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SUMMARY
In eukaryotes, in vivo formation of the two ribosomal subunits from four ribosomal RNAs

(rRNAs) and approximately 80 ribosomal proteins (r-proteins) involves more than 150 non-
ribosomal proteins and around 100 small non-coding RNAs. Ribosome biogenesis is

temporally and spatially organised within three different cellular compartments: the nucleolus,

nucleoplasm and cytoplasm.
Despite the rising knowledge about ribosome function and structure and how ribosomal

subunits assemble in vitro in bacteria, the in vivo role of many ribosomal proteins remains
obscure both in pro- and eukaryotes.

This work describes the systematic analysis of yeast small subunit r-proteins (rpS) in vivo

function(s) in small ribosomal subunit (SSU) maturation and assembly.

The results described herein demonstrate that most eukaryotic r-proteins fulfill different roles

in ribosome biogenesis, making them indispensable for growth. Different r-proteins control

distinct steps of nuclear and cytoplasmic pre-18S rRNA processing and, thus, ensure that only
properly assembled ribosomes become engaged in translation. Furthermore several r-proteins

are required for efficient nuclear export of pre-18S rRNA, suggesting that they form an

interaction platform with the export machinery.
In addition, in vivo analysis of rpS assembly suggests that the pre-rRNA – rpS interactions are

stabilised in the course of the SSU maturation process.
Finally, analysis of rpS assembly status in two mutants in which pre-SSU nuclear export is

blocked (crm1, rps5) and one in which export is strongly delayed (rps15) show that key

aspects of the in vivo assembly of eukaryotic r-proteins into distinct structural parts of the
SSU are similar to the in vitro assembly pathway of their prokaryotic counterparts.

Interestingly, the establishment of a stable assembly intermediate of the eukaryotic SSU-body,
but not of the SSU-head, is closely linked to early rRNA processing events. On the other

hand, formation of assembly intermediates of the head controls efficient nuclear export of the

SSU and cytoplasmic pre-rRNA maturation steps.
Therefore the formation of certain assembly intermediates is required to allow the rRNA

processing steps or the export of the SSU to take place. The above intermediates can also
contribute substantially to the quality control of the maturing subunit.
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RÉSUMÉ

Chez les cellules eucaryotes, la formation des deux sous-unités ribosomiques comportant au

total quatre ARN ribosomiques (ARNr) et environ 80 protéines ribosomiques nécessite plus
de 150 facteurs non-ribosomiques et environ 100 petits ARN non codant. La biogenèse des

ribosomes est temporellement et spatialement organisée dans trois compartiments cellulaires
différents: le nucléole, le nucléoplasme et le cytoplasme.

Alors que de nombreuses données existent quant à la structure et la fonction des ribosomes,

ainsi que l´assemblage des protéines ribosomiques in vitro chez les bactéries, le rôle in vivo de
nombreuses protéines ribosomiques reste obscure chez les cellules pro- et eucaryotes.

Cette thèse décrit l´analyse systématique de(s) la fonction(s) des protéines ribosomiques dans

la maturation et l´assemblage de la petite sous-unité du ribosome (SSU) in vivo chez la levure.

Les résultats décrits ci-après démontrent que la plupart des protéines ribosomiques, chez les

eucaryotes, jouent différents rôles importants au cours de la biogenèse de la petite sous-unité
du ribosome, les rendant indispensables pour la survie cellulaire. Différentes protéines

ribosomiques contrôlent des étapes distinctes de la maturation nucléaire et cytoplasmique des

précurseurs de l´ARNr de 18S, et de ce fait, assurent que seuls les ribosomes proprement
assemblés sont engagés dans le processus de traduction. De plus, plusieurs protéines

ribosomiques sont requises pour permettre l´export efficace des particules de pré-40S,

suggérant que ces protéines forment une plateforme d´interaction avec la machinerie
d´exportation.

Par ailleurs, l´analyse in vivo de l´assemblage des protéines ribosomiques de la petite
sous–unité suggère que les intéractions entre les pré-ARNr et les protéines ribosomiques sont

stabilisées au cours du processus de maturation de la petite sous unité du ribosome.

En outre, l´analyse in vivo du statut de l´assemblage des protéines ribosomiques de la petite
sous-unité, dans deux mutants chez lesquels l´export nucléaire des particules de pré-40S est

bloqué (crm1, rps5) et dans un mutant (rps15) chez lequel cet étape est fortement retardée,
démontre que les étapes clé de l´assemblage des protéines ribosomiques chez les eucaryotes

dans des structures distinctes de la sous-unité 40S (corps et tête) sont similaires aux étapes

d´assemblage mises en évidence in vitro pour les protéines ribosomiques homologues chez les
procaryotes. Finalement, chez les eucaryotes l´établissement d´un intermédiaire structural
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stable du corps de la petite sous-unité, mais pas de la tête, est étroitement lié aux étapes

précoces de maturation du pré-ARNr. De plus, la formation d´un intermédiaire de la tête
contrôle l´efficacité de l´export nucléaire de la petite sous-unité du ribosome et les étapes

cytoplasmique de maturation du pré-ARNr.

En conséquence, la formation de certain intermédiaire structuraux est requise pour permettre

aux étapes de maturation de l´ARNr et d´export de la petite sous-unité du ribosome d´avoir
lieu. De plus, ces intermédiaires peuvent contribuer au contrôle qualité de la sous-unité du

ribosome en cours de maturation.

ZUSAMMENFASSUNG
Die beiden Untereinheiten der eukaryotischen Ribosomen setzen sich aus vier ribosomalen

RNAs (rRNAs) und ungefähr 80 ribosomalen Proteinen (r-Proteinen) zusammen. An ihrer

Synthese, welche in drei verschiedenen zellulären Kompartimenten, dem Nukleolus, dem
Nukleoplasma und dem Zytoplasma, stattfindet, sind mehr als 150 nicht-ribosomale Proteine

und ca. 100 kleine, nicht-kodierende RNAs beteiligt.
Die Funktion der Ribosomen und ihre Struktur wurden bereits umfassend charakterisiert.

Zudem gelang es, die Assemblierung prokaryotischer Ribosomen in vitro nachzuvollziehen.

Hingegen war über die Funktionen der einzelnen ribosomalen Proteine in der Zelle bislang
nur wenig bekannt.

In der vorliegenden Arbeit wurde daher mit Hilfe des eukaryotischen Modellorganismus

S.!cerevisiae systematisch analysiert, welche Funktionen den ribosomalen Proteinen der

kleinen Untereinheit (rpS) in vivo bei der Reifung und Assemblierung der kleinen
ribosomalen Untereinheit (SSU) zukommen.

Hierbei zeigte sich, dass die meisten eukaryotischen r-Proteine in der Ribosomenbiogenese

für das Wachstum essenzielle Funktionen ausüben. Einige r-Proteine kontrollieren bestimmte

Schritte der nukleären und zytoplasmatischen Prä-18S-rRNA-Prozessierung und garantieren
auf diese Weise, dass nur korrekt zusammengebaute Ribosomen die Translation katalysieren.
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Andere r-Proteine werden hingegen für den effizienten Export der Prä-18S-rRNA aus dem

Kern benötigt und bilden dabei möglicherweise eine Interaktionsplattform mit der Export-
Maschinerie aus.

Darüber hinaus lässt die in vivo-Analyse des SSU-Zusammenbaus vermuten, dass die

Wechselwirkungen zwischen der Prä-rRNA uns den ribosomalen Proteinen im Laufe des
SSU-Reifungsprozesses stabilisiert werden.

Schließlich erbrachte die Analyse von Mutanten, in denen der nukleäre Prä-SSU-Export
entweder vollständig (crm1, rps5) oder weitestgehend (rps15) blockiert werden kann, dass die

in-vivo-Assemblierung der r-Proteine in die kleine ribosomale Untereinheit in ähnlicher

Reihenfolge abläuft wie für die Assemblierung in vitro der entsprechenden prokaryotischen
r–Proteine zuvor ermittelt worden war. Interessanterweise wirkt sich die Ausbildung einer

stabilen Assemblierungszwischenstufe des eukaryotischen SSU-„body“, nicht aber des

SSU–„head“, auf frühe rRNA-Prozessierungsereignisse aus, wohingegen die Bildung von
Assemblierungszwischenstufen des „head“ den SSU-Export aus dem Kern und

zytoplasmatische rRNA-Reifungsschritte kontrolliert. Demzufolge ist die Ausbildung
bestimmter Substrukturen oder Faltungsintermediate wichtig, damit definierte rRNA

Prozessierungsschritte oder der Export der kleinen ribosomalen Untereinheit stattfinden kann.

Sie tragen damit auch wesentlich zur Qualitätskontrolle der reifenden Untereinheit bei.
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INTRODUCTION

1. The ribosome: structure and function.

Ribosomes are ribonucleo-protein (RNP) complexes formed of several ribonucleic acid
molecules (ribosomal RNA or rRNA) “decorated” with many proteins (ribosomal proteins or

r-proteins).

In all living cells ribosomes constitute the heart of the translation machinery allowing
conversion of the information encoded within the messenger RNA (mRNA), into amino acid

chains: the proteins.
Thus, the ribosome is a fundamental macromolecular machinery participating in the flow of

genetic information expression.

1.1. A brief history of protein synthesis research.

Ribosomes were first observed under the microscope by G. Garnier at the end of the 19th
century, and described as a basophilic cytoplasmic component and termed ergastoplasm (for

review see Haguenau, 1958). During the first half of the 20th century J. Brachet and others

showed that the basophilic nature of the ergastoplasm is due to its RNA content (see Brachet,
1933 among others). Furthermore it became obvious that protein synthesis activity and the

amount of cellular RNA were correlated (see Brachet, 1942 among others). In the mean time,
particles containing most of the cellular RNA were isolated by high-speed centrifugation in

different laboratories. A. Claude examined them by dark-field microscopy analysis (Claude,

1943), later on he termed these particles:  “microsomes” (very likely to be ribosomes
associated to endoplasmic reticulum, Claude, 1943). However, at this time no clear function

could be assigned to these particles.
In the 1950s, in vitro incorporation of radioactive amino acids into nascent peptide chains

using purified “microsomes” confirmed the anticipated role of these RNA containing particles

in protein synthesis (Siekevitz and Zamecnick, 1951; Siekevitz, 1952). At the end of the
1950s, purified “microsomes” devoid of membrane fragments were termed “ribosomes”

(Roberts, 1958) assuming the functional importance of the RNA contained in these particles.
At the same time, F. Crick postulates the “central dogma” of biology concerning the flow of

genetic information summarised in his assay on protein synthesis  (Crick, 1958).
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He and others suggested that «!it seems highly likely that the presence of RNA is essential for

cytoplasmic protein synthesis!», «!there must be an RNA template in the cytoplasm!» and that
«!template RNA’ is located inside the microsomal particles » (quoted from Crick, 1958). This

generally accepted assumption suggested a model were ribosomal RNA would serve as
template and led to the  “one gene - one ribosome - one protein” hypothesis, neglecting in part

the possible role of quickly metabolising RNA in protein synthesis.

At the beginning of the 1960s was established the role of  “messenger RNA” to be a short

living RNA playing the role of a transmitter of molecular information for protein synthesis
(Crick et al., 1961; Jacob and Monod, 1961 among others).

Brenner et al performed metabolic labelling of bacteria with different radioisotopes before and

after infection with bacteriophage T2. Interestingly, the neo-synthesis of bacteriophage
specific proteins correlated with the association of newly synthesised RNA molecules with

cellular ribosomes, while no de novo ribosome synthesis was observed. Suggesting the
existence of a non-rRNA RNA molecule serving as template for protein synthesis (see

Brenner et al., 1961).

In addition F. Crick suggested in the assay mention above that an adapter would be required

to direct the assembly of amino acids into the correct order. This adapter model was further

confirmed with the elucidation of the role of transfer RNA (tRNA) (Hecht et al., 1958a; Hecht
et al., 1958b; Hoagland et al., 1958 among others). It was shown that in the course of protein

synthesis, radio-labelled amino acids are transiently bound to a soluble low molecular weight
RNA fraction: the tRNA (Hoagland et al., 1958).

At this stage of protein synthesis research, one remaining major black box was the “genetic
code” governing the flow of genetic information via RNA to protein. The development of a

reliable in vitro bacterial cell free translation system (Lamborg and Zamecnik, 1960) and the
use of artificial RNA homo- and heteropolymers allowed to “crack” the genetic code (see

Lengyel et al., 1961; Nirenberg and Matthaei, 1961 among others).

In summary, the ribosome is a RNP complex allowing the conversion of the genetic

information encoded within mRNA, via codon-anticodon interaction with cognate aminoacyl-
tRNA, into nascent polypeptide chains.
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1.2. The ribosome: structure and composition.

1.2.1. Ribosome composition.

Two main types of ribosomes can be found in nature.

All prokaryotic organisms contain ribosomes with a sedimantation rate of 70S (about

2.6!MDa with a mean diameter of 200 to 250 Å) which can be reversibly dissociated into a
50S LSU (large subunit) and a 30S SSU (small subunit)  (Tissieres and Watson, 1958;

Tissieres et al., 1959).
The 50S ribosomal subunit is a RNP complex formed of two rRNAs - 23S and 5S rRNA -
and about 32 r-proteins in eubacteria, and slightly more in archaeabacteria. The 30S
ribosomal subunit is a RNP complex composed of one rRNA – the 16S rRNA - and about 21
r-proteins in eubacteria, and slightly more in archaeabacteria.

All eukaryotic organisms contain cytosolic ribosomes with a sedimantation rate of 80S (about

4 MDa with a mean diameter of 250 to 300 Å) which can be reversibly dissociated into a

60S!LSU and a 40S SSU (see Chao and Schachman, 1956; Chao, 1957; Chao, 1961 among
others).

The 60S ribosomal subunit is a RNP complex composed of three rRNAs - 25S or 28S in

higher eukaryotes, a 5.8S and 5S rRNA - and around 46 r-proteins. The 40S ribosomal
subunit is a RNP complex formed of one rRNA – 18S rRNA - and around 32 r-proteins.
In addition, eukaryotic cells contain also mitochondrial ribosomes however their size and
composition is heterogeneous (Kitakawa and Isono, 1991; Nierhaus, 2004; Smits et al., 2007).

In contrast, chloroplast ribosomes from higher plants belong to the group of 70S-like

ribosomes (Nierhaus, 2004).

1.2.2. Structural features of ribosomes.

Despite slight differences - rRNA length, number of rRNAs and r-proteins - prokaryotic and

eukaryotic ribosomes show striking morphological similarity with some variation in the
different phylum (see Fig. 1A). Additionally, rRNAs secondary structures comparison are

higly conserved between pro- and eukaryotes (see Fig. 1B and Gutell et al., 1985).
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Furthermore, the high degree of conservation is also reflected on the r-protein level (see

Lecompte et al., 2002 and Fig. 1C).

Figure 1: Conservation of the ribosomal subunits.
(A) Conserved ribosomal subunits morphology.
Diagram of low-resolution structures of ribosomal subunits from different organisms obtained from electron
micrographs are shown. Reproduced and modified from Lake, 1985.
From left to right are shown the ribosomal subunits morphologies from Synechocystis 6701 (eubacteria);
H.!cutirubrum (euryarchaeota); T. tenax (crenarcheota); S. cerevisiae (eukarya). Upper and lower panel show the
SSU and LSU morphologies respectively.
Right panel summarised the characteristic structural features found in the four ribosome types.
Features found in crenarcheota (but absent from both eubacteria and euryarchaeota) are indicated in purple.
Eukaryotic features (abscent in prokaryotes) are indicated in blue.
(B) Conserved secondary structure of SSU rRNA. Adapted from Nierhaus, 2004.
The core structure (in green) common to all SSU rRNA from different representative organisms are shown.
(C) Conservation of r-proteins.
Venn´s diagram showing the general distribution of r-protein families between the three domains: Bacteria (B),
Archaea (A), and Eukarya (E) adapted from Lecompte et al., 2002. The number of families is indicated for each
set. The two numbers enclosed by parentheses refer to r-protein families found in the small and large ribosome
subunits respectively.
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Early RNA-RNA, RNA-protein cross-linking and protection experiments, neutron scattering,

immuno-localisation, and electron microscopy analyses provided a first topology of the
ribosome.  More recently, structure of the eubacterial SSU and the prokaryotic LSU were

revealed at the atomic level by X-ray crystallography (Cate et al., 1999; Agrawal et al., 2000;
Ban et al., 2000; Svergun and Nierhaus, 2000; Wimberly et al., 2000; Noller et al., 2001;

Yusupov et al., 2001; Brodersen et al., 2002; Wilson et al., 2002; Wilson and Nierhaus, 2003).

However eukaryotic ribosome 3D structure lags behind and is so far based on cryo-EM
analysis and homology modelling (Spahn et al., 2001). All the conserved r-proteins and rRNA

segments could be positioned in this structure. However the archaeabacterial and eukaryote
SSU specific counterparts and all the eukaryote specific LSU counterparts remain to be

positioned in this structure (Spahn et al., 2001).

On the basis of morphological features visible in early electron micrographs, the SSU has

been divided into an upper third, the head, and a lower two-third, the body. A deep cleft
separates the head from a protrusion of the body called the platform (see Fig. 2 and 3B).

Further structural landmarks were defined with the advent of cryo-EM techniques: the beak a

protrusion of the head, the neck, and the shoulder at the interface between the head and the
body and the spur at the bottom extremity of the body (see Brodersen et al., 2002).

Interestingly, phylogenic analysis of SSU structure shows extra electron densities, which are

probably due to the presence of extra rRNA sequences and/ or extra r-proteins in
archaeabacterial and eukaryotic ribosomes (Lake, 1985 and Fig. 1A). Interestingly, ribosomes

isolated from crenoarchaeabacteria show an intermediate morphology between eubacterial and
eukaryotic ribosomes (Lake, 1985 and Fig. 1A).

Eukaryotic SSUs show a strong subdivision at the bottom part of the body into a “left foot”
and a “right foot”. Extra densities are also mainly present below the platform, forming the

“left foot” and the “back lobe“ of the 40S subunit, at the “beak”, and at the solvent side of the
head, building the “head lobe” (Spahn et al., 2001).

Based on the predicted secondary structure of 16S rRNA (Glotz and Brimacombe, 1980;
Woese et al., 1980) the molecule can be divided into four main domains that radiate out from

the central pseudoknot. These domains are termed the 5’, central, 3’major, and 3’ minor
domains. One remarkable feature of the 30S subunit structure is that the major morphological

features (such as the head, platform, and body) are constructed largely by individual
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secondary structure domains. The 5’ domain makes up the bulk of the body, the central

domain the platform, and the 3’ major domain the entire head. The small 3’ minor domain
consists of just two rRNA helices located at the subunit interface.

Figure 2: Comparison of the 80S ribosome from S. cerevisiae with the E. coli 70S ribosome.
Reproduced from Spahn et al., 2001.
The cryo-EM map of the yeast 80S ribosome (a, c, e, and g) is shown together with the cryo-EM map of the
E.!coli 70S ribosome (b, d, f, and h; Gabashvili et al., 2000). The ribosomes are shown from the L7/L12 side
(a and b) and the L1 side (c and d). The computationally isolated small subunits (e and f) and large subunits
(g and h) are shown from the interface side. The small subunits are in yellow, the large subunits in blue, and the
P sitebound tRNA in green. Additional parts of the eukaryotic 80S ribosome that are due to expansion segments
in the rRNAs and nonhomologous r-proteins are shown in gold (40S subunit) and purple (60S subunit).
Landmarks for the 40S subunit: b, body; bk, beak; h, head; lf, left foot; rf, right foot; pt, platform; sh, shoulder;
sp, spur. Landmarks for the 60S subunit: CP, central protuberance; L1, L1 protuberance; SB, stalk base; St, L7/
L12 stalk; H34, helix 34; H38, helix 38; SRL, sarcin-ricin loop.
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The LSU is seen as a more compact structure, consisting of a rounded base with three almost

cylindrical extensions. The three protuberances seen from the 50S side are called from the left
to the right, the L1 protuberance, the central protuberance (CP), and L7/ L12 stalk
(according to E. coli r-protein nomenclature) (see Fig. 2). In addition, the exit tunnel is also
seen at the solvent side of the LSU.

Interestingly, phylogenic analysis of LSU structure shows extra electron densities along the

base of the subunit, which is probably due to the presence of extra rRNA sequences and/ or
extra r-proteins in archaeabacterial and eukaryotic ribosomes (Lake, 1985 and Fig. 1A). Like

for the SSU, LSU isolated from crenoarchaeabacteria show an intermediate morphology
between eubacterial and eukaryotic ribosomes (Lake, 1985 and Fig. 1A).

In the 23S/ 25S rRNA secondary structure, the 5’ and 3’ terminal ends are brought together to

form a helix (and circularise the rRNA). From this helix, 11 stem-loop structures are
radiating, and organised into six different domains. Unlike the SSU, the rRNA domains of the

LSU are difficult to assign to a specific structural landmark, since they have complicated,
convoluted shapes, producing a compact, monolithic RNA mass (Ban et al., 2000; Nierhaus,

2004).

1.2.3. Ribosomal protein structures and their distribution in the ribosome.

Early neutron scattering, cross-linking, and immuno-locatisation experiments and the recent

achievement of atomic resolution model of the ribosomal subunits, show that r-proteins from

both subunits share common features.

Most of the r-proteins are located at the periphery on the surface of the ribosome structure,
and are almost excluded from the subunit interfaces, and the peptidyl transferase centre. This

global distribution in addition with mutant, and biochemical analyses lead to the conclusion

that the ribosome is a ribozyme, since only the rRNA is directly involved in the catalysis of a
peptide bond (Noller et al., 1992; Nitta et al., 1998; Hoang et al., 2004).

Ribosomal proteins of the large ribosomal subunit (rpL) are uniformely dispersed on the
surface of the large subunit (Fig. 3A). In contrast, the vast majority of the ribosomal proteins

of the small ribosomal subunit (rpS) are located on the back and surface of the small subunit,
with a slightly higher density towards the top of the structure, due to the large number of

r–proteins that bind to the SSU head (Fig. 3B).
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Figure 3: Spacial distribution of r-proteins on the ribosome surface.
(A) Localisation of the LSU r-proteins modified from Ban et al., 2000.  The rRNA of the subunit is shown in
gray and r-protein backbones are shown in gold. From left to right:  the crown view of the subunit, the back side
of the subunit in the 180° rotated crown view orientation, a view from the bottom of the subunit down the
polypeptide tunnel exit which lies in the centre.
(B) Localisation of the SSU r-proteins reproduced from Brodersen et al., 2002. The 16S rRNA is shown in a gray
ribbon-stick representation onto which each of the r-proteins is shown as a cartoon in color. Morphological
features named in early EM reconstructions are indicated. From left to right:  Front (or interface), side view of
the subunit, and back side view respectively.
(C) Cartoon representation of r-proteins representative folding. Left part: globular folding, right part: globular
fold and tail. Adapted from Brodersen et al., 2002.
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The recent X-ray data were providing important informations concerning the 3D structures of

prokaryotic r-proteins (more than 30 new atomic resolution structures).
The r-proteins typically have one or more globular domains. However, they also often contain

extended internal loops or long N or C-terminal extensions that were often not seen in the
isolated protein structures. These structures are intimately associated with the rRNA inside the

ribosome (see for example Fig. 3C). These long extensions and loops are unusually rich in the

basic side-chains arginine and lysine. Their role in rRNA-binding was originally predicted on
the basis of asymmetric amino acid residues distribution observed along the primary

sequences (Liljas, 1991).
In general, the globular domains are found mainly at the subunit surface, while the long

extensions and loops are buried within the rRNA. Interestingly, the r-proteins are often bound

to junctions between RNA helices, thereby often connecting separate domains (especially in
the LSU).

In addition, many r-proteins have folding similarity and accordingly can be grouped into

structural related families (see Brodersen et al., 2002; Klein et al., 2004).

1.3. Ribosome function.

The decoding of an mRNA transcript into protein by the ribosome can be divided into three
functional phases: (1) recognition of the mRNA to be translated (translation initiation);

(2) synthesis of a polypeptide chain according to the mRNA sequence (translation
elongation); (3) and finally translation termination and recycling of the translation

machinery.

With the help of biochemical, genetic and structural analyses both in pro- and eukaryotes the

translation mechanism and its regulation was intensively studied. These mechanisms are
extremely complex (for review see Nierhaus, 2004).

Recently, a snapshot of a significant intermediate state in protein synthesis was obtained by
determining the structure of the 70S ribosome bound to three tRNAs. The three tRNAs are

bound to A-, P- and E-sites (for aminoacyl-, peptidyl- and exit-sites respectively) that are
located at the interfaces of both subunits. Each of the tRNA molecules bridges between the

30S and 50S ribosomal subunits. In the 30S, two of the three tRNAs are bound to the mRNA
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fragment through codon-anticodon base pairing (in the A- and P-site). In the 50S subunit, the

acceptor stem of the tRNA molecules occupying the A- and P-site converge in the PTC
(peptidyl transferase centre) where the peptide bond is formed. Furthermore, the P-site is

connected to an exit tunnel through which the nascent polypeptide leaves the ribosome

Hereafter will be a very short description about the current view of the main principles of

protein synthesis.

1.3.1. Translation initiation (see Fig. 4A and B).

First, conserved initiation factors IF3 or eIF 1,1A, 3 (IFs and eIFs initiation factor for pro-

and eukaryotes respectively) bind to the 40S SSU (SSU*IF3 or SSU*eIF 1,1A, 3 complex),
preventing association with the LSU in the absence of mRNA. Second, a 43S pre-initiation

complex is formed by the interaction of the SSU*IF3 or SSU*eIF 1,1A, 3 complexes with a

ternary complex consisting of the IF2/eIF2*GTP*Met-tRNAi
Met (Met-tRNAi

Met= amino-acyl

methionine charged initiator tRNA). Third, the pre-initiation complex binds to the mRNA.

In prokaryotes, many of the mRNAs contain upstream of each translation initiation codon a
purine rich sequence called the Shine-Dalgarno (SD) sequence which is complementary to the

3’ end of the 16S rRNA (anti-SD sequence) (among others Shine and Dalgarno, 1974; Chang
et al., 2006). These interactions favour the correct positioning of the start codon in the P-site.

However, it should be noted that in Gram-positive bacteria and archaeabacteria mRNA

lacking this SD sequence also called leaderless mRNA are predominant and follow a different
pathway (see for review Moll et al., 2002).

In eukaryotes, the 5’ mRNA ends are modified with a 7-methylguanylated (m7GpppN) cap

structure (where N is any nucleotide) which is recognised by the eIF4 complex which in turn
is recognised by the 43S!pre-initiation complex and form a so-called 48S complex. Finally,

the 40S ribosomal subunit scans the mRNA in an ATP dependent reaction in search of a start
codon. A fraction of mRNA is translated independent of the cap-structure through recognition

of a structured internal sequence in the mRNA upstream of the start codon, also known as

internal ribosome entry site or IRES.
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Figure 4: Ribosomes and protein synthesis.
(A) Translating ribosome. Reproduced from Lafontaine and Tollervey, 2001.
The three binding sites for tRNAs on the ribosome are shown. In the aminoacyl-site (A-site), a tRNA charged
with an amino acid (aminoacyl-tRNA) is pairing with the messenger RNA (mRNA) being translated. The
peptidyl-site (P-site) carries the growing peptide chain attached as a peptidyl-tRNA complex. The exit site
(E-site) contains empty tRNAs on their way leaving the ribosome.
(B) Pathways of translation initiation in prokaryotes (left panel) and in eukaryotes (right panel) reproduced from
Nierhaus, 2004.
The individual pathways have been aligned to reflect the conservation of the reactions and functions of the
factors. The initiation factors are labelled IF and eIF for pro- and eukaryotes respectively.
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Legend to Figure 4 (continued): At completion of the initiation pathway, Met-tRNAi
Met is bound to the

ribosomal P-site and the A-site is vacant waiting for binding of the first elongating tRNA EF-Tu•GTP•aatRNA
ternary complex.
(C) Model for the elongation cycle reproduced from Nierhaus, 2004. For details see introduction 1.3.2.

Finally, pairing of the anticodon of Met-tRNAi
Met with the AUG codon of the mRNA in the

P-site triggers IF2/eIF2 GTP hydrolysis, and release almost all the IFs except IF2 or eIF5B (in

pro- and eukaryotes respectively). This reaction promotes 60S ribosomal subunit joining to

the pre-initiation complex. Subunit joining triggers GTP hydrolysis by IF2 or eIF5B (in pro-
and eukaryotes respectively) and the subsequent release of these factors.

The 70S*mRNA or 80S*mRNA complexes are ready to enter the elongation phase of protein

synthesis.

1.3.2. Translation elongation (see Fig. 4C).

Translation elongation requires the assistance of two highly conserved translation elongation
factors EF-Tu, EF-G in bacteria and EF1A, EF2 in eukaryotes and archaeabacteria.

Translation elongation can be regarded as a cycle. First, an aa-tRNA*EF-Tu*GTP complex

(aa for aminoacyl) is delivered to the empty A-site. If the cognate aa-tRNA is delivered,
correct codon-anticodon pairing triggers GTP hydolysis and releases of EF-Tu*GDP

complex.
Peptide bond formation occurs, the nascent polypeptide chain is transferred from the P-site

tRNA onto the aminoacyl moiety of the A-site tRNA. This reaction leaves an uncharged

tRNA at the P-site and a peptidyl tRNA at the A-site.
To allow translation to proceed, translocation of the uncharged tRNA from the P-site to the

E–site, and of peptidyl-tRNA from the A-site to the P-site, and presentation of the next codon
of the mRNA in the A-site is required.

Translocation is mediated by the EF-G*GTP complex, which literally pushes the peptidyl-

tRNA from the A-site to the P-site, upon GTP hydrolysis. The EF-G*GDP complex is then
released, leaving the A-site empty for a new round of translation elongation.

Through repeated peptide bond formation the nascent protein chain increases in length, and is

directed into the exit tunnel of the LSU.
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1.3.3. Translation termination

The final phase of translation is termination. Normally, aa-tRNAs do not bind to the A-site

containing a stop codon (UAA, UGA, or UAG). Instead, these stop codons are recognised by
release factors (RF) which detache the polypeptide from the peptidyl-tRNA, thus from the

ribosome.

The 70/ 80S ribosome is dissociated in a GTP dependent manner, by the ribosome release
factor (RRF) and EF-G.
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2. Ribosomes biogenesis and assembly.

In most pro- and eukaryotes the rRNA genes are transcribed as precursor rRNAs that are

further matured by endo- and exonuleolytic cleavages, several chemicals modifications, and
rRNA structural rearrangements. Despite rising knowledge, the full complement of enzymatic

activities responsible for rRNA trimming/ cleavages has to be defined. In addition, ribosome

biogenesis factors are transiently associated with nascent ribosomes and are suggested to be
involved in the process of maturation/ assembly of ribosomes. Interestingly in archaeabacteria

and eukaryotes, most rRNA modifications are depending on the formation of heteroduplexes

of pre-rRNA with antisense small RNA. Moreover, in some cases these rRNA/ small RNA
base pair interactions were suggested to mediate and/ or to stabilise rRNA structural

rearrangements and further processing events.

Finally, in eukaryotes formation of cytoplasmic functional ribosomes requires intensive

nuclear-cytoplasmic exchange.

Characteristic features of rRNA maturation and function of ribosome biogenesis factors will
be presented in the following section with an emphasis on the yeast S. cerevisiae.

Noteworthy, r-proteins are also assembled onto the pre-rRNA during the course of ribosome

biogenesis, however function and assembly of r-proteins will be described independently in
section 3. of this introduction.

2.1. Ribosome components: genomic organisation and synthesis.

As shortly described above (introduction 1.2.1.), ribosome assembly requires the synthesis of
more than 60 different macromolecules.

Furthermore, ribosome synthesis is a highly energy consuming process in cells. In bacteria
about 10 000 ribosomes per cell are found (Spirin, 2000) and can represent up to 50% of the

bacterial dry mass (Tissieres et al., 1959), more than 50% of the total energy consumption is

dedicated to ribosome production (Nierhaus, 2004). A similar situation exists in eukaryotes,
i.e. yeast growing cells contain about 200 000 cytoplasmic ribosomes, however the amount

of ribosomes synthesised varies and depends on the cell type and cellular growth conditions

(see Warner, 1999).
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Ribosome synthesis is thus the major metabolic pathway in actively dividing cells, which

suggests that highly regulated mechanisms must have evolved to ensure the coordinated
production of the different ribosome constituents according to cellular need (see for details

Perry and Meyuhas, 1990; Planta, 1997; Nomura, 1999; Warner, 1999; Hornstein et al., 2001;
Nomura, 2001; Nierhaus, 2004; Hamilton et al., 2006 and among other recent works Martin et

al., 2004; Schawalder et al., 2004; Wade et al., 2004; Rudra et al., 2005; Hall et al., 2006;

Zhao et al., 2006).

2.1.1. Genomic organisation and transcription of the rRNA genes in the cells.

Despite differences, some common principles of rRNA gene organisation in pro- and

eukaryotes can be described (summarised in Fig. 5).

Figure 5: Various pattern of rRNA genes organisation. Adapted from Nierhaus, 2004.
(A) Common rRNA gene organisation in pro- (upper part) and eukaryotes (lower part).
(B) Some example of species specific rRNA gene organisation in pro- (upper part) and eukaryotes (lower part).
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Most rRNA genes are organised as operon-like structure where the different rRNAs are

transcribed into a common rRNA precursor containing the 16S, 23S and 5S rRNA and the
18S, 5.8S, 25/ 28S in most of the pro-and eukaryotes respectively. The different rRNAs are

flanked and separated from each other by internal and external transcribed spacers (see
Fig.!5A). This organisation might ensure stoichiometric rRNA production. However, in

eukaryotes the 5S rRNA is transcribed independently. In addition, in some prokaryotes the

rRNA are transcribed from independent genes (see Fig. 5B). Finally, it was shown in yeast
that the SSU and LSU rRNA can be transcribed from independent genes (Liang and Fournier,

1997). Suggesting that this operon-like structure is not a prerequisite for production of
functional ribosomes.

In eukaryotes, rRNA genes are often organised in tandemly repeated copies at one or a few

chromosomal loci, whereas in bacteria the rRNA genes are scattered on the chromosome. The
amount of rRNA gene repetition varies between organisms – from two in M. jannashii (Bult

et al., 1996) to several thousands (for review see Hadjiolov, 1984-85). For example, E. coli

possesses seven rRNA operons (Srivastava and Schlessinger, 1990), and the yeast

S.!cerevisiae about 150 tandemly repeated copies of the rRNA genes located on chromosome

XII (see Goffeau et al., 1996; Nomura, 2001). It was shown is S. cerevisiae that the number of
rRNA transcription units is dynamic and can vary depending on the environmental conditions

(see Kobayashi et al., 1998; Klappenbach et al., 2000; Kobayashi et al., 2001).

In prokaryotes, all the cellular genes are transcribed with the help of a single RNA
polymerase, whereas in eukaryotes there are three different kinds of RNA polymerases

transcribing a different set of genes.
The RNA polymerase I (Pol I) is dedicated to the production of the rRNA contained in the

operon-like structure (18S, 5.8S, 25/ 28S rRNA) (for review see Grummt, 2003; Moss, 2004;

Moss et al., 2007), while the RNA polymerase III besides other cellular RNAs (e.g. tRNA)
synthesises the 5S rRNA (for details and review see Geiduschek and Kassavetis, 2001).

Pol I dependent genes transcription occurs in a subnuclear compartment, the nucleolus. The

nucleolus was first described by microscopy analysis in the early 19th century (see Wagner,

1835; Valentin, 1836 among others) and was found to be the location of rRNA synthesis
(Perry, 1960; Errera et al., 1961; Perry and Errera, 1961; Brown and Gurdon, 1964).

Furthermore, with the help of electron-microscopy techniques, the nucleolus can be
subdivided into conserved morphological and functional ultrastructures: the fibrillar centre
or FC containing the rDNA sequences, the dense fibrillar component or DFC containing
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the Pol I machinery and early ribosome biogenesis factors, and the granular component or
GC containing maturing pre-ribosomes (see Fig. 6 and Leger-Silvestre et al., 1999; Scheer
and Hock, 1999). However, it should be noticed that these ultrastructural and functional

definitions are still under debate (see Raska et al., 2004; Thiry and Lafontaine, 2005).

Figure 6: The nucleolus.
Electron micrographs of thin section nucleoli from (A) S. cerevisiae (Leger-Silvestre et al., 1999), (B) X. laevis
(Scheer and Benavente, 1990) are shown.
Nucleoli show a tripartite organisation with a fibrillar center (FC indicated F in figure), dense fibrillar component
(DFC indicated D in figure) and a granular component (GC indicated G in figure).
The scale bar in (A) and (B) represent 0.25 mm and 1 mm respectively. NP in (A) and (B) designates
nucleoplasm.
(C) Schematic representation of nucleolar ultrastructure.
The respective ribosomal functions are ascribed to the FCs (yellow), DFCs (green) and granular component (GC)
(pink) of the nucleolus. Reproduced from Raska et al., 2004.

Interestingly, the other cellular RNA polymerases are believed to be absent from this structure
and expression of some RNA pol II dependent genes are silenced in the rDNA context (Bryk

et al., 1997; Smith and Boeke, 1997). However, recent studies (review in Haeusler and
Engelke, 2006, see also Thompson et al., 2003) indicate that the RNA Pol III dependent genes

like the 5S rRNA and tRNA genes could be transcribed in the nucleolus or at its periphery. In

addition, RNA Pol II dependent genes have been described to be expressed from the rDNA
(Coelho et al., 2002; Kobayashi and Ganley, 2005). Further work need to be done in order to

understand the relationship shared between all these machineries.

More recently, non-ribosomal domains were described in the nucleolus. Apparently the

nucleolus plays unanticipated functions in the cells as e.g. among others the assembly of the
signal recognition particle (for review see Pederson, 1998).
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2.1.2. Genomic organisation and transcription of the r-protein genes.

In E. coli cells about half of the r-protein genes are clustered into four operons whereas the

remaining r-proteins genes are scattered throughout the genome in operons containing
1–4!genes (review in Nierhaus, 2004).

In eukaryotes the r-proteins genes are scattered throughout the entire genome and are

independently transcribed by RNA Pol II. Yeast S. cerevisiae r-protein gene promoters share
common signatures: they often contain binding sites for the transcription regulators Rap1p

and/ or Abf1p and T-rich sequences upstream of the transcription initiation start (Planta, 1997;
Lascaris et al., 1999; Lascaris et al., 2000).

Noteworthy, in fungi and higher plants many r-protein genes exist in multiple copies and are

coding for r-proteins isoform (see ribosomal protein gene database Nakao et al., 2004).
In!S.!cerevisiae among the 78 r-proteins known so far 59 are encoded by duplicated genes,

while the remaining once are encoded by single copy genes (see Kruiswijk and Planta, 1974;
Mager et al., 1997; Nakao et al., 2004).

2.2. Maturation of ribosomal RNA.

2.2.1. Ribosomal RNA modifications in eubacteria and eukaryotes.

Nucleoside modifications of rRNA were already reported almost 50 years ago (Littlefield and

Dunn, 1958b; Littlefield and Dunn, 1958a; Smith and Dunn, 1959). In all organisms, many

nucleotides in the mature rRNA undergo covalent modifications. These modifications occur
on the pre-rRNA during ribosome synthesis and are essentially of three types: base
methylation; methylation of the 2’-hydroxyl group of sugar residues (2’-O-methylation);
and conversion of uridine residues to pseudouridine (Y) by base rotation. Interestingly, the

number of rRNA modifications increases from prokaryotes to eukaryotes (see Fig. 7).
However, although these modifications are essentially clustered in the ribosome active

centres, the nucleotides that are modified are not highly conserved.

