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Charge ratchet from spin flip: space-time symmetry paradox
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Traditionally the charge ratchet effect is considered as a consequence of either the spatial symme-
try breaking engineered by asymmetric periodic potentials, or time asymmetry of the driving fields.
Here we demonstrate that electrically and magnetically driven quantum dissipative systems with
spin-orbit interactions represent an exception from this standard idea. In contrast to the so far well
established belief, a charge ratchet effect appears when both the periodic potential and driving are
symmetric. We show that the source of this paradoxical charge ratchet mechanism is the coexistence
of quantum dissipation with the spin flip processes induced by spin-orbit interactions.

PACS numbers: 72.25.Dc, 03.65.Yz, 73.23.-b, 05.60.Gg

I. INTRODUCTION

A system of particles in a periodic potential and driven
by a time-dependent external force may exhibit a net
current even if the force has zero time average. This
so-called particle ratchet effect1,2,3,4,5,6,7 is used e.g. in
nano-generators of direct charge currents4,7. To excite
the particle ratchet current it is traditionally believed
that the asymmetry of either the periodic potential or
driving force is a must. In the quantum regime a more
stringent conclusion has been obtained: in quantum sys-
tems in which charged particles populate only one Bloch
band the charge ratchet effect does not exist, even if the
periodic potential is asymmetric, unless time asymmetry
is provided by the driving field8,9. Indeed, the ratchet
effect exists in a single-band system which is driven by a
field with harmonic mixing9,10.

The concepts and conclusions mentioned above are
based on considering particles as spinless, that is with-
out taking into account any possible impact from switch-
ing between the spin states of the particles involved in
ratchet transport. In various physical systems there is
a plenty of ways to change the spin states of a particle.
In this paper we limit ourselves to semiconductor het-
erostructures with spin-orbit interactions since from the
practical point of view these systems are attractive for
fabrication of nano-devices.

For semiconductor heterostructures with spin-orbit
interactions, described for example by Rashba11 or
Dresselhaus12 spin-orbit Hamiltonians, the spin ratchet
effect is rooted in an asymmetric excitation of spin dy-
namics by the orbital dynamics induced by an electric
field. For electrically driven coherent and dissipative sys-
tems with Rashba spin-orbit interaction (RSOI) the spin
ratchet mechanism has been confirmed13,14,15. Even for
symmetric periodic potentials and symmetric driving the
spin ratchet effect exists13. However, the charge ratchet
effect is absent in both the coherent and dissipative cases
when both the periodic potential and driving force are
symmetric. This could deepen the impression that a
system with symmetric periodic potentials will never re-

spond to time-symmetric external fields via the charge
ratchet mechanism and systems with spin-orbit interac-
tions like all other systems obey this habitual rule. The
present work reveals that this is a delusion and in reality
systems with spin-orbit interactions provide a unique op-
portunity to answer the fundamental questions related to
the role of symmetries in the charge ratchet phenomena
in general.

In this paper we show that the space asymmetry of the
periodic potentials and the time asymmetry of the driv-
ing fields, usually required as key properties of charge
ratchets, are not necessary as the Rashba spin flip pro-
cesses alone are sufficient even if a dissipative system is
time-symmetrically driven. Specifically, it is found that
the charge ratchet effect in this case exists for space-
symmetric periodic potentials and time-symmetric driv-
ing by electric and magnetic fields. It stems just from
the simultaneous presence of quantum dissipation and
the spin flip processes of Rashba electrons. The ratchet
charge current in the system is unusual. Its queerness
consists in the fact that this current, in contrast to early
predictions for systems without spin-orbit interactions8,9,
appears even when only one energy band provides elec-
trons for transport and no harmonic mixing is present
in the driving fields. This charge current is of pure spin-
orbit nature and, as a result, it disappears when the spin-
orbit coupling strength vanishes. Therefore such spin-
orbit charge currents can be controlled by the same gate
voltage which controls the strength of the spin-orbit cou-
pling in the system. It is evident that this peculiarity
of the charge ratchet current is very attractive from the
experimental point of view.

