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Abstract. Relaxation-based techniques for the transient analysis of large- 

scale integrated circuits are promising candidates for a new generation of 

circuit simulators. The present note investigates the convergence of the 

discretized waveform relaxation. It is demonstrated that a SOR technique 

has the potential of beeing significantly faster than the conventional 

waveform relaxation Gauss-Seidel method. The determination of the optimal 

relaxation parameter is decisive and is discussed for the case of a general 

linear model problem. 
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INTRODUCTION Formulation of the Circuit Equations 

Chip design involves simulation programs as CAD 

tools for the analysis of the electrical per- 

formance of integrated electronic circuits. 

These programs have almost completely replaced 

the traditional breadboard or fabrication and 

testing of integrated circuits as means of ver- 

ifying design acceptability. In fact, a bread- 

board cannot accurately reproduce parasitic ef- 

fects and element-matching characteristics bet- 

ween integrated devices and may give results 

which have small resemblance to the manufactured 

circuit. Fabrication and testing of a prototype 

integrated circuit for verifying a design is 

both expensive and time consuming. 

The formulation of the circuit equations is 

based on Kirchhoff's voltage and current laws 

and on the branch equations of the various de- 

vices (see e.g. Desoer and Kuh, 1969). It is 

assumed that "nodal analysis" is applicable. 

The limitations of this technique are discussed 

by Chua and Lin (1975) and Sangiovanni- Vincen- 

telli (1981). 

The nodal equations can be expressed as 

C(x(t),u(t))i(t) = f(x(t),u(t)), x(0)=x0, (I) 

where the time tE[O,Tl and 

C(x(t),u(t)) := $$x(t),u(t) 1 (ER”‘” ), 
Commonly used simulators for the transient ana- 

lysis of dynamical circuits like SPICE (Nagel, f(x(t),u(t)) := i(x(t),u(t)) 

1975) were designed in the 1970's and are cap- aq 
-3ii (x able of the cost-effective analysis of circuits 

containing up to a few thousand transistors. x(t) : vector of node voltages (EIR"), 

Because of today's need to verify the perform- 
u(t) : vector of input voltages (EIR'), 

ante of circuits even on the VLSI level with 

more than 100,000 transistors there is a strong q(x(t),u(t)) : vector of sums of capacitive 

demand for a new generation of circuit simu- charges at each node (EIR"), 

lators. See Bulirsch and Gilg (1986); Sangio- i(x(t),u(t)) : vector of sums of resistive 

vanni-Vincentelli (1981); White and Sangiovanni- currents at each node (EIR"). 

Vincentelli (1987). 
Cf. White and Sangiovanni-Vincentelli (1987). 
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These authors also present extensions of the 

nodal analysis technique that still allow to 

cast the circuit equations into the form of 

Equ. (1). 

Under mild assumptions the capacitance matrix 

C(x,u) of Equ. (1) is diagonally dominant. If, 

in addition, there exists a linear or nonlinear 

capacitor, whose capacitance is bounded away 

from zero, to ground or a voltage source at 

each node in the circuit, the matrix C(x,u) is 

strictly diagonally dominant uniformly in x,u 

(White and Sangiovanni-Vincentelli, 1987). 

If the matrix C(x,u) is singular, Equ. (1) is a 

system of differential-algebraic equations. In 

the case of strict diagonal dominance the prob- 

lem of stiffness still has to be faced. 

Discretization 

The use of backward differentiation formulas 

(BDF) has been advocated both for stiff differ- 

ential equations and for differential-algebraic 

equations (Gear,1971; Lotstedt and Petzold, 

1986): 

lS 
Dxz = Z?' k50 'kxZ-k 

(~16). 

The xj and DxZ are approximations of x(tj) and 

x(tt) respectively. For the coefficients ak see 

e.g. Gear (1971). It is well known that the 

BDF are distinguished among other multistep 

formulas by the property of stiff stability. 

