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Summary 

 

 

In this dissertation the development of the NMR spectrum analysis program AUREMOL 

is continued. The goal of AUREMOL is to provide routines for an automatic protein 

structure determination from a minimum of experimental NMR data with a minimum of 

user intervention. General improvements are the establishment of a IUPAC compliant 

nomenclature for atom names in the different AUREMOL modules, the addition of a new 

strips tool that aids the user during a manual sequential assignment task and a correct 

implementation of the support for arbitrary motional models and finite relaxation delay in 

the spectrum simulation module RELAX. The present threshold based peak picking 

routine is enhanced to adapt the threshold locally based on a local noise estimate. This 

procedure leads to significantly less artifacts in the produced signal list. In addition the 

new adaptive routine has been combined with the Bayesian signal analysis in AUREMOL 

and the resulting automatically determined signal list for an experimental 2D NOESY 

spectrum shows very good artifact suppression.  

The segmentation based integration routine in AUREMOL is extended to produce an 

error estimate for every signal integral by calculating a noise and overlap contribution. 

Testing the proposed integration error estimation approach on a simulated noised dataset 

reveals that the error estimates of 52% of the integrated signals explain the originally 

simulated data. For the remaining signals the errors are underestimated because of 

undetected overlap, where two or more overlapping signals do not have distinct extrema. 

As the simulation based de novo assignment routine in AUREMOL shows poor results 

when no a priori partial assignment is present, the pseudo energy function used in the 

threshold accepting optimization is supplemented with a second contribution describing 

the global matching quality. This results in a performance increase from 10% correctly 

assigned signals using the original pseudo energy function to 100% correctly assigned 

signals when using the additional term on comparable synthetic datasets of HPr H15A (S. 

carnosus) and HPr WT (S. aureus) starting without a priori partial assignment. 

In the main part of this thesis a new distance calculation module called REFINE is 

presented that is based on the relaxation matrix based spectrum simualtion in RELAX. 

The calculated distance restraints are used for structure calculation in a molecular 

dynamics calculation. A starting relaxation matrix calculated from a trial structure is 

iteratively refined to best describe the experimental NOE data. During the process, a 

distance error estimate is produced from the errors in the experimental peak integrals. 

That the algorithm basically works is proven on a perfect synthetic dataset of the 66 
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amino acid protein TmCSP (Thermotoga maritima), where 100% correct distances are 

obtained for the original structure used for the simulation as input for REFINE. For an 

extended strand as input 86.9% of the calculated distances exhibit an error below 20%, so 

in both cases REFINE yields better results than the approximately 70% resulting 

distances with an error below 20% from the ISPA approach. The robustness against noise 

in the dataset is evaluated on a newly integrated artificial dataset of the 88 amino acid 

protein HPr (S. carnosus) with varying levels of additive Gaussian noise. The resulting 

distances from REFINE show a less pronounced, linear dependence on the noise level 

compared to ISPA. Between 5%-16% more distances with an error below 20% are 

calculated by REFINE using an extended strand and for the correctly folded structure as 

input the advantage for REFINE rises to 25%-37% compared to the ISPA results. 

For the application of REFINE to unassigned NOESY spectra, a combination of the 

NOESY assignment module KNOWNOE and REFINE is proposed and the user defined 

KNOWNOE scaling parameter is calculated using REFINE. By the alternating 

application of KNOWNOE assignment and REFINE distance calculation, a protocol for 

the automatic structure determination from unassigned NOESY spectra is developed. For 

an experimental spectrum of HPr (S. carnosus) it is shown that this procedure is capable 

of determining the correct fold after nine iterations, additionally using predicted angle 

restraints. This qualitatively proves that this approach is valid. In a quantitative analysis 

the application of the same protocol to experimental 2D and 3D data of the 86 amino acid 

protein RalGDS-RBD yields structures of comparable quality (R-factor: 0.322) to the 

published X-ray structure (R-factor: 0.325). Here as additional restraints predicted 

dihedral angles and experimental H-bonds are used. 

To include simulation/modelling errors in the distance error estimate of REFINE, a 

parameter variation approach is evaluated. From the repeated application of REFINE to 

an experimental 2D dataset of HPr (S. aureus) with 25% known assignment distance 

distributions are obtained through the normally distributed variation of the experimental 

peak integrals as well as the backbone and sidechain order parameters. The standard 

deviations of these distributions are interpreted as distance error bounds of the restraints. 

Initially an extended strand is used as trial structure in REFINE. The structure calculated 

from these restraints is then used as trial structure for a second REFINE run. Compared to 

the structures obtained using an automatic ISPA approach (R-factor: 0.37), the structures 

calculated from both REFINE restraint sets show better R-factors (first run: 0.35, second 

run: 0.33). 
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1. Introduction 
 

The term ‘proteomics’ has been coined in analogy to the genomics projects of recent years 

[1]. It reflects the move away from the mere identification of all the genes present in a given 

organism in genomics towards the elucidation of the function of all the related proteins in 

proteomics. Knowledge about proteins and their function that is closely related to their 3D 

structure is steadily gaining interest in scientific research, especially in biology, medicine and 

pharmacy, but also e.g. in the direction of materials sciences when considering interesting 

protein based materials like spider silk [2;3].  

In structural proteomics the goal is to determine and characterize protein structures. Next to 

X-ray crystallography, where diffraction patterns of protein crystals are analyzed to obtain 

structural information, sophisticated Nuclear Magnetic Resonance – NMR – techniques have 

been developed that allow protein structure determination [4] of proteins in solution under 

near-physiological conditions.  

 

 

1.1 Proteins 
 
In the genome of every organism, the genes encode a large number of essential 

macromolecules – proteins – as a series of base pairs [5]. In the cell the gene sequences are 

translated into amino acid chains, where the amino acids are connected via peptide bonds: 

  

 
 

Figure 1.1 Three amino acids forming a tri-peptide 
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The resulting peptide or protein strands then usually adopt a specific three-dimensional shape, 

the so called tertiary structure (Fig. 1.2), that is essential for their functioning by rotating the 

chain segments around the backbone torsion angles ϕ and ψ. Common sub-motifs in folded 

structures include the secondary structure α–helices and β–sheets that are defined through 

characteristic dihedral ϕ/ψ-angle combinations and stabilized by hydrogen bonds. To get a 

more vivid impression of the three dimensional arrangement of a protein backbone a ribbon 

display is often used, where the secondary structure elements are highlighted: 

 
 

 
Figure 1.2 Ribbon plot of HPr from S. carnosus [6] showing secondary 
structure elements, α-helices (red/yellow) and β-sheets (cyan)*). 

 

Exactly how protein folding is achieved in the cell is still subject to investigation, the process 

can differ from protein to protein. Some fold all by themselves, driven mostly by entropic 

effects [8-10] when establishing the hydrophobic core, others need helper molecules, 

chaperones, to acquire the correct structure [11]. Folding of smaller proteins takes place on a 

micro- to millisecond timescale [12] but can take significantly more time, especially for larger 

and more complicated proteins where the formation of different domains and the interaction 

with chaperones comes into play.  

In, around and outside a cell, proteins fulfill various tasks. E.g. ligand proteins can exhibit 

regulatory and signal transduction functions when they dock on to corresponding receptor 

                                                 
*) All 3D molecule plots in this thesis were prepared with MOLMOL [7]. 
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proteins, effector proteins influence numerous metabolic pathways, membrane proteins 

stabilize cell walls, etc [13]. 

Errors in a protein’s fold can result in partial or complete loss of its functionality that often 

leads to pathological symptoms. Prominent examples for diseases related to protein 

misfolding and subsequent build up of plaques are BSE, Creutzfeld-Jakob and Alzheimer’s 

disease [14-18].  

Against this background it is clear that the interest of medical and pharmaceutical sciences in 

protein structures reflects the need to obtain as much information about the onset of protein 

related diseases as possible, since by the availability of this knowledge the development of 

practical cures can be greatly enhanced. 

 

 

1.2 NMR in protein structure determination 
 

In protein NMR, the sample is exposed to a strong static magnetic field B0 in the z-direction. 

The protons exhibit a spin I of ½ and carry a magnetic dipole moment given by µ = γ� ⋅I*).  

 

 
 

Figure 1.3 Energy levels of a nucleus of spin 
quantum number I = ½ in a magnetic field B0. 

 

Coupling to the field leads to a splitting of the energy into two energy levels E±½ = -γ� IzB0 

for the spin states ±½ and the population of the states N±½ in thermal equilibrium follows the 

Boltzmann statistics:  

                                                 
*) γ: Gyromagnetic ratio, � =h/2π: Reduced Planck constant 
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Here ∆E denotes the energy difference of the two states, T the temperature and kB the 

Boltzmann constant.  

Under the influence of B0 the proton spins precess around the z-direction with the Larmor 

frequency 
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(1.2) 

 

In a protein, the different proton spins experience a slightly different external field due to the 

shielding effect of the electrons in their chemical environment. Because of that, also the 

Larmor frequencies vary slightly, which is known as chemical shift.  

By radiating a hf-pulse at the resonance frequency ν0, spin flips can be induced. During 

relaxation back to the equilibrium, radiation – the sum of the damped oscillations of all 

resonating spins – is emitted. This Free Induction Decay – FID – is recorded during t2 in 

NMR experiments. 

The central NMR experiment in protein structure determination is the Nuclear Overhauser 

Effect Spectroscopy – NOESY. It allows to measure signals that are related to the distances 

between neighboring protons, since in this experiment magnetization is transferred between 

spatially close spins during the mixing time τm: 

 

 
Figure 1.4 Pulse sequence for a 2D NOESY experiment with evolution time 
τ1 and mixing time τm. After the final pulse, the FID is acquired during t2. 

 

In a 2D H/H-NOESY experiment, after an initial 90° pulse the net magnetization can evolve 

in the x/y plane for an evolution time τ1. After τ1 and another 90° pulse the mixing time τm 
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allows magnetization transfer through space via dipolar interaction until the final 90° pulse 

rotates the net z-magnetization to the x/y plane for detection and recording of n datapoints. 

Iterating this pulse sequence and at the same time incrementing τ1 in steps of τ1,inc for m times 

results in a 2D dataset in the indirect dimension of t1 (the time increments) and the direct 

dimension of t2 (the recording time) for this experiment. According to the Nyquist theorem, in 

order to be able to correctly sample a signal of frequency fmax, the sampling frequency fs has to 

be at least two times fmax. So the sampling interval τ1,inc is given by  

 

maxs
inc ff ⋅

==
2

11
,1τ  

 

(1.3) 

 

 

When using quadrature detection, the increments τ1,inc can be calculated for the desired 

spectral width SW in [Hz]:  

 

SWinc

1
,1 =τ  

 
(1.4) 

 

Higher dimensional NOESY experiments like 3D or 4D-NOESY-HSQC (Heteronuclear 

Single Quantum Coherence – HSQC) require additional pulses and evolution periods and also 

isotope labelled protein samples containing 13C and/or 15N nuclei with spin ½. The increased 

expenditure of time and money for these experiments is rewarded by considerably less signal 

overlap in the resulting higher dimensional spectral datasets. 

For evaluation the time domain data is Fourier transformed to the frequency domain. Further 

processing includes phase correction, baseline correction, filtering, etc [4], before analysis is 

carried out. 

 

 

1.3 Automated protein structure determination from NMR data 
 

Several approaches to the problem of automated protein structure determination from NMR 

data exist. They can be divided into classic bottom-up strategies that make use of a large base 

of experimental data and top-down approaches that try to minimize the experimental effort 

and concentrate on the structure part. 
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For the bottom-up class of programs a strong focus is put on obtaining a complete sequential 

assignment. To this end a vast array of assignment programs applicable to different kinds of 

multi-dimensional spectra has been developed. Obviously the inherent drawback in this 

approach is the experimental effort involved in obtaining the required spectra. 

In a top-down approach the focus shifts to structure itself. As a starting point a homology 

modelled structure can be used or in the extreme case even an extended strand. Using this 

structure and as much additional information as possible, like predicted chemical shifts and 

backbone torsion angles, the assignment and the structure itself are refined in an iterative 

process. This is the concept of AUREMOL described below. 

The current state of the available methods for automatic NMR structure determination is 

discussed in section two, especially for those parts also of relevance to the top-down approach 

maintained in this thesis. All developed extensions and improvements to AUREMOL are 

presented together with the results in section three and discussed in section four. 

 

 

1.4 AUREMOL 
 

In 1999 a cooperation between NMR spectrometer manufacturer Bruker BioSpin and the 

Biophysics Department of the University of Regensburg was started to develop a software 

package – AUREMOL [19] – based on AURELIA [20] for the automated determination of 

protein structures from NMR data. Bruker BioSpin provides the Amix™ Viewer as a 

framework and the routines required for analysis, evaluation and automation are contributed 

by the Biophysics Department.  

The concept for automation is a molecule centered top-down approach where all of the 

available a priori information is used to eliminate as many free parameters as possible and 

reduce the amount of experimental data to a minimum. Along the way, any need for expert 

intervention is also to be reduced to a minimum. 

The goal is to deliver an extensive tool for protein structure determination from NMR data, 

that speeds up and automates this process as outlined in the following scheme: 
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Figure 1.5 Typical structure determination workflow using AUREMOL. 
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AUREMOL currently relies on external software only for raw data processing and restrained 

molecular dynamics calculations. It offers routines and utilities for the data analysis and 

structure validation steps in one NMR program with an emphasis on NOESY evaluation. 

Advanced modules of AUREMOL include the spectrum simulation module RELAX [21-23], 

the NOESY assignment tool KNOWNOE [24], the structure evaluation module RFAC [25] 

and as the main part of this thesis the distance calculation module REFINE. 

Trial versions can be obtained from the AUREMOL website and require a trial license from 

Bruker BioSpin*). 

 

 

1.5 Goals of this study 
 

Since it is desirable to solve protein structures quickly, automation is essential as the manual 

approach is very time consuming. In protein structure determination from NMR data using a 

top-down approach as sketched in Fig. 1.5, the individual steps are not a priori suited for 

automation. So the aim of this thesis is first to find starting points for the development of a 

largely automated structure determination procedure among the currently available routines in 

AUREMOL. The second goal is to implement the necessary changes in a way that the results 

produced using the now integrated automatic apporach yield an increase in overall quality and 

efficiency as well as reproducibility, a very important factor in automation.  

General improvements to AUREMOL are the complete migration to a consistent 

nomenclature throughout the program as described in section 3.1 and the incorporation of 

finite relaxation delays in the spectrum simulation presented in section 3.2.  

Concerning signal identification, the current implementations of peak picking and peak 

integration are reviewed in sections 2.1 and 2.2. The available peak picking routine in 

AUREMOL is extended to be usable for an automated approach as described in section 3.3 

and in section 3.4 the integration module is complemented by a simultaneous error estimation 

to extract the maximum of information included in the experimental data.  

In signal assignment, the main problem is how to obtain a correct sequential assignment with 

minimal effort. The current state of affairs is presented in section 2.3 and two possible routes 

for automation are encountered: The strip route uses heteronuclear 3D experiments to obtain 

the sequential assignment. For this approach an interactive strip tool has been implemented in 

AUREMOL that allows the manual as well as automatic definition of spectrum strips as 

                                                 
*) AUREMOL website: www.auremol.de 
For licensing information please contact the Bruker BioSpin GmbH license department: license@bruker.de 
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described in section 3.5. Using the strip information, the sequential assignment can then be 

determined semi-automatically in AUREMOL. The alternative route uses spectrum 

simulation and pattern matching for a de novo assignment. Since the available AUREMOL 

routine showed only limited success, the existing pseudo energy function used in the 

optimization was supplemented with a global pseudo energy term as shown in section 3.6, so 

that the best match can be reached more easily. 

