-H28A2	0.835(10)
	0.757(10)		
N22-H2B2		N282-H28B2	0.921(10)
N32-H3A2	0.853(11)	N282-H28C2	0.901(9)
N32-H3B2	0.771(9)	N292-H29B2	0.855(11)
N32-H3C2	0.726(11)	N302-H30A2	1.020(11)
N42-H4A2	0.933(10)	N302-H30B2	1.012(11)
N42-H4B2	0.920(10)	N302-H30C2	0.815(10)
N42-H4C2	0.856(12)	N312-H31A2	0.798(14)
N52-H5A2	0.902(11)	N312-H31B2	0.807(15)
	0.774(13)		
N52-H5B2		N312-H31C2	0.893(11)
N52-H5C2	0.817(14)	N322-H32A2	1.003(10)
N72-H7A2	0.913(12)	N322-H32B2	0.973(11)
N72-H7B2	0.847(11)	N322-H32C2	0.954(14)
N82-H8A2	0.872(10)	N332-H33A2	0.871(13)
N82-H8B2	0.908(12)	N332-H33B2	0.885(12)
N92-H9A2	0.845(11)	N332-H33C2	0.884(12)
N92-H9B2	0.823(12)	N342-H34A2	0.836(14)
N102-H10A2	0.762(15)	N342-H34B2	0.670(11)
N102-H10B2	0.653(13)	N342-H34C2	0.860(10)
N102-H10C2	0.951(12)	N352-H35A2	0.851(10)
N112-H11A2	0.926(12)	N362-H36A2	1.057(16)

N362-H36B2	0.936(15)	0281-Mo11-0401	171.5(3)
N362-H36C2	1.033(14)	O141-Mo11-O401	84.5(3)
N392-H39A2	0.682(14)	O251-Mo11-O401	72.5(3)
N392-H39B2	0.645(15)	O351-Mo11-O401	82.5(3)
N392-H39C2	0.917(14)	0261-Mo11-0401	72.1(3)
N402-H40A2	1.029(12)	O281-Mo11-Mo31	128.9(2)
N402-H40B2	0.999(12)	0141-Mo11-Mo31	89.5(2)
N402-H40C2	0.792(11)	0251-M011-M031	27.0(2)
N412-H41C2	0.799(11)	0351-Mo11-Mo31	128.0(2)
N432-H43A2	0.750(13)	O261-Mo11-Mo31	79.3(2)
N432-H43B2	1.138(12)	0401-Mo11-Mo31	45.50(13)
N432-H43C2	0.677(11)	0171-Mo21-0391	102.1(4)
N442-H44A2	0.907(11)	O171-Mo21-O221	103.0(3)
N442-H44B2	0.807(9)	O391-Mo21-O221	92.2(3)
N442-H44C2	0.921(11)	0171-Mo21-061	101.1(3)
N452-H45A2	0.814(9)	0391-Mo21-061	86.6(3)
N452-H45B2	0.868(11)	0221-Mo21-061	155.6(3)
N452-H45C2	0.992(10)	0171-Mo21-0201	100.7(4)
N462-H46A2	0.992(10)	0391-Mo21-0201	156.8(3)
N462-H46B2	0.940(15)	0221-Mo21-0201	86.5(3)
N462-H46C2	0.925(12)	061-Mo21-0201	85.2(3)
N472-H47A2	0.732(10)	0171-Mo21-0381	172.3(3)
N472-H47B2	0.916(10)	O391-Mo21-O381	84.6(3)
N472-H47C2	1.139(9)	0221-Mo21-0381	72.7(3)
N492-H49A2	0.840(13)	061-Mo21-0381	82.9(3)
N492-H49B2	0.745(13)	0201-Mo21-0381	72.9(3)
N492-H49C2	0.630(10)	O331-Mo31-O251	100.3(4)
N502-H50A2	0.794(8)	O331-Mo31-O41	103.4(4)
N502-H50B2	0.807(8)	0251-Mo31-041	90.8(4)
N502-H50C2	0.842(8)	0331-Mo31-0321	101.0(3)
N502-H50D2	0.926(9)	0251-Mo31-0321	88.7(4)
N512-H51A2	0.781(10)	041-Mo31-O321	155.2(3)
N512-H51B2	0.734(10)	O331-Mo31-O81	102.4(4)
N512-H51C2	0.726(11)	0251-Mo31-081	157.3(3)
N522-H52A2	0.916(10)	041-Mo31-081	84.9(4)
N522-H52B2	0.900(11)	O321-Mo31-O81	86.0(4)
N522-H52C2	0.691(9)	O331-Mo31-O401	170.7(3)
N542-H54A2	0.871(9)	0251-Mo31-0401	72.6(3)
N542-H54B2	0.882(8)	O41-Mo31-O401	83.1(3)
N542-H54E2	0.806(8)	O321-Mo31-O401	73.1(2)
N552-H55A2	0.638(9)	081-Mo31-0401	84.7(3)
N552-H55B2	0.917(10)	O331-Mo31-Mo11	127.1(3)
N552-H55C2	1.055(9)	0251-Mo31-Mo11	27.1(2)
N562-H56A2	0.759(10)	041-M031-M011	87.8(2)
N562-H56B2	0.680(7)	0321-Mo31-Mo11	80.6(2)
N562-H56C2	0.683(8)	081-Mo31-Mo11	130.3(2)
N572-H57A2	1.060(9)	0401-Mo31-Mo11	45.58(19)
N572-H57B2	0.983(7)	O331-Mo31-Mo101	127.5(3)
N582-H58B2	0.977(10)	O251-Mo31-Mo101	77.8(3)
N602-H60A2	1.221(14)	O41-Mo31-Mo101	128.9(2)
N602-H60B2	1.072(12)	O321-Mo31-Mo101	27.47(17)
N602-H60C2	0.731(12)	081-Mo31-Mo101	87.6(3)
		0401-Mo31-Mo101	45.91(17)
O281-Mo11-O141	102.6(4)	Mo11-Mo31-Mo101	60.31(3)
0281-M011-0141 0281-M011-0251	102.2(3)	0271-M041-0341	102.4(4)
0141-Mo11-0251	92.2(3)	0271-Mo41-0211	101.4(3)
0281-Mo11-0351	102.6(3)	0341-Mo41-0211	91.3(3)
0141-Mo11-0351	85.4(3)	0271-Mo41-0121	101.8(4)
0251-Mo11-0351	155.0(3)	O341-Mo41-O121	155.3(3)
0281-Mo11-0261	101.3(4)	0211-Mo41-0121	88.3(3)
0141-Mo11-0261	155.6(4)	O271-Mo41-O101	102.1(3)
0251-Mo11-0261	87.6(3)	O341-Mo41-O101	87.4(3)
O351-Mo11-O261	84.6(3)	O211-Mo41-O101	156.2(3)
	- \ - /		

0121-Mo41-0101	83.3(3)	011-Mo81-021	102.5(3)
0271-Mo41-0361	173.0(4)	O11-Mo81-O311	101.2(4)
0341-Mo41-0361	73.2(3)	021-Mo81-0311	89.3(3)
0211-Mo41-0361	73.5(3)	011-Mo81-061	103.0(4)
0121-Mo41-0361	83.0(3)	021-Mo81-061	87.1(3)
0101-Mo41-0361	83.4(3)	0311-Mo81-061	155.7(3)
0271-Mo41-Mo91	129.7(3)	011-Mo81-0241	101.0(3)
O341-Mo41-Mo91	80.02(18)	O21-Mo81-O241	156.5(3)
O211-Mo41-Mo91	28.9(2)	O311-Mo81-O241	87.0(3)
0121-M041-M091	87.91(19)	061-M081-0241	
			86.8(3)
0101-Mo41-Mo91	128.2(2)	011-Mo81-0371	171.8(3)
O361-Mo41-Mo91	44.77(16)	021-Mo81-0371	83.3(3)
071-Mo51-081	102.2(3)	O311-Mo81-O371	72.8(3)
071-Mo51-0191	103.6(4)	061-Mo81-0371	82.9(3)
081-Mo51-0191	90.2(4)	0241-Mo81-0371	73.4(3)
071-Mo51-0221		011-Mo81-Mo121	128.2(2)
	100.3(3)		
081-Mo51-0221	88.1(4)	O21-Mo81-Mo121	129.1(2)
0191-Mo51-0221	155.8(3)	O311-Mo81-Mo121	77.4(2)
071-Mo51-0231	99.8(3)	O61-Mo81-Mo121	86.3(2)
081-Mo51-0231	157.8(3)	O241-Mo81-Mo121	27.7(2)
0191-Mo51-0231	87.6(3)	O371-Mo81-Mo121	45.79(15)
0221-Mo51-0231	85.1(3)	011-Mo81-Mo111	128.4(3)
071-Mo51-0381	169.9(4)	O21-Mo81-Mo111	86.3(3)
081-Mo51-0381	84.4(3)	O311-Mo81-Mo111	27.3(2)
O191-Mo51-O381	83.8(3)	061-Mo81-Mo111	128.5(2)
0221-Mo51-0381	72.0(3)	O241-Mo81-Mo111	79.9(3)
0231-Mo51-0381	73.4(3)	0371-Mo81-Mo111	45.55(17)
0181-Mo61-0121	102.3(4)	Mo121-Mo81-Mo111	60.19(3)
0181-Mo61-0151	101.6(3)	O31-Mo91-O41	103.0(4)
0121-Mo61-0151	85.6(3)	O31-Mo91-O301	101.2(4)
0181-Mo61-0201	101.7(4)	O41-Mo91-O301	93.4(4)
0121-Mo61-0201	155.9(3)	O31-Mo91-O191	102.0(4)
0151-Mo61-0201	87.5(3)	O41-Mo91-O191	86.0(3)
0181-Mo61-0231	101.6(3)	0301-Mo91-0191	156.3(3)
0121-Mo61-0231	89.5(3)	031-Mo91-0211	100.0(3)
0151-Mo61-0231	156.8(3)	041-Mo91-0211	156.5(3)
0201-Mo61-0231	87.8(3)	O301-Mo91-O211	87.0(3)
0181-Mo61-0381	172.5(3)	0191-Mo91-0211	84.3(3)
0121-Mo61-0381	83.4(3)	031-Mo91-0361	170.7(3)
0151-Mo61-0381	83.5(3)	041-Mo91-0361	84.8(3)
0201-Mo61-0381	72.8(3)	0301-Mo91-0361	72.8(3)
0231-Mo61-0381	73.4(3)	0191-Mo91-0361	83.5(3)
051-Mo71-0141	103.2(4)	0211-Mo91-0361	72.9(3)
O51-Mo71-O301	102.1(4)	O31-Mo91-Mo71	128.0(3)
0141-Mo71-0301	91.1(3)	O41-Mo91-Mo71	89.7(2)
051-Mo71-091	102.6(4)	O301-Mo91-Mo71	27.0(3)
0141-Mo71-091	86.6(3)	0191-M091-M071	129.3(2)
0301-Mo71-091	155.0(4)	0211-Mo91-Mo71	80.1(2)
051-Mo71-0341	100.9(4)	0361-Mo91-Mo71	45.82(18)
0141-Mo71-0341	155.7(4)	O31-Mo91-Mo41	126.6(3)
O301-Mo71-O341	86.5(3)	O41-Mo91-Mo41	130.4(2)
091-Mo71-0341	85.6(3)	O301-Mo91-Mo41	77.1(2)
051-Mo71-0361	170.5(4)	0191-Mo91-Mo41	85.21(19)
0141-Mo71-0361	84.4(3)	0211-M091-M041	27.3(2)
0301-Mo71-0361	71.7(3)	0361-Mo91-Mo41	45.74(16)
091-Mo71-0361	83.4(3)	Mo71-Mo91-Mo41	60.38(3)
0341-Mo71-0361	71.9(3)	0161-Mo101-0261	102.0(4)
O51-Mo71-Mo91	128.6(3)	0161-Mo101-0321	102.5(3)
0141-Mo71-Mo91	87.8(2)	O261-Mo101-O321	91.5(3)
0301-Mo71-Mo91	26.6(3)	0161-Mo101-021	101.6(3)
091-Mo71-Mo91	128.4(3)	0261-Mo101-021	88.5(3)
O341-Mo71-Mo91	79.26(18)	0321-Mo101-021	155.3(3)
0361-Mo71-Mo91	45.04(16)	0161-Mo101-0391	101.9(4)
			100

0261-Mo101-0391	155.7(3)	0721-Mo131-0611	156.3(4)
O321-Mo101-O391	87.2(3)	0621-Mo131-0611	86.7(3)
O21-Mo101-O391	82.7(3)	O501-Mo131-O611	85.6(3)
O161-Mo101-O401	172.8(3)	0771-Mo131-0671	170.4(3)
0261-Mo101-0401	72.9(3)	0721-Mo131-0671	85.1(3)
0321-Mo101-0401	72.9(3)	0621-Mo131-0671	71.7(3)
O21-Mo101-O401	83.5(3)	0501-Mo131-0671	83.8(3)
O391-Mo101-O401	83.6(3)	0611-Mo131-0671	71.9(3)
0161-Mo101-Mo31	129.5(2)	0771-Mo131-Mo181	128.5(3)
O261-Mo101-Mo31	80.0(2)	0721-Mo131-Mo181	88.8(3)
O321-Mo101-Mo31	27.8(2)	0621-Mo131-Mo181	26.9(2)
	128.8(2)		
021-Mo101-Mo31		0501-Mo131-Mo181	128.6(3)
O391-Mo101-Mo31	87.9(3)	O611-Mo131-Mo181	79.1(2)
O401-Mo101-Mo31	45.35(13)	0671-Mo131-Mo181	44.8(2)
Q291-Mo111-O351	102.7(4)	0521-Mo141-0721	103.7(4)
Q291-Mo111-O91	102.8(4)	0521-Mo141-0601	100.3(3)
0351-Mo111-091	89.9(3)	0721-Mo141-0601	90.2(3)
Q291-Mo111-0311	100.7(4)	0521-Mo141-0651	103.3(4)
	90.0(3)	0721-M0141-0651	86.5(3)
0351-Mo111-0311			
091-Mo111-0311	155.9(3)	0601-Mo141-0651	156.3(3)
Q291-Mo111-O131	100.5(3)	0521-Mo141-0661	100.8(4)
O351-Mo111-O131	156.8(3)	0721-Mo141-0661	155.4(3)
091-Mo111-0131	86.1(3)	0601-Mo141-0661	87.8(3)
O311-Mo111-O131	84.6(3)	0651-Mo141-0661	85.5(4)
Q291-Mo111-O371	170.4(3)	0521-Mo141-0801	169.3(3)
0351-Mo111-0371	84.3(3)	0721-Mo141-0801	84.5(3)
091-Mo111-0371	83.7(3)	0601-Mo141-0801	72.4(3)
0311-Mo111-0371	72.4(3)	0651-Mo141-0801	83.9(3)
0131-Mo111-0371	72.6(2)	0661-Mo141-0801	71.6(3)
Q291-Mo111-Mo81	127.2(3)	0521-Mo141-Mo221	127.3(3)
O351-Mo111-Mo81	87.3(3)	0721-Mo141-Mo221	87.7(3)
091-Mo111-Mo81	129.4(3)	0601-Mo141-Mo221	27.4(2)
O311-Mo111-Mo81	26.7(2)	O651-Mo141-Mo221	129.0(2)
0131-Mo111-Mo81	77.8(2)	0661-Mo141-Mo221	79.4(2)
0371-Mo111-Mo81	45.70(18)	0801-Mo141-Mo221	45.07(19)
	102.3(3)		
0111-Mo121-0101		0711-Mo151-0641	104.1(4)
0111-Mo121-0131	101.5(3)	0711-Mo151-0491	103.2(4)
0101-Mo121-0131	90.1(4)	0641-Mo151-0491	87.6(4)
0111-Mo121-0151	102.4(3)	0711-Mo151-0421	100.5(4)
0101-Mo121-0151	86.2(3)	0641-Mo151-0421	90.1(4)
O131-Mo121-O151	156.1(3)	0491-Mo151-0421	156.0(4)
O111-Mo121-O241	101.5(4)	0711-Mo151-0471	99.8(4)
O101-Mo121-O241	156.0(3)	0641-Mo151-0471	156.1(4)
0131-Mo121-0241	88.1(3)	0491-Mo151-0471	87.3(3)
0151-Mo121-0241	85.9(3)	0421-Mo151-0471	85.2(3)
0111-Mo121-0371	172.5(3)	0711-Mo151-0791	169.6(4)
0101-Mo121-0371	83.6(3)	0641-Mo151-0791	83.9(3)
0131-Mo121-0371	73.8(3)	0491-Mo151-0791	83.6(3)
0151-Mo121-0371	82.3(3)	O421-Mo151-O791	72.4(3)
0241-Mo121-0371	72.9(3)	0471-Mo151-0791	72.4(3)
O111-Mo121-Mo81	128.3(3)	0711-Mo151-Mo211	126.3(3)
O101-Mo121-Mo81	129.3(2)	0641-Mo151-Mo211	129.4(3)
0131-Mo121-Mo81		0491-Mo151-Mo211	86.0(2)
	78.8(2)		
0151-Mo121-Mo81	85.4(2)	0421-Mo151-Mo211	77.1(2)
0241-Mo121-Mo81	27.3(2)	0471-Mo151-Mo211	26.9(3)
O371-Mo121-Mo81	45.70(18)	0791-Mo151-Mo211	45.47(16)
0771-Mo131-0721	102.5(3)	O481-Mo161-O441	104.1(4)
0771-Mo131-0621	101.9(4)	O481-Mo161-O571	102.5(4)
0721-Mo131-0621	91.6(3)	0441-Mo161-0571	89.1(3)
0771-Mo131-0501	102.4(4)	0481-Mo161-0561	100.3(4)
0721-Mo131-0501	86.2(3)	0441-Mo161-0561	155.3(4)
0621-M0131-0501	155.5(4)	0571-M0161-0561	
			89.0(3)
0771-Mo131-0611	101.0(3)	0481-Mo161-0691	100.4(3)
			404

0441-Mo161-0691	86.9(3)	0461-Mo201-0491	89.2(3)
0571-Mo161-0691	157.0(4)	O531-Mo201-O491	85.4(3)
0561-Mo161-0691	85.3(3)	O411-Mo201-O561	101.0(4)
O481-Mo161-O781	170.1(3)	O461-Mo201-O561	87.6(3)
0441-Mo161-0781	82.7(3)	O531-Mo201-O561	88.0(3)
0571-Mo161-0781	84.6(3)	O491-Mo201-O561	156.6(4)
0561-Mo161-0781	72.6(3)	O411-Mo201-O781	171.0(3)
0691-Mo161-0781	72.5(3)	O461-Mo201-O781	73.2(3)
0731-Mo171-0741	101.2(4)	0531-Mo201-0781	82.5(3)
0731-Mo171-0711	101.8(4)	0491-Mo201-0781	84.8(4)
0741-Mo171-0531	90.9(4)	0561-M0201-0781	72.1(3)
0731-M0171-0531	102.1(3)		103.6(4)
		0451-Mo211-0751	
0741-Mo171-0661	89.8(3)	0451-Mo211-0471	100.8(4)
0531-Mo171-0661	155.5(3)	0751-Mo211-0471	90.3(3)
0731-Mo171-0641	101.5(4)	0451-Mo211-0631	101.7(4)
0741-Mo171-0641	157.3(3)	0751-Mo211-0631	86.1(3)
0531-Mo171-0641	84.3(3)	0471-Mo211-0631	157.4(3)
0661-Mo171-0641	85.7(3)	0451-Mo211-0581	100.1(4)
0731-Mo171-0801	172.3(4)	0751-Mo211-0581	156.2(3)
0741-Mo171-0801	73.3(3)	0471-Mo211-0581	87.4(3)
0531-Mo171-0801	83.8(3)	0631-Mo211-0581	87.0(3)
0661-Mo171-0801	72.9(3)	0451-Mo211-0791	171.3(3)
0641-Mo171-0801	84.1(3)	0751-Mo211-0791	83.2(3)
O511-Mo181-O701	102.7(4)	0471-Mo211-0791	73.4(3)
O511-Mo181-O441	102.8(4)	0631-Mo211-0791	84.0(3)
0701-Mo181-0441	87.3(3)	O581-Mo211-O791	73.5(3)
O511-Mo181-O621	101.9(4)	O451-Mo211-Mo151	128.2(3)
0701-Mo181-0621	90.0(3)	O751-Mo211-Mo151	88.0(2)
O441-Mo181-O621	155.2(4)	O471-Mo211-Mo151	27.8(2)
O511-Mo181-O591	99.6(3)	O631-Mo211-Mo151	129.6(2)
0701-Mo181-0591	157.7(4)	O581-Mo211-Mo151	79.0(2)
O441-Mo181-O591	86.2(3)	0791-Mo211-Mo151	45.59(19)
0621-Mo181-0591	87.0(3)	0681-Mo221-0701	103.1(4)
O511-Mo181-O671	169.6(4)	0681-Mo221-0571	102.9(4)
0701-Mo181-0671	85.9(3)	0701-Mo221-0571	87.2(3)
O441-Mo181-O671	83.4(3)	0681-Mo221-0601	100.6(3)
0621-Mo181-0671	71.8(3)	0701-Mo221-0601	91.5(3)
0591-Mo181-0671	72.2(3)	0571-M0221-0601	156.1(4)
0511-Mo181-Mo131	127.7(3)	0681-Mo221-0741	99.9(4)
0701-Mo181-Mo131	88.1(3)	0701-M0221-0741	156.8(4)
0441-Mo181-Mo131	129.1(3)	0571-M0221-0741	85.2(3)
0621-M0181-M0131	26.2(3)	0601-M0221-0741	86.7(3)
0591-M0181-M0131	79.6(2)	0681-Mo221-0801	169.6(3)
0671-M0181-M0131		0701-Mo221-0801	85.5(3)
0541-M0191-0501	45.65(19)	0571-M0221-0801	83.1(3)
	103.5(4)		
0541-Mo191-0651	103.5(3)	0601-Mo221-0801	73.0(3)
0501-Mo191-0651	89.3(4)	0741-Mo221-0801	71.8(3)
0541-Mo191-0421	100.4(4)	0681-Mo221-Mo141	127.6(2)
0501-Mo191-0421	156.0(4)	0701-Mo221-Mo141	89.2(3)
0651-Mo191-0421	87.8(4)	0571-Mo221-Mo141	128.8(3)
0541-Mo191-0581	100.6(3)	0601-Mo221-Mo141	27.3(2)
0501-Mo191-0581	87.9(3)	0741-Mo221-Mo141	78.7(2)
0651-Mo191-0581	155.7(4)	0801-Mo221-Mo141	45.65(15)
0421-Mo191-0581	85.0(3)	0431-Mo231-0611	101.4(4)
0541-Mo191-0791	169.4(4)	O431-Mo231-O631	102.8(4)
0501-Mo191-0791	84.5(3)	0611-Mo231-0631	88.4(3)
0651-Mo191-0791	83.3(3)	0431-Mo231-0591	101.4(4)
0421-Mo191-0791	71.5(3)	0611-Mo231-0591	90.0(3)
0581-Mo191-0791	72.3(3)	0631-Mo231-0591	155.5(3)
0411-Mo201-0461	101.3(3)	0431-Mo231-0761	100.3(4)
O411-Mo201-O531	103.2(4)	0611-Mo231-0761	158.2(3)
O461-Mo201-O531	155.5(4)	0631-Mo231-0761	86.0(3)
O411-Mo201-O491	102.4(4)	0591-Mo231-0761	86.6(4)