Figure 7: The main rRNA modifications in pro- and eukaryotes.
Adapted from Lafontaine and Tollervey, 1998. The amount and types of the main rRNA modifications in
representative organisms are indicated.
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2.2.1.1. rRNA modifications in eubacteria.

For instance in eubacteria, rRNA modifications were described to be protein dependent.

Different modifying proteins recognise the sequence and/ or structure of their target site
directly. Apparently, sequence and (stable) structural informations are important since in vitro

modification assays are strongly influenced by the substrate used (naked rRNA, and or by the

composition of fully or partially assembled ribosomal subunit) (see for example Weitzmann et
al., 1991; Lesnyak et al., 2006; Lesnyak et al., 2007). Moreover, most of these enzymes can

modify closely related sequences or structures present in different RNA species, like tRNA
(see for example Wrzesinski et al., 1995).

Despite rising knowledge about localisation and chemical nature of the rRNA modifications,

some of the modifying enzymes still have to be identified (see for summary and recent
identification report Rozenski et al., 1999; McCloskey and Rozenski, 2005; Andersen and

Douthwaite, 2006; Lesnyak et al., 2006; Sergiev et al., 2006; Lesnyak et al., 2007).

2.2.1.2. rRNA modifications in archaeabacteria and eukaryotes.

The most frequent rRNA modifications are 2’-O-methylation of ribose, and uridine

isomerization into pseudouridines (Y). Interestingly in both archaeabacteria and eukaryotes,

rRNA modification sites are selected by formation of short heteroduplexes with antisense
small (nucleolar) RNA (snoRNA). These rRNA/ snoRNA base pair interactions are necessary

for rRNA processing and/ or rRNA modification events.

Less abundant are the base methylations that are, as far as it is known, dependent on protein-
specific enzymes rather than snoRNP.

There are essentially two families of snoRNAs, the box C/D involved in sugar 2’-O-

methylation, and the box H/ACA involved in (Y) formation.

Box C/D snoRNAs consist of a stem-loop structure with boxes C (UGAUGA) and D (CUGA)

flanking a terminal helix; these boxes are sometimes duplicated (C’ and D’ box). Box H/ACA
snoRNAs consist of two consecutive hairpin structures bridged by a conserved box H or hinge

motif (ANANNA where N is any residue), and a triplet ACA always located 3 nucleotides
upstream of the RNA 3’ end (see Fig. 8A Lafontaine and Tollervey, 1998; Weinstein and

Steitz, 1999).
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Figure 8: Families of modification guide snoRNP. Reproduced from Bachellerie et al., 2002.
(A) Schematic secondary structures of the C/D and H/ACA classes of eukaryotic snoRNAs, with indication of
their conserved box motifs (marked as green and orange boxes, respectively) and sequence tracts complementary
to the cognate RNA target, also termed antisense elements (thick blue lines). The nucleotide targeted for
modification is denoted by a yellow circle. For C/D snoRNAs (left), the 5'-3' terminal stem allowing the
formation of the box C/D structural motif is represented. (B) Canonical structure of each type of guide RNA
duplex. (C) Sets of associated proteins and categories of cellular RNA targets identified so far. Archaeal
homologs of the two sets of snoRNP proteins are indicated.

At each site of modification, a duplex is formed by Watson-Crick base-pair interaction

between a specific snoRNA and the RNA substrate. The snoRNA/ pre-rRNA hybrid precisely

positions the residue to be modified on the substrate with respect to the conserved boxes of
the snoRNA (see Fig. 8B and Cavaille et al., 1996; Kiss-Laszlo et al., 1996; Ganot et al.,
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1997a; Ganot et al., 1997b; Ni et al., 1997; Kiss-Laszlo et al., 1998; Lafontaine and Tollervey,

1998; Weinstein and Steitz, 1999; Decatur and Fournier, 2003).

In eukaryotes, the snoRNAs are associated with a limited set of conserved core proteins
specific for the C/D and H/ACA box. In archaeabacteria one of the core components is

common to the C/D and H/ACA box, but is not conserved as a core component in eukaryotes

snoRNP (see Fig. 8C). Apparently, for each type of snoRNP, one of the conserved core
proteins Nop1p and Cbf5p (S. cerevisiae nomenclature) mediates the methyltransferase and

the pseudouridine synthase activities respectively.

The snoRNAs and their associated proteins are all concentrated in the nucleolus, in the DFC,

suggesting that rRNA modifications occur early in the course of ribosome biogenesis
(Lischwe et al., 1985; Ochs et al., 1985; Henras et al., 1998). However, it is not clear how the

modification process is temporally regulated during ribosome assembly. Early works in
mammals and in yeast suggest that modifications occur co-transcriptionaly and early post-

transcriptionaly respectively (see Warner et al., 1972; Udem and Warner, 1973 references and

discussion therein). One can speculate, from the position of some modifications which are
sometimes located within stem structures, that these modifications might occur prior to

secondary structure formation (see Decatur and Fournier, 2002).

In any case, it is still unclear how rRNA maturation, modification, and r-protein assembly are
coordinated.

Remarkably, few C/D or H/ACA box containing snoRNPs were described to be required for

rRNA cleavages (see below). For instance in yeast, four snoRNPs are described to be required

for rRNA maturation (Tollervey, 1987; Li et al., 1990; Hughes and Ares, 1991; Morrissey and
Tollervey, 1993; Liang and Fournier, 1995; Dragon et al., 2002; Atzorn et al., 2004; Piekna-

Przybylska et al., 2007). In fact, two of these snoRNAs, U3 (a box C/D) and snR30 (a box
H/ACA), are not guiding any known modifications but are required for rRNA maturation  (see

below for details).

Extensive genome-wide bioinformatic analyses and/ or purification and cloning of small RNA

from different organisms and tissues allowed to identify numerous small RNAs containing
H/ACA or C/D boxes signature in all archaeabacteria and eukaryotes analysed (see e.g.

Huttenhofer, 2006; Huttenhofer and Vogel, 2006). Almost all of these identified H/ACA or
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C/D boxes containing small RNAs so far were described to have putative modification targets,

some of which were experimentally confirmed.
Interestingly, H/ACA box motif and associated core proteins are components of the

telomerase, which maintains the telomere length of chromosomes (Mitchell et al., 1999). In
addition, some H/ACA or C/D boxes containing small RNAs were described to modify other

RNA substrates like spliceosomal snRNA, tRNAs and putatively mRNA (see Fig. 8C and

Bachellerie et al., 2002; Decatur and Fournier, 2003; Kiss, 2004).

In addition to snoRNPs, several putative base methyl-transferases have been described that, as
far as it is known, do not involve snoRNAs for their function. A well-characterised example is

the conserved protein Dim1p/ KsgAp (S. cerevisiae/ E. coli nomenclature respectively)

involved in a conserved base dimethylation of SSU rRNA (see Lafontaine et al., 1994;
Lafontaine et al., 1995; O'Farrell et al., 2006).

2.2.1.3. Function(s) of rRNA modifications.

“The effect of nucleotide modification on rRNA is one of the oldest questions in RNA science

and information(s) are still limited (Lane, 1998)” (quoted from Decatur and Fournier, 2002).
The chemical properties of the modified nucleotides do not a priori point to specific

functional roles, but several structural and thermodynamic effects have been proposed for

RNA modifications (see for review Decatur and Fournier, 2002). In each case, the structural
and thermodynamic effects depend on the structural context, and can extend beyond the site of

modification.
Recently, positioning of the different rRNA modifications in E. coli and S. cerevisiae 3D

ribosome structures have revealed that most modifications (~95% in E. coli and 60% in yeast)

occur in functionally important regions. This include the peptidyl transferase centre, the A-, P-
and E-sites of tRNA- and mRNA-binding, the polypeptide exit tunnel, and sites of

subunit–subunit interaction (see for review Decatur and Fournier, 2002).

However so far, most if not all rRNA modifications have been found to be not essential for
ribosome function (Ni et al., 1997; Green and Noller, 1999; Khaitovich et al., 1999; Lovgren

and Wikstrom, 2001).
By contrast, strong negative effects on yeast growth occur when (Y) or 2’-O-methylation

formation in rRNA is blocked on a global level, with point mutations in the putative (Y)
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synthase or methyl transferase enzymes (Tollervey et al., 1993; Zebarjadian et al., 1999). In

prokaryotes, LSUs reconstituted with unmodified rRNA are active in peptide bond synthesis
but have less activity than subunits reconstituted with natural rRNA (Green and Noller, 1999;

Khaitovich et al., 1999)
Thus, it seems probable that most of the individual modifications contribute a small, non-

essential benefit and that the full ensemble of modifications provides a large benefit. The

evolution of parallel but different schemes to create the same types of modification suggests
that these modifications must be beneficial (Badis et al., 2003; King et al., 2003).

2.2.2. Ribosomal RNA maturation in eubacteria and eukaryotes.

2.2.2.1. rRNA maturation in E. coli.

In E. coli the rRNA genes are transcribed into a 30S rRNA precursor containing the mature
form of the 16S rRNA, a tRNA, 23S and 5S rRNA separated by extra and intragenic spacers

(ETS and ITS respectively) (see Fig. 9). Several endo- and exonucleolytic reactions occur in

order to liberate the different rRNA species from the pre-rRNA (see Fig. 9).

RNase III dependent maturation of 16S and 23S rRNA:
The 16S rRNA precursor is liberated from the 30S rRNA precursor through cleavages by the
RNase III, leading to the formation of a pre-16S rRNA or 17S rRNA (Young and Steitz,

1978). Like for the pre-16S rRNA, a 23S rRNA precursor is liberated from the 30S rRNA
precursor through cleavages by RNase III, leading to pre-23S rRNA formation (Bram et al.,

1980; Sirdeshmukh et al., 1985; Sirdeshmukh and Schlessinger, 1985).

RNase III is not essential for cell growth, and recognises in vivo and in vitro double stranded
RNA structures (Ginsburg and Steitz, 1975; Gegenheimer and Apirion, 1980), apparently

without sequence specificity in vitro despite the fact that in vivo RNase III substrates seem to
share a consensus sequence (Chelladurai et al., 1991).

Interestingly, RNase III is not only involved in pre-rRNA cleavage, but also cleaves some

mRNAs (review in Nicholson, 1999; MacRae and Doudna, 2007)
In RNase III deficient strains pre-16S rRNA and pre-23S rRNA produced are slightly larger

(Gegenheimer et al., 1977) presumably resulting of normal neighbourhood processing events
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in tRNA, 5S rRNA and “non specific” cleavages. Surprisingly, in a RNase III deficient strain,

mature 16S rRNA is produced with the same rate as in a wildtype strain (see Srivastava and
Schlessinger, 1990). In contrast, RNase III deficient strains produce a slightly larger

heterogeneous functional 23S rRNA (King et al., 1984).

Figure 9: Ribosomal RNA processing in E. coli.
Adapted and updated from Nierhaus, 2004 and references in introduction 2.2.2.1.
Upper part shows the operon structure of the rRNA genes in E. coli. Below a cartoon of the operon secondary
structure of the respective RNA is represented.
The cleavage sites are indicated with arrows and when known the RNase triggering the processing reaction is
indicated.

Final 16S rRNA maturation:
After RNase III cleavage, 5’ and 3’ mature termini are formed by further cleavages.

Remarkably, in contrast to in vitro reconstituted RNase III dependent cleavage, in vitro

reconstitution of the following maturation steps depends on the pre-formation of rRNA –

r–protein complexes (Schlessinger, 1979).
Early work identified in a particular mutant strain an rRNA intermediate containing a

66!nucleotide extension at the 5’-16S rRNA terminus and a mature 3’ end. The 5’ end could
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be further matured in vitro into 16S rRNA by incubation with a wildtype cell extract

(Dahlberg et al., 1978). This suggested that 5’-16S rRNA terminus is probably matured in two
steps. Recently, it was shown in vivo and in vitro that maturation of the 5’-16S rRNA

terminus depends on two closely related enzymes: RNase E and RNase G (Li et al., 1999b;
Lee et al., 2002).

Both enzymes are multifunctional enzymes involves in the metabolism of several cellular

RNAs (Li et al., 1999b; Nicholson, 1999; Carpousis, 2002; Lee et al., 2002 and below).

The RNase E is essential for cell viability, but in the absence of RNase E formation of mature
16S rRNA still occurs with a slow rate. The RNase G is non essential for cell viability, and

interestingly depletion of RNase G reduces the amount of 16S rRNA produced and leads to

the accumulation of a 16S pre-rRNA containing a 66 nucleotides extension at the 5’ terminus
(Dahlberg et al., 1978; Li et al., 1999b). Depletion of both RNase E and G leads to a complete

inhibition of 16S rRNA production and accumulation of a 17S rRNA species which is cleaved
in vitro using purified RNase E at position +66 relative to the 5’ end.

The activity responsible for the 16S rRNA 3’ end maturation in vitro was isolated but so far
not fully characterised (Hayes and Vasseur, 1976). Interestingly, it was suggested that

extensions of pre-16S rRNA (17S rRNA) can potentially base pair (see Srivastava and

Schlessinger, 1990). Furthermore, results by Li et al (Li et al., 1999b) indicate that
3’!maturation depends to some degree on efficient maturation of the 5’ end terminus.

This!suggests a possible inhibitory effect on 3’ end processing by formation of a terminal
stem like structure.

Final 23S rRNA maturation:
After RNase III cleavage, mature 5’ and 3’ termini are formed by further cleavages.

Early study suggests that 23S rRNA 5’ end maturation is probably carried out by a so far
unidentified endonuclease and requires conditions enabling protein synthesis (King et al.,

1984; Srivastava and Schlessinger, 1988). Another report suggested that 23S rRNA 3’ end

digestion proceeds through exonucleolytic reactions (Sirdeshmukh et al., 1985; Sirdeshmukh
and Schlessinger, 1985). Recently, analysis of maturation of rRNA in strains defective for

different known RNases indicated that the RNase T is required for 23S rRNA 3’ end
maturation (Li et al., 1999a). RNase T is also involved in the maturation of various cellular

RNAs (e.g. 5S rRNA, tRNA) (see for review Nicholson, 1999 and below).
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A strain lacking the non-essential RNase T shows an extended 3’-23S rRNA terminus while

the 5’-23S rRNA is normally processed, and a small amount of fully matured 23S rRNA is
produced suggesting that (an)other RNase(s) can proceed with 5’ end maturation, however

with a poor efficiency. In addition, pre-23S rRNA containing particles isolated from RNase T
deficient cells can be further matured in vitro by addition of purified RNase T (Li et al.,

1999a).

In summary, RNase III dependent 23S rRNA intermediate formation is a prerequisite for final

maturation of 23S rRNA and precedes maturation of 5’ end 23S rRNA by an unknown
endonuclease and 3’ end formation involving mainly the exonuclease RNase T.

5S rRNA maturation:
The 5S rRNA is released from the pre-30S rRNA by the action of the endoribonuclease,

RNase E (Misra and Apirion, 1979). The 5’ residues are suggested to be removed by an
exonucleolytic process (Roy et al., 1983), but the factor involved in this process is still

unknown. The 3’ residues are removed in vitro through action of the exonucleolytic activity

of purified RNase T, and in vivo depletion of RNase T leads to the accumulation of functional
ribosomes containing extra nucleotides at the 5S rRNA 3’ end, meanwhile 5’ processing

occurs independently (Christiansen, 1988; Li and Deutscher, 1995).

2.2.2.2. rRNA maturation in archaeabacteria.

In archaeabacteria, information about the rRNA maturation pathway is fragmented. However,

recent analysis in two representative species from the major archaeal kingdoms
(Archaeoglobus fulgidus and Sulfolobus solfataricus, euryarchaeota and crenarchaeota

respectively), suggests a general rRNA maturation pathway in archaeabacteria (see Fig. 10

Tang et al., 2002).
Apparently the 16S and 23S rRNA precursors form a secondary structure - found also in

tRNA precursors in archaeabacteria – called bulge-helix-bulge or BHB (Kjems and Garrett,

1988; Lykke-Andersen et al., 1997). The BHB motif consists of two 3 nucleotides bulges on
opposite strands of the RNA, separated by a 4 nucleotides helix, this motif is cleaved by a so

called splicing endonuclease (Tang et al., 2002). Cleavages are followed by ligation of the
pre-rRNA extremities with the help of an unknown ligase activity, thus releasing circular

pre-16S and pre-23S rRNA, and the ligation product of the 5’ ETS and 3’ ETS.
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The!pre–rRNAs are finally further matured through not yet determined endo and/ or

exonucleolytic cleavages (Tang et al., 2002; Dennis and Omer, 2005).
Interestingly, secondary structure analysis, and chemical probing indicate that the 5’ and

3’ ETS of both pre-16S and pre-23S rRNA form a C/D box snoRNA like structures which are
also able to bind archaeal snoRNP-like core protein components (Tang et al., 2002). However,

it needs to be determined, whether these RNA structures have any relevant function(s) in vivo.

In addition, it was shown in S. solfataricus that the 5’ ETS of the pre-16S rRNA can be
processed by endonucleolytic reaction in vivo and in vitro at two main sites upstream of the

BHB motif (Durovic and Dennis, 1994; Russell et al., 1999; Ciammaruconi and Londei,
2001). Remarkably the neighbouring sequences of the most 5’ cleavage site show sequence

homology between crenarchaeota and eukaryotes, and is analogous to the eukaryotes A0

rRNA processing site (Ciammaruconi and Londei, 2001).
Finally, 5S rRNA maturation in archaeabacteria is still uncharacterised.

Figure 10: Proposed pre-rRNA processing pathway in archaeabacteria. Reproduced from Tang et
al., 2002.
Ligated RNA species from processing stems of the ribosomal operon of A. fulgidus (A–C) and S. solfataricus (D-
F). Proposed pre-rRNA processing pathway in A. fulgidus (A-C) and S. solfataricus (D-F). Mature rRNAs are
represented by thick black lines, precursor sequences by thin lines. BHB motifs are shown; the cleavage sites
within BHB motifs are indicated by arrow (A and D). Further processing steps of ligated RNA species are shown
by arrows (B and E).
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2.2.2.3. Ribosomal RNA maturation in eukaryotes.

In eukaryotes, rRNA maturation is best studied in the yeast S. cerevisiae, and seems to be well

conserved among eukaryotes (among others Hadjiolova et al., 1993; Gerbi et al., 2003;
Rouquette et al., 2005; Choesmel et al., 2006). Despite numerous efforts, many of the endo-

and exo-nucleases responsible for rRNA maturation are unknown. Most of the rRNA

maturation steps could not be reconstituted in vitro making the identification of most of the
enzymatic activities responsible for rRNA processing difficult.

So far, most of our knowledge is based on in vivo loss of function analysis of many factors
that indicates their requirement for specific cleavages. However, their exact function in the

maturation process remains to be determined.

The current view of rRNA processing in S. cerevisiae is summarised in Fig. 11.

A more detailed view about the rRNA maturation cis- and trans-acting elements is described
below.

 Co-transcriptional and early rRNA processing events.
The longest detectable pre-rRNA transcript in yeast, the 35S pre-rRNA, extends from the

transcription initiation site to a position several nucleotides beyond the 3’ end of mature
25S!rRNA (see Fig. 11). The actual transcription termination site is predicted to be

approximately 200 nucleotides further downstream of the 25S rRNA 3’ end, but these

intermediates are undetectable in wildtype cells, this and recent work suggest that 35S pre-
rRNA is probably released co-transcriptionaly (see Henras et al., 2004).

Release of 35S pre-rRNA is carried out by the endoribonuclease Rnt1p (Kufel et al., 1999),
the yeast homologue of bacterial RNase III (King et al., 1984). Rnt1p-dependent cleavage of

the 3’ ETS is observed in vivo at positions +14 and +49 with respect to the mature 3’ end of

the 25S rRNA (Kufel et al., 1999), suggesting that the 35S pre-RNA actually extend to +14.
The 3’ ETS cleavage sites lie on both sides of a 5'-AGNN-3' tetra-loop structure which is a

strong determinant for Rnt1p-binding and cleavage positioning on the nascent pre-rRNA

(Chanfreau et al., 2000; Nagel and Ares, 2000; Lamontagne et al., 2003; Lamontagne and
Elela, 2004; Leulliot et al., 2004; Wu et al., 2004).

Like RNase III, Rnt1p is a multifunctional enzyme involved in the metabolism of many
cellular RNAs (reviewed in Lamontagne et al., 2001; MacRae and Doudna, 2007).
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In strains lacking Rnt1p or carrying mutations in the stem-loop structure in the 3’ ETS,

cleavage does not occur and 3’ extended pre-rRNA species are formed (Kufel et al., 1999).
The most abundant 3’ extended pre-rRNA in a Drnt1 mutant extends to a position near the

major Pol I transcription stop at position +210 (van der Sande et al., 1989; Kufel et al., 1999).

With or without Rnt1p dependent cleavage, pre-35S rRNA undergoes a serie of maturation
events that are described below.

Recently, electron microscopy visualisation of the transcribed rRNA genes using Miller’s

chromatin spreading technique (Miller and Beatty, 1969) in wildtype and mutant yeast cells,
suggested that co-transcriptional cleavage in the ITS1 can occur with a relative high frequency

(see Osheim et al., 2004). These results suggest that - like in Dictyostelium (Grainger and
Maizels, 1980), E. coli (Hofmann and Miller, 1977), and unlike most other eukaryotes

analysed (Osheim et al., 2004) - separation of SSU and LSU rRNA precursors in yeast can

happen by early co-transcriptional cleavage events.

Final 18S rRNA maturation steps.
Pre-18S rRNA is released from the 35S rRNA precursor as a 20S rRNA precursor through
cleavages at sites A0, A1 and A2 (see Fig. 11). Alternatively, pre-18S rRNA is released as a

23S rRNA precursor through cleavage at site A3 (see Fig. 11). Whether the 23S pre-rRNA is
further processed normally to produce functional 18S rRNA is still under debate, since this

rRNA was for a long time considered to be an aberrant rRNA species (see among others

Venema and Tollervey, 1995; Venema and Tollervey, 1999).

The 35S and probably the 23S pre-rRNAs are processed into 20S pre-rRNA through
endonucleolytic cleavages at sites A0, A1 and A2, which are strongly coupled (Kressler et al.,

1999).

The A0 processing site in the 5’ ETS was identified via primer extension and is located
90!nucleotides upstream of the 5’ end of mature 18S rRNA (Hughes and Ares, 1991; Beltrame

et al., 1994). The A1 processing site corresponds to the 5’ mature end of 18S rRNA (see Fig.
11) and the A2 processing site is positioned 214 nucleotides downstream of the 3’ end of the

mature 18S!rRNA (van Nues et al., 1994; van Nues et al., 1995).

Mutational analyses of cis-acting elements involved in the A1 site cleavage suggest that two

mechanisms determine cleavage at site A1. One mechanism involves recognition of
evolutionarily conserved nucleotides immediately upstream of A1 in the 5’ ETS, whereas a
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second mechanism positions the cleavage site at a fixed distance from a conserved stem-loop

structure within the mature 18S rRNA 5’ end (Venema et al., 1995; Sharma et al., 1999).
Surprisingly, substitution of the evolutionarily conserved nucleotides across the A1 site

abolished processing at A0 without any significant effect on A1 cleavage, 18S!rRNA
synthesis, or cell viability (Venema et al., 1995) suggesting that the A0 cleavage is somehow

not essential for rRNA maturation. Furthermore secondary structure prediction of the 5’ ETS

region suggests that the A0 and A1 cleavage sites are in close proximity at opposite sides and
near the base of an extended stem-loop structure (Yeh and Lee, 1992; Intine et al., 1999).

The cis-acting elements involved in the A0 site cleavage are still unclear. Despite the fact that
the sequence of the A0 cleavage site is evolutionarily conserved, mutations across this

cleavage site do not affect neither the efficiency nor the cleavage position (Venema et al.,

1995).
Interestingly, a similar cleavage recognition mechanism as described for the A1 site, appears

to act at site A2 in ITS1.  Cleavage at site A2 is also positioned with respect to conserved
sequences across and flanking the A2 site and to a secondary rRNA structure 3’ of the

cleavage site (Allmang et al., 1996). Remarkably, it was demonstrated, when expressing the

pre-18S rRNA independently from LSU pre-rRNA using a split operon, that in this condition
the A2 site is not required neither for SSU nor LSU rRNA formation (Liang and Fournier,

1997). This result strongly suggests that the main A2 site function is to separate the SSU and

the LSU maturation pathways.   

In addition to the different cleavage sites, other cis elements promoting SSU assembly and
maturation have been described. In fact, it was demonstrated that direct base pairing between

the pre-rRNA and some snoRNAs is required for cleavage reaction. In yeast and vertebrate

one of the best studied snoRNA is the box C/D snoRNA U3 (Beltrame and Tollervey, 1992;
Beltrame et al., 1994; Beltrame and Tollervey, 1995; Hughes, 1996; Gerbi et al., 2003).

The U3 snoRNA is required for A0, A1 and A2 processing, and binds to the 5’ ETS,
230!nucleotides upstream of site A1 and to the mature 18S rRNA. Interestingly, mutating in

cis the pre-rRNA elements interacting with U3, mimic the phenotype observed in trans after

U3 depletion (Hughes and Ares, 1991; Beltrame and Tollervey, 1992; Beltrame et al., 1994;
Beltrame and Tollervey, 1995; Hughes, 1996).

Based on the observed interaction of U3 with the pre-rRNA an attractive model of pre-rRNA
folding was suggested, where the 5’ and 3’ rRNA sequences would be brought into close

contact inducing a circle-like structure of the pre-18S rRNA as described in prokaryotes
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(Hughes, 1996; Gerbi et al., 2003). Noteworthy, (1) based on the knowledge on rRNA

processing in E. coli, (2) in combination with predicted base pairing between the 5’ ETS and
the ITS1, and (3) the tight linkage between the processing events at A0, A1 in the 5’ ETS and

A2 in the ITS1, a similar looping model was already suggested in the beginning of the 1980s
(see Veldman et al., 1981).

The 20S pre-rRNA is exported from the nucle(ol)us (Udem and Warner, 1973), and
subsequently processed at site D, the 3’ end of mature 18S rRNA (see Fig. 11).

Detection of full-length D–A2 fragment indicates that this step, like the others in 18S rRNA
synthesis, is endonucleolytic, although the responsible enzyme remains to be identified

(Stevens et al., 1991). The cis element(s) required for accurate processing at site D are still

unclear. Apparently, the ITS1 region from several other, more or less closely related, yeast
species can functionally replace the S. cerevisiae counterpart despite large differences in size

and sequence (van Nues et al., 1994). However, using a system expressing separately the pre-
18S rRNA and pre-5.8S/ 25S rRNA, it has been suggested that only 44 nucleotides

downstream the site D are sufficient for proper 18S rRNA maturation (see Liang and

Fournier, 1997). This suggests that most of the ITS1 region is dispensable for 18S rRNA.
More recently, mutational analysis suggested that the cis elements required for site D cleavage

are located on both sides in the immediate vicinity of the cleavage site (van Beekvelt et al.,

2001b).
Secondary rRNA structure prediction indicates that site D is located at the apical end of a

hairpin formed by base pairing between the 3’ end of 18S rRNA and the 5’ end of ITS1 (Yeh
et al., 1990). However this structure in the upper region of the helix-containing site D is not

important for processing at site D. This rRNA secondary structure is neither required for

production of functional 40S ribosomal subunits (van Beekvelt et al., 2001b).
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Figure 11: Pre-rRNA processing pathway in Saccharomyces cerevisiae. Adapted from Fatica and
Tollervey, 2002; Fromont-Racine et al., 2003; Gallagher et al., 2004.
Upper panel: structure of the pre-rRNA and locations of processing sites. In the pre-rRNA, the regions encoding
the 18S, 5.8S and 25S rRNAs are flanked by the 5´ and 3´ external transcribed spacers (5´-ETS and 3 ´-ETS) and
separated by internal transcribed sequences 1 and 2 (ITS-1 and ITS-2). Lower panel: pre-rRNA processing in
Saccharomyces cerevisiae. Known processing enzymes are indicated in red. Unidentified enzymes are indicated
as question marks. The gray background indicates the major rRNA processing pathways. See introduction
2.2.2.3. for details.

Final 25S & 5.8S rRNA maturation steps.
In contrast to the 18S rRNA maturation pathway, maturation of 25S & 5.8S rRNA is more

complex, and requires both endonuclease cleavages and exonuclease digestions. In addition

several enzymatic activities involved in the 5.8S/ 25S rRNA maturation pathway have been
characterised.

After cleavage of the 35S pre-rRNA at site A2 or A3 the 27SA2 or 27SA3 rRNA precursors

are released.
The 27SA2 rRNA precursors are matured using two alternative pathways: a major pathway

(85%) and a minor pathway (15%) (reviewed in Venema and Tollervey, 1995; Venema and
Tollervey, 1999).
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Using the major pathway the 27SA2 rRNA is cleaved at site A3 by an RNP complex the

RNase MRP (Shuai and Warner, 1991; Lindahl et al., 1992; Chu et al., 1994; Schmitt and
Clayton, 1994; Chamberlain et al., 1998). The RNase MRP is an essential eukaryote specific

endonuclease related to bacterial RNase P, which is required for rRNA processing, but also in
the metabolism of other RNAs (see Morrissey and Tollervey, 1995; Walker and Engelke,

2006). Remarkably, cleavage at site A3 could be reproduced in vitro using purified

components from yeast (Lygerou et al., 1996). Cleavage at A3 can be inhibited by deletion of
10 nucleotides across the A3 sequence (Henry et al., 1994). Interestingly in this condition

maturation of 27SA2 pre-rRNA proceeds through the minor pathway (Henry et al., 1994). In
fact, site A3 acts as an entry site for the 5’Æ3’ exonucleases Xrn1p and Rat1p which generate

the 5.8S rRNA 5’ end, further named 5.8SS (Henry et al., 1994). Xrn1p and Rat1p are two

homologous proteins, which show in vitro processive 5’Æ3’ exoribonuclease activity and are

also involved in RNA metabolism (see among others Stevens et al., 1991; Amberg et al.,
1992; Beelman and Parker, 1995; Johnson, 1997; Petfalski et al., 1998).

Meanwhile, Rex1p dependent 3’Æ5’ exonucleolytic digestion occurs from B0ÆB2 and

generates the 3’ mature 25S extremity (Kempers-Veenstra et al., 1986). These two parallel

reactions generate the 27SBS (see Fig. 11). Rex1p is closely related to the prokaryotic

RNase!D and is involved in the trimming of different RNA substrates (Kempers-Veenstra et
al., 1986; van Hoof et al., 2000)

Interestingly, deletion analysis of the 3’ ETS region indicates that the stem loop structure

recognised by Rnt1p is both necessary and sufficient for complete processing in the 3’ ETS

(Allmang and Tollervey, 1998). Finally, loss of the hairpin structure in the 3’ ETS strongly
inhibits processing at site A3 in the ITS1, and shifts the LSU biogenesis towards the minor

pathway, suggesting that ITS1 and 3’ ETS cleavages are coordinated (Allmang and Tollervey,
1998). Again agreeing with the looping model proposed in the beginning of the 1980s by

Veldman et al., (Veldman et al., 1981). Interestingly in higher eukaryotes, it was suggested

that such a looping of pre-rRNA would be enabled by base pairing of the U8 snoRNA with
the pre-rRNA (Peculis, 1997). In yeast, U8 snoRNA does not exist, however it is possible that

an U8-like activity would stabilise base pair interaction, and further processing. This attractive
model needs to be further demonstrated.
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Using the minor pathway the 27SA2 rRNA is cleaved in 5’ at site B1L by an unknown

endonuclease (review in Venema and Tollervey, 1995; Venema and Tollervey, 1999; Faber et

al., 2006) and in 3’ at site B2 by 3’Æ5’ exonucleolytic digestion (see earlier and Kempers-

Veenstra et al., 1986) generating 27SBL.

Despite sequence conservation at the B1L site mutational analysis reveals that this sequence is

not required for processing at B1L site (Faber et al., 2006). So far neither cis-acting elements

nor enzymatic activities directing this cleavage, have been described.

Further on, the same pathway is used to process both 27SBS and 27SBL. First 5.8S and

25S!rRNA precursors are separated into 7SS or L and 26S rRNA respectively through cleavage

at site C2 in the ITS2 by an uncharacterised activity (reviewed in Venema and Tollervey,

1995; Venema and Tollervey, 1999).

The pre-26S rRNA is matured into 25S rRNA, mainly by Rat1p or by Xrn1p (however with

less efficiency) dependent 5’Æ3’ exonucleolytic digestion (Geerlings et al., 2000).

The final maturation of the pre-7SS or L rRNA 3’ end is believed to occur through multiple

exonucleolytic digestion steps, since several intermediates are detectable.

First 3’Æ5’ exoribonuclease digestion occurs from the C2 site to 30 nucleotides downstream

of the 3’ end, generating the 5.8S+30 rRNA. Formation of the 5.8S+30 rRNA is mediated by

a large protein complex - the exosome (Mitchell et al., 1996; Mitchell et al., 1997) –
containing several components all of which have either been shown to have 3’Æ5’

exoribonuclease activity in vitro or are predicted to have it based on sequence homology.

Some of the exosome components, in addition to their 3’Æ5’ exoribonuclease activity, are

homologous to E. coli RNases (Mitchell et al., 1997; Venema and Tollervey, 1999). Second,
further 3’Æ5’ exoribonuclease digestion mediated by the exosome – apparently through

action of sub-components Rrp6p and Rrp47p - process the 5.8S+30 rRNA into 6S rRNA

(3’!end with 8 nt extended) (Briggs et al., 1998; Mitchell et al., 2003). Third, 3 nucleotides at

the 3’ end 5.8S rRNA are further released by the action of the exosome and two homologous
proteins Rex1p and Rex2p which share also homology with the bacterial RNase D (van Hoof

et al., 2000). Finally, the last 4 nucleotides are released by the non-essential factor Ngl2p,

probably by endonucleolytic cleavage, producing mature 5.8S rRNA (Faber et al., 2002).
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Interestingly, the exosome is involved in the degradation of mRNA (Houseley et al., 2006).

Recent work, in the yeast S. cerevisiae suggest that aberrant rRNA precursors are recognised
(by an unknown mechanism), marked by poly-adenylation, and further degraded by a nuclear

specific form of the exosome (see Kuai et al., 2004; LaCava et al., 2005; Houseley et al.,
2006).

It is difficult to determine the cis-acting elements that are required for processing within the
ITS2, since in contrast to the ITS1, the ITS2 is strictly required for proper maturation of both

5.8S and 25S rRNA.  In fact, complete or partial deletions or mutations within ITS2, or
replacement of ITS2 in S. cerevisiae with counterparts from other species, or independent

expression of the LSU cistrons, fail to produce mature 5.8S and 25S rRNA. (van der Sande et

al., 1992; van Nues et al., 1995; Liang and Fournier, 1997; Peculis and Greer, 1998; Cote and
Peculis, 2001; Cote et al., 2002).

In addition, two alternative secondary structure models exist for S. cerevisiae ITS2. Chemical
and enzymatic structure probing and phylogenetic comparisons resulted in one structure

model (Yeh and Lee, 1990) referred as the “hairpin model” and an alternate folded structure

model was proposed (Joseph et al., 1999; Michot et al., 1999), referred as the “ring model”.
Mutation analysis indicates that mutually exclusive structural elements of the ring and hairpin

models may play distinct roles in processing and suggests that a transition between the

respective conformations may be important for processing (Cote et al., 2002). Accordingly a
dynamic conformational model for ITS2 was proposed: initial formation of the

“ring!structure” may be required for essential, early events in processing complex assembly
and may be followed by an induced transition to the “hairpin structure” that facilitates

subsequent processing events (Cote et al., 2002).

5S rRNA maturation.
The 5S rRNA genes are transcribed as a 5S pre-rRNA. The transcription initiation site
corresponds to the mature 5S rRNA. The 3’ end is extended by 7 to 13 nucleotides that are

digested by a 3’Æ5’ exonuclease activity  (Piper et al., 1983; van Hoof et al., 2000).

Complete 3’Æ5’ digestion of the 5S rRNA is apparently blocked by a secondary RNA

structure formed at the 3’ end of mature 5S rRNA (see Lee and Nazar, 1997; Lee and Nazar,

2003).



INTRODUCTION                                                                                                                     40

2.3. Transient interactions of ribosome biogenesis factors with pre-ribosomes and
their function in eukaryotic ribosome biogenesis.

In the early 1970s, with the help of metabolic labelling experiments, cell fractionation and
sucrose-gradient analysis, a basic model of eukaryotic ribosome assembly was defined and

remains the core of today’s ribosome assembly knowledge. These experiments revealed that

an early 90S pre-ribosome particle containing 35S pre-rRNA is formed and subsequently
separated into 43S and 66S particles containing SSU and LSU rRNA precursors respectively.

The 43S pre-ribosomes are then exported to the cytoplasm and matured into 40S SSU,
whereas maturation of the 66S particles continues in the nucleus prior to export (see Fig. 12).

Interestingly, these analyses were also indicating that the pre-ribosomal particles contain a

higher protein to RNA ratio compared to the mature ribosomes. This suggested the existence
of transiently associated protein factors.

Figure 12: Evolution of the ribosomal assembly pathway.
Modified from Nierhaus, 2004. See also introduction 2.3. for details.
Pre-ribosome have tentatively been ordered, based on their protein and rRNA content, and respective
sub–cellular localisation.
The left panel shows the ribosomal assembly pathway as was demonstrated in the 1970´s.
The right panel shows the ribosomal assembly pathway as it was demonstrated in the beginning of 2000´s. E:
Early, M: Middle, L: Late, Nu: Nucleoplasm, Cy: Cytoplasm.
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With the help of powerful genetic approaches in yeast, factors involved in ribosome

biogenesis could be identified. However these genetic approaches were far from being
exhaustive in describing the full set of factors required for a given step of ribosome

maturation.

Only recently, the tools required for the isolation of pre-ribosomal particles and subsequent

identification of the associated proteins have become available. Tandem affinity purification
(TAP) of epitope-tagged proteins allowing the isolation of pre-ribosomal complexes under

physiological conditions (Rigaut et al., 1999) in combination with mass spectrometry
identification of the components became a powerful method to analyse the association of

ribosome biogenesis factors with pre-ribosomes. As a result, more than 120 non-ribosomal
proteins were found in association with pre-ribosomal particles in yeast (see Fig. 13).

According to their sub-cellular localisation, and their pre-rRNA and/ or protein interaction
pattern, these factors were placed in a relatively precise eukaryotes ribosome biogenesis factor

assembly map (see Fig. 12-13, and Fromont-Racine et al., 2003; Milkereit et al., 2003a; Hage

and Tollervey, 2004).

In addition, systematic in vivo depletion and/ or mutant analysis of most of these non-

ribosomal proteins factors demonstrated their requirement at different steps of the rRNA
maturation pathway, and/ or for pre-ribosomal particles export.

However, the exact molecular function for most of these factors is unclear. Among these
factors, few were predicted or were shown to be ATP dependent RNA helicases, ATPases,
GTPases, and Kinases. They are suggested to facilitate ribosome assembly and/ or rRNA

folding, or to unwind the snoRNA-pre-RNA duplex (see for review Fromont-Racine et al.,
2003; Hage and Tollervey, 2004, among recent work Karbstein et al., 2005; Bernstein et al.,

2006; Granneman et al., 2006, and following paragraphs).
Finally, these biochemical approaches were focusing on the identification, of

stoichiometrically co-purifying factors, neglecting most of the sub-stoichiometrically co-

purifying factors as a result many of the enzymes known to trigger rRNA maturation failed to
be identified (Hage and Tollervey, 2004).