The central point of this thesis is the accurate extraction of distance information from the 

experimental data. To this end the relaxation matrix formalism is used for distance 

calculation. It requires a sequential assignment and is the basis for the spectrum simulation 

used in the iterative REFINE algorithm presented in section 3.7. Errors in the experimental 

data are automatically accounted for and together with an optional parameter variation a 

distance error estimate is produced. In the evaluation section 3.8 the performance of REFINE 

is first evaluated for a simulated dataset. Then, in combination with KNOWNOE, the 

capabilities for automated structure determination are evaluated on real world data. 

By eliminating the scaling factor required by the NOE assignment module KNOWNOE using 

REFINE, a useful combination of these two modules regarding automated structure 

determination is created as outlined in section 3.9. 

In section four, the success of the AUREMOL improvements developed for this thesis is 

discussed in respect to the potential for automation, the REFINE performance and the error 

estimation benefits. 
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2. Current state of the field 
 
In this section an overview of the available methods used in protein structure determination 

from NMR is presented. References to existing implementations are given, for a near 

exhaustive list refer to [19]. 

 

 

2.1 Peak picking 
 

Peak picking in NMR is the task of identifying the location of potential signals in a spectral 

dataset. The most basic variant of peak picking is the manual identification of peak maxima. 

Here, the greatest advantage is at the same time the greatest disadvantage: An expert is 

needed. So although the results may be very good, the process takes a lot of time and is 

biased. 

For automation three main approaches exist: Thresholding, shape based and Bayesian signal 

identification. In the widely used threshold based peak picking approach [26-30] possible 

signals are identified by analyzing the intensity distribution in a spectrum. Above and/or 

below a threshold intensity level all local maxima and/or minima in the dataset are considered 

as signals. Having an expert manually choose an appropriate intensity is the crucial part here 

since too low values result in large numbers of noise spikes being added to the list of potential 

signals whereas too high values neglect weak signals: 

 

 
 

Figure 2.1 Schematic example of peak picking results for different thresholds (only 
positive signals considered). A high threshold (blue line) yields only the two strongest 
signals, medium (green) four signals and low (red) eleven signals 

 

][���
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Advantages of this method are its speed and ease of use, disadvantages the free threshold 

parameter and the assumption of a negligible baseline distortion, noise and artifacts. In the 

program ATNOS [31] thresholding in NOESY spectra is supplemented by considering the 

local baseline and noise as well as symmetries, chemical shift and structure information to 

obtain better results.  

Incorporating line shape information can also improve the peak picking performance, 

especially the discrimination between signal and artifact [32]. In STELLA [33] a database 

containing user defined signal and noise/artifact peak shapes is used. Here the results are of 

course dependent on the reference sets. CAPP [34] uses fitting of ellipses at different levels of 

a peak for signal identification in multidimensional spectra. Local peak shape symmetries are 

used in AUTOPSY [35] together with the shape information of well resolved cross peaks and 

local noise levels for peak picking. Still, for these approaches spectral regions of strong 

overlap remain a problem. 

Bayes driven analysis of the peak data [36;37] can also be used for signal discrimination. The 

algorithm is trained on reference sets for noise and signal peaks where distinguishing local 

features are stored and then applied to the experimental spectrum. Additionally global features 

like symmetries can be considered. The success of this method depends mainly on the choice 

of the training peaks, that are usually selected manually. 

 

 

2.2 Peak integration 
 

The most suitable approaches to peak integration for a fast and automatic workflow are peak 

fitting and segmentation algorithms.  

Fitting user defined reference peaks to the experimental spectrum [30;38] can yield very good 

results even for overlapping signals, however it is dependent on the choice of the reference 

peaks.  

In the segmentation approach the peak coordinates returned from the peak picking routine 

serve as seeds for a region growing algorithm [39] that calculates the signal integral. Around 

each seed an integration box depending on the expected linewidth is created. All local 

maxima inside this box are considered as additional seeds. If the neighboring datapoints of the 

main and additional seeds fulfill the growing conditions, they become new seeds and are 

added to the peak integral if they belong to the main peak. After iterating until the growing 

conditions cannot be met anymore, or only seeds are left, the integral is calculated.  
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Both presented approaches are subject to errors because of baseline distortions, overlap and 

noise as well as limited resolution. 

 

 

2.3 Peak assignment 
 

Manually assigning the peaks in a spectrum to the corresponding interacting spins in the 

sample protein is one of the most time consuming tasks in NMR structure determination. A 

set of appropriate 2D and 3D NMR experiments is usually required to complete this 

sequential assignment. Manual tools for the alignment of spectrum strips (see below) from 3D 

triple resonance experiments exist and speed up this process.  

Programs that allow manual or semi-automatic sequential assignment include ANSIG [40;41], 

AURELIA/AUREMOL, EASY/XEASY [30], FELIX [42], GIFA [43;44], PIPP [34], 

SPARKY [45]. 

Automated bottom-up approaches to sequential assignment like AUTOASSIGN [46], 

CONTRAST [47], GARANT [48] or PASTA [49] rely on triple resonance data that is first 

consistency checked, then the signals are grouped to spin systems and identified using 

statistical analyses of the chemical shifts. After that fragments of sequentially neigboring 

residues are determined which are finally linked to the primary sequence. For these steps 

deterministic methods like exhaustive searching or optimization methods like simulated 

annealing or threshold accepting are employed. The results naturally depend on the quality of 

the input data. 

For the automated assignment of NOESY spectra also several methods have been proposed. 

The main problem here lies in the occurrence of assignment ambiguities due to massive signal 

overlap. SANE [50] presents a semi-automatic approach relying on user interaction during the 

analysis, ARIA [51;52], CANDID [53] and NOAH are automatic approaches. ARIA uses 

molecular dynamics directly with ambiguous distance restraints. NOAH uses distance 

geometry calculations together with restraint violation analysis and CANDID combines 

methods from ARIA and NOAH with molecular dynamics and network anchoring. In the 

approaches above a sequential assignment, the quality of which strongly influences the 

resulting NOE assignment, is required. CLOUDS [54;55] is an example of a NOESY 

assignment approach that does not need a sequential assignment. 

In the following, the state of the different available assignment routines in AUREMOL is 

presented. 
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2.3.1 Manual assignment using strips 
 

In an ideal case, a single 3D heteronuclear triple resonance HNCA spectrum would be 

sufficient to determine the sequential assignment of a protein, i.e. the assignment of a HN 

chemical shift value to a certain residue in the protein sequence. Cross signals between the 

alpha carbon atom and the amide proton of residue i, CAi / HNi, and also between the 

sequentially preceding alpha carbon atom i-1 and the amide proton of residue i, CAi-1 / HNi, 

will show in a narrow spectral region around a given HNi resonance, a so-called strip. Using 

this information from all HN resonances, the sequential assignment can be deduced. However, 

limited resolution and signal overlap can lead to dead ends and ambiguities during the 

assignment process, so usually different spectra are required to obtain the complete sequential 

assignment of a protein. The most commonly used triple resonance experiments for sequential 

assignment are listed in the following table: 

 

Experiment Observed resonances 
HNCA CA i, CA i-1 
HN(CO)CA CA i-1 
CBCANH CA i, CA i-1, CB i, CB i-1 
CBCA(CO)NH CA i-1, CB i-1 

 
Table 2.1 Useful triple resonance NMR experiments for the determination of the 
sequential assignment. At a given HN resonance signals from the current amino acid i 
and/or the amino acid preceding in the sequence i-1 are detected. 

 

 

 
 

Figure 2.2 The HNCA strips are sorted according to this 
scheme to obtain the sequential assignment. 

 

By sorting the spectrum strips, the sequential assignment can be obtained. 
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2.3.2 Automated sequential assignment using strips 
 

In AUREMOL, a list of pseudo residues with the experimental chemical shift information is 

the starting point for a Monte Carlo approach to automatic sequential assignment. Building 

random sequences and evaluating a pseudo energy derived from the chemical shift match 

between neighboring residues and random coil chemical shift values allows to optimize the 

sequence to best fit the experimental data. For this a variant of a threshold accepting 

algorithm with additional bouncing [56] is used. However, the input data still has to be 

prepared manually. 

 

 

2.3.3 Automated sequential assignment using NOE spectra and spectrum 
simulation 

 

This method is currently being integrated into AUREMOL and has been outlined in a 

previous PhD thesis [57]. It requires a trial structure of the protein under investigation and 

uses among other things the line shape information of simulated and experimental signals to 

determine the peak assignment in a simulated annealing like procedure by varying the 

chemical shift assignments. Current changes include an extended pseudo energy function and 

restrained chemical shift variation depending on the respective proton, as described in section 

3.6. 

As this method is only limited by the available types of simulation it is a fairly universal 

approach to the assignment problem and shold be applicable to various kinds of NMR spectra. 

 

 

2.3.4 Automated NOE assignment using grid search 
  

In case a NOE assignment of a given spectrum is known, it can be transferred to other NOE 

spectra of the same protein that have been recorded under different experimental conditions. 

This is especially useful for series of experiments with e.g. varying temperature or pH, where 

for each step signals can slightly shift or for the adaption of averaged shifts obtained from a 

number of different spectra to one specific spectrum. 

For appliances like these, the PEAK ASSIGN module in AUREMOL uses a grid search 

algorithm that maps the known signal assignments to the eventually shifted signals in the 

spectra from the test series [58].  
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2.3.5 Probability driven automatic NOE assignment using Bayes’ Theorem 
 

The goal of KNOWNOE [59] is to calculate the most probable solution for ambiguous 

assignments by taking statistical information from known structures and the individual NOE 

volumes into account. To this end, starting from known protein structures determined by X-

ray diffraction or NMR, local databases containing distance probability distributions for 

protons between different combinations of amino acids have been created. 

This information is then used together with the sequential assignment information in a 

conditional probability approach to determine the most probable assignment of a given NOE 

signal. From a set of 326 NMR protein structures statistical tables for all assignment 

probabilities relevant to interproton NOE cross peaks were derived in the form of Volume 

Probability Distributions – VPDs in the current version. A known signal integral and distance 

have to be specified for calibration. The probability for a given peak with volume V0 to belong 

to assignment class Ci is calculated using Bayes’ theorem: 
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(2.1) 

 

In an iterative process the most probable assignments are determined. Additionally, mutual 

information concerning other NOE contacts of a certain proton spin is considered in a way 

similar to the network anchoring proposed by [53]. 

 

 

2.4 Relaxation matrix analysis 
 

Describing the magnetization transfer during the mixing time of NOESY spectra 

mathematically is the aim of relaxation matrix analysis [60-62] used in RELAX [21-23] and 

other programs for spectrum simulation including BIRDER [63] and CORMA [64] (2D), 

SPIRIT [65] (3D NOESY-HSQC) and RELAX (2D & 3D) which mainly differ in the number 

of available motional models and consideration of finite relaxation delay, anisotropy and 

chemical exchange effects. As a starting point the time dependent Hamiltonian for the dipolar 

interaction of a system with two spins i, j is considered: 
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with the gyromagnetic ratios �1/2 of the participating nuclei, the induction constant µ0 and the 

spherical harmonic function *
mY2  depending on the steradian 0B

ij�  of the spin i and spin j 

connecting vector and the external magnetic field B0. The tensor operators mT̂ induce m-

quantum transitions via the spin operators Î and � of the investigated spins, 
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0 JIJIT −⋅= zz  
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,ˆˆ
2
1ˆ

2 ±±± ⋅= JIT  (2.3) 

 

and the creation/annihilation operators Î± and �± are defined as: 
 

{ }.ˆ,ˆˆ   ,ˆˆ:ˆ JIXXXX ∈±=± yx i  
 

(2.4) 
 

Looking at the associated energy scheme, one can see the different possible transitions: 
 

 
 

Figure 2.3 Transition probabilities Wn
ij in a 

two spin ½ system with spins i and j 
 

Counting the participating transitions, the changes in longitudinal magnetization differences 

of N spins over time are described by the Solomon equations [60], with �M the N×1 column 

vector containing each magnetization difference Mzi(t)-M0 in respect to the equilibrium 

magnetization M0 (chemical exchange is neglected): 
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)()( tt
dt
d

�MR�M ⋅−=  
 

(2.5) 

 

R denotes the N×N relaxation matrix. Grouping magnetically equivalent spins and introducing 

the diagonal matrix N containing the numbers ni of group members so that R = NR′, the 

solution is 

 

).exp()0()( RN�M�M ′⋅⋅−⋅= tt  (2.6) 
 

The NOE cross peak integrals are then given by 
 

[ ]ijjzij tMtA )exp()0()( , RN ′⋅⋅−⋅⋅= α  
 

(2.7) 
 

with an arbitrary scaling factor α and Mz,j(0) = nj/α for fully relaxed spectra, hardly ever 

recorded. In reality the magnetization at the beginning of the mixing time depends on the 

recovery time tr between the FID recordings and the next pulse sequence: 
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(2.8) 

 

leading to the final NOE volume matrix 
 

[ ] [ ]� ⋅′⋅⋅⋅′⋅⋅−=
k

kjkijrij nttttA )exp)exp(),( RN1RN ����  
 

(2.9) 

 

for not fully relaxed spectra. 

Using the transition probabilities*) [21;66]: 
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the auto and cross relaxation rates of the symmetrized relaxation matrix R′ can be calculated: 
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The spectral density functions n
ijJ  model intramolecular motions of the spins as well as the 

overall motion of the molecule. They have the general form 
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(2.13) 

 

which represents the Fourier transformed time correlation function of the relative motion of 

the spins i and j. By choosing appropriate spectral densities for different parts of the molecule, 

the rates can be calculated taking into account specific molecular properties to increase the 

accuracy.  

As an example, the following spectral density function describes a rigid molecule, underlying 

Brownian motion and tumbling isotropically in solution with a correlation timeτc: 
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Since the assumption of a rigid protein is not realistic, an alternative is offered by the model-

free approach of Lipari and Szabo [67]:  
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(2.15) 

 

Here, the motions of the spins are described using an additional internal correlation time τe 

and an order parameter S2 that ranges from 0 – free motion to 1 – rigid. A simplified version 

of the model-free approach that is also used later on in REFINE assumes τe << τc and thus 

neglects the second term in eq. (2.15). It is given by: 
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Currently three more spectral density functions are available in RELAX for the description of 

fast methyl proton rotation and slower ring proton flips. 

Using the full relaxation matrix analysis approach for NOE simulation allows to capture 

various higher order effects that occur in complicated systems with more than two spins, like 

e.g. so called spin diffusion effects, where magnetization is transferred via an intermediate 

spin to a third spin. These effects can enhance or attenuate the NOE cross peak integrals.  

 

 

2.4.1 Simulating a NOESY spectrum with RELAX 
 

With a list of expected signals, their chemical shift values, a trial structure and motional 

models assigned to the atoms in the protein under investigation, a spectrum can be simulated 

using the above formalism. From this input data the relaxation rates are calculated and by 

exponentiation of the relaxation matrix the NOE integrals are obtained for the desired 

experimental parameters. Numerically, the matrix exponential function can be computed by a 

number of different methods [68]. In RELAX matrix diagonalization is used and the 

exponential is calculated via the following similarity transform: 

 
T)exp()exp( ABARV mm ⋅−⋅=−= ττ  

 

(2.17) 
 

Here A is the matrix of eigenvectors of R, and B is the diagonal eigenvalue matrix of R. The 

resulting symmetric matrix V represents the spectrum for the mixing time τm.  

Then an artificial dataset is created from V where the simulated signals are transformed to 

actual peaks with Gaussian or Lorentzian line shape (currently these two line shapes are 

supported by the RELAX spectrum backcalculation module in AUREMOL) in the frequency 

domain. The resulting simulated spectrum corresponds to a Fourier transformed and 

processed experimental spectrum and allows qualitative comparison. An absolute comparison 

of simulated and experimental peak integrals is not possible at this point, since the maximum 

starting magnetizations of all the spins have been set to Mz(0) = 1 for the simulation, without 

loss of generality, while in the experiment the signal intensities depend on several factors, 

primarily the sample concentration.  