0431-Mo231-0671	171.3(4)	Mo111-0371-Mo81	88.7(2)
0611-Mo231-0671	73.1(3)	P21-0371-Mo121	126.8(4)
0631-Mo231-0671	84.1(3)	Mo111-0371-Mo121	88.98(18)
0591-Mo231-0671	72.1(3)	Mo81-0371-Mo121	88.5(2)
0761-Mo231-0671	85.3(3)	P21-0381-Mo21	126.6(4)
0551-Mo241-0751	102.9(4)	P21-0381-Mo51	125.3(4)
0551-Mo241-0761	102.1(4)	Mo21-0381-Mo51	89.4(2)
0751-Mo241-0761	85.8(4)	P21-0381-Mo61	125.5(3)
0551-Mo241-0691	102.2(4)	Mo21-0381-Mo61	89.3(3)
0751-Mo241-0691	154.8(3)	Mo51-0381-Mo61	89.0(3)
0761-Mo241-0691	91.1(4)	Mo21-0391-Mo101	153.2(4)
0551-Mo241-0461	99.8(3)	P21-0401-Mo31	125.8(4)
0751-M0241-0461		P21-0401-M031 P21-0401-M011	
	86.4(4)		126.6(4)
0761-Mo241-0461	157.9(3)	Mo31-0401-Mo11	88.9(2)
0691-Mo241-0461	87.3(4)	P21-0401-Mo101	125.7(4)
0551-Mo241-0781	170.8(4)	Mo31-0401-Mo101	88.7(2)
0751-Mo241-0781	82.2(3)	Mo11-0401-Mo101	89.0(3)
0761-Mo241-0781	85.8(3)	Mo151-0421-Mo191	127.2(4)
0691-Mo241-0781	72.6(3)	Mo161-0441-Mo181	149.1(4)
0461-Mo241-0781	72.6(3)	Mo201-O461-Mo241	125.6(4)
0781-P11-0791	108.9(5)	Mo211-O471-Mo151	125.2(4)
0781-P11-0671	108.9(4)	Mo151-0491-Mo201	149.9(5)
0791-P11-0671	110.4(5)	Mo191-0501-Mo131	148.7(5)
O781-P11-O801	109.8(4)	Mo171-0531-Mo201	153.4(5)
0791-P11-0801	110.2(4)	Mo161-0561-Mo201	125.9(4)
0671-P11-0801	108.7(4)	Mo161-0571-Mo221	148.1(5)
0371-P21-0381	108.7(4)	Mo211-0581-Mo191	125.1(4)
0371-P21-0401	109.7(4)	Mo231-0591-Mo191	125.2(4)
0381-P21-0401	109.7(4)	Mo141-0601-Mo221	125.3(4)
0371-P21-0361	109.5(4)	Mo231-0611-Mo131	125.4(4)
0381-P21-0361	110.2(4)	Mo131-0621-Mo131	127.0(5)
0401-P21-0361		Mo231-0631-Mo211	150.5(5)
	109.1(4)		
Mo81-021-Mo101	152.4(4)	Mo151-0641-Mo171	150.5(4)
Mo91-041-Mo31	154.4(5)	Mo191-0651-Mo141	148.7(4)
Mo81-061-Mo21	149.1(4)	Mo171-0661-Mo141	125.4(3)
Mo51-081-Mo31	148.0(4)	P11-0671-Mo181	125.7(5)
Mo111-091-Mo71	147.6(4)	P11-0671-Mo131	125.2(4)
Mo121-O101-Mo41	152.8(4)	Mo181-0671-Mo131	89.6(3)
Mo61-0121-Mo41	153.6(4)	P11-0671-Mo231	125.5(4)
Mo121-0131-Mo111	124.6(3)	Mo181-0671-Mo231	90.2(2)
Mo11-0141-Mo71	152.9(5)	Mo131-0671-Mo231	89.4(3)
Mo61-0151-Mo121	150.4(5)	Mo241-0691-Mo161	125.5(3)
Mo51-0191-Mo91	147.5(5)	Mo221-0701-Mo181	150.4(5)
Mo61-0201-Mo21	124.8(4)	Mo131-0721-Mo141	152.2(5)
Mo41-0211-Mo91	123.8(4)	Mo171-0741-Mo221	124.9(4)
Mo21-0221-Mo51	125.8(4)	Mo211-0751-Mo241	152.4(5)
Mo61-0231-Mo51	124.1(4)	Mo241-0761-Mo231	149.1(4)
Mo81-0241-Mo121	125.0(4)	P11-0781-Mo161	125.6(5)
Mo31-0251-Mo11	125.9(4)	P11-0781-Mo241	126.5(4)
Mo101-0261-Mo11	125.5(4)	Mo161-0781-Mo241	89.3(2)
Mo91-0301-Mo71	126.4(5)	P11-0781-Mo201	125.6(4)
Mo81-0311-Mo111	126.1(4)	Mo161-0781-Mo201	89.3(3)
Mo101-0321-Mo31	124.7(3)	Mo241-0781-Mo201	88.5(3)
Mo41-0341-Mo71	125.5(4)	P11-0791-Mo211	126.1(3)
Mo111-0351-Mo11	149.5(5)	P11-0791-Mo151	126.9(4)
P21-0361-Mo91	125.6(3)	Mo211-0791-Mo151	88.9(3)
P21-0361-Mo71	125.8(4)	P11-0791-Mo191	124.9(4)
Mo91-0361-Mo71	89.1(3)	Mo211-0791-Mo191	89.0(3)
P21-0361-Mo41			
	126.0(4)	Mo151-0791-Mo191	88.9(2)
Mo91-0361-Mo41	89.5(2)	P11-0801-Mo221	126.5(4)
Mo71-0361-Mo41	89.1(2)	P11-0801-Mo171	125.0(5)
P21-0371-Mo111	125.2(5)	Mo221-0801-Mo171	89.8(2)
P21-0371-Mo81	126.5(4)	P11-0801-Mo141	125.1(4)

Mo221-0801-Mo141	89.3(2)	H27B2-N272-H27C2	96.4(10)
Mo171-0801-Mo141	89.8(2)	H28A2-N282-H28B2	137.9(14)
H1A2-N12-H1B2	91.9(11)	H28A2-N282-H28C2	141.4(14)
H1A2-N12-H1C2	76.1(10)	H28B2-N282-H28C2	75.8(7)
H1B2-N12-H1C2	98.0(10)	H30A2-N302-H30B2	143.9(14)
H2A2-N22-H2B2	97.8(12)	H30A2-N302-H30C2	75.5(8)
H3A2-N32-H3B2	108.2(13)	H30B2-N302-H30C2	92.6(11)
H3A2-N32-H3C2	129.5(10)	H31A2-N312-H31B2	74.2(14)
H3B2-N32-H3C2	111.8(13)	H31A2-N312-H31C2	125.6(15)
H4A2-N42-H4B2	94.7(8)	H31B2-N312-H31C2	99.6(13)
H4A2-N42-H4C2	108.1(11)	H32A2-N322-H32B2	127.8(14)
H4B2-N42-H4C2	114.2(12)	H32A2-N322-H32C2	107.2(11)
H5A2-N52-H5B2	120.8(13)	H32B2-N322-H32C2	105.1(11)
H5A2-N52-H5C2	79.8(12)	H33A2-N332-H33B2	72.5(10)
H5B2-N52-H5C2	125.1(17)	H33A2-N332-H33C2	114.0(13)
H7A2-N72-H7B2	105.0(9)	H33B2-N332-H33C2	98.3(14)
H8A2-N82-H8B2	99.9(11)	H34A2-N342-H34B2	84.6(13)
H9A2-N92-H9B2	100.3(14)	H34A2-N342-H34C2	101.9(14)
H10A2-N102-H10B2	89.4(16)	H34B2-N342-H34C2	135.3(12)
			94.7(14)
H10A2-N102-H10C2	118.7(16)	H36A2-N362-H36B2	
H10B2-N102-H10C2	95.6(12)	H36A2-N362-H36C2	121.2(10)
H11A2-N112-H11B2	118.3(13)	H36B2-N362-H36C2	66.9(8)
H11A2-N112-H11C2	84.0(10)	H39A2-N392-H39B2	113.3(18)
H11B2-N112-H11C2	157.2(17)	H39A2-N392-H39C2	148.5(17)
H12A2-N122-H12B2	73.8(10)	H39B2-N392-H39C2	89.6(17)
H12A2-N122-H12C2	156.5(15)	H40A2-N402-H40B2	139.2(12)
H12B2-N122-H12C2	83.6(8)	H40A2-N402-H40C2	69.5(8)
H13A2-N132-H13B2	102.3(13)	H40B2-N402-H40C2	83.0(11)
H13A2-N132-H13C2	76.8(9)	H43A2-N432-H43B2	144.5(16)
H13B2-N132-H13C2	94.1(11)	H43A2-N432-H43C2	119.3(14)
H14B2-N142-H14C2	111.5(13)	H43B2-N432-H43C2	67.4(10)
H15A2-N152-H15B2	85.4(12)	H44A2-N442-H44B2	92.7(9)
H15A2-N152-H15C2	142.1(17)	H44A2-N442-H44C2	118.9(12)
H15B2-N152-H15C2	107.7(10)	H44B2-N442-H44C2	91.3(9)
H16A2-N162-H16B2	124.9(11)	H45A2-N452-H45B2	112.4(10)
H16A2-N162-H16C2	92.6(11)	H45A2-N452-H45C2	151.9(14)
H16B2-N162-H16C2	122.1(11)	H45B2-N452-H45C2	87.3(9)
H18A2-N182-H18B2	102.1(12)	H46A2-N462-H46B2	111.9(13)
H18A2-N182-H18C2	129.0(13)	H46A2-N462-H46C2	89.1(10)
H18B2-N182-H18C2	117.7(14)	H46B2-N462-H46C2	71.3(9)
H19A2-N192-H19B2	109.0(14)	H47A2-N472-H47B2	82.1(9)
H19A2-N192-H19C2	97.4(10)	H47A2-N472-H47C2	100.6(9)
H19B2-N192-H19C2	98.4(12)	H47B2-N472-H47C2	83.1(7)
H21A2-N212-H21B2	94.5(11)	H49A2-N492-H49B2	86.3(14)
H21A2-N212-H21C2	113.3(13)	H49A2-N492-H49C2	97.3(15)
H21B2-N212-H21C2	149.3(17)	H49B2-N492-H49C2	73.8(12)
H22A2-N222-H22B2	106.0(13)	H50A2-N502-H50B2	131.8(11)
H22A2-N222-H22C2	89.0(9)	H50A2-N502-H50C2	133.5(10)
H22B2-N222-H22C2	102.9(15)	H50B2-N502-H50C2	88.3(8)
H22A2-N222-H22D2	126.0(16)	H50A2-N502-H50D2	84.7(8)
H22B2-N222-H22D2	117.3(11)	H50B2-N502-H50D2	120.2(9)
H22C2-N222-H22D2	109.8(14)	H50C2-N502-H50D2	94.7(8)
H23A2-N232-H23B2	71.8(9)	H51A2-N512-H51B2	111.7(13)
H23A2-N232-H23C2	61.8(7)	H51A2-N512-H51C2	88.5(12)
H23B2-N232-H23C2			
	116.9(11)	H51B2-N512-H51C2	80.2(10)
H25A2-N252-H25B2	139.7(17)	H52A2-N522-H52B2	111.5(11)
H25A2-N252-H25C2	118.1(18)	H52A2-N522-H52C2	105.2(11)
H25B2-N252-H25C2	71.1(12)	H52B2-N522-H52C2	72.3(9)
H26A2-N262-H26B2	99.4(16)	H54A2-N542-H54B2	107.0(9)
H26A2-N262-H26C2	107.9(14)	H54A2-N542-H54E2	95.7(9)
H26B2-N262-H26C2	148.5(17)	H54B2-N542-H54E2	41.5(4)
H27A2-N272-H27B2	82.9(9)	H55A2-N552-H55B2	120.1(12)
H27A2-N272-H27C2	106.6(10)	H55A2-N552-H55C2	105.3(11)
	100.0(10)	1133112 11332 113302	100.0(11)

H55B2-N552-H55C2	117.8(9)	H57A2-N572-H57B2	101.0(8)
H56A2-N562-H56B2	132.5(16)	H60A2-N602-H60B2	75.3(8)
H56A2-N562-H56C2	78.9(9)	H60A2-N602-H60C2	133.5(13)
H56B2-N562-H56C2	103.8(10)	H60B2-N602-H60C2	78.2(9)

Bindungslängen und Bindungswinkel von $(NH_4)_3[P(Mo_{12}O_{40})] \cdot 27NH_3$

	U11	U22	U33	U23	U13	U12
Mo11	17(1)	12(1)	15(1)	0(1)	-2(1)	-2(1)
Mo21	15(1)	13(1)	12(1)	1(1)	0(1)	-2(1)
Mo31	13(1)	13(1)	14(1)	0(1)	-2(1)	1(1)
Mo41	17(1)	15(1)	13(1)	-2(1)	1(1)	2(1)
Mo51	13(1)	14(1)	15(1)	0(1)	-3(1)	-2(1)
Mo61	16(1)	12(1)	17(1)	-1(1)	-1(1)	-1(1)
Mo71	15(1)	16(1)	13(1)	1(1)	0(1)	-2(1)
Mo81	14(1)	16(1)	11(1)	1(1)	-2(1)	0(1)
Mo91	14(1)	15(1)	12(1)	0(1)	-2(1)	0(1)
Mo101	15(1)	13(1)	12(1)	-1(1)	-1(1)	0(1)
Mo111	11(1)	17(1)	15(1)	0(1)	-2(1)	-2(1)
Mo121	13(1)	13(1)	15(1)	-1(1)	-2(1)	2(1)
Mo131	19(1)	11(1)	13(1)	-1(1)	-3(1)	-1(1)
Mo141	12(1)	15(1)	15(1)	1(1)	-2(1)	2(1)
Mo151	14(1)	18(1)	14(1)	2(1)	0(1)	-1(1)
Mo161	14(1)	14(1)	13(1)	-2(1)	-1(1)	0(1)
Mo171	12(1)	17(1)	16(1)	-2(1)	-3(1)	-2(1)
Mo181	14(1)	14(1)	13(1)	1(1)	1(1)	0(1)
Mo191	15(1)	15(1)	12(1)	-2(1)	0(1)	0(1)
Mo201	17(1)	11(1)	15(1)	-1(1)	-2(1)	-2(1)
Mo211	15(1)	16(1)	12(1)	0(1)	-3(1)	1(1)
Mo221	15(1)	16(1)	12(1)	1(1)	-3(1)	-1(1)
Mo231	13(1)	15(1)	16(1)	-2(1)	-3(1)	-1(1)
Mo241	13(1)	13(1)	18(1)	1(1)	-2(1)	1(1)
P11 P21	11(1)	10(2)	11(2)	-1(1)	-3(1)	-2(1)
011	12(1) 29(3)	11(2) 17(4)	9(2) 12(4)	-1(1) 2(3)	-1(1) -6(3)	1(1) 4(3)
021	17(3)	14(4)	18(4)	-6(3)	-3(3)	7(3)
031	22(3)	24(5)	18(5)	-1(4)	-1(3)	-3(3)
041	22(3)	12(4)	23(5)	-6(3)	3(3)	2(3)
051	20(3)	25(5)	23(5)	5(4)	4(3)	-7(3)
061	12(3)	21(4)	9(3)	3(3)	1(2)	-4(3)
071	20(3)	25(4)	16(4)	0(3)	-3(3)	0(3)
081	18(3)	6(4)	32(5)	2(4)	4(3)	-3(3)
091	13(3)	25(4)	18(4)	-2(3)	-5(3)	6(3)
0101	19(3)	21(4)	12(4)	-5(3)	-4(3)	3(3)
0111		14(4)		-2(3)		3(3)
0121		18(4)	9(3)	-2(3)		-1(3)
0131	14(3)	19(4)	19(4)	-2(3)	-3(3)	0(3)
0141	20(3)	11(4)	19(5)	1(3)	-1(3)	3 (3)
0151	18(3)	14(4)	20(4)	-4(3)	-1(3)	0(3)
0161	24(3)	20(4)	16(4)	-6(3)	-8(3)	-2(3)
0171	18(3)	20(4)	19(4)	4(3)	0(3)	1(3)
0181	20(3)	17(4)	24(4)	-3(3)	-1(3)	4(3)
0191	20(3)	12(4)	18(4)	2(3)	6(3)	-4(3)
0201	14(3)	18(4)	7(3)	2(3)	0(2)	1(3)
0211	19(3)	17(4)	13(4)	-4(3)	-1(3)	7(3)
0221	14(3)	17(4)	22(4)			-5(3)
0231	15(3)	20(4)	20(4)	-11(3)	0(3)	1(3)