A more detail view of these results will be given in the following part of this introduction.
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Figure 13: Assembly and disassembly of ribosome synthesis factors with the pre-ribosomal
particles. Reproduced from Dez and Tollervey, 2004.
The existence of multiple pre-ribosomes is inferred from the RNA and protein composition of purified particles.
The upper panel indicates 40S subunit synthesis factors. The central panel indicates the pre-ribosomal particles
and their predicted sub-cellular locations. The lower panel indicates 60S synthesis factors. During ribosome
synthesis, the 35S pre-rRNA primary transcript undergoes sequential processing through the intermediates
indicated (within the ovals) to the mature 18S, 5.8S and 25S rRNAs. The pre-rRNA is transcribed in the dense
fibrillar component (DFC) of the nucleolus and the maturing pre-ribosomes move from the DFC to the more
peripheral granular component (GC) of the nucleolus. The particles are then released into the nucleoplasm, prior
to transport through the nuclear pore complex (NPC) into the cytoplasm. The initial particles, termed 90S pre-
ribosomes or the small subunit (SSU) processome, largely contain factors that are required for 40S subunit
synthesis. Factors required for 60S synthesis, largely associate with the pre-60S particles during their maturation
following separation from the pre-40S pathway. These pre-ribosomes are classed as early (E), middle (M), late
(L) and cytoplasmic (C) (indicated by the names outside the ovals). A base dimethylation modification (m)
within the 20S pre-rRNA has been used as a signature for late pre-40S particles. During the course of the
maturation process, a large number of ribosome synthesis factors are bound and released. For each factor, the pre
ribosomal particles in which they have been identified by proteomic analyses are indicated. The 5S rRNA is
independently transcribed and incorporated into the pre-60S M particle as a 5S ribonucleoprotein (5S RNP)
particle.
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2.3.1. An early common pre-ribosome complex: the 90S particle.

Recently, large ribonucleoprotein complexes involved in early steps of ribosome biogenesis

were isolated in the Baserga and Hurt laboratories (Dragon et al., 2002; Grandi et al., 2002).
In a search for proteins associated with the U3 snoRNA, the Baserga laboratory, with the help

of a known U3 associated protein as bait, isolated a particle containing 28 associated proteins.

Among these 17 proteins (U-three associated proteins or Utp1-17p) were uncharacterised,
10!were previously described to be Utp’s, and one protein was already known but not

described as a Utp. This complex was estimated to sediment around 80S and was termed
SSU!processome by analogy with the splicesome (see Fournier and Maxwell, 1993).

Most of these factors are localised in the nucleolus, and loss of function analyses demonstrate

that these factors are required for early processing events at A0, A1 and A2 (Dragon et al.,
2002; Bernstein et al., 2004).

In addition, after depletion of essential Utps or the U3 snoRNA, the terminal knobs observed
at the 5’ ends of the nascent pre-rRNA transcript after chromatin spreading (Miller and

Beatty, 1969), were lost (Mougey et al., 1993; Dragon et al., 2002). It is likely that these

terminal knobs correspond to the RNP complex described above suggesting a co-
transcriptional association of the SSU processome with the nascent pre-rRNA.

More recently, 12 additional components associated to the SSU processome were reported
from the Baserga lab (Bernstein et al., 2004).

Starting with 13 bait-proteins identified previously (Gavin et al., 2002) the Hurt laboratory
characterised a particle with a sedimentation coefficient estimated to 90S (Grandi et al.,

2002). According to the authors, this 90S particle contains 35 ribosome biogenesis factors,
the!U3 snoRNA, and the 35S pre-rRNA. Interestingly, this 90S particle is enriched in 40S

biogenesis factors and lacks 60S synthesis factors, suggesting that these factors bind later or

that their affinity for the 35S pre-rRNA is low.

Noteworthy, the SSU processome protein composition (Dragon et al., 2002; Bernstein et al.,

2004) correlates with the 90S particle protein content, suggesting that these two particles are
almost identical (see discussion in Bernstein et al., 2004; Granneman and Baserga, 2004).

However, one can still ask whether “the” 90S pre-ribosome described in the 1970s has been
really isolated. In fact, most of the 90S/ SSU processome factors described can efficiently

coprecipitate 35S and 23S pre-rRNA with the same efficiency, while 20S pre-rRNA is poorly



INTRODUCTION                                                                                                                     44

coprecipitated (see Bernstein et al., 2004; Granneman and Baserga, 2004 and Fig. 28). The

assignment of the rRNA species of the particle isolated by Grandi et al (Grandi et al., 2002), is
based on primer extension analysis, but it is important to note that in these experimental

conditions the 35S and 23S pre-rRNAs are not discriminated. Therefore it is not clear whether
these complexes described above do represent “the” 90S pre-ribosome (Granneman and

Baserga, 2004). Anyway it is likely that these complexes represent an early intermediate of

the LSU and SSU since the rRNA protein content differ from the following 66S and 43S
precursors.

As described earlier (see introduction 2.2.2.3.), it was suggested that the U3 snoRNA triggers

a major rRNA structural reorganisation to facilitate rRNA maturation and r-protein (?)

assembly. Therefore, one can speculate that the SSU processome components could serve as a
platform to maintain a favourable structural organisation of the rRNA facilitating on one side

proper rRNA folding, maturation and r-proteins assembly, and on the other side avoiding
formation of inhibitory rRNA folding and r-protein assembly.

2.3.2. Nuclear/ nucleolar assembly events of LSU and SSU precursors.

2.3.2.1. Non-ribosomal constituents of pre-60S particles.

As indicated earlier, maturation of LSU rRNA after cleavage at A2 or A3 proceeds through
different rRNA intermediates, thus suggesting that probably several 66S pre-particles can be

isolated and distinguished according to their rRNA/ ribosome biogenesis factor content and
cellular localisation.

Indeed, recent work reveals that the 66S particle is heterogeneous and highly dynamic.

Several pre-66S intermediates were isolated and were classified according to their ribosome
biogenesis factor/ RNA composition and cellular localisation as pre-66S early, middle and

late (pre-66S-E, pre-66S-M, pre-66-L, respectively) and additional sub-complexes (Fig. 12-
13). Probably, further analysis will reveal subtle protein composition differences which will

lead to the identification of even more intermediates (reviewed in Fromont-Racine et al.,

2003).
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Overall, these studies showed that over 70 proteins are associated and required at different

steps of the LSU rRNA maturation pathway.  Interestingly, the composition of the 66S
particles is highly dynamic since many of the factors associate and dissociate from the

particles (see Fig. 13 and Milkereit et al., 2001). Among these factors several are predicted to
be nucleotide binding proteins, like GTPases and AAA-type ATPases which could be

involved in structural rearrangement, or dissociation/ association events, or serve as molecular

motor for intra-nuclear trafficking. In fact, recent work gave evidence that the ATPase activity
of a ribosome biogenesis factor triggers a structural rearrangement of the LSU precursor

(Nissan et al., 2004).
Finally, around 50 non-ribosomal proteins are associated with the earliest nucleolar pre-60S

ribosomes, but only 5 factors are present on the most mature pre-60S subunits after export to

the cytoplasm (see Fig. 13 and Nissan et al., 2002).

2.3.2.2. Non-ribosomal constituents of pre-40S particle.

In contrast to the pre-66S particle(s), the composition of the 43S particle appears to be less

complex. Apparently, cleavages at A0, A1 and A2 are accompanied with the release of almost
all the ribosome biogenesis factors contained in the SSU processome. Strikingly, the

nucle(ol)ar 43S particle carries only eight major non-ribosomal proteins. Most of these remain
associated during export to the cytoplasm, where they are likely to participate in the last steps

of SSU maturation.

Conditional mutants analyses suggest that many of these factors are required for efficient pre-
40S nuclear export and/ or late cytoplasmic maturation events.

Furthermore, the 43S particles, in contrast to the 66S particles, do not contain any GTPase, or
ATPase, but at least 3 of the 43S associated ribosome biogenesis factors were described to

possess kinase activity (Vanrobays et al., 2001; Schafer et al., 2003; Vanrobays et al., 2003;

LaRonde-LeBlanc and Wlodawer, 2005; Schafer et al., 2006).

2.3.3. Nucleo(lar)-cytoplasmic transport events in eukaryotic ribosome
biogenesis.

Beyond, rRNA transcription, maturation, modification, and assembly intense intra-cellular
trafficking in eukaryotes is required to ensure proper delivery and formation of translational

active ribosomes to the cytoplasm.
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In S. cerevisiae, in optimal growth conditions around 4000 ribosomal subunits per minute
are exported from the nucleus to the cytoplasm. This implies that at least as many of the
78!r–proteins have to be imported into the nucle(ol)us, in addition to the transport of the

r–protein mRNA´s and the numerous ribosome biogenesis factors.

2.3.3.1. The import/ export machinery: general facts and principles.

The passage of most of the substrates through the nuclear envelope requires a transport

machinery, which is constituted of the Nuclear Pore Complex (NPC) embedded in the nuclear
envelope, and soluble factors able to recognise and direct the substrate through the pore.

Bi-directional exchange across the nuclear envelope occurs via the NPC a huge
macromolecular protein complex (50-60 MDa in yeast).

The NPC allows and controls exchange of molecules between the nucleus and the cytoplasm.
While ions, small metabolites and proteins under 40 kDa can freely diffuse (Gorlich and

Kutay, 1999; Wang and Brattain, 2007), most larger molecules or complexes movement

across the NPC diffusion barrier is mediated by specific transport receptors (Rodriguez et al.,
2004; Pemberton and Paschal, 2005; Kohler and Hurt, 2007).

Protein composition of the NPC was largely studied in many eukaryotes by biochemichal and/

or genetic analysis. Despite size variation of the NPC between different organisms analysed,

these studies revealed a remarkable structure homology. The NPC consists of three major
domains, the central core, nuclear basket, cytoplasmic fibrils which in yeast are formed by

the repetitive assembly of around 30 proteins: the nucleoporines (see Fig. 14A). The NPC
can dilate in response to the translocation of large cargoes, up to 40 nm (Kiseleva et al., 1998).

Among these nucleoporines, eleven are characterised by the presence of phenylalanine-

glycine repeats (FG repeats) separated by hydrophilic linkers. Apparently, the FG-rich
repeats are essential for cell viability although their amount can be reduced (see Strawn et al.,

2004; Chandler, 2005). Facilitated passage through the NPC requires interactions of the

karyopherin with the FG-repeats (Iovine et al., 1995; Radu et al., 1995; Bayliss et al., 1999;
Bayliss et al., 2000; Bednenko et al., 2003). Furthermore, recent work indicates that the FG

repeats form an elastic reversible hydrogel mesh-like structure, probably responsible for NPC
selectivity. In this condition, the transport receptors overcome the selectivity barrier by
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catalysing their own nuclear pore-passage by a competitive disruption of adjacent inter-repeat

contacts, which transiently opens adjoining meshes (Frey et al., 2006).
Interestingly, in contrast to the other nucleoporines, five of the FG-nucleoporines are

asymmetrically located, however this organisation is not required to direct translocation
(Zeitler and Weis, 2004).

Figure 14: The nuclear pore complex and the ran cycle.
(A) Nuclear pore complex (NPC). A 3D reconstruction of detergent extracted and negatively stained NPC is
shown (Hinshaw et al., 1992. see also introduction 2.3.3.1. for details).
(B) The differential effects of RanGTP on nuclear import and nuclear export receptor-cargo complexes.
Import receptors bind their cargos in a RanGTP-independent manner and RanGTP causes dissociation of these
complexes. They are thus permitted to form in the cytoplasm and dissociate in the RanGTP-rich nucleus. Export
receptors form stable complexes with their cargos only in the presence of RanGTP. These ternary complexes are
thought to be the export unit, and dissociate in the cytoplasm and/ or on the cytoplasmic filaments of the pore
where RanGAP activity converts the RanGTP to RanGDP.

Active translocation of most macromolecular complexes through the NPC involves specific

signals recognised by specific receptors. The substrates or cargoes contain targeting motifs
(like NES or NLS) that correspond either to particular amino acids or nucleotide sequences, or

conformation. With the exception of mRNA, most targeted molecules are recognised by the
karyopherin-b receptor family (also named importins and exportins) (see Gorlich and

Kutay, 1999; Rodriguez et al., 2004). The importins and exportins interact with the small
GTPase Ran (Moore and Blobel, 1993). With the help of regulatory proteins - cytoplasmic

Ran GTPase activating protein (RanGAP) and the nuclear Ran guanine nucleotide exchange
factor (RanGEF), a RanGDP/ RanGTP gradient is formed and probably directs

translocation (Rodriguez et al., 2004).
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The importin-cargo complex upon arriving on the nucleoplasmic side of the NPC is

dissociated by the binding of RanGTP to the importin. In contrast, RanGTP binding with
exportin stimulates assembly with the cargo, after transclocation through the NPC dissociation

of the cargo depends on the RanGTP hydrolysis into RanGDP (see Fig. 14B).
It should be noted, that receptor-cargo complexes translocation through the NPC is

independent of the energy provided by NTP hydrolysis, in fact this energy is required for

receptor-cargo dissociation, thus for karyopherins recycling.

2.3.3.2. Factors involved in pre-ribosome nucleo(lar)-cytoplasmic export.

Most of the r-proteins are predicted to contain a NLS, however, because of their small size

most of them could be imported by simple diffusion process. However, it seems that efficient
r-protein import is mediated by several r-proteins “specific” importins (Rout et al., 1997;

Schlenstedt et al., 1997; Pemberton and Paschal, 2005).

Ribosomal subunit nuclear export is still poorly understood. Microinjection experiments in

X.!laevis oocytes have shown that ribosome export is energy and temperature dependent
and saturable. In order to understand whether the ribosome components contain essential

information(s) required for nuclear export, microinjection experiments were performed using
ribosomes isolated from prokaryotic and eukaryotic cells. The authors of these two

independent studies conclude that eukaryotic ribosomes contain conserved information(s)

sufficient to stimulate ribosome nuclear export, while conflicting results regarding the export
competence of prokaryotic ribosomes are reported (Khanna-Gupta and Ware, 1989; Bataille et

al., 1990). Of course, it is somehow provocative to think that prokaryotic ribosomes are
competent for nuclear export, this would suggest that the export machinery recognises

conserved ribosome constituents and/ or structural landmark(s). At least this appears to be true

for eukaryotic ribosomes.  In addition, ribosomal subunit export is directional and selective. In
yeast, only pre-40S particles containing 20S pre-rRNA and pre-60S particles containing 25S,

5.8S and 5S rRNAs are bona fide substrates for the export machinery (Trapman and Planta,

1976; Trapman et al., 1976).

More recently, GFP tagged r-protein reporters and/ or in situ localisation of pre-rRNA were
used to screen mutants and/ or inhibitors affecting ribosomal subunits export (Hurt et al.,

1999; Moy and Silver, 1999; Stage-Zimmermann et al., 2000; Gadal et al., 2001; Milkereit et
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al., 2001; Grandi et al., 2002). In summary, it was shown in all eukaryotic organisms studied

so far, that both ribosomal subunits export depends on the GTP/ GDP binding protein Ran
(see Fig. 15).

Furthermore, several nucleoporines were described to be involved in nuclear export of
pre–ribosomes, but since many of these participate in the traffic of other substrates it is

difficult to determine whether they play a direct or indirect role in pre-ribosome export.

However, in some cases some nucleoporines mutations were shown to only affect
pre–ribosomal subunit export indicating a specialised molecular function of the NPC

components in this process (Gleizes et al., 2001).
In addition, it was shown that the exportin Crm1p/ Xpo1p plays a crucial role in the export of

both ribosomal subunits. The exportin Crm1p/ Xpo1p binds proteins containing NES in a

RanGTP dependent manner (Thomas and Kutay, 2003), suggesting that either this exportin
binds directly to r-protein(s) and/ or to protein adapter(s) containing an NES sequence and

being able to bind to ribosome structural component(s) (see Fig. 15).
Such a protein adapter, Nmd3p, was described to be required for pre-60S nuclear export, and

to be associated with the LSU precursor (see Fig. 15 Ho and Johnson, 1999; Ho et al., 2000;

Gadal et al., 2001; Johnson et al., 2002; Trotta et al., 2003). Genetic and biochemical analyses
were first suggesting that Nmd3p is recruited to the ribosome by rpL10. However in the

course of this work, recent data suggested that rpL10 incorporation into pre-ribosomes

triggers the release of Nmd3p from the newly exported LSU (Hedges et al., 2005; West et al.,
2005). Nmd3p binds one of the ribosome constituents, which remain to be determined. In

addition, other ribosome biogenesis factors were suggested to participate in ribosomal subunit
export, but their exact function in this step remain to be clarified (for review see Johnson et

al., 2002; Fromont-Racine et al., 2003).

Finally, recently two other transport receptors were suggested to be involved in LSU export
(see Fig. 15 and Bradatsch et al., 2007; Yao et al., 2007)

Although some ribosome biogenesis factors were suggested to be required for SSU export

(Milkereit et al., 2003b; Schafer et al., 2003; Seiser et al., 2006 among others) such a protein

adapter bridging the export machinery to the export competent SSU still has to be identified.
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Figure 15: Current model of pre-ribosomal subunit export.
Modified from Aitchison and Rout, 2000. See introduction 2.3.3.2. for details.

Interestingly, in silico analysis revealed that some of the ribosome biogenesis factors

suggested to be involved in ribosomal subunit export, contain a structural motif, the HEAT
repeat, which is one of the characteristics of the transport receptor from the karyopherin-b

family (see Dlakic and Tollervey, 2004; Oeffinger et al., 2004). The contribution of this
structural motif in ribosomal subunit export remains to be determined. However it was

hypothesised that these factors would participate in ribosomal subunit export by shielding the
negative charge of the particle thus facilitating passage through the NPC (Dlakic and

Tollervey, 2004; Oeffinger et al., 2004).
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2.3.4. Late cytoplasmic maturation steps of pre-ribosomes.

Exported immature ribosomal subunits are converted into mature ribosomal subunits in the

cytoplasm.

The LSU is exported as 60S particle containing the mature rRNA species. Therefore it is

unclear whether the large subunit is further matured in the cytoplasm. In fact, early study
indicated that the newly synthesised 60S subunits were not directly incorporated into

translating ribosome (Trapman and Planta, 1976). This lag in translation activation could be
interpreted as being probably related in some extent to cytoplasmic assembly events.

Recently it was shown that the export machinery and a few ribosome biogenesis factors

accompanying the LSU from the nucleus into the cytoplasm are released (and recycled) prior
to engage the LSU into a translating ribosome (Saveanu et al., 2001; Senger et al., 2001;

Nissan et al., 2002; Fromont-Racine et al., 2003; Lebreton et al., 2006).
Recent work suggested that the remaining factors associated with the late cytoplasmic 60S

precursors are released through the action of GTPases (Saveanu et al., 2001; Senger et al.,

2001; Nissan et al., 2002; Fromont-Racine et al., 2003; Kallstrom et al., 2003; Lebreton et al.,
2006). Whether, these GTP-hydrolysis reactions mediate other structural rearrangements is so

far unknown.

Final cytoplasmic maturation of the 43S precursor was described already more than 30 years

ago (Udem and Warner, 1973), but it is only recently that several factors involved in this late
maturation step were described (for review see Fromont-Racine et al., 2003). Among these

factors, a protein family was identified by synthetic lethality screen and homology searches
(Vanrobays et al., 2001; Geerlings et al., 2003; Schafer et al., 2003; Vanrobays et al., 2003;

Schafer et al., 2006). Interestingly, these factors - Rio1p and Rio2p - are members of a serine

kinase family. In the course of this work it was shown that Hrr25p dependent phosphorylation
followed by dephosphorylation trigger SSU structural rearrangement(s) (Schafer et al., 2006).

In addition it was suggested that, the protein dependent base dimethylation near the 3’ end of

the 18S rRNA occurs in the cytoplasm (Lafontaine et al., 1994; Lafontaine et al., 1995;
Lafontaine et al., 1998; Fromont-Racine et al., 2003; Vanrobays et al., 2004).
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3. Functions of ribosomal proteins.

3.1. Contribution of r-proteins to ribosome biogenesis.

3.1.1. The eubacterial r-protein assembly: a paradigm and a paradox.

Most of our knowledge about r-protein assembly comes from the pioneering work that started

in the mid- 1960s on eubacterial ribosomes (see below for details).
The main conclusions of these studies can be summarised as the following: (1) both

prokaryotic ribosomal subunits can be assembled in vitro from their purified components
(rRNA and r-proteins); (2) r-proteins assemble according to a hierarchical order; (3) in vitro

reconstituted ribosomal subunits are competent in translation. These experiments indicate that

the eubacterial ribosome is a self-assembling macromolecular machinery, in other words:
the total information for the assembly pathway as well as the quaternary structure of the active

ribosomes resides completely in the r-proteins and rRNA primary sequences. However, with
the development of eubacterial genetic analysis, and in vivo analysis, several reports are

challenging the view of how this machinery is assembled in vivo in prokaryotes (see below).

3.1.1.1. Conditions required for efficient in vitro reconstitution
experiments.

Early experiments showed that r-proteins can be dissociated and isolated from mature

ribosomes using high ionic strength conditions (like CsCl, LiCl). In fact several reports
indicated that reconstitution of functionally active ribosomal particles from inactive partially

split components was possible (see Gavrilova et al., 1966; Hosokawa et al., 1966; Lerman et
al., 1966; Spirin and Belitsina, 1966; Spirin et al., 1966; Staehelin and Meselson, 1966).

These experiments have opened the way to initially study the relationship between the

structure and the function of the ribosomal components in protein synthesis, but also paved
the way to study in more detail ribosome assembly in vitro. Furthermore, the use of different

ionic strength and/ or denaturing conditions (e.g. LiCl, CsCl/ Urea) allowed the possibility of
stepwise or complete disassembly of r-proteins and further reassembly including or omitting

different r-protein fractions, followed by functional characterisation of the translation
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competence in in vitro assays (reviewed in Spirin, 2000, see also Traub et al., 1967; Nomura

and Traub, 1968; Traub and Nomura, 1968b; Traub et al., 1968).
Finally an experimental “tour de force” by Nomura and colleagues, has demonstrated that the

reconstitution of both ribosomal subunits can be achieved from isolated rRNA and the
complete set of purified r-proteins (see Traub and Nomura, 1968a; Nomura and Erdmann,

1970). Interestingly, for the 30S ribosomal subunit, hybrid ribosomal subunits have been

reconstituted from components of different bacterial origin (Nomura et al., 1968), however
in!vitro reconstitution experiments failed when using rRNA from eukaryotic organisms

(Traub and Nomura, 1968a see also Nomura, 1970).

Noteworthy, ribosome self-assembly from purified structural components is a characteristic

which seems to be shared by prokaryotic ribosomes since it was demonstrated that both
archaeal ribosomal subunits can be assembled in vitro (Londei et al., 1986; Sanchez et al.,

1990; Sanchez et al., 1996).

The in vitro 30S ribosomal subunit reconstitution requires defined conditions. (1) A moderate

ionic strength (0.3-0.5 M KCl optimum at 0.37 M); (2) a rather high Mg2+ concentration (10-

30 mM); (3) a controlled pH (pH 6.5-8.0 at 40°C) and finally (4) an increased temperature
(optimum at 40°C, the temperature dependency follows an exponential reaction with a plateau

reached at 40°C)(Traub and Nomura, 1969).

Apparently, a too high ionic strength suppresses interaction between the r-proteins and rRNA,
while a too low ionic strength increases non-specific interactions markedly. The relative high

amount of Mg2+ seems to be necessary primarily for the maintenance of the rRNA tertiary and

secondary structure, thus providing a scaffold for r-protein arrangement. Finally, an elevated
temperature is believed to be necessary to facilitate the structural rearrangements of an

intermediate RNP from a less compact to a more compact conformation (see Spirin, 2000;

Nierhaus, 2004 and below).
The total in vitro reaction is a one step procedure and can be summarised as following (1):

                                                  [20 mM Mg2+, 40°C, 20 min]
16S rRNA + TP30 æææææææææææææææææÆ 30S   (1).

Where TP30 is: total r-proteins derived from 30S subunits. It should be noted that usually
TP30 is present in several molars excess in comparison to the rRNA (Maki and Culver, 2005).
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In fact, the rate-limiting step of in vitro 30S assembly is apparently the relative strong

temperature dependency, which is required for the “activation” of an assembly intermediate as
described in equation (2).

                                              [20 mM Mg2+, 40°C, 20 min]
RI30 æææææææææææææææææææææææææÆ RI*30   (2).

First, a low temperature (0°C £  T°£  20°C) is sufficient to form the R I3 0  intermediate,

containing (S4-S9, S11-S13, and S15-S20). Second the temperature step leads to the

formation of the RI*30 without change in term of r-protein composition. Finally, only the

RI*30 can assemble the remaining r-proteins (S2, S3, S10, S14, and S21) at any temperature

(Traub and Nomura, 1968a; Traub and Nomura, 1969; Maki and Culver, 2005).

The reconstitution of the 50S ribosomal subunit as described by Nierhaus and colleagues

(Nierhaus and Dohme, 1974) requires defined conditions too, which are relatively similar to

the 30S assembly conditions, except that for the efficient reconstitution a two steps procedure

is applied. (1) A moderate ionic strength (400 mM NH4Cl) (2) a rather high Mg2+

concentration in the second step (20 mM); and finally (3) two different temperature steps are

required for efficient reconstitution (Nierhaus and Dohme, 1974 and reviewed in Nierhaus,
2004).

The 50S in vitro reconstitution procedure can be summarised as following (1) and (2):

                                        [4 mM Mg2+, 44°C, 20 min]    [20 mM Mg2+, 50°C, 90 min]
(23S+5S) rRNA + TP50 æææææææææææÆæææææææææææÆ 50S  (1).

Where TP50 is: total proteins derived from 50S subunits.

Apparently the two-steps procedure is a consequence of the fact that the rate limiting steps of

early and late assembly involve conformational changes that differ in their ionic optima
in vitro [see Nierhaus and Dohme, 1974 and equation (2)].

             T1°C                                               T2°C
RI50 (1) ææÆ RI*50 (1) ææÆ RI50 (2) ææÆ 50S  (2).
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Accordingly, three reconstitution intermediates have been characterised [see equation (2)].

The RI50 (1) and RI*50 (1) intermediates are identical in their rRNA/ r-proteins composition

(around two-thirds of the LSU r-proteins) despite the drastic difference in their respective

sedimentation value (33S and 41S respectively). In contrast, the third intermediate RI50 (2)

contain all the components of the active 50S subunit but is inactive in translation (Nierhaus

and Dohme, 1974; Nierhaus, 2004). Thus, it appears that here also the rate-limiting step of
active 50S subunit reconstitution is the temperature dependent conformational change.

Reconstitution of the bacterial ribosomal subunits are very efficient and reach usually 50%-
100% of the input material (see Nierhaus, 1991).

However, the reconstitution conditions are clearly non-physiological, suggesting that although

self-assembly can occur in vitro, it is evident that in vivo a facilitated system might have
evolved to fulfil the required ribosome production at distinct growth conditions.

3.1.1.2. Assembly dependencies and co-dependencies: “in vitro assembly
maps”.

With the help of chromatography fractionation, individual r-proteins were purified in the

Nomura and Nierhaus laboratories. Taking advantage of the in vitro system described above
(see introduction 3.1.1.1.), the capacity of individual purified r-proteins to bind rRNA after

combinatorial and sequential r-protein addition was analysed. The experimental results of

such binding analyses are summarised in “assembly maps” (see Mizushima and Nomura,
1970; Held et al., 1973; Rohl and Nierhaus, 1982; Herold and Nierhaus, 1987; Nierhaus, 2004

and see Fig. 16).
According to their behaviour during these in vitro reconstitution experiments r-proteins were

divided into three categories. One r-proteins group is designated primary binding proteins,

since they can form stable complex with the rRNA individually and independently.
Accordingly, the secondary binding proteins require the presence of one or several primary

binding proteins to be incorporated into ribosomal subunits. Finally, the tertiary binding
protein group requires both primary and secondary binding proteins to establish contacts with

rRNA (review in Nierhaus, 2004 and see Fig. 16).
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Figure 16: Ribosome in vitro assembly maps in E. coli.
(A) Assembly map of the 30S subunit. Revised assembly map of E. coli 30S r-proteins. Reproduced from Held et
al., 1974. Arrows between proteins indicate the facilitating effect on binding of one protein on another; a thick
arrow indicates a major facilitating effect. The map may be used to indicate the following relationships.
The thick arrow from 16S rRNA to S4 indicates that S4 binds directly to 16S rRNA in the absence of other
proteins. The thin arrow from 16S rRNA to S7 indicates that S7 binds weakly to 16S rRNA in the absence of
other ribosomal proteins. Thin arrows pointing toward S7 from S4, S8, S20, S9, and S19 indicate that the latter
proteins all enhance the binding of S7 to rRNA. The arrow to S11 from the large box with dashed outline
indicates that S11 binding depends on some of the proteins enclosed in the box; it is not known exactly which
proteins.  Proteins above the dotted line are those either required for the formation of RI* particles or found in
the isolated 21S RI particles.
(B) Assembly map of the 50S subunit. Revised 50S assembly map reproduced from Herold and Nierhaus, 1987.
The main fragments of 23S rRNA (13, 8, and 12S) are indicated. The proteins are roughly arranged according to
their binding regions on 23S rRNA.
RNA ‡ Lx, Lx is an rRNA binding protein; Ë(‡), binding of Lx is strongly (weakly) dependent on Ly. The
encircled proteins ••••• are essential for mediating the binding of 5S rRNA to 23S rRNA. Proteins enclosed by - -
- are important or essential for the conformational change RI*

50(l)Æ RI50(l). Components below . . . . are not
present on the RI50(l) particle.
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In both cases, a relatively high proportion of r-proteins can assemble with rRNA at low

temperature to form the RI30 and RI50 (1) intermediates. In order, to determine whether all

these r-proteins are required and sufficient for the critical transition to RI*30 & 50 omission

experiments where performed. Surprisingly, only a few r-proteins were shown to be required
and sufficient for the early assembly step (LSU: 5 required + 1 stimulating, and SSU: 5

required). Moreover, not all the primary binding proteins are required for this transition step
(review in Nierhaus, 2004).

Remarkably, these early assembling r-proteins - more strikingly for the LSU - have binding

sites located towards the 5’ end of the rRNA. Although this repartition is not obvious for the
early assembling SSU r-proteins, further experiments are indicating a 5’Æ3’ directed

assembly (compare Fig. 17A and 17B, see also Powers et al., 1993; Culver, 2003). In fact, the

dynamic SSU r-proteins assembly was followed by chemical foot-printing analyses at

different time points during the in vitro assembly process. These results strongly suggest a
5’Æ3’ polarity during in vitro SSU assembly. In addition SSU r-proteins were divided in

4!groups (Early, Mid Mid-late, and Late) according to their assembly kinetics  (Powers et al.,

1993; Culver, 2003).

Figure 17: Schematic representation of the 5´ Æ 3´polarity of 30S subunit assembly. Reproduced
from Culver, 2003.
(A) SSU primary binder r-proteins as determined by the assembly map (see Fig. 16).
The interaction of the six primary binding proteins with their respective 16S rRNA domains is shown.  The
proteins are colored to represent their groupings according to the assembly kinetic data from Powers et al., 1993;
early binding proteins are shown in black and mid binding proteins are shown in blue.
(B) Dynamics SSU r-proteins assembly in vitro.
The interaction of early binding proteins with their respective 16 rRNA domain as described by Powers et al.,
1993 is shown. The proteins are colored to represent their grouping according to the assembly map; primary
binding proteins are colored black and secondary binding proteins are colored pink (see Fig. 16).



INTRODUCTION                                                                                                                     58

From these observations, and since RNA polymerase-dependent nucleic acids polymerisation

start at the 5’ end, it was hypothesised: that coupling of rRNA synthesis and ribosomal
assembly would define a 5’Æ3’ “assembly gradient”, which states that progress of rRNA

synthesis dictates the assembly progress (Nierhaus, 1980a; Nierhaus, 2004).

Interestingly structural and co-dependency assembly analyses were strongly suggesting that

the SSU can be divided into independent structural and assembly domains (see Fig. 18).

Indeed, it was shown using in vitro transcribed rRNA domains and purified ribosomal
proteins, that these domains can assemble independently from each others and that the

morphology of these reconstituted domains analysed by negative staining electron microscopy
resemble their counterparts in the complete subunit (Samaha et al., 1994; Agalarov et al.,

1998; Agalarov et al., 1999).

Such independent domains assembly was not carried out for the 50S subunit since as indicated

earlier, the different domains organised in the final 3D structure produce a compact,

interconnected monolithic mass (see introduction 1.2.2.).

3.1.1.3. Ribosomal RNA structural rearrangements in the course of
r–protein assembly.

It is clear from the ribosomal subunit 3D structure that proper ribosome assembly requires

highly dynamic conformational changes of both rRNA and r-proteins.

The successful in vitro reconstitution of such RNP complexes - the eubacterial ribosomes -
from its components provides a useful system, to elucidate the molecular mechanism of RNA-

protein and protein-protein recognition, and to understand how these interactions influence

protein and rRNA folding.

Despite many efforts, the process by which rRNA and r-proteins fold into functional three-
dimensional structures is still poorly understood.

A variety of techniques have been used to study r-protein-rRNA interactions and RNA
conformational changes.

Early studies used RNase cleavage techniques to identify elements of rRNA that interact with
r-proteins (see for examples Muto et al., 1974; Zimmermann et al., 1974).
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Figure 18: Three-dimensional SSU domain assembly. Reproduced from Holmes and Culver, 2004.
(A) In vitro 30S subunit assembly map. 16S rRNA is represented as a rectangle and arrows indicate dependency
between components for association. Primary and secondary binders r-proteins are black and tertiary binders
r-proteins are white. S6 and S18 are enclosed in a box to indicate that they bind as a heterodimer. The areas
shaded red, green and blue indicate those proteins found in the platform, body and head of the 30S subunit,
respectively.
(B) Schematic representation of the secondary structure of 16S rRNA. The four major domains of 16S rRNA, the
5', central, 3' major and 3' minor domains, are green, red, blue and gray, respectively. This color scheme is
coordinated with shaded areas in a way that 16S rRNA and associated proteins are similarly colored.
(C) Schematic representation of in vitro 30S subunit assembly. 16S rRNA is represented by a rectangle, the
reconstitution intermediate (RI) is represented by an ellipse, the 'activated intermediate' (RI*) is represented as a
crescent shape and 16S rRNA from the 30S structure of T. thermophilus (Wimberly et al., 2000) is color-coded
similarly to panel (B).  (1) 16S rRNA combines with a subset of r-proteins (S4-S9, S11-S13 and S15-S20) at low
temperatures to form a stalled intermediate, RI. (2) RI is converted to the activated intermediate RI* by heat
treatment. (3) The remaining r-proteins (S2, S3, S10, S14 and S21) bind to RI*, forming 30S subunits.

The opposite approach - proteolytic digestion of r-proteins - was used to identify specific
amino acids in these proteins that function in rRNA binding and ribosome assembly (see

among others Changchien and Craven, 1978; Changchien and Craven, 1979).
Biophysical methods like difference circular dichroism and chemical iodination were

employed to study global protein conformational changes in the course of ribosome assembly.

In a similar way rRNA conformational changes were studied by difference ultraviolet
absorption spectroscopy and difference circular dichroism (see among others Dunn and

Wong, 1979c; Dunn and Wong, 1979b; Dunn and Wong, 1979a). All together these
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experiments suggest that conformational changes of both rRNA and r-proteins occur in the

course of ribosome assembly.
These observations are clearly supported by high-resolution scanning transmission electron

microscopy analysis in the course of in vitro 30S assembly (Mandiyan et al., 1989; Mandiyan
et al., 1991). These analyses elegantly show how the ribosomal subunit assembly is

accompanied by stepwise conformational changes, compaction, with the occurrence of several

structure-related intermediates.

Remarkably, RNA footprinting experiments took advantage of information collected from the
in vitro ribosomal subunit assembly maps to identify sites of interaction between rRNA and

each r-proteins (see among others Stern et al., 1989; Powers and Noller, 1995a)

In addition to direct protection effects, it was proposed that some proteins might act
cooperatively to stabilise a conformational change within 16S rRNA. Some of the protection

pattern observed in these footprint experiments likely result from r-protein induced rRNA
folding, instead of direct protein/ RNA contacts (see Stern et al., 1989). One example of such

a conformational rearrangement within a 16S rRNA containing RNP complex is well

documented. Base-specific chemical footprinting experiments revealed that there is a
temperature-dependent conformational change within the S4 –16S rRNA complex (Powers

and Noller, 1995b). Since S4 was described as being a primary binder, and suggested to be an

assembly initiator in vivo this rearrangement may play a critical role in assembly (Nierhaus,
2004).

Studies were also designed to use the chemical probing approach to study the dynamics of
subunit assembly (Powers et al., 1993; Holmes and Culver, 2004; Holmes and Culver, 2005).

These studies took advantage of changes in the rate of 30S subunit assembly at different

temperatures. Changes in the higher order folding and structure of 16S rRNA at different
stages of reconstitution, and therefore 30S subunit assembly, could be analysed by base-

specific chemical probing of 30S subunit reconstitution reactions at various times and
temperatures.

While these kinetic studies sampled a more dynamic population than previous experiments
many aspects of real-time rRNA folding and the roles played by the ribosomal proteins in this

folding process remain elusive.
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3.1.1.4. Eubacterial r-proteins assembly in vitro and in vivo: different or
similar?

How ribosomal subunits assemble in vivo is still poorly understood.

As described earlier, in vitro reconstitution experiments have described several ribosomal

subunit assembly intermediates (RI) (see introduction 3.1.1.1. and 3.1.1.2.).
Indeed, ribosomal subunit precursors were isolated ex vivo and their rRNA and r-proteins

compositions were analysed.
Apparently, two different intermediate particles were described for 30S assembly, and termed

p130S and p230S (p for precursor). The p130S intermediate contains immature 17S rRNA (see

ealier in this introduction 2.2.2.1.) and the r-protein content is very similar to the RI30

r–proteins composition. The p230S contains the full complement of r-proteins like the RI*30

particle, but still contains immature 17S rRNA suggesting that the final rRNA maturation

steps probably occur after r-protein assembly in vivo (Srivastava and Schlessinger, 1990;
Nierhaus, 2004).

The in vivo 50S assembly occurs via three precursor particles - p150S, p250S and p350S –

sedimenting with 34S, 43S and near 50S respectively (Lindahl, 1975 and references therein)
which are similar to the sedimentation behaviour of the corresponding in vitro reconstituted

RI50 intermediates  (see introduction 3.1.1.1.).

Like for the 30S precursors, the 50S precursors r-proteins composition in vivo is very similar

to the in vitro assembled RI50 intermediates r-proteins composition (Nierhaus et al., 1973;

Nierhaus, 1991).

As indicated previously, in vitro assembly reconstitution experiments suggest the existence of
a preferred 5’Æ3’ “assembly gradient”. In addition, early chromatin spreads analysed by

electron microscopy suggest that ribosomal subunit assembly occurs co-transcriptionaly

(Miller et al., 1970; Hofmann and Miller, 1977). Thus, it was hypothesised, that coupling of

rRNA synthesis and ribosomal assembly would define a 5’Æ3’ “assembly gradient”, which

states that progress of rRNA synthesis dictates the progress of assembly (Nierhaus, 1980b;
Nierhaus, 2004). Therefore, in vivo an assembly gradient could avoid premature inhibitory

rRNA rearrangements and facilitate assembly.
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The non-physiological conditions used for prokaryotic in vitro ribosomal subunit assembly

strongly suggest that in vivo, non-ribosomal factors might facilitate ribosomal subunit
assembly.

The description of such factors is still limited (see Maki et al., 2002; Alix and Nierhaus, 2003;
Maki et al., 2003; Nierhaus, 2004; Maki and Culver, 2005). One of the best example of factor

facilitated ribosomal subunit assembly was recently published (Maki et al., 2002; Alix and

Nierhaus, 2003; Maki et al., 2003; Nierhaus, 2004; Maki and Culver, 2005). In order to
identify such a factor, the Culver group, took advantage of the 30S ribosomal subunit in vitro

assembly approach. They have used a whole cell extract fractionation strategy to isolate
molecular components that allow reconstitution of the active 30S subunit independently of the

normally required temperature activation step.  They could demonstrate that addition of the

DnaK chaperoning system allows to bypass the temperature dependent conformational change
(Maki et al., 2002; Alix and Nierhaus, 2003; Maki et al., 2003; Maki and Culver, 2005).