 20 

2.4.2 Comparing experiment and simulation – global scaling 
 

To achieve direct comparability between experimental and simulated peak integrals, some 

kind of calibration has to be performed. For this thesis, the following volume scaling 

procedure based on a maximum likelihood estimation as proposed in [69] was chosen: 
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After α is calculated, the simulated NOE integrals, corrected for a finite relaxation delay τr, 

are now directly comparable to the experiment and given by 

 

[ ] [ ]� ⋅⋅⋅−⋅=
k
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(2.19) 

 

This is the central formula used for the simulation of NOE signals in the REFINE distance 

calculation algorithm. 

 

 

2.5 Distance calculation 
 

From a known relaxation matrix R – calculated using known spectral densities – a distance dij 

between two protons i, j can be extracted from a cross relaxation rate Rij using the above 

formalism, since 

 

6
1−

∝ ijij Rd . 
 

(2.20) 
 

Several approaches exist for the acquisition of the relaxation matrix R from experimental data 

including IRMA [70], where NOE signals simulated from a trial structure are replaced by the 

experimental signals. From the resulting NOE matrix the relaxation matrix is backcalculated. 

This process is repeated for several different mixing times and from the averaged relaxation 

matrix distances are calculated. Kim and Reid [71] scale the resulting distances according to 

the difference in simulated and experimental NOE value. In both approaches structure 

calculation is used after each step to obtain a new trial structure for NOE simulation which is 

computationally very expensive, as is the backtransformation of the NOE matrix. 
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MARDIGRAS [72] abandons the structure calculation and instead iterates the cycle NOE 

matrix calculation – merging with experimental data – backtransformation, until the 

difference between simulation and experiment has become minimal. Again, the two 

transformations per cycle take a lot of computation time, especially for large systems. NO2DI 

[73] rescales the distances used in the rate calculation according to sixth root ratio of the 

simulated and experimental NOEs in an iterative fashion and thus saves one transformation 

step per iteration, however has to keep the distance matrix in memory and recalculate the 

relaxation rates. The REFINE procedure presented below (→ 3.7) directly rescales the 

relaxation rates until experiment and simulation match best. That way only relaxation rate 

rescaling and matrix exponentiation have to be performed during one iteration and no distance 

matrix is required. 

In contrast to the relaxation matrix approach, the so called Isolated Spin Pair Approximation – 

ISPA – assumes linearity between NOE cross peak volumes Vij and cross relaxation rates Rij. 

So the distance is calculated directly from a cross peak integral as 

 

6
1−

⋅= ijij Vd α  
 

(2.21) 

 

when a calibration factor α has been determined from a known distance and the 

corresponding signal integral. As indirect magnetization transfer effects are completely 

neglected by this method, it can yield accurate results only for very short mixing times where 

the approximation holds. 

A method for the automated calculation of distances from NOE signals based on ISPA has 

been described by [74], where the NOE signals are divided into three classes: 

 

  NOEs Distance formula 

Class I 
Hα, HN backbone-backbone;  
intraresidual, sequential and medium-range 
signals with one contributing proton Hβ 

6 VAd =  

Class II All other signals excluding methyl groups 4 VBd =  

Class III All signals involving methyl groups 4 VCd =  

 
Table 2.2 NOE classes and corresponding distance 
calculation formula according to [74] 
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The scaling factor A is calculated from the signals belonging to Class I under the assumption 

that the average distance here is 3.4 Å. Then the factors B and C are calculated from 
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(2.22) 

 

where dmin = 2.4 Å and the resulting distance constraints are restrained to the range 2.4-5.5 Å. 

This approach is based on the essentially very similar spatial distribution of protons in 

different globular proteins and assumes that in the different NOESY spectra the range of 

observable distances is comparable. Therefore good results can mainly be expected for 

globular proteins, although even here a dependence on secondary structure is probable, for 

example in the case of a globular protein containing only beta sheets.  

 

2.6 Distance error estimation 
 

Regardless of the way the distances are calculated, there is always a certain amount of error 

that has to be attributed to a certain distance mainly because of the following reasons: 

 

• Errors in the experimental peak integral data due to noise, artifacts, baseline distortion, 

overlap 

• Incorrect signal assignment 

• Insufficient model parameters in the spectral density functions, insufficient 

consideration of e.g. chemical exchange effects in spectrum simulation (for the 

relaxation matrix approach in REFINE) 

• Numerical errors (round-off errors, etc.) 

 

Errors in the experimental data directly influence the distance determination process. In 

REFINE this is handled by introducing a new peak integral error estimate to the signal 

segmentation routine as described below (see section 3.4) and using this information during 

the calculation. 

The occurrance of incorrect assignments can at least be quantified by the use of automated 

assignment procedures like KNOWNOE, where a minimum probability value can be 

specified that allows an estimate of the number of wrongly assigned signals, yet not which 
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signals these are. An indication of a wrong assignment can be derived from the results of a 

molecular dynamics calculation, when a given restraint is strongly violated whereas the 

neighboring restraints seem all right. In that case, the distance calculation and MD should be 

repeated with the suspicious signal excluded or reassigned. 

To get a measure of the errors inherent in the spectrum simulation part due to modelling of 

proton mobility, a statistical approach can be used in REFINE, where the modelling 

parameters are varied throughout a number of calculations and thus a distribution for each 

distance restraint can be obtained. 

As numerical errors are assumed to have a minor influence on the resulting distances 

compared to the error sources described above, they are neglected in REFINE.  

 

 

2.7 Dihedral angle prediction 
 

Angle restraints for the ϕ and ψ backbone angles can be predicted from the protein sequence 

and chemical shifts for example by the program TALOS [75]. There, a combined chemical 

shift/structure fragment database is searched for matching residue triplets and from the result 

the backbone angles for the central residue are derived. 

Since the ϕ/ψ angle distribution is especially important for secondary structure elements and 

the prediction is computationally not very expensive, it is a useful source of additional 

information to be used in structure calculation and fits well into the top-down approach of 

AUREMOL. 

 

 

2.8 Structure calculation 
 

Starting from an initial structure model, often an extended strand for proteins, a hypothetical 

structure is calculated using restraints derived from NMR experiments. Since distance 

geometry methods are not widely used anymore, the focus will in the following be on 

molecular dynamics simulations.  

Molecular dynamics – MD – simulations calculate the motion of all atoms that make up a 

considered molecule in a heat bath under the influence of different forces. These include 

models of Van-der-Waals, bond stretching, Coulomb and bond torsion forces as well as 

pseudo forces derived from e.g. distance or angle restraints. In the beginning, a random 
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momentum is applied to each individual atom in the molecule and the trajectories resulting 

from their evolution of the motion under the influence of the various restraining potentials is 

recorded. The goal is to minimize the total energy of the molecule under consideration. 

Of special importance for the sake of protein structure determination are the distance 

restraints that can be derived from NOE data since they drive the virtual folding during the 

dynamics simulation. The total pseudo energy of the simulated system serves as a measure for 

the quality of the structure. 

Cartesian dynamics simulations allow free motion of the atoms only restrained by the present 

force fields. Thus bond stretching, torsion and compression as well as bond angle changes are 

possible. By keeping the bond lengths and bond angles fixed, torsion agle dynamics 

simulations reduce the degrees of freedom as the bond lengths are kept fixed and only 

rotations around bonds are allowed which significantly reduces computation times. 

Advanced molecular dynamics software packages allow the addition of solvent molecule 

layers around a protein and carry out the calculations in a solvent environment, which is 

clearly more realistic than a protein in total vacuum. This increases computation times as the 

dynamics for the solvent molecules have to be calculated as well, but leads to more refined 

structure hypotheses [76]. 

For the calculations in this thesis the program packages CNS [77] and XPLOR-NIH [78] have 

been used, other well known alternatives are e.g. DYANA/CYANA [79] or GROMACS [80].  

Generally, in structure determination simulated annealing MD protocols are used that are 

divided into a heating phase and one or more cooling steps (e.g. standard protocol of CNS). 

 

 

 
Figure 2.4 Simulated folding driven by distance restraint pseudo potentials in a molecular 
dynamics simulation run 

Extended 
strand 

Intermediate 
structure Folded 

structure 



 25 

For a given set of restraints, the simulation is repeated n times with different random seeds, 

leading to n different structure models. From these, the m models with the least overall pseudo 

energies and often the least restraint violations are chosen as a resulting ensemble of most 

probable structures. 

In case of a known protein structure, MD simulations can be used to study the internal 

dynamics of a protein for certain environmental conditions (variable/constant temperature, 

pH, etc.). That way e.g. order parameters can be estimated. 

An alternative structure calculation approach is ab initio structure prediction as in ROSETTA 

[81;82], where structures are assembled from fragments of homologous known protein 

structures. Including sparse NMR data in the calculations results in moderate to high 

resolution structures [83], depending on the quality of the fragment library. 

 

 

2.9 Structure evaluation 
 

Next to simple rmsd calculations a variety of statistical analyses, e.g. Ramachandran plots for 

ϕ and ψ angle distribution, side-chain χ angle orientation, etc., is available in a variety of 

programs like PROCHECK-NMR [84], WHATCHECK [85], PROSAII [86], etc. 

For judging the quality and plausibility of the determined structures in AUREMOL, in 

analogy to X-ray an NMR R-factor has been introduced [25] and incorporated. Here 

simulated signals and experimental signals together with the experimental peak probabilities 

pex,i provide a measure to judge structural quality. Experimental signals for which a 

corresponding simulated signal exists belong to set A, the remaining signals to set U. For the 

evaluation of the structures calculated in this thesis the following two R-factors have been 

used:  
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The scaling factor is given by  
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For better agreement between experiment and simulation lower R-factors are obtained. In 

section 3.9.3.3, R3 is also used as distance dependent R-factor, which is calculated separately 

for different distance ranges and only from the respective signal subset in A. 
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3. Theoretical considerations and results 
 

 

 

3.1 Implementing the IUPAC nomenclature in AUREMOL 
 

In an attempt to keep a consistent atom naming standard throughout the AUREMOL routines, 

the nomenclature proposed by IUPAC [87] has been introduced and replaces the formerly 

confusing and inconsistent atom naming in the different AUREMOL modules.  

As a consequence, all input data, like for example structure files from the protein databank, is 

required to be in IUPAC format. For format conversion of input files several tools are now 

available within AUREMOL. 

 

 

3.2 Improved spectrum simulation 
 
The original implementation of RELAX suffered from a programming error that prevented it 

from correctly using different spectral densities for all the atoms in a protein. This has been 

fixed and the increase in accuracy is now available for REFINE. Additionally, spectra can 

now be simulated taking a finite relaxation delay time τr into account, so a simulated NOE 

integral Vij for a mixing time τm is given by: 
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(3.1) 

 

 
 

Figure 3.1 Definition of the relaxation delay timeτr. 
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This leads to an asymmetric peak intensity distribution in the spectrum for shorter relaxation 

delay times, as observed in experimental data, since the nuclear spins cannot relax to a (near) 

equilibrium state before the next pulse sequence starts. 
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Figure 3.2 Only slightly asymmetric intensity distribution of symmetric cross peaks for a realistic 
relaxation delay time of 1.54 s in the simulation of a 2D NOESY spectrum for HPr from S. aureus 
(top), strong asymmetry for very short relaxation delay time of 100 ms (bottom). 

 

This further increases the simulation accuracy and subsequently improves the performance of 

REFINE on real world data with inherent relaxation delay. 
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3.3 Adaptive peak picking 
 

The already existing fixed threshold routine in AUREMOL exhibits the inherent drawbacks of 

this method, including insensitivity to noise and artifact peaks and is not suited for automation 

since a user defined threshold is required. Therefore it is extended by an automatic adaptive 

threshold determination procedure. It relies on a local noise estimate [35] to facilitate local 

thresholding, which eliminates the need of user input, aids automation and increases 

reproducibility. Additionally this approach is coupled to the Bayesian signal probability 

module [36;37] in AUREMOL by automatically creating reference sets for signal and 

noise/artifact peaks. 

As a first step for every row n in each dimension m of the spectral data, according to [35] the 

intensity variance σi
2 in a sliding window of 5% of the spectrum resolution around every 

datapoint is calculated and the minimal variance is chosen as least noise estimate σn
2.  

 

 
 

Figure 3.3 The local variance is calculated in a window 
around each datapoint 

 

With the global minimum variance of the dataset σmin
2 the additional relative noise level 2

,ixn
σ ′  

for a given row i is given by 
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 So the minimum noise level N for a datatpoint with the coordinates x1, …, xn of a dataset with 

dimension dim = n is given as 
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with σmin
2 the global minimum variance of the dataset. Generally baseline errors are neglected 

in this procedure, so baseline corrected data is required. 

To account for strong noise in the neighboring rows, the m next neighbor (NN) noise levels 

can be regarded with a ratio of a/b: 
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Here the ratio of actual noise level at the datapoint to that of its next neighbors a : b has been 

fixed to 2 : 1 in the 2D case and 3 : 1 in the 3D case and thus the calculation corresponds to 

the application of a simplified Gaussian smoothing filter kernel: 

 

0.27 1.21 0.27  0 1 0 

1.21 2.0 1.21  1 2 1 

0.27 1.21 0.27  0 1 0 

 

0.13 1.37 0.13  0 1 0 

1.37 3.0 1.37  1 3 1 

0.13 1.37 0.13  0 1 0 

 
Figure 3.4 Top: 2D Gaussian filter kernel values for a standard deviation of 1.0 (left) and 
corresponding simplified integer kernel (right). Bottom: Central cross section of 3D filter kernel for a 
standard deviation of 0.8 (left) and corresponding simplified integer kernel (right). 

 

This measure for local noise can be used for a local threshold determination. An intensity 

maximum (and analogously minimum) Ii is interpreted as a potential signal if the following 

two conditions are met: 
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(3.5) 

 
NN

ilocI ,  denotes the smoothed average of the local intensity and its next neighbors (2D: 

simplified kernel for standard deviation of 0.8, 3D: simplified kernel for standard deviation of 

0.6). For now, α and β are empirical constants (see table 3.1) determined from the application 

of the procedure to a range of test datasets, in the future these constants should be determined 

implicitly from the spectrum under consideration. So according to the conditions in eq. (3.5) a 

real signal must not have an absolute smoothed central intensity level below a certain multiple 

α of the smoothed local noise level, meaning that the local average intensity generally has to 

exceed the local noise for a real signal. Additionally the actual central intensity value must be 
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greater than the smoothed central intensity plus a multiple β of the smoothed local noise level, 

implying that a certain signal fall-off from the center is required for a real signal to be 

recognized.  
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α 3.87 2.06 

β 0.26 1.29 

 
Table 3.1 Calculation of local intensity average and empirically 
determined α and β values for 2D and 3D data. 

 

 

 

 
Figure 3.5 Comparison of threshold peakpicking (left) vs. adaptive peak picking (right) in an 
experimental 2D NOESY spectrum of TmCSP. For a threshold of 15000 the simple thresholding 
routine classifies neraly all artifacts of the vertical noise streak to the left as signals, whereas in the 
adaptive routine no threshold has to be specified, most artifacts of the streak are discarded and 
weak signals discarded by the simple thresholding procedure are identified. 

 

As the figure above shows, this approach works very well on local noise streaks. When 

looking at the water artifact region, the number of wrongly picked artifact signals is reduced, 

however still a number of artifact signals are picked: 
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Figure 3.6 Comparison of signals identified (black circles) by threshold peakpicking (left, 7792 
signals) vs. adaptive peak picking (right, 5559 signals) in an experimental 2D NOESY spectrum of 
TmCSP. The number of wrongly picked signals in the central vertical water artifact streak is strongly 
reduced by the adaptive routine. 

 

Currently, this part of the adaptive peak picking algorithm is implemented for 2D and 3D 

NMR spectra. The extension to higher dimensional datasets is straight forward. 