0241 18(3) 21(4) 22(4) 1(3) 2(3) -3(3) -2(3) 02(3) 1(3) -2(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 03(3) 1(3) 1(3) 1(3) 03(3) 1(4) 1(4) 1							
0251 20(3) 9(4) 23(5) -1(3) -2(3) -3(3) -3(3) 0271 29(3) 18(4) 21(4) -6(3) -3(3) 1(3) 0281 32(4) 6(4) 31(5) -3(3) 0(3) 1(3) 0301 20(3) 21(4) 24(5) 4(4) 3(3) -5(3) 0301 30(3) 21(4) 24(5) 4(4) 3(3) 1(3) 0311 19(3) 27(4) 17(4) -5(3) -2(3) 1(3) 0321 16(3) 24(4) 13(4) 5(3) -2(3) 1(3) 0331 12(3) 18(4) 23(4) 2(3) -2(3) 1(3) 0341 12(3) 18(4) 23(4) 2(3) -2(3) 1(3) 0351 12(3) 31(4) 13(4) -4(3) 0(3) -1(3) 0381 15(3) 20(4) 10(4) 2(3) -2(2) 4(3) 0381 15(3) 20(4)<	0241	18(3)	21(4)	22(4)	1(3)	2(3)	-3(3)
0261 23(3) 26(5) 8(4) -5(4) -6(3) -3(3) 0281 32(4) 6(4) 31(5) -3(4) 3(3) 0(3) 0291 21(3) 20(4) 14(4) -3(3) -3(3) 0(3) 0301 20(3) 21(4) 17(4) -5(3) -2(3) 1(3) 0321 16(3) 24(4) 13(4) -5(4) -10(3) 1(3) 0321 16(3) 24(4) 13(4) -5(4) -10(3) 1(3) 0341 12(3) 18(4) 23(4) 2(3) -2(3) -1(3) 0351 24(3) 13(4) 13(4) 0(3) -2(3) -1(3) 0361 18(3) 7(4) 15(4) -8(3) -7(2) 4(3) 0381 15(3) 20(4) 15(4) -8(3) -7(2) 4(3) 0391 13(3) 15(4) 31(5) 8(4) 4(3) 0(3) 041 13(3) 15(4) 3							
0271 29(3) 18(4) 21(4) -6(3) -3(3) 1(3) 0281 32(4) 6(4) 31(5) -3(4) 3(3) 0(3) 0301 20(3) 21(4) 24(5) 4(4) 3(3) 1(3) 0301 19(3) 27(4) 17(4) -5(3) -2(3) 1(3) 0311 19(3) 24(4) 13(4) 5(3) -1(3) 3(3) 0331 25(3) 23(4) 18(4) -5(4) -10(3) 1(3) 0341 12(3) 18(4) 23(4) 2(3) -2(3) 1(3) 0351 24(3) 13(4) 13(4) -4(3) 0(3) -1(3) 0361 18(3) 7(4) 13(4) -4(3) 0(3) -1(2) 9(3) 0371 10(3) 21(4) 15(4) -8(3) -7(2) 4(3) 0391 13(3) 15(4) 31(5) 38(4) 4(3) 0(3) 0401 12(3) 21(5)							
0281 32(4) 6(4) 31(5) -3(4) 3(3) 0(3) 0291 22(3) 22(4) 24(5) 4(4) 3(3) -5(3) 0311 19(3) 27(4) 17(4) -5(3) -2(3) 1(3) 0321 16(3) 24(4) 13(4) -5(4) -10(3) 1(3) 0331 25(3) 23(4) 18(4) -5(4) -10(3) 1(3) 0341 12(3) 18(4) 23(4) 2(3) -2(3) -1(3) 0361 18(3) 7(4) 13(4) 0(3) -2(3) -1(3) 0361 18(3) 7(4) 13(4) -4(3) 0(3) -1(2) 9(3) 0381 15(3) 20(4) 10(4) 2(3) -7(2) 4(3) 0381 15(3) 21(4) 15(4) -8(3) -7(2) 4(3) 0381 15(3) 11(4) 16(4) 2(3) -2(2) 3(3) 041 12(3) 11(4							
Q291 21(3) 20(4) 14(4) -3(3) -3(3) -5(3) 0301 20(3) 21(4) 24(5) 4(4) 3(3) 1(3) 0311 19(3) 27(4) 17(4) -5(3) -2(3) 1(3) 0321 16(3) 24(4) 13(4) -5(4) -10(3) 1(3) 0321 12(3) 23(4) 18(4) -5(4) -10(3) 1(3) 0341 12(3) 18(4) 23(4) 2(3) -2(3) -1(3) 0351 24(3) 13(4) 13(4) 0(3) -2(3) -1(3) 0361 18(3) 7(4) 13(4) -8(3) -7(2) 4(3) 0371 10(3) 21(4) 15(4) -8(3) -7(2) 4(3) 0381 15(3) 20(4) 10(4) 2(3) -1(2) 9(3) 0391 13(3) 15(4) 31(5) 8(4) 4(3) 0(3) -2(3) 3(3) 0401 24(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0401 24(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0431 12(3) 31(5) 25(5) 2(3) -2(3) 1(3) 0431 12(3) 31(5) 25(5) 2(3) -2(3) 1(3) 0431 12(3) 31(5) 25(5) 2(3) -2(3) 1(3) 0431 12(3) 31(5) 25(5) 2(3) -2(3) 1(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) -4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) -4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) -4(3) 0451 25(3) 25(5) 20(5) 7(4) -6(3) -2(3) 0471 15(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0551 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0551 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0551 22(3) 36(5) 18(4) 27(5) 6(3) -2(3) 4(3) 0651 27(3) 14(4) 15(5) 2(4) 1(3) -3(3) -1(3) 0651 22(3) 36(5) 18(4) 23(4) -6(3) -2(3) 4(3) 0651 22(3) 36(5) 18(4) 23(5) -10(4) -8(3) -3(3) -1(3) 0651 22(3) 36(5) 18(4) 23(5) -10(4) -8(3) -3(3) -1(3) 0651 27(3) 36(6) 32(4) 36(6) -2(3) 36(3) 36(3) 36(4) 22(3) 36(5) 36(4) 23(4) 36(3) -3(3) 36(3) 36(4) 22(3) 36(4) 23(4) 36(4) 36(4) 36(4) 36(4) 36(4) 36(4) 36(4) 36(4) 36(4) 36(4) 36(4) 36(4)		29(3)	18(4)		-6(3)	-3(3)	1(3)
0301 20(3) 21(4) 24(5) 4(4) 3(3) 1(3) 0311 19(3) 27(4) 17(4) -5(3) -2(3) 1(3) 0331 25(3) 23(4) 18(4) -5(4) -10(3) 1(3) 0331 25(3) 23(4) 18(4) 23(4) 2(3) -2(3) 1(3) 0351 24(3) 13(4) 13(4) 23(4) 2(3) -2(3) -1(3) 0351 24(3) 13(4) 13(4) -4(3) 0(3) -1(3) 0361 18(3) 7(4) 13(4) -4(3) 0(3) -1(3) 0361 18(3) 7(4) 13(4) -4(3) 0(3) -1(3) 0361 15(3) 20(4) 15(4) -8(3) -7(2) 4(3) 0381 15(3) 20(4) 10(4) 2(3) -1(2) 9(3) 0391 13(3) 15(4) 31(5) 8(4) 4(3) 0(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0441 20(3) 25(5) 16(5) 2(4) -6(3) -2(3) 0471 15(3) 25(5) 20(5) 7(4) -6(3) -2(3) 0471 15(3) 22(4) 22(5) -10(4) 2(3) -1(3) 0481 20(3) 22(4) 22(5) -10(4) 2(3) -1(3) 0481 20(3) 22(4) 15(4) 10(4) -9(3) -7(3) 0501 26(3) 22(4) 15(4) 10(4) -9(3) -7(3) 0501 26(3) 22(4) 15(4) 10(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(4) -9(3) -7(3) 0551 22(3) 36(5) 24(5) -6(4) 0(3) -1(3) 0(3) 0551 22(3) 36(5) 24(5) -6(4) -8(3) -2(3) 9(3) 0551 23(3) 36(5) 25(5) 24(5) -6(4) -8(3) -2(3) 9(3) 0551 27(3) 31(4) 36(5) -2(3) 3(3) 0551 22(3) 36(5) 23(5) 36(4) 23(4) -6(3) -2(3) 9(3) 0551 27(3) 36(4) 23(4) 36(4) 23(4) -6(3) -2(3) 3(3) 0561 27(3) 36(5) 26(4) 23(4) 36(4) 23(4) -6(3) -2(3) 3(3) 0561 22(3) 26(4) 23(4) 26(5) 3(4) -9(3) -7(3) -7(3) 0601 22(3) 26(4) 26(4) 27(5) 6(4) -1(3) -6(3) -2(3) -6(3) -2(3) 0701 19(3) 13	0281	32(4)	6(4)	31(5)	-3(4)	3(3)	0(3)
0301 20(3) 21(4) 24(5) 4(4) 3(3) 1(3) 0311 19(3) 27(4) 17(4) -5(3) -2(3) 1(3) 0331 25(3) 23(4) 18(4) -5(4) -10(3) 1(3) 0331 25(3) 23(4) 18(4) 23(4) 2(3) -2(3) 1(3) 0351 24(3) 13(4) 13(4) 23(4) 2(3) -2(3) -1(3) 0351 24(3) 13(4) 13(4) -4(3) 0(3) -1(3) 0361 18(3) 7(4) 13(4) -4(3) 0(3) -1(3) 0361 18(3) 7(4) 13(4) -4(3) 0(3) -1(3) 0361 15(3) 20(4) 15(4) -8(3) -7(2) 4(3) 0381 15(3) 20(4) 10(4) 2(3) -1(2) 9(3) 0391 13(3) 15(4) 31(5) 8(4) 4(3) 0(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0441 20(3) 25(5) 16(5) 2(4) -6(3) -2(3) 0471 15(3) 25(5) 20(5) 7(4) -6(3) -2(3) 0471 15(3) 22(4) 22(5) -10(4) 2(3) -1(3) 0481 20(3) 22(4) 22(5) -10(4) 2(3) -1(3) 0481 20(3) 22(4) 15(4) 10(4) -9(3) -7(3) 0501 26(3) 22(4) 15(4) 10(4) -9(3) -7(3) 0501 26(3) 22(4) 15(4) 10(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(4) -9(3) -7(3) 0551 22(3) 36(5) 24(5) -6(4) 0(3) -1(3) 0(3) 0551 22(3) 36(5) 24(5) -6(4) -8(3) -2(3) 9(3) 0551 23(3) 36(5) 25(5) 24(5) -6(4) -8(3) -2(3) 9(3) 0551 27(3) 31(4) 36(5) -2(3) 3(3) 0551 22(3) 36(5) 23(5) 36(4) 23(4) -6(3) -2(3) 9(3) 0551 27(3) 36(4) 23(4) 36(4) 23(4) -6(3) -2(3) 3(3) 0561 27(3) 36(5) 26(4) 23(4) 36(4) 23(4) -6(3) -2(3) 3(3) 0561 22(3) 26(4) 23(4) 26(5) 3(4) -9(3) -7(3) -7(3) 0601 22(3) 26(4) 26(4) 27(5) 6(4) -1(3) -6(3) -2(3) -6(3) -2(3) 0701 19(3) 13	0291	21(3)	20(4)	14(4)	-3(3)	-3(3)	-5(3)
0311 19(3) 27(4) 17(4) -5(3) -2(3) 1(3) 0321 16(3) 24(4) 13(4) 5(3) -1(3) 3(3) 0331 25(3) 23(4) 18(4) -5(4) -10(3) 1(3) 0351 24(3) 13(4) 13(4) 0(3) -2(3) -1(3) 0361 18(3) 7(4) 13(4) -4(3) 0(3) -1(3) 0371 10(3) 22(4) 10(4) -8(3) -7(2) 4(3) 0391 13(3) 15(4) 31(5) 8(4) 4(3) 0(2) -1(2) 9(3) 0401 13(3) 15(4) 31(5) 8(4) 2(3) -1(2) 9(3) 0411 24(3) 22(5) 12(4) 6(4) -4(3) 07(3) 0421 18(3) 22(5) 12(4) 26(3) -2(3) 1(3) 0421 24(3) 22(2) 3(3) -1(3) -4(3) -4(3) 04							
0321							
0331 25(3) 23(4) 18(4) -5(4) -10(3) 1(3) 0351 24(3) 13(4) 13(4) 0(3) -2(3) 13(3) 0351 24(3) 13(4) 13(4) 0(3) -2(3) -13(3) 0361 18(3) 7(4) 13(4) -8(3) -7(2) 4(3) 0381 15(3) 20(4) 10(4) 2(3) -1(2) 9(3) 0391 13(3) 15(4) 31(5) 8(4) 4(3) 0(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0411 24(3) 23(5) 12(4) 25(5) 2(3) -2(3) 13(3) 0431 12(3) 31(5) 25(5) 8(4) 4(3) 0(3) -6(3) 0431 12(3) 31(5) 25(5) 8(4) 4(3) 0(3) -6(3) 0441 20(3) 31(5) 25(5) 8(4) 0(3) -6(3) 0441 20(3) 31(6) 25(5) 16(5) 2(4) -6(3) 4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) 4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) 4(3) 0451 25(3) 25(5) 16(4) 17(4) -1(3) -4(3) -1(3) 0481 20(3) 21(4) 22(5) -10(4) 2(3) -1(3) 0481 20(3) 21(4) 22(5) -10(4) 2(3) -1(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0551 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0551 23(3) 32(5) 18(4) 6(3) -2(3) 9(3) 0551 23(3) 32(5) 18(4) 6(3) -2(3) 9(3) 0551 23(3) 32(5) 18(4) 6(3) -2(3) 9(3) 0551 17(3) 15(4) 27(5) 6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -9(3) 8(3) 0551 17(3) 26(4) 28(4) 23(4) 0(3) -1(3) -3(3) 0601 22(3) 20(4) 16(4) 28(4) -8(3) -3(3) 5(3) 0601 22(3) 16(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 16(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 16(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 16(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 16(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 16(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 16(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 16(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 16(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 18(4) 23(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 18(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 18(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 18(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 18(4) 28(4) -2(3) -5(3) 3(3) 0601 22(3) 20(4) 18(4) 28(4) -2(3) -6(3) -2(3) -6(3) 2(3) 0701 19(3) 13(4) 22(4) 17							
0341 12(3) 18(4) 23(4) 0(3) -2(3) 1(3) 0351 24(3) 13(4) 13(4) 0(3) -2(3) -1(3) 0361 18(3) 7(4) 13(4) -4(3) 0(3) -2(3) -1(3) 0371 10(3) 21(4) 15(4) -4(3) 0(3) -7(2) 4(3) 0381 15(3) 20(4) 10(4) 2(3) -1(2) 9(3) 0391 13(3) 15(4) 31(5) 8(4) 4(3) 2(2) 3(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0411 24(3) 22(4) 25(5) 2(3) -2(3) -1(3) 0421 18(3) 22(4) 25(5) -8(4) 0(3) -6(3) 0431 12(3) 31(5) 25(5) -8(4) 0(3) -6(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0451 25(3) 25(5) 25(5) 22(4) -6(3) 4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) 4(3) 0461 19(3) 23(5) 20(5) 7(4) -6(3) -2(3) 0471 15(3) 16(4) 17(4) -1(3) -4(3) -1(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) -7(3) 0591 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0591 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0591 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0591 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0551 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0551 22(3) 31(5) 23(4) -6(3) -2(3) 9(3) 0551 22(3) 31(5) 23(4) -6(3) -2(3) 9(3) 0551 22(3) 31(5) 23(4) -6(3) -2(3) 9(3) 0551 22(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0551 22(3) 31(4) 15(4) 27(5) 6(3) -2(3) 4(3) 0551 22(3) 31(4) 15(4) 27(5) 6(3) -2(3) 4(3) 0591 17(3) 23(5) 15(4) 28(5) 3(4) -9(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) 28(5) 3(4) -1(3) -3(3) 0591 17(3) 23(5) 15(4) 28(5) 3(4) -9(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) 23(4) 0(3) -1(3) -3(3) 0601 22(3) 20(4) 16(4) 23(4) 0(3) -1(3) -3(3) 0601 22(3) 20(4) 16(4) 23(4) 0(3) -1(3) -3(3) 0601 22(3) 20(4) 16(4) 23(4) 0(3) -1(3) -3(3) 0601 22(3) 20(4) 16(4) 23(4) 0(3) -1(3) -3(3) 0601 22(3) 20(4) 16(4) 23(4) 0(3) -1(3) -3(3) 0601 22(3) 20(4) 18(4) -3(3) -6(3) -6(3) -6(3) 0601 22(3) 20(4) 18(4) -3(3) -6(3) -6(3) -6(3) 0601 22(3) 20(4) 18(4) -3(3) -6(4) 23(4) 0(3) -1(3) 0(3) 0601 22(3) 20(4) 18(4) -3(3) -6(4) -1(3) -6(3) 07(3) 0701 13(3) 20(4) 18(4) 20(5) -6(4) -1(3) -6(3) -7(3) 0791 13(3) 20(4) 18(4) 20(5) -6(4) -1(4) 23(4) 20(5) -6(4) -1(3) -6(3) -7(3) 0791 13(3) 20(4) 18(4) 20(5)	0321						
0351 24(3) 13(4) 13(4) -4(3) 0.3 -1(3) 0361 18(3) 7(4) 13(4) -4(3) 0(3) -1(3) 0371 10(3) 21(4) 15(4) -8(3) -7(2) 4(3) 0381 15(3) 20(4) 10(4) 2(3) -1(2) 9(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0411 24(3) 23(5) 12(4) 6(4) -4(3) -7(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0431 12(3) 31(5) 25(5) -8(4) 0(3) -6(3) 0431 12(3) 31(5) 25(5) -8(4) 0(3) -6(3) 0441 20(3) 21(4) 19(4) -3(3) -1(3) -4(3) 0481 20(3) 21(4) 22(5) -7(4) -6(3) -2(3) 0481 20(3) 21(4) 22	0331	25(3)	23(4)	18(4)	-5(4)	-10(3)	1(3)
0351 24(3) 13(4) 13(4) -4(3) 0.3 -1(3) 0361 18(3) 7(4) 13(4) -4(3) 0(3) -1(3) 0371 10(3) 21(4) 15(4) -8(3) -7(2) 4(3) 0381 15(3) 20(4) 10(4) 2(3) -1(2) 9(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0411 24(3) 23(5) 12(4) 6(4) -4(3) -7(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0431 12(3) 31(5) 25(5) -8(4) 0(3) -6(3) 0431 12(3) 31(5) 25(5) -8(4) 0(3) -6(3) 0441 20(3) 21(4) 19(4) -3(3) -1(3) -4(3) 0481 20(3) 21(4) 22(5) -7(4) -6(3) -2(3) 0481 20(3) 21(4) 22	0341	12(3)	18(4)	23(4)	2(3)	-2(3)	1(3)
0361				13(4)		-2(3)	
0371							
0381							
0391 13(3) 15(4) 31(5) 8(4) 4(3) 0(3) 0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0431 12(3) 31(5) 25(5) 8(4) 0(3) -6(3) 4(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) -4(3) 0461 19(3) 23(5) 20(5) 7(4) -6(3) -2(3) 04f1 15(3) 16(4) 17(4) -1(3) -4(3) -1(3) 04g1 26(3) 25(5) 24(5) -10(4) 2(3) -1(3) 04g1 26(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0601 22(3) 36(5) 18(4) 6(3) -2(3) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
0401 13(3) 11(4) 8(4) 2(3) 2(2) 3(3) 0411 24(3) 23(5) 12(4) 6(4) -4(3) -7(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0431 12(3) 31(5) 25(5) -8(4) 0(3) -6(3) 0431 12(3) 31(5) 25(5) -8(4) 0(3) -6(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) -2(3) 0461 19(3) 23(5) 20(5) 7(4) -6(3) -2(3) 0471 15(3) 16(4) 17(4) -1(3) -4(3) -1(3) 0481 20(3) 21(4) 22(5) -10(4) 2(3) -1(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0541 20(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -9(3) 8(3) 0551 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) (3) 0561 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) (3) 0561 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) (3) 0561 27(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) -8(3) 3(4) -9(3) -4(3) 0591 17(3) 23(5) 15(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -8(3) -3(3) -3(3) 6(3) 0601 22(3) 20(4) 16(4) -8(3) -3(3) -3(3) 6(3) 0601 22(3) 20(4) 16(4) -3(3) -4(3) -3(3) 6(3) 0601 22(3) 20(4) 16(4) -3(3) -4(3) -3(3) 6(3) 0601 22(3) 20(4) 16(4) -3(3) -4(3) -3(3) 6(3) 0601 22(3) 20(4) 16(4) -3(3) -4(3) -3(3) 6(3) 0601 22(3) 20(4) 16(4) -3(3) -4(3) -3(3) 6(3) 0601 22(3) 20(4) 16(4) -3(3) -4(3) -3(3) 6(3) 0601 22(3) 20(4) 16(4) -3(3) -4(3) -3(3) 6(3) 0601 22(3) 20(4) 18(4) -3(3) -4(3) -3(3) 6(3) 0601 22(3) 20(4) 18(4) -3(3) -4(3) -3(3) 6(3) 0601 22(3) 20(4) 18(4) -3(3) -4(3) -3(3) 6(3) 0601 22(3) 20(4) 18(4) -3(3) -4(3) -6(3) -7(3) 07(3) 0601 22(3) 20(4) 18(4) -3(3) -4(3) -3(3) 6(3) 07(3) -7(3) -7(3) 07(3) 07(3) 07(3) 07(3) 07(4) 19(3) 13(4) 07(4) -3(3) 07(3) -7(3) 07(3) 07(3) 07(4) 19(3) 13(4) 07(4) 12(4) 26(5) 1(3) 3(4) 07(4) -7(3) -7(3) 07(3) 07(4) 19(3) 13(4) 26(5) 17(5) 17(4) 4(3) -4(4) 07(3) -7(3) 07(3) 07(4) 19(3) 16(4) 21(5) -1(4) 4(3) -4(4) 07(4) -1(4) 07(4) -1(4) 07(4) -1(4) 07(4) -1(4) 07(4) -1(4) 07(4) -1(4) 07(4) -1(4) 07(4) -1(4) 07(4) -1(4) 07(
0411 24(3) 23(5) 12(4) 6(4) -4(3) -7(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) 4(3) 0461 19(3) 23(5) 20(5) 7(4) -6(3) -2(3) 0471 15(3) 16(4) 17(4) -1(3) -4(3) -1(3) 0481 20(3) 25(5) 24(5) -6(4) 0(3) -7(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) -7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0521 22(3) 36(5) 18(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) <	0391	13(3)	15(4)	31(5)	8 (4)	4(3)	0(3)
0411 24(3) 23(5) 12(4) 6(4) -4(3) -7(3) 0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) 4(3) 0461 19(3) 23(5) 20(5) 7(4) -6(3) -2(3) 0471 15(3) 16(4) 17(4) -1(3) -4(3) -1(3) 0481 20(3) 25(5) 24(5) -6(4) 0(3) -7(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) -7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0521 22(3) 36(5) 18(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) <	0401	13(3)	11(4)	8(4)	2(3)	2(2)	3(3)
0421 18(3) 22(4) 25(5) 2(3) -2(3) 1(3) 0431 12(3) 31(5) 25(5) -8(4) 0(3) -6(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) 4(3) 0461 19(3) 23(5) 20(5) 7(4) -6(3) -2(3) 0471 15(3) 16(4) 17(4) -1(3) -4(3) -4(3) -1(3) 0481 20(3) 21(4) 22(5) -10(4) 2(3) -1(3) 0481 20(3) 21(4) 22(5) -10(4) 2(3) -1(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 24(5) -4(4) -8(3) 10(3) 0541 20(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0541 20(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -9(3) 8(3) 0551 27(3) 14(4) 15(5) 24(4) 13(3) -2(3) 0551 27(3) 14(4) 15(5) 24(4) 13(3) -2(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0551 22(3) 36(4) 28(5) 3(4) -9(3) -4(3) 0551 17(3) 26(4) 28(5) 3(4) -9(3) -4(3) 0591 17(3) 23(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0591 17(3) 23(3) 16(4) 28(5) 3(4) -9(3) -3(3) 5(3) 0501 22(3) 16(4) 23(4) 0(3) -1(3) -3(3) 0591 17(3) 23(3) 16(4) 23(4) -1(3) 5(3) -3(3) 3(3) 0621 22(3) 16(4) 23(4) 0(3) -1(3) -5(3) 3(3) 0621 22(3) 16(4) 23(4) 0(3) -1(3) -5(3) 3(3) 0621 22(3) 16(4) 23(4) 0(3) -1(3) -3(3) 0(3) 0621 22(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0631 23(3) 17(4) 14(4) 5(5) 1(3) -4(3) 6(3) 0631 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0631 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) -4(3) 6(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0691 13(3) 20(4) 18(4) -1(3) -6(4) -1(3) -6(3) -7(3) 0701 19(3) 13(4) 3(4) 36(5) -5(4) -9(3) -1(3) 0701 19(3) 13(4) 3(4) 36(5) -5(4) -9(3) -1(3) 0701 19(3) 13(4) 24(4) 26(5) 1(3) 3(4) 6(3) 2(3) 0701 19(3) 13(4) 24(4) 26(5) 1(4) -1(3) -6(3) -7(3) 0701 19(3) 13(4) 24(4) 26(4) 7(3) -7(3) -7(3) -7(3) 0701 19(3) 13(4) 24(4) 26(5) 3(4) 7(4) -7(3) -7(3) 0701 19(3) 13(4) 10(4) 21(5) -1(4) 4(3) -4(3) 0701 12(3) 10(4) 14(4) 19(4) -2(3) -6(3) -7(3) 0701 19(3) 16(4) 22(4) 17(4) 1(3) -3(2) 07(3) 0701 12(3) 16(4) 22(4)	0411	24(3)	23(5)	12(4)	6(4)	-4(3)	
0421 12(3) 31(5) 25(5) -8(4) 0(3) -6(3) 0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) 4(3) 0471 15(3) 16(4) 17(4) -1(3) -4(3) -1(3) 0481 20(3) 22(4) 22(5) -10(4) 2(3) -1(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 22(5) 17(4) 0(4) -9(3) -7(3) 0551 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0551 17(3) 15(4) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
0441 20(3) 11(4) 19(4) -3(3) -1(3) -4(3) 0451 25(3) 25(5) 16(5) 2(4) -6(3) 4(3) 0461 19(3) 23(5) 20(5) 7(4) -6(3) -2(3) 0471 15(3) 16(4) 17(4) -1(3) -4(3) -1(3) 0481 20(3) 22(4) 24(5) -6(4) 0(3) -7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0521 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0521 22(3) 36(5) 21(5) -4(4) -8(3) 10(3) 0521 23(3) 25(5)							
0451 25(3) 25(5) 16(5) 2(4) -6(3) 4(3) 0461 19(3) 23(5) 20(5) 7(4) -6(3) -2(3) 0481 20(3) 21(4) 22(5) -10(4) 2(3) -1(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0551 27(3) 31(4) 27(5) 6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0551 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0571 22(3) 16(4) 2							
0461 19(3) 23(5) 20(5) 7(4) -6(3) -2(3) 0471 15(3) 16(4) 17(4) -1(3) -4(3) -1(3) 0481 20(3) 21(4) 22(5) -10(4) 2(3) -1(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0511 26(3) 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 21(5) 6(3) -2(3) 9(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0551 17(3)			11(4)				
0471 15(3) 16(4) 17(4) -1(3) -4(3) -1(3) 0481 20(3) 21(4) 22(5) -10(4) 2(3) -1(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0551 17(3) 15(4) 27(5) 6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0551 17(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0551 17(3) 23(5)	0451	25(3)	25(5)	16(5)	2(4)	-6(3)	4(3)
0471 15(3) 16(4) 17(4) -1(3) -4(3) -1(3) 0481 20(3) 21(4) 22(5) -10(4) 2(3) -1(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0551 17(3) 15(4) 27(5) 6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0551 17(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0551 17(3) 23(5)	0461	19(3)	23(5)	20(5)	7(4)	-6(3)	-2(3)
0481 20(3) 21(4) 22(5) -10(4) 2(3) -1(3) 0491 26(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0541 20(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0551 17(3) 15(4) 28(5) 3(4) -9(3) -4(3) 0551 17(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -5(3) 3(3) 0591 17(3) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
0491 26(3) 25(5) 24(5) -6(4) 0(3) 7(3) 0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0541 20(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0551 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) 4(3) 0551 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) -4(3) 0551 17(3) 23(5) 15(4) -8(3) -3(3) -6(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 0(3) <							
0501 26(3) 29(5) 17(4) 0(4) -9(3) -7(3) 0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0541 20(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0561 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0571 22(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) 5(3) 0601 22(3) 20(4) 16(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -1(3) 5(3) 1(3) 0611 22(3) 16(4) 2							
0511 26(3) 22(4) 15(4) 10(3) -1(3) 0(3) 0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0551 17(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0561 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0571 22(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -8(3) -3(3) 5(3) 0611 22(3) 20(4) 16(4) -8(4) -2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -5(3) 3(3) 0621 2							
0521 22(3) 36(5) 18(4) 6(3) -2(3) 9(3) 0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0541 20(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0551 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0571 22(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -2(3) -5(3) 3(3) 0611 22(3) 16(4) 23(4) -2(3) -3(3) 0(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0621 28(3) 29(5) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0541 20(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0561 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0571 22(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -1(3) 5(3) 16(3) 0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0621 23(3) 27(4) 19(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) <td< td=""><td>0511</td><td>26(3)</td><td>22(4)</td><td>15(4)</td><td>10(3)</td><td>-1(3)</td><td>0(3)</td></td<>	0511	26(3)	22(4)	15(4)	10(3)	-1(3)	0(3)
0531 23(3) 25(5) 21(5) -4(4) -8(3) 10(3) 0541 20(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0561 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0571 22(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -1(3) 5(3) 16(3) 0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) <td< td=""><td>0521</td><td>22(3)</td><td>36(5)</td><td>18(4)</td><td>6(3)</td><td>-2(3)</td><td>9(3)</td></td<>	0521	22(3)	36(5)	18(4)	6(3)	-2(3)	9(3)
0541 20(3) 31(5) 23(4) -6(3) -9(3) 8(3) 0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0561 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0571 22(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -1(3) 5(3) 1(3) 0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0631 23(3) 27(4) 19(4) 1(3) -4(3) 3(3) 0651 23(3) 27(4) 19	0531				-4(4)	-8(3)	
0551 17(3) 15(4) 27(5) 6(3) -2(3) 4(3) 0561 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0571 22(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -2(3) -5(3) 3(3) 0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) 9(4) 1(3) -4(3) 3(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17							
0561 27(3) 14(4) 15(5) 2(4) 1(3) -2(3) 0571 22(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -1(3) 5(3) 1(3) 0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) 9(4) 1(3) -4(3) 3(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26							
0571 22(3) 16(4) 28(5) 3(4) -9(3) -4(3) 0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -1(3) 5(3) 1(3) 0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) 9(4) 1(3) -4(3) 6(3) 0651 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 2							
0581 12(3) 26(4) 23(4) 0(3) -1(3) -3(3) 0591 17(3) 23(5) 15(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -1(3) 5(3) 1(3) 0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) 9(4) 1(3) -4(3) 6(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -1(3) -1(3) 0691 13(3) 20(4)							
0591 17(3) 23(5) 15(4) -8(3) -3(3) 5(3) 0601 22(3) 20(4) 16(4) -1(3) 5(3) 1(3) 0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) 9(4) 1(3) -4(3) 6(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 3							
0601 22(3) 20(4) 16(4) -1(3) 5(3) 1(3) 0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -5(3) 0(3) 0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) 9(4) 1(3) -4(3) 6(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4)	0581	12(3)	26(4)	23(4)	0(3)	-1(3)	-3(3)
0601 22(3) 20(4) 16(4) -1(3) 5(3) 1(3) 0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -5(3) 0(3) 0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) 9(4) 1(3) -4(3) 6(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4)	0591	17(3)	23(5)	15(4)	-8(3)	-3(3)	5(3)
0611 22(3) 16(4) 23(4) 2(3) -5(3) 3(3) 0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) 9(4) 1(3) -4(3) 6(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4) <t< td=""><td></td><td></td><td>20(4)</td><td></td><td></td><td></td><td></td></t<>			20(4)				
0621 20(3) 16(4) 28(4) -2(3) -3(3) 0(3) 0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) 9(4) 1(3) -4(3) 6(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4) 25(5) -4(4) 2(3) 5(3) 0721 17(3) 24(4) 26(4) 7(3) -7(3) -7(3) 0731 13(3) 27(4) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
0631 23(3) 17(4) 14(4) -3(3) -4(3) 3(3) 0641 28(3) 29(5) 9(4) 1(3) -4(3) 6(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4) 25(5) -4(4) 2(3) 5(3) 0721 17(3) 24(4) 26(4) 7(3) -7(3) -7(3) 0731 13(3) 27(4) 29(5) -6(4) -1(3) -6(3) 0741 21(3) 20(3)<							
0641 28(3) 29(5) 9(4) 1(3) -4(3) 6(3) 0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4) 25(5) -4(4) 2(3) 5(3) 0721 17(3) 24(4) 26(4) 7(3) -7(3) -7(3) 0731 13(3) 27(4) 29(5) -6(4) -1(3) -6(3) 0741 21(3) 20(4) 14(4) -1(3) -2(3) -5(3) 0751 24(3) 18(4) 20(5) 3(4) 6(3) 2(3) 0771 32(4) 9(4) <td></td> <td></td> <td></td> <td>20(4)</td> <td></td> <td></td> <td></td>				20(4)			
0651 23(3) 27(4) 19(4) 5(3) -6(3) -4(3) 0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4) 25(5) -4(4) 2(3) 5(3) 0721 17(3) 24(4) 26(4) 7(3) -7(3) -7(3) 0731 13(3) 27(4) 29(5) -6(4) -1(3) -6(3) 0741 21(3) 20(4) 14(4) -1(3) -2(3) -5(3) 0751 24(3) 18(4) 20(5) 3(4) 6(3) 2(3) 0761 19(3) 16(4) 21(5) -1(4) 4(3) -4(3) 0771 32(4) 9(4) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4) 25(5) -4(4) 2(3) 5(3) 0721 17(3) 24(4) 26(4) 7(3) -7(3) -7(3) -7(3) 0731 13(3) 27(4) 29(5) -6(4) -1(3) -6(3) -7(3) 0741 21(3) 20(4) 14(4) -1(3) -2(3) -5(3) 0751 24(3) 18(4) 20(5) 3(4) 6(3) 2(3) 0761 19(3) 16(4) 21(5) -1(4) 4(3) -4(3) 0771 32(4) 9(4) 24(4) 6(3) -6(3) -7(3) 0781 </td <td>0641</td> <td></td> <td>29(5)</td> <td>9(4)</td> <td></td> <td>-4(3)</td> <td>6(3)</td>	0641		29(5)	9(4)		-4(3)	6(3)
0661 17(3) 23(4) 17(4) -3(3) 0(3) -5(3) 0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4) 25(5) -4(4) 2(3) 5(3) 0721 17(3) 24(4) 26(4) 7(3) -7(3) -7(3) -7(3) 0731 13(3) 27(4) 29(5) -6(4) -1(3) -6(3) -7(3) 0741 21(3) 20(4) 14(4) -1(3) -2(3) -5(3) 0751 24(3) 18(4) 20(5) 3(4) 6(3) 2(3) 0761 19(3) 16(4) 21(5) -1(4) 4(3) -4(3) 0771 32(4) 9(4) 24(4) 6(3) -6(3) -7(3) 0781 </td <td>0651</td> <td>23(3)</td> <td>27(4)</td> <td>19(4)</td> <td>5(3)</td> <td>-6(3)</td> <td>-4(3)</td>	0651	23(3)	27(4)	19(4)	5(3)	-6(3)	-4(3)
0671 14(3) 12(4) 26(5) 1(3) 3(3) -11(3) 0681 29(3) 21(4) 19(4) -1(3) -11(3) 4(3) 0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4) 25(5) -4(4) 2(3) 5(3) 0721 17(3) 24(4) 26(4) 7(3) -7(3) -7(3) -7(3) 0731 13(3) 27(4) 29(5) -6(4) -1(3) -6(3) -6(3) 0741 21(3) 20(4) 14(4) -1(3) -2(3) -5(3) 0751 24(3) 18(4) 20(5) 3(4) 6(3) 2(3) 0761 19(3) 16(4) 21(5) -1(4) 4(3) -4(3) 0771 32(4) 9(4) 24(4) 6(3) -6(3) -7(3) 0781 18(3) 22(4) 17(4) 1(3) -3(2) 0(3) 0801 <td>0661</td> <td>17(3)</td> <td>23(4)</td> <td>17(4)</td> <td>-3(3)</td> <td>0(3)</td> <td>-5(3)</td>	0661	17(3)	23(4)	17(4)	-3(3)	0(3)	-5(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1(3)		
0691 13(3) 20(4) 18(4) -3(3) 0(3) 2(3) 0701 19(3) 13(4) 36(5) -5(4) -9(3) -1(3) 0711 25(3) 19(4) 25(5) -4(4) 2(3) 5(3) 0721 17(3) 24(4) 26(4) 7(3) -7(3) -7(3) 0731 13(3) 27(4) 29(5) -6(4) -1(3) -6(3) 0741 21(3) 20(4) 14(4) -1(3) -2(3) -5(3) 0751 24(3) 18(4) 20(5) 3(4) 6(3) 2(3) 0751 24(3) 18(4) 20(5) 3(4) 6(3) -2(3) -5(3) 0761 19(3) 16(4) 21(5) -1(4) 4(3) -4(3) 0771 32(4) 9(4) 24(4) 6(3) -6(3) -7(3) 0781 18(3) 16(4) 21(5) 0(4) -7(3) 2(3) 0791 8(3) 22(4) 17(4) 1(3) -3(2) 0(3) 0801 16(3)					_1(3)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2(2)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0711		19(4)		-4(4)	2(3)	5(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0721	17(3)	24(4)	26(4)	7(3)	-7(3)	-7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0731	13(3)	27(4)	29(5)	-6(4)	-1(3)	-6(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-2(3)	-5(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						6(3)	2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					3 (1)	4(2)	4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-1(4)	4(3)	-4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18(3)	16(4)				2(3)
0801 16(3) 14(4) 19(4) -2(3) -6(3) 2(3) N12 26(4) 30(6) 29(6) -7(5) -1(4) -6(4) N22 14(3) 26(5) 27(5) 1(4) -3(3) 1(4) N32 23(4) 32(6) 17(5) 1(4) -7(3) -4(4) N42 24(4) 17(5) 34(6) -3(4) -3(4) -3(4) N52 34(5) 41(7) 43(7) -4(6) -10(5) -9(5)	0791	8(3)	22(4)	17(4)	1(3)	-3(2)	0(3)
N12 26(4) 30(6) 29(6) -7(5) -1(4) -6(4) N22 14(3) 26(5) 27(5) 1(4) -3(3) 1(4) N32 23(4) 32(6) 17(5) 1(4) -7(3) -4(4) N42 24(4) 17(5) 34(6) -3(4) -3(4) -3(4) N52 34(5) 41(7) 43(7) -4(6) -10(5) -9(5)	0801						
N22 14(3) 26(5) 27(5) 1(4) -3(3) 1(4) N32 23(4) 32(6) 17(5) 1(4) -7(3) -4(4) N42 24(4) 17(5) 34(6) -3(4) -3(4) -3(4) N52 34(5) 41(7) 43(7) -4(6) -10(5) -9(5)							
N32 23(4) 32(6) 17(5) 1(4) -7(3) -4(4) N42 24(4) 17(5) 34(6) -3(4) -3(4) -3(4) N52 34(5) 41(7) 43(7) -4(6) -10(5) -9(5)					1 / // \		
N42 $24(4)$ $17(5)$ $34(6)$ $-3(4)$ $-3(4)$ $-3(4)$ N52 $34(5)$ $41(7)$ $43(7)$ $-4(6)$ $-10(5)$ $-9(5)$					⊥(±) 1/4\		
N42 $24(4)$ $17(5)$ $34(6)$ $-3(4)$ $-3(4)$ $-3(4)$ N52 $34(5)$ $41(7)$ $43(7)$ $-4(6)$ $-10(5)$ $-9(5)$					1(4)	-/(3)	
N52 34(5) 41(7) 43(7) -4(6) -10(5) -9(5) N62 43(5) 49(7) 11(5) -16(5) -10(4) 1(5)					- 3 (Δ)		
N62 $43(5)$ $49(7)$ $11(5)$ $-16(5)$ $-10(4)$ $1(5)$		34(5)			-4(6)		
	N62	43(5)	49(7)	11(5)	-16(5)	-10(4)	1(5)

