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ABSTRACT 

The mathematical modeling of the renal counterflow System involves a two-point 
boundary-value problem for a System of nonlinear differential equations. In this paper the 
multiple shooting technique is used for the numerical Solution of this problem. This 
method ensures highly precise and reliable computations. Special consideration is given to 
the treatment of the border between outer and inner medulla for various widths of the 
outer zone. 

1. I N T R O D U C T I O N 

The mathematical models of the mechanism for urine concentration in 
the kidney contribute towards a better understanding of the renal function. 
The work presented in this paper deals with a six-tube model of the 
medullary counterflow System. The model includes provisions for all the 
tubes present in the renal medulla and was suggested by Stephenson, 
Tewarson, and Mejia [1]. The mathematical description involves a two-
point boundary-value problem for a System of nonlinear differential equa
tions. 

For the numerical Solution of this problem the multiple shooting tech
nique is used in this paper. This method is described in detail in Bulirsch, 
Stoer, and Deuflhard [2], Stoer and Bulirsch [3], and Keller [4]. It ensures 
highly precise and reliable computations. Special consideration is given to 
the treatment of the border between outer and inner medulla for various 
widths of the outer zone. 

The paper is structured as follows: In See. 2 the mathematical model is 
outlined. Section 3 contains a description of the multiple shooting method 
for the Solution of two-point boundary-value problems. In See. 4 the 
numerical results are presented. 
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FIG. 1. The six-tube model of the medullary counterflow System with the axial flows 
(dashed arrows) and the transmural fluxes (solid arrows). 

2. T H E M A T H E M A T I C A L M O D E L 

In the six-tube model of the medullary counterflow system (Fig. 1), fluid 
from the proximal tubule enters tube 1 (the descending Henle's 
l imb—DHL). Then it flows through tube 2 (the ascending Henle's limb— 
A H L ) , tube 3 (the distal nephron—DN), and tube 4 (the collecting duct— 
CD) in sequence to emerge from tube 4 as final urine. Blood enters tube 5 
(the descending vasa recta—DVR) and leaves from tube 6 (the ascending 
vasa recta—AVR). Tube 3 exchanges solutes and water with the cortical 
interstitium—a bath of uniform solute concentrations. A l l the other tubes 
exchange with tube 6 as shown in Fig. 1. 

This model can be described by the following boundary-value problem. 
A physiological interpretation of the differential equations is given in [1]. 
The parameters are chosen according to Farahzad and Tewarson [5]. 

Differential equations: 

J\v = 10[(c61 - Ci i) + (c 6 2 - c 1 2)], 

^ = ( l - c 3 1 ) + (0.05-c 3 2 ) , 

JAV = 10[(c61 - c 4 1) + (c 6 2 - c 4 2)], 

dFlv 

dx 
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dx 

dx 
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dF52 

dx 
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Fik9 Ffr, and clVk are related by the equation 

Fik = Fivcik (/ = ! , . . . ,6 ; Ar-1,2). (2.1.b) 



Boundary conditions: 

Fiv(0) = 1, 

c„(0) = 1, 

CiM- 0.05, 

~F2v(l), 

o „ ( i ) -

cl2W = 

F2v(0) = -FU0), 

o « ( 0 ) -

c22(0) = ^32(0), 

^5,(0) = 5, 

o s , (0)- 1, 

^52(0) = 0.05, 

^ 5 . ( 1 ) - ~F6v(l), 

o « ( l ) - o«i(l), 

c 5 2 d) = c 6 2 (l) . 

^ 3 » ( 1 ) - ^.(0), 

c 3 . (D = o4.(0), 

032(1)- c42(0). 

Lw/ Ö/ symbols used: 

x Independent variable—distance into medulla from corticomedullary 
border, 

y Border between outer and inner medulla, 
k Solutes: k= 1 is salt; k = 2 is urea, 
Fiv Axial volume flow in tube i , 
î fc Axial flow of solute Ä: in tube /, 
cik Concentration of solute k in tube i , 
/ f e Outward transmural volume flux from tube /, 
Jik Outward transmural flux of solute k from tube i. 

For tube 3 (the DN), x is measured along the tube so that x = 0 and x = 1 
correspond to its junctions with tube 2 (AHL) and tube 4 (CD), respec-
tively. The flows and concentrations are normalized in that cik= 1^300 
mOsml and Fiv = 1~34 nl /min. 