Since in AUREMOL also a Bayesian peak analysis is available that allows to discriminate 

between signal and artifact peaks based on user defined trainig sets, the idea was to integrate 

this approach into the adaptive peak picking routine to further reduce the amount of picked 

artifact signals. So the task is to automatically generate the training sets for the Bayes 

algorithm during peak picking. To this end for 2D NOESY data a simple signal pre-

classification is employed: 

 

Classification by adaptive thresholding Pre-classification for Bayes analysis 

Artifact/noise Artifact/noise 

Signal If symmetric cross peak exists:   � Signal 
Otherwise:                                   � Unknown 

 
Table 3.2 Signal pre-classification scheme for further Bayesian peak analysis. 

 

The final training sets are then determined by a local peak shape analysis of the artifact/noise 

and signal class members. This is accomplished by examining the intensity distribution in a 

grid around a given signal maximum: 
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Figure 3.7 The intensities of sample datapoints (blue) with neighborhood orders of N1 to N3 around 
a signal maximum N0 (red) are evaluated. Note that the spacing of the sample points can be 
adjusted for different resolutions and should be chosen for the grid to cover the expected mean 
peak area. 

 

Considering the slope and local symmetry of each peak pre-classified as signal or 

artifact/noise, a score value S is generated from the intensity values I (see table 3.3) where 

higher score values indicate a more well defined, more symmetric signal.  
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Table 3.3 Per peak score calculation. Top: Positive score for falling slopes > 0.5. Bottom: Negative 
score penalty for symmetry deviations in N1 and N2. 
 

So in the next step the 100 highest scoring peaks from the signal class are tranferred to the 

signal training set and the 50 lowest scoring peaks from the artifact/noise class are transferred 

to the artifact/noise training set. From here the original Bayes routine in AUREMOL takes 

over and calculates the probabilities for every picked peak to actually be a signal. In the final 

step, all peaks with a probability below a desired user defined threshold are deleted: 
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Figure 3.8 In this example, after the Bayesian signal analysis with automatically generated training 
sets all signals with a probability below 0.20 have been deleted, resulting in 2535 signals (black 
circles). 

 

Setting Value 

Spectrum resolution W1: 1024, W2: 2048 

Peak picking mode Only positive peaks 

W2 steps for local sampling 2 

W1 steps for local sampling 1 

Iteration count for segmentation 10 

Max. integration witdh 25 Hz 

Remove solvent peaks • 

Remove diagonal peaks • 

Remove artifact streaks • 

Global symmetry matching • 

Probability threshold 0.20 

 
Table 3.4 Parameter settings used to produce the result in figure 3.7. The W2 and W1 
steps parameters define the grid spacing (see Fig. 3.7) in data points. 

 

As figure 3.8 shows, most artifact signals can be removed using this fully automatic approach. 

The most important remaining parameter is the probability threshold. For higher threshold 

values, the probability for removing real signals increases.  

The generalization of this approach to arbitrary spectra is a work in progress. 
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3.4 Integration error estimation 
 
The optimization target for the REFINE distance calculation algorithm described below is the 

experimental peak integral data. Therefore it is important to get a realistic estimate of the 

contained error. In the following approach, parallel to the integral calculation by the 

segmentation approach implemented in AUREMOL, the error contributions from noise and 

peak overlap are now calculated in the extended segmentation routine: 

For a signal integral V0 the estimate consists of a noise error contribution ∆noise and an overlap 

error contribution ∆overlap. The intensity maximum of the signal under consideration is the 

main seed, all other local maxima inside the integration box are additional seeds. For each 

signal the integration box is calculated from an assumed Lorentzian line shape with a given 

expected linewidth νk and a segmentation level of at maximum 10% of the maximum signal 

intensity; the integration will carry on until the signal intensity drops below 10% of the central 

peak intensity. Summing up all n datapoints Ii that fulfill the growing condition for the main 

seed yields the peak integral V0:  
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Analogously, the relative noise error contribution ∆noise is calculated from the local noise 

levels at the n datapoints i belonging to the integral:  

 

0

1

2
,

V

N
t

n

i
iloc

noise

�
=⋅=∆  

(3.7) 

 

Here, t is the t-test value for one sample and the user specified confidence level of the noise 

error estimate (see eq. 3.3). The result represents a minimum volume error contributed by the 

local noise in the dataset, weighted for the confidence level. 

For the estimation of the relative overlap error ∆overlap, currently as a worst case estimate a 

Lorentzian line shape peak with the user defined linewidth νk is assumed at the position of 

each additional seed. The contributions at the center of the integration box, i.e. at the main 

seed with the intensity I0, are summed up and divided by I0: 
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(3.8) 

 

This overlap error term is an estimate of the influence of neighboring peaks on the volume 

integral of the main peak.  

The overall absolute error estimate Verr for a signal integral V0 is then given by the sum of 

both contributions: 

 

( ) 0VV overlapnoiseerr ⋅∆+∆=  (3.9) 
 

To test this error estimation approach, it was applied to a simulated 2D NOESY dataset: 

 

C:\_E\_2Dsims\sim_int\2rr
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321905 ±66988 (20.81%)228066 ±798 (0.35%)

367982 ±28187 (7.66%)

 

 
Figure 3.9 Overlap error estimation results on a simulated noiseless 2D NOESY dataset. For the 
rather isolated peak to the left only a very small contribution of 0.35% is calculated, while for the 
overlapping cluster of three peaks the overlap error estimate ranges from 3.26% (top) and 7.66% 
(bottom) for the stronger signals overlapping directly with only one peak to 20.81% (middle) for the 
weakest signal that directly overlaps with the two neighboring resonances. 
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Figure 3.10 The addition of Gaussian noise with a standard deviation of 10% of the mean intensity 
of the spectrum raises the error estimates as now a noise contribution to the error can be 
calculated. The lower intensity signal integrals are expectedly influenced stronger by noise. 

 

As the example figures above show, this error estimation approach generally produces 

comprehensible results. The integration parameters used in this example are shown in table 

3.5: 

 

Lowest segmentation level 0.1 

Number of iterations 10 

Max. W1 expected half line width at half height 10 Hz 

Max. W2 expected half line width at half height 10 Hz 

Confidence level 99.95 % 

 
Table 3.5 Integration parameters used in the example 
shown in Figs. 3.9 and 3.10. 
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Comparing the calculated integrals from the noised spectrum to the simulated values shows 

that 52% of the signals are within the error bounds. This low number indicates that there have 

to be a number of cases where the presented approach reaches its limit. The main problem is 

undetected overlap: 
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Figure 3.11 Three signals are shown from the simulated dataset (left) and the noised and 
integrated dataset (right). For the single signal in the upper half, the integration routine yields a too 
large integral (65548 vs. 38477 in the simulation) due to the added noise, however the error 
estimate of 83.84% covers the original value. In the lower half, two overlapping signals were 
simulated. Since at the position of the left hand peak there is no local maximum, the segmentation 
routine cannot integrate this signal. As a consequence, only the right hand signal is integrated and 
the intensity values of both signals are attributed to the right hand signal. As the overlap error 
estimation also relies on a local maximum to be present, the overlap error contribution cannot 
produce a result for the left hand peak and thus the overall error estimate is too low. 

 

As the effect exemplified in Fig. 3.11 is inherent to the segmentation approach, there is no 

possibility to remedy this problem, unless additional information regarding for example the 

positions of overlapping peaks is available. For real world data this information is not easy to 

obtain.  
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3.5 The strips tool 
 

For the analysis of triple resonance spectra as used in the sequential assignment process a strip 

tool has been incorporated in AUREMOL. It allows to collect the strip data, where usually 

one strip contains the corresponding information for one spin system, from a number of 

different 3D spectra and align them in slots for the actual manual assignment. Before strips 

can be used for obtaining a sequential assignment, they first have to be defined. Instead of 

doing this manually, strips from a 3D spectrum can now be automatically defined according 

to the corresponding peaks in a 2D HSQC spectrum. The peak coordinates of the 2D spectrum 

are used as input for the strip tool to cut the corresponding strips from the 3D dataset: 

 

 
 

Figure 3.12 The 2D HSQC spectrum (left) provides the coordinates for the strips that 
are automatically defined in the 3D NOESY spectrum (middle) and collected in the 
strip window (right) for further manual analysis. 

 

At first, all spectrum strips are collected in the so called strip pool, the left-most part of the 

strip window display. From there, a strip can be assigned to a free slot and help lines can be 

set to assist when browsing the strip pool for other matching strips (Fig. 3.13). 
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Figure 3.13 Strips from the pool (left) can be placed into free slots S1,…, Sn 
and arranged in the correct sequence. The help line display is activated. 

 

If additional strip data from other spectra is available, the slots are divided to take up the 

additional strips. That way the results from two or more experiments can be used 

simultaneously during the assignment which greatly helps to resolve ambiguities. 

 The actual task of determining the sequential assignment from the strips within this tool still 

has to be carried out manually, although for incomplete or ambiguous shift data the automatic 

sequential assignment tool in AUREMOL can be employed. 
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3.6 Simulation based de novo assignment 
 

The TWOSTEP algorithm for automatic sequential assignment described in [57] showed 

mixed results when used without a priori available partial assignment even for artificial data 

and was very time consuming. Furthermore the first step of the algorithm has recently been 

replaced by the PEAK ASSIGN module (Kirchhöfer et al., to be published), so the second 

step is used as a starting point for the new ASSIGN routine outlined in the following 

paragraph: 

The basic algorithm based on threshold accepting for the optimization of a pseudo energy 

function calculated iteratively for varying assignments is kept. By restraining the possibilities 

of chemical shift assignment to the known distributions for each proton-amino acid 

combination*) the search space is considerably reduced and computation time is generally 

decreased.  

 

 
 

Figure 3.14 Effect of exchanging the chemical shift assignment of two 
spins on the intensity distribution of the simulated 2D NOESY spectrum 

 

To improve the convergence of the improved implementation, an extended pseudo-energy 

function Etot is used.  

 

gridpeaktot EEE +=  (3.10) 
 

Now both a local energy value Epeak and a global matching value Egrid are considered whereas 

in the original approach only Epeak was used. 

Both of the pseudo energy contributions are calculated from the intensity values Iexp and Isim 

for the n peaks in the experimental and simulated dataset, the index zero indicating the central 

intensity value of a signal. 
                                                 
*)  Chemical shift infomation taken from the Biological Magnetic Resonance Data Bank (www.bmrb.wisc.edu) 
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Epeak is a measure for peak shape similarity, but the exclusive use of this term for the 

optimization could not prevent the clustering of a large number of assignments on only a few 

resonances when starting from 0% known assignments. 

Introducing Egrid as additional term to the optimization pseudo energy function is expected to 

alleviate this problem, since it is a measure for the global distribution of the peak maxima and 

serves as a penalty function when an improper global distribution due to clustering occurs. It 

is calculated analogously to Epeak, with the difference that here the global match of the central 

peak intesities I0 is considered: 
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With theses additions, the ASSIGN algorithm was applied to a simulated 2D NOESY dataset 

of the wild type HPr (S. aureus) protein consisting of 88 amino acids to compare the 

performance (see Fig. 3.15) of the new routine with previous results on a similar protein (the 

HPr S. aureus, H15A mutant). A total of 6348 peaks originating from 520 individual proton 

spins for a cutoff value of 0.5 nm were the input for the improved optimization. Using a 

stepsize of 8000 iterations and a cooling factor of 0.99 the calculation yielded a 100% correct 

assignment starting from 0% known assignments after < 4.5 million iteration steps. 
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Figure 3.15 Assignment results from the previous version [57] (left) compared to the new version 
(right) using the additional pseudo energy term in the optimization starting without a priori partial 
assignment. 

 

The unmodified routine yielded <10% correct assignments starting from 0% known 

assignments, although due to a very low simulation cutoff value of 0.2 nm a smaller number 

of 2122 peaks had to be assigned. In comparison, the introduction of the additional pseudo 

energy term in the new routine results in a fairly large improvement. The transfer of these 

results to real world spectral data is a work in progress. 

 

 

3.7 The REFINE algorithm - Overview 
 

Distance calculation is a core component in automatic structure determination. Since high 

accuracy is desirable, the relaxation matrix approach implemented in RELAX is used for 

spectrum simulation and higher order spin difusion effects are accounted for. On this basis the 

purpose of REFINE (see Fig. 3.16) is to allow the accurate automatic determination of proton-

proton distances from experimental NOESY data in a fast, reliable and reproducible way 

without strongly depending on the structural input. REFINE requires a structure ensemble or a 
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single trial structure, the integrals of assigned experimental signals and the corresponding 

simulation parameters for spectrum backcalculation as input.  

 

 
 

Figure 3.16 Flowchart of the REFINE algorithm. Blue, violet: Generation of starting relaxation 
matrix. Green: Experimental data, output. Red and yellow shades: Iterative refinement of the 
relaxation matrix. In the preparation section (top) a starting relaxation matrix is calculated from 
one or more trial structures. This starting matrix is then iteratively refined (bottom) until the NOEs 
simulated from this relaxation matrix best match the experimental NOEs. 
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At first, NOE integrals are simulated for the trial structure(s). Therefore the relaxation matrix 

for every trial structure is determined by calculating the relaxation rates of interacting proton 

spins depending on the proton-proton distance in the trial structure and the specified spectral 

density function according to eqs. (2.12)-(2.16). For distances corresponding to intra-residual 

proton-proton contacts of known distance (e.g. between CH protons in aromatic rings) 

standard values are used and kept fixed throughout the calculations. Note that in the REFINE 

algorithm for every signal present in the experimental data a simulated signal is calculated; 

for any given experimental signal whose corresponding protons in a trial structure are too far 

apart to be considered in a normal RELAX backcalculation (i.e. their distance in the structure 

is larger than the RELAX cutoff value), the simulation is forced by overriding the RELAX 

cutoff and calculating the respective relaxation rate as stated above. Then for every trial 

structure the NOE matrix is calculated using eq. (3.1) and the global scaling procedure 

described in eq. (2.18) is applied to allow a direct comparison between the observed 

experimental and simulated signals. In the case of more than one trial structure, the simulated 

signal Vsim,i,n with the least deviation                       from the experimental value Vexp,i is chosen 

from the n simulations for all experimental signals i and the corresponding relaxation rate is 

transferred to a quasi-hybrid relaxation matrix. Rates corresponding to signals not observed in 

the experiment are simply averaged and also entered into this matrix. At this point the starting 

relaxation matrix for the iterative part of REFINE is obtained. 

The second half of the algorithm consists of a loop (see lower half of Fig. 3.16): For each 

iteration the matrix exponential function of the relaxation matrix is numerically evaluated 

yielding a simulated NOE matrix (see eq. 3.1). The simulated peak integrals are compared to 

the corresponding experimental data with the help of the global scaling factor (eq. 2.18). 

Based on this comparison, in contrast to other approaches a direct cross relaxation rate scaling 

according to eq. (3.14) is applied to all rates (excluding rates corresponding to fixed 

interproton distances, see above) whose corresponding simulated NOEs do not match the 

experiment. The advantage of this direct rate scaling approach is that the memory load and 

calculation times are reduced, since no distance matrix is needed and per iteration only one 

Eigenvalue decomposition (see eq. 2.17) of the matrix is necessary. Then the algorithm 

returns to the loop start.  

In the final step of REFINE, when sufficient agreement between simulation and experiment 

has been reached (see section 3.7.3), the distance information is extracted from the relaxation 

rates (see section 3.7.4) and written to a CNS/XPLOR/XPLOR-NIH [78] compliant restraints 

file for MD calculations. In case a rate could not be satisfactorily determined during the 

iexpnisim VV ,,, −
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process, the respective distance is estimated from the experimental NOE volume using the 

simple ISPA approach with an ISPA scaling factor calculated from the successfully 

determined restraints and their corresponding experimental peak integrals.  

The distance error for each calculated distance is estimated from the maximum and minimum 

relaxation rates (eq. 3.15), which are calculated from the volume error during relaxation rate 

rescaling, or optionally from a variation of the experimental peak integrals and also of the 

order parameters used in the model-free spectral density classes (section 3.7.5). 