N72	29(4)	15(6)	40(8)	0(5)	2(4)	-2(4)
N82	25(4)	40(6)	10(4)	-4(4)	-1(3)	8(4)
N92	31(4)	26(6)	33(7)	8(5)	-2(4)	5(4)
N102	51(6)	45(8)	41(8)	24(6)	-18(5)	-21(6)
N112	29(5)	45(8)	32(7)	-3(6)	-7(4)	0(5)
N122	21(4)	29(7)	46(8)	-9(6)	7(4)	0(4)
N132	37(5)	29(7)	34(7)	-7(5)	-6(4)	1(5)
N142	24(4)	30(7)	34(7)	-7(5)	10(4)	-4(4)
N152	45(5)	24(6)	35(6)	-11(5)	-18(5)	9(5)
N162	39(5)	15(5)	32(7)	-2(5)	-8(4)	-9(4)
N172	26(4)	22(6)	85(11)	17(6)	-18(5)	-3(4)
N182	21(4)	33(6)	47(8)	-6(6)	7(4)	-5(4)
N192	44(5)	21(6)	47(8)	-5(5)	-7(5)	15(5)
N202	20(4)	54(8)	25(6)	-13(5)	-5(4)	7(5)
N212	34(5)	41(7)	37(7)	4(6)	-20(5)	-6(5)
N222	45(5)	24(6)	35(7)	-1(5)	-10(5)	7(5)
N232	32(5)	40(7)	26(6)	-2(5)	8(4)	3(5)
N242	30(4)	21(5)	32(5)	-1(4)	-7(4)	6(4)
N252	43(6)	50(9)	51(10)	-12(8)	-3(6)	-7(6)
N262	38(5)	44(8)	46(9)	-11(7)	-14(5)	-3(6)
N272	26(4)	30(5)	18(4)	-1(4)	3(3)	1(4)
N282	29(4)	28(5)	36(6)	-11(4)	6(4)	-2(4)
N292	38(5)	31(6)	15(5)	0(4)	1(4)	6(4)
N302	38(5)	31(6)	29(6)	-6(5)	-8(4)	0(5)
N312	61(7)	30(7)	45(8)	-19(6)	-22(6)	-4(6)
N322	33(5)	44(8)	26(7)	-12(6)	2(4)	-12(5)
N332	29(5)	58(8)	31(6)	1(5)	10(4)	-2(5)
N342	15(4)	34(6)	87(9)	-9(6)	3(4)	0(4)
N352	46(6)	23(6)	56(9)	-8(6)	-31(6)	9(5)
N352 N362	56(7)	66(10)	40(8)	9(7)	6(6)	38(7)
N372	26(4)	24(5)	32(5)	2(4)	-5(4)	-8(4)
N372 N382	42(6)	68(10)	32(7)	7(7)	5(5)	24(6)
N302 N392	89(8)	32(7)	38(7)	-12(5)	-23(6)	12(6)
N402	53(6)	30(6)	37(6)	-12(5)	-25(5)	12(5)
N402 N412	39(5)	56(7)	12(5)	1(4)	8(4)	8(5)
N412 N422	43(5)	41(6)	38(6)	8(5)	-9(5)	1(5)
N422 N432	47(6)	43(7)	48(7)	-9(5)	-J(5) -17(5)	12(5)
N432 N442	32(4)	29(6)	32(5)	-9(3) -4(4)	-17(5)	
N442 N452	24(4)	36(6)	28(5)	0(4)		0(4)
N452 N462	51(6)			0(4)	4(3)	-14(4) -16(6)
		50(8)	37(7) 31(5)		-10(5)	
N472	38(5)	28(5) 49(8)		12(4)	-5(4)	-21(4)
N482	50(6)		71(11)	-2(8)	-31(7)	-10(6)
N492	48(6)	46(7)	43(7)	-9(5)	-19(5)	10(5)
N502	22(4)	27(4)	35(5)	0(4)	4(3)	-4(3)
N512	44(5)	42(6)	25(5)	-9(4)	11(4)	-14(5)
N522	39(5)	30(5)	34(5)	-8(4)	2(4)	-1(4)
N532	30(5)	29(5)	53(7)	-11(5)	2(4)	-1(4)
N542	18(4)	36(5)	33(5)	4(4)	0(3)	-1(4)
N552	30(4)	31(5)	27(5)	-4(4)	-1(4)	1(4)
N562	44(5)	56(6)	18(4)	-22(4)	-11(4)	23(5)
N572	21(4)	27(5)	30(5)	-1(4)	-4(3)	1(4)
N582	34(5)	29(5)	39(5)	-1(4)	0(4)	-3(4)
N592	36(5)	32(5)	72(7)	19(5)	-19(5)	-9(4)
N602	67(7)	38(6)	61(8)	-4(6)	-19(6)	-21(6)

Atomkoordinaten (\cdot 10⁴) und isotrope Auslenkungsparameter (\mathring{A}^2 \cdot 10³) von $(NH_4)_3[P(MO_{12}O_{40})]$ \cdot 27NH₃

