Rethinking risk capital allocation in a RORAC framework

DGF Annual Meeting 2010 · Hamburg

Arne Buch* · Gregor Dorfleitner† · Maximilian Wimmer†

* d-fine GmbH, Frankfurt
† Department of Finance, University of Regensburg
Motivation

Bank

Two lines of business

Retail lending

Structured finance

Maximilian Wimmer
Department of Finance
University of Regensburg

Motivation
Motivation

Two lines of business

Bank

Retail lending

Structured finance

Individual EC Retail lending

Individual EC Structured finance

Motivation
Motivation

Two lines of business

Bank

Retail lending

Individual EC Retail lending

Structured finance

Individual EC Structured finance

Diversification

Total EC

Motivation
Motivation

Two lines of business

Bank

Total EC

Capital allocation

Retail lending

Structured finance

Individual EC Retail lending

Individual EC Structured finance

Diversification

EC Retail lending

EC Structured finance

Rethinking risk capital allocation in a RORAC framework | October 8, 2010
Motivation

Bank

Total EC

Capital allocation

Total RORAC = \frac{Total Profit}{Total EC}

Two lines of business

Retail lending

Structured finance

Individual EC Retail lending

Individual EC Structured finance

Diversification

EC Retail lending

EC Structured finance

\[\Delta RORAC_{RL} = \frac{\Delta \text{Profit}_{RL}}{\Delta EC_{RL}} \]

\[\Delta RORAC_{SF} = \frac{\Delta \text{Profit}_{SF}}{\Delta EC_{SF}} \]

\[\text{Total RORAC} = \text{Total Profit} \frac{1}{\text{Total EC}} \]

Expand business

Reduce business

\[\Delta RORAC_{RL} > \text{Total RORAC} \]

\[\Delta RORAC_{SF} < \text{Total RORAC} \]
Motivation

Bank

Two lines of business

Retail lending

Structured finance

Individual EC Retail lending

Individual EC Structured finance

Diversification

EC Retail lending

EC Structured finance

Total EC

Capital allocation

Total RORAC = \frac{Total \ Profit}{Total \ EC}

\Delta RORAC_{RL} = \frac{\Delta Profit_{RL}}{\Delta EC_{RL}}

\Delta RORAC_{RL} > Total \ RORAC

Expand business

\Delta RORAC_{SF} = \frac{\Delta Profit_{SF}}{\Delta EC_{SF}}

\Delta RORAC_{SF} < Total \ RORAC

Reduce business
Motivation

Bank

Two lines of business

Retail lending

Individual EC Retail lending

Individual EC Structured finance

Structured finance

Diversification

EC Retail lending

EC Structured finance

Total EC

Capital allocation

Total RORAC = \frac{\text{Total Profit}}{\text{Total EC}}

\Delta \text{RORAC}_{RL} = \frac{\Delta \text{Profit}_{RL}}{\Delta \text{EC}_{RL}}

\Delta \text{RORAC}_{RL} > \text{Total RORAC}

Expand business

\Delta \text{RORAC}_{SF} = \frac{\Delta \text{Profit}_{SF}}{\Delta \text{EC}_{SF}}

\Delta \text{RORAC}_{SF} < \text{Total RORAC}

Reduce business

\Delta \text{Profit}_{RL} = \Delta \text{RORAC}_{RL} \cdot \Delta \text{EC}_{RL}

\Delta \text{Profit}_{SF} = \Delta \text{RORAC}_{SF} \cdot \Delta \text{EC}_{SF}

max?
Outline

0 Motivation

1 Literature review

2 Notation and preliminaries

3 Example for failing capital allocation

4 Second-order approach

5 Conclusion
Outline

0 Motivation

1 Literature review

2 Notation and preliminaries

3 Example for failing capital allocation

4 Second-order approach

5 Conclusion
Literature review

- Mathematical finance context
 - Denault (2001): Axiomatic approach in a game theory setting
 - Kalkbrener (2005): Axiomatic system
 - Tasche (2004): Suitability for performance measurement, gradient allocation principle
 - Buch and Dorfleitner (2008): Coherence of gradient allocation principle

- Insurance-linked perspective
 - Dhaene et al. (2003): Coherent risk measures not optimal
 - Furman and Zitikis (2008): Weighted allocation