 

 

3.7.1 Preprocessing of input data from NOE experiments 
 

From a previously recorded, Fourier transformed and processed – phased, baseline corrected 

and optionally filtered – NOESY spectrum a list of potential signals is generated. After that 

the signals need to be assigned and integrated to be used as target peak integrals in REFINE. 

Since in 2D NOESY spectra usually two cross peaks exist for a given combination of spins, 

the input data has to be preprocessed by REFINE to get non-ambiguous matching data. In this 

preliminary step, the experimental peak integral with the least integration error is chosen from 

the two peaks corresponding to the same spin system, or in case of equal errors the stronger 

signal. Additionally, the peak position in the spectrum is stored to allow correct comparison 

of peak integrals in spectra with non-symmetric intensity distribution originating from finite 

relaxation delay. 

 

 

3.7.2 NOE cross peak assignment 
 

For the REFINE algorithm to work, experimental NOE signals that are known to be related to 

a certain proton-proton contact in the protein are essential. It is up to the user to choose the 

means to get a reasonable assignment. For the sakes of time efficiency and complete 

automation it is of course desirable to leave this task to more or less automatic routines. This 

is why for the synthetic test case described below the KNOWNOE module of AUREMOL 

was employed with the available sequential assignment and the final solution structure as 

input. For the experimental datasets KNOWNOE as well as the grid search based PEAK 

ASSIGN routine were used for automatic assignment. 
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3.7.3 Relaxation rate scaling 
 

Depending on the matching quality of two corresponding NOE volumes in simulation and 

experiment, a cross relaxation rate scaling with subsequent correction of the auto relaxation 

rates is applied. In a first order approximation a NOE integral is proportional to the 

corresponding relaxation rate, so the volume ratio of an experimental and a simulated NOE 

can be used for scaling the corresponding rate. Using the following iteration, the non-fixed 

cross-relaxation rates Rij corresponding to experimental signals are rescaled in each iteration 

step: 

nijnnij RaR ,1, ⋅=+  (3.13) 

 

If at iteration n for a given experimental signal integral Vexp the corresponding simulated 

integral value Vsim,n is smaller, the ratio an = Vexp : Vsim,n is greater than one, leading to a 

relaxation rate increase, Rij,n+1 > Rij,n. This in turn is reflected in a larger calculated integral 

value Vsim,n+1 > Vsim,n in the next iteration, so that 1 < an+1 < an. From this it follows that an 

approaches unity and Vsim,n approaches Vexp for n → ∞. So convergence can be achieved using 

this iterative scheme and the same can be shown in analogy for Vsim,n > Vexp.  

The originally employed direct volume ratio scaling in REFINE with the scaling factor an 

restrained to a range from 0.5 to 1.5 as proposed in [69] often leads to weak convergence. It 

enforces very strong rescaling even for not too different peak integral values as a linear 

dependence between peak integral and relaxation rate is assumed. This can lead to single rates 

dominating their local environment, preventing further convergence or even inducing 

divergence of the algorithm. Therefore a new approach is proposed that keeps the rate 

changes per iteration small.  

 



 48 

 

 
Figure 3.17 Plot of rate scaling factors for a given experimental NOE integral value of 1.0⋅107 and 
simulated integral values between 1.0⋅100 and 2.0⋅107. The old approach (red) produces large scaling 
factors that have to be clipped to a maximum value of 1.5 for smaller simulated NOEs. It generally 
introduces much more change to a given relaxation rate per iteration than the newly proposed 
logarithmic ratio scaling approach (blue). 
 

As shown in Fig. 3.17, logarithmic ratio scaling has the advantage of having much less impact 

on a given rate than direct volume scaling, so now the respective cross relaxation rate is 

rescaled according to 
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for every experimental peak, leading to an only slightly modified relaxation matrix at the end 

of an iteration step. This is especially important for cases when a rate is supposed to be of a 

large value due to the experimental data, but the starting rate is very small due to a large 

distance of the corresponding protons in the trial structure. In these cases logarithmic scaling 

results in much better convergence of the algorithm, as less change in the relaxation matrix is 

introduced per iteration. Also the dependence on a well defined starting structure is reduced. 
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If no rescaling is necessary – that is if the rescaling factor is within the interval 1 ± p, a user 

specified rate tolerance percentage for all signals – the current simulated volumes sufficiently 

describe the experimental data. Otherwise the algorithm loops back to the exponentiation of 

the relaxation matrix and the matching procedure, until sufficient agreement is reached.  

For the distance error estimation from the signal integral errors the minimum and maximum 

relaxation rates are determined using the integral error Verr introduced in eq. (3.9): 
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3.7.4 Distance calculation 
 

In the last step of the REFINE algorithm, since the motional models are known, the inter-

proton distances dij can be calculated from the converged relaxation rates Rij according to 
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with fij(τ,ω) the distance independent contribution of the spectral density function to the 

relaxation rate Rij (see eq. (2.12)-(2.16)). In case a given rate did not converge the respective 

distance is not discarded, but estimated from the associated experimental peak integral value, 

since an approximate restraint can still contribute to the structure calculation. Here ISPA is 

used according to eq. (2.21) and the scaling factor α is determined from the n experimental 

peak integrals Vi for which REFINE distances di were calculated: 
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3.7.5 Distance error estimation 
 

To provide information about the accuracy of the calculated distances reasonable error bounds 

have to be determined. For a single run of REFINE the experimental peak integral errors are 
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taken and converted to minimum and maximum distances dmin and dmax, calculated from the 

maximum and minimum relaxation rates according to eqs. (3.15), (3.16). In an error estimate 

for clipped and non-converged rates the corresponding average volume contribution Ve to the 

experimental signal integral Vexp for an expected absolute distance error de0 at a user defined 

distance d0 can be considered: 
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(3.18) 

 

 

In a more general approach, the distance errors arising from the errors in the experimental 

peak integral data are determined during repeated runs of REFINE where the target integrals 

are varied within their error bounds. From the resulting distance distributions for each NOE 

contact an error measure can be derived, e.g. the standard deviation of the distribution. 

Analogously, the errors inherent in the spectrum simulation because of using an insufficient 

number of different spectral density classes for spins with different mobilities and/or only 

estimated order parameters S2 in the model-free approach of Lipari and Szabo [67] for the 

spectral density functions can be quantified by a statistical approach. By repeating the 

REFINE calculation n times with a normally distributed random variation of the order 

parameters used, a distribution of distances for each restraint is obtained from which the mean 

distance dmean and the standard deviation are calculated.  

The target peak integrals as well as the order parameters are varied using Gaussian 

distributions with the widths specified by the volume errors and the expected parameter 

variation. That way the combined lower/upper distance error estimate, containing 

contributions from experiment and simulation, is obtained from the standard deviation σd of 

the resulting distance distributions, 

 

,maxmin/, dtot ad σ⋅=∆  (3.19) 
 

from which lower and upper distance bounds are then calculated as 
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max,max

min,min

totmean

totmean

ddd

ddd

∆+=
∆−=

 (3.20) 

 

and written to the output file together with the mean distances. The weighting factor a could 

for example be determined for a desired confidence level, but has been set to a = 1 for the 

following calculations, i.e. a single standard deviation has been used as lower/upper error 

estimate. 

 

3.8 Using REFINE to eliminate KNOWNOE scaling parameters 
 

As complete automation of structure determination is the goal, it is mandatory to reduce the 

total number of required user defined parameters as much as possible. In KNOWNOE the 

general requirement of a known distance and corresponding experimental peak integral for 

internal ISPA scaling has been eliminated by integrating the REFINE module into the 

workflow (Fig. 3.18).  

 



 52 

 
 

Figure 3.18 Interaction of REFINE and KNOWNOE in the structure determination workflow. 
During the NOE assignment phase in KNOWNOE, REFINE is used for the automatic 
calculation of an ISPA scaling factor required by KNOWNOE (top). After the assignment has 
been determined, it is used by REFINE for distance calculation (bottom). 

 

After the first calculation step, REFINE is called to determine an ISPA scaling factor from the 

unambiguously assigned cross peaks according to eq. (3.17). This factor is then used in the 

following stages of KNOWNOE where structural information is evaluated to resolve 

assignment ambiguities. In the following section this KNOWNOE modification will be used 

in combination with REFINE to automatically determine protein structures from unassigned 

NOESY spectra. 
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3.9 Evaluation of the REFINE algorithm 
 

First of all the REFINE algorithm has to be tested whether it works as expected. Therefore it 

has been applied to an ideal synthetic test spectrum. When taking the original structure used 

for the simulation of the dataset as REFINE input, the resulting distances must not deviate 

from the actual distances in the structure, otherwise this would indicate an error in REFINE. 

To be able to judge the performance of REFINE in a more realistic situation, a simulated 

dataset for a well defined trial structure had to be prepared. This artificial data was then 

treated like a real world dataset and used as input for the REFINE distance calculation. As the 

trial structure used for the creation of the test data set is known, the results can be easily 

compared by pairwise RMSD value calculation between the newly calculated structures based 

on the distances obtained by REFINE and the trial structure. 

REFINE has also been applied to experimental data to evaluate the accuracy and robustness 

of the algorithm for real world data containing noise, artifacts and baseline distortions. Here, 

the quality of the resulting structures is judged by NMR R-factors, which are a good measure 

for the agreement between structures and experimental data. 

 

 

3.9.1 Ideal synthetic test case 
 

The published structure of TmCSP was used for spectrum simulation. Together with this 

structure REFINE was applied to the resulting dataset and the resulting distances as well as 

distances obtained using ISPA were compared to the distances to the original structure used 

for the simulation. Additionally, and extended strand was used as trial structure. The results in 

Fig. 3.19 show that the REFINE algorithm works as expected. In fact the distances obtained 

using the original structure were exact, with the exception of two distances that were about 

5% off the original value. The cause of this slight flaw was a programming error in the 

internal treatment of pseudo atoms and has been fixed. 
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Larmor frequency 600.13 MHz 
Cutoff radius 0.5 nm 
Mixing time 250 ms 
Relaxation delay 1.31 s 
Line shape Gaussian 
Points in W1 1024 
Points in W2 1024 
Linebroadening 5 Hz (both dimensions) 
J-correction of T2 activated 
J-splitting disabled 
Max. iterations 100 
Rate tolerance 5% 

 
Table 3.6 Parameters used for the 2D NOESY spectrum 
simulation of TmCSP. 
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Figure 3.19 Number of calculated mean distances in relation to the total number of calculated 
distances with an error in respect to the original structure used for simulating the dataset. 
 

When using an extended strand as trial structure, REFINE also manages to produce >85% of 

all calculated distances with an error of <20% in respect to the distances in the original 

structure. This indicates that structure determination in REFINE is possible starting from an 

extended strand and implies that the iterative application with the structure obtained from the 

produced distances and molecular dynamics used as input for the following run should lead to 

an increasingly better structure hypothesis. 
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3.9.2 Artificial test dataset 
 

Since the solution structure of HPr from Staphylococcus carnosus had already been solved by 

our group [6], an experimental 2D NOESY spectrum of this protein was available for testing. 

As the usual artifacts and noise were present in the data, the idea was to use simulated 

datasets from a well defined trial structure of this protein and add different levels of noise in a 

reproducable way. From that point on the artificial datasets were treated like real world 

experimental spectra.  

 

 

3.9.2.1 Preparation of the target structure for spectrum simulation 
 

Previous to the simulation, the existing structure ensemble of HPr (Fig. 3.20) from the PDB 

database was run through a water refinement procedure following the standard protocol 

described by [76] in order to provide a structure with minimum inherent tension as a starting 

point. Here, a molecular dynamics simulation in explicit solvent – water in the present case – 

is performed along with a structure quality analysis by WHATCHECK [85] before and after 

the process. For the resulting structure ensemble, especially the RMS Z-scores improved 

considerably (table 3.7). 

 

 
Figure 3.20 The bundle of ten HPr (S. carnosus) 
structures before (left) and after (right) the water 
refinement calculation 
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RMS Z-score Before water 
refinement 

After water 
refinement 

Bond lengths 0.35 ± 0.01 0.99 ± 0.04 
Bond angles 0.46 ± 0.01 0.96 ± 0.03 
Omega angle restraints 0.19 ± 0.01 0.88 ± 0.05 
Side chain planarity 0.10 ± 0.02 1.00 ± 0.16 
Improper dihedral distribution 0.31 ± 0.01 0.97 ± 0.04 
Inside/outside distribution 1.00 ± 0.02 0.98 ± 0.02 

 
Table 3.7 Z-scores calculated by the WHATCHECK 
structure analysis program. 

 

The values close to one indicate that the structures have settled in a more relaxed 

configuration after the water refinement, although no dramatic changes in the overall fold are 

observed. 

From the ten calculated structures the one with the least overall energy is chosen as the 

starting point for the backcalculation. 

 

 

3.9.2.2 Spectrum simulation using RELAX 
 

From the water-refined trial structures, a spectrum was simulated by RELAX with the 

following parameters according to the experimental settings used for the original recording of 

the dataset: 

 

Larmor frequency 800.13 MHz 
Cutoff radius 0.5 nm 
Mixing time 150 ms 
Relaxation delay 2.37 s 
Line shape Gaussian 
Points in W1 1024 
Points in W2 8192 
Linebroadening 5 Hz (both dimensions) 
J-correction of T2 activated 
J-splitting disabled 

 
Table 3.8 Parameters used for the 2D NOESY spectrum 
simulation of HPr from S. carnosus 

 

To simulate the available experimental 2D dataset as closely as possible, the simulation 

parameters have been chosen to match the experimental settings. The calculation of peak 
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splitting due to J-coupling has been neglected in the simulation, since the peak shape is not 

relevant for REFINE, as only peak integrals are considered.  
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Figure 3.21 Experimental 2D NOESY spectrum of HPr 
from S. carnosus (left) and simulated spectrum from 
water-refined structure model (right) 

 

After the simulation the automatically created peaklist was discarded and an automated peak 

picking was performed by the adaptive routine (without automatic Bayes training set 

generation) described above, so as to treat the simulated dataset as an experimental dataset. 

The resulting list of 5973 signals was automatically assigned using KNOWNOE which 

yielded 5500 assignments. Note that KNOWNOE assigns only one of two corresponding 

symmetric cross peaks and REFINE uses only one of two corresponding signals, so 2750 

signals were used in the REFINE run. 

 

 

3.9.2.3 Addition of Gaussian white noise 
 

By adding different levels of noise, the robustness of REFINE in respect to the S/N ratio of 

the data can be judged. Four additional copies were produced from the initially prepared 

artificial dataset and peaklist. That way the number of signals and the assignment were the 

same, regardless of the present noise. Some signal locations shifted due to the noise, so for 

increasing noise levels less signals could be integrated. 
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Figure 3.22 Simulated 2D NOESY spectra of HPr from S. carnosus 
with different levels of noise added (left: 0% middle: 50% right: 100%). 
For [ppm]-scale see Fig. 3.21 (right). 

 

The amount of noise added was set in relation to the signal of the HN 38/HA 38 NOESY 

reference cross peak corresponding to a distance of 2.71Å. So 100% noise translate to a noise 

standard deviation equal to the maximum intensity of 276442 of this reference peak. 

 
 
 
3.9.2.4 Preparation of peak integral data 
 

The five datasets with added noise ranging from 0%-100% in steps of 25% had the signals 

integrated by the extended segmentation routine (→ 3.2). As expected, the number of 

integrable peaks decreases with the amount of noise added because of the slight shifting of 

signal maxima in the dataset.  