These results are still under debate (Alix and Nierhaus, 2003; Maki et al., 2003; Maki and
Culver, 2005), however they will probably serve as a reference for future screening

approaches in order to identify factors facilitating ribosomal subunit assembly.

One other way to test the accuracy of the in vitro assembly maps is to test the consequence of

r-proteins loss of function on ribosomal subunit assembly. Unfortunately, because of the lack

of an efficient genetic system these approaches are scarce in the literature. Although, the
E.!coli genome sequence was published 10 years ago (Blattner et al., 1997), it is only recently

that systematic single gene knockout mutants were described (Baba et al., 2006, see also
profiling of E. coli chromosome at www.shigen.nig.ac.jp/ecoli/pec/index.jsp).

Nevertheless, it was shown that some r-proteins were not essential for cell viability (Dabbs,

1991). At least one primary binder – L24 - required for the early RI50* activation step was

shown to be dispensable in vivo for proper 50S assembly (Herold et al., 1986; Dabbs, 1991;

Nierhaus, 2004). In the course of this work, a SSU r-protein primary binder was shown to be
not required for cell viability. Furthermore, analysis of r-protein composition of ribosomes

isolated from this mutant revealed that the downstream dependent r-proteins were still

assembled (Bubunenko et al., 2006). In addition, a systematic gene knockout analysis of SSU
r-proteins has confirmed previous results (review in Dabbs, 1991; Nierhaus, 2004) and
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suggests that another primary binding r-protein is not essential for cell viability (Bubunenko

et al., 2007).

Out of 21 SSU r-proteins 6 were suggested to be not required for cell viability. All six non-
essentials r-proteins are located along the rim of the platform side away from the functional

centre of the ribosome. Half of them are considered from the in vitro assembly maps to be

crucial for proper assembly of secondary or late assembling r-proteins (Bubunenko et al.,
2007).

These results are quite unexpected, either the principles of the cooperative and ordered

r-proteins assembly into ribosomes that have been deduced from in vitro experimentation may

not quite mimic the ribosome biogenesis in vivo. Or alternatively, the order of protein
assembly into ribosomes may be somewhat different in vivo, with the existence of possible

(less efficient?) alternative assembly pathways to counteract consequences of r-protein loss of
function.

In conclusion, while many experiments suggest a similarity between in vitro and in vivo

ribosomal subunit assembly, some results suggest that in vivo ribosomal subunit assembly

might be different or more flexible to various conditions. Further experiments will have to

determine the degree of similarity and differences between the in vivo and in vitro ribosomal
subunit assembly pathways in prokaryotes.

3.1.2. The eukaryotic r-protein assembly.

Despite many efforts in the field the knowledge about eukaryotic r-protein assembly both

in!vivo and in vitro is limited.

3.1.2.1. In vitro assembly experiments.

Based on the experimental conditions used for bacterial ribosomal subunit in vitro assembly,

eukaryotic ribosomal subunits in vitro reconstitution experiments were carried out. However

the success of these reconstitution experiments was limited and so far did not give the
possibility to study in vitro r-proteins assembly in detail.
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In fact, first partial reconstitution of both ribosomal subunits were achieved in lower and

higher eukaryotes (Reboud et al., 1972; Vioque et al., 1982; Lavergne et al., 1988).
However complete in vitro reconstitution from purified components seems to be problematic.

One report of in vitro reconstitution of both ribosomal subunits can be found in the literature
(Mangiarotti and Chiaberge, 1997). In this study, ribosomal subunits from Dictyostelium

discoideum were reconstituted in vitro. However the results indicate that unlike prokaryotes, a

partially purified nuclear fraction containing RNA (most probably snoRNA) is required for
in vitro assembly. Furthermore, in vitro reconstitution is more efficient when the rRNA

template used is immature nuclear rRNA. Finally, reconstitution requires a 12 hours dialysis
step from high salt to milder conditions at 23°C (Mangiarotti and Chiaberge, 1997).

These results suggest that, in contrast to prokaryotic ribosome assembly, in vitro eukaryotic

ribosomal assembly is not a self-assembly process. This result seems to be in good agreement
with the numerous essential ribosome biogenesis factors described in eukaryotes.

“The impression is that a government defense contractor was given a fully functional working

prototype bacterial ribosome that was subsequently “reengineered” to do the same job, and

was ultimately delivered at a cost of one third of the nation ’s gross domestic product”

(quoted from Williamson, 2003).

3.1.2.2. In vivo ribosomal protein assembly with rRNA and their
involvement in rRNA maturation events.

Classical experiments were determining a rough kinetic of r-protein assembly with rRNA in

different eukaryotic cells (review in Hadjiolov, 1984-85). These experiments were based on
metabolic labelling followed or not by nuclear-cytoplasmic fractionation. The labelled

ribosomal subunits were then separated by sucrose gradient and the amounts of radioactivity

incorporated into the individual r-protein were determined.
These experiments suggest that eukaryotic r-proteins assemble into pre-ribosomes with

different kinetics, thus accordingly they were classified as early or late assembling r-proteins

(review in Hadjiolov, 1984-85).
In addition, immuno-localisation of one rpS and one rpL was performed using Miller’s

chromatin spreading technique, strongly suggesting that some r-proteins might assemble
co–transcriptionally with the rRNA (Chooi and Leiby, 1981).
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For instance this is probably the best picture of eukaryotes r-proteins in vivo assembly

available.

At the beginning of this work little was known about the consequences of loss of function of
individual r-proteins, on cell viability and ribosome biogenesis. In fact systematic deletions of

the single copy genes coding for r-proteins in S. cerevisiae demonstrated that only 4 of the 19

r-proteins single copy genes are not essential for cell viability. Furthermore, for the r-proteins
encoded by two copy genes in S. cerevisiae, only a few double knockout had been established,

which were suggesting that these r-proteins are also essential for cell viability (see Moritz et
al., 1990; Demianova et al., 1996; van Beekvelt et al., 2001a; Tabb-Massey et al., 2003).

In addition, haplo-insufficiency analyses in S. cerevisiae, and in other eukaryotes suggested

that the expression level of a subset of r-proteins influences cell growth and development
(Lucioli et al., 1988; Saeboe-Larssen et al., 1998).

One good example of the effect of r-protein haplo-insufficiency comes from the isolation of
“minute” mutants in Drosophila. Such mutant flies display a dominant phenotype of slower

development, short and thin bristles, reduced fertility and poor viability (Saeboe-Larssen et

al., 1998). Many of these mutations were originally mapped within r-proteins genes. In fact
recent systematic genome mapping of all the known minute mutants indicates that most

(64/65 analysed) of the mutated genes are r-proteins encoding genes (Saeboe-Larssen et al.,

1998, Marygold et al., 2007).

Whether these effects are related to ribosome biogenesis and/ or ribosome function defects or
to extra-ribosomal functions of r-proteins remains to be determined.

The function of several individual r-proteins in ribosome biogenesis was examined.

One well-studied example is rpL10. It was shown that this r-protein interacts with Nmd3p.
Interestingly, Nmd3p contain a functional NES which is recognised by the ribosomal exportin

Crm1p/ Xpo1p (Ho and Johnson, 1999; Ho et al., 2000; Gadal et al., 2001). In addition,

further analyses suggested that these factors are required for LSU export. Thus these results
indicate that Nmd3p via its interaction mediated by rpL10 with pre-ribosomes can serve as an

adapter for the export machinery.
In the light of recent results this model evolved slightly. In fact it seems that the LSU is

exported throughout Crm1p/ Nmd3p interaction, and that rpL10 would associates in the
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cytoplasm with the neo-exported LSU, thus allowing the release of Nmd3p from the LSU

(Hedges et al., 2005; West et al., 2005).
Altogether, these results suggest that in the absence of rpL10 assembly, the export machinery

and/ or adapter cannot be released from the pre-ribosome. Thus inducing an indirect
ribosomal subunit export block throughout a factor titration mechanism as it has been

suggested earlier for other factors (see Fromont-Racine et al., 2003; Lebreton et al., 2006).

It is not yet clear whether Nmd3p interacts directly with one or several r-proteins and/ or the
rRNA to trigger LSU nuclear export.

Another well-studied example is the role of rpL5 in the assembly of the 5S rRNA with

pre–60S particles. It was shown that rpL5 and 5S rRNA form a sub-complex required for

5S!rRNA incorporation into pre-60S particles (Deshmukh et al., 1993). More recently it was
suggested that a ribosome biogenesis factor mediates the interaction of another r-protein

rpL11 with the rpL5-5S rRNA complex (Nariai et al., 2005). However the exact sequence of
these assembly events remains to be determined.

Finally, with the help of conditional mutants of r-proteins from both subunits it was
demonstrated that in some cases depletion of yeast r-proteins disturb rRNA maturation events

most probably due to assembly defects or lack of rRNA folding (among others Rotenberg et

al., 1988; Moritz et al., 1990; Moritz et al., 1991; Demianova et al., 1996; van Beekvelt et al.,
2001a; Tabb-Massey et al., 2003).

3.2. Contribution of r-proteins to ribosome function.

From a structural and biochemical point of view the translation reaction can be seen as an

RNA dependent process (see introduction 1.2.3.), which is summarised by the generally used

term “the ribosome is a ribozyme”. Despite clear evidence that r-proteins modulate the
translation reaction this statement “in the minds of many in the field has left ribosomal

proteins in the dark as merely glue” (quoted from Brodersen and Nissen, 2005).

In fact, “apart from being RNA-glue …they indeed seem to have a social life after all”

(quoted from Brodersen and Nissen, 2005).
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Although, peptide bond formation could be reconstituted in vitro by rounds of evolution and

selection of short RNA (see Zhang and Cech, 1997; Zhang and Cech, 1998; Anderson et al.,
2007). “The ribosome is a ribozyme, admittedly one dependent on structural support from

protein components-substantially deproteinized large subunits still carry out peptidyl transfer,

although complete deproteinization destroys this reactivity (Noller et al., 1992)” (quoted from

Cech, 2000)

Indeed, efficient ribosome function depends on the cooperation between the rRNA and

r–proteins. This cooperative nature is evident from different points of view and some
examples are illustrating this point here after.

Many genetic screens, particularly in E. coli have identified mutations that confer resistance to
various classes of antibiotics (Saltzman and Apirion, 1976; Dabbs, 1978; Gregory and

Dahlberg, 1999). Interestingly, some of these mutations were described to affect r-proteins,
despite no direct contact between the drug and the r-protein. Furthermore, mutations affecting

r-proteins in one subunit can (1) be suppressed by mutations in other r-proteins from both

ribosomal subunits (Dabbs, 1978), or (2) modulate the function of the ribosomal subunit in
trans, or (3) induce structural rearrangements in both ribosomal subunits (e.g. Davies et al.,

1998).

For instance, many results suggest that in both pro- and eukaryotes r-proteins contribute to

many if not all aspects of ribosome function like translation fidelity, interaction with mRNA
and translation associated factors (reviewed in Brodersen and Nissen, 2005; Wilson and

Nierhaus, 2005).

Furthermore, r-proteins play a crucial role in the recruitment of external factors required for
example in protein targeting or for co-translational protein folding. It was demonstrated that

the r-proteins localised at the large subunit exit-tunnel serve as anchor points for functionally
important interactions with the signal recognition particle, ER membrane-embedded sec

complex and trigger the recruitment of factors of the chaperone system (see among others

Beckmann et al., 2001; Kramer et al., 2002; Gu et al., 2003).

In addition, r-proteins are known to be targets of various post-translational modifications
(Kruiswijk et al., 1978a; Kruiswijk et al., 1978b; Arnold and Reilly, 1999; Arnold and Reilly,

2002) that can putatively influence the ribosome function.
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Noteworthy, in eukaryotes, r-proteins can be encoded by multiple genes. In Arabidopsis

thaliana, each r-protein is encoded on average by four homologues genes, many isoforms of
which have been shown to be present in the 80S ribosome (Giavalisco et al., 2005). In

Dictyostelium discoideum, the composition of the ribosome has been shown to change
depending of the developmental stage, both in qualitative and quantitative terms as well as in

terms of modifications (Giavalisco et al., 2005).

A so-called “ribosome filter hypothesis” has been suggested to explain the function of such
heterogeneity within the ribosome population (Mauro and Edelman, 2002). This model

proposes that a particular set of ribosomal proteins and/ or rRNA could favour the translation
of specific mRNAs. In this respect, the ribosome composition becomes an important player

for the understanding of protein expression regulation.

Further work needs to be done in order to support this model, but such a scenario would add
another layer to the importance of r-proteins in the regulation of gene expression.

3.3. Extra-ribosomal function of r-proteins.

Several studies finally challenge the simple view that r-proteins are “only” ribosome
constituents pointing towards extra-ribosomal function of r-proteins in replication,

transcription, DNA repair… (reviewed in Wool, 1996)

It was shown, in both pro- and eukaryotes, that some r-proteins have the ability to bind their

own mRNA transcripts, thus decreasing the production of this protein (Vilardell and Warner,
1994; Li et al., 1996; Vilardell and Warner, 1997; Fewell and Woolford, 1999; Nomura, 1999;

Vilardell et al., 2000; Badis et al., 2004; Nierhaus, 2004). R-protein dependent autogenous
control was proposed to control stoichiometric production of r-proteins and to ensure

coordinated regulation of rRNA and r-proteins synthesis especially in E. coli (see for reviews

Nomura, 1999; Nomura, 2001; Nierhaus, 2004).
Recently, it was demontrated in higher eukaryotes that a r-protein can bind to a mRNA and

consequently inhibit its translation (Mazumder et al., 2003; Zimmermann, 2003). These

results offer new perspectives in term of gene expression control upon environmental changes.

Ribosome production is a high energy consuming process therefore ribosome biogenesis
needs to be coordinated with cell growth and proliferation.
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It was shown in higher eukaryotes that following conditions inducing so-called “nucleolar

stress” or “ribosomal stress” ribosome biogenesis is impaired, thus leading to an increase of
free r-proteins. At least four of these free r-proteins were shown to bind to MDM2, thus

blocking MDM2-mediated p53 ubiquitination and degradation, and inducing a p53 dependent
cell cycle arrest (see Chen et al., 2007; Lindstrom et al., 2007).

These results suggest a possible extra-ribosomal function of r-proteins in the coordinated

regulation between ribosome biogenesis and cell proliferation.
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4. Aims of this work: in vivo functions and assembly pathway of SSU
r–proteins in eukaryotes.

Coding and non-coding RNPs occupy a pivotal role in cellular metabolism. During the last
decades the number of identified complexes has grown extensively. Among them are the

ribosomes, tRNA and mRNA containing complexes, snRNPs, SRP, telomerase, snoRNPs,
scaRNPs and miRNPs …

All these complexes share similarities in their biogenesis: proteins have to be assembled onto

the RNA transcript, the RNA of most of these molecular complexes has to be processed and/
or modified and finally functional complexes have to be delivered to their place of function.

The small ribosomal subunit (SSU) is such a RNP, and since in eukaryotic cells its biogenesis

is very complex as well as temporally and spatially organised, it represents a valid model to

understand many facets underlying (eukaryotic) RNPs biogenesis. The eukaryotic SSU
contains around 32 r-proteins and one rRNA. Despite many efforts, the in vivo roles of many

eukaryotic SSU r-proteins in ribosome biogenesis and function and how they assemble with
the rRNA to form a functional ribosomal subunit remain unclear.

To get a comprehensive insight into the in vivo function of r-proteins in ribosomal subunit
biogenesis and ribosome function, a systematic analysis was performed using the model

organism Saccharomyces cerevisiae with the following objectives:

(1) to establish  a system to analyse systematically the consequences of r-protein depletion in
ribosome biogenesis and function.

(2) to use this system in order to determine the primary function of individual r-proteins in
ribosome biogenesis.

(3) to establish tools allowing to monitor the in vivo assembly status of individual r-proteins in

wildtype and mutant cells.
(4) and to determine the in vivo r-protein composition of functionally relevant assembly

intermediates.

These tools and approaches should allow to draw correlations between RNP maturation,

assembly and cellular localisation, which is crucial to understand the coordination and
regulation of RNP biogenesis.
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RESULTS

1. Function of SSU r-proteins in ribosome biogenesis.

In order to understand the function of each individual SSU r-proteins in SSU biogenesis,

a!systematic functional study of yeast SSU r-proteins was performed.  For this purpose strains
conditionaly expressing SSU r-proteins were systematically constructed (results 1.1.). The

consequences of loss of function of individual SSU r-proteins on ribosome biogenesis and

function were analysed and are described below (see results 1. and 3. respectively).

1.1. Most of the SSU r-proteins are required for yeast cell growth.

1.1.1. Construction of yeast strains deleted in the SSU r-protein genes.

Since, in yeast, many SSU r-proteins are expressed from nearly identical duplicated genes, the
invalidation of SSU r-proteins requires in most cases the knockout of two higly similar copies

genes present in the haploid genome (Fig. 19). Diploid strains were generated by mating two
yeast strains in which either one of the two ribosomal gene copies was replaced by a different

selection marker (KanMX4 replaced by HIS3 or HIS3MX6). The resulting diploid

(rpsXA::KanMX4/RPSXA, rpsXB::HIS3/RPSXB) and diploids for the single copy genes
(rpsY::KanMX4/RPSY) were transformed with a vector expressing a wildtype copy of the

respective SSU r-protein (pRPSX; URA3 see materials & methods 6.). Positive transformants
were incubated on sporulation media, and subjected to tetrad analysis. Depending on the case

(single or duplicated genes), haploid strains bearing deletions in one/ or both rpS gene copies

were selected (G418R for DRPSY or G418R/HIS+ for DRPSXA, DRPSXB).

Viability of complete knockout strains was then tested on 5-FOA containing plates

(see!materials & methods 1.2.1.4.). Twenty-six of the 28 SSU r-proteins studied herein are

FOAS indicating that the plasmid expressing one of the two r-proteins variants can not be lost

and thus these SSU r-proteins are required for cell growth. Of the remaining four SSU

r–proteins no clear knockout could be constructed, these four strains are still under

investigation. However, two from these remaining SSU r-proteins, rpS4 (Synetos et al., 1992)



RESULTS                                                                                                                                72

and rpS21 (Tabb-Massey et al., 2003) were already reported to be essential for cell growth

(see also www.yeastgenome.org).

Figure 19: Generation of a yeast-strain collection in which (duplicated) genes coding for
ribosomal proteins are deleted.
A strategy to derive knockout strains and strains conditionally expressing r-proteins is depicted.
KanMX4 deletion markers of knockout strains were replaced by HIS3 or HIS3MX6 markers. Haploid strains
bearing either a KanMX4 or a HIS3/HIS3MX6 marker in one of the two genes coding for the same r-protein
copies were crossed.  The resulting diploid cells were transformed with a URA3 plasmid encoding a wildtype
gene copy of r-protein X (RPSX). Strains were sporulated, submitted to tetrade analysis, and selected for both
markers (His+ and G418R) to derive the corresponding shuffle strain for gene RPSX. Any conditional strains can
be obtained by exchange of the shuffle plasmid with a plasmid expressing a respective mutant allele, prpsXa.
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Furthermore, viability of all knockouts could be rescued expressing one of the two r-proteins

variants, indicating that the essential function of the respective duplicated r-protein is
redundant. This observation is in agreement with the systematic single-knockout studies,

where one of the two gene copies was deleted, and the remaining copy gene was able to
support cell growth (Winzeler et al., 1999; Giaever et al., 2002).

From the two non essential SSU r-proteins namely rpS12 and rpS25, the single copy gene
encoding rpS12 was previously shown to be not essential for cell viability and was obtained

from Euroscarf. Interestingly, haploid strains bearing a complete knockout of the two genes

encoding for rpS25A/B obtained after tetrad analysis were FOAR suggesting that this r-protein

is dispensable for cell growth. In order to confirm this result, the genotype of this strain was

confirmed by PCR analysis (see Fig. 20). Together, these results demonstrate that the

eukaryote specific rpS25, encoded by 2 closely related genes, is not essential for cell growth
in the condition tested.

Figure 20: The rpS25  isoformes are not essential for cell growth.
Heterozygous diploid cells for the RPS25 genes were sporulated (RPS25A/rps25A::HIS3;
RPS25B/rps25B::KanMX4). Tetrads containing four viable spores were always obtained. Full RPS25 knockout
clones (rps25A::HIS3; rps25B::KanMX4) were selected on selective media and genotypes were further
confirmed by PCR using the primer combinations indicated in the figure.

1.1.2. Construction of yeast strains conditionally expressing SSU r-proteins.

Strains conditionally expressing the respective SSU r-protein were generated by exchanging

the plasmid containing the wildtype copy with a vector carrying a conditional allele (see
Fig.19 and material & methods 6.2.2.). The tightly regulated GAL1 promoter, yielding high

gene expression levels in the presence of galactose and being strongly repressed in presence

of glucose was used to control SSU r-protein gene expression.
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Viability of all knockouts could be rescued by over-expression of one of the two r-proteins

alleles. In addition, these conditional alleles contain only the coding sequence of the
respective yeast SSU r-protein, although many of the chromosomal SSU r-protein genes

contain intron sequences. Interestingly, growth complementation by the intronless alleles
suggests that intron sequences and splicing reaction within SSU r-protein mRNA play no

essential role for cellular processes including maturation and transport of the respective

mRNA.

Finally, SSU RPS gene expression was shutdown by transfer of the strains onto glucose
containing media. In all the cases, cell growth was inhibited, which is in agreement with the

viability test on 5-FOA-plates, with only one exception: knockout of RPS31 was lethal on

5-FOA-plates, whereas shutting down gene expression of RPS31 on glucose resulted in a
strong retarded growth phenotype (see Fig. 21A).

In order to determine whether the strong retarded growth phenotype observed after depletion

of RPS31 was due to a leaky expression of this gene and to demonstrate the specificity of the

GAL1 promoter dependent gene expression regulation Northern blot experiments were
performed.

After 2 and 4 hours transfer to glucose containing media, the mRNA levels of the GAL1
controlled RPS genes tested, including rpS31-mRNA, could not be detected, whereas the

endogenous rpS-mRNA levels were unaffected, demonstrating the specific glucose-dependent
down regulation of GAL1 controlled RPS gene expression (see Fig. 21B).
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Figure 21: RPS gene shutdown impairs cell growth and is specific.
(A) Depletion of SSU r-proteins strongly inhibits cell growth.
Serial dilutions of wildtype cells and strains conditionally expressing the RPS30 and RPS31 genes were plated
on solid full media containing either glucose or galactose as a carbon source and incubated at 30°C for 5 days.
(B) Depletion of a single r-protein does not influence the mRNA level of other r-proteins.
Various strains conditionally expressing single r-proteins were grown on galactose (0 h) or in presence of
glucose (2 h and 4 h) in order to shutdown the expression of the corresponding r-protein.
Same amounts of total RNA were separated by PAGE-UREA, and transfered onto a nylon membrane as
described in the materials & methods 2.2.5. and 2.2.6.3. Prominent rRNA species were stained with methylene
blue and assigned according to their apparent running sizes. The different mRNA species were detected by
hybridisation of the membrane with specific 32P radiolabelled oligo probes for RPS0, RPS30 and RPS31 mRNA
(see materials & methods Table 4). Signals were detected and visualised using a Phosphoimager as descrided in
the materials & methods 2.2.8.

1.2. Most of the SSU r-proteins are required for synthesis of mature 18S rRNA.

Since most SSU r-proteins are required for cell growth, strains conditionally expressing SSU

r-proteins were used to determine which of the essential r-proteins are required for the
production of the mature SSU.

The dynamics of rRNA synthesis were analysed after shut down of SSU r-protein gene

expression in conditional mutants by [3H] uracil pulse analysis (see Fig. 22).
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Newly synthesised levels of both mature 18S rRNA and 25S rRNA were significantly

reduced; however, reduction in 18S rRNA synthesis was predominant. Only two exceptions
were observed: shut down of RPS30 and RPS8 gene expression affected production of both

18S and 25S mature rRNA to a similar extent, suggesting that both ribosomal subunits are still
produced at a comparable low level.

Since, the two ribosomal subunits are formed from a common 35S pre-rRNA limiting the

amounts of any of the SSU r-proteins interferes with efficient production of both mature
ribosomal subunits. It is a general observation in mutants affecting SSU production that

processing of the LSU rRNA still proceeds, however with reduced amount and/ or kinetics.
However, because reduction in 18S rRNA synthesis is predominant, the influence of the SSU

r-proteins on proper maturation of the SSU is more direct.

Even though significantly reduced, levels of newly synthesised 18S rRNA varies in the
different conditional strains (from nearly 0% to 7% of the wildtype production). After

depletion of the SSU r-proteins rpS7, rpS10, rpS30 as well as rpS31 more than 4% of the
wildtype 18S rRNA is still generated, indicating that SSU biosynthesis is not completely

blocked in these strains.

Figure 22: Effect of SSU r-protein depletion on newly synthesised rRNA.
Yeast cells were shifted to glucose containing medium for 2 h to deplete rpS synthesis and were pulse labelled
for 15 min with [3H] uracil. RNAs were isolated and separated by gel electrophoresis and blotted onto a nylon
membrane. Membrane slices containing 3H-labelled 25S and 18S rRNA, respectively, were cut, and
incorporation of [3H] uracil activities were determined in a scintillation counter. Background activity was
subtracted, and total activity was normalised according to steady-state 25S rRNA (as determined by Northern
blotting analysis) in the load. The amount of 25S and 18S rRNA in mutant strains is compared with wildtype
conditions. See also materials & methods 4.1.
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In strains lacking the non-essential SSU r-proteins rpS12 and rpS25, similar amounts of

mature 18S and 25S rRNA were produced, however, at a reduced level compared to a
wildtype strain: 65% and 30%, respectively (data not shown). These effects on rRNA

synthesis are in good agreement with the slow growth phenotype observed in these strains.

These data clearly suggest that most SSU r-proteins being essential for growth are also

required for the proper production of mature SSU. Thus, SSU r-proteins can either play a
direct role in the maturation pathway or their presence might be mandatory to ensure that only

properly assembled ribosomal subunits accumulate in the cytoplasm.

1.3. SSU r-proteins are required at different steps of the SSU biogenesis.

Since, SSU r-proteins are required for formation of mature 18S rRNA, this suggests that

processing and/ or production of rRNA precursors is impaired after depletion of the SSU
r-proteins.

However, it is not clear whether depletion of any of the SSU r-proteins inhibits the same or

different steps in the rRNA processing pathway.
Therefore, steady-state levels of rRNA intermediates leading to formation of mature

18S rRNA were analysed after depletion of single SSU r-proteins (Fig. 23). Transblotted
rRNA species were detected by using specific probes (see Fig. 23). According to their

different RNA processing patterns, strains could be divided into six different groups and

subgroups (see summary Fig. 24 and sections below), demonstrating that almost all-essential
SSU r-proteins are involved in the control of distinct maturation steps.

Strains were first classified into two main groups as described below:

(I) 20S rRNA is not detectable after depletion of the respective SSU r-proteins

(group I, Fig. 24B and results 1.3.1.).

(II) 20S rRNA is produced with either wildtype or slightly reduced efficiency

(group II, Fig. 24B and results 1.3.2. and following section).
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Figure 23: R-proteins control distinct pre-rRNA processing steps.

Analysis of pre-rRNA processing in strains depleted in r-proteins by Northern blot. RNA from the same amount
of cells was extracted from either wildtype or GAL-RPS strains grown in YP-galactose (0 h) or after 2 h and 4 h
shift to YP-glucose.
Probes 1–7 (see materials & methods table 4) were used to map the different rRNA species. The results for
probes (4) ITS1 and (5) are shown.
The plus sign (+) and asterisk (*) indicate the detection of 21S and 22S rRNA, respectively. The presence of 21S
and 22S rRNA intermediates was further confirmed with probes (2) and (5).
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1.3.1. Depletion of a subset of SSU r-proteins does not allow detectable
production of 20S rRNA.

Mutant strains in which 20S rRNA is not detectable accumulate 35S and 23S rRNA (Fig. 23-
24). Elevated levels of 35S rRNA indicate that cleavage at sites A0, A1, A2, and A3 is

delayed. When cleavage at site A3 precedes processing at sites A0, A1, and A2, 23S rRNA is

generated and represents either an aberrant RNA intermediate that is normally degraded
(Venema and Tollervey, 1995) or an intermediate of an alternative pathway to mature 18S

rRNA (Granneman and Baserga, 2004 see also introduction 2.2.2.3.). Accordingly,
accumulation of the 23S rRNA indicates that the respective depleted SSU r-protein is

involved in early cleavage steps at sites A0, A1, and A2.

Figure 24: Summary of the different rRNA processing defects induced after SSU r-protein
depletion.
(A) An overview of representative strains resulting in a similar processing pattern is depicted. Northern blot
hybridised with probe ITS1 (4, upper) is shown. Detection of 21S/ 22S rRNA using probes A2/A3 (5) and
fragment +1–D rRNA using probe +1-A0 (1) is shown (lower) (see Table 4)
(B) Classification of r-proteins according to their pre-rRNA processing defects. Ribosomal proteins are sorted
into group I if their depletion results in loss of 20S rRNA. If 20S rRNA is still produced, they belong to group II.
Subgroups were classified according to the presence or absence of 21S, 22S, or +1-D rRNA species (Ia, Ib, or Ic
and IIa, IIb, or IIc, respectively).
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Two further subgroups in which 35S, 23S rRNAs are accumulated can be distinguished, one

in which cleavages at A0, A1, and A2 are equally inhibited (group Ia) and one in which
cleavage at A0 is affected but occurs at a low rate to yield 22S rRNA (group Ib) (see Fig.

24B).

Depletion of rpS27 resulted in a comparable 35S and 23S rRNA accumulation observed for

group Ia. However, in this strain, a rRNA intermediate was also detected with probes specific
for the region upstream of A0 and upstream of the 3’ boundary of 18S rRNA, whereas probes

complementary to ITS1 did not recognise this rRNA intermediate (Fig. 25A). In this mutant
strain, cleavage at sites A0, A1, A2 is inhibited, whereas processing at site A3 is delayed,

leading to a pronounced level of 23S rRNA. Apparently, in this mutant, a minor fraction of

rRNA is cleaved at the 3’ boundary of the 18S rRNA (site D?) bypassing cleavage at A2
while cleavage at A0, and A1 does not occur resulting in an intermediate slightly larger than

the 22S (+1 to D?). A similar fragment spanning the region from +1 to site D was recently
described (Kufel et al., 2003; Vos et al., 2004).

Figure 25: Depletion of rpS27 induces the formation of a non-canonical nuclear rRNA
intermediate.
(A) Analysis of pre-rRNA processing in strain depleted in rpS27 by Northern blot.  RNA from the same number
of cells was extracted from GAL-RPS27 strain grown in YP-galactose (0 h) or after a 2 h or 4 h shift to YP-
glucose. Probes 1–7 (see Table 4) were used to map the different rRNA species. The results for probes (4) ITS1
and (1) are shown. The asterisk (*) indicates the detection of a +1/D? rRNA specie.
(B) and (C) The +1/D? rRNA fragment is detected in the nuclear fraction. Wildtype and GAL-RPS27 strains
were incubated for 2 h in YP-glucose media. Nuclei and cytoplasm were further fractionated as described in
materials & methods 4.3. RNA was extracted and separated by gel electrophoresis and blotted. The membrane
was then hybridised by probe (4) and (1) shown in (B) and (C) respectively. The asterisk  (*) indicates the
detection of a +1/D? rRNA species.
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Since, in wildtype cells cleavage at site D occurs in the cytoplasm, but A0, A1, A2 cleavages

are nuclear processing events, nuclear-cytoplasmic cell fractionations were carried out after
depletion of RPS27 in order to localise this rRNA species. Interestingly, the +1-D? fragment

observed after depletion of RPS27 appears to be mainly located in the nucleus (see Fig. 25B-
C). This result suggests that rRNA cleavage in the ITS1 region (between D-A2) can happen in

the nucleus. However, exact 5’ and 3’ end RNA mapping needs to be performed in order to

determine the exact cleavage site(s) for this rRNA species. Furthermore, complete or partial
(re)localisation to the nucleus of the known cytoplasmic ribosome biogenesis factors required

for D site cleavage in this condition needs to be investigated.

1.3.2. Depletion of a subset of SSU r-proteins still allows detectable production
of 20S rRNA.

As indicated earlier (Fig. 23-24) depletion of a subset of SSU r-proteins still allows
production of 20S rRNA. In wildtype cells, 20S rRNA occurs after processing of 35S/(23S)

pre-rRNA at sites A0, A1, and A2 (see introduction 2.2.2.3. and Fig. 11). However, both, the

slightly elevated levels of 35S and 32S rRNA and the detectable amounts of 23S rRNA in the
same mutants indicate that cleavage at sites A0, A1, and A2 is either delayed or not as

efficient as in wildtype yeast. Three subgroups of mutant strains producing 20S rRNA could
further be distinguished (Fig. 24B): strains that accumulate either 21S rRNA (like pGAL-

RPS20), 22S rRNA (like pGAL-RPS10), or none of these two species (like pGAL-RPS15).

Appearance of 22S rRNA indicates cleavage at site A0 but defective processing at sites A1
and A2, whereas 21S rRNA results from inefficient cleavage at site A2 and cleavage

occurring at sites A0 and A1 (see introduction 2.2.2.3. and Fig. 11). These results show that a
distinct subset of SSU r-proteins supports each cleavage step leading to 20S rRNA, the

export-competent form of pre-18S rRNA. Although 20S rRNA is made in these strains, its

steady-state amount is more or less reduced compared to wildtype cells.

1.4. A subset of SSU r-proteins is required for efficient pre-40S subunit export.

Since, 20S pre-rRNA is the direct substrate for late nuclear and cytoplasmic maturation

events, there are several possibilities regarding the function of SSU r-proteins of group II in
SSU biogenesis. Mutants still producing 20S rRNA after depletion of individual SSU

r–proteins (1) are directly impaired in export of 20S rRNA, (2) are inhibited in making
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20S!rRNA competent for export from the nucleus to the cytoplasm, or (3) are deficient in the

cytoplasmic processing steps. To differentiate between these possibilities, dynamic and steady
state maturation assays were applied in order to distinguish spatially and temporally the

maturation state of 20S rRNA containing pre-SSU´s produced after depletion of this subset
SSU r-proteins.

1.4.1. Nuclear-cytoplasmic cell fractionation.

Neo-synthesised RNA in cells depleted of individual SSU r-proteins were pulse-labelled with

[3H] uracil. Subsequent cell fractionation was performed to localise neo-synthesised rRNA

species (see material & methods 4.3.).

Results presented in figure 26 show that strains having a low amount of steady-state

20S!rRNA after depletion of SSU r-proteins (rpS5, rpS18, and rpS19) (see Fig. 23 and 26B)
contain only a minor amount of neo-synthesised 20S rRNA in nuclei and no detectable

20S!rRNA in the cytoplasmic fraction (Fig. 26A). This suggests that 20S rRNA cannot reach
the cytoplasm because either it is unstable, and/ or it is exported at such a reduced level that it

cannot be detected.

Interestingly, in conditional mutant strains yielding higher levels of steady-state 20S rRNA
(strains depleted in rpS0, rpS2, rpS3, rpS7, rpS10, rpS15, rpS20, rpS26, rpS30, or rpS31 see

Fig. 23), similar amounts of neo-synthesised 20S rRNA levels compared to wildtype cells
(between 50% and 110%) are found in nuclear fractions (Fig. 26A).

Surprisingly, in strains depleted in rpS0, rpS2, rpS3, rpS10, rpS15, or rpS26, the amount of

neo-synthesised 20S rRNA in the nuclear fractions is similar to wildtype levels, but the
amount of newly made 20S rRNA reaching the cytoplasm during the 15 min of pulse is

strongly reduced (see Fig. 26A).

In contrast, when one of the SSU r-proteins rpS7, rpS20, rpS30, or rpS31 is lacking, a
significant amount of neo-synthesised 20S rRNA reaches the cytoplasm. Furthermore, in

strains depleted in rpS7, rpS30, and rpS31, a significant amount of the cytoplasmic 20S rRNA
can be further processed to 18S rRNA (see Fig. 26A).

Accordingly, r-proteins rpS7, rpS30, and rpS31 seem to be not strictly required for rRNA

maturation and nuclear export, indicating that their primary role might be in protein
translation (see results 3.). On the other hand, these results suggest that export of

pre–18S!rRNA from the nucleus is inhibited in strains depleted in rpS5, rpS18, and rpS19,
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while pre-18S!rRNA export from the nucleus is clearly retarded in strains depleted in rpS0,

rpS2, rpS3, rpS10, rpS15 or rpS26, but not completely inhibited.

Figure 26: R-proteins control competence and efficiency of pre-18S rRNA export.
Nuclear export of 20S rRNA was analysed in GAL-RPS strains 2 h after transfer into YP-glucose.
(A) Analysis of newly synthesised pre-18S rRNA nuclear export by metabolic labelling and cell fractionation.
After a 2 h shift to glucose containing medium, spheroplasts were labelled with [3H] uracil for 15 min and
fractionated in nuclei and cytoplasm. RNAs were isolated and steady-state amounts of 25S rRNA were
determined by dot blot analysis. Equal amounts of steady-state 25S rRNA of cytoplasmic and nuclear fractions,
respectively, were separated by gel electrophoresis and blotted. Newly synthesised 3H-labelled RNAs were
detected by phosphorimaging and quantified using Image Gauge software (Fuji).
(B) Steady-state analysis of rRNA in nuclei and cytoplasm.
The same blots as in (A) were developed using digoxigenin-labelled ITS1-probe 4 (Note that the cytoplasmic
fraction of wildtype strains contained about 80%–90% of total 20S rRNA). 20S rRNA was quantified with the
Fuji imaging system LAS3000, applying the AIDA software (Raytest).
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Using a probe directed against the ITS1 region, steady-state levels of pre-18S rRNA in

nuclear and cytoplasmic fraction from the blot used in Fig. 26A were determined.
No cytoplasmic steady-state 20S rRNA was detected in strains lacking rpS5, rpS18, or rpS19,

while a low but detectable amount of steady-state 20S rRNA can be observed in the nuclear
fraction. This result confirms the role of rpS5, rpS18, and rpS19 in late nuclear pre-40S

maturation step before the passage of 20S rRNA through the nuclear pore.

Mutants having a retarded nuclear export rate (rpS0, rpS2, rpS3, rpS10, rpS15 and rpS26)
accumulate steady-state 20S rRNA in the nucleus. Surprisingly, cytoplasmic 20S rRNA of

these mutants is rather stable, as it apparently accumulates over time and —after two hours
depletion —it reaches levels between 40% and 120% of the cytoplasmic 20S rRNA

intermediate in wildtype cells (in wildtype cells about 80% of 20S rRNA is found in the

cytoplasm).
This result confirms the role of rpS0, rpS2, rpS3, rpS10, rpS15 and rpS26 to allow efficient

passage of pre-40S through the nuclear pore, and also demonstrates the requirement of these
SSU r-proteins in late cytoplasmic maturation of 20S into 18S rRNA.

1.4.2. Fluorescence in situ hybridisation of pre-rRNA.

In order to confirm the results described above fluorescent in situ hybridisation (FISH)
analyses using a Cy3 (cyanine 3) modified ITS1 probe were performed, allowing to verify the

steady-state distribution of 20S rRNA and its precursors in the nuclei and cytoplasm of the

mutants!(Fig.!27).
Exclusively nucleolar and nuclear localisation of rRNA intermediates hybridising with ITS1

was visible in mutants depleted in rpS5, rpS18, and rpS19.
In mutants that are able to export 20S rRNA at a similar rate as wildtype cells (strains

depleted in rpS20, rpS30, and rpS31) or that can accumulate 20S rRNA over time (strains

depleted in rpS0, rpS2, rpS3, rpS10, rpS15 and rpS26), nuclear and cytoplasmic FISH signals
were similar or only slightly reduced to those obtained with wildtype cells.