Discretization of (1) by formula (2) yields a 

nonlinear system of equations F(xZ)=O at 

every time step t=tt. The already mentioned 

routine SPICE solves these nonlinear systems of 

equations for a mesh of time steps 

0 = to < tl < . . . < tl < 1.. < tN = T (3) 

using Newton's method and a sparse matrix tech- 

nique for the resulting systems of linear equa- 

tions. 

However, large parts of digital circuits are 

often inactive or "latent". Consequently, nu- 

merical schemes are desireable that avoid the 

unnecessary computations involved in the re- 

evaluation of the voltage at nodes that are la- 

tent. Obviously, relaxation-based algorithms 

have the capability to exploit latency much 

more efficiently than SPICE-like routines. In- 

deed, speed improvements up to two orders of 

magnitude have been reported. For a detailed 

discussion see Newton and Sangiovanni-vincen- 

telli (1983). A family of promising relaxation 

techniques, called "waveform relaxation" (WR), 

has been proposed by Lelarasmee (1982). 

Waveform Relaxation (WR) 

Both the Gauss-Seidel principle and the Jacobi 

principle for the iterative solution of large, 

sparse linear systems of equations are de- 

scribed in most textbooks on numerical analysis 

(e.g. Stoer and Bulirsch, 1980). The extension 

to nonlinear systems is straightforward (Ortega 

and Rheinboldt, 1970). Waveform relaxation ap- 

plies these principles to Equ. (1) on the func- 

tion space level. 

WR Gauss-Seidel: 

Initialize xF(t),...,xi(t). 

For k=1,2,3 ,...do (until stopping criterion is 

satisfied): 

For i=l ,...,n do: Solve 

i 
~ ‘ij(‘:, 

k k-l k-l 

j=l 
...'Xi,xi+l'...,xn ,u,.$ t 

n 
k k-l k-l 

jfi+lcij(X: ,..., xi,xi+l ,..., xn ,u,.y = 

k k-l 
fi(x~,...,Xi,Xi+l,...,x~-I,u) 

for x:(t) in the interval [O,Tl with initial 

condition x:(0 

Here, x=(x1,.. 

f=(fl,.. 

)=xoi. 

* qT, T 
XO=(XO1'...'XOn) , 

. qT, "tcij)n n’ 
, 

The definition of WR Jacobi is completely ana- 

logous. Lelarasmee (1982), Taubert (1986), 

White (1985), White and Sangiovanni-Vincentelli 

(1987) have given convergence theorems on the 

function space level. The routines RELAX 

(Lelarasmee and Sangiovanni-Vincentelli,1982) 

and SISAL (Ingenbleek et al. ,1986) are circuit 

simulators that are based on waveform relaxa- 

tion. 
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DISCRETIZED WAVEFORM RELAXATION 

Waveform relaxation is a "multirate" integra- 

tion method, i.e. it allows to pick different 

discretization points, or time steps, for each 

differential equation in the system. Neverthe- 

less, equal time steps are assumed in the pre- 

sent note. As a first approach, this assumption 

is reasonable and gives interesting theoretical 

insights. 

An Introductory Example 

Consider the following two-node circuit: 

* 

FIG. 1. A two-node circuit with a floating ca- 

pacitor (adapted from White and Sangiovanni- 

Vincentelli, 1987). 

Applying the nodal analysis technique yields 

the following differential equations: 

(Cl + c,s - Cfjl = -(gl + Llf)X + !3fY 9 (43) 

-c,ic + cc* + c,,i = SfX - (92 + gf)Y - (4b) 

Of course, nontrivial initial conditions 

(x~,Y~)~ are assumed. Let the mesh (3) of time 

steps be defined by tZ:=Z.h (Z=O,l,...,N) with 

stepsize h:=T/N, and let the differential equa- 

tions (4) be discretized by the backward Euler 

formula (simplest backward differentiation for- 

mula): 

xl - Xl-1 Yl - Yl_1 
(Cl + Cf)T - Cf_ = 

-(q + Sf)Xl + Elf-Y1 3 (5a) 

xl - xz-l yz - yz-1 
-Cf- + (c* + Cf)T = 

9fXZ - (92 + Sf)Yl * (5b) 

Applying the discretized WR Gauss-Seidel meth- 

od to Equ. (5) yields the following procedure: 

Initialize yi, 0 
y;' . . . . YN (Y; = YO). 