 
 
 
 

HPR S. carnosus artificial test dataset 0% 
noise*) 

25% 
noise*) 

50% 
noise*) 

75% 
noise*) 

100% 
noise*) 

unique signals integrated 2715 1998 1582 1289 1112 

integrated volume of ref. signal*) 737609 655205 828513 750201 1841755 

alpha scaling from ref. signal*) for ISPA 25,76 25,25 26,26 25,83 30 
*) 100% noise � noise stdev = 276442 (max. intensity of HPr S. carnosus HN 38/HA 38 NOESY reference cross peak 

corresponding to a distance of 2.71Å) 

 
Table 3.9 Number of integrable peaks depending on the amount of noise present 
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3.9.2.5 Trial structures used for testing 
 

Two different structure models have been used as trial input for the distance calculation in the 

HPr (S. carnosus) test case: The original structure used for the creation of the artificial dataset 

and a completely unfolded extended strand structure. 

 
 

Figure 3.23 Original HPr (S.carnosus) structure used also for the simulation of the 
test dataset (left) and extended strand structure (right, not to scale) 

 

The distances calculated for these two structures allow to judge the performance of REFINE 

on the one hand for already well defined structure hypotheses and on the other hand for 

completely undefined structure hypotheses. 

 

HPR S.carnosus artificial test dataset 0% 
noise*) 

25% 
noise*) 

50% 
noise*) 

75% 
noise*) 

100% 
noise*) 

refined distances ext**) 2873 2140 1715 1398 1221 

refined distances best**) 2939 2186 1755 1423 1248 
*) 

**) 

100% noise � noise stdev = 276442 (max. intensity of HPr S. carnosus HN 38/HA 38 NOESY reference cross peak 
corresponding to a distance of 2.71Å) 
 

in REFINE all magnetically equivalent spins possessing the same chemical shift yield individual distance restraints if they 
are within the cutoff radius 

 
Table 3.10 Number of calculated restraints depending on noise level 
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3.9.2.6 Accuracy of calculated proton proton distances 
 

The distance restraints calculated by REFINE, as well as the ISPA restraints calculated in 

parallel for comparison show an expected decrease in accuracy with increasing noise level 

(Fig. 3.24). For the ISPA restraints this decrease is more pronounced and the REFINE 

restraints are generally more accurate; even the results from the extended strand input 

structure yield significantly more restraints with a deviation from the original distances of the 

structure used for the dataset generation below 20%. 
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Figure 3.24 Number of calculated mean distances in relation to the total number of calculated 
distances by REFINE with error below twenty percent, depending on the noise level and the 
starting structure, compared to ISPA calculated distances. The distance deviations were 
calculated in respect to the distances in the original structure used for the simulation. 

 

The fact that during the automatic peak picking procedure several overlapping peaks can be 

detected as one single signal explains why the REFINE calculation using the original structure 

as input does not yield 100% correct distances. 
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3.9.2.7 Error estimates 
 

The error estimates derived from noise and integration errors alone are minimum error 

estimates and cover in this synthetic test case at least one third of the distances calculated 

from the extended strand structure and at least more than 64% of the distances calculated from 

the original structure.  

 

HPR S. carnosus artificial test dataset 0% 
noise*) 

25% 
noise*) 

50% 
noise*) 

75% 
noise*) 

100% 
noise*) 

% within error range**) ext*) 46,26 39,63 37,26 35,19 35,63 

% within error range**) best*) 72,88 71,04 67,64 66,41 64,26 

*) 

**) 

 

100% noise � noise stdev = 276442 (max. intensity of HPr S. carnosus HN 38/HA 38 NOESY reference cross peak 
corresponding to a distance of 2.71Å) 
 
error range calculated automatically from volume integration error (minimum error estimation) + 5% rate tolerance, no 
user defined error, no target integral variation  

 
Table 3.11 Number of calculated distances within estimated error range with respect to the 
corresponding distances in the original structure. Here ISPA results are not shown because of the 
arbitrary nature of possible error estimates. 

 

Note that for this test run no variation of the experimental signal integrals was used for error 

estimation. 

 

 

3.9.2.8 Resulting structures from molecular dynamics calculations 
 

For each of the cases with varying noise levels restrained molecular dynamics calculations 

were performed by CNS using the REFINE restraints. From the 200 structures obtained for 

each case, the ten best in terms of total energy were selected for evaluation without further 

water refinement. Calculating pairwise RMSD values between the newly calculated structures 

and the lowest energy original structure after water refinement allows to judge the accuracy of 

the REFINE restraints. 
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Figure 3.25 Averaged pairwise RMSD values (backbone atoms) between the ten lowest 
energy structures determined from the MD and the water refined structure with the lowest 
overall energy used for the simulation of the test data set. The restraints were calculated by 
REFINE starting from an extended strand trial structure for different noise levels in the 
peak data. 
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Figure 3.26 Averaged pairwise RMSD values (backbone & sidechain atoms) between the 
ten lowest energy structures determined from the MD and the water refined structure with 
the lowest overall energy used for the simulation of the test data set. The restraints were 
calculated by REFINE starting from an extended strand trial structure for different noise 
levels in the peak data. 
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Figure 3.27 Averaged pairwise RMSD values (backbone atoms) between the ten lowest 
energy structures determined from the MD and the water refined structure with the lowest 
overall energy used for the simulation of the test data set. The restraints were calculated by 
REFINE starting from the original structure for different noise levels in the peak data. 
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Figure 3.28 Averaged pairwise RMSD values (backbone & sidechain atoms) between the 
ten lowest energy structures determined from the MD and the water refined structure with 
the lowest overall energy used for the simulation of the test data set. The restraints were 
calculated by REFINE starting from the original structure for different noise levels in the 
peak data. 
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A linear dependence of the mean RMSD values for the increasing noise in the data set and the 

associated decreasing number of restraints is observed for both trial structures.  

The influence of the trial structure on the resulting distance restraints is shown by the 

comparison of the mean RMSD values: 
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Figure 3.29 Comparison of the averaged mean pairwise RMSD values (backbone) for an 
extended strand (blue) and the original structure (red) as input trial structure for REFINE. 
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Figure 3.30 Comparison of the averaged mean pairwise RMSD values (backbone & 
sidechain atoms) for an extended strand (blue) and the original structure (red) as input trial 
structure for REFINE. 

 

As the spatial environment of the protons in the original structure is closer to the conditions in 

the folded protein than in the extended strand, the results from the relaxation matrix analysis 

become more accurate and the resulting structures deviate less from the original structure. 

However, also for the extended strand trial structure fairly accurate distances and structures 

are calculated. 

 

 

3.9.3 Results for experimental datasets 
 

 

3.9.3.1 2D NOESY of HPr (S. carnosus) with unknown NOESY 
assignment 

 

To find out qualitatively whether it is a viable way to persue an iterative automated structure 

determination approach using REFINE distance calculation combined with KNOWNOE 

signal assignment, the procedure outlined in Fig. 3.31 has been applied to experimental data. 



 66 

An existing 2D NOESY dataset of the HPr protein from S. carnosus together with the 

sequential assignment from [6] was used. 

 
 

 
 

Figure 3.31 Workflow for the automated structure determination with unknown NOESY assignment 
from experimental NOESY data using KNOWNOE and REFINE as incorporated in AUREMOL. 

 

Since the spectrum contained strong artifact signals (Fig. 3.32), peakpicking was performed 

by the adaptive routine (without automatic Bayes training set generation) described above to 

get a signal list. It succeeded in reducing the initial number of wrongly picked signals, 

especially in the center region of the water artifact, but still a large number of artifact signals 

remained in the list (Fig. 3.33) of 8116 potential signals.  
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Figure 3.32 Experimental NOESY data of HPr (S. carnosus) containing noise and artifacts 
 
 

 
 

Figure 3.33 In the adaptive peak picking routine the local noise levels in the spectrum are used to 
calculate a local threshold. Datapoints generally passing the picking criteria are colored in red, yellow 
indicates signals that are kept as they coincide with the acceptable (red) datapoints, while blue marks 
signals that are discarded as one or both of the picking criteria are violated at their position. 
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Using the peak probability tool [36;37] of AUREMOL, the Bayesian probabilities for each 

signal to be artifact or not were calculated using the default values and the manually chosen 

signal and noise areas shown in Fig. 3.34. Keeping all signals with a probability value of at 

least 0.8 reduced the number of potential signals to 2665. 

 

 
 

Figure 3.34 For the calculation of the Bayesian peak 
probabilities a noise (green) and a signal area (cyan) have 
to be specified. 

 

Finally removing all peaks outside of the chemical shift bounds given by the diagonal signals 

yielded a list of 2598 signals (Fig. 3.35). 

Starting with an extended strand structure the known sequential assignment was adjusted to 

the signal list using the AUREMOL tool PEAK ASSIGN (Kirchhöfer et al., to be published) 

that assigns signals based on a grid search procedure. Then the peak integrals including error 

estimates were calculated. The first NOESY assignment was produced by KNOWNOE, 

which generally assigns only one of two corresponding symmetric cross peaks. From the 

resulting assigned peaks the first distance restraints were calculated by REFINE.  

With these distance restraints and additional TALOS restraints, a MD run with CNS was 

performed. From the resulting ensemble of 200 structures the ten with the least overall energy 

were chosen as solution. 
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Figure 3.35 Spectrum of HPr with remaining signals 
(black circles) used for structure determination. 

 

The top ten energy ensemble was then used again as input for KNOWNOE to generate an 

improved NOE assignment.  

 

Iteration Number 
of 

assigned 
signals 

ppm limit 
F1 

ppm limit 
F2 

lower prob. 
limit 

distance 
limit 
[nm] 

mutual 
inf. prob. 

limit 

‘All’ flag 

1 739 0.015 0.015 0.95 100.00 0.20 - 
2 985 0.015 0.015 0.95 1.50 0.10 - 
3 953 0.015 0.015 0.95 1.25 0.10 - 
4 996 0.015 0.015 0.95 1.00 0.05 - 
5 1099 0.015 0.015 0.95 0.75 0.01 - 
6 1256 0.020 0.020 0.95 0.75 0.01 - 
7 1410 0.020 0.020 0.95 0.75 0.01 • 
8 958 0.020 0.020 0.95 0.75 0.01 - 
9 1384 0.020 0.020 0.95 0.75 0.01 • 

 
Table 3.12 KNOWNOE settings for the different iterations. The corresponding structures are shown in 
Fig. 3.36. 
 

Again distance restraints were determined using REFINE and another 200 structures were 

calculated using CNS and the best ten in terms of total energy were selected. Iterating this 

process for a total of nine times reveals a gradual convergence of the results towards a 

structure hypothesis with the correct fold: 
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Figure 3.36 Lowest overall energy structure after each of the nine iterations. (top-left: structure 
after iteration one, bottom-right: structure after iteration nine) 

 
 

 
Figure 3.37 Structure calculated from a single 2D NOESY spectrum after nine iterations of 
KNOWNOE/REFINE (left) using only REFINE restraints and TALOS predicted angle 
restraints, lowest energy water refined structure from PDB ensemble (right) originally solved 
using NOE, dihedral angle and H-bond restraints. 
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Comparing the calculated structures to the structure from the PDB ensemble with the lowest 

overall energy after water refinement shows that the correct global fold has been found after 

iteration six and most secondary structure elements are present and located at the correct 

position after iteration nine.  

This result indicates that the combination of KNOWNOE and REFINE is generally capable of 

solving structures automatically from a limited amount of available, automatically pre-

processed NOESY data without a priori available structural information. Further extending 

the iteration count is expected to yield even more accurate structure hypotheses. 

 

 

3.9.3.2 2D & 3D NOESY data of RalGDS-RBD with unknown NOESY 
assignment 

 

The same procedure as above has been employed for the determination of the structure of the 

Ras binding domain – RBD – of RalGDS. Here a 800 MHz 2D NOESY and a 600 MHz 3D 
15N-NOESY-HSQC spectrum were available as experimental input for REFINE as well as 

104 calculated TALOS and 52 experimental H-bond restraints. The spectra were 

automatically assigned in KNOWNOE using an extended strand as starting trial structure and 

subsequently the respective best structure in terms of energy of the previous iteration. 

 

assign limits [ppm] 

Iteration 
F1 

(2D) 
F2 

(2D) 
F1 

(3D) 
F2 

(3D) 
F3 

(3D) 

lower 
prob. 
limit 

dist. 
limit 
[nm] 

mutual 
information 
probability 

limit 

use 
mutual 
inform. 

assign 
all 

peaks 

ass. 
to 

master 
list 

input 
structure 

1 0.02 0.02 - - - 0.95 100 0.2 • - • ext. strand 

2 0.01 0.01 - - - 0.95 1.5 0.1 • - • best from 
previous it. 

3 0.015 0.015 - - - 0.95 1.25 0.1 • - • best from 
previous it. 

4 0.015 0.015 - - - 0.95 1 0.05 • - • best from 
previous it. 

5 0.015 0.015 - - - 0.95 0.75 0.01 • - • best from 
previous it. 

6 0.015 0.015 0.1 0.5 0.02 0.95 0.75 0.01 • • • best from 
previous it. 

 
Table 3.13 KNOWNOE settings for the different iterations. The assign limits per dimension are given 
in ppm, the lower probability limit, distance limit and mutual information settings are set to increase 
the number of correctly assigned signals with increasing iteration count. 
 

After a distance restraint set was calculated a molecular dynamics run was performed yielding 

100 structures. These were analyzed in AUREMOL to remove violated restraints and the 
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cleaned restraint list was used in a second MD run that yielded the final structures for the 

given iteration. In the first six iterations only the 2D NOESY data was assigned by 

KNOWNOE and used for distance restraint calculation in REFINE. 

 

Iteration assigned 
signals 

2D 

assigned 
signals 

3D 

average 
RMSD 

to 
mean 
[nm] 

1 483 - 0.22 
2 964 - 0.12 
3 877 - 0.13 
4 884 - 0.11 
5 965 - 0.22 
6 1442 392 0.06 

 
Table 3.14 Number of assigned signals and Cα RMSD values in 
respect to the mean structure for the different iterations. 

 

After seven iterations the calculated structures had reached good agreement with the known 

X-ray structure [88]: 

 
Figure 3.38 X-ray structure of RalGDS-RBD (left) compared to the four lowest energy water 
refined structures after seven iterations (right). 
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 X-ray KNOWNOE /  
REFINE 

R-factor 0.325 0.322 

Pairwise RMSD [nm] 0.19 

 
Table 3.15 R-factors and pairwise RMSD for X-ray and the 
calculated structures after seven iterations 

 

The results in table 3.15 show that the combined iterative application of KNOWNOE and 

REFINE to one 2D and one 3D NOESY dataset yields structures quantitatively comparable to 

X-ray.  

 

 

3.9.3.3 2D NOESY data of HPr (S. aureus) with known NOESY 
assignment 

 

A 2D NOESY spectrum with known NOESY assignment was the starting point for the 

following REFINE testcase with the emphasis on evaluating the statistical error estimation 

approach in comparison to an automatic ISPA approach. The data was prepared using 

adaptive peak picking with subsequent (non-automatic) Bayesian probability analysis and 

additional manual peak list optimization. Since the available assignment is complete, the 

distance information contained in the spectrum is expected to overdetermine the structure in 

the molecular dynamics simulation, thus limiting both the ability to judge the effect of the 

distance error estimation and the benefits of accurate distance determination. So to emulate an 

early stage of the protein structure determination process where only a small amount of 

distance information is available, about 75% of the signals were randomly deleted. The 

resulting signal list contained 315 peaks, of which 271 were automatically assigned by the 

PEAK ASSIGN module using grid search. 

Distances were calculated using REFINE and the statistical error estimation approach. To this 

end, the motional properties of the protein were modelled in the following way, assuming an 

in general increased mobility of sidechain protons relative to backbone protons: 
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Proton type Spectral density class 
HA, HN Lipari (Backbone*), S2= 0.85 ± 0.15) 
Methyl protons Fast_jump 
Ring protons Slow_jump 
Other protons Lipari (Sidechain†), S2 = 0.65 ± 0.25) 

 
Table 3.16 Spectral density classes and order parameters assigned to different protons 

 
 

 HA, HN Methyl Ring Other 
HA, HN Lipari_backbone Fast_jump Slow_jump Lipari_sidechain 
Methyl Fast_jump Fast_jump Fast_jump Fast_jump 
Ring Slow_jump Fast_jump Slow_jump Slow_jump 
Other Lipari_sidechain Fast_jump Slow_jump Lipari_sidechain 

 
Table 3.17 The spectral density classes defined in table 3.16 are assigned to the different proton-
proton combinations as shown here. 
 