The transition from the outer to the inner medulla occurs at the junction 
of the thin A H L with the thick. Currently, there are two hypothesized 
mechanisms for urine concentration in the inner medulla, one involving 
active transport of salt out of the thin A H L ("active model"), the second 
relying on an entirely passive movement of solutes in the inner zone 
("passive model"). In both cases, salt is actively transported across the wall 
of the thick A H L . The boundary-value problem (2.1) describes a passive 
model. 

A n analysis of the ultrastructure of a Single loop of Henle in the rabbit 
kidney demonstrates that a thin A H L makes its transition to its thick part 
within about 2/1000 of the total medullary thickness (Kaissling and Kr iz [6, 



Fig. 28]). Similarly, investigations of the rat kidney show that these transi-
tions occur nearly on the same level (Kriz [7, p. 513]). Therefore, the 
division between outer and inner medulla is fairly sharp. This coincides 
with direct measurements of sodium and chloride concentrations in tissue 
slices of the medulla. Recent electron-probe microanalysis demonstrates a 
marked change in concentration profiles at the boundary between outer and 
inner medulla (Lechene and Bonventre [8]). In order to simulate this 
biological fact in the model, the transmural flux of salt out of tube 2 is 
assumed to change abruptly at the border x = y. This is reflected in a 
discontinuity in Jlx and, similarly, in / 4 2 . 

3. C O M P U T A T I O N B Y M U L T I P L E S H O O T I N G 

For the numerical Solution of the two-point boundary-value problem 
(2.1) the axial flows Fiv and Fik are computed in this paper ( / = 1 , . . . , 6 ; 
k= 1,2). Thus, the concentrations cik on the right-hand sides of the differen
tial equations must be replaced by the quotients Fik/Fiv according to (2.1.b). 
The trivial differential equations together with the appropriate boundary 
conditions immediately yield the following identities: 

F5v = 5, Fn = l, Fl2=0.05, F 2 2 E E E - 0 . 0 5 , F 3 2 = 0 . 0 5 . 

In this manner, the number of differential equations is reduced to 13. 
Denoting the vector 

(Fiv,F2v,F3v,F4v,F6v,F2i,F3l,F4l,F5l,F6l,F42,F52,F62)T 

byy, the resulting two-point boundary-value problem may be written in the 
following compact form (N= 13): 

y'=g(x,y), (3.1.a) 

A 'hy(0) + B-y(\) = r. (3.1.b) 

Here g(x,y) is vector-valued with components gk(x,y) (k = 1,2,..., N), which 
are functions of the N+l variables (x,y). A and B are constant Square 
matrices of order N, and r is a vector. They are chosen so that (3.1.b) is 
equivalent to the boundary conditions (2.1.c). 

The reduction of the System (2.1) to a System of 13 unknowns makes use 
of the trivial differential equations. If the number of vanishing right-hand 
sides in (2. La) is reduced (e.g. in order to investigate salt recycling in D H L 
in the model), the size N of the System (3.1) increases. A simple change of 
the input parameters of the multiple-shooting routine allows the treatment 
of such a modification. 



The multiple-shooting method for the Solution of a two-point boundary-
value problem of the form (3.1) is described in [3], [4], and realized in the 
code [2]. It has been extensively tested in actual computations (see e.g. 
Diekhoff et al. [9]). Here the interval 0<x < 1 is suitably subdivided: 

0 = xl<x2< • • • • <xM_l<xM=\ (Mnodes). (3.2) 

Lety(x;xj,Sj) (J = 1, . . . ,M— 1) denote the Solution of the initial-value prob
lem 

y'=g(x,y), y(xj)=sP xj<x<xJ+l 
(3.3) 

Then the JV-dimensional vectors Sj have to be determined so that the 
following conditions hold: 

continuity conditions (for M >2): 

GASPSJ+ 0 : -y(xj+1 ; XPSJ) ~ SJ+ i = °> y = 1,..., M - 2, (3.4.a) 

boundary conditions: 

GM-i(slfsM_ 0 : = A -Sl + By(xM;xM_ usM_,) - r = 0. (3.4.b) 

The conditions (3.4) define a System of nonlinear equations 

G l ( J l ^ 2 ) 

G(s): = 
GM-I(SM-2>sM-l) 