Although the dynamic range of the FISH analysis seems to be weaker, this result confirms the

presence of exported 20S rRNA precursor to the cytoplasm in strains depleted in rpS0, rpS2,
rpS3, rpS7, rpS10, rpS15, rpS20, rpS26, rpS30, or rpS31.
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Figure 27: R-proteins control pre-18S rRNA export.
Nuclear export of 20S rRNA was analysed in GAL-RPS strains 2 h after transfer into YP-glucose by using FISH
of pre-18S rRNA.  A probe complementary to the D-A2 segment of ITS1 was used to localise pre-18S rRNA
after depletion of rpS expression. Arrowheads indicate the nucleoplasm that was visualised by DAPI staining.

1.5. Summary on the function of SSU r-proteins in ribosome biogenesis.

In conclusion (see also summary Fig. 28), these results indicate that most individual SSU

r-proteins are required  (1) for efficient production of mature 18S rRNA (2) for different steps

in SSU biogenesis, and can be grouped according to their rRNA processing defect phenotype
after depletion. Interestingly, most of the known pre-rRNA intermediates described in the

literature in wildtype and ribosome biogenesis mutant strains could be seen after depletion of

individual SSU r-proteins, suggesting a crucial role of individual SSU r-proteins at every steps
of the SSU maturation. The results indicate that SSU r-proteins can be further grouped

according to the 20S rRNA maturation defects shown after depletion. (3) SSU r-proteins rpS5,
rpS18, and rpS19 are required for late nuclear processing and/ or quality control steps leading

to nuclear retention of 20S rRNA. (4) Depletion of SSU r-proteins rpS0, rpS2, rpS3, rpS10,

rpS15 and rpS26 appear to first affect the export rate/ competence of the SSU and then the late
maturation steps of conversion of 20S pre-rRNA into mature 18S rRNA. Furthermore,
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(5)!when one of the SSU r-proteins rpS7, rpS20, rpS30, or rpS31 is lacking, a significant

amount of neo-synthesised 20S rRNA reaches the cytoplasm. Finally, (6) in strains depleted
in rpS7, rpS30, and rpS31, significant amounts of the cytoplasmic 20S rRNA can be further

processed into mature 18S rRNA.
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2. In vivo assembly pathway of SSU r-proteins.

As was shown in the first part of this work, depletion of single SSU r-protein inhibits different
steps of the SSU rRNA maturation. In E. coli, r-proteins were shown to assemble in vitro

according to a defined interdependent hierarchical pattern (see introduction 3. for details).
Thus suggesting that depletion of a single r-protein could interfere with the assembly of other

r-proteins.

Furthermore, it is not clear how ribosome assembly correlates with rRNA maturation since
knowledge is lacking about the order, timing and compartmentalisation to assemble

eukaryotic r-proteins in vivo.
To directly analyse the assembly states of the different eukaryotic small subunit precursor

rRNAs the interaction of each r-protein of the yeast S. cerevisiae with pre-rRNA was

systematically investigated. For this purpose, a collection of single tagged SSU r-proteins was
generated in order to affinity-purify them and to determine their respective associated mature

and pre-mature rRNA by Northern blotting.
Finally, assembly states of eukaryotic SSU rRNA precursors with SSU r-proteins were

determined in mutant strains.

2.1. A collection of tagged SSU r-proteins to study in vivo assembly of SSU
r-proteins.

The coding sequences of SSU r-proteins were cloned in fusion either with a N or C terminal

Flag sequence and expressed under the control of (1) the conditionnal GAL1 promoter and
(2) under the control of the RPS28 promoter to support constitutive expression. Constructs

complementing growth in the genetic background of the complete knockout of the
corresponding SSU r-protein genes were selected (see for details of construction materials &

methods 6.).

Twenty-four out of 26 SSU r-proteins tested could be expressed from a multi-copy vector
under the control of a constitutive promoter as either N- or C-terminal Flag-tagged proteins,

which complemented the lethal phenotypes of the corresponding chromosomal gene deletions
(see materials & methods table 1 and data not shown) demonstrating that these Flag-tagged

alleles can fulfill their essential functions in ribosome biogenesis and translation. Flag-tagged

alleles which were not able to complement the corresponding gene deletions were excluded
from further analysis (e.g. Flag-rpS8, rpS8-Flag, Flag-rpS23, rpS23-Flag).
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2.2. In vivo assembly of eukaryotic SSU r-proteins with pre-40S subunits.

After transformation of strain pGAL-RPS5 (ToY323) with the Flag-rpS vectors, single tagged

SSU r-proteins were used to determine their respective associated mature and pre-mature
rRNA by Northern blotting. These experiments showed that most of the tagged SSU

r-proteins coprecipitated large amounts of mature 18S rRNA (Fig. 29 compare lanes 1 and 2)

and 25S rRNA (not shown) in growing cells. This shows that the chosen Flag-fusion proteins
are stably assembled into cytoplasmic, translationally active ribosomes, even in conditions of

co-expression of the wildtype allele, although some of them lead to a slight delay of early
rRNA processing (Flag-rpS11, Flag-rpS13, rpS26-Flag). Flag-fusion proteins which did not

efficiently coprecipitate the mature rRNA species were excluded from further analysis, even if

they complemented the loss of function of the corresponding gene disruptions (e.g. Flag-
rpS18, rpS18-Flag, Flag-rpS7, Flag-rpS30, rpS30-Flag). The efficiency of 18S rRNA

precipitation indicates the assembly state of the mature 40S subunit in regard to the different
Flag-fusion proteins and serves in the following experiments as an internal control for

individual coimmunoprecipitation reactions.  Interestingly, all Flag-tagged r-proteins selected

according to the criteria described above - except rpS26 (N- and C-terminally Flag-tagged) -
coprecipitated also a significant amount (up to 15%) of 20S rRNA (see Fig. 29 compare lanes

1 and 2). The low ratio of efficiency of 20S pre-rRNA versus 18S rRNA coprecipitation with
rpS26 suggests a rather late stable assembly of rpS26 into pre-ribosomes. The other r-proteins

seem to become stably associated within 20S rRNA-containing nascent pre-ribosomes. In

contrast, the amounts of coprecipitated early precursors like 35S rRNA (0.1%-1.5%) and
23S!rRNA (0.1%-3%) were clearly reduced although they varied between individual

r-proteins (see Fig. 29 compare lanes 1 and 2). Interestingly, the same immunoprecipitation
pattern was observed using strains exclusively expressing the individual Flag-tagged RPS

alleles (for summary of the quantifications of these experiments, see Fig. 35A) and in some

exemplary strains expressing protein A tagged rpS (data not shown). In addition, no
significant rRNA degradation was observed in the course of these experiments (see Fig. 30A)

Furthermore, work of the Baserga laboratory (Bernstein et al., 2004) showed very similar

characteristics for HA-tagged r-proteins rpS4 and rpS6 in regard to their interaction with early
and later precursor rRNA. Altogether, these experiments minimise the possibility that these

results can be explained by general accessibility problems of the tags in early pre-ribosomes
for all of the rpS alleles tested. Finally, Flag-tagged Noc4p and Nop14p

coimmunoprecipitated very efficiently early precursor rRNA, showing that interactions with
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early pre-ribosomes are in principal well detectable using this methodology (Fig. 29, upper

left panel and data not shown).

Figure 29: Analysis of r-protein association with (precursor) SSUs before and after in vivo
depletion of rpS5.
Yeast strain (ToY323), expressing RPS5 under the control of a galactose inducible promoter was transformed
with vectors supporting the constitutive expression of Flag-tagged SSU r-proteins. Positive transformants were
selected and logarithmically growing cells were diluted to an OD of 0.3-0.5 and incubated 4 h in YP-galactose-
containing media. Cultures were split; one half was further incubated 2 h in YP-galactose containing media (on)
and the other half incubated 2 h in YP-glucose-containing media to shutdown the expression of RPS5 (off). Cell
extracts were prepared and association of SSU Flag-r-proteins with their rRNA targets were analysed by RNA
coimmunoprecipitation experiments (IP) followed by Northern blotting (see materials & methods 4.4. and
2.2.6.). Ribosomal RNA species were determined using probes complementary to the ITS1 (D-A2) and the 18S
region (see materials & methods Table 4). Signals in input lanes (In) correspond to 1% of loaded cell extracts
onto the anti-Flag agarose beads (IP lanes).
A representative rRNA analysis of supernatants is shown in Fig. 30A.
In the upper left corner a corresponding analysis of a Flag-Noc4 and a no-tag-carrying strain is depicted.
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Legend Figure 29 (continued): Signals of coimmunoprecipitated 20S rRNA and 18S rRNA were quantified as
described in the materials & methods section. Percentages of coimmunoprecipitated (pre-) rRNA were
determined. Efficiency of 18S rRNA precipitation serves as an internal control of the IP experiments and of the
general assembly characteristics of the Flag-rpS fusion proteins. The efficiency of coimmunoprecipitated
20S!rRNA in permissive condition ([%IP 20S rRNA / %IP 18S rRNA] in galactose) versus the efficiency of
coimmunoprecipitated 20S rRNA in nonpermissive condition ([%IP 20S rRNA / %IP 18S rRNA] in glucose)
were compared and expressed as the following ratio: [(%IP 20S rRNA / %IP 18S rRNA) in galactose / (%IP 20S
rRNA / %IP 18S rRNA) in glucose]. A representative experiment from three independent experiments is shown.

However, it is still possible in the case of SSU r-protein precipitation that the large amount of

mature ribosomes coprecipitated inhibits the efficient precipitation of earlier precursor. To
exclude this possibility, competition experiments mixing equal protein amounts from whole

cell extracts of strains expressing flag tagged allele of Noc4p and rpS13 were performed. As

shown in Fig. 30B efficient precipitation of both early precursors and mature ribosomes is still
possible in this condition, suggesting that the precipitation of large amount of mature

ribosomes does not significantly influence the precipitation efficiency of the earliest pre-
rRNA.

Figure 30: Control experiments.
(A) Immunoprecipitations of Flag-tagged rpS15 in yeast strain (ToY323), expressing RPS5 under the control of
a galactose inducible promoter in permissive and non-permissive conditions were performed as described in
Figure 29. Signals in input lanes (In) correspond to 1% of loaded cell extracts onto the anti-Flag agarose beads
(IP lanes). Signal in flow through lanes (FL) correspond to 1% of the supernantants (non bound material) after
90!min incubation at 4°C with anti-Flag agarose beads. A representative result is shown.
(B) Competition experiments mixing equal protein amount from whole cell extracts of strains expressing
flag–tagged allele of Noc4 and rpS13 were performed.
Five mg of proteins whole cell extracts from strains Flag-Noc4 and untagged wildtype (Flag-Noc4 lane), or
Flag–rpS13 and untagged wildtype (Flag-RPS13 lane), or Flag-Noc4 and Flag-rpS13 (Flag-Noc4 + Flag-RPS13
lane) were mixed and incubated with the indicated amount of anti-Flag agarose beads (IP) and
immunoprecipitations were performed as described in Figure 29. Signals in input lanes (In) correspond to 1% of
loaded cell extracts onto the anti-Flag agarose beads (IP lanes).
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In conclusion, most SSU r-proteins show a lower interaction affinity with early precursors

suggesting that association of SSU r-proteins with the SSU precursor is somehow increased in
the course of ribosome assembly. Alternatively early precursor r-protein composition could be

more heterogeneous than for late precursor, thus leading to inefficient coimmunoprecitation of
early pre-rRNA (or both possibilities).

In order, to determine whether r-proteins are associated with pre-rRNAs with different
strength, coimmunoprecipitation experiments for Flag-rpS13, rpS14, and rpS20 using

increasing salt conditions were performed (Fig. 31). Whereas association with early precursor
(35S) rRNA was lost upon treatment with 600 mM KCl, interaction with 20S rRNA was still

seen at concentrations of 600 mM KCl and 800 mM KCl, respectively. These experiments

suggest that there is a salt labile but detectable association of many r-proteins with the earliest
rRNA precursors. In fact, a few r-proteins have been documented in Miller spreads to

associate co-transcriptionally with the nascent transcript (Chooi and Leiby, 1981). These data
now demonstrate that at least some of the SSU r-protein interactions with early precursor

(35S) rRNA are of functional relevance, since a large group of r-proteins supports cleavage

events in the early rRNA precursors (see Fig. 28). These early processing steps are tightly
linked to a structural rearrangement – presumably by rRNA folding and protein-protein

interactions – through which the association of most r-proteins with 20S pre-rRNA is

stabilised (see also summary Fig. 35A). This is in agreement with EM analysis which
indicates a compaction of the rRNA/ r-protein complex during the in vitro assembly process

of prokaryotic SSU (Mandiyan et al., 1991). Interestingly, the stability of interaction of early
SSU-processing factors with precursor rRNA shows an inverse behaviour. SSU-processome

components, like Flag-tagged Noc4p associate much stronger with early precursor (35S)

rRNA than with the late precursor (20S) rRNA (see Fig. 29, upper left panel and Gallagher et
al., 2004). This suggests that the co-transcriptionally established SSU-processome – rRNA

complex (Osheim et al., 2004) undergoes a significant structural reorganisation upon early
processing events and concomitant stable association of r-proteins which leads finally to the

dissociation of the SSU-processome. In all cases examined, the stability of the interaction

between r-proteins and 20S rRNA-containing particles reached comparable (Fig. 29, lanes 1,
2) but not identical levels to that of the same r-proteins with mature 18S rRNA (Fig. 31,

compare immunoprecipitation of 18S and 20S rRNA at 1M KCl). This suggests that late
(cytoplasmic) maturation events precede a further structural reorganisation of parts of the SSU
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which could lead to the final mature SSU in agreement with recent work (Schafer et al.,

2006).

Figure 31: Influence of salt concentrations on the association of Flag-rpS13, Flag-rpS14 and
Flag–rpS20 with (precursor) rRNA.
(A) Yeast strain expressing an N-terminal Flag-tagged version of the primary binder homologue rpS13 (ToY272)
was grown in YP-galactose to an OD of 0.8-1.  Association of Flag-rpS13 with (precursor)-rRNA was analysed
as described in Fig. 29 except that the salt concentrations indicated (0.2, 0.4, 0.6, 0.8 and 1 M KCl) were present
during cell breakage and coimmunoprecipitation procedures. Signal in input lanes (In) correspond to 1% of
loaded cell extract onto the anti-Flag agarose beads (IP lanes).
(B) Signals of coimmunoprecipitated rRNA species from blot shown in (A) were quantified as described in the
materials & methods section. Percentages of coimmunoprecipitated rRNA species were normalised to the
percentage of coimmunoprecipitated rRNA determined at 200 mM KCl.
(C) Yeast strains expressing N-terminal Flag-tagged version of rpS13, rpS14, rpS20 homologue of E. coli
primary binder S15 and tertiary binders S11 and S10 respectively were grown in YP-galactose to an OD of 0.8-1.
Association of Flag-rpS13, Flag-rpS14 and Flag-rpS20 with (precursor)-rRNA were analysed as described in
Fig. 29. Signals of coimmunoprecipitated rRNA species from the blots were quantified as described above.
Percentage of coimmunoprecipitated rRNA species were normalised to the percentage of coimmunoprecipitated
rRNA determined at 200 mM KCl.

In summary, (1) most SSU r-proteins interact weakly with the earliest rRNA precursor,

(2) these weak interactions are - for some r-proteins - of functional relevance, and (3) SSU
r-proteins interactions with pre-rRNA are stabilised in the course of the SSU maturation/

assembly. However, it is not clear how rRNA maturation events influence the stability of SSU

r-proteins interactions with pre-rRNA.
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2.3. In vivo assembly of eukaryotic SSU r-proteins with rRNA precursors after
depletion of rpS5.

From the results described above, it is not clear which prerequisites exist for the in vivo

formation of stable assembly intermediates of eukaryotic SSU r-proteins with the SSU

precursor rRNA.

To this end, the interaction of SSU r-proteins and pre-rRNA after shutting off the expression
of the SSU r-protein rpS5 was analysed.

First, in vivo depletion of rpS5 leads to a delay in early processing events and thereby to an
accumulation of early (35S, 23S) rRNA precursors (see results 1. and summary Fig. 28).

Accordingly, by increasing the half-life of these rRNAs, one can test, whether interactions

with early precursors can be strengthened.
Second, in rpS5 depleted cells, 20S rRNA containing pre-ribosomes are not able to translocate

from the nucleus to the cytoplasm (see results 1. and summary Fig. 28) as it happens under
normal growth conditions (see introduction 2.2.2.3.). Therefore, this phenotype allows to

examine how in vivo compartmentalisation of ribosome biogenesis in eukaryotes influences

assembly of r-proteins with the nascent SSU.
Third, the eubacterial r-protein S7, homolog of rpS5, was shown to be an in vitro primary

binder of bacterial mature 16S rRNA and is crucial for assembly of the SSU head structure
(Mizushima and Nomura, 1970; Brodersen et al., 2002; Nierhaus, 2004; Talkington et al.,

2005). Thus, the analysis of the assembly status of SSU precursors from rpS5 depleted cells

will give insights in how both, the eukaryotic and the in vivo contexts influence the hierarchy
of r-protein assembly.

The results of the experiment shown in Fig. 29 (compare lanes 1/2 and 3/4) indicate, that

expansion of the half-life of early rRNA precursors by in vivo depletion of rpS5 is not

sufficient to improve the apparent stability of their interaction with r-proteins (compare
precipitation of 35S rRNA in lanes 2 and 4). Similar observations were made using exemplary

r-proteins as baits (data not shown) after reducing rRNA processing kinetics, by incubating

yeast cells at low temperature (Trapman and Planta, 1975).
Strikingly, after shutting down expression of rpS5, even interaction of a subgroup of SSU

r-proteins with pre-ribosomes containing the late (20S) precursor rRNA is clearly weakened
(Fig. 29; rpS3, rpS10, rpS15, rpS16, rpS19, rpS20, rpS28, rpS29 compare lanes 1/2 with lanes

3/4, see Fig. 35B, left panel, for a summary of the quantitation of these experiments)
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demonstrating that these r-proteins require rpS5 for stable incorporation into the SSU

precursor. This is especially interesting, since, if existing, the corresponding homologous
counterparts in eubacteria belong to the group of r-proteins which localise to the head

structure of the SSU (Wimberly et al., 2000; Spahn et al., 2001; Yusupov et al., 2001, see also
Fig. 32A). Thus, these results show that (1) early processing events - which are delayed, but

still occur in rpS5-depleted cells - are tightly linked to formation of a stable assembly

intermediate of the body, but not of the SSU head structure. (2) Formation of a stable
assembly intermediate of the SSU head structure strictly depends on the presence of rpS5 (and

is not required for early processing events). Since in vitro formation of the eubacterial SSU
head structure depends on the rpS5 homologue S7 (Mizushima and Nomura, 1970; Nomura

and Erdmann, 1970; Nierhaus, 2004; Talkington et al., 2005), these results suggest a

remarkable analogy (Bubunenko et al., 2006) between general principles of the in vivo and
in vitro r-protein assembly pathways of eukaryotic and prokaryotic ribosomes. Apparently,

the enormous increase in number of essential accessory factors and structural components
introduced in the in vivo context of eukaryotic ribosome biogenesis does not change the main

aspects of the general hierarchy of r-protein assembly.

Surprisingly, rpS0, the homologue of eubacterial S2, does not depend on rpS5 in its stable
interaction with precursor rRNA, as it would be expected by the eubacterial in vitro assembly

map (Mizushima and Nomura, 1970; Nomura and Erdmann, 1970; Nierhaus, 2004;

Talkington et al., 2005). A comparison of the (predicted) 3D structure of eubacterial S2 and
eukaryotic rpS0 in the SSU indicates that this difference in assembly dependence correlates

with the reduced contact interface between the eukaryotic rpS0 and the SSU head structure
(compare Fig. 32B to Fig. 32C).

In summary, it can be concluded that (1) early processing events - which are delayed, but still
occur in rpS5-depleted cells - are tightly linked to formation of a stable assembly intermediate

of the body, but not of the SSU head structure. (2) Formation of a stable assembly
intermediate of the SSU head structure strictly depends on the presence of rpS5 (and is not

required for early processing events). (3) R-protein assembly pathways in eukaryotes in vivo

display striking similarities to the one shown in vitro for prokaryotic ribosomes. (4) Finally,
previous data demonstrated that rpS5 is strictly required for nuclear export of the SSU-

precursor (see results 1. and summary Fig. 28). Thus, the data shown in Fig. 29 indicate that
the formation of a stable assembly intermediate of the SSU body in the absence of rpS5
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occurs in the nucleus but is not sufficient to enable a consecutive translocation through the

nuclear pores.

Figure 32:  Structural view of the eukaryotic small ribosomal subunit.
Structural landmarks are indicated as following:  b for body; h for head; pt for platform; bk for beak. The thick
dashed line indicates the “border” between the body and the head structure.
(A) Structure of the eukaryotic SSU.
Eukaryotic SSU structure at 11.5 Å according to pdb file 1S1H (Spahn et al., 2004) shown from the solvent side.
R-proteins analysed in this study which were localised and modeled by Spahn et al. (Spahn et al., 2004)
according to their homology with prokaryotic counterparts are coloured as follows; red, r-proteins associated
with the head structure;  blue r-proteins associated with the body structure of the SSU. The 18S rRNA and
r-proteins modeled but not analysed in this study are indicated in grey. The square indicates rpS0.
(B) Structure of the prokaryotic rpS0 homologue S2 and its rRNA/ r-protein neighborhood in the T. thermophilus
SSU at 5.5 Å according to pdb file 1J5E (Wimberly et al., 2000). S2 is coloured in blue, the central protein
domain of 46 amino acids of S2 which is not conserved in the eukaryotic counterpart rpS0 is coloured in green.
(C) Structure of rpS0 and its rRNA neighborhood in S. cerevisiae according to pdb file 1S1H (Spahn et al.,
2004). rpS0 is coloured in blue, 18S rRNA and other r-proteins are in grey.
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2.4. Assembly of eukaryotic SSU r-proteins with 20S pre-rRNA after in vivo
depletion of rpS15.

To further compare the principles of eukaryotic SSU in vivo assembly with the hierarchical
prokaryotic in vitro assembly map the assembly status of the precursor SSU after in vivo

depletion of rpS15 was analysed. S19, the prokaryotic homologue of rpS15, was described to

act as secondary binder in the in vitro assembly map of the prokaryotic SSU head domain,
downstream of the primary binder S7, the prokaryotic homologue of rpS5 (Mizushima and

Nomura, 1970; Nomura and Erdmann, 1970; Nierhaus, 2004; Talkington et al., 2005). The
data shown in Fig. 33 indicate that in vivo depletion of rpS15 specifically affects the assembly

of many r-proteins (rpS5, rpS10, rpS16, rpS20, rpS28, rpS29) into the head-like structure, not

the body (rpS13 and rpS14) of the SSU. Interestingly, quantification of the results
(summarised in Fig. 35B) shows that in vivo depletion of the primary binder-homologue rpS5

has a much stronger impact on formation of the head-like structure than depletion of the
secondary binder-homologue rpS15. Consistently, absence of the primary binder-homologue

rpS5 affects assembly of the secondary binder homologue rpS15 much more drastically than

vice versa.

These results strengthen the assumption that general principles of the prokaryotic in vitro

assembly pathway apply also for assembly of ribosomes in eukaryotic cells. Further analysis

will be needed to show exactly how both the eukaryotic and the in vivo context influences

assembly of r-proteins. In addition, the 15 SSU r-proteins which have no homologous
counterparts in eubacteria have to be positioned in an “in vivo assembly map”.

Furthermore, the analysis of the SSU assembly status in the rpS15 mutant reveals an
additional in vivo assembly intermediate of the eukaryotic SSU head. The corresponding

phenotypes in ribosome biogenesis differ in several aspects from those observed after

depletion of rpS5: no apparent delay of early rRNA processing events, a strongly delayed
nuclear export of 20S rRNA and a strong inhibition of late cytoplasmic rRNA processing

events (see results 1. and summary Fig. 28). Apparently, ongoing formation of a stably

assembled head-like structure has a strong impact in the ability of the SSU to leave the
nucleus.
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Figure 33: Analysis of r-protein association with (precursor-) SSUs before and after in vivo
depletion of rpS15.
Yeast strain (ToY89), expressing RPS15 under the control of a galactose inducible promoter was transformed
with vectors supporting the constitutive expression of Flag-tagged SSU r-proteins.
RNA coimmunoprecipitation experiments were performed as described in Fig. 29.
Signals in input lanes (In) correspond to 1% of loaded cell extracts onto the anti-Flag agarose beads (IP lanes).
For rpS5* and rpS10* signals in input lanes (In) correspond to 3% of loaded cell extracts onto the anti-Flag
agarose beads (IP lanes).
Signals of coimmunoprecipitated 20S rRNA and 18S rRNA were quantified as described in the materials &
methods section. Quantifications were performed using two different loadings as exemplified for rpS5/ rpS5*
and rpS10/ rpS10* (upper panel).
Percentages of coimmunoprecipitated rRNA were determined. Efficiency of 18S rRNA precipitation serves as an
internal control of the IP experiments and of the general assembly characteristics of the Flag-rpS fusion proteins.
The efficiency of coimmunoprecipitated 20S rRNA in permissive condition ([%IP 20S rRNA / %IP 18S rRNA]
in galactose) versus the efficiency of coimmunoprecipitated 20S rRNA in non-permissive condition ([%IP 20S
rRNA / %IP 18S rRNA] in glucose) were compared and expressed as the following ratio: [(%IP 20S rRNA / %IP
18S rRNA) in galactose / (%IP 20S rRNA / %IP 18S rRNA) in glucose]. Ratios are indicated as an average of
the values determined from two independent experiments and two different loadings for each experiments.

2.5. In vivo assembly status of nascent nuclear SSU after inactivation of the
ribosome exportin Crm1p.

As shown earlier depletion analysis demonstrated that rpS5 blocks and rpS15 strongly affects

nuclear export of the SSU-precursors (results 1.  and summary Fig. 28). In addition, rpS5 and

rpS15 depletion is weakening the interaction with (20S) rRNA precursors of an r-protein
group forming a head-like structure. Moreover, individual depletion of these r-proteins

impairs (efficient) translocation of pre-ribosomes through the nuclear pore (results 1.  and
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summary Fig. 28). Finally, the data shown in Fig. 29 indicate that formation of a stable

assembly intermediate of the SSU body in the absence of rpS5 occurs in the nucleus but is not
sufficient to enable a consecutive translocation through the nuclear pores.

Accordingly, one can ask whether formation of a stabilised SSU head-like structure precedes

nuclear export.

Therefore, association of SSU r-proteins with 20S rRNA precursor was analysed when nuclear
export was impaired through inactivation of the ribosomal exportin Crm1p (Moy and Silver,

1999; Leger-Silvestre et al., 2004).

Figure 34: Association of SSU r-proteins with (precursor-) SSUs after inactivation of exportin
Crm1p.
(A) Northern analysis of SSU (precursor)-rRNA of nuclear/ cytoplasmic fractions of cells treated with (+) or
without (-) 100 nM leptomycin B (LMB) (see materials & methods).
To control the localisation of 20S rRNA before and after inhibition of the exportin Crm1p with LMB, nuclear
and cytoplasmic fractions of a yeast strain (ToY376) carrying a leptomycin B sensitive allele of exportin Crm1
(Neville and Rosbash, 1999) were prepared after treatment with (+) or without (-) 100 nM leptomycin B for 45
minutes as described in (Leger-Silvestre et al., 2004). A representative experiment is shown.
(B) Association of Flag-tagged SSU r-proteins with (precursor-)-SSUs after inactivation of exportin Crm1p.
Yeast strain (ToY376) carrying a leptomycin B sensitive allele of exportin Crm1 (Neville and Rosbash, 1999)
was transformed with vectors supporting constitutive expression of Flag-tagged SSU r-proteins. Logarithmically
growing transformants were diluted to an OD of 0.3-0.5 and incubated 2 h in YP-glucose. Cultures were split and
further incubated for 45 min with (+) or without (-) 100 nM of leptomycin B. Cell extracts were prepared and
association of SSU Flag-r-proteins with their rRNA targets was analysed by RNA coimmunoprecipitation
experiments followed by Northern blotting (see materials & methods). Ribosomal RNA species were determined
using probes complementary to the ITS1 (D-A2) and the 18S region. Signals in input lanes (In) correspond to 1%
of loaded cell extracts onto the anti-Flag agarose beads (IP lanes).



RESULTS                                                                                                                                99

As demonstrated previoulsly (Moy and Silver, 1999; Leger-Silvestre et al., 2004 and in Fig.

34A), Crm1p inhibition results in an almost complete block of 20S rRNA precursor export to
the cytoplasm. In contrast to rpS5 and rpS15 depletion, inhibition of Crm1p dependent SSU

export does not prevent stable association of all SSU r-proteins that form a head-like,
rpS5–dependent structure (Fig. 34B see rpS3, rpS10, rpS15, rpS16, rpS19, rpS20, and rpS28).

These results demonstrate that it is further possible to dissect ribosomal assembly and nuclear

export in several crucial steps. Different assembly states can be defined, and related to
different effects on nuclear export (Fig. 35B). These data also indicate, that the establishment

of a stably assembled SSU head-like structure within the nucleus represents a necessary
prerequisite to allow efficient Crm1-mediated passage through the nuclear pores (see

summary in Fig. 35B).

2.6. Summary on the in vivo assembly pathway of SSU r-proteins.

In summary, the results shown in the second part of this work suggest (1) that most SSU

r-proteins interact weakly with the earliest rRNA precursors (2) these weak interactions are

- for some r-proteins - of functional relevance. (3) SSU r-protein interactions with pre-rRNA
are stabilised in the course of the SSU assembly. (4) This stabilisation apparently correlates

with rRNA maturation events. (5) Formation of a stable assembly intermediate of the
body-like, but not of the SSU head-like structure is tightly linked to early processing events

(A0, A1, and A2 cleavages). (6) Formation of a stable assembly intermediate of the SSU

head-like structure depends on the presence of rpS5 (and is not strictly required for early
processing events). (7) Key aspects of the in vivo assembly of eukaryotic r-proteins into

distinct structural parts of the SSU are similar to the in vitro assembly pathway of their
prokaryotic counterparts (e.g. body-like formation independent from head-like formation,

absence of primary binder-homologue affects assembly of the secondary binder-homologue

much more drastically than vice versa). (8) Formation of a stable assembly intermediate of the
SSU body occurs in the nucleus but is not sufficient to enable a consecutive translocation

through the nuclear pores. (9) Formation of a stable assembly intermediate of a SSU head-like

structure precedes and is required for (efficient) nuclear export. (10) Final cytoplasmic
maturation events, which then lead to the mature SSU, require stable assembly of the SSU

head-like structure and are accompanied with a further SSU reorganisation.
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Figure 35: Summary of in vivo analysis of r-proteins association with precursor SSUs in
conditional mutants in permissive and non-permissive conditions.
(A) Schematic representation of relative coimmunoprecipitation efficiency of 20S rRNA versus 35S rRNA  (left
panel) and 20S rRNA versus 23S rRNA (right panel) with Flag-tagged rpS.
The percentages of coimmunoprecipitated rRNA species were determined from strains carrying each one of 21
Flag-tagged rpS as the only source for this r-protein.
Ratio between percentage of coimmunoprecipitated 20S rRNA vs 35S rRNA (left panel) and ratio between
percentage of coimmunoprecipitated 20S rRNA vs 23S rRNA (right panel) were determined. The Y-axis
indicates how many times more efficient 20S rRNA was coprecipitated than 35S rRNA and 23S rRNA
respectively. The minimum and maximum value for these ratios (parallel bar) were plotted on a graphic
representation and the respective ratios average indicated with a white lane in a ball.  Average [%IP 20S rRNA /
%IP 35S rRNA] = 18.3± 8.3 and average [%IP 20S rRNA / %IP 23S rRNA] = 7.7± 3.3.
(B) Schematic representation of relative coimmunoprecipitation efficiency of 20S rRNA with Flag-tagged
r-proteins in permissive versus non-permissive condition in mutants for rpS5 (left panel), rpS15 (center panel)
and crm1 (right panel) are shown. Quantified results from figures 29, 33 and 34 were plotted on a graphic
representation according to the following formula: ([%IP 20S rRNA / %IP 18S rRNA] in permissive conditions)
/ ([%IP 20S rRNA / %IP 18S rRNA] in non-permissive conditions). The Y-axis indicates how many times more
efficient 20S rRNA was coprecipitated in permissive versus non-permissive conditions. R-proteins supposed to
assemble in the body-like part of the SSU are indicated in blue, in the head-like part in red.
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3. Function of SSU r-proteins in translation.

3.1. Are some essential SSU r-proteins involved in protein translation?

SSU r-proteins rpS7, rpS30, and rpS31 are essential for cell viability, however after depletion

of the respective SSU r-proteins mature 18S rRNA could still be significantly produced (see
results 1. and summary Fig. 28). Since mature 18S rRNA can be engaged into translating

ribosomes, it is possible that these SSU lacking one of these SSU r-proteins are impaired in

translation function.
This possibility was investigated by analysing the formation of polysomes in strains in which

the respective SSU r-proteins were depleted.
Depletion of the essential SSU r-proteins rpS30, rpS31, and rpS7 showed a significant

reduction in free 40S subunits and polysomes, whereas the levels of 80S and/ or free 60S

ribosomes were increased (see Fig. 36A). Possible explanations for this result is that 40S
subunits are incorporated into 80S ribosomes that are either not associated with mRNA

(Hartwell and McLaughlin, 1969; Cigan et al., 1991) or are incompetent for translation

initiation or elongation. Accordingly, the polysomes/ 80S ratio drops (Deloche et al., 2004).
In contrast, mutant strains with a pronounced defect in 40S biosynthesis show a clear

reduction of the 40S peak and, in addition, a decrease in both 80S and polysomes peaks (but
not in free 60S subunits)(Fig. 36A, Gal RPS0, 2 h YPD incubation).

Consistent with a role of rpS30 in ribosome function, a single knockout of one of the two

RPS30 alleles also resulted in growth inhibition in the presence of cycloheximide (Fig. 36B).
Cycloheximide is an inhibitor of protein biosynthesis (Dresios et al., 2001) which blocks the

peptidyltransferase activity of mRNA-associated ribosomes, thereby inhibiting both
translation initiation and elongation.

In addition, deletion of RPS30B confers paromomycin sensitivity (Fig. 36C). Paromomycin is

an aminoglycoside antibiotic which binds to the A-site of the ribosome, and interferes with
the loading of aminoacyl-tRNA, inducing amino acids misincorporation during protein

synthesis.

Altogether, these data suggest a possible role in translation of the SSU r-proteins rpS30, rpS7,

and rpS31 but it remains to be shown how these SSU r-proteins affect ribosome function.
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Figure 36: R-proteins mutants that allow production of mature 18S rRNA are impaired in
ribosome function.
(A) Comparison between polysome gradients from strains deficient in 18S rRNA production (RPS0) and
conditional lethal strains that still produce 18S rRNA (RPS30, RPS31, and RPS7). The strains were depleted in
r-protein expression for 2 h in glucose-containing medium, treated with cycloheximide, and fractionated on an
8%–36% sucrose gradient.
(B) Cycloheximide sensitivity of strains with deletions of genes RPS30A or RPS30B. The dilution series were
plated on YPD with and without 0.5 mg/ml cycloheximide.
(C) Paromomycin sensitivity of strains with deletions of genes RPS30A or RPS30B. The dilution series were
plated on YPD with and without 1g/ml or 4g/ml paromomycin.

3.2. Are the known non-essential SSU r-proteins involved in protein translation?

The SSU r-proteins rpS12 and rpS25 are non-essential for cell viability in the condition tested.

However, since these strains display slight growth defects it cannot be excluded that these

SSU r-proteins play a role in modulation/ efficiency of protein synthesis.
Strains producing mature SSUs lacking the respective SSU r-protein rpS12 or rpS25 were

analysed for their ability to assemble polysomes. Polysome profiles obtained from strains
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lacking either rpS12 or rpS25 were indistinguishable from those of wildtype cells (Fig. 37),

indicating that both proteins are not required for formation of mRNA-associated ribosomes.

Figure 37: Absence of the non-essential r-proteins does not affect formation of  polyribosomes.
Polysome gradients of strains depleted in the non-essential ribosomal proteins rpS12 and rpS25 (growth on
YPD). Cycloheximide treated cell extracts were fractionated on a gradient containing 8%–36% sucrose.
Absorbance at 260 nm was monitored.

Next, sensitivity against cycloheximide and paromomycin were analysed in strains lacking the

respective protein.
In presence of 0.5 mg/ml cycloheximide, wildtype cells show only a slight growth reduction

whereas strains lacking the SSU r-proteins rpS12 or rpS25 are significantly inhibited in

growth (Fig. 38A).
Interestingly, in presence of 4 mg/ml of paromomycin growth of wildtype cells is clearly

inhibited, while in strains lacking rpS12 growth is not affected. An intermediate phenotype is

observed in strains lacking rpS25, in presence of 4 mg/ml of paromomycin, cell growth is
inhibited however to a lesser extent than in wildtype strains (Fig. 38B).  

These data show that the SSU r-proteins rpS12 and rpS25 are not required to form properly

assembled polysomes, however sensitivity to inhibitors of translation of cells lacking these
r–proteins strongly suggest a role of these SSU components in modulating ribosome function.

In which specific step of protein translation these SSU r-proteins are involved remains to be
determined.
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Figure 38: Absence of the non-essential r-proteins results in an altered sensitivity of yeast cells to
translation inhibitors.
(A) Cycloheximide sensitivity of strains with deletions of genes RPS12 or RPS25A/B. The dilution series were
plated on YPD with and without 0.5 mg/ml cycloheximide.
(B) Paromomycin sensitivity of strains with deletions of genes RPS12 or RPS25A/B. The dilution series were
plated on YPD with and without 1g/ml or 4g/ml paromomycin.
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4. Relative stoichiometry of SSU r-proteins.

Previous works analysed the overall stoichiometry of individual SSU and LSU r-proteins
(Kruiswijk and Planta, 1974; Kruiswijk et al., 1978c). However, some SSU r-proteins were

not yet identified in these studies. Furthermore usage of different nomenclatures for the
r–proteins troubles the interpretation of these results.

With the help of individual Flag-tagged SSU r-proteins a preliminary determination of the

relative stoichiometry was performed. Same amount of whole cell extract of yeast strains
bearing complete knockout for the SSU r-proteins complemented with the respective Flag-

tagged SSU r-proteins under the control of the GAL1 promoter were analysed by SDS-
UREA-PAGE. Transblotted proteins were identified using a polyclonal antibody directed

against the chromosomal encoded SSU r-proteins rpS8 and a monoclonal antibody directed

against the Flag tag.
Individual signals were quantified and stoichiometry is expressed as a ratio between the

amount of rpS8 (used here as a normalisation reference) and the Flag-tagged SSU r-proteins.

The preliminary results shown in Fig. 39 suggest that most of the SSU r-proteins are present

in similar amount in the SSU. Interestingly, Flag-tagged SSU r-proteins rpS30 and rpS31 are
under represented in this study, indicating that only about 10% of the ribosomal SSUs contain

one of these r-proteins.
In general, to be more conclusive these results need to be confirmed using a more accurate

quantitative approach for example with the help of serial dilution and further statistical

quantification. This is especially true for flag-tagged SSU r-proteins rpS18 or rpS3.
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Figure 39:  Relative stoichiometry of SSU r-proteins.
Equal amount of whole cells protein extracts as determined by Bradford assay were separated by SDS-Urea-
PAGE. Transblotted proteins were detected by immunoblotting using anti-Flag and anti-rpS8 antibodies.
Signals were quantified and expressed as a ratio between rpS8 signals vs Flag-tagged-rpS signals.
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DISCUSSION & PERSPECTIVES
This work describes the development and the usage of systematic approaches to study the

roles of yeast SSU r-proteins in function, maturation, export and assembly of the SSU.