- Financial economics viewpoint
 - Merton and Perold (1993): Incremental allocation

Does gradient allocation lead a firm to its optimal RORAC?
Outline

0 Motivation

1 Literature review

2 Notation and preliminaries

3 Example for failing capital allocation

4 Second-order approach

5 Conclusion
Model and notation

\(F \) Firm consisting of \(n \) individual segments

\(u_k \) Number of contracts written by segment \(k \), \(u = (u_1, \ldots, u_n) \)

\(Y_k(u_k) \) Profit of segment \(k \), \(Y_k(u_k) = M_k(u_k) + X_k(u_k) \)

\(M_k(u_k) \) Expected profit of segment \(k \), \(M(u) = \sum_{k=1}^{n} M_k(u_k) \)

\(X_k(u_k) \) Profit fluctuation of segment \(k \), \(X(u) = \sum_{k=1}^{n} X_k(u_k) \), \(X(u) \) is linear WRT \(u \)

\(\rho \) Convex risk measure

\(\rho_X \) Risk function \(\rho_X : \mathbb{R}^n \rightarrow \mathbb{R} \), \(\rho_X : u \mapsto \rho(X(u)) \)

Information asymmetry

- Headquarters can evaluate the risk \(\rho(\cdot) \), but has only knowledge of the current expected profit \(M(u) \)

- Divisions can estimate the expected profit \(M_k(u_k + \epsilon_k) \), but not the overall risk \(\rho(\cdot) \)
Preliminaries—RORAC and marginal RORAC

Definition
The function \(r_{M,\rho_X} : U \rightarrow \mathbb{R} \) defined as

\[
r_{M,\rho_X} : u \mapsto \frac{M(u)}{\rho_X(u) - M(u)}
\]

is called **return function associated with** \(m, X, \) and \(\rho \)

Definition
Given per-unit risk contribution \(a_k \), such that \(\sum_k a_k(u)u_k = \rho_X(u) \), one can define the **marginal RORAC** by

\[
\frac{M'_k(u_k)}{a_k(u) - M'_k(u_k)}
\]
Preliminaries—Suitability for performance measurement

Definition
An allocation a_1, \ldots, a_n is called **suitable for performance measurement** if there holds:

1. For all portfolios $u \in U$ and for all differentiable profit functions $M : U \to \mathbb{R}$ with $\rho_x(u) \neq 0$ and $k \in \mathbb{N}$ the inequality
 \[
 \frac{M'_k(u_k)}{a_k(u_k) - M'_k(u_k)} > r_{M,\rho_x}(u)
 \]
 implies that there is an $\epsilon > 0$ such that for all $\tau \in (0, \epsilon)$ we have
 \[
 r_{M,\rho_x}(u) < r_{M,\rho_x}(u + \tau e_k)
 \]

2. “The other way around”

Theorem
The gradient or Euler allocation, i.e.,
\[
a_k(u) = \frac{\partial \rho_x(u)}{\partial u_k},
\]
is the only allocation that is suitable for performance measurement
Outline

0 Motivation

1 Literature review

2 Notation and preliminaries

3 Example for failing capital allocation

4 Second-order approach

5 Conclusion
Example for failing capital allocation

General setup:

Two divisions

\[M_1(u_1) = \log(u_1 + \frac{1}{2}) \]
\[M_2(u_2) = \log(u_2 + \frac{1}{2}) \]

\[X_{1,2} \sim N(0, 1) \]

\[\text{corr}(X_1, X_2) = 0.5 \]

\[\rho = 99.97\%-\text{VaR} \]
Example for failing capital allocation

Let $u_1^{(1)} = 1.5$, $u_2^{(1)} = 1.7$

Then,

$$r_{M, X}(u^{(1)}) = 18.451\%$$

Marginal RORAC analysis leads to

$$\frac{M_1'(u_1^{(1)})}{a_1(u^{(1)}) - M_1'(u_1^{(1)})} = 20.775\%$$

and

$$\frac{M_2'(u_2^{(1)})}{a_2(u^{(1)}) - M_2'(u_2^{(1)})} = 17.647\%$$
Example for failing capital allocation