The paper is organized as follows. Section II presents
the model which is solved in Section III and numerically
analyzed in Section IV. Section V concludes the paper.

II. MODEL

An archetype of the device under investigation is
shown in Fig. 1. In this system non-interacting electrons
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FIG. 1: (Color online) A 2DEG with RSOI of strength
α = 9.94×10−12 eV·m is obtained by a gate voltage applied to
an InGaAs/InP heterostructure using the ”Back Gate”. The
electron effective mass is m = 0.037m0 with m0 being the free
electron mass and the effective gyroscopic factor is g∗ = −15.
A parabolic confinement of strength ~ω0 = 0.225 meV forms
in the 2DEG a quasi-one-dimensional electron gas (Q1DEG).
The superlattice with period L = 0.25 µm is shaped by the
”Superlattice Gates” which create a symmetric periodic po-
tential. The system is driven by a longitudinal electric field
E(t) and by a transverse magnetic field H(t) which are time-
symmetric.

are confined in a quasi-one-dimensional (quasi-1D) pe-
riodic structure obtained by appropriately placed gates
applied to a two-dimensional electron gas (2DEG) with
RSOI. The system interacts with an external environ-
ment (or bath): the longitudinal orbital degree of free-
dom of each electron is coupled to orbital degrees of free-
dom of the external environment. This coupling is the
source of dissipation in the system. The electrons are
driven by longitudinal electric and transverse in-plane
magnetic homogeneous fields which are time-symmetric
and time-periodic functions with zero mean value.

To perform a quantitative analysis of the charge
ratchet effect we model the system by the Hamiltonian
Ĥ(t) = Ĥ0 + ĤD(t) + ĤB, where ĤD(t) ≡ −eE(t)x̂ −
gµBH(t)σ̂z is the driving term, ĤB is the bath term of
the Caldeira-Leggett model16,17 taking into account the
orbital coupling between the electron longitudinal degree
of freedom, x̂, and orbital degrees of freedom of the bath.
All properties of the bath are encapsulated in its spec-
tral density J(ω). Finally, Ĥ0 is the Hamiltonian of the
isolated system:

Ĥ0 ≡ ~
2
k̂

2

2m
− ~

2kso

m

(

σ̂xk̂z − σ̂z k̂x

)

+V (x̂, ẑ), (1)

where V (x, z) ≡ mω2
0z

2/2+U(x) and U(x) = U(−x). In
this model it is assumed that the 2DEG is in the x − z
plane and the quasi-1D structure is formed along the x-
axis using a harmonic confinement of strength ω0 along
the z-axis. The electron spin g-factor is denoted as g
and µB is the Bohr magneton. The super-lattice period

is L, U(x + L) = U(x). The parameter kso ≡ αm/~
2

characterizes the strength of the spin-orbit coupling.
The electric driving is given by the vector E(t) =

(E(t), 0, 0) while the magnetic driving is H(t) =
(0, 0, H(t)). We consider the symmetric time depen-
dence: eE(t) ≡ F cos(Ω(t)), H(t) ≡ H cos(Ω(t)). The
vector potential is chosen using the Landau gauge A(t) =
(−H(t)y, 0, 0). Since y = 0 in the 2DEG, the vector po-
tential is not explicitly present in the model.

We would like to mention that the in-plane electric
fields corresponding to U(x), mω2

0z
2/2 and the driving

electric field E(t) are assumed to be much weaker than
the out-of plane electric field forming the 2DEG with
RSOI. Thus they produce very weak, in comparison with
RSOI, spin-orbit interactions which, therefore, may be
neglected.

III. SOLUTION

Before starting a rigorous exploration one can already
anticipate that the magnetic field driving brings a whiff of
fresh physics because the spin dynamics can be controlled
directly and not only through the spin-orbit interaction
mediating between the electric field and electron spins.