G m _ , ( V M - I ) 

= 0 with s\ = (3.5) 

This System is solved numerically by the modified Newton method: 

sk+1 = sk + \ k h s k , 0 < Ä * < 1 , (3.6.a) 

Ask = — DG(sk)~lG(sk) (3.6.b) 

(DG(s) denotes the Jacobian matrix). 
A strategy for choosing the \ k has been developed and thoroughly tested 

by Deuflhard [10]. In order to Start the process (3.6) the following initial 
data must be available: 

j-l,...,M-l. (3.7) 



NUMERICAL SOLUTION OF A KIDNEY MODEL 

With the abbreviations 

._ ty(xj+im>xj>sj) Hj.< 
ds, 

y = l , . . . , M - l , 

(3.6.b) can be written in more detail (the fc-index is omitted): 

HM-2 

Asx 

As 2 

A ^ - 2 
A S w , 

G2 

(3.6.b') 
The A ^ allow a recursive determination by 

A ^ = E ~ lw, 

with 

E:=A + BHM_XHM_2...HX, 

w: = -(GM„x + BHM_xGM_2 + • BHK H2GX). 

At the Solution point, the algorithm computes a special norm of the 
matrix E, called norm (E) (cf. [2]). norm (E) represents the sensitivity of 
the problem relative to the Variation of Sj. 

CONSISTENT TREATMENT OF THE DISCONTINUITY 

For the numerical Solution of the initial-value problems (3.3), two 
Integration routines were used: 

DiFSYl: Bulirsch-Gragg-Stoer extrapolation method (Bulirsch and Stoer 
[11]) with the stepsize control described in Hussels [12]. 

RKF7: Runge-Kutta-Fehlberg method of seventh order (Fehlberg [13]). 

Both routines control the integration stepsizes automatically according to 
the prescribed tolerance.1 To work well, they require a high order of 
differentiability on the right-hand side of (3. La). g(x,y), however, is of the 
form [cf (2. La)] 

rfjcvwW*0^ 0.0<x<y, 

1This control of the stepsizes is based on built-in estimators of the truncation error. 



Because of this discontinuity xk = y was chosen as one of the nodes in (3.2). 
For the numerical Solution of the initial-value problem (3.3) in the interval 
xk_xKx <xk, the continuous extension of gi(x,y) to the interval 0<x<y 
has to be used. Then on both sides of xk = y the differential equation is 
correctly computed. The continuous junction of both parts of the Solution 
curve at xk — y is guaranteed by (3.4.a). 

STORAGE REQUIREMENTS 

The storage requirements of the multiple-shooting algorithm are very 
low. Most of the storage is needed by the M — 1 N X N matrices Hj. M Ä S I O 
is sufficient for nearly all purposes. In contrast to finite-difference methods 
it is not necessary to increase M if higher accuracy is required. In the actual 
computation of the kidney model M = 12 and the following nodes in (3.2) 
were chosen: 

0.0, 0.1, 0.2, 0.3, 0.4, 0.45, 
0.5, 0.6, 0.7, 0.8, 0.9, 1.0. 

The tolerance for the integration routines was prescribed as 110—15. In this 
case, the stepsizes selected by the RKF7 algorithm varied betweeü 0.5510—4 
and 0.4210 —3. It seems impossible to achieve the same accuracy by finite-
difference methods. Indeed, recalling that RKF7 is of order 7, a finite-
difference approximation of order 2 would need a net spacing 

Ä « ( l 1 0 - 4 ) 7 / 2 = l - 1 0 - 1 4 

in order to yield comparable results. Thus the most economical sparse-
matrix method (cf. Table 1 in [5]) would require a storage of approximately 
(2x l 1 0 14) 2 = 41 028. 

COMMENT 

It is shown in [3] that quasilinearization (cf. Bellman and Kalaba [14]) 
can be obtained from multiple shooting by a limiting process M-*oo. This 
method was used by Foster, Jacquez, and Daniels [15] for the computation 
of a three-tube model of the renal medulla (central-core model). 