	х	У	z	U(eq)
H1A2	7661	710	3238	50
H1B2	8309	668	2814	50
H1C2	8415	735	3396	50
H2A2	2	2681	4657	50
H2B2	-830	2525	4727	50
H2C2	9418	3222	4775	50
H3A2	7316	8276	2096	50
H3B2	8002	7851	2062	50
H3C2	7156	7640	2145	50
H3D2	-2388	7805	2597	50
H4A2	7642	1773	2901	50
H4B2	7978	2348	2921	50
H4C2	7398	2186	2437	50
H5A2	6269	9100	1630	50
H5B2	6678	9353	2127	50
H5C2	7085	9118	1590	50
н6А2	4246	8859	3218	50
H6B2	4989	8602	2747	50
H6C2	4987	8831	3312	50
H7A2	857	9407	-136	50
H7B2	924	9327	-737	50
H7C2	621	9886	9500(60)	50
H8A2	5490	7198	-158	50
H8B2	5891	7489	270	50
H8C2	-4333	6730	437	50
H9A2	4197 4323	571 115	5146	50 50
Н9В2 Н9С2	4323 5700	115 -567	5486 4070	50
H10A2	-18	8571	-2281	50
H10A2 H10B2	168	8847	-2261 -1978	50
H10B2 H10C2	92	8399	-1667	50
H11A2	2323	9004	3262	50
H11B2	2509	8712	2693	50
H11C2	3155	9175	3064	50
H12A2	-2408	7829	-210	50
H12B2	-1651	7626	-358	50
H12C2	-1577	7840	-827	50
H13A2	7595	2172	5462	50
H13B2	6622	2387	5424	50
H13C2	7152	2379	5879	50
H14A2	-3151	8224	231	50
H14B2	7362	8275	688	50
H14C2	6325	8172	1004	50
H15A2	-2915	9572	27	50
H15B2	-3474	9800	323	50
H15C2	-2814	10213	103	50
H16A2	1782	1280	1843	50
H16B2	2050	768	2315	50
H16C2	2662	1018	1744	50
H17A2	-2206	-164	4984	50
H17B2	-2639	22	4607	50
H17C2	-2531	457	4624	50
H18A2	-1405	3364	2956	50
H18B2	-820 1700	3001	3233	50 50
H18C2	-1708	3194	3611	50 50
H19A2 H19B2	-386 -1427	9875 10133	1830	50 50
H19B2 H19C2	-1427 -1182	10133 9707	1784 2187	50 50
птэса	-1107	9101	Z10/	50

H20A2	-3613	6634	2039	50
H20B2	-4054	6668	1601	50
H20C2	-3381	6881	1423	50
H21A2	-1532	8841	-650	50
H21B2	-1774	9351	-889	50
H21C2	-1010	9224	-357	50
H22A2	6772	596		50
			5396	
H22B2	5782	693	5583	50
H22C2	6521	619	5897	50
H22D2	6440	1177	5677	50
H23A2	7654	7671	3756	50
H23B2	8040	8021	3453	50
H23C2	7216	7501	3476	50
H24A2	7284	3905	5617	50
H24B2	7034	3563	5408	50
H24C2	3172	6440	4040	50
H25A2	921			50
		-1008	3783	
H25B2	1376	-788	4317	50
H25C2	1303	-1294	4338	50
H26A2	3423	1293	1000	50
H26B2	4027	1070	1224	50
H26C2	3662	813	710	50
H27A2	-1677	3931	4412	50
H27B2	-949	4127	4214	50
H27C2	-1258	4291	4773	50
H28A2	-4406	5962	826	50
H28B2	-3736	5732	238	50
H28C2	-3288	6033	485	50
H29A2	6799	2036	1502	50
H29B2	2536	7591	-1336	50
H29C2	6773	2716	1544	50
H30A2	587	9921	2607	50
H30B2	1519	10164	3127	50
H30C2	613	10247	2974	50
H31A2	5941	-65	2631	50
H31B2	6071	310	2811	50
H31C2	6330	-60	3217	50
H32A2	-2416	2072	4295	50
H32B2	-1222	1834	3993	50
H32C2	-1853	1483	4479	50
H33A2	5399	7533	-1391	50
H33B2	5618	7119	-1222	50
H33C2	4794	7264	-881	50
H34A2	-3528	6083	3625	50
H34B2	-3384	5880	3233	50
H34C2	-2685	6304	3376	50
H35A2	4372	-307	2113	50
H35B2	3470	9946	1896	50
H35C2	3977	10201	2189	50
	2796			
H36A2		8990	-1901	50
Н36В2	2653	8810	-1279	50
H36C2	3181	9151	-1191	50
H37A2	-4542	5730	4486	50
H37B2	-5153	6032	4298	50
H37C2	-4489	6301	4655	50
H38A2	8081	-507	3619	50
H38B2	7969	-892	3333	50
H38C2	7133	-900	3583	50
H39A2	-1225	5073	5025	50
н39в2	-1758	5140	5418	50
H39C2	-1130	5056	5685	50
H40A2	4166	5197	304	50

н40в2	2865	5208	702	50
H40C2	3718	5065	690	50
H41A2	311	7479	3524	50
H41B2	788	7693	3782	50
H41C2	-105	2272	5732	50
H42A2	-2578	5919	-688	50
H42B2	-1652	6111	-830	50
H42C2	-2003	6550	-883	50
H43A2	4889	2855	7271	50
H43B2	4784	2735	6511	50
H43C2	5361	2764	6794	50
H44A2	3850	5497	5418	50
H44B2	3158	5144	5384	50
H44C2	3759	4981	4975	50
H45A2	-692	5007	581	50
H45B2	-1056	4854	62	50
H45C2	-1824	4723	420	50
H46A2	350	137	4319	50
H46B2	396	861	4287	50
H46C2	437	591	4686	50
H47A2	6723	4263	3263	50
H47B2	6619	4684	3495	50
H47C2	7537	4693	3179	50
H48A2	-4824	9233	949	50
H48B2 H48C2	-5285 -4560	9374 9355	268 478	50 50
н46С2 Н49А2	403	7261	-1810	50
н49A2 Н49B2	334	6904	-1010	50
H49C2	-221	7021	-2114 -1972	50
H50A2	5652	5264	2363	50
H50H2	6225	5051	1834	50
H50C2	5452	4840	1895	50
H50D2	5795	4747	2396	50
H51A2	7410	3994	1840	50
H51B2	8030	3937	1400	50
H51C2	8027	3708	1751	50
H52A2	259	6322	-353	50
H52B2	204	6321	-1000	50
H52C2	384	5969	-786	50
H53A2	-1726	5717	1695	50
H53B2	-2403	5504	2105	50
H53C2	-1972	5317	1525	50
H54A2	4250	5469	3147	50
H54B2	3977	5851	2690	50
H54E2	4016	5960	2922	50
H55A2	3363	4784	2535	50
H55B2 H55C2	2940 3425	4268 4829	2391 1938	50 50
H56A2	5352	4829	1938	50 50
H56B2	4628	4478	1403	50
H56B2	4687	4309	970	50
H57A2	1563	5673	2314	50
H57B2	2146	5329	2781	50
H57C2	-1265	4469	6872	50
H58A2	-1273	4150	6097	50
H58B2	1080	6431	3817	50
H58C2	-569	3723	6514	50
H59A2	8972	4945	3218	50
H59B2	8970	4998	3679	50
H59C2	8228	4788	3482	50
H60A2	846	4608	1831	50
H60B2	390	4100	2121	50

50

H60C2 -250 4415 2313

Wasserstoffatomkoordinaten ($\cdot 10^4$) und isotrope Auslenkungsparameter (Å 2 · 10^3) von (NH₄)₃[P(MO₁₂O₄₀)] · 27NH₃

6.9 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von [NH₄(NH₃)₄][Co(C₂B₉H₁₁)₂] · 2NH₃

	х	У	Z	U(eq
Co(1)	3626(1)	7839(1)	1917(1)	12(1
N(1)	897(2)	11286(2)	1698(2)	32(1
N(2)	5233(3)	10638(2)	232(2)	34(1
N(3)	1829(3)	10777(2)	3306(2)	33(1
N(4)	1108(3)	5006(2)	3660(2)	38(1
N(5)	-254(3)	8327(2)	3486(2)	34(1
N(6)	2200(3)	10733(2)	235(2)	32(1
N(7)	7779(3)	11845(2)	337(2)	41(1
C(1)	3456(2)	7141(2)	836(1)	16(1
C(2)	5287(2)	8451(2)	1777(1)	15(1
C(3)	5343(2)	7425(2)	2225(2)	14(1
C(4)	2914(2)	6545(2)	1587(1)	15(1
B(1)	4367(2)	7359(2)	3008(2)	16(1
B(2)	6251(3)	8758(2)	3283(2)	19(1
B(3)	1879(2)	8368(2)	1649(2)	16(1
B(4)	1428(3)	6319(2)	1468(2)	18(1
B(5)	1949(2)	7223(2)	2155(1)	15(1
B(6)	3651(3)	8526(2)	3050(2)	16(1
B(7)	4247(2)	9209(2)	2217(2)	16(1
B(8)	1343(3)	8133(2)	649(2)	18(1
B(9)	5960(2)	7513(2)	3156(2)	18(1
B(10)	4841(2)	9375(2)	3199(2)	17(1
B(11)	4913(2)	8232(2)	3689(2)	18(1
B(12)	5852(3)	9332(2)	2369(2)	18(1
B(13)	2379(3)	7373(2)	142(2)	18(1
B(14)	6552(2)	8190(2)	2353(2)	18(1
B(15)	746(3)	7471(2)	1480(2)	19(1
B(16)	2413(3)	6254(2)	635(2)	19(1
B(17)	2907(2)	8288(2)	810(2)	16(1
B(18)	1033(2)	6883(2)	549(2)	19(1

Atomkoordinaten (•10 4) und isotrope Auslenkungsparameter (Å 2 • 10 3) von $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2]$ • $2NH_3$

2.047(2)	N(2)-H(2B)	0.92(5)
2.051(3)	N(2)-H(2C)	0.86(6)
2.059(2)	N(3)-H(3A)	0.92(6)
2.063(2)	N(3)-H(3B)	0.87(6)
2.091(3)	N(3)-H(3C)	0.88(6)
2.098(3)	N(4)-H(4A)	0.96(8)
2.112(3)	N(4)-H(4B)	0.77(7)
2.112(3)	N(4)-H(4C)	0.94(5)
2.125(3)	N(5)-H(5A)	0.95(5)
2.126(3)	N(5)-H(5B)	0.87(4)
1.08(4)	N(5)-H(5C)	0.89(5)
0.87(4)	N(6)-H(6A)	0.87(6)
0.96(4)	N(6)-H(6B)	0.97(4)
1.01(5)	N(6)-H(6C)	0.91(6)
0.90(6)	N(7)-H(7A)	0.81(6)
	2.051(3) 2.059(2) 2.063(2) 2.091(3) 2.098(3) 2.112(3) 2.112(3) 2.125(3) 2.126(3) 1.08(4) 0.87(4) 0.96(4) 1.01(5)	2.051(3) N(2)-H(2C) 2.059(2) N(3)-H(3A) 2.063(2) N(3)-H(3B) 2.091(3) N(3)-H(3C) 2.098(3) N(4)-H(4A) 2.112(3) N(4)-H(4B) 2.112(3) N(4)-H(4C) 2.125(3) N(5)-H(5A) 2.126(3) N(5)-H(5B) 1.08(4) N(5)-H(5C) 0.87(4) N(6)-H(6A) 0.96(4) N(6)-H(6B) 1.01(5) N(6)-H(6C)

N(7)-H(7B)	1.06(8)	B(13)-B(16)	1.770(4)
N(7) - H(7C)	0.93(8)	B(13)-B(18)	1.781(4)
C(1) - C(4)	1.623(3)	B(13)-B(17)	1.798(4)
C(1)-B(13)	1.699(3)	B(13)-H(17)	1.09(3)
C(1)-B(17)	1.717(4)	B(14)-H(18)	1.06(3)
C(1)-B(16)	1.731(4)	B(15)-B(18)	1.791(4)
C(1)-H(1)	0.94(2)	B(15)-H(19)	1.09(3)
C(2)-C(3)	1.619(3)	B(16)-B(18)	1.773(4)
C(2)-B(12)	1.701(4)	B(16)-H(20)	1.06(3)
C(2)-B(7)	1.731(4)	B(17)-H(21)	1.13(3)
C(2)-B(14)	1.743(3)	B(18)-H(22)	1.07(3)
C(2)-H(2)	0.98(3)	2(10) 11(11)	= • • · (• /
		7/2) 7/4) 7/4)	100 00/10)
C(3)-B(1)	1.703(3)	C(2)-Co(1)-C(4)	133.30(10)
C(3)-B(9)	1.706(4)	C(2)-Co(1)-C(3)	46.44(10)
C(3)-B(14)	1.731(4)	C(4)-Co(1)-C(3)	100.18(10)
C(3)-H(3)	0.94(3)	C(2)-Co(1)-C(1)	100.40(9)
C(4)-B(4)	1.694(4)	C(4)-Co(1)-C(1)	46.48(9)
C(4)-B(5)	1.719(4)	C(3)-Co(1)-C(1)	99.86(9)
C(4)-B(16)	1.735(4)	C(2)-Co(1)-B(5)	175.54(10)
C(4)-H(4)	0.94(3)	C(4)-Co(1)-B(5)	49.02(10)
B(1)-B(11)	1.777(4)	C(3)-Co(1)-B(5)	131.46(10)
B(1)-B(9)	1.800(3)	C(1)-Co(1)-B(5)	83.72(9)
		C(2) - Co(1) - B(7)	
B(1)-B(6)	1.816(4)		49.36(10)
B(1)-H(5)	1.07(3)	C(4)-Co(1)-B(7)	175.94(11)
B(2)-B(14)	1.779(4)	C(3)-Co(1)-B(7)	83.78(10)
B(2)-B(12)	1.782(4)	C(1)-Co(1)-B(7)	132.21(10)
B(2)-B(9)	1.784(4)	B(5)-Co(1)-B(7)	128.61(12)
B(2)-B(11)	1.792(4)	C(2)-Co(1)-B(1)	83.10(10)
B(2)-B(10)	1.794(4)	C(4)-Co(1)-B(1)	95.89(10)
B(2)-H(6)	1.15(3)	C(3)-Co(1)-B(1)	48.19(9)
B(3)-B(15)	1.799(4)	C(1)-Co(1)-B(1)	130.01(10)
B(3)-B(8)	1.805(4)	B(5)-Co(1)-B(1)	92.96(10)
B(3)-B(17)	1.812(4)	B(7)-Co(1)-B(1)	87.41(11)
B(3)-B(5)	1.813(4)	C(2)-Co(1)-B(17)	96.72(10)
B(3)-H(7)	1.10(3)	C(4)-Co(1)-B(17)	83.16(11)
B(4)-B(16)	1.773(4)	C(3)-Co(1)-B(17)	130.83(10)
B(4)-B(15)	1.781(4)	C(1)-Co(1)-B(17)	48.56(10)
B(4)-B(18)	1.782(4)	B(5)-Co(1)-B(17)	87.27(11)
B(4)-B(5)	1.805(4)	B(7)-Co(1)-B(17)	93.58(11)
B(4)-H(8)	1.10(3)	B(1)-Co(1)-B(17)	178.53(11)
B(5)-B(15)	1.784(4)	C(2)-Co(1)-B(3)	130.83(10)
B(5)-H(9)	1.11(3)	C(4)-Co(1)-B(3)	84.16(11)
B(6)-B(10)	1.795(4)	C(3)-Co(1)-B(3)	175.48(11)
B(6)-B(11)	1.811(4)	C(1)-Co(1)-B(3)	84.04(10)
B(6)-B(7)	1.815(4)	B(5)-Co(1)-B(3)	50.93(12)
	1.17(3)	B(7)-Co(1)-B(3)	
B(6)-H(10)			91.91(11)
B(7)-B(10)	1.787(4)	B(1)-Co(1)-B(3)	130.46(10)
B(7)-B(12)	1.809(4)	B(17)-Co(1)-B(3)	50.63(10)
B(7)-H(11)	1.12(3)	C(2)-Co(1)-B(6)	84.30(10)
B(8)-B(17)	1.771(4)	C(4)-Co(1)-B(6)	130.10(10)
B(8)-B(13)	1.781(4)	C(3)-Co(1)-B(6)	83.77(10)
B(8)-B(18)	1.790(4)	C(1)-Co(1)-B(6)	175.26(11)
B(8)-B(15)	1.798(4)	B(5)-Co(1)-B(6)	91.60(10)
B(8)-H(12)	1.10(3)	B(7)-Co(1)-B(6)	50.90(10)
B(9)-B(14)	1.771(4)	B(1)-Co(1)-B(6)	50.76(10)
B(9)-B(11)	1.778(4)	B(17)-Co(1)-B(6)	130.69(11)
B(9)-H(13)	1.12(3)	B(3)-Co(1)-B(6)	92.45(11)
B(10)-B(12)	1.788(4)	H(1A)-N(1)-H(1B)	117(3)
B(10)-B(11)	1.798(4)	H(1A)-N(1)-H(1C)	113(3)
B(10)-H(14)	1.09(3)	H(1B)-N(1)-H(1C)	103(3)
B(11)-H(15)	1.13(3)	H(1A)-N(1)-H(1D)	107(3)
B(12)-B(14)	1.776(4)	H(1B)-N(1)-H(1D)	108(4)
B(12)-H(16)	1.10(3)	H(1C)-N(1)-H(1D)	108(3)
_ (± 2 / ± 1 (± 0 /	±•±0(J)	11(10)	100(3)

H(2A)-N(2)-H(2B)	99(4)	C(1)-C(4)-B(4)	111.51(18)
H(2A)-N(2)-H(2C)	109(5)	C(1)-C(4)-B(5)	112.1(2)
H(2B)-N(2)-H(2C)	126(4)	B(4)-C(4)-B(5)	63.85(15)
H(3A)-N(3)-H(3B)	117(5)	C(1)-C(4)-B(16)	61.96(15)
H(3A)-N(3)-H(3C)	85(4)	B(4)-C(4)-B(16)	62.28(15)
H(3B)-N(3)-H(3C)	116(5)	B(5)-C(4)-B(16)	115.85(19)
H(4A)-N(4)-H(4B)	108(6)	C(1)-C(4)-Co(1)	67.15(12)
H(4A)-N(4)-H(4C)	112(5)	B(4)-C(4)-Co(1)	124.92(16)
H(4B)-N(4)-H(4C)	87(5)	B(5)-C(4)-Co(1)	66.71(13)
H(5A)-N(5)-H(5B)	101(4)	B(16)-C(4)-Co(1)	125.29(17)
H(5A)-N(5)-H(5C)	113(4)	C(1)-C(4)-H(4)	115.9(15)
H(5B)-N(5)-H(5C)	116(4)	B(4)-C(4)-H(4)	120.2(16)
H(6A)-N(6)-H(6B)	103(4)	B(5)-C(4)-H(4)	123.1(15)
H(6A)-N(6)-H(6C)	103(5)	B(16)-C(4)-H(4)	112.7(16)
H(6B)-N(6)-H(6C)	117(4)	Co(1)-C(4)-H(4)	106.2(16)
H(7A)-N(7)-H(7B)	114(5)	C(3)-B(1)-B(11)	103.80(18)
H(7A)-N(7)-H(7C)	112(6)	C(3)-B(1)-B(9)	58.22(15)
			59.59(15)
H(7B)-N(7)-H(7C)	94(5)	B(11)-B(1)-B(9)	
C(4)-C(1)-B(13)	111.44(18)	C(3)-B(1)-B(6)	105.06(18)
C(4)-C(1)-B(17)	111.58(17)	B(11)-B(1)-B(6)	60.50(15)
B(13)-C(1)-B(17)	63.50(15)	B(9)-B(1)-B(6)	108.53(18)
C(4)-C(1)-B(16)	62.18(15)	C(3)-B(1)-Co(1)	64.28(12)
B(13)-C(1)-B(16)	62.12(15)	B(11)-B(1)-Co(1)	117.98(16)
B(17)-C(1)-B(16)		B(9)-B(1)-Co(1)	
	115.24(18)		117.66(16)
C(4)-C(1)-Co(1)	66.37(11)	B(6)-B(1)-Co(1)	65.01(12)
B(13)-C(1)-Co(1)	124.96(16)	C(3)-B(1)-H(5)	117.6(15)
B(17)-C(1)-Co(1)	67.21(12)	B(11)-B(1)-H(5)	123.9(16)
B(16)-C(1)-Co(1)	124.76(14)	B(9)-B(1)-H(5)	112.8(15)
C(4)-C(1)-H(1)	120.0(15)	B(6)-B(1)-H(5)	131.5(15)
B(13)-C(1)-H(1)	115.7(14)	Co(1)-B(1)-H(5)	113.5(15)
B(17)-C(1)-H(1)	121.5(16)	B(14)-B(2)-B(12)	59.83(15)
B(16)-C(1)-H(1)	112.0(16)	B(14)-B(2)-B(9)	59.61(16)
Co(1)-C(1)-H(1)	109.9(14)	B(12)-B(2)-B(9)	106.98(18)
C(3)-C(2)-B(12)	111.01(19)	B(14)-B(2)-B(11)	107.74(19)
C(3)-C(2)-B(7)	111.84(18)	B(12)-B(2)-B(11)	107.7(2)
		B(9)-B(2)-B(11)	59.62(16)
B(12)-C(2)-B(7)	63.62(16)		
C(3)-C(2)-B(14)	61.87(15)	B(14)-B(2)-B(10)	108.14(18)
B(12)-C(2)-B(14)	62.09(16)	B(12)-B(2)-B(10)	59.99(15)
B(7)-C(2)-B(14)	115.59(18)	B(9)-B(2)-B(10)	107.58(19)
C(3)-C(2)-Co(1)	67.16(12)	B(11)-B(2)-B(10)	60.17(16)
B(12)-C(2)-Co(1)	124.73(16)	B(14)-B(2)-H(6)	120.0(17)
B(7)-C(2)-Co(1)			
	66.84(12)	B(12)-B(2)-H(6)	122.7(17)
B(14)-C(2)-Co(1)	125.26(16)	B(9)-B(2)-H(6)	120.7(17)
C(3)-C(2)-H(2)	111.3(17)	B(11)-B(2)-H(6)	122.5(16)
B(12)-C(2)-H(2)	127.1(17)	B(10)-B(2)-H(6)	123.7(17)
B(7)-C(2)-H(2)	124.1(17)	B(15)-B(3)-B(8)	59.83(15)
B(14)-C(2)-H(2)	115.3(17)	B(15)-B(3)-B(17)	106.10(19)
Co(1)-C(2)-H(2)	100.3(16)	B(8)-B(3)-B(17)	58.64(15)
C(2)-C(3)-B(1)	112.28(19)	B(15)-B(3)-B(5)	59.18(16)
C(2)-C(3)-B(9)	111.95(19)	B(8)-B(3)-B(5)	106.63(19)
B(1)-C(3)-B(9)	63.74(15)	B(17)-B(3)-B(5)	106.30(19)
C(2)-C(3)-B(14)	62.59(15)	B(15)-B(3)-Co(1)	115.46(18)
B(1)-C(3)-B(14)	115.65(19)	B(8)-B(3)-Co(1)	115.69(17)
	62.02(15)		64.32(12)
B(9)-C(3)-B(14)		B(17)-B(3)-Co(1)	
C(2)-C(3)-Co(1)	66.40(12)	B(5)-B(3)-Co(1)	63.57(12)
B(1)-C(3)-Co(1)	67.54(12)	B(15)-B(3)-H(7)	118.0(14)
B(9)-C(3)-Co(1)	125.49(17)	B(8)-B(3)-H(7)	118.6(15)
B(14)-C(3)-Co(1)	125.22(16)	B(17)-B(3)-H(7)	124.9(15)
C(2)-C(3)-H(3)	118(2)	B(5)-B(3)-H(7)	123.6(15)
B(1)-C(3)-H(3)	118.1(19)	Co(1)-B(3)-H(7)	116.9(14)
B(9)-C(3)-H(3)	121(2)	C(4)-B(4)-B(16)	59.99(15)
B(14)-C(3)-H(3)	118.0(18)	C(4)-B(4)-B(15)	104.15(19)
Co(1)-C(3)-H(3)	102.5(19)	B(16)-B(4)-B(15)	108.54(19)
			40-