For k=1,2,3,... do: 

k 
x0 := x0 , 

for Z=l,. ..,N do: Solve for xi 

-(cl + Cf)X;_l + [Cl + Cf + h(gl + gf)lx; 

k-l 
+ cfyz-l - (cf 

k-l 
+ hgf)yZ =o, 

k 
YO := YO 3 

for I=1 ,...,N do: Solve for yi 

-(c2 
k k 

+ cf)yZ_l + [c, + cf + h(g2 + gf)lyz 

k k 
+ c~x~_~ - (cf + hgf)xZ = 0 . 

This is nothing else than the application of 

the block Gauss-Seidel (or group Gauss-Seidel) 

method (Varga,1962; Young,1971) to the linear 

system 

Mnz = r (6) 

where 

z = (x 
1"" ,XNiY1'...' yN)T 9 

r = ( (cl+cf)xO - cfyo, O,...,O; 

_CfXO + (C2+Cf)Y0, OP...,0 )T, 

Mn = D1' 
:E 

i 1 .._i...- . (The dotted lines define 

E : D2 the blocking n.) 

The lower bidiagonal (N,N)-ma 

are given by 

trices D1, D2, 

0 
-(cj+c\f) ’ , 

\ \ 
Dj = \ \ 

\ \ 
\ \ 
\ \ 

0 -(:;+c,), cj::fih(gj+gf) 
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-(cf+hgf) 

: 

\ 
Cf \ 
\ 
\ 

E= \ 
\ 
\ 

0 

0 

\ 
\ 

\ 
\ 

\ 
cf, -(:f+hsfl 

The iteration matrix Jn for the block Jacobi 

method is given by 

Jn = Di’(D,, - Mn) where D,, = 

Consequently, 

Jn = 

The matrices -Di'E (j=l,Z) are lower triangular 

matrices with diagonal entries 

(cf + hgf)/tcj + cf + h(gj + Sf)I’ 

The matrix Jf is lower triangular with diagonal 

entries 

u* = (cf + hg,)* 
Tcl+cf + h(gl+gf)][c2+cf + h(g2+gf)] * (7) 

As the matrix Mn is n-consistently ordered 

(Young,1971; Hageman and Young,1981), the ei- 

genvalues of Jn are in and the spectral radius 

of the iteration matrix Hn for the block Gauss- 

Seidel method is 

P(H,) = P* with p2 given in (7). 

Let for example 

cf = gf = 60, c = c2 = g1 = g2 = 1. (8) 

Then p(H,) = 60*/61* 5 0.967, and the asymp- 

totic rate of convergence (Varga,1962; Young, 

1971) is 

ROD(H,) = 0.0331 . (9) 

It is well known that the convergence of the 

Gauss-Seidel method can be significantly 

speeded up by introducing an appropriate re- 

laxation parameter w (successive overrelaxa- 

tion or SOR method). For details see Varga 

(1962), Young (1971), Hageman and Young (1981). 

Let the block SOR method be applied to (6). As 

the matrix Mn is n-consistently ordered and the 

eigenvalues of Jn are real, the optimal relax- 

ation parameter for the parameter set (8) can 

be computed as 

"opt 
= 2/[1 t (1-n2)1'2] = 61/36 h 1.694 . 

The spectral radius of the corresponding iter- 

ation matrix is given by 

p(Hn(aopt)) = aopt - 1 A 0.694 , 

and the asymptotic rate of convergence is 

Ro,(Hn(tiopt)) 5 0.365 . (10) 

A comparison of (9) and (10) shows that there 

is an order-of-magnitude improvement of the 

SOR method over the Gauss-Seidel method. 

In complete analogy to the definition of the 

WR Gauss-Seidel method in the Introduction, a 

WR SOR method can be established. The above 

investigations demonstrate that the discret- 

ized version of this method converges signi- 

ficantly faster than the discretized WR Gauss- 

Seidel method, if the relaxation parameter is 

chosen properly. 