1. R-proteins and SSU biogenesis.

1.1. R-protein assembly and pre-18S rRNA maturation/ transport are
interconnected.

1.1.1. Connection between r-protein assembly and pre-18S rRNA processing.
The results described above (results 1.) demonstrate that individual r-proteins control different
pre-18S rRNA processing steps. In addition, the status of assembly of r-proteins is closely

linked to rRNA processing events, suggesting that r-protein assembly and rRNA maturation

events are functionally connected.

As shown in the results part, most of the tagged SSU r-proteins coprecipitated large amounts

of mature 18S rRNA and 25S rRNA in growing cells confirming their incorporation into
cytoplasmic, translationally active ribosomes. Interestingly, all r-proteins analysed - except

rpS26 - coprecipitated also a significant amount of 20S rRNA, the immediate precursor of
mature 18S rRNA suggesting that most r-proteins become stably associated within

20S rRNA-containing nascent pre-ribosomes. In contrast, the amounts of coprecipitated early

precursors like 35S rRNA were clearly reduced although they varied between individual
r-proteins. In addition, coimmunoprecipitation experiments using increasing salt conditions

indicate that there is a salt labile but detectable association of many r-proteins even with the
earliest rRNA precursors. Thus, suggesting that the interaction between the SSU r-proteins

and their target rRNA are stabilised in the course of the in vivo SSU biogenesis.

Interestingly, eleven r-proteins are required for efficient early cleavages at A0, A1 and A2:
after their depletion 35S and 23S rRNA accumulate, whereas 20S rRNA becomes not

detectable. Thus, these results suggest that the weak interactions between the rpS and the early
pre-rRNA described above are of functional relevance (see Fig. 28 and results section for

details).
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In rpS5-depleted cells early processing events (A0, A1 and A2) are delayed, but do still occur.

Interestingly, a subset of r-proteins can assemble independently of rpS5, and form a body-like
structure. Moreover many of these body-like r-proteins are required for early processing

events, suggesting that these processing events are tightly linked to formation of a stable
assembly intermediate of the body, but not of the SSU head structure.

Early processing events (A0, A1 and A2) require the SSU processome, a U3 snoRNA

containing RNP. Interestingly, based on the observed interactions of U3 with the pre-rRNA, it
was suggested that U3 snoRNA could stabilise a certain pre-rRNA conformation, bringing the

5’ (ETS1) and 3’ (ITS1) rRNA sequences into close contact inducing a circle-like structure of
the pre-18S rRNA (see Hughes, 1996; Gerbi et al., 2003 and introduction 2.2.2.3. for details).

Finally, most of the SSU processome components are released from the pre-18S!rRNA after

A0, A1 and A2 cleavages (see among others Fromont-Racine et al., 2003 and introduction
2.3. for details). These observations suggest that the SSU processome components could serve

as a platform inducing a favourable conformational change of the   pre-18S rRNA allowing a
first (weak and functional) interaction between the rpS with the pre-rRNA. Apparently,

immediately after or during release of the SSU processome from the transcript, a major

structural rearrangement takes place, leading to a tight rRNA-r-protein interaction that is
closely linked to cleavage at sites A0, A1, and A2. Thus, it is possible that some weak

interactions of r-proteins with pre-rRNA are sufficient to induce structural changes either

making the rRNA competent for cleavages, or allowing the recruitment of the nuclease(s)
involved in these early processing steps. Alternatively cleavages at A0, A1, and A2 can serve

as a signal for structural rearrangements, which then results in a tight interaction between
r–proteins and   20S pre-rRNA.

In addition, the results described in this work suggest that after early processing at A0, A1 and
A2, SSU nuclear export (see discussion & perspectives 1.1.2.), and cleavage at site D

r–protein association with mature 18S rRNA gets further stabilised.
The analysis of the assembly status of the SSU after rpS15 depletion reveals an additional

assembly intermediate of the eukaryotic SSU head-like structure. Interestingly rpS15 depleted

cells show a strong inhibition of 20S rRNA processing at site D, suggesting that ongoing
formation of a stable assembled head-like structure has a strong impact on the ability of the

SSU to be properly matured in the cytoplasm.
Interestingly, many rpS components of the head-like structure are required for late

cytoplasmic maturation. Therefore, it is possible that the final establishment of the head
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structure, as a result of a tight association of r-proteins with rRNA is a prerequisite of D site

cleavage or vice-versa.
In addition, recent work (Schafer et al., 2006) suggests that such SSU r-protein stabilisation

can occur in the cytoplasm prior to the final rRNA maturation, which is in agreement with the
observed difference of stability of the interaction between r-proteins and 20S rRNA and

r-proteins and 18S!rRNA containing particles.

Interestingly, the depletion of two r-proteins – rpS0 and rpS2 – shows inhibition of 20S rRNA

processing at site D. However, these r-proteins do not assemble according to an
rpS5!dependent head-like structure, and are not required for early processing events.

Furthermore, another body-like r-protein - rpS14 – is found to participate directly or indirectly

in D site cleavage (Jakovljevic et al., 2004). In addition, it was suggested that rpS14 interacts
with a ribosome biogenesis factor – Fap7p – also required for D site cleavage (Granneman et

al., 2005). Finally, all the r-proteins tested show a difference in their stability of interaction
with the 20S and 18S rRNA, which is independent on their respective localisation in the

mature SSU.

All together, these results suggest that D site cleavage is connected to further global rRNA
conformational changes affecting r-protein stability in both the body- and head-like structure

of the SSU.

It is possible that in vivo the body-like structure assembly status controls or facilitates

formation of the head-like structure. On the other hand, the above r-proteins (e.g. rpS0, rpS2
and/ or rpS14) could serve as a platform to recruit factor(s) required for D site cleavage.

However as shown in rpS15 depleted cells body-like r-protein assembly is not sufficient to

trigger D site cleavage, suggesting that this cleavage requires an intermediate assembly status
of the head!structure to occur. Thus, in this model two layers of quality control (body and

head structure assembly) allow that only properly assembled SSU are matured in the
cytoplasm.

In conclusion, these results suggest a model where the interaction between the SSU r-proteins
and their target rRNA are stabilised in the course of the in vivo SSU biogenesis. First, most

SSU r-proteins interact weakly with the earliest pre-rRNAs. Apparently these weak
interactions are - for some - of functional relevance, since in vivo depletion of a subset of

r-proteins inhibits cleavages of these early pre-rRNAs. Second, SSU r-proteins are further



DISCUSSION & PERSPECTIVES                                                                                        110

stabilised within the 20S rRNA containing particles, and association gets more intimate in

mature ribosomal subunit. This stabilisation process is presumably linked to rRNA cleavages
and structural rearrangements. Finally, while body formation is linked to early rRNA

processing events, the status of assembly of the head structure determines, at least to some
extent, the competence of the pre-SSU for D site cleavage.

Do ribosome biogenesis factors facilitate r-protein assembly?
Interestingly, rRNA processing defects seen after SSU ribosome biogenesis factor depletion

are very similar to those observed after depletion of individual rpS. More than 150 ribosome
biogenesis factors were described in the yeast S. cerevisiae mainly on the basis of rRNA

processing defects in depletion experiments. However despite many efforts the exact

function(s) of most of these factors remain elusive.
Among their possible role, it was hypothesised that some of them could be assembly factors,

meaning that they would facilitate either the assembly of r-proteins and/ or participate directly
or indirectly in rRNA structural rearrangements facilitating the assembly process. Thus the

consequence of depletion of one of these proteins would result in a similar rRNA processing

phenotype.

For instance, in the yeast S. cerevisiae, few ribosome biogenesis factors were described or

suggested to be r-proteins assembly factors.

Several ribosome biogenesis factors namely Nep1p, Rrp7p, Yar1 and Tom1p were suggested
to be assembly factors of rpS19, rpS27, rpS3 and rpS0 respectively (Baudin-Baillieu et al.,

1997; Tabb et al., 2001; Loar et al., 2004; Buchhaupt et al., 2006). Over-expression of the

above respective rpS is able to suppress the lethal or slow growth phenotype of the depletion
or knockout of the corresponding ribosome biogenesis factor mentioned. The authors of these

analyses were suggesting that the increased r-protein amount could enhance the r-protein
association with rRNA, and thus partially or completely compensate the loss of function

phenotype of the respective ribosome biogenesis factors studied. However, this hypothesis

based on genetic analysis remains to be further characterised.

It was also proposed at least for one large subunit r-protein that a ribosome biogenesis factor –
Rrs1p – recruits rpL11 onto the pre-60S subunit (Nariai et al., 2005).
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Finally, in the course of this work it was suggested that phosphorylation depending on the

kinase Hrr25p and dephosphorylation of rpS3 can trigger salt stable assembly of this r-protein
and the subsequent formation of the beak structure a structural landmark of the SSU head

structure (Schafer et al., 2006).

With the help of the tagged r-proteins strategy mention above, it is now possible to directly

determine the status of r-protein assembly in ribosome biogenesis mutants in order to
determine which of these factors are bona fide r-protein assembly factors.

Alternatively, function and recycling of ribosome biogenesis factors can depend on the

presence or absence of r-protein-rRNA dependent structural landmark. For example, it was

shown that assembly of rpL10 is required for the release of the LSU export adapter, Nmd3p,
from this subunit  (Hedges et al., 2005; West et al., 2005).

Therefore, future work will have to determine how both r-proteins and ribosome biogenesis

factors assembly status correlate in vivo.

1.1.2. The roles of r-proteins in export of the SSU.
The results described above (results 2.) suggest that a certain r-protein assembly status is
required to render the SSU competent for nuclear export.

Interestingly, formation of a stable assembly intermediate of the SSU head structure strictly
depends on the presence of rpS5 (and is not required for early processing events).  In addition

rpS5 is required for nuclear export of the SSU-precursors. This indicates that the formation of

a stable assembly intermediate of the SSU body in the absence of rpS5 occurs in the nucleus
but is not sufficient to enable a consecutive translocation through the nuclear pores. Moreover,

most individual r-proteins located in the head-like structure are required for (efficient)
translocation of pre-ribosomes through the nuclear pores (see Fig. 28). Furthermore, the

analysis of the assembly status after rpS15 depletion reveals an additional assembly

intermediate of the eukaryotic SSU head-like structure. Interestingly rpS15 depletion shows a
strong 20S rRNA nuclear export delay (Leger-Silvestre et al., 2004 and this work), suggesting

that ongoing formation of a stably assembled head-like structure has a strong impact on the
ability of the SSU to leave the nucleus.
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Finally, ribosomal exportin Crm1p inhibition results in an almost complete block of late (20S)

rRNA precursor export to the cytoplasm but allows stable association of all r-proteins that
form a head-like, rpS5-dependent structure. All together these results suggest that the

establishment of a head-like structure of the SSU within the nucleus represents a necessary
prerequisite to allow efficient Crm1p-mediated passage through the nuclear pores.

Thus, it is possible that the head-like structure can serve as a docking domain for the export
machinery and/ or for factors facilitating the export process. Alternatively, the head-like

feature can be important for either shielding the pre-40S particle when it is exported through
the nuclear pore complex or making it compact enough for the passage.

Accordingly the lack of a single r-protein of the head-like structure can result in an

incompletely folded head assembly intermediate. This could explain why export of 20S rRNA
is significantly retarded or inhibited in mutants in which single r-proteins forming the head-

like structure were depleted.

Interestingly, two r-proteins – rpS0 and rpS2 – show reduced 20S rRNA export efficiency

after their respective depletion. Surprisingly, these r-proteins do not assemble according to an
rpS5 dependent head-like structure. Thus suggesting that these r-proteins are required but not

sufficient to trigger nuclear export.

In order to understand the putative role of these body-like r-proteins in SSU export, it remains

to determine how assembly of these r-proteins and in a more general way how formation of
the body-like structure influences the assembly of the head-like structure.

It is possible that in vivo assembly status of the body-like structure controls formation of the

head-like structure. Alternatively, if the head-like structure assembles independently of the
body-like structure, rpS0 and rpS2 could serve as a platform facilitating directly or indirectly

the export process. Thus in this model two layers of quality control (body and head structure
assembly) allow that properly assembled SSUs are efficiently released through the nuclear

pore and further matured in the cytoplasm.
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1.2. Comparison between pro- and eukaryotic SSU r-protein functions.

1.2.1. R-proteins are crucial for cell viability in eubacteria and eukaryotes.
So far in E. coli only 6% (302/4709 tested) of the genes were described to be essential for cell

viability (see profiling of E. coli chromosome at www.shigen.nig.ac.jp/ecoli/pec/) and 18.7%
(1105/5916 tested) in S. cerevisiae (Giaever et al., 2002). R-proteins belong to these groups of

important proteins required for cell viability.

The r-protein families of both ribosomal subunits can be divided into two large groups: those

conserved between bacteria, archaeabacteria, and eukaryotes and those only common in
archaeabacteria and/ or eukaryotes. Fifteen r-proteins of the 32 yeast SSU r-proteins are

universally conserved in all three evolutionary domains; 13 are conserved between
archaeabacteria and eukaryotes and only four have no counterparts in prokaryotes (see

introduction Fig. 1C and Lecompte et al., 2002).

Recent systematic deletion analysis of SSU r-proteins in E. coli indicates that 71.4% (15/21)

of the SSU r-proteins are essential for cell viability (Bubunenko et al., 2007) while at least
87.5% (28/32) of SSU r-proteins are essential in S. cerevisiae (see results 1.1., Saccharomyces

genome database at http://www.yeastgenome.org/ and Tabb-Massey et al., 2003).

Among the universally conserved SSU r-proteins, 73.3% (11/15) are essential for cell viability

in E. coli and at least 93.3% are essential for cell viability in S. cerevisiae (14(+1?)/15). The
two non-essential SSU r-proteins described in S. cerevisiae (rpS12 and rpS25A/B) are

eukaryote specific r-proteins.

Thus in eukaryotic cells, by far most r-proteins are essential for growth, indicating that
besides participating in the formation of a stable ribosomal subunit structure, they have maybe

acquired important additional roles.

Interestingly, in vivo depletion of most of the eukaryotic SSU r-proteins inhibits production of

mature SSU. Therefore, it appears that the primary essential function of SSU r-proteins is to
control the assembly/ processing of the SSU, to ensure that only properly assembled

(functional) SSU are engaged in translation.
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1.2.2. Comparison between in vitro and in vivo r-protein assembly.

1.2.2.1. R-protein – rRNA interactions are stabilised in the course of
ribosome assembly.

The results described above (results 2.) suggest a model where the interaction between the
SSU r-proteins and their target rRNAs are stabilised in the course of the in vivo SSU

biogenesis.

Interestingly, this observation is in agreement with the structural compaction observed during
in vitro assembly of SSU in E. coli.

Although, direct measurement of the strength of interaction between rRNA and r-proteins
during in vitro reconstitution experiments were not unambiguously assayed in E. coli, several

studies clearly demonstrated that the assembly of r-proteins is accompanied by structural

rearrangements (Powers et al., 1993; Powers and Noller, 1995b; Holmes and Culver, 2004;
Holmes and Culver, 2005; Dutca et al., 2007). Furthermore, reconstitution experiments

followed by electron microscopy revealed a clear compaction (reduced radius of gyration) of
the ribosomal subunit that correlated with the addition of r-proteins (Mandiyan et al., 1989;

Mandiyan et al., 1991). This is in agreement with the analysis of conformational changes in

rRNA induced by the in vitro assembly of individual SSU r-protein primary binders (Powers
et al., 1993; Powers and Noller, 1995b; Holmes and Culver, 2004; Holmes and Culver, 2005;

Dutca et al., 2007). Many of these studies indicate that some structural rearrangements are

temperature dependent, suggesting that in vivo additional factors like ribosome biogenesis
factors could trigger the formation of the correctly folded intermediates.

Finally, it was shown in yeast that the co-transcriptionally associated SSU processome with
nascent rRNA undergoes several structural rearrangements (Osheim et al., 2004 see also

discussion & perspectives 1.1.1.).

Most probably assembly of r-proteins is linked to conformational rearrangements leading to

local stabilisation of the r-protein-rRNA complex. The induced structural arrangement and/ or
stabilisation could then be a prerequisite to allow further assembly of the following dependent

r-proteins which can also in turn further stabilise structural rearrangement.
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1.2.2.2.  Hierarchical assembly of r-proteins.
Previous in vitro studies done in E. coli were demonstrating that r-proteins assemble

according to a hierarchical order, and were classified accordingly into different groups:
primary, secondary and tertiary binding proteins according to their respective requirements to

interact with the rRNA (reviewed in Nierhaus, 2004 and see introduction  3.1.1.2.).

In this work, the assembly states of SSU r-proteins after depletion of rpS5, and rpS15 were

determined.  Interestingly, the stable assembly of a group of SSU r-proteins depends on the
presence of rpS5, and to a lower extent on rpS15. S19, the prokaryotic homologue of rpS15,

was described to act as a secondary binder in the in vitro assembly map of the prokaryotic

SSU head structure, downstream of the primary binder S7, the homologue of rpS5.
Consistently, in!vivo analysis presented in this work demonstrates that absence of the primary

binder-homologue rpS5 affects assembly of the secondary binder homologue rpS15 much

more drastically than vice versa.

Interestingly, among the group of SSU r-proteins strongly affected by rpS5 depletion, five
have homologues in bacteria and their in vitro incorporation depends also on primary binder

S7 the rpS5 homologue to form the SSU head structure. In agreement, the results presented in

this work demonstrate that in vivo formation of the body-like structure is independent of the
formation of the head-like structure (Samaha et al., 1994; Agalarov et al., 1998; Agalarov et

al., 1999).

Altogether, these results suggest that despite the apparent drastic increase in number of

essential accessory factors and structural components introduced in the in vivo context of
eukaryotic ribosome biogenesis, general principles of prokaryotic in vitro assembly apply also

to in vivo eukaryotic ribosome assembly.

Surprisingly, rpS0, the homologue of eubacterial S2, does not strictly depend on rpS5 in its

stable interaction with precursor rRNA, as it would be expected by the eubacterial in vitro

assembly map (Mizushima and Nomura, 1970; Nomura and Erdmann, 1970; Nierhaus, 2004;

Talkington et al., 2005). However this difference in assembly dependence correlates with the
reduced contact interface between the eukaryotic rpS0 and the SSU head structure (see results

Fig. 32B to Fig. 32C). In addition, previous in vitro reconstitution of the head structure alone

demonstrated that the rpS0 homologue S2 was poorly recovered in this condition (Samaha et
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al., 1994; Agalarov et al., 1998; Agalarov et al., 1999). Furthermore S2 in vitro assembly was

also shown to be dependent on both body and head domain assembly (Mizushima and
Nomura, 1970; Held et al., 1974).

Apparently, in yeast in vivo assembly of rpS0 does not depend on the assembly of a head-like
structure. It remains to determine how body-like structure formation influences rpS0 assembly

in vivo.

Further analysis will be needed to show exactly how both the eukaryotic and the in vivo

context influence the hierarchy of r-protein assembly. In addition, the 15 SSU r-proteins that
have no homologous counterparts in eubacteria have to be positioned in an “in vivo assembly

map”.

1.3. The multiple functions of r-proteins in ribosome biogenesis.

It is possible that r-proteins required for early rRNA processing can also participate in nuclear

export, in cytoplasmic rRNA processing, or in ribosome function (see below). However,

because their first essential role is tightly linked to early maturation steps, they could not be
assayed for other functions in this screen. As an example rpS14 was found to be involved in

early rRNA processing (Moritz et al., 1990; see also Fig. 28) and its carboxy-terminal
extension was also recently described to play an important role in late cytoplasmic rRNA

processing (Jakovljevic et al., 2004).

In addition, some r-proteins (e.g. rpS3) are required for both efficient SSU export and late
cytoplasmic maturation. Therefore, it would be interesting to uncouple these two procesess to

understand the molecular requirement for efficient export and late cytosplamic maturation.

With the help of the genetic system developed in this work, future mutational analysis can be

performed either to uncouple and/ or to bypass the primary phenotype observed after
depletion of the corresponding r-protein.

It will then be interesting to analyse the consequences on SSU assembly status in strains

bearing such mutant alleles in comparison to the complete depletion of the respective
r–proteins.
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1.4. On the importance of co-transcriptional assembly of r-proteins.

It is not clear whether SSU r-protein assembly is or has to be co-transcriptional in vivo.

According to the “assembly gradient” hypothesis co-transcriptional assembly of r-proteins
would facilitate assembly events and could avoid inhibitory rRNA rearrangement(s)

(Nierhaus, 2004).

In addition, according to the “assembly gradient” theory (Nierhaus, 2004), it is possible that
in!vivo folding and assembly of 3´domains of the rRNA (head domain) requires the preceding

co-transcriptional formation of defined structural intermediates of the 5´ domain (body/
platform).

Miller spread analysis in pro- and eukaryotes suggest that several proteins can associate co-

transcriptionaly with the nascent rRNA, into a structure called in eukaryotes «!terminal
knobs!» (Miller and Beatty, 1969; Hofmann and Miller, 1977). Recently it was suggested that

this terminal knobs are the SSU processome components (Dragon et al., 2002; Osheim et al.,
2004). Furthermore, the appearance of differently shaped terminal knobs on the rRNA

transcript suggests that various significant conformational changes in the nascent ribosome

are occuring in the course of RNA polymerase I elongation (Osheim et al., 2004).
Interestingly, it was suggested that ribosome assembly and transcription could be functionally

coupled and co-regulated (Dragon et al., 2002; Gallagher et al., 2004; Osheim et al., 2004;
Schneider et al., 2007)

As shown in this work, most SSU r-proteins can interact weakly with early (post-
transcriptional) rRNA precursors. Among the SSU processome components few SSU

r–proteins were suggested to be part of this complex (Bernstein et al., 2004). However, the
experimental set-up used in these studies cannot distinguish between co- or post-

transcriptionally assembled complexes.

It is likely, that at least some of the r-proteins assemble during transcription as it was
previously reported for two r-proteins from Drosophila (Chooi and Leiby, 1981). Although, it

was recently suggested that r-proteins are post-transcriptionally assembled in higher

eukaryotes (Kruger et al., 2007).
The crucial question: whether ribosome assembly is functionally coupled with rRNA

transcription remains still to be fully answered.
With the help of the conditional strains for the SSU r-proteins constructed in this work, it is

now possible to examine whether the structural features observed after Miller spreads are lost
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or altered upon r-proteins depletion, which could indicate that some r-proteins co-

transcriptionally assemble into this structural feature.
Alternatively, direct localisation by immuno-localisation of r-proteins on Miller spreads (as

was reported by Chooi and Leiby, 1981) using the tagged r-proteins described in this work
could be a method of choice.

However, the Miller chromatin spreading technique is not a laboratory routine method.

Furthermore, so far the above study is the only published example of an immuno-EM analysis
on Miller spreads. Thus it is not clear how feasible it is to study co-transcriptional assembly

using this methodology.

Another possibility is to use chromatin immuno-precipitation (ChIP) as it was used to

demonstrate co-transcriptional assembly of proteins with nascent mRNA (see among others
Strasser et al., 2002). However so far, the different attempts performed to co-precipitate rDNA

containing chromatin with this method were not successful (data not shown). Finally it is
possible to analyse whether RNA Polymerase I subunits can be coimmuno-precipitated with

Flag-tagged SSU r-proteins.

From the analysis presented in this work it can be concluded that formation of a body-like

structure is independent on the stable assembly of a head-like feature. To gather further

evidence for the existence of an in vivo “assembly gradient” it is possible to investigate by
similar means whether formation of the head-like structure requires the previous folding of the

body-like feature. The final goal is then to determine whether and how the flux of rRNA
synthesis influences the folding of major (pre)-ribosomal morphological features.

1.5. R-protein assembly and rRNA modifications: a connection?

The exact function(s) of the numerous rRNA modifications are still unclear, but these
modifications were suggested to mainly participate in the translation process (see introduction

2.2.1.3.). However, how ribosome assembly and rRNA modifications are co-ordinated is still

unclear.

Recently, the various rRNA modifications could be positioned within the 3D structure of the
ribosome. Strikingly, modifications are apparently absent from the known areas of r-proteins

contact with the rRNA. However the eukaryotic ribosome structure is lacking all the
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eukaryote specific rRNA and r-proteins counterparts, thus it is difficult to completely exclude

the proximity of rRNA modifications and r-proteins contacts.
Furthermore, the rRNA modifications are localised in regions that can be highly structured

(e.g. secondary structure like hairpin, double stranded RNA). In eukaryotes, snoRNP
dependent modification in double stranded rRNA regions must occur prior to the final

stabilisation of these structures in the subunit. In addition some r-proteins have contact with

the rRNA upstream or downstream of these structures, suggesting that a coordination of the
two processes is necessary.

The following questions emerge from these observations: Do rRNA modifications influence

proper r-proteins assembly? Does r-protein assembly influence rRNA modifications?

It was suggested that efficient SSU assembly in vitro requires modified rRNA (Cunningham

et al., 1991). Moreover, in vivo analyses of conditional mutants affecting the enzymatic
activity of the respective modifying enzymes in yeast indicate that the lack of rRNA

modifications affects cell growth and that the total amount of mature ribosomal subunits

produced is reduced (Tollervey et al., 1993; Zebarjadian et al., 1999). Since it cannot be
excluded that these phenotypes correlate with translation defects it remains unclear whether

rRNA modifications facilitate (stable) r-protein assembly in vivo.

Furthermore, it was shown in vitro in E. coli that two adjacent modified rRNA residues are

modified in a succesive way (Weitzmann et al., 1991). Modification at G967 can occur on
naked rRNA template while in contrast modification at C966 is inhibited. In addition

assembly of S7 and S19 is sufficient to allow the m2G966 rRNA modification and to inhibit

the m5C967 modification. Previous study also indicates that the assembly of S7 and S19

induces local conformational changes of the loop containing these two modified residues

(Powers et al., 1988). Interestingly, although the rRNA modification mechanism is different
between eubacteria and eukaryotes, these modified sites are conserved. Furthermore in

eukaryotes there is an additional rRNA modification in the proximity of C966 and G967.
Since the prokaryotic r-proteins S7 and S19 homologues in yeast, rpS5 and rpS15, share

similar assembly characteristics, it would be interesting to determine the pre-rRNA

modification status at these positions after in vivo depletion of these repective r-proteins.
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Future work will have to determine whether there is a functional relationship between

r–protein assembly and rRNA modifications. In addition understanding how rRNA
modification status and r-protein in vivo assembly correlate will facilitate to establish a precise

temporal map of the different ribosome assembly events.

1.6. Localisation of eukaryotic SSU r-proteins in the ribosome structure.

As indicated earlier (see introduction 1.2.2.), eukaryotic SSU structure was obtained with the

help of cryo-electron-miscroscopy analysis and homology modelling. However, these studies
did not allow to position SSU r-proteins that have homologous counterpart only in

archaeabacteria and/ or eukaryotes, which represent around 50% of the r-proteins of the

eukaryotic SSU. In addition, early protein topography determined by protein-protein chemical
cross-linking from the eukaryotic SSU are difficult to interpret because of inconsistent

nomenclature usage, and loss of some proteins during sample preparation/ analysis (Yeh et al.,
1986).

Although, the analysis presented in this work does not allow the exact positioning of all these
r-proteins in the SSU structure, it might be possible to deduce their position in the structure

according to their respective assembly behaviour.

For example, it was recently suggested that rpS10 and rpS19 contact the rRNA/ r-protein

counterparts forming the head structure of the SSU (Valasek et al., 2003; Buchhaupt et al.,
2006 respectively). It was shown by two hybrid analysis that rpS10 interact with the eIF3 sub-

complex and rpS0. On the basis of the rpS0 and eIF3 complex localisation, it was proposed
that rpS10 could be located in an additional electron density spanning from rpS0 towards the

head-structure (Valasek et al., 2003). This suggests that rpS10 has probably some contacts

with the head domain. Interestingly, the results presented in this work show that stable
assembly of rpS10 and rpS19 depends on the formation of the head-like structure.

These results remain to be confirmed by more direct structural analysis. So far no
crystallisation procedure for archaeabacterial or eukaryotic SSUs were reported. The

collection of tagged rpS described in this work could serve as a starting point to perform
localisation by immuno-EM approach as decribed previously (among others Tischendorf et

al., 1974a; Tischendorf et al., 1974b; Tischendorf et al., 1975; Tsay et al., 1994). Finally, two
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rpS were found to be not essential for cell viability. Therefore it is possible to analyse their

localisation within the SSU by differential analyses of the electron density maps of wildtype
and mutant ribosomal subunits (Halic et al., 2005).
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2. R-proteins and translation.

2.1. R-proteins as modulator of ribosome function.

As indicated earlier, (introduction 3.2.) the ribosome is a ribozyme but ribosome function
depends on cooperation between the rRNA and r-proteins.

In this work most of the SSU r-proteins were shown to be primarily required for SSU
biogenesis, with the exception of the non-essential SSU r-proteins – rpS12 and rpS25 - and

the three essentials SSU r-proteins — rpS7, rpS30, and rpS31— that seem to participate in

activities that are more related to ribosome function.
Previous studies indicated that rpS9 and rpS2 are important for translation accuracy (Alksne

et al., 1993; Synetos et al., 1996; Stansfield et al., 1998) while loss of function analysis
performed in this work suggests that these proteins are in addition required for early and late

biogenesis steps respectively (see Fig. 28). Since, r-proteins can play a role in several steps of

SSU biogenesis but also in ribosome function, further mutational analyses are required to
study their function in the mature ribosomal subunit.

2.2. The ribosome as a regulator of gene expression: “the ribosome filter
hypothesis”.

Recently, the “ribosome filter hypothesis” was suggested (Mauro and Edelman, 2002). This
hypothesis suggests that ribosomes are regulatory elements that affect the translation of

particular mRNAs by binding differentially to them. The filter hypothesis also predicts that

structural differences in ribosome populations and in mRNA populations may affect the filter.
If this assumption is valid, one would expect that different ribosomes (for example, those that

differ in their rRNA and/ or ribosomal protein composition/ modifications) might bind to

particular mRNAs to different extents, thus altering the relative efficiencies of translation.

Interestingly, there is some evidence that ribosomes are not homogenous RNPs, but instead
are rather heterogeneous macromolecular complexes.

Heterogeneity of ribosomal subunits has different reasons:
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The genetic organisation of the ribosomal components itself participate in ribosome

heterogeneity. The rRNA genes are often transcribed from multi-gene families and
heterogeneity can be caused by various polymorphisms (nucleotide substitution, or deletion).

Thus these variations in rRNA sequence can contribute to ribosome heterogeneity.
Another possible source of heterogeneity is the existence of genetic variants of the r-proteins

in eukaryotes. Fungi and plants are among the organisms presenting the most important

number of possibilities in terms of variation of r-proteins composition since many of the
r-proteins coding genes exist in multiple copies (Nakao et al., 2004). However this r-protein

heterogeneity is not restricted to plants and fungi, for example in human cells two variants for
rpS4 (92% identity) encoded on the X and the Y chromosomes have been described.

In addition, rRNA and r-protein modifications can be a source of ribosome heterogeneity.
It is known since a long time that rRNA is strongly modified, however it is not clear whether

all modified residues are quantitatively modified in vivo. If not this clearly raises the question
whether rRNA modification patterns could contribute to ribosome heterogeneity. Finally,

r–proteins are also modified (phosphorylated, methylated…) (Kruiswijk et al., 1978a;

Kruiswijk et al., 1978b), and their stoichiometry in the subunit can be also a source of
heterogeneity. One remarkable example is the ribosomal subunit dynamic observed in D.

discoideum, in which the ribosome r-protein composition is quantitatively and qualitatively

different depending on the cellular differentiation state (Ramagopal and Ennis, 1981;
Ramagopal, 1992; Mauro and Edelman, 2002).

Finally, another possibility of ribosomal subunit heterogeneity comes from rRNA processing.

At least, in the yeast S. cerevisiae the alternative processing pathway lead to the unbalanced

formation of 5.8SS and 5.8SL rRNA (see introduction 2.2.2.3.) which can also contribute to

heterogeneity.

In this work, it was shown that two eukaryotes specific r-proteins are not essential for cell
viability in the condition tested. However, it is not known whether these r-proteins when

missing are not responsible for mRNA translational control. A way to analyse this possibility

would be to analyse by micro-array, which mRNAs are associated with translating ribosomes
containing these r-proteins.
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Finally, preliminary analysis on the stoichiometry of SSU r-proteins suggests that at least two

r-proteins are sub-stoichiometrycally represented in the mature SSU. These preliminary
results suggest that these two r-proteins could be interesting candidates participating in a

differential mRNA translation control.
As mentionned before, a micro-array analysis could reveal which mRNAs are associated with

ribosomes containing these sub-stoichiometrically represented r-proteins.
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3. Conclusion: SSU r-proteins in vivo functions and assembly pathway.

In conclusion, this work established a genetic system allowing to study (1) the in vivo role of

SSU r-proteins in ribosome biogenesis and ribosome function, and (2) the principles of
eukaryotes in vivo r-proteins assembly pathway.

The different analyses performed with these tools show that most individual SSU r-proteins
are required  (1) for cell growth (2) for efficient production of mature 18S rRNA (3) for

different steps of the SSU biogenesis, and can be grouped according to their rRNA processing
defect phenotype after depletion. Interestingly, all the known pre-rRNA intermediates

described in wildtype and ribosome biogenesis mutant strains were observed after depletion of

individual SSU r-proteins, suggesting that individual SSU r-proteins participate in each step
of SSU maturation. The results indicate that SSU r-proteins can be further grouped according

to the 20S rRNA maturation defects shown after depletion. (4) SSU r-proteins rpS5, rpS18,
and rpS19 are required for late nuclear processing and/ or quality control steps leading to

nuclear retention of 20S rRNA. (5) Depletion of SSU r-proteins rpS0, rpS2, rpS3, rpS10,

rpS15 and rpS26 appear to first affect the export rate/ competence of the SSU and then the late
maturation steps of conversion of 20S pre-rRNA into mature 18S rRNA. Furthermore,

(6)!when one of the SSU r-proteins rpS7, rpS20, rpS30, or rpS31 is lacking, a significant
amount of neo-synthesised 20S rRNA reaches the cytoplasm. (7) In strains depleted in rpS7,

rpS30, and rpS31, some of the cytoplasmic 20S rRNA can be further processed into mature

18S rRNA.

The second part of this work shows that (1) most SSU r-proteins interact weakly with the

earliest rRNA precursor (2) these weak interactions are - for some r-proteins - of functional
relevance. (3) SSU r-proteins interactions with pre-rRNA are stabilised in the course of the

SSU assembly. (4) This stabilisation apparently correlates with rRNA maturation events. (5)
Formation of a stable assembly intermediate of the body-like, but not of the SSU head-like

structure is tightly linked to early processing events (A0, A1, and A2 cleavages). (6)

Formation of a stable assembly intermediate of the SSU head-like structure depends on the
presence of rpS5 (and is not strictly required for early processing events). (7) Key aspects of

the in vivo assembly of eukaryotic r-proteins into distinct structural parts of the SSU are
similar to the in vitro assembly pathway of their prokaryotic counterparts (e.g. body-like
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formation independent from head-like formation, absence of a primary binder-homologue

affects assembly of the secondary binder-homologue much more drastically than vice versa).
(8) Formation of a stable assembly intermediate of the SSU body occurs in the nucleus but is

not sufficient to enable a consecutive translocation through the nuclear pores. (9) Formation
of a stable assembly intermediate of a SSU head-like structure precedes and is required for

(efficient) nuclear export. (10) Final cytoplasmic maturation events, which then lead to the

mature SSU, require stable assembly of the SSU head-like structure and are accompanied by
further structural rearrangement (e.g. beak formation).
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MATERIALS & METHODS

All the vectors and yeast strains used in this work are listed and described in Table 1 and 2
respectively.

1. Microbiology work.

1.1.     Work with Escherichia coli.

All the Escherichia coli strains were incubated, except indicated, at 37°C.

1.1.1. Media.

E. coli strains were grown on Luria-Bertani (LB) media [1% NaCl (Merk) 1% Bacto-Trypton

(BD), 0,5% Yeast Extract (BD)]. For solid media 2% Bacto-agar (BD) was added.

Ampicilin resistance selecting media (LB-amp):

The ampicillin belongs to the group of b-Lactam antibiotics and inhibits the final stage of

bacterial cell wall synthesis, which leads to cell lysis.
E. coli strains expressing the b-lactamase encoded by the BLA gene are resistant to b-lactam

antibiotics and were selected on LB media containing 100 mg/ml of ampicilin (Roth)

1.1.2. Competent cells for electroporation.

XL1-blue and DH5a strains were used as a host for amplification of plasmid DNA.

In order to increase the efficiency of plasmid DNA uptake, E. coli competent cells for

electroporation were prepared. The exposure to an electrical charge of E. coli cells induces the

formation of transient membrane pores through which DNA molecules can pass (Neumann
and Rosenheck, 1972).

Cells are grown in SOB (2% Bacto-Trypton, 0.5% Bacto-Yeast extract, 8.55 mM NaCl,

2.5!mM KCl, 10 mM MgCl2, pH 7) at 37°C to mid-log phase (OD600= 0.35 – 0.6), chilled on

ice for 15 min and centrifuged. Cells are washed 3 times with ice-cold sterile water to reduce
the ionic strength of the cell suspension. The cells are resuspended in 10% sterile glycerol (on

average 1-3.1010 cells per ml), aliquoted (50ml) and store at –80°C.
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1.1.3. Transformation with plasmid DNA.

Electro-competent cells (see materials & methods 1.1.2.) are thaw on ice, incubated for 5 min

with DNA on ice, and transfer into electroporation cuvette (Biorad). Cells are exposed to a

short high voltage discharge (2.5 kV, 5-6 ms) using a Biorad Micropulser.
Cells are resuspended in LB media, incubated for 1 h at 37°C and platted on the appropriated

selection medium (in this work on LB-Amp plates see materials & methods 1.1.1.) and grow
over-night at 37°C.

1.1.4. Purification of plasmid DNA (mini- and midi-preparation).

Isolation of plasmid DNA from bacteria was performed according to the manufacturer using
the following kits: FastPlasmid Mini (Eppendorf), Plasmid Mini- and Midiprep kit (Qiagen).

Briefly, cells are lysed, and plasmid DNA is isolated from the lysate by DNA trapping on a

matrix. The plasmid DNA is further washed with alcohol-based solution, and eluted from the
matrix with Milli-Q grade water.

1.1.5. Long-term storage.

Logarithmically growing bacterial strains were stored at –80°C in culture media

supplemented with 16.5% (w/v) glycerol.

1.2. Work with Saccharomyces cerevisiae.

All the yeast strains were incubated, except indicated, at 30°C.

1.2.1. Media.

1.2.1.1.      “Full media” or YP media.

YP media is composed of 1% Yeast extract, 2% Bacto-peptone (all from BD) supplemented

with 2% of an appropriate carbon source. In this work either D (+) glucose (Merk) or D (+)

galactose (Sigma-Aldrich) (all microbiology grade) were used as carbon sources.
For culture on solid media 2% Bacto-agar (BD) was added.
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1.2.1.2. Synthetic media.

Complete synthetic media is composed of 6.7 g of yeast nitrogen base containing the required

salts, vitamins, and a nitrogen source (Sunrise Science) supplemented with the appropriate

amino acids and nucleotides mixture (Sunrise Science) and a carbon source (see materials &
methods 1.2.1.1.) to allow cell growth and/ or selection.

For culture on solid media 2% Bacto-agar was added.