C(4)-B(4)-B(18)	104.99(19)	B(17)-B(8)-B(3)	60.87(15)
B(16)-B(4)-B(18)	59.81(15)	B(13)-B(8)-B(3)	109.67(19)
B(15)-B(4)-B(18)	60.35(16)	B(18)-B(8)-B(3)	109.14(18)
C(4)-B(4)-B(5)	58.74(14)	B(15)-B(8)-B(3)	59.92(15)
B(16)-B(4)-B(5)	109.7(2)	B(17)-B(8)-H(12)	122.8(16)
B(15)-B(4)-B(5)	59.65(15)	B(13)-B(8)-H(12)	121.2(16)
B(18)-B(4)-B(5)	108.6(2)	B(18)-B(8)-H(12)	119.6(17)
C(4)-B(4)-H(8)	116.9(15)	B(15)-B(8)-H(12)	121.4(16)
	116.0(14)		121.7(16)
B(16)-B(4)-H(8)		B(3)-B(8)-H(12)	
B(15)-B(4)-H(8)	130.0(15)	C(3)-B(9)-B(14)	59.68(15)
B(18)-B(4)-H(8)	127.2(14)	C(3)-B(9)-B(11)	103.64(19)
B(5)-B(4)-H(8)	119.9(14)	B(14)-B(9)-B(11)	108.7(2)
C(4)-B(5)-B(15)	103.03(17)	C(3)-B(9)-B(2)	104.58(19)
C(4)-B(5)-B(4)	57.41(15)	B(14)-B(9)-B(2)	60.06(15)
B(15)-B(5)-B(4)	59.52(15)	B(11)-B(9)-B(2)	60.42(16)
C(4)-B(5)-B(3)	104.82(18)	C(3)-B(9)-B(1)	58.05(15)
B(15)-B(5)-B(3)	60.02(16)	B(14)-B(9)-B(1)	108.98(18)
B(4)-B(5)-B(3)	107.91(18)	B(11)-B(9)-B(1)	59.56(15)
C(4)-B(5)-Co(1)	64.27(12)	B(2)-B(9)-B(1)	108.13(19)
B(15)-B(5)-Co(1)	117.85(18)	C(3)-B(9)-H(13)	119.7(13)
B(4)-B(5)-Co(1)	116.97(16)	B(14)-B(9)-H(13)	116.9(13)
B(3)-B(5)-Co(1)	65.50(13)	B(11)-B(9)-H(13)	128.1(13)
C(4)-B(5)-H(9)	119.2(17)	B(2)-B(9)-H(13)	125.6(14)
B(15)-B(5)-H(9)	121.3(16)	B(1)-B(9)-H(13)	121.2(14)
B(4)-B(5)-H(9)	111.2(18)	B(7)-B(10)-B(12)	60.82(15)
B(3)-B(5)-H(9)	132.0(18)	B(7)-B(10)-B(2)	109.33(18)
Co(1)-B(5)-H(9)	116.5(16)	B(12)-B(10)-B(2)	59.68(15)
B(10)-B(6)-B(11)	59.82(15)	B(7)-B(10)-B(6)	60.90(15)
B(10)-B(6)-B(7)	59.32(14)	B(12)-B(10)-B(6)	109.39(19)
B(11)-B(6)-B(7)	106.86(19)	B(2)-B(10)-B(6)	109.61(19)
B(10)-B(6)-B(1)	106.11(18)	B(7)-B(10)-B(11)	108.65(19)
B(11)-B(6)-B(1)	58.68(15)	B(12)-B(10)-B(11)	107.19(19)
B(7)-B(6)-B(1)	106.45(19)	B(2)-B(10)-B(11)	59.86(15)
B(10)-B(6)-Co(1)	115.67(16)	B(6)-B(10)-B(11)	60.52(15)
B(11)-B(6)-Co(1)	115.75(16)	B(7)-B(10)-H(14)	120.7(15)
B(7)-B(6)-Co(1)	63.76(12)	B(12)-B(10)-H(14)	120.5(15)
B(1)-B(6)-Co(1)	64.23(11)	B(2)-B(10)-H(14)	120.4(15)
B(10)-B(6)-H(10)	117.2(14)	B(6)-B(10)-H(14)	121.6(15)
B(11)-B(6)-H(10)	115.3(14)	B(11)-B(10)-H(14)	122.9(15)
B(7)-B(6)-H(10)	126.1(15)	B(1)-B(11)-B(9)	60.85(15)
B(1)-B(6)-H(10)	123.4(15)	B(1)-B(11)-B(2)	108.79(19)
Co(1)-B(6)-H(10)	119.3(14)	B(9)-B(11)-B(2)	59.96(15)
C(2)-B(7)-B(10)	102.97(19)	B(1)-B(11)-B(10)	107.67(19)
C(2)-B(7)-B(12)	57.36(15)	B(9)-B(11)-B(10)	107.69(19)
B(10)-B(7)-B(12)	59.63(15)	B(2)-B(11)-B(10)	59.97(15)
C(2)-B(7)-B(6)	104.31(19)	B(1)-B(11)-B(6)	60.82(14)
B(10)-B(7)-B(6)	59.78(15)	B(9)-B(11)-B(6)	109.79(18)
B(12)-B(7)-B(6)	107.56(19)	B(2)-B(11)-B(6)	108.99(19)
C(2)-B(7)-Co(1)	63.80(12)	B(10)-B(11)-B(6)	59.65(14)
B(10)-B(7)-Co(1)	117.44(17)	B(1)-B(11)-H(15)	120.6(15)
B(12)-B(7)-Co(1)	116.41(18)	B(9)-B(11)-H(15)	121.8(15)
B(6)-B(7)-Co(1)	65.35(12)	B(2)-B(11)-H(15)	122.3(15)
C(2)-B(7)-H(11)	121.0(15)	B(10)-B(11)-H(15)	122.5(15)
B(10)-B(7)-H(11)	122.3(15)	B(6)-B(11)-H(15)	119.7(15)
B(12)-B(7)-H(11)	114.4(15)	C(2)-B(12)-B(14)	60.12(15)
B(6)-B(7)-H(11)	129.7(15)	C(2) - B(12) - B(11) C(2) - B(12) - B(2)	105.4(2)
Co(1)-B(7)-H(11)	114.9(15)	B(14)-B(12)-B(2)	59.99(16)
B(17)-B(8)-B(13)	60.80(16)	C(2)-B(12)-B(10)	104.16(19)
B(17)-B(8)-B(18)	108.85(19)	B(14)-B(12)-B(10)	108.5(2)
B(13)-B(8)-B(18)	59.81(15)	B(2)-B(12)-B(10)	60.34(15)
B(17)-B(8)-B(15)	107.92(18)	C(2)-B(12)-B(7)	59.01(15)
B(17) B(8) B(15) B(13)-B(8)-B(15)	107.46(19)	B(14)-B(12)-B(7)	
			110.1(2)
B(18)-B(8)-B(15)	59.90(15)	B(2)-B(12)-B(7)	108.8(2)
			400

B(10)-B(12)-B(7)	59.55(15)	B(18)-B(15)-H(19)	120.3(17)
C(2)-B(12)-H(16)	119.9(13)	B(8)-B(15)-H(19)	121.3(17)
B(14)-B(12)-H(16)	120.6(16)	B(3)-B(15)-H(19)	120.9(18)
B(2)-B(12)-H(16)	126.9(14)	C(1)-B(16)-C(4)	55.86(13)
B(10)-B(12)-H(16)	125.2(14)	C(1)-B(16)-B(13)	58.04(15)
B(7)-B(12)-H(16)	117.3(16)	C(4)-B(16)-B(13)	103.14(19)
C(1)-B(13)-B(16)	59.84(16)	C(1)-B(16)-B(18)	103.9(2)
C(1)-B(13)-B(18)	104.89(18)	C(4)-B(16)-B(18)	103.69(19)
B(16)-B(13)-B(18)	59.91(16)	B(13)-B(16)-B(18)	60.35(16)
C(1)-B(13)-B(8)	104.11(18)	C(1)-B(16)-B(4)	102.98(18)
B(16)-B(13)-B(8)	108.61(19)	C(4)-B(16)-B(4)	57.73(14)
B(18)-B(13)-B(8)	60.34(16)	B(13)-B(16)-B(4)	107.9(2)
C(1)-B(13)-B(17)	58.75(15)	B(18)-B(16)-B(4)	60.35(16)
B(16)-B(13)-B(17)	109.45(19)	C(1)-B(16)-H(20)	121.0(16)
B(18)-B(13)-B(17)	108.10(19)	C(4)-B(16)-H(20)	116.3(15)
B(8)-B(13)-B(17)	59.33(15)	B(13)-B(16)-H(20)	128.8(15)
C(1)-B(13)-H(17)	118.0(17)	B(18)-B(16)-H(20)	131.3(16)
B(16)-B(13)-H(17)	115.9(17)	B(4)-B(16)-H(20)	120.1(16)
B(18)-B(13)-H(17)	126.0(17)	C(1)-B(17)-B(8)	103.76(19)
B(8)-B(13)-H(17)	129.5(17)	C(1)-B(17)-B(13)	57.75(14)
B(17)-B(13)-H(17)	121.3(17)	B(8)-B(17)-B(13)	59.87(15)
C(3)-B(14)-C(2)	55.54(14)	C(1)-B(17)-B(3)	105.17(19)
C(3)-B(14)-B(9)	58.30(15)	B(8)-B(17)-B(3)	60.49(15)
C(2)-B(14)-B(9)	103.33(18)	B(13)-B(17)-B(3)	108.6(2)
C(3)-B(14)-B(12)	102.53(18)	C(1)-B(17)-Co(1)	64.22(11)
C(2)-B(14)-B(12)	57.78(14)	B(8)-B(17)-Co(1)	117.90(16)
B(9)-B(14)-B(12)	107.81(19)	B(13)-B(17)-Co(1)	117.15(17)
C(3)-B(14)-B(2)	103.75(19)	B(3)-B(17)-Co(1)	65.05(12)
C(2)-B(14)-B(2)	103.73(19)	C(1)-B(17)-H(21)	118.1(16)
B(9)-B(14)-B(2)	60.33(15)	B(8)-B(17)-H(21)	125.3(16)
B(12)-B(14)-B(2)	60.17(16)	B(13)-B(17)-H(21)	115.3(15)
C(3)-B(14)-H(18)	117.0(15)	B(3)-B(17)-H(21)	129.7(15)
C(2)-B(14)-H(18)	117.4(14)	Co(1)-B(17)-H(21)	111.5(16)
B(9)-B(14)-H(18)	124.1(14)	B(16)-B(18)-B(13)	59.74(16)
B(12)-B(14)-H(18)	125.6(15)	B(16)-B(18)-B(4)	59.84(16)
B(2)-B(14)-H(18)	133.3(14)	B(13)-B(18)-B(4)	107.08(19)
B(4)-B(15)-B(5)	60.83(17)	B(16)-B(18)-B(8)	108.1(2)
B(4)-B(15)-B(18)	59.86(15)	B(13)-B(18)-B(8)	59.84(16)
B(5)-B(15)-B(18)	109.1(2)	B(4)-B(18)-B(8)	107.71(18)
B(4)-B(15)-B(8)	107.43(19)	B(16)-B(18)-B(15)	108.12(19)
		B(13)-B(18)-B(15) B(13)-B(18)-B(15)	
B(5)-B(15)-B(8)	108.2(2)		107.76(19)
B(18)-B(15)-B(8) B(4)-B(15)-B(3)	59.84(15)	B(4)-B(18)-B(15)	59.79(15)
	109.6(2)	B(8)-B(18)-B(15)	60.26(16)
B(5)-B(15)-B(3)	60.80(16)	B(16)-B(18)-H(22)	120.1(18)
B(18)-B(15)-B(3)	109.37(19)	B(13)-B(18)-H(22)	121.3(17)
B(8)-B(15)-B(3)	60.25(15)	B(4)-B(18)-H(22)	122.2(18)
B(4)-B(15)-H(19)	121.8(18)	B(8)-B(18)-H(22)	122.5(18)
B(5)-B(15)-H(19)	122.1(17)	B(15)-B(18)-H(22)	123.1(18)

Bindungslängen und Bindungswinkel von $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$

	U11	U22	U33	U23	U13	U12
Co(1)	12(1)	11(1)	12(1)	0(1)	0(1)	0(1)
N(1)	27(1)	33(2)	35(1)	0(1)	-1(1)	-1(1)
N(2)	42(2)	29(2)	29(1)	-3(1)	2(1)	1(1)
N(3)	29(1)	28(1)	42(2)	-3(1)	-2(1)	6(1)
N(4)	30(2)	40(2)	45(2)	4(1)	5(1)	4(1)
N(5)	31(1)	35(2)	36(2)	-10(1)	3(1)	4(1)
N(6)	35(2)	29(2)	33(1)	4(1)	-7(1)	5(1)
N(7)	45(2)	43(2)	34(2)	-2(1)	13(1)	3(1)
C(1)	17(1)	17(1)	13(1)	0(1)	1(1)	0(1)
C(2)	14(1)	16(1)	16(1)	-1(1)	1(1)	1(1)
C(3)	15(1)	11(1)	17(1)	-2(1)	-2(1)	1(1)
C(4)	16(1)	15(1)	16(1)	1(1)	-1(1)	1(1)
B(1)	16(1)	19(2)	14(1)	3(1)	-3(1)	2(1)
B(2)	17(1)	22(1)	19(1)	-2(1)	-3(1)	-2(1)
B(3)	13(1)	19(2)	17(1)	1(1)	-3(1)	1(1)
B(4)	17(1)	20(1)	19(1)	0(1)	-3(1)	-2(1)
B(5)	13(1)	19(1)	14(1)	-1(1)	1(1)	-1(1)
B(6)	18(1)	15(1)	14(1)	-2(1)	-2(1)	-1(1)
B(7)	17(1)	14(1)	17(1)	-1(1)	0(1)	-3(1)
B(8)	18(1)	18(1)	19(1)	2(1)	-7(1)	-1(1)
B(9)	17(1)	20(1)	18(1)	-1(1)	-4(1)	2(1)
B(10)	18(1)	16(1)	18(1)	-3(1)	-2(1)	0(1)
B(11)	16(1)	20(1)	16(1)	-1(1)	-3(1)	0(1)
B(12)	17(1)	20(2)	18(1)	-2(1)	-1(1)	-4(1)
B(13)	21(1)	21(2)	14(1)	-1(1)	-3(1)	0(1)
B(14)	11(1)	22(1)	21(1)	-1(1)	-1(1)	-2(1)
B(15)	18(1)	20(1)	20(1)	-1(1)	-2(1)	-3(1)
B(16)	22(1)	16(2)	19(1)	-3(1)	-3(1)	-2(1)
B(17)	17(1)	16(1)	15(1)	1(1)	-1(1)	4(1)
B(18)	18(1)	21(2)	18(1)	0(1)	-4(1)	-2(1)

Atomkoordinaten $(\cdot 10^4)$ und isotrope Auslenkungsparameter $(\mathring{A}^2 \cdot 10^3)$ von $[NH_4(NH_3)_4][Co(C_2B_9H_{11})_2] \cdot 2NH_3$

	x	У	z	U(eq)
H(1A)	1390(40)	11150(30)	2240(20)	57(11)
H(1B)	230(40)	10970(30)	1630(20)	39(10)
H(1C)	650(30)	11940(30)	1640(20)	46(11)
H(1D)	1450(50)	11120(30)	1240(30)	77(14)
H(2A)	5240(50)	10010(40)	90(30)	85(18)
H(2B)	6040(40)	10760(30)	170(30)	65(13)
H(2C)	4830(50)	10710(40)	660(30)	81(16)
H(3A)	1180(50)	10470(40)	3540(30)	84(17)
H(3B)	2510(60)	10480(40)	3310(30)	97(19)
H(3C)	1730(50)	11210(50)	3680(30)	90(20)
H(4A)	820(60)	4430(60)	3910(40)	130(30)
H(4B)	1650(60)	5200(50)	3910(30)	100(20)
H(4C)	1670(40)	4880(40)	3250(30)	77(15)
H(5A)	430(40)	8510(30)	3180(30)	73(14)
H(5B)	-30(30)	8500(30)	3960(20)	37(10)
H(5C)	-930(50)	8580(40)	3310(30)	76(16)
H(6A)	1800(50)	10870(50)	-190(40)	100(20)

H(6B)	3010(40)	10960(30)	110(20)	49(11)
H(6C)	2090(50)	10090(40)	290(30)	81(17)
H(7A)	7390(50)	12030(40)	-40(40)	94(19)
H(7B)	8710(70)	11980(50)	290(40)	140(20)
H(7C)	7670(70)	12230(60)	790(50)	150(30)
H(1)	4220(20)	6990(18)	633(14)	4(6)
H(2)	5390(20)	8380(20)	1201(17)	16(7)
H(3)	5460(30)	6880(20)	1910(20)	27(8)
H(4)	3420(20)	6077(19)	1804(15)	12(6)
H(5)	4060(20)	6670(20)	3182(17)	19(7)
Н(б)	7030(30)	9010(20)	3678(19)	31(9)
H(7)	1610(20)	9030(20)	1942(18)	19(7)
H(8)	1090(20)	5630(20)	1697(16)	21(7)
H(9)	1770(30)	7010(20)	2783(18)	30(8)
H(10)	2740(30)	8670(20)	3383(16)	19(7)
H(11)	3830(30)	9810(20)	1870(18)	25(7)
H(12)	790(30)	8650(20)	322(18)	26(8)
H(13)	6530(20)	6916(19)	3391(14)	13(6)
H(14)	4690(30)	10050(20)	3523(17)	17(7)
H(15)	4770(30)	8150(20)	4354(17)	23(8)
H(16)	6300(30)	9954(19)	2097(14)	18(7)
H(17)	2640(30)	7370(20)	-487(18)	29(8)
H(18)	7360(20)	8017(19)	2044(15)	14(6)
H(19)	-180(30)	7580(20)	1686(19)	36(9)
H(20)	2690(30)	5580(20)	409(16)	19(7)
H(21)	3480(30)	8860(20)	526(17)	25(8)
H(22)	340(30)	6620(20)	172(19)	30(8)

Wasserstoffatomkoordinaten ($\cdot 10^4$) und isotrope Auslenkungsparameter ($\mathring{A}^2 \cdot 10^3$) von [NH₄(NH₃)₄][Co(C₂B₉H₁₁)₂] \cdot 2NH₃