For every proton-proton combination described via a Lipari/Szabo model-free spectral density 

function, a normally distributed variation of the order parameter was carried out; also every 

target peak integral was varied normally distributed within the error bounds determined 

during signal integration. For the calculation a number of 50 independent variations of the 

order parameters for the backbone as well as the sidechain spectral densities was chosen, as 

for the target integrals. That way, a total number of 2500 distance restraint files were 

generated, from which distributions consisting of 2500 (if the distance results converged for 

each run, which was the case for all but ten restraints; among these ten restraints the minimum 

number of converged distances was 1250) distances were created (Fig. 3.39). Then the 

respective mean value and standard deviation for each restraint were chosen as distance 

estimate and error bound for the final MD restraint file. 

 

                                                 
*) Correlation time τc = 5.62ns and backbone order parameter adopted from measurements on HPr from 
S.carnosus [89] 
†) Sidechain order parameter taken from XPLOR manual [90] 
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Distance distribution for HB2 6/HD1 61
(50 order parameter samples times 50 signal integral 

variations)
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Figure 3.39 Example of a calculated distance distribution for the NOE contact HB2 6 / HD1 61 
obtained using 50 independent variations of the backbone and sidechain order parameters times 50 
variations of the corresponding experimental peak integral. 
 

Contrary to other approaches to distance error estimation in NMR structure determination, 

where for example 20% of the actual distance are used for the definition of upper and lower 

error bounds across-the-board and thus are directly proportional to the distance, the errors 

determined from the distance distributions show no predominant dependence of the actual 

calculated distances: 
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Figure 3.40 The standard deviation error bounds calculated from the distance distributions show no 
direct dependence on the restraint distance. 
 

Taking a closer look at the individual distributions for given restraints reveals that the 

calculated distances are not continuously distributed as expected, which can on the one hand 

be explained by the under-sampling of the normal distribution using only 50 values for 

variation. On the other hand possible correlation effects due to the simplified modelling and 

variation scheme are suspected to have an additional influence on the smoothness of the 

distribution as for example the left hand part of the distribution shown in the following figure 

stems from order parameter combinations that describe an overall very rigid molecule with 

order parameter values close to one for the backbone and sidechain. 

 



 77 

Distance distribution for HB2 6/HG2 87
(50 order parameter samples times 50 signal integral variations)
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Figure 3.41 Calculated distance distribution for the long range NOE contact HB2 6 / HG2 87 with 50 
variations per backbone and side-chain order parameter times 50 signal integral variations. The 
splitting of the distribution is caused mainly by the neighboring HB3 6 side-chain proton (see Fig. 3.42 
below) that influences the relaxation rate between the other two protons (one side-chain proton and 
one averaged methyl group pseudo-proton) depending on the under-sampled mobility variation and by 
the under-sampled target integral variation. 
 

 

 

 

Distance distribution for HB2 6/HG2 87, no neighboring protons
(50 order parameter samples times 50 signal integral variations)
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Figure 3.42 Same as Fig. 3.41 except the neighboring protons for HB2 6 and HG2 87 have been 
removed in the calculation. The result is an expected shift to larger distances and a far less 
pronounced splitting of the distribution, originating from variation undersampling. 
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Distance distribution for HB2 6/HG2 87
(50 signal integral variations)

0

5

10

15

0.3
74 0.3

8
0.3

86
0.3

92
0.3

98
0.4

04 0.4
1

0.4
16

0.4
22

0.4
28

0.4
34 0.4

4
0.4

46
ab

ov
e

Distance [nm]

H
is

to
gr

am
 c

la
ss

 
co

un
t

 
Figure 3.43 Using only 50 target integral variations leads to a distribution resembling Fig. 3.41. For a 
higher sample count a more uniform distribution is expected. 
 

 

 

 

 

 

Distance distribution for HB2 6/HG2 87
(50 order parameter samples)
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Figure 3.44 The distance distribution obtained using 50 order parameter variations, also not very 
uniform due to undersampling of the parameter variation. 
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Distance distribution for HB2 6/HG2 87
(1000 order parameter samples)

0
50

100
150
200

0.3
74 0.3

8
0.3

86
0.3

92
0.3

98
0.4

04 0.4
1

0.4
16

0.4
22

0.4
28

0.4
34 0.4

4
0.4

46
ab

ov
e

Distance [nm]

H
is

to
gr

am
 c

la
ss

 
co

un
t

 
Figure 3.45 Calculated distance distribution for the long range NOE contact HB2 6 / HG2 87 with 
1000 variations per backbone and side-chain order parameter and fixed target integrals. 
 

As the example for NOE contact HB2 6 / HG 87 in Fig. 3.41 shows, for this NOE contact a 

rather interesting bimodal distance distribution is obtained using only 50 order parameter and 

50 volume variation samples. Repeating the same calculation excluding neighboring protons 

of HB6 6 yields a more uniform distribution (Fig. 3.42), which demonstrates the influence of 

neighboring proton spins on the observed relaxation rate. A look at 50 variations of either 

target peak integrals or order parameters alone (Figs. 3.43, 3.44) reveals that the 

corresponding distance distributions generally lack uniformity, so for a combination of these 

variations also no uniformity can be expected. Increasing the sample count for the order 

parameter variation to 1000 samples results in a more continuous distribution of distances 

(Fig. 3.45), as the influence of order parameter combinations that describe an overall 

extremely rigid or mobile molecule is decreased. 

Investigating the actual order parameter distribution used for the calculations reveals that the 

desired normal distribution for the variation is quite poorly reproduced:  
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Figure 3.46 Theoretical backbone order parameter distribution (black line) vs. distribution obtained 
from 1000 samples. 
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Figure 3.47 Theoretical sidechain order parameter distribution (black line) vs. distribution obtained 
from 1000 samples. 
 

This is the result of undersampling together with a very large standard deviation in 

comparison to the desired parameter range (ratio 1:2). A general flaw in the random number 
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generator can be ruled out, since in test runs a Gaussian distribution of random numbers was 

obtained. 

In the following, the description of the distance error in terms of the standard deviation of the 

distances obtained from the undersampled distributions is used. To evaluate the structure 

quality that can be achieved using this approach to restraint generation as compared to 

ISPA_auto (see section 2.5) with automatic scaling as described in table 2.2, first molecular 

dynamics calculations were performed. CNS was used together with distance restraints from 

REFINE and ISPA respectively plus 23 additional experimental H-bond [91] and 118 

calculated TALOS angle restraints. From each ensemble of 200 structures the 10 best in terms 

of overall energy were selected for the R-factor analysis in AUREMOL. To find out whether 

the iterative application of REFINE can further improve the results, the structure obtained 

after the first iteration was used as the trial structure for a second iteration. The results show 

overall better R-factor values for the REFINE structures across the distances, especially at the 

lower and higher end of the scale (Fig. 3.48). 
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Distance dependent R-Factors
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Figure 3.48 R-factor distribution depending on the distance in the structures calculated from 
ISPA_auto (see table 2.2) restraints (squares) and REFINE restraints (triangles) from the two 
iterations compared to the structure from the PDB (HPr from S. carnosus, PDB ID: 1KA5) (dashed). 
For R-factor calculations the R-factor R3 as described in section 2.9 was used on the fully assigned 
spectrum. Data points are only shown for classes containing at least ten entries. In the calculation the 
mean order parameter values (table 3.16) were used in the simulation. 
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Figure 3.49 Global R-factor comparison between the original structure of HPr from S. carnosus from 
the PDB (top) and the resulting top ten structures resulting from MD with ISPA (middle) and from the 
first and second iteration REFINE (bottom) restraints. In the first REFINE iteration, an extended 
strand was used as trial structure and the resulting structures were used as trial structure input for the 
second REFINE distance calculation. For the calculation of global R-factors (r-fac global) shown in 
red R5 (see section 2.9) was used while for the calculation of the distance related global R-factors (r-
fac_global distance) R3 was employed, using only one distance class for all distances. All R-factors 
were calculated in respect to the fully assigned experimental spectrum using the mean order 
parameter values (table 3.16) in the simulation. 
 

A comparison of the global R-factors for the structures obtained from MD using ISPA_auto 

and REFINE restraints and the structure from the PDB shows that the structure from the 

database scores the lowest global R-factor (Fig. 3.49). This is expected, since this structure 

was solved using a much larger number of NOE restraints from 2D and 3D experiments. The 

REFINE structure scores the second best global R-factor, which indicates that the restraints 

generated by REFINE from only 271 NOEs describe the experimental spectral data in a better 

way than the restraints generated by the automatic ISPA approach from the same number of 

NOEs. Most notably the R-factor improved considerably for the structures obtained from MD 

calculations using the restraints generated by a second REFINE run (Iteration2). Here the best 

structures obtained after the first REFINE run (Iteration1) were used as starting structures. 

The results for the global distance related R-factor summarize the findings from Fig 3.48 in a 

single R-factor, where REFINE produces the overall best value. 
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4. Discussion 
 

 

4.1  General AUREMOL enhancements 
 

Throughout AUREMOL the IUPAC-proposed atom nomenclature has been introduced. By 

that, previously inconsistent naming requirements in different AUREMOL modules have been 

standardised which improves the overall usability of the program. At the interface to external 

applications requiring proprietary atom naming conversion routines are provided for 

straightforward data exchange.  

With the new strips tool AUREMOL can make the task of manually determining a sequential 

assignment more comfortable. To this end, several spectra can be used simultaneously during 

the process, help lines can be superimposed on the spectrum/strip display and optionally the 

relevant strip data can be prepared automatically from triple resonance data according to the 

resonances observed in a corresponding HSQC spectrum.  

The RELAX spectrum simulation in AUREMOL now allows arbitrary combinations of 

motional models and finite relaxation delays, which further increases simulation accuracy. In 

the current state RELAX is a highly flexible program for spectrum simulation, although 

chemical exchange effects are only emulated by occupancy values for certain atoms. As soon 

as chemical exchange effects are fully accounted for in the simulation, RELAX will probably 

be the most complete NOESY simulation software as it combines the advantages of other 

spectrum simulation software like BIRDER [63], CORMA [64], SPIRIT [65], etc. in a single 

program. 

 

 

4.2  Adaptive peak picking 
 

The presented adaptive peak picking routine makes use of a local noise estimate for a local 

threshold determination. For a signal to be recognized, its smoothed intensity value must 

exceed the local noise and additionally an average intensity fall-off from the center is 

required. From a number of test datasets calibration constants have been determined 

empirically so that the presented results clearly show a reduction in erroneously picked 

artifact signals. Also, weak signals are not a priori omitted as they are using the fixed 

threshold routine in AUREMOL for a too large threshold. However, it cannot be expected that 

with the currently used calibration values equally good results can be achieved on arbitrary 
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spectral data. So the best means to make this approach universal would be the implicit 

determination of the calibration constants from the dataset under consideration. To this end 

for example an analysis of global signal versus noise area or an intensity histogram analysis 

could be employed. 

In an attempt to further increase the ability to discriminate between signal and artifact for 

peak picking, an automatic training set generation for the Bayesian peak probability analysis 

in AUREMOL has been tested. Together with the signal fall-off, global and local symmetries 

serve as a measure for pre-classifying the signal list obtained from the adaptive peak picking 

routine into potential signals and potential artifacts. A subset of these pre-classified signals is 

then used as training set for the Bayes algorithm. In the final step, signals with a calculated 

probability below a specified threshold can be deleted. That way nearly artifact free signal 

lists can be produced. It has shown however, that not only artifacts are removed by this 

procedure. The reason for this lies most probably in the pre-classification step, which favors 

isolated symmetric peaks as true signals in its current implementation and thus biases the 

Bayes algorithm towards symmetric signals. A possible solution would be to introduce 

separate classes for isolated and overlapping signals to the Bayes algorithm and extend the 

pre-classification. With regard to automatic structure determination it could be promising to 

start with a nearly artifact free signal lists for an automatic NOE assignment in KNOWNOE. 

Subsequently distance restraints are obtained using REFINE. The resulting structure is used in 

the follwing steps together with an increasingly less restricted signal list for further 

KNOWNOE/REFINE cycles. That way the influence of wrong assignments on the structure 

determination process could be minimized. 

 

 

4.3  Integration error estimation 
 

In experimental peak integral data the sources for errors include noise, overlap, baseline 

distortion, artifacts and the limited digital resolution. The presented error estimation 

procedure focuses on noise and overlap. While the noise contribution can easily be calculated, 

for the overlap error estimation information about the locations of the overlapping peaks is 

required. The results of the calculated integrals and the corresponding error bounds on a 

simulated noised dataset in comparison to the originally simulated integrals show that only 

52% of the integrals have sufficient error estimates, while for the remaining 48% of the 

integrals the errors are underestimated. 
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Figure 4.1 The effect of peak overlap on signal integration and error estimation is outlined in this 
graph. The weak purple signal is overlapped by the stronger red and blue signals. The observed 
intensity distribution in a spectrum is represented by the green curve. At the position where the purple 
signal is expected, there is a signal, although it is way too strong. In addition, the segmentation 
routine cannot find local maxima corresponding the red and blue overlapping peaks in the green 
distribution. As a result the integral of the purple signal is too large, the corresponding overlap error 
estimate is zero and the red and blue signal cannot be integrated. 
 

In Fig. 4.1 this problem is explained. In the test dataset there is very strong overlap, of 4716 

simulated signals 3537 (75%) could be integrated. Consequently for the remaining integrals 

intensities from certain signals can be attributed to another signal and the overlap error 

contribution cannot be calculated, leading to wrong integral values with underestimated 

errors. Although this is not a very satisfying situation, a solution to this problem is not easy. 

In case information about the peak positions is available, peak fitting or a modified 

segmentation routine could be used for integration and error estimation, but for spectra of 

unknown proteins this can hardly be expected.  

The contributions of the remaining error sources are not considered in the current 

implementation, although the influence of minor artifact streaks could to some extent be 

accounted for by using a smoothed noise estimate that takes neighboring rows in the dataset 

into account. Baseline errors can (and should) be minimized by a thorough processing with 

baseline correction of the spectra. The influence of digital resolution on the integrals is hard to 

judge and strongly depends on the sample and experiment, however its importance is 

expected to be minor compared to signal overlap. 
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4.4  Automatic de novo assignment 
 

Already in [57] it was discussed that a pseudo energy function based purely on local peak 

match might not be an ideal optimization target. This could be confirmed, as by the 

introduction of an additional global pseudo energy term the assignment performance could 

greatly be enhanced. On an artificial dataset similar to the test case in [57] the number of 

correctly assigned signals starting without a priori partial assignment was increased from 

10% to 100% using the new pseudo energy function. In a recent application to a real world 

spectrum the preliminary results (not shown in this thesis) indicate that the current extended 

pseudo energy function still is not sufficient, since false assignment possibilities exist with an 

overall lower pseudo energy than for the correct configuration. One reason for this can be 

dicrepancies between experiment and simulation due to neglected chemical exchange, an 

erroneous trial structure or insufficient modelling of the protein mobilities in the simulation. 

By including chemical exchange effects, using an ensemble of trial structures and a 

variational approach for the simulation parameters these problems shold become controllable. 

Also the problem of peak overlap comes into play. In regions of high overlap the assignment 

problem exhibits degenerate behaviour and several assignment combinations can locally 

describe the experiment equally well. So a way has to be found to favor the correct 

assignment in these cases. One possibility for that is another contribution to the pseudo energy 

defined by the match of whole spectrum strips. In the end for the algorithm to be reliable, a 

pseudo energy function description has to be found where the global minimum corresponds to 

the correct assignment. The work on this assignment routine is currently part of a different 

thesis. When this problem is solved for experimental data, the complete automation of 

structure determination in AUREMOL is made possible. 