To study the charge ratchet effect at low temperatures,
when only the lowest Bloch band of the super-lattice is
populated with electrons, we calculate the charge current
averaged over one driving period. This current in the long
time limit provides the stationary charge ratchet response
of the system. The common eigenstates of x̂ and σ̂z rep-
resent a convenient basis to obtain this response. Because
of the discrete eigenvalue structure of x̂ (see below) the
basis is called the σ-discrete variable representation (σ-
DVR) basis. The eigenstates are denoted as |m, j, σ〉,
where m = 0,±1,±2, . . ., and j and σ are the transverse
mode and spin quantum numbers, respectively14,15. Be-
low, in parallel with our main goal for this paper, that
is the charge ratchet current, we also provide the results
for the spin ratchet current to show that, as in the co-
herent case13, it also exists in a dissipative system with
symmetric periodic potentials and symmetric driving. In
the σ-DVR basis the averaged charge and spin currents
have a simple form14,15:

JC = −e lim
t→∞

∑

m,j,σ

xm,j

d

dt
Pm

j,σ(t),

JS = lim
t→∞

∑

m,j,σ

σxm,j

d

dt
Pm

j,σ(t).

(2)

In Eq. (2) Pm
j,σ(t) is the averaged population at time t of

the σ-DVR state |m, j, σ〉, the quantities xm,j = mL+dj

(−L/2 < dj 6 L/2) and σ are eigenvalues of x̂ and σ̂z

corresponding to their common eigenstate |m, j, σ〉. Note
that in Eq. (2) one has to first calculate the sum and only
afterwards to take the limit because the operations of
taking limit and infinite summation do not commute as it
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was proven in Refs. 14,15. Additionally, the σ-DVR basis
allows the path integral formalism to handle the magnetic
driving on an equal footing with the standard electric
driving since in this basis the whole driving Hamiltonian,
ĤD(t), is diagonal.

In the long time limit the populations Pm
j,σ(t) come

from a master equation14,17 which is in this case Marko-
vian.

An analytical treatment of this rather complicated
problem is possible when the dynamics of Pm

j,σ(t) is
treated within the first two transverse modes, i.e., j =
0, 1.

For a detailed study we derive the charge and spin
currents assuming that the hopping matrix elements be-
tween neighboring σ-DVR states are small. Following the
steps thoroughly described in Ref. 15 we obtain:

JC =
2eL

I

∣

∣∆01
↑↓

∣

∣

2∣
∣∆10

↓↑

∣

∣

2(
I01,b
↑↓ I10,b

↓↑ − I01,f
↑↓ I10,f

↓↑

)

,

JS =
2L

I

(∣

∣∆01
↑↓

∣

∣

4
I01,f
↑↓ I10,b

↓↑ −
∣

∣∆10
↓↑

∣

∣

4
I01,b
↑↓ I10,f

↓↑

)

,

(3)

where ∆j′j
σ′σ ≡ 〈m + 1, j′, σ′|Ĥ0|m, j, σ〉 are the hopping

matrix elements of the Hamiltonian of the isolated sys-

tem, Eq. (1), I ≡
∣

∣∆01
↑↓

∣

∣

2(
I01,f
↑↓ + I10,b

↓↑

)

+
∣

∣∆10
↓↑

∣

∣

2(
I01,b
↑↓ +

I10,f
↓↑

)

, and ↑, ↓ stand for σ = 1,−1, respectively. The ef-
fects of both the driving fields and quantum dissipation
are in the integrals17

I
j′j,(f

b)
σ′σ ≡ 1

~2

∫ ∞

−∞

dτe−
L2

~
Q(τ ;J(ω),T )+i τ

~
(εj

σ−ε
j′

σ′
)×

× J0

[∓2FL + 2gµBH(σ − σ′)

~Ω
sin

(

Ωτ

2

)]

,

(4)

where Q[τ ; J(ω), T ] is the twice integrated bath correla-
tion function,

Q(τ) ≡ 1

π

∫ ∞

0

dω
J(ω)

ω2

[

coth

(

~ω

2kBoltz.T

)

×

× [1 − cos(ωτ)] + i sin(ωτ)

]

,

(5)

whose dependence on τ is fixed by the bath spectral den-
sity J(ω) and temperature T , εj

σ ≡ 〈m, j, σ|Ĥ0|m, j, σ〉
are the on-site energies of the isolated system, and J0(x)
is the Bessel function of zero order.