Amino acids and nucleotides used in synthetic media (final concentration):

 Adenine 10 mg/L; L-Arginine HCL 50 mg/L; L-Aspartic acid 80 mg/L; L-Histidine HCl
20!mg/L; L-Leucine 100 mg/L; L-Lysine 50 mg/L; L-Methionine 20 mg/L; L-Phenylalanine

50 mg/L; L Threonine 100 mg/L; L-Tryptophan 50 mg/L; L-Tyrosine 50 mg/L; Uracil
20!mg/L; L-Valine 140 mg/L (single component were all purchase from Sigma)

Amino acids and nucleotides pre-made drop out mixtures were all purchased from Sunrise

Science and used as indicated by the manufacturer.

1.2.1.3. Sporulation media.

Yeast diploid cells were inoculated on sporulation media containing 0.25% yeast extract,

1.5% potassium acetate, 0.05% glucose, 2% agar for minimum three days.

1.2.1.4. 5-fluoro-orotic acid (5-FOA) selection.

The 5-FOA is converted by the orotidine-5’-phosphate decarboxylase encoded by the URA3
gene (in S. cerevisiae) into a toxic substance the 5’ fluorouridine monophosphate, which

severely limit cell growth (Boeke et al., 1984).

Therefore this molecule is really useful to characterise loss (of function) of the URA3 gene in
a yeast population in different kind of assay.

5-FOA containing medium was made with synthetic media (see materials & methods 1.2.1.2.)
containing the required drop out mix and carbon source supplemented with 1 g/L of 5-fluoro-

orotic acid, monohydrate (Toronto Research Chemicals).
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1.2.1.5. Geneticin selection media.

Geneticin or G418 is an aminoglycoside antibiotic that irreversibly binds the 80S ribosome

and inhibits protein synthesis in eukaryotic and prokaryotic cells. The geneticin effect can be

inactivated by the expression in pro- or eukaryotes of the aminoglycoside
3'–phosphotransferase encoded by the KanMX gene that inactivates the aminoglycoside

inhibitory effect through phosphorylation of the geneticin molecule (Jimenez and Davies,
1980; Bar-Nun et al., 1983; Eustice and Wilhelm, 1984a; Eustice and Wilhelm, 1984b).

Selection is commonly made on full media (materials & methods 1.2.1.1.) supplemented with
200 mg/ml of G418 sulfate (Difco) (Wach et al., 1994). The geneticin resistance selection can

be also made on a modified synthetic media using proline 1 g/L (Sigma) as nitrogen source

instead of ammonium sulfate (Cheng et al., 2000).

1.2.1.6. Cycloheximide containing media.

Cycloheximide is a protein synthesis inhibitor interfering in eukaryotes with the peptidyl

transferase activity, thus blocking elongation (Stanners, 1966; Munro et al., 1968; Baliga et
al., 1969; Obrig et al., 1971).

For cycloheximide resistance/ sensitivity assay, serial dilutions of logarithmically growing

cells were spotted on YP-glucose media (materials & methods 1.2.1.1.) supplemented with
0.5 mg/ml cycloheximide (Roth).

1.2.1.7. Paromomycin containing media.

Paromomycin is an aminoglycoside antibiotic which bind to the A-site of the ribosome, and

interferes with the loading of aminoacyl-tRNA, inducing amino acids misincorporation during
protein synthesis (Fourmy et al., 1996; Burman et al., 2003).

For paromomycin resistance/ sensitivity assay, serial dilutions of logarithmically growing

cells were spotted on YP-glucose media (materials & methods 1.2.1.1.) supplemented with

increasing amount (from 0.5 to 10 mg/ml) of paromomycin sulfate (Fluka).
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1.2.2. Yeast competent cells.

Treatment of yeast cells with alkali cations (e.g. Li+, Cs+, K+ see Ito et al., 1983) is effective

to induce competence of yeast cells to uptake linear and circular DNA molecules. Efficiency

of transformation can be further increased in the presence of other chemicals (see materials &

methods 1.2.3.).

Fifty ml of mid-log phase growing cells (OD600 0.5-0.7) are centrifuged and washed once

with sterile water. Yeast cells are further washed twice with sterile filtrated lithium-sorbitol

buffer (100 mM lithium acetate, 10 mM Tris-HCl pH 8, 1 mM EDTA pH 8, 1 M sorbitol,
buffered to pH 8 with acetic acid). Cells are then resupended in 360 ml lithium-sorbitol buffer

and 400 mg of heat denatured salmon sperm DNA (10 mg/ml - Invitrogen), aliquoted (50 ml)

and store at –80°C.

1.2.3. Transformation with DNA.

Yeast competent cells are thaw on ice and incubated with circular (100-500 ng) and/ or linear
(on the mg range for efficient homologous recombination) DNA molecules. After addition of

6 volumes of LitPEG buffer [(40% (w/v) PEG3350 (Sigma), 100 mM lithium acetate,
10!mM!Tris-HCl pH 8, 1 mM EDTA pH 8, buffered to pH 8 with acetic acid and sterile

filtrated)], cells are incubated 30 min at room temperature. DMSO (1/9th volume- Merck) is

added and the cells are incubated at 42°C for 15 min. Cells are spun down and resuspended in
sterile water and platted on the appropriated selection medium.

1.2.4. Preparation of high molecular weight yeast genomic DNA.

An overnight yeast culture is centrifuged. Peletted cells are washed with water and
resuspended in spheroplasting buffer [(0.9 M sorbitol, 0.1 M EDTA pH8, 50 mM DTT

(Sigma), 0.66 U/ml Lyticase (ICN Biomedicals)] and incubated 30 min at 37°C in order to

digest the cell wall of the yeast cells, which are then further called spheroplast (yeast without
cell wall).  Spheroplasts are lysed in 50 mM Tris-HCl pH8, 50 mM EDTA, 1% SDS for 5 min

at 65°C and chilled on ice after addition of potassium acetate to a final concentration of
1.25!M.

After centrifugation of the lysed cells, the supernantant is collected.



MATERIALS & METHODS                                                                                                 132

The soluble nucleic acids are precipitated by addition of isopropanol to a 50% (v/v) final

concentration. Nucleic acids pellet is washed with 70% ethanol, dried, resuspended in water
containing 10 mg/ml RNase (Boehringer Mannheim) and incubated for 30 min at 37°C.

Quality of the prepared yeast genomic DNA is further assay by agarose gel electrophoresis

(see materials & methods 2.1.1.).

Purified high molecular weight yeast genomic DNA from yeast strain S288C (Invitrogen) was

also used.

1.2.5. Mating of yeast haploid strains.

Haploid yeast strains of opposing mating type (Mat a and a), were grown independently over-

night.  Cells were mixed, and incubated from 10-24 h to allow mating. Diploid cells were

isolated using dominant selection marker specific for each initial haploid strain. Alternatively,

fusing cells or “shmoo” can be identified and isolated by micromanipulation few hours after
mixing the two haploid strains.

1.2.6. Sporulation of diploid cells.

Starvation of nitrogen and carbon source induces sporulation of diploid strains. In this

condition diploid strains undergo meiosis division resulting in the formation of 4 spores

(tetrad) contained in an ascospore.  Cells were incubated minimum 3 days on sporulation
media (see materials & methods 1.2.1.3.).

1.2.7. Tetrad analysis.

Sporulated cells were resuspended in sterile water containing zymolyase (10 mg/ml) and
incubated 5 min in order to open the cell wall of the ascospore. The spores were isolated by

micromanipulation using a MSM Singer micromanipulator. Isolated offspring were
genetically characterised by selection on the appropriated media.
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1.2.8. Long-term storage.

All yeast strains were stored in duplicate. Logarithmically growing yeast strains were stored

at –80°C in culture media supplemented with 16.5% (w/v) glycerol.
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2. Work with nucleic acids.

DNA and RNA samples were all stored at –20°C except mentioned.

2.1.  Work with DNA.

2.1.1. Native agarose gel electrophoresis.

Agarose gel electrophoresis was used to separate DNA fragments of different lengths. In this
work, electrophoresis was performed routinely with 1.0-1.2% (w/v) agarose (Invitrogen),

1X!TBE (90 mM Tris-borate, 1 mM EDTA) gels containing 0.2 mg/ml ethidium bromide, and

1X TBE as electrophoresis buffer. To determine the lengths of the fragments, 250 ng of DNA

standard  [1 kb ladder and/ or 100 bp ladder (NEB)] were used, both in a concentration of
50!mg/ml in 1X DNA loading buffer (6.7% sucrose; 0.04% bromophenol blue and xylene

cyanol FF – Serva and Sigma respectively).

2.1.2. Polymerase Chain Reaction (PCR).

The polymerase chain reaction allows the exponential amplification of DNA fragments in

vitro. The isolated DNA fragments can be further used in various experiments such as

cloning. The principles of PCR are widely discussed in the literature and applications are
extremely versatile.

In this work, PCR were performed with yeast genomic DNA (100-500 ng) or plasmid DNA

(10-100 ng) as templates in 50-100 m l reaction [20!mM!Tris-HCl, 10!mM!(NH4)2SO4,

10!mM!KCl, 2!mM!MgSO4, 0.1!%!Triton X-100, 25 mM of reverse and forward primers,

25!mM dNTP, and  2-5 U Taq Polymerase (NEB)].

The main PCR program used in this work was 1 cycle 95°C for 5 min; 45°C for 2 min; 72°C
for 2 min followed by 35 cycles 95°C for 1 min; 45°C for 2 min; 72°C for 2 min, and 1 cycle

95°C for 1 min; 45°C for 2 min; 72°C for 10 min.

Samples (1/10th) were analysed by agarose gel electrophoresis and subsequently purified with

PCR purification kit (Qiagen) according to the manufacturer.



MATERIALS & METHODS                                                                                                 135

2.1.3. Digestion of DNA with restriction endonucleases.

A variety of prokaryotic restriction endonucleases (NEB) were used to digest DNA in order to

prepare defined DNA fragments for cloning or to check for presence and correct orientation

of inserted DNA fragments. Restriction endonucleases were essentially used as suggested by
the manufacturer.

2.1.4. Purification of DNA.

2.1.4.1. Purification of DNA from solution.

DNA was recovered from aqueous solutions either by ethanol precipitation or by commercial
DNA trapping based purification kit.

Several alcohol based nucleic acid precipitation protocols are described in the literature

(Sambrook and Russell, 2001). In this work, DNA was precipitated, from aqueous solution,

by addition of 2.2 volumes of absolute ethanol and 1/10th volume of 3 M NaAc pH 5.8 for

minimum 20 min at –20°C. Ethanol depletes the hydration shell from nucleic acids and

expose negatively charged phosphate groups. Counter cations (here Na+) bind the charged

groups and reduce the repulsive forces between the polynucleotide chains, allowing the

formation of a precipitate. Samples were centrifuged 10 min, 14000 rpm at 4°C. After

removal of the supernatant, nucleic acids pellet were dried at room temperature, and
solubilised in milli-Q water.

Alternatively, purification of DNA from solution was performed using commercial kits as

recommended by the manufacturer (PCR purification kit, or QIAEX II gel extraction kit all

from Qiagen).

2.1.4.2. Purification of DNA fragments from agarose gel.

DNA fragments of interest were cut out from agarose gels and eluted using commercial kits

following the indications provided by the manufacturer (QIAquick or QIAEX II gel extraction
kit all from Qiagen).
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2.1.5. DNA ligation.

In order to clone DNA sequences into yeast/ bacterial shuttling vectors, quantity of purified

DNA fragments digested with restriction endonuclease(s) was estimated after agarose gel

electrophoresis. A three-time excess of insert DNA compare to the vector DNA fragment
were incubated in a 15 ml ligase reaction (400U T4 DNA ligase NEB, 50!mM!Tris-HCl,

10!mM!MgCl2, 1!mM!ATP, 10!mM!Dithiothreitol, 25!mg/ml!BSA) 1 h at room temperature or

over-night at 16°C.  One ml of ligation reaction was used for E. coli transformation (see

materials & methods 1.1.3.).

2.1.6. DNA amount determination.

DNA amount was estimated by agarose gel electrophoresis using a quantitative DNA standard

(NEB) as reference or by spectrophotometry method (1 A260 ≈ 50 mg/ml) using an Ultrospec

3100 Pro spectrophotometer (Amersham biosciences).

2.1.7. DNA sequencing and oligonucleotides synthesis.

All DNA sequencing and primer synthesis were performed by MWG.

Oligonucleotides used in this work are listed and described in Table 3.

2.2.      Work with RNA.

2.2.1. Hot-phenol RNA extraction.

RNA extractions were essentially performed as described previously (Schmitt et al., 1990).

This protocol is suited for extraction of total RNA from low amount of samples.
Cell pellets or cell extracts are resuspended in 1 volume of AE buffer (50 mM NaAc pH 5.3,

10 mM EDTA pH 8) and mixed with 1 volume of AE buffer equilibrated phenol (Roth) and

1/10th volume of 10% SDS. The samples are incubated on a thermomixer (Eppendorf) 5 min

at 65°C full mix speed (14000 rpm) and chilled on ice for 2 min. Aqueous phase containing

the RNAs, are collected, and followed by one phenol extraction (1:1 volume) and one

chloroform extraction (1:1 volume). RNAs are precipitated from the aqueous phase at –20°C

for 10 min after addition of 2.5 volume of absolute ethanol and 1/10th volume of 3 M NaAc

pH 5.3.
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Precipitated RNA, when used for denaturing agarose gel electrophoresis, were solubilised in

RNA loading buffer (50% formamide, 0.025% xylene cyanol FF and bromophenol blue –
Sigma and Serva respectively), denatured for 15 min at 65°C and stored at –20°C. For use

with denaturing polyacrylamide gel electrophoresis, samples were further washed with

70%!ethanol, and solubilised in 50% deionized formamide (formamide incubated 2 h under
mild agitation with Amberlite MB-1 resin - Serva).

For cDNA synthesis, RNA was solubilised in Milli-Q water.

2.2.2. RNA amount determination.

RNA amount was estimated by spectrophotometry method (1 A260 ≈ 50 mg/ml) using an

Ultrospec 3100 Pro spectrophotometer (Amersham biosciences).

2.2.3. Native agarose gel electrophoresis.

Native agarose gel electrophoresis was used to assay the quality of extracted RNA.

Electrophoresis was performed with 1.3% (w/v) agarose (Invitrogen), 0.5X TAE
(20!mM!Tris-acetate, 0.5 mM EDTA) gels containing 0.2 mg/ml ethidium bromide, and 0.5X

TAE as electrophoresis buffer. Extracted RNA solubilised in 50% formamide were denatured

as described above prior to loading.

2.2.4. Denaturing agarose gel electrophoresis of high molecular weight RNA.

RNA species over 1000 bases were resolved on denaturating agarose gel (1.3% agarose

(Invitrogen), 2% formaldehyde; 0.1 mg/ml ethidium bromide; 1X MOPS buffer:

2!mM!sodium acetate trihydrate, 20 mM MOPS (Fluka), 1 mM EDTA, pH 7). Gels were run
for 14–16 h at 40 V in 1X MOPS and 2% formaldehyde electrophoresis buffer.

2.2.5. Denaturing polyacrylamide gel electrophoresis of low molecular weight
RNA.

Small sizes RNA (< 1000 bases) were resolved using denaturing polyacrilamide gel

electrophoresis (8% acrylamide/ bisacrylamide (37.5/ 1) from Roth), 7 M Urea, 0.5X TBE

(45!mM Tris-Borate, 1 mM EDTA).
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Gels were pre-run at 100 V for 1 h. Samples were loaded, and run at 100 V for 1-2 h.

2.2.6. Northern Blotting.

Resolved RNAs were transfered and immobilised on positively charged membranes
(Positive™ MP-Biomedicals) using different methods (described below). In every case, the

RNAs were cross-linked to the membranes by 1 min exposition to UV light source (254/312
nm).

2.2.6.1. Passive capillary transfer.

Prior to transfer, the agarose gels were washed once 5 min in milli-Q water, once 20 min in
0.05 M NaOH to hydrolyse the RNAs and facilitate the transfer of larger RNAs, and were

further equilibrated twice 20 min in 10X SSC (1.5 M NaCl, 150 mM sodium-citrate

trihydrate).
Transfer of the RNAs from the agarose gel to the membrane is then achieved over-night by

drawing the transfer buffer (10X SSC) from the reservoir upward through the gel into a stack
of pumping paper. The RNAs are eluted from the gel and deposited onto the positively

charged membrane with the help of the buffer stream.

2.2.6.2. Vacuum transfer.

Prior to transfer, agarose gels are treated as described in materials & methods 2.2.6.1. except

that gels are incubated only once 20 min in 10X SSC. The RNAs are eluted from the gel onto
the positively charged membrane (Positive™ MP-Biomedicals) applying a vacuum of 5 bars

for 90 min using a vacuum blotter (Biorad).

2.2.6.3. Electrophoretic transfer.

The RNAs from polyacrylamide gel were transfered onto the membrane (Positive™ MP-

Biomedicals) applying an electric current. Transfers were performed using a TransBlot

system (Biorad) for 2 h, 40 V at 4°C in 0.5X TBE. After cross-linking, the RNA were stained
using a 0.02% methylene blue solution.
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2.2.7. Dot Blot.

Positively charge membranes were soaked in 10X SSC, and partially dried. RNA samples

were then spotted onto the membrane. After drying, RNAs were cross-linked to the membrane

(see materials & methods 2.2.6.).

2.2.8. Probe labelling, hybridisation and detection.

RNA of interest immobilised on solid supports can be detected and quantify in complex
mixtures using specific probes with the help of conditions allowing the formation of specific

RNA of interest/ probe hybrid.

Probes used in this work are listed in Table 4.

2.2.8.1. Radioactive probe labelling and detection.

5’ ends of all oligo-probes were labelled with 32P. Ten pmol of oligo-probe were incubated

with 50 mCi of g32P-ATP (Amersham), in 1X PNK buffer (70 mM Tris-HCl, 10 mM MgCl2,

5!mM DTT) and 10U of T4 polynucleotide kinase (NEB) for 30-45 min at 37°C. Reactions

were stopped by addition of 1ml of 0.5 M EDTA pH 8. Labelled probes were purified from

the non-incorporated nucleotides by gel exclusion column (Spin6 - Biorad). Incorporated

radioactivity was estimated by counting 1 ml of purified-labelled probes using a scintillation

counter (1600TR-Packard).
Membranes were pre-hybridised minimum 1 h at 37°C in 50% formamide; 5X SSC;

0.5%!SDS; 5X Denhards (1% Ficoll typ400-Pharmacia, 1% Polyvinylpyrrolidone, 1% BSA

Fraction V-Sigma).  Membranes were then incubated at 37°C over-night after addition of

1-2.106 cpm of radiolabelled oligo-probe per blot.

The membranes were washed twice 15 min in 2X SSC, 0.1% SDS and twice 15 min in

1X!SSC, 0.1% SDS at 37°C.
Signals were acquired exposing the membrane onto PhosphoImager screen and/ or onto

BioMax MS/MR film (Fujifilm).

2.2.8.2. Non-radioactive probe labelling and detection.

Digoxigenin-labelled RNA probes were synthesised using the DIG-Northern starter kit

(Roche) as recommended by the manufacturer.
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In brief, PCR products containing the T7 promoter followed by the region of interest was used

as template for in vitro transcription in presence of digoxigenin modified NTP. The resulting
probe was stored in aliquot in 50% formamide at –20°C.

Membranes were pre-hybridised for minimum 1 h at 65°C in 50% formamide; 5X SSC;
0.5%!SDS; 5X Denhards. Membranes were then incubated at 65°C over-night after addition

of 1-2 ml of DIG-labelled probe per blot.

The membranes were washed twice 10 min in 50% formamide; 5X SSC; 0.5% SDS;

5X!Denhards and twice 15 min in 0.1X SSC, 0.1% SDS at 65°C.
Blots were washed 3 min at room temperature in washing buffer (100 mM maleic acid,

150!mM NaCl, pH 7.5 and 0.3% N-lauroylsarcosine).
Membranes were incubated 1 h at room temperature in blocking buffer (100 mM maleic acid,

150 mM NaCl, pH 7.5 and 1X blocking reagent (Roche), followed by 30 min incubation with

0.75 U/ml of anti-DIG antibody conjugated to the alkaline phosphatase (Roche) in blocking

buffer.
Membranes were washed three times 10 min at RT in washing buffer, and 5 min in reaction

buffer (100 mM Tris pH 9.5, 100 mM NaCl, 5 mM MgCl2).

Chemi-luminescent substrate (1% CDP-Star - Roche) was added to the membrane.
The!signals were acquired using a Fuji LAS Reader 3000 (30 sec increment steps high

binning).

2.2.9. Signal quantification.

DIG-labelled and radioactive signals were quantified using AIDA (Raytest) and ImageGauge

(Fuji) respectively.

2.2.10. Reverse Transcription PCR (RT-PCR).

Reverse transcriptase experiments were used in order to clone the coding sequences of

ribosomal protein genes containing long intron sequence. Single strand cDNA synthesis were
carried out as follow:

One mg of total RNA extracted from a wildtype yeast strain was denatured 15 min at 65°C

and chilled on ice to prevent inhibition of the reverse transcriptase reaction by secondary
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RNA structures. Reaction buffer [(50!mM!Tris-HCl, 75!mM!KCl, 3!mM!MgCl2,

10!mM!DTT), 1 mM dNTP, 1.25 mM of mRNA specific reverse primer], 20 U Rnasin, and

200 U M-MuLV reverse transcriptase, were added to the RNA sample (total volume 20 ml).

Mixture was incubated 60 min at 37°C, and the reverse transcriptase was inactivated for 5 min

at 95°C.
Ten percent of the reverse transcriptase reaction was used as template for PCR with the

following settings (5 min 95°C, 35 cycles 30 sec at 95°C, 2 min at 50°C, 3 min at 72°C; and
one cycle 30 sec at 95°C, 2 min at 50°C, 10 min at 72°C).
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3. Work with proteins.

3.1.      Determination of protein concentration.

The Bradford protein assay was used to determine the relative amount of proteins in solution.

The Bradford protein assay is a spectroscopic procedure, based on an absorbency shift (from

465 nm to 595 nm) in the dye Coomassie brilliant blue G-250 when bound to arginine and
hydrophobic amino acid residues. The increase in absorbency at 595 nm is proportional to the

protein concentration in the sample. This assay was performed using the Biorad protein assay

reagent.

[Protein] in mg / volume unit of sample tested = (OD595x23) / Volume of sample tested.

3.2.      Extraction of proteins.

Proteins from whole cells pellet were extracted as following. Logarithmically growing cells
were centrifuged and washed with ice-cold water. Cell pellet was resuspended in one volume

of extraction buffer (7.5% b-mercaptoethanol, 1.85 NaOH) and incubated 15 min on ice.

Extracted proteins were precipitated 10 min on ice by addition of one volume of 55% TCA to

the samples. TCA precipitate was centrifuged 10 min at 14000 rpm at 4°C. The precipitated
proteins were resuspended in 100ml of HU buffer per unit OD600 of cells and incubated 10 min

at 65°C. Equivalent to OD600 0.2-0.5 of cells were analysed by SDS-PAGE and Western

Blotting.

Alternatively, defined protein amounts from whole cell extracts after glassbeads extraction

were solubilised in an excess of HU buffer (8 M urea, 5% SDS, 1.5% b-mercaptoethanol,

1!mM EDTA, 200 mM Tris-HCl pH 6.8, 0.025% bromophenol blue) and incubated at 65°C
10!min, cooled on ice and analysed by SDS-PAGE and Western Blotting.

3.3.      SDS-polyacrylamide gel electrophoresis (SDS-PAGE).

SDS-PAGE allows to separate proteins according to their molecular weight. Proteins and SDS
are forming more or less negatively charged complexes depending on the length of the
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proteins. These complexes are separated through the polyacrylamide gel according to the

protein molecular weight. Molecular weights of the different proteins are estimated using
protein markers of known molecular weight (NEB).

A discontinuous gel system was commonly used in this work, with a stacking gel

(4%!acrylamide, 125 mM Tris-HCl pH 6.8, 0.1% SDS) and a resolving gel (X% acrylamide
depending on the protein’s molecular weight to resolve, 375 mM Tris-HCl pH 8.8,

0.1%!SDS). Gels were run 1 h at 120 V in 1X Tris-Glycine electrophoresis buffer
(25!mM!Tris base, 250 mM glycine, 0.1% SDS).

For better resolution of small proteins 6 M urea was added in the stacking and resolving gel.

3.4.      Western Blotting.

Separated proteins by SDS-PAGE are transferred from the gel to a solid support and

immobilised. The membrane can be probed with specific antibody against the protein of

interest allowing identification and quantification of a specific protein in complex mixtures.

In this work SDS-PAGE resolved proteins were transferred on PVDF membrane in transfer
buffer (25 mM Tris, 190 mM glycine, 20% methanol, pH 8.3 with HCl) using a semi-dry blot

apparatus (Biorad) for 1 h at 24 V.

Immobilised proteins were stained with Ponceau S (0.5% Ponceau, 1% acetic acid).

3.5.      Immunoblotting and detection.

Membranes were blocked minimum 1 h at room temperature or over-night at 4°C in blocking

buffer (0.5% low-fat dry milk, 1X Tris Buffer Saline: 0.8% NaCl, 0.3% Tris, 0.02% KCl,
pH!7.4). Membranes were incubated for 1 h at room temperature with the primary antibody

diluted in blocking buffer, and washed 3 times 10 min at room temperature in 1X TBS.
When!required, membranes were incubated for 30-45 min at room temperature with a

secondary antibody diluted in blocking buffer at and washed 3 times 10 min at room

temperature in 1X TBS. Immunodetection was performed using a chemi-luminescence
reaction depending on the peroxidase activity conjugated to the antibody. Substrate (POD -

Roche) was added to the blot as suggested by the manufacturer. Signals were acquired and
quantified using a Fuji LAS Reader 3000 (30 sec increment steps-standard binning), and

AIDA (Raytest) respectively.
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4. Additional biochemical methods.

4.1.      Analysis of neo-synthesised rRNA.

Equivalent to 3 OD600 of cells were pelleted and resuspended in 1 ml of YPD including

20!mCi of 5’, 6’[3H] uracil (Amersham) for 15 min at 30°C. Total RNA was extracted (see

materials & methods 2.2.1.), and the same amounts of radioactivity (cpm), as determined by

scintillation counting, were loaded onto a denaturing agarose gel and then transferred onto a
membrane. The membrane was exposed to a BAS-TR 2040 screen for 1 week. Radioactivity

on membrane slices containing 25S and 18S rRNA was counted using a scintillation counter
(Packard Tri-Carb 1600TR). Background activity was subtracted from the obtained values.

The exact procedure was performed in duplicate for standardisation with the only exception

being that the volumes of RNA loaded were the same. The resulting membranes were

hybridised with a 32P-labelled 25S probe. The amounts of labelled 25S rRNA in each strain

were quantified using a PhosphorImager (Fuji). [3H] activity was adjusted according to equal

amounts of 25S rRNA on the gel and was expressed as a percentage of labelled wildtype

RNA.

4.2.      Purification of ribosomal subunits by ultra-centrifugation.

Logarithmically growing yeast cells (200 ml OD600 0.4-0.6) are treated for 10 min with 20 mg

cycloheximide, and cooled down on ice/ water for 15 min.

Cells are centrifuged and washed once with ice cold buffer A (20 mM HEPES pH 7.5,
10!mM!KCl, 5 mM EGTA, 1 mM DTT, 100 mg/ml cycloheximide).

Cells are resuspended in ice cold buffer A, and broken with glass beads (0.75-1 mm - Roth)
using a vibrax at full speed for 30 min at 4°C. Cell extracts are clarified by centrifugation

(5!min 10000 rpm at 4°C). Five hundreds mg of proteins from the whole cell extracts are

loaded on a 8-36% (w/v) sucrose gradient in buffer A without DTT and cycloheximide, and
centrifuged for 3 h at 39000 rpm at 4°C.

Gradients were analysed using a BioLogic UV detection system (254 nm) connected to an

FPLC-Pharmacia LKB-P500 (flow: 1 mL/min). Signals were recorded using the LP analysis
software (Biorad).
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4.3.      Nuclear-cytoplasmic cell fractionation.

Twelve ml of cells at OD600 1.2 were centrifuged and washed in 2 mM DTT and resuspended

in recovery buffer (2% glucose, 1% peptone, 0.6% malt extract, 0.01% yeast extract,

12%!mannitol, and 17.8 mM magnesium acetate) plus 1 mM DTT and 1 mg/ml zymolyase

100T (Seikagaku Corporation) for 30 min at 30°C with mild agitation.
Spheroplasted cells were washed once in recovery buffer and resuspended for 30 min at 30°C

in recovery buffer and pulse labelled with 20 mCi of 5’, 6’ [3H] uracil (Amersham) for 15 min

at 30°C. Labelling reactions were stopped incubating the samples 5 min on ice/ water.

Nuclear and cytoplasmic fractions were then prepared. Cells were resuspended in 0.7 ml of

buffer A (8% polyvinylpyrrolidon, 1 mM MgCl2, 20 mM potassium phosphate buffer pH 6.5)

and 0.03% (w/v) Triton-X 100, and directly broken by 22 strokes in a dounce tissue grinder

(25-75 mm clearance, 1 ml volume, Wheaton). After addition of 0.7 ml of buffer A containing

0.6 M sucrose, the suspension was charged onto 4 ml of buffer A/0.45 M sucrose cushion and

centrifuged for 10 min at 5000 rpm (4100 g) in a swing-out rotor at 4°C. In all, 500 ml of the

turbid supernatant was recovered as the cytoplasmic fraction (≈35%); the pellet,
corresponding to the nuclear fraction (100%), was resuspended in 150 ml of buffer A

containing 0.45 M sucrose. Total RNA from the different fractions were extracted (materials

& methods 2.2.1.). For normalisation, steady-state rRNA amounts in each fraction were

determined by using a dot-blot experiment (see materials & methods 2.2.7.) with a
32P–labelled probe hybridising with the 25S rRNA (see Table 4). Same amounts of “cold”

RNA were then loaded on a denaturing agarose gel and transferred onto a membrane.

Neo–synthesised rRNA were visualised either by phosphorimaging (BAS-TR2040 screen,

Fuji; one week exposure) or by exposure of the blot to a BioMax MS film including a BioMax
TranScreen (Kodak) at –80°C.

Steady-state amounts of pre-rRNA were analysed after hybridisation by using a DIG-labelled

ITS1 probe (see materials & methods 2.2.8.2.).

4.4.      RNA coimmunoprecipitation experiments.

Logarythmically growing cells were centrifuged and washed with ice-cold milli-Q water.

Cells were disrupted by vortexing at 4°C with glass beads (0.75-1 mm Roth) in buffer A200

containing 200 mM KCl, 20 mM Tris-HCl pH 8, 5 mM MgAc, 1 mM DTT, 1 mM PMSF,
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2!mM benzamidine, 0.05 mM RVC, and 40 U/ml of RNasin (NEB). Extracts were clarified by

two consecutive centrifugations at 14000 rpm for 5 and 10 minutes at 4°C. Triton X-100 was
added to the supernatants to 0.2%. Five mg of whole cells extract were incubated with 50 ml

of agarose anti-Flag M2 beads (Sigma) for 90 min at 4°C in A200T (200 mM KCl, 20 mM

Tris pH 8, 5 mM MgAc, 1 mM DTT, 0.2% Triton X-100, 1 mM PMSF, 2 mM benzamidine,

0.05 mM ribonucleoside vanadyl complex).
Beads were washed 5 times with 2 ml of buffer A200T and 1 time with 10 ml of buffer

A200T. RNA was extracted from beads and supernatant (see materials & methods 2.2.1.).

Same volume-percent of extracted RNA from the corresponding beads and supernatant were
loaded on denaturing agarose gels.
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5. Cell biological method.

5.1.      Fluorescence in situ hybridisation (FISH).

5.1.1. Cells preparation.

Cells growing in YPG were resuspended in pre-warmed YPD media (OD600 0.5) for 2 h. Cells

were fixed with 4% paraformaldehyde in YPD for 30 min at 30°C.Yeast cells were

spherosplasted 30 min at 37°C in buffer B [20% (w/v) D (-) sorbitol, 100 mM phosphate
buffer pH 7.5), supplemented with 2 mM ribonucleoside vanadyl complex, 0.2 mM PMSF,

2!mM benzamidine, 29 mM b-mercaptoethanol, and 50 mg/ml of zymolyase 100T (Seikagaku

corporation)]. Spheroplasted cells were washed once with buffer B, and resuspended in ice

cold buffer B. Spheroplast suspensions were dropped on poly-L-lysine coated cover slips, and
incubated 30 min at 4°C. The cover slips were covered with cold 70% ethanol and incubated

over-night at –20°C.

5.1.2. In situ hybridisation.

Cover slips are washed twice 5 min with 2X SSC and once in 2X SSC, 10% formamide at

room temperature. Each cover slips are incubated in an humid chamber with 10 ng of
Cy3!labelled-probe (see Cy3-ITS1 probe Table 4) solved in 2X SSC, 10% formamide, 10%

dextran sulfate, 500 mg/ml tRNA (E. coli), 50 mg/ml BSA, 2 mM RVC between 3 h to over-

night at 37°C.

Cover slips are washed (in the dark) twice 15 min in 2X SSC, 10% formamide at 37°C,
followed by one washing step for 15 min 2X SSC, 0.1% Triton X-100, and two washing steps

for 15 min in 1X SSC at room temperature.

Samples are incubated shortly in 1X TBS, and mounted on glass-slides in 5-8 ml in mowiol/

DAPI (1mg/ml).
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5.1.3. Images acquisition and processing.

Images were captured with an AxioCam MR CCD camera coupled to a Zeiss Axiovert 200M

microscope and processed with Zeiss Axiovision v 4.2 and Adobe Photoshop.

All the microscopy fields were acquired on the same day, with fixed parameters for each
channel, and processed in batch with the same parameters.
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6. Vectors and strains construction.

6.1.       Vectors construction.

6.1.1. Cloning of the wildtype RPS genes.

Wildtype open reading frame coding for the ribosomal protein genes were PCR amplified
from S288C yeast genomic DNA (Invitrogen) using the oligonucleotides described in Table 3.

PCR fragments were cloned into vector Ycplac33 (URA3; CEN).

To allow correct expression of these genes, the ORF were cloned including their respective
5’UTR regulatory elements (Lascaris et al., 1999), and 300-500 bp after the stop codon were

added as 3’UTR.

6.1.2. Cloning of conditionally expressed RPS genes.

Vectors containing conditional GAL-RPS genes were constructed as following.

The intron-less ORFs coding for the SSU r-proteins were PCR-amplified from +1/ATG to

3´UTR using the respective Ycplac33 vector containing the wildtype gene as template (see
materials & methods 6.1.1.) and subsequently cloned into Ycplac111-Gal (LEU2; CEN)

vector.

For the intron-containing ORF´s.
When possible, introns were bypassed by PCR using oligos homologous to exon1 and exon2,

respectively, and amplified including the 3´UTR and cloned into Ycplac111-Gal vector.
RPS genes in which introns could not been bypassed by PCR were amplified using RT-PCR

(see materials & methods 2.2.10.), and cloned into Ycplac111-Gal vector.

6.1.3. Cloning of conditionally expressed flag-tagged RPS genes.

Ribosomal proteins genes were cloned by PCR or sub-cloned from the vectors described in

materials & methods 6.1.2. into pGAL-Nt-Flag or pGAL-Ct-Flag (LEU2; CEN) vectors for N

or C terminal flag-tag respectively (see Table 1). Functionality of the vectors was tested on
the basis of the complementation of loss of function of their respective r-protein gene.
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6.1.4. Cloning of constitutively expressed flag-tagged RPS genes.

Ribosomal proteins genes were cloned by PCR or sub-cloned from the vectors described in

materials &  methods 6.1.3. into pRPS28Bprom-Nt-Flag or pRPS28Bprom-Ct-Flag (URA3;
2m) vectors for N or C terminal flag-tag respectively (see Table 1). Functionality of the

vectors was tested on the basis of the complementation of loss of function of their respective

r-protein gene.

6.2.      Strains construction.

6.2.1. Shuffle strains construction.

In the case of duplicated r-proteins genes, a diploid strain was generated by mating two

haploid yeast strains in which either one of the two ribosomal gene copies was replaced by a

different selection marker (from KanMX4 to HIS3 or HIS3MX6 as described in Voth et al.,
2003, see also Table 2 ). Diploid cells were transformed with a vector expressing a wildtype

copy of the respective SSU r-protein (materials & methods 6.1.1.). Positive diploid
transformants were selected, and sporulated.  Tetrad analysis was performed, and haploid

strains bearing deletions in both gene copies were selected (G418R and His+).

Viability of the complete knockout strains was then tested on 5-FOA-plates (see materials &

methods 1.2.1.4.).

6.2.2. Strains conditionally expressing the RPS genes.

Shuffle strains were transformed with their respective conditional RPS allele (materials &

methods 6.1.2.). Positive transformants were selected, and platted onto 5-FOA-galactose

plates in order to shuffle out the wildtype gene-containing vector. 5-FOAR clones were

selected indicating the functional complementation of the corresponding galactose dependent

allele. Galactose dependent growth was then tested by platting out the 5-FOAR clones on

YP-glucose containing media.

6.2.3. Strains conditionally expressing the flag-tagged RPS genes.

Shuffle strains were transformed with their respective conditional flag-tagged RPS allele

(materials & methods 6.1.2.). Positive transformants were selected, and platted onto
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5-FOA-galactose containing media in order to shuffle out the wildtype gene-containing

vector. 5-FOAR clones were selected indicating the functional complementation of the

corresponding galactose dependent flag-tagged allele. Galactose dependent growth was

further tested by platting out the 5-FOAR clones on YP-glucose containing media.
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Table 1: List of plasmids used in this work.

ToP                      
(Tschochner

original
Plasmide
database

entry)

! Plasmid name ! Features ! Comments ! Origin

M4754 kanmx::HIS3
exchanging vector

(Voth et
al., 2003)

! ! pFA6a-GFP(S65T)-
HIS3MX6 ! ! !

used as a
kanmx::HIS3MX6
exchanging vector

!
(Longtine

et al.,
1998)

234 ! pGEMT-26AUAS-
HIS3MX6-26ADS ! ! !

 Deletion vector
RPS26A UAS-

HIS3MX6-26A DS
!

Dr.
Philipp

Milkereit
and

Stephan
Jellbauer

235 ! pGEMT-8BUAS-
HIS3MX6-8BDS ! ! !

 Deletion vector
RPS8B UAS-

HIS3MX6-8B DS
!

Dr.
Philipp

Milkereit
and

Stephan
Jellbauer

! ! Ycplac33 !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

! ! !
(Gietz

and
Sugino,
1988)

287 ! Ycplac33-RPS0B !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 446-447
SacI-KpnI ! This

Study

288 ! Ycplac33-RPS1A !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 448-449
SacI-KpnI ! This

Study

289 ! Ycplac33-RPS2 !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 460-461
PstI-SacI ! This

Study

290 ! Ycplac33-RPS3 !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 366-367
SacI-KpnI ! This

Study
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ToP                      ! Plasmid name ! Features ! Comments ! Origin

291 ! Ycplac33-RPS5 !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 368-369
SacI-KpnI ! This

Study

292 ! Ycplac33-RPS6A !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 406-407
SacI-KpnI ! This

Study

294 ! Ycplac33-RPS8B !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 376-377
KpnI-HindIII ! This

Study

295 ! Ycplac33-RPS9A !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 400-401
SacI-KpnI ! This

Study

296 ! Ycplac33-RPS10A !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 452-453
SacI-HindIII ! This

Study

297 ! Ycplac33-RPS11A !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 454-455
SacI-HindIII ! This

Study

298 ! Ycplac33-RPS13 !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 370-371
SacI-KpnI ! This

Study

330 ! Ycplac33-RPS14A !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

! Oligos 541-542
SacI-KpnI ! This

Study

299 ! Ycplac33-RPS16A !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 402-403
SacI-KpnI ! This

Study

300 ! Ycplac33-RPS20 !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 372-373
SacI-KpnI ! This

Study

303 ! Ycplac33-RPS23A !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 458-459
KpnI-HindIII ! This

Study
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ToP                      ! Plasmid name ! Features ! Comments ! Origin

304 ! Ycplac33-RPS24A !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 374-375
SacI-HindIII ! This

Study

306 ! Ycplac33-RPS26A !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 462-463
PstI-KpnI ! This

Study

307 ! Ycplac33-RPS27B !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 444-445
SacI-KpnI ! This

Study

309 ! Ycplac33-RPS30B !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 394-395
SacI-KpnI ! This

Study

310 ! Ycplac33-RPS31 !
ORI (E.coli)

f1;ARS1;CE
N4 Amp
URA3

!  Oligos 408-409
SacI-KpnI ! This

Study

230 ! Yplac111-GAL !