 

 

4.5  REFINE distance calculation 
 

The REFINE approach using direct cross relaxation rate scaling compares very well with the 

approach in NO2DI [73], where instead of the rates the distances corresponding to 

experimental NOEs are rescaled by the ratio of the first order distance estimates calculated 

from the simulated and experimental NOE values; from the new distances again rates are 

calculated for the next NOE simulation step. In REFINE no distance matrix is needed and 

only the auto-relaxation rates are re-calculated as the cross-relaxation rates are manipulated 

directly. This leads to reduced memory use and shorter calculation times in REFINE. The 
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same is true when comparing REFINE to approaches using rate backcalculation from NOE 

data as for example in MARDIGRAS [72], where per iteration step first the experimental data 

for non-fixed contacts is merged to the simulated NOE set, which basically amounts to a 

direct NOE scaling. Then for this hybrid NOE matrix the rate matrix is calculated by 

evaluating the matrix logarithm and following that a new NOE matrix is calculated for the 

next iteration. So in MARDIGRAS two computationally costly transformations (matrix-

exponential and -logarithm) have to be calculated whereas in REFINE only one 

transformation (matrix-exponential) per iteration is necessary. So although by the introduction 

of the logarithmic ratio scaling in REFINE a slight increase in the required iteration count for 

convergence has been noticed, the overall execution times per run are generally in the range 

of minutes for a single trial structure calculated on an average PC. 

Since the relaxation matrix approach used for distance calculation in REFINE generally 

promises more accurate results than ISPA because higher order spin diffusion effects are 

accounted for, this claim has been verified for the REFINE algorithm on artificial and 

experimental data. 

 

 

4.5.1 Artificial test data 
 

The ability of the REFINE algorithm to find a relaxation matrix that describes experimental 

data best has been verified on a simulated dataset of TmCSP. Using the calculated NOEs 

together with the structure used for the simulation as REFINE input yields 100% correct 

distances after the first iteration, as can be expected since for the simulation as well as by 

REFINE the RELAX backcalculation is used. Switching to an extended strand as input for 

REFINE still yields more than 85% of all distances with an error below 20% as opposed to 

ISPA, where around 70% of all distances were calculated with an error below 20%. So 

regardless of the trial structure used in REFINE the calculated distances are more accurate 

than those obtained using ISPA. To examine REFINE in a more realistic test case, a simulated 

spectrum from a well defined structure of HPr (S. carnosus) has been provided with different 

levels of additive Gaussian noise and treated like experimental data, i.e. peak picked and 

integrated. Compared to the ISPA approach generally a larger number of distances with a 

lower deviation from the optimum values is produced by REFINE, regardless of the noise 

level:  
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Noise level 0% 25% 50% 75% 100% 

 
ISPA 
 

69% 60% 58% 54% 48% 

REFINE  
(extended strand) 73% 72% 67% 64% 64% 

REFINE  
(original structure) 93% 92% 88% 85% 83% 

 
Table 4.1 Percentage of calculated distances deviating less than 20% from the distance in the 
original structure used for simulating the dataset. With increasing noise, the distance accuracy 
degrades. ISPA is affected more strongly as the calibration integral changes with the noise. 
 

As some overlapping signals are lost due to the application of automatic peak picking, 

REFINE cannot reproduce the excellent results of the ideal testcase described above, but still 

between 64% and 93% of the distances are calculated with a deviation from the original 

distances below 20%, depending on the trial structure and the noise level. For the folded trial 

structure an overall larger number of accurate distances is calculated. From this situation the 

conclusion can be drawn that the iterative application of REFINE, where the structures 

resulting from the previous run are used as input for the following distance determination 

step, leads to distance restraints that are progressively becoming more accurate. 

Regarding the robustness against noise in the spectral data, the quality of the determined 

distances generally degrades with increasing amounts of additive noise. For REFINE this 

degradation is less pronounced and still a larger amount of accurate distances is produced than 

by using ISPA. The reason for that is the influence of the noise especially on the single 

reference peak integral for the ISPA scaling, which is of no relevance for REFINE, since here 

a global scaling procedure is applied. 

The distance error estimate derived from the integration error estimate alone is a step into the 

right direction for automation. However, the estimates generally are too strict, as they only 

accout for a minimum of about one third of the distance deviations for the case of the 

extended strand trial structure and about two thirds for the folded input structure (for the worst 

case with 75%-100% added noise). This outcome is not unexpected, since here only the errors 

in the experimental input are considered and errors due to the internal modelling for the 

relaxation matrix calculations are omitted. Additionally the limitations of the integration error 

estimate due to overlap apply here as discussed above. Judging from that result, the optional 

distance error estimation using experimental input data and simulation parameter variation 

will be a valuable alternative for the application of REFINE to experimental data. 
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4.5.2 Experimental data with unknown NOESY assignment – combining 
KNOWNOE and REFINE 

 

When the sequential assignment of a protein is available but a corresponding NOESY dataset 

is not yet assigned, an iterative approach combining automatic NOESY assignment by 

KNOWNOE and automatic distance calculation by REFINE has proven to yield feasible 

structure hypotheses with minimal effort by the user. It is important to allow generous 

distance limits for the initial assignment, as the trial structure at that time is still far from the 

correct fold. With increasing iteration count, as the structures from each previous run 

gradually approach the folded state, the limits should be more and more restrained to achieve 

an increasingly accurate NOESY assignment The example of HPr from S. carnosus shows 

that the protocol qualitatively works and that the correct fold of a protein can be obtained that 

way from a single automatically peak picked and initially unassigned 2D NOESY dataset and 

TALOS predicted angle restraints after nine cycles of KNOWNOE and REFINE. 

For RalGDS-RBD, where additional 3D NOESY data and 52 experimentally determined H-

bonds were available, the application of this procedure led to a structure that was 

quantitatively comparable to X-ray results after six iterations, as shown by the global R-factor 

values of 0.322 for the structures obtained using REFINE and 0.325 for the X-ray structure. 

So in case no a priori information about the correct NOESY assignment is known, but the 

sequential assignment is available, this approach can yield accurate structures in a short 

amount of time (a few days, including the time for the molecular dynamics calculations) and 

with a minimum of expert intervention. One has to keep in mind, that KNOWNOE uses a 

statistical approach, so a perfect NOESY assignment cannot be expected. The errors 

introduced by incorrect assignments can lead to warped structures, but the effect can be 

minimized by the removal of violated restraints from the restraint list followed by a repeated 

run of the restrained molecular dynamics calculation as it was done in these two test cases. It 

is important to note that by the automatic KNOWNOE scaling factor calculation using 

REFINE an additional source of error for the NOESY assignment has been eliminated and the 

reproducibility of the assignments is improved. 

 

 

4.2.3 Experimental data with known assignment 
 

On the experimental 2D NOESY dataset of HPr from S. aureus the performance of REFINE 

using the variational error estimation approach for a low amount of experimental information 
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has been evaluated. For about 25% randomly selected signals of the fully assigned spectrum 

distance restraint distributions have been calculated by target peak integral and order 

parameter variation. A distance restraint list consisting of the mean distances and their 

respective standard deviations obtained from these distributions as error bounds was 

generated. One striking result is that the influence of the atom mobilities described by the 

order parameter S2 can be substantial, so if these mobilities are unknown, the variational 

approach is essential for an accurate distance error estimate. Secondly, the calculated distance 

errors are not directly proportional to the actual distance values as is assumed in other 

approaches to restraint generation like the widely used application of three distance classes for 

ISPA restraints. For a restrained molecular dynamics calculation the distance restraint list 

obtained from the distance distributions was used together with 118 TALOS angle restraints 

and 23 experimental H-bond restraints. The structures resulting from the REFINE restraints 

showed a better agreement with the experiment as demonstrated by overall lower global R-

factors (0.35) when compared to structures calculated using restraints that had been 

determined using an automatic ISPA approach (0.37). Even though the dataset was recorded 

using a short miximg time of 80ms where the ISPA approach should be applicable, compared 

to ISPA REFINE produces distance restraints that lead to structures with a 5% better global 

R-factor using an extended strand as input. The most important reason for the better 

performance here lies in the distance error bounds in REFINE that are calculated individually 

for each distance from the uncertainty in the experimental data and the modelling parameters. 

As the calculated distance distributions have shown to require a very large number of 

statistical samples to produce a smooth distribution, the current approach should be improved. 

Instead of the presented random sampling approach to parameter variation a systematic 

variation of the parameters within the desired distribution is proposed. Alternatively all 

permutations of the uniformly sampled parameter ranges could be used in the calculation to 

obtain the spread of the resulting distances as a basis for the error estimation. 

The quality of the structures resulting from the REFINE restraints could be improved even 

more by performing a second calculation step, where the best ten structures obtained in the 

first REFINE run were used as starting structures. Here after the MD simulation structures 

with a 13% improved global R-factor of 0.33 were obtained. This demonstrates that the 

influence of neighboring spins on the relaxation rate of two spatially close protons is properly 

accounted for during the execution of the REFINE algorithm as the experimental data is better 

explained by the structure obtained from the first REFINE run than by an extended strand. 

Judging from this also a refinement of available, poorly defined structures should be possible. 
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Generally an even larger advantage for REFINE over ISPA can be expected in case data 

recorded for longer mixing times is analyzed. 

 

 

4.6  Benefits from distance error estimation 
 

Introducing a self contained error estimation concept to protein structure determination offers 

a number of advantages. First of all, distance restraints can effectively be attributed more or 

less influence on the restrained molecular dynamics calculation depending on the quality of 

the calculated distances. Distances that are poorly defined because of a large error in the 

experimental peak integral or because of insufficiently accurate modelling parameters are 

provided with a larger error estimate and are that way less likely to have a negative effect on 

the whole structure during MD. That way REFINE is contrasting the usual ISPA approaches 

where the error bounds depend predominantly on the corresponding distances. 

Secondly, the reproducibility of the structure determination process is greatly enhanced by 

adding the automatic error estimation to the already very much automated process. This is an 

essential prerequisite for the complete automation of structure determination from NMR. It 

allows to monitor and quantify the progress of structure determination, e.g. because of an 

increasingly complete assignment. 

As a third point the variational approach to error estimation is a universal approach. It can 

easily be extended to include additional sources of error. The produced distance distributions 

have up to now only been used by means of mean values and standard deviations. Here also 

more refined approaches can be implemented that take the actual shape of a given distribution 

into account for molecular dynamics. 

 

 

4.7  Potential for automation 
 

AUREMOL now offers a wide range of routines for the automation of typical tasks for 

structure determination from NMR data. Starting from adaptive peak picking and the 

extended integration routine to distance calculation and structure evaluation, the different 

modules work with a minimum of user intervention and consistent IUPAC compliant atom 

naming. The introduction of an automatic and individual error estimation to the workflow is a 

novelty and allows to reproducably judge the results of the structure determination process.  
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It is clear that the experimental peak integrals used for REFINE always contain errors, simply 

because of the limited digital resolution, peak overlap, artifacts, noise and baseline distortions. 

This fact is now accounted for by the new integration routine that additionally calculates an 

error estimate for the noise and overlap contributions. Subsequently the errors introduced to 

the distance calculation by imperfect experimental data and insufficient modelling parameters 

like unknown order parameters are reflected in the error estimates for the distances calculated 

by REFINE. In the following molecular dynamics the uncertainty of distances directly affects 

the resulting structures. That way the errors are carried throughout the whole process from 

integration to the molecular dynamics calculation and are quantified in the final structure 

bundle instead of getting lost on the way and resulting in probably erroneous structures 

because of error bounds simply proportional to the distances. 

So in case the sequential assignment of a protein is known and at least one 2D NOESY 

dataset is available, the procedures described in sections 3.7-3.9 allow already an automatic 

structure determination. The results presented indicate that the quality to expect from this 

approach is at least on par with the results from X-ray methods. 

A combination of the presented modules to form a fully automatic structure determination 

routine where only spectral data and a starting trial structure are used as input is the logical 

next step. Here the missing link right now would be a flexible and reliable automatic 

sequential assignment module. The current state of the ASSIGN module already allows the 

complete automatic assignment of synthetic 2D NOESY data using a homology modelled 

structure as input. As soon as this functionality has been successfully transferred to 

experimental data, where the preprocessing of the dataset for the algorithm and the correct 

modelling of the pseudo energy function for the optimization have shown to play a crucial 

part, the vision of full automation is within close reach. 
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5. Summary & Outlook 
 

In this thesis a method for automated and accurate distance determination from protein NMR 

data is presented. Based on the relaxation matrix formalism the REFINE algorithm has been 

developed that uses the simulation of NOESY data in an iterative approach to fit the simulated 

to the experimental data for distance information extraction. The addition of an error 

estimation for the integration of the experimental data and the modelling parameters in the 

simulation allows to calculate individual distance error estimates. Especially the influence of 

the order parameter choice on the calculated distances has shown to be substantial. As the 

results for artificial and real world experimental data show, the procedure is capable of 

accurate distance restraint determination, which allows the calculation of high-quality 

structures even from a limited amount of experimental data. Furthermore the whole process is 

largely carried out automatically with a minimum of user intervention. For more accurate 

results, in the future the current implementation of the integration error estimation should be 

improved to account for strongly overlapping signals and the parameter variation in the 

presented approach could be replaced by a systematic sampling of an expected parameter 

distribution. 

Although the results were produced only for 2D and 3D datasets, this is no general limitation, 

the application to higher dimensional data is possible. Since higher order spin diffusion 

effects are automatically accounted for, the application to experimental data obtained using 

longer mixing times is expected to further increase the advantage of REFINE over ISPA 

approaches. 

Considering the vision of a fully automatic procedure for the determination of protein 

structures from NMR data there remains only one missing link, which is the automatic de 

novo resonance line assignment. The state of this module as presented in this thesis shows 

very good results on artificial data by using again spectrum simulation. If these results can be 

transferred to experimental spectra the final gap would be closed. In that respect it might be 

helpful to include a chemical shift prediction routine in the future. 
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Appendix 
 

A. Abbreviations and terms 
 

AUREMOL NMR software project, framework of this dissertation 

FFT Fast Fourier Transform 

Homology modelling Modelling of a protein structure using known structures of 
homologous proteins 

HPr Histidine containing phosphocarrier Protein 

HSQC Heteronuclear Single Quantum Coherence 

ISPA Isolated Spin Pair Approximation 

IUPAC International Union of Pure and Applied Chemistry 

KNOWNOE NOE assignment module in AUREMOL 

(r)MD (restrained) Molecular Dynamics 

NMR Nuclear Magnetic Resonance 

NOE Nuclear Overhauser Effect 

NOESY Nuclear Overhauser Effect SpectroscopY 

PEAK ASSIGN General assignment module in AUREMOL 

RalGDS Ral Guanine nucleotide Dissociation Stimulator 

REFINE Distance calculation module in AUREMOL 

RELAX Spectrum simulation module in AUREMOL 

Ribbon plot Type of protein display highlighting backbone configuration and 
secondary structure elements 

RMS(D) Root Mean Square (Deviation) 

S/N ratio Signal to Noise ratio 

S. aureus, S. carnosus Gram-positive bacteria of the genus Staphylococcus 

TmCSP Cold Shock Protein from the hyperthermophilic organism 
Thermotoga Maritima 
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B. Programming environment  
 

The AUREMOL software is being developed in compliance with the ANSI C programming 

language standard. For programming, the integrated development environment – IDE – Visual 

Studio 6.0 by Microsoft has been used, together with the DevPartner Studio 7.1 package by 

Compuware for software quality control. 

The development workstation used was a Dell Optiplex GX260 running Windows XP 

Professional by Microsoft. 

The Linux port is built on the Red Hat Linux Workstation V 4.0 distribution. 

Molecular dynamics calculations were carried out on the Linux compute cluster of the 

computing center of the University of Regensburg. 
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