Remarkably, Eq. (3) tells us that at low temperatures
the ratchet charge and spin transport in the system ex-
ists just because of spin flip processes. Whereas it looks
natural for the spin current, it is a quite unexpected
and important result for the charge current. This cur-
rent emerges because the magnetic driving changes the
charge dynamics. In this case the spin-orbit interaction
plays a role inverse to the one which it plays for the elec-
tric driving: the magnetic field exciting spin dynamics
induces orbital dynamics through the spin-orbit interac-
tion. The corresponding charge flow, originating just due
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FIG. 2: (Color online) The charge and spin ratchet currents
as functions of the amplitudes of the electric and magnetic
fields. a, Charge current. b, Spin current. The amplitudes
of the electric, FL, and magnetic, gµBH , fields are in units
of ~ω0. The currents are in units of Lω0. According to Eq.
(6) the charge and spin currents are excited when both the
electric and magnetic fields simultaneously drive the system.

to the spin-orbit interaction, is finite even when only one
Bloch band contributes to transport.

At this point it is important to note that since elec-
trons populate only one Bloch band, the spatial asym-
metry is not enough when the driving is time-symmetric.
This is in complete accordance with the results obtained
earlier8,9 for spinless particles and is clearly demon-
strated in our case by the structure of the Rashba Hamil-

tonian. Indeed, this Hamiltonian has two terms, σ̂z k̂x

and σ̂xk̂z. The first term does not flip the electron spin
and does not lead to the charge ratchet effect while the
second one flips the electron spin. It is exactly this sec-
ond term which is responsible for the paradoxical situ-
ation: charge ratchet effect for a space-symmetric pe-
riodic potential, time-symmetric driving and one Bloch
band transport. The charge ratchet effect is exclusively
based on the spin-flip processes in the isolated system
and thus it is fundamentally different from the charge
ratchet mechanisms which have been known so far.

The situation, however, is highly non-trivial and the
final conclusions about the existence of the ratchet
charge and spin flows cannot be based only on the pres-
ence of spin-orbit interactions. There are also exter-
nal time-dependent fields driving the system and inter-
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nal quantum dissipative processes. The mutual driving-
dissipation effect is incorporated in the integrals, Eq. (4).
Therefore, a further analysis is required: one should ad-
ditionally take into consideration the properties of the
integrals from Eq. (4) and the properties of the static
periodic potential with respect to the spatial inversion
symmetry.

This analysis leads to the following results:

F 6= 0, H = 0 =⇒ JC = 0, JS = 0,

F = 0, H 6= 0 =⇒ JC = 0, JS = 0,

F 6= 0, H 6= 0 =⇒ JC 6= 0, JS 6= 0.

(6)

The results presented in Eq. (6) are easily obtained
from Eq. (3) if one takes into account that for U(x) =
U(−x) the equality |∆01

↑↓

∣

∣= |∆10
↓↑

∣

∣ is valid14,15, and for

F = 0 or H = 0 one makes use of the equality Ij′j,f
σ′σ =

Ij′j,b
σ′,σ which follows from Eq. (4).
The principal feature of the physics taking place when