6.10 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von NH₄HCN₂

	x	У	Z	U(eq
C(1)	-7349(2)	-5191(2)	-7978(2)	13(1
N(3)	-8747(2)	-3798(2)	-7763(2)	16(1
N(2)	-6093(2)	-6439(2)	-8330(2)	19(1
N(1)	-2296(2)	-4647(2)	-10038(2)	15(1

Atomkoordinaten $(\cdot 10^4)$ und isotrope Auslenkungsparameter $(\mathring{A}^2 \cdot 10^3)$ von NH_4HCN_2

C(1)-N(2)	1.1814(16)	N(2)-C(1)-N(3)	174.32(12)
C(1)-N(3)	1.2941(15)	C(1)-N(3)-H(3A)	111.3(11)
N(3)-H(3A)	0.84(2)	H(1A)-N(1)-H(1B)	106.7(13)
N(1)-H(1A)	0.924(18)	H(1A)-N(1)-H(1C)	113.0(16)
N(1)-H(1B)	0.903(18)	H(1B)-N(1)-H(1C)	109.8(14)
N(1)-H(1C)	0.867(18)	H(1A)-N(1)-H(1D)	110.8(14)
N(1)-H(1D)	0.862(18)	H(1B)-N(1)-H(1D)	108.8(16)
		H(1C)-N(1)-H(1D)	107.8(14)

Bindungslängen und Bindungswinkel von NH4HCN2

	U11	U22	U33	U23	U13	U12
C(1)	14(1)	15(1)	11(1)	2(1)	-2(1)	-6(1)
N(3)	15(1)	17(1)	16(1)	-2(1)	1(1)	-1(1)
N(2)	17(1)	18(1)	21(1)	-1(1)	0(1)	-1(1)
N(1)	13(1)	15(1)	17(1)	0(1)	0(1)	0(1)

Atomkoordinaten ($\cdot 10^4$) und isotrope Auslenkungsparameter ($\mathring{A}^2 \cdot 10^3$) von NH_4HCN_2

	x	У	z	U(eq)
H(1A)	-2700(20)	-3560(20)	-10740(20)	24(4)
H(3A)	-8890(30)	-3490(20)	-6670(30)	23(4)
H(1B)	-1280(30)	-4190(20)	-9300(20)	23(4)
H(1C)	-1850(20)	-5670(20)	-10670(20)	20(4)
H(1D)	-3320(30)	-5070(20)	-9390(20)	23(4)

Wasserstoffatomkoordinaten (*10 4) und isotrope Auslenkungsparameter (Å 2 * 10 3) von $\rm NH_4HCN_2$

6.11 Atomkoordinaten, Bindungslängen, Bindungswinkel und Auslenkungsparameter von ND₄(ND₃)₃Cl

	х	У	z	U(eq)
Cl	57(2)	5602(2)	445(2)	6(1)
N(1)	-3897(2)	5285(2)	-737(2)	9(1)
N(2)	2669(2)	6804(2)	-2293(2)	9(1)
N(3)	-1143(2)	2157(2)	205(2)	8(1)
N(4)	3472(2)	6829(2)	2352(2)	9(1)

Atomkoordinaten ($\cdot 10^4$) und isotrope Auslenkungsparameter ($\mathring{A}^2 \cdot 10^3$) von $ND_4(ND_3)_3C1$

Cl-N(3)	3.234(2)	N(2)-H(2A)	1.012(4)
C1-N(2)	3.433(2)	N(2)-H(2B)	1.012(1)
Cl-N(2)#1	3.470(2)	N(2)-H(2C)	1.015(4)
C1-N(2)#2	3.494(2)	N(3)-N(2)#11	2.872(2)
Cl-N(4)	3.520(2)	N(3)-N(4)#12	2.924(2)
Cl-N(1)	3.525(2)	N(3)-N(1)#6	2.928(2)
Cl-N(1)#3	3.565(2)	N(3)-N(4)#4	3.489(2)
Cl-N(4)#1	3.604(2)	N(3)-N(2)#2	3.786(2)
Cl-N(4)#4	3.678(2)	N(3)-N(2)#8	4.092(2)
Cl-N(1)#5	3.772(2)	N(3)-C1#8	4.094(2)
Cl-N(3)#6	4.094(2)	N(3)-C1#12	4.147(2)
Cl-N(3)#7	4.147(2)	N(3)-N(4)#8	4.202(2)
Cl-H(1B)	2.520(4)	N(3)-N(1)#3	4.211(2)
Cl-H(2C)	2.425(4)	N(3)-H(3A)	1.054(3)
Cl-H(3B)	2.226(3)	N(3)-H(3B)	1.024(3)
Cl-H(4B)	2.578(4)	N(3)-H(3C)	1.040(3)
N(1)-N(3)#8	2.928(2)	N(3)-H(3D)	1.050(3)
N(1)-N(2)#9	3.491(2)	N(4)-N(3)#7	2.924(2)
N(1)-N(4)#1	3.553(2)	N(4)-N(2)#2	3.387(2)
N(1)-Cl#10	3.565(2)	N(4)-N(3)#2	3.489(2)
N(1)-N(2)#11	3.691(2)	N(4)-N(1)#5	3.553(2)
N(1)-N(3)	3.726(2)	N(4)-C1#5	3.604(2)
N(1)-N(4)#9	3.763(2)	N(4)-Cl#2	3.678(2)
N(1)-Cl#1	3.772(2)	N(4)-N(1)#14	3.763(2)
N(1)-N(2)#1	3.933(2)	N(4)-N(2)#5	3.768(3)
N(1)-N(3)#10	4.211(2)	N(4)-N(3)#6	4.202(2)
N(1)-N(4)#12	4.278(2)	N(4)-N(1)#7	4.278(2)
N(1)-H(1A)	1.005(4)	N(4)-H(4A)	1.008(4)
N(1)-H(1B)	1.011(4)	N(4)-H(4B)	1.011(4)
N(1)-H(1C)	1.005(4)	N(4)-H(4C)	1.012(4)
N(2)-N(3)#13	2.872(2)		
N(2) - N(4) # 4	3.387(2)	N(3)-Cl-N(2)	116.97(6)
N(2)-C1#5	3.470(2)	N(3)-C1-N(2)#1	118.37(6)
N(2)-N(1)#14	3.491(2)	N(2)-Cl-N(2)#1	119.67(4)
N(2)-C1#4	3.494(2)	N(3)-Cl-N(2)#2	68.36(5)
N(2)-N(1)#13	3.691(2)	N(2)-Cl-N(2)#2	103.10(4)
N(2)-N(4)#1	3.768(3)	N(2) #1-C1-N(2) #2	117.85(4)
N(2)-N(3)#4	3.786(2)	N(3)-C1-N(4)	125.74(6)
N(2)-N(1)#5	3.933(2)	N(2)-Cl-N(4)	72.53(5)
N(2)-N(3)#6	4.092(2)	N(2) #1-C1-N(4)	93.20(5)
N(2) - N(4)	4.113(2)	N(2)#2-C1-N(4)	57.74(4)

N(3)-C1-N(1)	66.74(5)	N(4) #1-C1-H(1B)	61.93(10)
N(2)-Cl-N(1)	115.93(5)	N(4)#4-Cl-H(1B)	93.52(11)
N(2) #1-C1-N(1)	68.43(5)	N(1) #5-Cl-H(1B)	110.54(10)
N(2)#2-C1-N(1)	130.05(6)	N(3)#6-Cl-H(1B)	130.58(11)
N(4)-Cl-N(1)	161.63(6)	N(3)#7-Cl-H(1B)	119.85(11)
N(3)-Cl-N(1)#3	76.35(5)	N(3)-Cl-H(2C)	116.05(11)
N(2)-C1-N(1)#3	154.01(6)	N(2)-Cl-H(2C)	2.36(10)
N(2)#1-C1-N(1)#3	63.27(4)	N(2)#1-C1-H(2C)	121.41(11)
N(2)#2-C1-N(1)#3	59.26(4)	N(2)#2-C1-H(2C)	100.74(11)
N(4)-Cl-N(1)#3	81.60(5)	N(4)-Cl-H(2C)	71.15(10)
N(1)-Cl-N(1)#3	89.58(4)	N(1)-C1-H(2C)	117.82(11)
N(3)-C1-N(4)#1	116.01(6)	N(1)#3-Cl-H(2C)	152.39(11)
N(2)-Cl-N(4)#1	64.68(5)	N(4)#1-Cl-H(2C)	67.04(10)
N(2) #1-C1-N(4) #1	71.08(4)	N(4)#4-Cl-H(2C)	55.87(10)
N(2)#2-C1-N(4)#1	167.78(6)	N(1)#5-Cl-H(2C)	67.04(11)
N(4)-Cl-N(4)#1	115.60(5)	N(3)#6-Cl-H(2C)	62.92(11)
N(1)-Cl-N(4)#1	59.77(4)	N(3) #7-C1-H(2C)	112.20(11)
N(1)#3-C1-N(4)#1	132.10(6)	H(1B)-Cl-H(2C)	119.52(15)
N(3)-Cl-N(4)#4	60.22(5)	N(3)-Cl-H(3B)	3.74(9)
N(2)-Cl-N(4)#4	56.76(4)	N(2)-C1-H(3B)	114.99(10)
N(2)#1-Cl-N(4)#4	158.57(6)	N(2)#1-Cl-H(3B)	121.46(10)
N(2)#2-C1-N(4)#4	82.39(5)	N(2)#2-Cl-H(3B)	65.33(10)
N(4)-Cl-N(4)#4	104.44(4)	N(4)-Cl-H(3B)	122.43(10)
	93.55(5)		
N(1)-Cl-N(4)#4		N(1)-Cl-H(3B)	70.38(10)
N(1)#3-C1-N(4)#4	130.61(6)	N(1)#3-C1-H(3B)	76.86(10)
N(4) #1-C1-N(4) #4	90.10(4)	N(4) #1-C1-H(3B)	118.48(10)
N(3)-Cl-N(1)#5	175.27(6)	N(4)#4-Cl-H(3B)	58.30(9)
N(2)-Cl-N(1)#5	65.97(4)	N(1)#5-Cl-H(3B)	178.90(10)
N(2)#1-C1-N(1)#5	57.45(4)	N(3)#6-Cl-H(3B)	67.21(9)
N(2)#2-C1-N(1)#5	115.14(5)	N(3) #7-C1-H(3B)	115.67(10)
N(4)-Cl-N(1)#5	58.20(4)	H(1B)-C1-H(3B)	68.61(13)
N(1)-Cl-N(1)#5	108.78(5)	H(2C)-Cl-H(3B)	113.94(14)
N(1)#3-Cl-N(1)#5	102.49(5)	N(3)-Cl-H(4B)	123.77(11)
N(4)#1-Cl-N(1)#5	61.28(4)	N(2)-Cl-H(4B)	66.85(9)
N(4)#4-C1-N(1)#5	122.63(5)	N(2)#1-Cl-H(4B)	99.54(11)
N(3)-C1-N(3)#6	70.88(3)	N(2)#2-Cl-H(4B)	57.24(10)
N(2)-Cl-N(3)#6	65.17(4)	N(4)-Cl-H(4B)	6.99(10)
N(2)#1-C1-N(3)#6	157.47(5)	N(1)-Cl-H(4B)	167.65(12)
N(2)#2-C1-N(3)#6	43.58(4)	N(1)#3-Cl-H(4B)	87.16(10)
N(4)-Cl-N(3)#6	66.49(4)	N(4) #1-C1-H(4B)	114.74(11)
N(1)-Cl-N(3)#6	131.53(5)	N(4)#4-Cl-H(4B)	97.61(11)
N(1)#3-C1-N(3)#6	102.43(5)	N(1)#5-Cl-H(4B)	60.49(11)
N(4) #1-C1-N(3)#6	125.46(5)	N(3)#6-Cl-H(4B)	60.82(11)
N(4)#4-C1-N(3)#6	43.79(4)	N(3)#7-C1-H(4B)	50.78(9)
N(1)#5-Cl-N(3)#6	113.84(5)	H(1B)-C1-H(4B)	168.44(15)
N(3)-C1-N(3)#7	116.43(5)	H(2C)-C1-H(4B)	65.34(13)
N(2)-C1-N(3)#7	112.96(5)	H(3B)-Cl-H(4B)	120.25(14)
N(2)#1-C1-N(3)#7	58.82(4)	N(3)#8-N(1)-N(2)#9	78.68(6)
N(2)#2-C1-N(3)#7	64.10(4)	N(3)#8-N(1)-C1	129.36(7)
N(4)-Cl-N(3)#7	43.91(4)	N(2)#9-N(1)-C1	151.58(6)
N(1)-C1-N(3)#7	120.46(5)	N(3)#8-N(1)-N(4)#1	165.41(7)
N(1)#3-C1-N(3)#7	43.82(4)	N(2)#9-N(1)-N(4)#1	92.26(6)
N(4) #1-C1-N(3) #7	119.50(5)	Cl-N(1)-N(4)#1	61.22(5)
N(4)#4-C1-N(3)#7	142.46(5)	N(3)#8-N(1)-Cl#10	78.71(5)
N(4)#4 C1 N(3)#7 N(1)#5-C1-N(3)#7	64.04(4)	N(2)#9-N(1)-C1#10	59.36(4)
N(3) #6-C1-N(3) #7	98.69(4)	Cl-N(1)-Cl#10	123.70(6)
N(3)-Cl-H(1B)	64.95(10)	N(4)#1-N(1)-C1#10	86.84(5)
N(2)-Cl-H(1B)	117.66(11)	N(3)#8-N(1)-N(2)#11	68.68(5)
N(2)#1-C1-H(1B)	68.91(10)	N(2)#9-N(1)-N(2)#11	112.28(5)
N(2)#2-Cl-H(1B)	127.90(11)	Cl-N(1)-N(2)#11	86.23(5)
N(4)-Cl-H(1B)	161.97(11)	N(4)#1-N(1)-N(2)#11	105.09(6)
N(1)-Cl-H(1B)	2.16(10)	Cl#10-N(1)-N(2)#11	57.11(4)
N(1)#3-Cl-H(1B)	87.96(11)	N(3)#8-N(1)-N(3)	79.69(4)
	,		,

N(2)#9-N(1)-N(3)	154.11(7)	N(2)#9-N(1)-H(1B)	156.6(3)
Cl-N(1)-N(3)	52.90(4)	Cl-N(1)-H(1B)	5.4(2)
N(4) #1-N(1)-N(3)	105.72(6)	N(4)#1-N(1)-H(1B)	66.6(3)
Cl#10-N(1)-N(3)	102.42(5)	C1#10-N(1)-H(1B)	125.7(3)
N(2)#11-N(1)-N(3)	45.56(4)	N(2)#11-N(1)-H(1B)	84.2(3)
N(3)#8-N(1)-N(4)#9	76.68(6)	N(3)-N(1)-H(1B)	48.5(2)
N(2)#9-N(1)-N(4)#9	68.98(5)	N(4)#9-N(1)-H(1B)	108.0(3)
Cl-N(1)-N(4)#9	109.10(6)	Cl#1-N(1)-H(1B)	101.2(3)
N(4) #1-N(1)-N(4)#9	110.95(5)	N(2)#1-N(1)-H(1B)	56.5(3)
Cl#10-N(1)-N(4)#9	125.93(6)	N(3)#10-N(1)-H(1B)	106.4(3)
N(2) #11-N(1)-N(4)#9	143.90(6)	N(4) #12 - N(1) - H(1B)	71.6(3)
N(3)-N(1)-N(4)#9	119.16(6)	H(1A)-N(1)-H(1B)	106.8(4)
N(3)#8-N(1)-C1#1	123.67(7)	N(3)#8-N(1)-H(1C)	114.3(3)
N(2)#9-N(1)-C1#1	56.92(4)	N(2)#9-N(1)-H(1C)	54.3(3)
Cl-N(1)-Cl#1	97.32(5)	Cl-N(1)-H(1C)	102.6(3)
N(4)#1-N(1)-Cl#1	57.34(4)	N(4)#1-N(1)-H(1C)	67.7(3)
Cl#10-N(1)-Cl#1	102.26(5)	Cl#10-N(1)-H(1C)	106.1(3)
N(2)#11-N(1)-C1#1	155.63(6)	N(2)#11-N(1)-H(1C)	162.8(3)
N(3)-N(1)-C1#1	148.94(6)	N(3)-N(1)-H(1C)	150.2(3)
N(4)#9-N(1)-Cl#1	57.15(4)	N(4)#9-N(1)-H(1C)	46.9(3)
N(3)#8-N(1)-N(2)#1	127.00(6)	Cl#1-N(1)-H(1C)	10.5(3)
N(2)#9-N(1)-N(2)#1	106.86(5)	N(2)#1-N(1)-H(1C)	52.8(3)
Cl-N(1)-N(2)#1	55.12(4)	N(3) #10-N(1)-H(1C)	70.6(3)
N(4) #1-N(1)-N(2) #1	66.43(5)	N(4)#12-N(1)-H(1C)	123.8(3)
C1#10-N(1)-N(2)#1	150.24(6)	H(1A)-N(1)-H(1C)	105.9(4)
N(2)#11-N(1)-N(2)#1	140.32(5)	H(1B)-N(1)-H(1C)	105.8(4)
N(3)-N(1)-N(2)#1	97.48(5)	N(3) #13 - N(2) - N(4) #4	83.91(6)
N(4)#9-N(1)-N(2)#1	58.57(4)	N(3) #13-N(2)-C1	111.03(7)
Cl#1-N(1)-N(2)#1	52.87(4)	N(4) #4-N(2)-C1	65.27(5)
N(3)#8-N(1)-N(3)#10	122.62(5)	N(3)#13-N(2)-C1#5	127.10(7)
N(2)#9-N(1)-N(3)#10	58.00(4)	N(4)#4-N(2)-C1#5	147.56(6)
C1-N(1)-N(3)#10	101.27(5)	C1-N(2)-C1#5	105.12(5)
N(4) #1-N(1)-N(3) #10	43.23(4)	N(3) #13 - N(2) - N(1) #14	139.87(7)
Cl#10-N(1)-N(3)#10	48.28(4)	N(4) #4-N(2)-N(1) #14	84.60(5)
N(2) #11-N(1)-N(3) #10	93.35(5)	Cl-N(2)-N(1)#14	98.56(5)
N(3)-N(1)-N(3)#10			
	125.72(6)	C1#5-N(2)-N(1)#14	65.63(5)
N(4)#9-N(1)-N(3)#10	114.26(5)	N(3)#13-N(2)-C1#4	79.40(6)
C1#1-N(1)-N(3)#10	62.30(4)	N(4)#4-N(2)-Cl#4	61.50(5)
N(2)#1-N(1)-N(3)#10	102.00(5)	C1-N(2)-C1#4	124.10(5)
N(3) #8-N(1)-N(4) #12	54.06(5)	C1#5-N(2)-C1#4	110.28(5)
N(2)#9-N(1)-N(4)#12	128.12(6)	N(1)#14-N(2)-C1#4	61.38(5)
C1-N(1)-N(4)#12	76.99(4)	N(3)#13-N(2)-N(1)#13	67.86(5)
N(4) #1-N(1)-N(4) #12	138.16(5)	N(4)#4-N(2)-N(1)#13	146.92(6)
C1#10-N(1)-N(4)#12	120.72(5)	C1-N(2)-N(1)#13	140.20(6)
N(2) #11-N(1)-N(4) #12	72.31(4)	C1#5-N(2)-N(1)#13	59.63(4)
N(3)-N(1)-N(4)#12	42.16(4)	N(1) #14 - N(2) - N(1) #13	105.65(5)
N(4) #9 - N(1) - N(4) #12	79.45(4)	C1#4-N(2)-N(1)#13	95.36(5)
Cl#1-N(1)-N(4)#12	132.01(5)	N(3)#13-N(2)-N(4)#1	61.67(5)
N(2)#1-N(1)-N(4)#12	88.81(5)	N(4)#4-N(2)-N(4)#1	92.02(4)
N(3)#10-N(1)-N(4)#12	165.60(6)	Cl-N(2)-N(4)#1	59.86(4)
N(3)#8-N(1)-H(1A)	98.3(3)	C1#5-N(2)-N(4)#1	110.19(6)
N(2)#9-N(1)-H(1A)	71.9(3)	N(1) #14-N(2)-N(4) #1	157.10(6)
Cl-N(1)-H(1A)	103.9(3)	C1#4-N(2)-N(4)#1	135.49(6)
N(4) #1-N(1)-H(1A)	67.8(3)	N(1) #13 - N(2) - N(4) #1	89.47(5)
C1#10-N(1)-H(1A)	21.5(3)	N(3)#13-N(2)-N(3)#4	79.31(4)
N(2)#11-N(1)-H(1A)	57.3(3)	N(4)#4-N(2)-N(3)#4	113.77(6)
N(3)-N(1)-H(1A)	97.4(3)	C1-N(2)-N(3)#4	169.03(6)
N(4)#9-N(1)-H(1A)	140.8(3)	C1#5-N(2)-N(3)#4	69.55(5)
C1#1-N(1)-H(1A)	98.6(3)	N(1)#14-N(2)-N(3)#4	70.57(5)
N(2) #1-N(1)-H(1A)	134.2(3)	C1#4-N(2)-N(3)#4	52.56(4)
N(3)#10-N(1)-H(1A)	36.9(3)	N(1)#13-N(2)-N(3)#4	46.08(4)
N(4)#12-N(1)-H(1A)	129.2(3)	N(4) #1-N(2)-N(3) #4	130.65(6)
N(3)#8-N(1)-H(1B)	124.0(3)	N(3) #13 - N(2) - N(1) #5	111.78(6)
	· - /		- \ - /