ORI (E.coli)
f1;ARS1;CE

N4; Amp;
LEU2

!

BamHI/EcoRI
Fragment
containing

GAL1/GAL10
promoter from

Ycplac22GAL*
clone into

Ycplac111*

!
Dr.

Philipp
Milkereit

251 ! Ycplac111-pGAL-RPS0B !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
RT-PCR  Oligos

481, 490, BamHI-
PstI

! This
Study

254 ! Ycplac111-pGAL-RPS1A !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR  with Oligos
469-418   BamHI-

PstI in ToP230
! This

Study

255 ! Ycplac111-pGAL-RPS2 !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
491-488  BamHI-

PstI in ToP230
! This

Study

257 ! Ycplac111-pGAL-RPS3 !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
465-418  BamHI-
PstI  in ToP230

! This
Study
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ToP                      ! Plasmid name ! Features ! Comments ! Origin

259 ! Ycplac111-pGAL-RPS5 !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
466-418  BamHI-
PstI  in ToP230

! This
Study

261 ! Ycplac111-pGAL-RPS6A !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
470-418  BamHI-
PstI  in ToP230

! This
Study

262 ! Ycplac111-pGAL-RPS8B !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
471-418  BamHI-

PstI
! This

Study

264 ! Ycplac111-pGAL-RPS9A !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
472-418  BamHI-

PstI in ToP230
! This

Study

266 !Ycplac111-pGAL-RPS10A !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
RT-PCR  with
Oligos 493-482
BamHI-PstI in

ToP230

! This
Study

268 !Ycplac111-pGAL-RPS11A !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
494-418 BamHI-
PstI in ToP230

! This
Study

270 ! Ycplac111-pGAL-RPS13 !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
464-418  BamHI-

PstI in ToP230
! This

Study

338 !Ycplac111-pGAL-RPS14A !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos

422-498
BamHI/PstI  in

ToP230

!

Gisela
Pöll and

Dr.
Philipp

Milkereit

272 !Ycplac111-pGAL-RPS16A !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
479-418  BamHI-

PstI in ToP230
! This

Study

274 ! Ycplac111-pGAL-RPS20 !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
467-418  BamHI-

PstI in ToP230
! This

Study

276 ! Ycplac111-pGAL-RPS23 !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
495-418  BamHI-
PstI  in ToP230

! This
Study
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ToP                      ! Plasmid name ! Features ! Comments ! Origin

311 !Ycplac111-pGAL-RPS24A !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR  with Oligos
474-418 BamHI-
PstI   in  ToP230

! This
Study

278 ! Ycplac111-pGAL-RPS26 !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos

496-489   BamHI-
PstI  in ToP230

! This
Study

280 ! Ycplac111-pGAL-RPS27 !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
476-418  BamHI-
PstI  in ToP230

! This
Study

283 !Ycplac111-pGAL-RPS30B !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
478-418  BamHI-
PstI  in ToP230

! This
Study

285 ! Ycplac111-pGAL-RPS31 !
ORI (E.coli)

f1;ARS1;CE
N4; Amp;

LEU2

!
PCR with Oligos
468-418  BamHI-
SphI in ToP230

! This
Study

pfl38-pGAL
(Leger-
Silvestre

et al.,
2004)

pfl38-pGAL-RPS18B
(Leger-
Silvestre

et al.,
2004)

! ! pfl38-pGAL-RPS19 ! URA3 !
PCR from +1/ATG

to stop codon in
pFL38GAL

! Prof. Dr.
Gleizes

! ! pfl38-pGAL-RPS7A ! URA3 !
PCR from +1/ATG

to stop codon in
pFL38GAL

! Prof. Dr.
Gleizes

! ! pfl38-pGAL-RPS28B ! URA3 !
PCR from +1/ATG

to stop codon in
pFL38GAL

! Prof. Dr.
Gleizes

! ! pDC-CRM1-T539C !
pDC-CRM1-

T539C;
LEU2; CEN2

! ! !
Neville

and
Rosbash,

1999

231 ! Ycplac111-pGAL-Flag ! LEU2 ! ! !
Dr.

Philipp
Milkereit

252 ! Ycplac111-pGAL-Flag-
RPS0B ! RPS0B;

LEU2 !
subclone BamHI-
PstI ToP251 in in

ToP231
! This

study
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ToP                      ! Plasmid name ! Features ! Comments ! Origin

253 ! Ycplac111pGAL-Flag-
RPS1A ! RPS1A;

LEU2 !
subclone BamHI-

PstI ToP251 in
ToP231

! This
study

256 ! Ycplac111-pGAL-Flag-
RPS2 ! RPS2; LEU2 !

subclone BamHI-
PstI ToP255 in

ToP231
! This

study

258 ! Ycplac111-pGAL-Flag-
RPS3 ! RPS3; LEU2 !

subclone BamHI-
PstI ToP257 in

ToP231
! This

study

260 ! Ycplac111-pGAL-Flag-
RPS5 ! RPS5; LEU2 !

subclone BamHI-
PstI ToP259 in

ToP231
! This

study

414 ! Ycplac111-pGALRPS6A-
Flag ! RPS6A;

LEU2 ! PCR BamHI-PstI
in ToP231 !

Gisela
Pöll and

Dr.
Philipp

Milkereit

265 ! Ycplac111-pGAL-Flag-
RPS9A ! RPS9A;

LEU2 !
subclone BamHI-

PstI ToP264 in
ToP231

! This
study

267 ! Ycplac111-pGAL-Flag-
RPS10A ! RPS10A;

LEU2 !
subclone BamHI-

PstI ToP266 in
ToP231

! This
study

269 ! Ycplac111-pGAL-Flag-
RPS11A ! RPS11A;

LEU2 !
subclone BamHI-

PstI ToP268 in
ToP231

! This
study

271 ! Ycplac111-pGAL-Flag-
RPS13 ! RPS13;

LEU2 !
subclone BamHI-

PstI ToP270 in
ToP231

! This
study

339 ! Ycplac111-pGAL-Flag-
RPS14 ! RPS14;

LEU2 ! PCR BamHI-PstI
in ToP231 !

Gisela
Pöll and

Dr.
Philipp

Milkereit

237 ! Ycplac111-pGAL-Flag-
RPS15 ! RPS15;

LEU2 !
subclone BamHI-

PstI ToP236 in
ToP231

!
Dr.

Philipp
Milkereit

273 ! Ycplac111-pGAL-Flag-
RPS16A ! RPS16A;

LEU2 !
subclone BamHI-

PstI ToP272 in
ToP231

! This
study

443 ! Ycplac111-GAL-Flag-
RPS18 ! RPS18;

LEU2 ! PCR BamHI-PstI
in ToP231 !

Gisela
Pöll and

Dr.
Philipp

Milkereit
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ToP                      ! Plasmid name ! Features ! Comments ! Origin

446 ! Ycplac111-GAL-RPS18-
Flag ! RPS18;

LEU2 ! PCR BamHI-PstI
in ToP231 !

Gisela
Pöll and

Dr.
Philipp

Milkereit

341 ! Ycplac111-GAL-Flag-
RPS19 ! RPS19;

LEU2 !
subclone BamHI-

PstI ToP251 in
ToP231

!

Gisela
Pöll and

Dr.
Philipp

Milkereit

275 ! Ycplac111-pGAL-Flag-
RPS20 ! RPS20;

LEU2 !
subclone BamHI-

PstI ToP272 in
ToP231

! This
study

416 ! Ycplac111-pGAL-RPS24-
Flag ! RPS24;

LEU2 ! PCR BamHI-PstI
in ToP231 !

Gisela
Pöll and

Dr.
Philipp

Milkereit

279 ! Ycplac111-GAL-RPS26A-
Flag ! RPS26A;

LEU2 !
subclone BamHI-

PstI ToP280 in
ToP231

! This
study

281 ! Ycplac111-pGAL-Flag-
RPS27B ! RPS27B;

LEU2 !
subclone BamHI-

PstI ToP280 in
ToP231

! This
study

417 ! Ycplac111-pGAL-
RPS30B-Flag ! RPS30B;

LEU2 ! PCR BamHI-PstI
in ToP231 !

Gisela
Pöll and

Dr.
Philipp

Milkereit

418 ! Ycplac111-pGAL-RPS31-
Flag ! RPS31;

LEU2 ! PCR BamHI-PstI
in ToP231 !

Gisela
Pöll and

Dr.
Philipp

Milkereit

335 ! Ycplac111-GAL-Flag-
NOC4 ! NOC4;

LEU2; CEN4 ! ! !

Gisela
Pöll and

Dr.
Philipp

Milkereit

349 ! YEplac195-pRPS28Prom-
Nterm FLAG ! URA3; 2m ! ! !

Dr.
Philipp

Milkereit

520 ! YEplac195-RPS28prom ! URA3; 2m ! ! !
Dr.

Philipp
Milkereit
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ToP                      ! Plasmid name ! Features ! Comments ! Origin

421 ! pRPS28Bprom-Flag-
RPS0B ! RPS0B;

URA3; 2m !
subclone BamHI-

PstI ToP251 in
ToP349

!

Gisela
Pöll and

Dr.
Philipp

Milkereit

625 ! pRPS28Bprom-Flag-
RPS1A ! RPS1A;

URA3; 2m !
subclone BamHI-

PstI ToP611 in
ToP349

!

Gisela
Pöll and

Dr.
Philipp

Milkereit

624 ! pRPS28Bprom-Flag-RPS2 ! RPS2;
URA3; 2m ! PCR BamHI-PstI

in ToP349 ! Andreas
Neueder

424 ! pRPS28Bprom-Flag-RPS3 ! RPS3;
URA3; 2m !

subclone BamHI-
PstI ToP257 in

ToP349
!

Gisela
Pöll and

Dr.
Philipp

Milkereit

351 ! pRPS28Bprom-Flag-RPS5 ! RPS5;
URA3; 2m !

subclone BamHI-
PstI ToP259 in

ToP349
!

Dr.
Philipp

Milkereit

522 ! pRPS28Bprom-Flag-
RPS6A ! RPS6A;

URA3; 2m !
subclone BamHI-

PstI ToP414 in
ToP487

! This
study

523 ! pRPS28Bprom-RPS9A-
Flag ! RPS9A;

URA3; 2m !
subclone BamHI-

PstI ToP415 in
ToP487

! This
study

524 ! pRPS28Bprom-RPS10A-
Flag ! RPS10A;

URA3; 2m !
subclone BamHI-

PstI ToP390 in
ToP487

! This
study

426 ! pRPS28Bprom-Flag-
RPS11A ! RPS11A;

URA3; 2m !
subclone BamHI-

PstI ToP268 in
ToP349

!

Gisela
Pöll and

Dr.
Philipp

Milkereit

427 ! pRPS28Bprom-Flag-
RPS13 ! RPS13;

URA3; 2m !
subclone BamHI-

PstI ToP270 in
ToP349

!

Gisela
Pöll and

Dr.
Philipp

Milkereit

428 ! pRPS28Bprom-Flag-
RPS14A ! RPS14A;

URA3; 2m !
subclone BamHI-

PstI ToP339 in
ToP349

!

Gisela
Pöll and

Dr.
Philipp

Milkereit
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ToP                      ! Plasmid name ! Features ! Comments ! Origin

429 ! pRPS28Bprom-Flag-
RPS15 ! RPS15;

URA3; 2m !
subclone BamHI-

PstI ToP236 in
ToP349

!

Gisela
Pöll and

Dr.
Philipp

Milkereit

622 ! pRPS28Bprom-Flag-
RPS16A ! RPS16A;

URA3; 2m ! PCR BamHI-PstI
in ToP349 ! Andreas

Neueder

431 ! pRPS28Bprom-Flag-
RPS17A ! RPS17A;

URA3; 2m !
subclone BamHI-

PstI ToP340 in
ToP349

!

Gisela
Pöll and

Dr.
Philipp

Milkereit

432 ! pRPS28Bprom-Flag-
RPS19A ! RPS19A;

URA3; 2m !
subclone BamHI-

PstI ToP341 in
ToP349

!

Gisela
Pöll and

Dr.
Philipp

Milkereit

623 ! pRPS28Bprom-Flag-
RPS20 ! RPS20;

URA3; 2m ! PCR BamHI-PstI
in ToP349 ! Andreas

Neueder

487 ! pRPS28Bprom-RPS24A-
Flag ! RPS24A;

URA3; 2m !
subclone BamHI-
HindIII ToP416 in

ToP520
! This

study

525 ! pRPS28Bprom-RPS26A-
Flag ! RPS26A;

URA3; 2m !
subclone BamHI-

PstI ToP391 in
ToP487

! This
study

629 ! pRPS28Bprom-Flag-
RPS27B ! RPS27B;

URA3; 2m !
subclone BamHI-

PstI ToP616 in
ToP349

!
Dr.

Philipp
Milkereit

434 ! pRPS28Bprom-Flag-
RPS28B ! RPS28B;

URA3; 2m !
subclone BamHI-

PstI ToP282 in
ToP349

!

Gisela
Pöll and

Dr.
Philipp

Milkereit

766 ! pRPS28Bprom-Flag-
RPS29a ! RPS29A;

URA3;2m !
subclone BamHI-

PstI ToP751 in
ToP349

! Gisela
Pöll

521 ! pRPS28Bprom-RPS31-
Flag ! RPS31;

URA3; 2m !
subclone BamHI-
HindIII ToP418 in

ToP520
! This

study

!
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Table 2: List of strains used in this work.

ToY
(Tschochner

original
Yeast

database
entry)

Strain name Genotype Vectors Origin

BY4741-WT Mat a;his3∆1;leu2∆0;
met15∆0; ura3∆0 Euroscarf-Y00000

BY4742-WT
Mat

alpha;his3∆1;leu2∆0;
lys2∆0; ura3∆0

Euroscarf-Y10000

141 RPS0A::HIS3
his3∆1;leu2∆0;met15∆
0;ura3∆0;YGR214w::

HIS3;BY4741

This Study, derived
from Euroscarf-

Y04844

142 RPS6A::HIS3
his3∆1;leu2∆0;met15∆
0;ura3∆0;YPL090c::HI

S3;BY4741

This Study, derived
from Euroscarf-

Y02738

143 RPS9A::HIS3
his3∆1;leu2∆0;met15∆
0;ura3∆0;YPL081w::H

IS3;BY4741

This Study, derived
from Euroscarf-

Y02747

144 RPS10A::HIS
3

his3∆1;leu2∆0;met15∆
0;ura3∆0;YOR293w::

HIS3;BY4741

This Study, derived
from Euroscarf-

Y01589

145 RPS11A::HIS
3

his3∆1;leu2∆0;met15∆
0;ura3∆0;YDR025w::

HIS3;BY4741

This Study, derived
from Euroscarf-

Y03964

146 RPS23A::HIS
3

his3∆1;leu2∆0;met15∆
0;ura3∆0;YGR118w::

HIS3;BY4741

This Study, derived
from Euroscarf-

Y04748

147 RPS25A::HIS
3

his3∆1;leu2∆0;met15∆
0;ura3∆0;YGR027c::H

IS3;BY4741

This Study, derived
from Euroscarf-

Y04657

148 RPS27A::HIS
3

his3∆1;leu2∆0;met15∆
0;ura3∆0;YKL156w::H

IS3;BY4741

This Study, derived
from Euroscarf-

Y05006

150 RPS30A::HIS
3

his3∆1;leu2∆0;met15∆
0;ura3∆0;YLR287c-

a::HIS3;BY4741

This Study, derived
from Euroscarf-

Y05197

157 RPS1A::HIS3
his3∆1;leu2∆0;met15∆
0;ura3∆0;YLR441c::HI

S3;BY4741

This Study, derived
from Euroscarf-

Y06045

159 RPS16A::HIS
3

his3∆1;leu2∆0;met15∆
0;ura3∆0;YMR143w::

HIS3;BY4741

This Study, derived
from Euroscarf-

Y00724
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ToY Strain name Genotype Vectors Origin

160 RPS24A::HIS
3

his3∆1;leu2∆0;met15∆
0;ura3∆0;YER074w::H

IS3;BY4741

This Study, derived
from Euroscarf-

Y00214

394 RPS14A::HIS
3MX6

his3∆1;leu2∆0;met15∆
0;ura3∆0;YCR031c::H

IS3MX6; BY4741

This Study, derived
from Euroscarf-

Y05760

220 DeltaRPS8B
Mat

alpha;his3∆1;leu2∆0;
lys2∆0; ura3∆0;

YER102w::HIS3MX6

This Study, derived
from BY4742, KO
with deletion vector

ToP 235

221 DeltaRPS26A
Mat a;his3∆1;leu2∆0;

met15∆0; ura3∆0;
YGL189c::HIS3MX6

This Study, derived
from BY4741, KO
with deletion vector

ToP 234

180 RPS0-Shuffle
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YLR
048w::KanMX4;YGR2

14w::HIS3

Ycplac33-
RPS0B

This Study *, derived
from Euroscarf-

Y12659 and ToY141

183 RPS1-Shuffle
his3∆1;leu2∆0;met15∆
0;LYS2;ura3∆0;YML0
63w::KanMX4;YLR44

1c::HIS3

Ycplac33-
RPS1A

This Study *, derived
from Euroscarf-

Y10507 and ToY157

186 RPS2-Shuffle
his3∆1;leu2∆0;ura3∆0;
met15∆0;lys2∆0;YGL

123w::KanMX4;
Ycplac33-

RPS2

This Study *, derived
from Euroscarf-

Y24490

188 RPS9-Shuffle
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YBR
189w::KanMX4;YPL0

81w::HIS3

Ycplac33-
RPS9A

This Study *, derived
from Euroscarf-

Y16961 and ToY143

190 RPS13-Shuffle
his3∆1;leu2∆0;ura3∆0;
MET15;LYS2;YDR06

4w::KanMX4
Ycplac33-

RPS13
This Study *, derived

from Euroscarf-
Y23999

192 RPS20-Shuffle
his3∆1;leu2∆0;ura3∆0;
MET15;LYS2;YHL01

5w::KanMX4

Ycplac33-
RPS20

This Study *, derived
from Euroscarf-

Y20948

194 RPS30-Shuffle
his3∆1;leu2∆0;MET15
;LYS2;ura3∆0;YOR18
2c::KanMX4;YLR287c

-a::HIS3

Ycplac33-
RPS30B

This Study *, derived
from Euroscarf-

Y12438 and ToY150

195 RPS31-Shuffle
his3∆1;leu2∆0;ura3∆0;
MET15;lys2∆0;YLR16

7w::KanMX4;
Ycplac33-

RPS31

This Study *, derived
from Euroscarf-

Y24116

198 RPS5-Shuffle
his3∆1;leu2∆0;ura3∆0;
lys2∆0;YJR123w::Kan

MX4;

Ycplac33-
RPS5

This Study *, derived
from Euroscarf-

Y26926
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229 RPS6-Shuffle
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YBR
181c::KanMX4;YPL09

0c::HIS3

Ycplac33-
RPS6A

This Study *, derived
from Euroscarf-

Y13321 and ToY142

233 RPS10-Shuffle
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YMR
230w::KanMX4;YOR2

93w::HIS3

Ycplac33-
RPS10A

This Study *, derived
from Euroscarf-

Y10816 and ToY144

236 RPS16-Shuffle

his3∆1;leu2∆0;
met15∆0; LYS;

ura3∆0;
YDL083c::KanMX4;

YMR143w::HIS3

Ycplac33-
RPS16A

This Study *, derived
from Euroscarf-

Y13780 and ToY159

240 RPS27-shuffle
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∂0;YHR
021c::KanMX4;YL156

w::HIS3

Ycplac33-
RPS27B

This Study *, derived
from Euroscarf-

Y10984 and ToY148

231 RPS8-shuffle
his3∆1;leu2∆0;lys2∆0?
;ura3∆0;met15∆0?;YE
R102w::HIS3MX6;YB

L072c::KanMX4

YCplac33-
RPS8A

This Study *, derived
from Euroscarf-

Y03098 and ToY220

239 RPS23-Shuffle
his3∆1;leu2∆0;lys2∆0;
MET;ura3∆0;YPR132
w::KanMX4;YGR118

w::HIS3

Ycplac33-
RPS23A

This Study *, derived
from Euroscarf-

Y15547 and ToY146

265 RPS26-Shuffle
his3∆1;leu2∆0;lys2∆0?
;ura3∆0;met15∆0?;YE
R131w::KanMX4;YG

L189c::HIS3MX6

Ycplac33-
RPS26A

This Study *, derived
from Euroscarf-

Y16130 and ToY221

268 RPS3-Shuffle
his3∆1;leu2∆0;ura3∆0;
met15∆0;lys2∆0;YNL

178w::KanMX4
Ycplac33-

RPS3

This Study*, derived
from Euroscarf-

Y22034

291 RPS11-Shuffle
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YBR
048w::KanMX4;YDR0

25w::HIS3

Ycplac33-
RPS11A

This Study *, derived
from Euroscarf-

Y13185 and ToY145

363 RPS24-Shuffle
his3∆1;leu2∆0;lys2∆0?
;met15∆0?;ura3∆0;YIL
069c::KanMX4;YER0

74w::HIS3

Ycplac33-
RPS24

This Study *, derived
from Euroscarf-

Y11462 and ToY160

396 RPS14-Shuffle
his3∆1;leu2∆0;met15∆
0;lys2∆0;ura3∆0;YCR
031c::HIS3MX6;YJL1

91w::KanMX4

Ycplac33-
RPS14A

This Study *, derived
from Euroscarf-

Y17019 and ToY394
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pGAL7
his3∆1;leu2∆0;ura3∆0;
YOR096w::KanMX4;

YNL096c::KanMX4
pfl38-pGAL-

RPS7A

Prof. Dr. Gleizes
derived from

Euroscarf-Y06475 and
Euroscarf-Y17379

pGAL28
his3∆1;leu2∆0;ura3∆0;
YOR167c::KanMX4;Y

LR274w::KanMX4

pfl38-pGAL-
RPS28B

Prof. Dr. Gleizes
derived from

Euroscarf-Y02423 and
Euroscarf-Y15173

224 pGAL-Flag-
RPS15

his3∆1;leu2∆0;ura3∆0;
YOL040c::KanMX4;

Ycplac111-
pGAL-Flag-

RPS15

Dr. Philipp Milkereit
derived from pGAL-

RPS15 (Leger-Silvestre
et al 2004)

256 pGAL-RPS0
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YLR
048w::KanMX4;YGR2

14w::HIS3

Ycplac111p
GAL-

RPS0B

This Study, derived
from ToY 180

257 pGAL-RPS1
his3∆1;leu2∆0;met15∆
0;LYS2;ura3∆0;YML0
63w::KanMX4;YLR44

1c::HIS3

Ycplac111p
GAL-

RPS1A
This Study, derived

from ToY 183

258 pGAL-RPS6
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YBR
181c::KanMX4;YPL09

0c::HIS3

Ycplac111-
pGALRPS6

A
This Study, derived

from ToY 229

259 pGAL-RPS9
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YBR
189w::KanMX4;YPL0

81w::HIS3

Ycplac111-
pGALRPS9

A
This Study, derived

from ToY 188

260 pGAL-RPS10
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YMR
230w::KanMX4;YOR2

93w::HIS3

Ycplac111-
pGALRPS1

0A

This Study, derived
from ToY 233

261 pGAL-RPS13
his3∆1;leu2∆0;ura3∆0;
MET15;LYS2;YDR06

4w::KanMX4

Ycplac111-
pGALRPS1

3

This Study, derived
from ToY 190

262 pGAL-RPS20
his3∆1;leu2∆0;ura3∆0;
met15∆0;LYS2;YHL0

15w::KanMX4

Ycplac111-
pGALRPS2

0
This Study, derived

from ToY 192

263 pGAL-RPS30
his3∆1;leu2∆0;MET15
;LYS2;ura3∆0;YOR18
2c::KanMX4;YLR287c

-a::HIS3

Ycplac111-
pGALRPS3

0B

This Study, derived
from ToY 194
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286 pGAL-RPS2
his3∆1;leu2∆0;ura3∆0;
met15∆0;lys2∆0;YGL

123w::KanMX4;
Ycplac111-

pGAL-RPS2
This Study, derived

from ToY 186

287 pGAL-RPS8
his3∆1;leu2∆0;lys2∆0?
;ura3∆0;met15∆0?;YE
R102w::HIS3MX6;YB

L072c::KanMX4

YCplac111-
pGAL-
RPS8A

This Study, derived
from ToY 231

288 pGAL-RPS23
his3∆1;leu2∆0;LYS;m
et15∆0;ura3∆0;YPR13
2w::KanMX4;YGR118

w::HIS3

Ycplc111-
pGAL-

RPS23A
This Study, derived

from ToY 239

318 pGAL-RPS16
his3∆1;leu2∆0;met15∆
0;LYS;ura3∆0;YDL08
3c::KanMX4;YMR143

w::HIS3

Ycplac111-
pGAL-

RPS16A
This Study, derived

from ToY 236

323 pGAL-RPS5
his3∆1;leu2∆0;ura3∆0;

lys2∆0
;YJR123w::KanMX4;

Ycplac111-
pGAL-RPS5

This Study, derived
from ToY 198

325 pGAL-RPS11
his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YBR
048w::KanMX4;YDR0

25w::HIS3

Ycplac111-
pGAL-

RPS11A

This Study, derived
from ToY 291

326 pGAL-RPS27
his3∆1;leu2∆0;LYS;m
et15∆0;ura3∆0;YHR02
1c::KanMX4;YL156w:

:HIS3

Ycplac111-
pGAL-

RPS27B

This Study, derived
from ToY 240

327 pGAL-RPS3
his3∆1;leu2∆0;ura3∆0;
met15∆0?;lys2∆0?;YN

L178w::KanMX4

Ycplac111-
pGAL-RPS3

This Study, derived
from ToY 268

336 pGAL-RPS31
his3∆1;leu2∆0;ura3∆0;
MET15;lys2∆0;YLR16

7w::KanMX4;

Ycplac111-
pGAL-
RPS31

This Study, derived
from ToY 195

340 pGAL-RPS26
his3∆1;leu2∆0;lys2∆0?
;ura3∆0;met15∆0?;YE
R131w::KanMX4;YG

L189c::HIS3MX6

Ycplac111-
GAL-

RPS26A

This Study, derived
from ToY 265

pGAL-RPS18 pfl38-pGAL-
RPS18

(Leger-Silvestre et al.,
2004)

pGAL-RPS19
his3∆1;leu2∆0;ura3∆0;
YOL121c::KanMX4;Y

NL302c::KanMX4

pfl38-pGAL-
RPS19

(Leger-Silvestre et al.,
2005)
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344 ∆RPS25A/∆R
PS25B

his3∆1;leu2∆0;lys2∆0?
;met15∆0?;ura3∆0;YL
R333c::KanMX4;YGR

027c::HIS3

This Study

365 pGAL-RPS24
his3∆1;leu2∆0;lys2∆0?
;met15∆0?;ura3∆0;YIL
069c::KanMX4;YER0

74w::HIS3

Ycplac111-
pGAL-
RPS24

This Study, derived
from ToY 363

399 pGAL-RPS14
his3∆1;leu2∆0;met15∆
0;lys2∆0;ura3∆0;YCR
031c::HIS3MX6;YJL1

91w::KanMX4

Ycplac111-
pGAL-
RPS14

This Study*, derived
from ToY 396

∆RPS12
Mat a; his3∆1; leu2∆0;

met15∆0; ura3∆0;
YOR369c::kanMX4

Euroscarf-Y01666

405 pGAL-Flag-
NOC4

his3∆; leu2∆0; lys2∆0;
ura3∆0;

YPR144c::kanMX4

Ycplac111-
pGAL-Flag-

NOC4

Dr. Philipp Milkereit
derived from ToY30
aka NOC4-Shuffle

(Milkereit et al.,
2003b)

271 pGAL-Flag-
RPS0

his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YLR
048w::KanMX4;YGR2

14w::HIS3

Ycplac111-
pGAL-Flag-

RPS0B
This Study, derived

from ToY 180

316 pGAL-Flag-
RPS1

his3∆1;leu2∆0;met15∆
0;LYS2;ura3∆0;YML0
63w::KanMX4;YLR44

1c::HIS3

Ycplac111p
GAL-Flag-

RPS1A
This Study, derived

from ToY 183

508 pGAL-RPS6-
Flag

his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YBR
181c::KanMX4;YPL09

0c::HIS3

Ycplac111-
pGALRPS6

A-Flag

Gisela Pöll and Dr.
Philipp Milkereit,

derived from ToY 229

289 pGAL-Flag-
RPS9

his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YBR
189w::KanMX4;YPL0

81w::HIS3

Ycplac111-
pGAL-Flag-

RPS9A

This Study, derived
from ToY 188

290 pGAL-Flag-
RPS10

his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YMR
230w::KanMX4;YOR2

93w::HIS3

Ycplac111-
pGAL-Flag-

RPS10A

This Study, derived
from ToY 233

272 pGAL-Flag-
RPS13

his3∆1;leu2∆0;ura3∆0;
MET15;LYS2;YDR06

4w::KanMX4

Ycplac111-
pGAL-Flag-

RPS13
This Study, derived

from ToY 190
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320 pGAL-Flag-
RPS20

his3∆1;leu2∆0;ura3∆0;
met15∆0;LYS2;YHL0

15w::KanMX4

Ycplac111-
pGAL-Flag-

RPS20
This Study, derived

from ToY 192

511 pGAL-RPS30-
Flag

his3∆1;leu2∆0;MET15
;LYS2;ura3∆0;YOR18
2c::KanMX4;YLR287c

-a::HIS3

Ycplac111-
pGAL-

RPS30B-
Flag

Gisela Pöll and Dr.
Philipp Milkereit,

derived from ToY 194

335 pGAL-Flag-
RPS2

his3∆1;leu2∆0;ura3∆0;
met15∆0;lys2∆0;YGL

123w::KanMX4;

Ycplac111-
pGAL-Flag-

RPS2
This Study, derived

from ToY 186

319 pGAL-Flag-
RP16

his3∆1;leu2∆0;met15∆
0;LYS;ura3∆0;YDL08
3c::KanMX4;YMR143

w::HIS3

Ycplac111-
pGAL-Flag-

RPS16A
This Study, derived

from ToY 236

324 pGAL-Flag-
RPS5

his3∆1;leu2∆0;ura3∆0;
lys2∆0

;YJR123w::KanMX4;

Ycplac111-
pGAL-Flag-

RPS5
This Study, derived

from ToY 198

322 pGAL-Flag-
RPS11

his3∆1;leu2∆0;lys2∆0;
met15∆0;ura3∆0;YBR
048w::KanMX4;YDR0

25w::HIS3

Ycplac111-
pGAL-Flag-

RPS11A

This Study, derived
from ToY 291

321 pGAL-Flag-
RPS27

his3∆1;leu2∆0;LYS;m
et15∆0;ura3∆0;YHR02
1c::KanMX4;YL156w:

:HIS3

Ycplac111-
pGAL-Flag-

RPS27B

This Study, derived
from ToY 241

317 pGAL-Flag-
RPS3

his3∆1;leu2∆0;ura3∆0;
met15∆0?;lys2∆0?;YN

L178w::KanMX4

Ycplac111-
pGAL-Flag-

RPS3

This Study, derived
from ToY 268

512 pGAL-RPS31-
Flag

his3∆1;leu2∆0;ura3∆0;
MET15;lys2∆0;YLR16

7w::KanMX4;

Ycplac111-
pGAL-

RPS31-Flag

Gisela Pöll and Dr.
Philipp Milkereit,

derived from ToY 195

485 pGAL-RPS26-
Flag

his3∆1;leu2∆0;lys2∆0?
;ura3∆0;met15∆0?;YE
R131w::KanMX4;YG

L189c::HIS3MX6

Ycplac111-
GAL-

RPS26A-
Flag

Gisela Pöll and Dr.
Philipp Milkereit,

derived from ToY 265

541 pGAL-Flag-
RPS18

Ycplac111-
GAL-Flag-

RPS18

Dr. Philipp Milkereit
derived from pGAL-

RPS18 (Leger-Silvestre
et al., 2004)

542 pGAL-RPS18-
Flag

Ycplac111-
GAL-

RPS18-Flag

Dr. Philipp Milkereit
derived from pGAL-

RPS18 (Leger-Silvestre
et al., 2004)
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367 pGAL-Flag-
RPS19

his3∆1;leu2∆0;ura3∆0;
YOL121c::KanMX4;Y

NL302c::KanMX4

Ycplac111-
GAL-Flag-

RPS19

This Study, derived
from pGAL-RPS19

(Leger-Silvestre et al.,
2005)

510 pGAL-RPS24-
Flag

his3∆1;leu2∆0;lys2∆0?
;met15∆0?;ura3∆0;YIL
069c::KanMX4;YER0

74w::HIS3

Ycplac111-
pGAL-

RPS24-Flag

Gisela Pöll and Dr.
Philipp Milkereit,

derived from ToY 363

400 pGAL-Flag-
RPS14

his3∆1;leu2∆0;met15∆
0;lys2∆0;ura3∆0;YCR
031c::HIS3MX6;YJL1

91w::KanMX4

Ycplac111-
pGAL-Flag-

RPS14

Gisela Pöll and Dr.
Philipp Milkereit,

derived from ToY 396

89 pGAL-RPS15 his3∆; leu2∆0; ura3∆0;
YOL040c::KanMX4

pFL36-
GAL-RPS15

This study derived
from pFL38-GAL-

RPS15 (Leger-Silvestre
et al., 2004)

376 Crm1-T539C

Mat alpha; leu2∆0;
his3∆; ura3∆0;

ade2::hisG; can1::hisG;
trp1::hisG;

YGR218w::HygB

pDC-CRM1-
T539C

Dr. Holger Kühn,
derived from Euroscarf

Y24848

* in common work with Gisela Pöll.
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Table 3: List of oligos used for PCR in this work

ToO position restriction
enzyme

Gene name /
comments

! ! ! ! ! !
366 ! -300 ! SacI RPS3
367 ! +300 stop ! KpnI RPS3
368 ! -600 ! SacI RPS5
369 ! +300 stop ! KpnI RPS5
370 ! -250 ! SacI RPS13
371 ! +300 stop ! KpnI RPS13
372 ! -300 ! SacI RPS20
373 ! +300 stop ! KpnI RPS20
374 ! -400 ! SacI RPS24A
375 ! +300 stop ! HindIII RPS24A
376 ! -800 ! KpnI RPS8B
377 ! +300 stop ! HindIII RPS8B
394 ! -300 ! Sac I RPS30B
395 ! +300 stop ! Kpn I RPS30B
400 ! -300 ! Sac I RPS9A
401 ! +300 stop ! Kpn I RPS9A
402 ! -500 ! Sac I RPS16A
403 ! +500 stop ! Kpn I RPS16A
406 ! -500 ! Sac I RPS6A
407 ! +300 stop ! Kpn I RPS6A
408 ! -300 ! Sac I RPS31
409 ! +300 stop ! Kpn I RPS31
444 ! -500 ! SacI RPS27B
445 ! +500 stop ! KpnI RPS27B
446 ! -500 ! SacI RPS0B
447 ! +300 stop ! KpnI RPS0B
448 ! -300 ! SacI RPS1A
449 ! +300 stop ! KpnI RPS1A
452 ! -600 ! SacI RPS10A
453 ! +300 stop ! HindIII RPS10A
454 ! -400 ! SacI RPS11A
455 ! +300 stop ! HindIII RPS11A
458 ! -400 ! KpnI RPS23A
459 ! +300 stop ! HindIII RPS23A
460 ! -500 ! PstI RPS2
461 ! +300 stop ! SacI RPS2
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ToO position restriction
enzyme

Gene name /
comments

462 ! -800 ! PstI RPS26A
463 ! +300 stop ! KpnI RPS26A
541 ! -300 ! SacI RPS14A
542 ! +300 stop ! KpnI RPS14A

! ! ! ! ! !

418 ! ! ! ! YCplac-ORI-HindtoEco

422 ! +300 stop ! PstI RPS14A Rev

464 ! ATG/+1 ! BamHI
RPS13 Exonbypass

GAL F
465 ! ATG/+1 ! BamHI RPS3 GAL F
466 ! ATG/+1 ! BamHI RPS5 GAL F
467 ! ATG/+1 ! BamHI RPS20 GAL F
468 ! ATG/+1 ! BamHI RPS31 GAL F
469 ! ATG/+1 ! BamHI RPS1A GAL F

470 ! ATG/+1 ! BamHI
RPS6A Exonbypass

GAL F
471 ! ATG/+1 ! BamHI RPS8B GAL F

472 ! ATG/+1 ! BamHI
RPS9A Exonbypass

GAL F

476 ! ATG/+1 ! BamHI
RPS27B Exonbypass

GAL F

478 ! ATG/+1 ! BamHI
RPS30B Exonbypass

GAL F

479 ! ATG/+1 ! BamHI
RPS16A Exonbypass

GAL F
481 ! stop ! PstI RT GalRPS0B Rev
482 ! stop ! PstI RT GalRPS10A Rev
488 ! +300 stop ! PstI GalRPS2 Rev
490 ! ATG/+1 ! BamHI RT GalRPS0B F
491 ! ATG/+1 ! BamHI GalRPS2 F
493 ! ATG/+1 ! BamHI RT GalRPS10A F
494 ! ATG/+1 ! BamHI RT GalRPS11A F
495 ! ATG/+1 ! BamHI RT GalRPS23A F
496 ! ATG/+1 ! BamHI GalRPS26A F
498 ! ATG/+1 ! BamHI RPS14A F
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Table 4: List of probes used in this work for rRNA detection.

Database
access Probe Sequence Target

Region
rRNA
species

detected

204 1 5´-GGT CTC TCT GCT GCC GG-3´ 1-A0 35S and
23S

119 2 5´-GAA GA GCA ACA AGC AGT-3´ A0-A1
35S, 32S,
23S and

22S

205 3 5´-CAT GGC TTA ATC TTT GAG AC-3´ 18S rRNA
35S, 32S,
23S, 22S,
21S, 20S
and 18S

! 4-DIG  in vitro trancription D-A2 D-A2
35S, 32S,
23S, 22S,
21S and

20S

207 5 5´-TGT TAC CTC TGG GCC C-3´ A2-A3
35S, 32S,
23S, 22S,
and 21S

210 6 5´-GGC CAG CAA TTT CAA GTT-3´ E-C2
35S, 32S,
27S(all),
and 7S

212 7 5´-CTC CGC TTA TTG ATA TGC-3´ 25S rRNA
35S, 32S,
27S(all),
and 25S

! ! ! ! !
! RPS0B

mRNA 5´-CT GCA TTT TCT TCA GCC CA-3´ Exon 2 1083-
1101 !

! RPS30A/B
mRNA

5´-TGG ACC TGG GTT CAT TCT TCT-
3´

Exon2 30A
590-610 /

30B 571-591
!

! RPS31
mRNA

5´-CAA GAA AAC ACC AGC ACC
ACA-3´ 376-396 !

! Cy3-ITS1
5´-TT*GCACAGAAATCTCT*CACCGT
TTGGAAT*AGCAAGAAAGAAACT*T

ACAAGCT*T-3
D-A2 !

T* represents amino-modified deoxythymidine conjugated to Cy3.
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