General Linear Case 

This section investigates how the attractive 

results for the introductory example (4) can 

be extended to the general linear model prob- 

lem 

Ci = 6x t b, x(0)=x0, (II) 

where the matrix C is strictly diagonally do- 

minant (B,CEIR"'" ; b,xeIR" ). 

Let Equ. (11) be discretized by a backward dif- 

ferentiation formula (2) on a mesh (3) with 

tt=Z-h. Then the discretized WR SOR method is 

equivalent to the block SOR method applied to 

Mnz = right hand side , (12) 

where M,, = M$h,N) = C@A - h.B@IN , 

z = (Xll’. . . ‘XIN; . . . ; Xnl,. . . ,XnN)T , 

A= 

aO 0 
yo 

\ 
’ t \ 
as- -Ja,'ao 
\ \\ 
\ \' 
\ 

0 \‘.;l$o, 

E IR”‘” , 
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I E IRNSN 
N 

identity matrix. For the definition 

of the direct product Q see e.g. Lancaster 

(1969). The matrix M,., is partitioned in a 

natural way into n2 blocks of size NxN 

(blocking n). The iteration matrix for the 

block Jacobi method is 

J,$h,N) = Dn(h,N)-+Dn(h,N) - MJh,N)l, (13) 

where D.,,(h,N) denotes the block diagonal part 

of Mn(h,N). 

For h=O, 

M,.,(O,N) = C@A and D,,(O,N) = (diag C)OA, 

where diagC denotes the diagonal matrix with 

the same diagonal elements as C. Consequently, 

Jn(O,N) = InsIN - [(diag C)@A]-'.(C@A) 

= [In - (diagC)-%IQIN . 

Because of the strict diagonal dominance of C 

11 J,(O,N)II =:v<l (v is independent on N).(14) 

Here, 11. I/ denotes the matrix (operator) norm, 

which is induced by the maximum norm. It is 

easy to see that 

llD,.,(h,N) - Dn(O,N)ll I Ihl- max lbiiI , 
lli<n 

11 Mn(h,N) - Mn(O,N)[I 5 Ihl./IB II . 

Because of Equ. (13) there exists a constant 

ho, which is independent on N, such that 

I/ Jn(h,N)II I (v+1)/2 < 1 for 0 I h I ho . 

Consequently, the discretized WR Jacobi method 

converges for sufficiently small h to the so- 

lution of the discrete problem. This confirms 

a result of White and Sangiovanni-Vincentelli 

(1987). However, the present approach can be 

extended to the SOR method. Indeed, a check on 

the n-consistency of the matrix Mn is possible 

by the following Theorem, which can be proven 

in a staightforward manner. 

Theorem. 

Let B=(bij)n 3 n and C=(C~~)~ , 
n and let the 

matrix T=(tij)n n be defined by 

1 

tij '= 

if bij+O or cij+O , 

0 otherwise . 

Then, the matrix M,., is n-consistently ordered 

if and only if T is consistently oerdered. 

If M,., is n-consistently ordered, the eigen- 

values X of the block SOR iteration matrix 

H,(o) and the eigenvalues ~1 of the block Jacobi 

iteration matrix Jn are related through 

(x + 0 -1)2 = xo2u2 . 

This relation is the basis for the algorithm of 

Young and Eidson (1970; see also Young,1971), 

which allows the efficient determination of the 

optimal relaxation parameter w opt. In general, 

the matrix Mn will not be n-consistently 

ordered. In this case, the algorithm of Cuthill 

and McKee (1969) should be applied to the 

matrix T (as defined in the above Theorem). 

CONCLUDING REMARKS 

The above example of a two-node circuit shows 

that the use of the WR SOR method instead of 

the conventional WR Gauss-Seidel method signif- 

icantly improves the convergence rate, if the 

relaxation parameter o is chosen properly. 

Proposals are made, how to find the optimal 

relaxation parameter in the case of a general 

linear problem. Practical experience with the 

suggested method will be reported in a sub- 

sequent paper. 
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