N(4)#4-N(2)-N(1)#5	126.32(6)	N(1)#5-N(2)-H(2C)	63.8(3)
C1-N(2)-N(1)#5	61.16(4)	N(3)#6-N(2)-H(2C)	59.9(3)
Cl#5-N(2)-N(1)#5	56.45(4)	N(4)-N(2)-H(2C)	51.5(2)
N(1) #14-N(2)-N(1)#5	105.99(5)	H(2A)-N(2)-H(2C)	106.4(3)
C1#4-N(2)-N(1)#5	165.96(6)	H(2B)-N(2)-H(2C)	107.1(4)
N(1)#13-N(2)-N(1)#5	81.80(4)	N(2) #11-N(3)-N(4) #12	109.24(7)
N(4) #1-N(2)-N(1) #5	58.45(4)	N(2) #11-N(3)-N(1)#6	110.71(7)
N(3)#4-N(2)-N(1)#5	119.42(6)	N(4) #12-N(3)-N(1)#6	104.58(7)
N(3)#13-N(2)-N(3)#6	126.87(6)	N(2) #11-N(3)-C1	107.64(6)
N(4)#4-N(2)-N(3)#6	44.81(4)	N(4) #12-N(3)-C1	105.10(6)
Cl-N(2)-N(3)#6	65.24(4)	N(1)#6-N(3)-C1	119.10(7)
C1#5-N(2)-N(3)#6	102.74(5)	N(2)#11-N(3)-N(4)#4	71.91(6)
N(1)#14-N(2)-N(3)#6	44.55(4)	N(4) #12-N(3)-N(4)#4	170.74(6)
C1#4-N(2)-N(3)#6	65.72(4)	N(1)#6-N(3)-N(4)#4	83.14(6)
N(1)#13-N(2)-N(3)#6	149.27(6)	C1-N(3)-N(4)#4	66.21(5)
N(4) #1-N(2)-N(3)#6	121.13(6)	N(2) #11-N(3)-N(1)	66.58(5)
N(3)#4-N(2)-N(3)#6	105.95(5)	N(4) #12-N(3)-N(1)	79.08(6)
N(1) #5 - N(2) - N(3) #6	110.49(5)	N(1)#6-N(3)-N(1)	176.16(6)
	· · ·		
N(3) #13 - N(2) - N(4)	161.36(7)	C1-N(3)-N(1)	60.37(5)
N(4) #4-N(2)-N(4)	98.22(5)	N(4) #4-N(3)-N(1)	93.33(5)
C1-N(2)-N(4)	54.70(4)	N(2) #11-N(3)-N(2) #2	152.81(7)
C1#5-N(2)-N(4)	55.99(4)	N(4) #12 - N(3) - N(2) #2	97.53(6)
N(1) #14-N(2)-N(4)	58.63(4)	N(1)#6-N(3)-N(2)#2	65.24(5)
Cl#4-N(2)-N(4)	117.97(6)	C1-N(3)-N(2)#2	59.07(4)
N(1) #13-N(2)-N(4)	114.09(5)	N(4) #4-N(3)-N(2)#2	80.91(5)
N(4) #1-N(2)-N(4)	99.70(5)	N(1)-N(3)-N(2)#2	115.78(6)
N(3) #4-N(2)-N(4)	115.99(5)	N(2)#11-N(3)-N(2)#8	100.90(5)
N(1) #5-N(2)-N(4)	52.35(4)	N(4) #12 - N(3) - N(2) #8	54.71(5)
N(3) #6-N(2)-N(4)	61.60(4)	N(1)#6-N(3)-N(2)#8	56.77(5)
N(3) #13 - N(2) - H(2A)	121.8(2)	C1-N(3)-N(2)#8	149.74(6)
N(4) #4 - N(2) - H(2A)	153.3(3)	N(4)#4-N(3)-N(2)#8	134.50(6)
Cl-N(2)-H(2A)	106.9(2)	N(1)-N(3)-N(2)#8	125.86(6)
Cl#5-N(2)-H(2A)	5.8(2)	N(2)#2-N(3)-N(2)#8	98.34(4)
N(1) #14-N(2)-H(2A)	71.0(3)	N(2) #11-N(3)-C1#8	57.02(5)
Cl#4-N(2)-H(2A)	112.6(3)	N(4) #12-N(3)-C1#8	60.51(5)
N(1)#13-N(2)-H(2A)	54.7(2)	N(1)#6-N(3)-C1#8	95.28(6)
. , , , , , , , , , , , , , , , , ,			
N(4) #1-N(2)-H(2A)	106.1(3)	C1-N(3)-C1#8	145.56(6)
N(3)#4-N(2)-H(2A)	68.8(2)	N(4)#4-N(3)-Cl#8	124.66(5)
N(1) #5-N(2)-H(2A)	54.7(3)	N(1)-N(3)-C1#8	85.48(5)
N(3) #6-N(2)-H(2A)	108.5(2)	N(2)#2-N(3)-C1#8	147.23(5)
N(4)-N(2)-H(2A)	60.1(2)	N(2)#8-N(3)-C1#8	49.59(4)
		N(2)#11-N(3)-C1#12	
N(3)#13-N(2)-H(2B)	97.3(2)		151.08(7)
N(4) #4-N(2)-H(2B)	57.8(2)	N(4) #12-N(3)-C1#12	56.58(5)
Cl-N(2)-H(2B)	111.9(3)	N(1)#6-N(3)-C1#12	57.48(4)
Cl#5-N(2)-H(2B)	103.6(2)	C1-N(3)-C1#12	100.74(4)
N(1) #14-N(2)-H(2B)	45.1(2)	N(4)#4-N(3)-C1#12	126.56(5)
Cl#4-N(2)-H(2B)	18.8(2)	N(1)-N(3)-C1#12	126.23(5)
N(1)#13-N(2)-H(2B)	107.6(3)	N(2)#2-N(3)-C1#12	51.63(4)
N(4) #1-N(2)-H(2B)	146.2(3)	N(2)#8-N(3)-C1#12	50.19(4)
N(3)#4-N(2)-H(2B)	61.7(2)	C1#8-N(3)-C1#12	95.90(4)
N(1) #5-N(2)-H(2B)	150.8(2)	N(2)#11-N(3)-N(4)#8	53.28(5)
N(3) #6-N(2)-H(2B)	48.8(2)	N(4) #12 - N(3) - N(4) #8	104.53(5)
N(4)-N(2)-H(2B)	99.5(2)	N(1)#6-N(3)-N(4)#8	60.62(5)
H(2A)-N(2)-H(2B)	107.6(4)	C1-N(3)-N(4)#8	149.04(6)
N(3)#13-N(2)-H(2C)	115.3(3)	N(4)#4-N(3)-N(4)#8	83.62(4)
N(4)#4-N(2)-H(2C)	63.2(3)	N(1)-N(3)-N(4)#8	117.60(5)
C1-N(2)-H(2C)	5.7(2)	N(2)#2-N(3)-N(4)#8	124.96(5)
Cl#5-N(2)-H(2C)	104.0(3)	N(2)#8-N(3)-N(4)#8	59.45(4)
N(1)#14-N(2)-H(2C)	93.0(3)	C1#8-N(3)-N(4)#8	50.19(4)
Cl#4-N(2)-H(2C)	120.2(3)	C1#12-N(3)-N(4)#8	102.88(5)
N(1)#13-N(2)-H(2C)		N(2) #11-N(3)-N(1)#3	
	144.4(3)		143.89(7)
N(4) #1 - N(2) - H(2C)	65.5(3)	N(4)#12-N(3)-N(1)#3	56.32(5)
N(3) #4-N(2)-H(2C)	163.6(3)	N(1)#6-N(3)-N(1)#3	105.18(5)
			• • •

C1-N(3)-N(1)#3	55.37(4)	N(3) #7-N(4)-N(3) #2	83.88(4)
N(4)#4-N(3)-N(1)#3	117.15(6)	N(2)#2-N(4)-N(3)#2	111.55(6)
N(1)-N(3)-N(1)#3	77.75(4)	N(3) #7-N(4)-C1	79.52(6)
N(2)#2-N(3)-N(1)#3	51.43(4)	N(2)#2-N(4)-C1	60.75(5)
N(2)#8-N(3)-N(1)#3	95.27(5)	N(3)#2-N(4)-C1	162.64(6)
Cl#8-N(3)-N(1)#3	116.52(5)	N(3) #7-N(4)-N(1) #5	80.46(6)
C1#12-N(3)-N(1)#3	53.66(4)	N(2)#2-N(4)-N(1)#5	124.25(6)
N(4)#8-N(3)-N(1)#3	154.62(5)	N(3)#2-N(4)-N(1)#5	117.74(6)
N(2) #11-N(3)-H(3A)	2.68(18)	C1-N(4)-N(1)#5	64.47(5)
N(4) #12-N(3)-H(3A)	111.0(2)	N(3)#7-N(4)-C1#5	133.14(7)
N(1)#6-N(3)-H(3A)	111.8(2)	N(2)#2-N(4)-C1#5	140.65(6)
Cl-N(3)-H(3A)	105.08(19)	N(3)#2-N(4)-C1#5	94.44(5)
N(4)#4-N(3)-H(3A)	69.85(19)	Cl-N(4)-Cl#5	100.59(4)
N(1)-N(3)-H(3A)	65.36(19)	N(1)#5-N(4)-C1#5	59.00(4)
N(2)#2-N(3)-H(3A)	150.7(2)	N(3) #7-N(4)-C1#2	75.69(5)
N(2)#8-N(3)-H(3A)	103.57(19)	N(2)#2-N(4)-C1#2	57.98(4)
C1#8-N(3)-H(3A)	59.58(19)	N(3)#2-N(4)-C1#2	53.57(4)
C1#12-N(3)-H(3A)	153.7(2)	C1-N(4)-C1#2	116.46(5)
N(4)#8-N(3)-H(3A)	55.21(18)	N(1)#5-N(4)-C1#2	155.28(6)
N(1)#3-N(3)-H(3A)	143.0(2)	C1#5-N(4)-C1#2	137.98(5)
N(2) #11-N(3)-H(3B)	111.4(2)	N(3) #7-N(4)-N(1) #14	164.01(7)
N(4)#12-N(3)-H(3B)	109.7(2)	N(2)#2-N(4)-N(1)#14	83.55(5)
N(1)#6-N(3)-H(3B)		N(3)#2-N(4)-N(1)#14	
	111.0(2)		102.70(6)
C1-N(3)-H(3B)	8.15(19)	Cl-N(4)-N(1)#14	92.16(5)
N(4) #4-N(3)-H(3B)	62.1(2)	N(1)#5-N(4)-N(1)#14	108.40(5)
N(1)-N(3)-H(3B)	68.3(2)	Cl#5-N(4)-N(1)#14	61.56(4)
N(2)#2-N(3)-H(3B)	52.6(2)	Cl#2-N(4)-N(1)#14	96.31(5)
N(2)#8-N(3)-H(3B)	147.6(2)	N(3) #7 - N(4) - N(2) #5	128.18(7)
C1#8-N(3)-H(3B)	153.7(2)	N(2) #2-N(4)-N(2)#5	125.44(6)
C1#12-N(3)-H(3B)	97.5(2)	N(3)#2-N(4)-N(2)#5	46.42(4)
N(4)#8-N(3)-H(3B)	145.7(2)	C1-N(4)-N(2)#5	150.94(6)
N(1)#3-N(3)-H(3B)	56.8(2)	N(1)#5-N(4)-N(2)#5	107.33(6)
H(3A)-N(3)-H(3B)	108.7(3)	Cl#5-N(4)-N(2)#5	55.46(4)
N(2) #11-N(3)-H(3C)	107.9(2)	C1#2-N(4)-N(2)#5	82.98(5)
N(4)#12-N(3)-H(3C)	2.37(19)	N(1) #14-N(4)-N(2)#5	62.98(5)
N(1)#6-N(3)-H(3C)	106.9(2)	N(3) #7 - N(4) - N(2)	127.42(7)
Cl-N(3)-H(3C)	103.9(2)	N(2)#2-N(4)-N(2)	92.15(5)
N(4) #4-N(3)-H(3C)	168.8(2)	N(3) #2-N(4)-N(2)	144.46(6)
N(1)-N(3)-H(3C)	76.7(2)	C1-N(4)-N(2)	52.77(4)
		N(1) #5-N(4)-N(2)	61.22(4)
N(2)#2-N(3)-H(3C)	98.7(2)		
N(2)#8-N(3)-H(3C)	56.7(2)	C1#5-N(4)-N(2)	52.94(4)
C1#8-N(3)-H(3C)	60.4(2)	C1#2-N(4)-N(2)	141.01(6)
Cl#12-N(3)-H(3C)	58.70(19)	N(1) #14-N(4)-N(2)	52.39(4)
N(4)#8-N(3)-H(3C)	105.4(2)	N(2) #5-N(4)-N(2)	98.36(5)
N(1)#3-N(3)-H(3C)	56.2(2)	N(3) #7-N(4)-N(3)#6	121.63(5)
H(3A)-N(3)-H(3C)			
	109.5(3)	N(2)#2-N(4)-N(3)#6	42.81(4)
H(3B)-N(3)-H(3C)	108.7(3)	N(3)#2-N(4)-N(3)#6	123.15(6)
N(2) #11-N(3)-H(3D)	109.0(2)	C1-N(4)-N(3)#6	63.33(4)
N(4) #12-N(3)-H(3D)	107.9(2)	N(1)#5-N(4)-N(3)#6	116.25(5)
N(1) #6-N(3)-H(3D)	3.28(19)	Cl#5-N(4)-N(3)#6	98.36(5)
Cl-N(3)-H(3D)	117.8(2)	C1#2-N(4)-N(3)#6	82.43(5)
N(4)#4-N(3)-H(3D)	79.9(2)	N(1) #14-N(4)-N(3)#6	42.69(4)
N(1)-N(3)-H(3D)	172.9(2)	N(2)#5-N(4)-N(3)#6	101.03(5)
N(2)#2-N(3)-H(3D)	65.4(2)	N(2)-N(4)-N(3)#6	58.95(4)
N(2)#8-N(3)-H(3D)	59.6(2)	N(3) #7-N(4)-N(1)#7	58.76(5)
C1#8-N(3)-H(3D)	96.7(2)	N(2)#2-N(4)-N(1)#7	130.22(6)
C1#12-N(3)-H(3D)	60.4(2)	N(3)#2-N(4)-N(1)#7	42.80(4)
N(4)#8-N(3)-H(3D)	60.0(2)	C1-N(4)-N(1)#7	128.25(6)
N(1)#3-N(3)-H(3D)	107.1(2)	N(1) #5-N(4)-N(1) #7	78.66(4)
H(3A)-N(3)-H(3D)	110.0(3)	C1#5-N(4)-N(1)#7	88.95(5)
H(3B)-N(3)-H(3D)	109.6(3)	C1#2-N(4)-N(1)#7	83.45(4)
H(3C)-N(3)-H(3D)	110.2(3)	N(1) #14-N(4)-N(1)#7	135.01(5)
N(3) #7-N(4)-N(2)#2	80.48(6)	N(2) #5-N(4)-N(1) #7	72.42(4)
(3/11/11/11/11/11/11/11/11/11/11/11/11/11	33.13(3)	-·(2/ΠΟ 1·(1/ 1·(1/π/	, 2 , 12 (1 /

N(2)-N(4)-N(1)#7	134.37(6)	N(1)#14-N(4)-H(4B)	74.1(3)
N(3) #6-N(4)-N(1)#7	165.08(5)	N(2) #5 - N(4) - H(4B)	134.2(3)
N(3) #7 - N(4) - H(4A)	109.8(3)	N(2) + N(4) - H(4B)	39.0(2)
N(2) #2-N(4)-H(4A)	61.0(3)	N(3) #6-N(4)-H(4B)	49.1(3)
N(3) #2-N(4)-H(4A)	63.4(3)	N(1)#7-N(4)-H(4B)	144.3(3)
C1-N(4)-H(4A)	117.9(3)	H(4A) - N(4) - H(4B)	108.3(4)
N(1) #5 - N(4) - H(4A)	169.6(3)	N(3) #7 - N(4) - H(4C)	126.3(3)
C1#5-N(4)-H(4A)	111.0(3)	N(3) #7 - N(4) - H(4C) N(2) #2 - N(4) - H(4C)	152.7(3)
C1#3-N(4)-H(4A) C1#2-N(4)-H(4A)	34.5(3)	. , , , , , , , , , , , , , , , , ,	80.0(3)
N(1) #14 - N(4) - H(4A)	62.0(3)	N(3)#2-N(4)-H(4C) Cl-N(4)-H(4C)	/
	` '	. , , , ,	114.1(3)
N(2) #5-N(4)-H(4A)	65.4(3)	N(1) #5 - N(4) - H(4C)	63.5(3)
N(2) - N(4) - H(4A)	111.3(3)	C1#5-N(4)-H(4C)	15.0(3)
N(3)#6-N(4)-H(4A)	60.3(3)	Cl#2-N(4)-H(4C)	127.9(3)
N(1) #7 - N(4) - H(4A)	105.0(3)	N(1) #14-N(4)-H(4C)	69.5(3)
N(3)#7-N(4)-H(4B)	97.3(3)	N(2)#5-N(4)-H(4C)	45.4(3)
N(2)#2-N(4)-H(4B)	60.4(3)	N(2)-N(4)-H(4C)	68.0(3)
N(3)#2-N(4)-H(4B)	171.3(3)	N(3)#6-N(4)-H(4C)	109.9(3)
Cl-N(4)-H(4B)	18.1(3)	N(1)#7-N(4)-H(4C)	75.4(3)
N(1) #5-N(4)-H(4B)	70.9(3)	H(4A)-N(4)-H(4C)	107.6(4)
Cl#5-N(4)-H(4B)	91.1(3)	H(4B)-N(4)-H(4C)	105.9(4)
C1#2-N(4)-H(4B)	118.3(3)		
#1 x-1/2,-y+3/2,-z	#5 x+1/2,-y+	+3/2,-z #10 -x-1,	/2, -y+1, z-1/2
#2 -x+1/2, -y+1, z+1/2	#6 x+1/2,-y+	+1/2,-z #11 -x,y-	-1/2, -z-1/2
#3 - x - 1/2, -y + 1, z + 1/2	#7 - x, y + 1/2		-1/2, -z+1/2
#4 - x + 1/2, -y + 1, z - 1/2	#8 x-1/2,-y		+1/2,-z-1/2
	#9 x-1,y,z	#14 x+1,	
	, , , , –	/2	

Bindungslängen und Bindungswinkel von $ND_4(ND_3)_3C1$

	U11	U22	П33	U23	U13	U12
Cl	5(1)	6(1)	6(1)	1(1)	0(1)	1(1)
N(1)	8(1)	9(1)	11(1)	1(1)	0(1)	-1(1)
N(2)	8(1)	9(1)	9(1)	0(1)	0(1)	0(1)
N(3)	8(1)	9(1)	9(1)	0(1)	0(1)	0(1)
N(4)	9(1)	9(1)	9(1)	1(1)	-1(1)	-1(1)
H(1A)	29(2)	29(2)	17(1)	-2(1)	3(1)	0(1)
H(1B)	15(1)	26(1)	32(2)	1(1)	-5(1)	1(1)
H(1C)	26(1)	19(1)	32(2)	-3(1)	0(1)	6(1)
H(2A)	23(1)	18(1)	25(1)	-2(1)	-4(1)	-6(1)
H(2B)	21(1)	20(1)	26(1)	-4(1)	1(1)	4(1)
H(2C)	20(1)	29(1)	20(1)	4(1)	5(1)	-4(1)
H(3A)	18(1)	16(1)	17(1)	-1(1)	-2(1)	-1(1)
H(3B)	19(1)	14(1)	21(1)	0(1)	0(1)	-3(1)
H(3C)	17(1)	19(1)	15(1)	1(1)	2(1)	0(1)
H(3D)	17(1)	16(1)	21(1)	2(1)	-1(1)	4(1)
H(4A)	24(1)	23(1)	34(2)	3(1)	-4(1)	8(1)
H(4B)	25(1)	30(2)	19(1)	-3(1)	-6(1)	-7(1)
H(4C)	27(2)	21(1)	30(1)	5(1)	6(1)	-8(1)

Atomkoordinaten ($\cdot 10^4$) und isotrope Auslenkungsparameter ($\mathring{A}^2 \cdot 10^3$) von $ND_4(ND_3)_3C1$

	х	У	Z	U(eq)
TT / 1 7x \	2026/61	F204/F)	1002/4)	25/1)
H(1A)	-3826(6)	5204(5)	-1883(4)	25(1)
H(1B)	-2780(4)	5289(4)	-336(5)	24(1)
H(1C)	-4325(5)	6316(4)	-521(5)	26(1)
H(2A)	3311(5)	7642(4)	-1817(4)	22(1)
H(2B)	3424(5)	5982(4)	-2606(4)	22(1)
H(2C)	1982(5)	6381(5)	-1445(4)	23(1)
H(3A)	-1678(4)	2074(3)	-881(3)	17(1)
H(3B)	-606(4)	3184(4)	292(4)	18(1)
H(3C)	-1999(4)	2076(4)	1053(3)	17(1)
H(3D)	-304(4)	1300(4)	338(4)	18(1)
H(4A)	4277(5)	6049(5)	2650(5)	27(1)
H(4B)	2747(5)	6373(5)	1560(4)	25(1)
H(4C)	4047(5)	7673(5)	1812(5)	26(1)

Wasserstoffatomkoordinaten (\cdot 10 4) und isotrope Auslenkungsparameter (Å 2 · 10 3) von ND₄(ND₃)₃C1