F 6= 0 and H 6= 0 is that the existence of the ratchet ef-
fects is not dictated only by properties of the isolated sys-
tem as in Refs. 14,15. The physical picture is now more
intricate. In the charge and spin currents one cannot find
clear traces of either driving and dissipation or the iso-
lated system. The two imprints are not separable and the
charge and spin ratchet mechanisms are determined by
the whole system-plus-bath complex. Note that in com-
parison with the spin ratchet current in Refs. 14,15 the
charge ratchet current in Eq. (3) factorizes into two fac-
tors in a different way. While in the spin ratchet current
in Refs. 14,15 there was a factor representing a difference
of the hopping matrix elements of the Hamiltonian of the
isolated system, now in the charge ratchet current there is

a factor representing the difference I01,b
↑↓ I10,b

↓↑ − I01,f
↑↓ I10,f

↓↑

which is not related only to the isolated system. As one
can see from Eq. (4), this difference takes into account
the combined effect of dissipation through the twice in-
tegrated bath correlation function, driving through the
Bessel function and isolated system through the on-site
energies storing information about the periodic poten-
tial. In the same way as the difference of the hopping
matrix elements of the Hamiltonian of the isolated sys-
tem in Refs. 14,15 dictated the existence of the spin

ratchet current, now the difference I01,b
↑↓ I10,b

↓↑ − I01,f
↑↓ I10,f

↓↑

dictates the existence of the charge ratchet current in the
present paper and results in the combined effect of the
isolated system, dissipation and driving, as mentioned
above. It is important to remember that this combined
effect takes place only if the spin-orbit coupling is finite
because ∆01

↑↓ = ∆10
↓↑ = 0 in the absence of RSOI, as it has

been proven in Refs. 14,15.

IV. NUMERICAL RESULTS

Numerical calculations based on Eqs. (3) and (4)
have been performed to obtain the dependence of the
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FIG. 3: (Color online) The charge (solid curve) and spin
(dashed curve) ratchet currents as functions of the magnetic
field amplitude. The magnetic amplitude, gµBH , is in units
of ~ω0. The electric amplitude is fixed, FL = ~ω0. The
currents oscillate and have non-universal zero points which
depend on concrete values of the physical parameters of the
system-plus-bath complex.

ratchet currents on F and H . Figure 2 shows this de-
pendence. The superlattice is modeled by the symmetric
potential U(x) = 2.6~ω0[1 − cos(2πx/L)]. The period

is L = 2.5
√

~/mω0 which gives ksoL ≈ 0.368π. The
driving frequency of the electric and magnetic fields is
Ω =

√
3ω0/4. The bath is Ohmic with the exponential

cut-off at ωc = 10ω0: J(ω) = ηω exp(−ω/ωc). The vis-
cosity coefficient is η = 0.1mω0 and the temperature is
kBT = 0.5~ω0. As expected from Eq. (6) the ratchet ef-
fects exist for the space-symmetric periodic potential and
time-symmetric driving. From Fig. 2 one also observes
an oscillatory behavior of the ratchet currents.

These oscillations are detailed in Fig. 3. As one can see
the currents can be equal to zero even when both of the
driving fields are finite. These zero-current points are not
universal: they depend on concrete values of the physical
parameters of the isolated system and bath. In contrast,
the conditions in Eq. (6) are universal, i.e., they do not
depend on concrete values of the physical parameters of
the semiconductor heterostructure and environment.

Finally, we would like to note that since our theory
is a theory of a strongly dissipative tight-binding sys-
tem, the charge ratchet current is small but detectable.
For example using the parameters of Ref. 15 we get the
charge ratchet current JC ∼ 10 fA. We expect that mod-
els with weak dissipation or/and weak periodic potentials
will give much larger charge ratchet currents in the fully
symmetric setup presented in this paper.

V. CONCLUSION

In summary, in contrast to the common belief, we have
shown that the existence of spin flip processes in a dissi-
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pative system is already sufficient to produce the charge
ratchet effect even if the periodic potential is space-
symmetric and the system is driven by time-symmetric
fields. To be specific we have considered Rashba spin-
orbit interaction as a mechanism for the electron spin
flip. The charge ratchet current has been found to have
a purely spin flip origin. The space asymmetry of the pe-
riodic potential and the time asymmetry of the driving
fields have not been necessary.
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3 F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69,

1269 (1997).
4 H. Linke, T. E. Humphrey, A. Löfgren, A. O. Sushkov,
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