How far to go?
Approximate additional profit by

$$M_k(u_k + \epsilon_k) - M_k(u_k)$$

instead of $$\epsilon_k M'_k(u_k)$$ and replace

$$\frac{\epsilon_k M'_k(u_k)}{\epsilon_k a_k(u) - \epsilon_k M'_k(u_k)} > r_{M,\rho_X}(u)$$

by

$$\frac{M_k(u_k + \epsilon_k) - M_k(u_k)}{\epsilon_k a_k(u) - (M_k(u_k + \epsilon_k) - M_k(u_k))} > r_{M,\rho_X}(u)$$
Example for failing capital allocation

Let \(u_1^{(2)} = 1.85, \ u_2^{(2)} = 1.55 \)

Then,

\[
M_1'(u_1^{(2)}) \over a_1(u^{(2)}) - M_1'(u_1^{(2)}) \] = 16.190\%

Marginal RORAC analysis leads to

and

\[
M_2'(u_2^{(2)}) \over a_2(u^{(2)}) - M_2'(u_2^{(2)}) \] = 20.397\%
Example for failing capital allocation

Let
\[u_1^{(2)} = 1.85, \quad u_2^{(2)} = 1.55 \]

Then,
\[r_{M,\rho_X}(u^{(1)}) = 18.410\% \]

Marginal RORAC analysis leads to
\[
\frac{M'_1(u_1^{(2)})}{a_1(u^{(2)}) - M'_1(u_1^{(2)})} = 16.190\%
\]

and
\[
\frac{M'_2(u_2^{(2)})}{a_2(u^{(2)}) - M'_2(u_2^{(2)})} = 20.397\%
\]
Outline

0 Motivation

1 Literature review

2 Notation and preliminaries

3 Example for failing capital allocation

4 Second-order approach

5 Conclusion
A second-order approach

Theorem

Assume that

- $H(u) = \left[\frac{\partial^2 \rho_X(u)}{\partial u_i \partial u_j} \right]$ is the Hessian of $\rho_X(u)$
- $\|H(u)\|$ is bounded on a convex set $U \subseteq \mathbb{R}_n^{\geq 0}$
- $\Lambda \geq \max_{u \in U} \lambda_{\text{max}}(H(u))$ is an upper bound for the largest eigenvalue of $H(u)$
- $u \in U$, $u + \epsilon \in U$, $M(u) > 0$, $r_{M,\rho_X}(u) > 0$
- For all $k \in N$ there holds

$$\frac{M_k(u_k + \epsilon_k) - M_k(u_k)}{(\epsilon_k a_k(u) + \frac{1}{2} \epsilon_k^2 \Lambda) - (M_k(u_k + \epsilon_k) - M_k(u_k))} \geq r_{M,\rho_X}(u),$$

with strict inequality given for at least one $k \in N$

Then there also holds

$$r_{M,\rho_X}(u + \epsilon) > r_{M,\rho_X}(u)$$
Example (continued)
Example (continued)
Example (continued)
Example (continued)

\[
\begin{align*}
&1 \quad 1.50 \\
&2 \quad 1.55 \\
&3 \quad 1.60 \\
&4 \quad 1.65 \\
&5 \quad 1.70 \\
&6 \quad 1.75 \\
&7 \quad 1.80
\end{align*}
\]

\[u^{\text{opt}}\]
Example (continued)
Outline

0 Motivation

1 Literature review

2 Notation and preliminaries

3 Example for failing capital allocation

4 Second-order approach

5 Conclusion
Conclusion

- (Slightly) extended setting as in Tasche (2004): Concave expected profit function
- Here: Only strictly stationary profit process considered
- The implementation of a naïve gradient capital allocation in firms can be suboptimal if division managers are allowed to venture into all business whose marginal RORAC exceeds the firm’s RORAC
- If the marginal RORAC requirements are refined by adding a risk correction term that takes into account the interdependencies of the risks of different lines of business, it can be guaranteed that the optimal RORAC will be achieved eventually (under the assumption of a strictly stationary profit process)

Financial crisis check

- Higher requirements on the yields of signed contracts
- Less piling of tons of CDO tranches
Dr. Maximilian Wimmer
Department of Finance
93040 Regensburg
Germany
ph: +49 (941) 943 - 2672
fax: +49 (941) 943 - 81 2672
maximilian.wimmer@wiwi.uni-regensburg.de
http://www-finance.uni-regensburg.de