4. C O M P U T A T I O N A L R E S U L T S 

A l l computations were performed in FORTRAN double precision (96-bit 
mantissa) on the C D C Cyber 175 of the Leibniz-Rechenzentrum der 
Bayerischen Akademie der Wissenschaften. The initial data (3.7) were 
obtained by means of a homotopy method (or continuation method). The 
use of this technique may be motivated by theoretical investigations (for 



TABLE 1 

Results of multiple shooting for y = 

0.4 0.45 0.5 

q 2(i) 
*4o0)a 

C4l(l) 

c6l(0) 
c62(0) 

0.567481110 + 00 
0.176217310 + 01 
0.881086610-01 
0.617637610-01 
0.1107612i0 + 01 
0.742589510 + 00 
0.5542662,0 + 01 
0.1025019,0+01 
0.458507010-01 

0.4178138,0 + 00 
0.239341110+01 
0.1196705,0+00 
0.150950810-01 
0.225604510-01 
0.2491849,0+01 
0.5615708,0+01 
0.1044662,0 + 01 
0.4672346,0 - 01 

0.3642430,0+00 
0.2745420,0+01 
0.1372710,0+00 
0.1280209,0-01 
0.3000758,0-03 
0.2882899,0+01 
0.5670587,0+01 
0.1049184,0+01 
0.463960610 - 01 

aSince the axial flows form a countercurrent System, any flow from the corti-
comedullary border to the papilla is positive, whereas the opposite flow direction 
must be negative in the model. 

details see [16]). The modified Newton iteration (3.6) of the multiple-shoot-
ing algorithm was terminated when the Solution had achieved a relative 
precision2 of 1 1 0 -12 . A n important check on the final results is the 
conservation of mass over the medulla. In these computations the mass 
inflow agreed with the mass outflow to a relative accuracy of at least 
110—20 for both water and the two solutes. 

As in See. 2, y may denote the border between the outer and inner 
medulla. In Table 1 (truncated) results for various values of y (y =0.4, 0.45, 
and 0.5) are given. For these values of y, norm (E) (cf. See. 3) was 
computed as 31 013, 11013, and 4 1 012. This indicates how extremely sensitive 
the problem is. Therefore, a careful computation in double precision is 
necessary in order to get reliable results for this challenging boundary-value 
problem. Figures 2 and 3 show the computed total solute concentrations in 
tubes 1-4 for y = 0.5. 

COMMENT 

In comparison with measured salt concentrations in the final urine, the 
computed values of c 4 1 (1) for y = 0.45 or 0.5 are too low. c 4 1 ( l ) « l would be 
closer to reality. The reason for this discrepancy is as follows: In order to 
concentrate the urine in the inner medulla with the passive mechanism, it 
was necessary in [1] and [5] to maximize the urea load entering the C D . As 

2When the algorithm had reached this precision it performed an additional Newton 
step. So, due to the quadratic convergence, the continuity and boundary conditions are 
satisfied with an accuracy of about 11 0-30 in these computations. 



FIG. 2. Total concentrations in DHL (c n + c12), AHL (c21 + c22), and DN (c31 + c32) 
for Y=0.5. 

a consequence, the salt concentration at the end of the D N had to be 
assumed very low to achieve the biologically correct total concentration in 
the final urine. Therefore, these articles and the present paper use somewhat 
artificial parameters in the D N . 

To compare the results of [1] and [5] with those presented here it is 
necessary to know that in these papers a somewhat different problem is 
solved. The computed values of these articles belong to a model with a 
linear transition zone between the outer and inner medulla such that, for 
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FIG. 3. Total concentration in CD (c41 + c42) for y «0.5. 

example, 

f 1.8, 0.0<JC<0.4, 
J2l(x) = \ 1.8 + m-(x-0.4), 0.4<x<0.5, 

[ 10 (c 2 1 - c 6 1 ) , 0.5<x<1.0, 

where m= 10{10[c 2 1(x)-c 6 1(x)]-1.8}. A computation of this problem by 
the multiple-shooting algorithm yielded the following results: 

0.4283387,0+00, 

c„ ( l ) = 0.233460110+01, 

c. 2(l) = 0.1167301,0 + 00, 

0.1580020,0 - 01, 

0.4669535,0 - 01, 

0.2406077,0 + 01, 

^6.(0) = -0.5605542,0+01, 

c6.(0) = 0.1043765,0 + 01, 

c62(0) = 0.4673652,0-01. 

The author wishes to thank Professor R. Bulirsch, who stimulated and 
encouraged this work. He is indebted to Professor M. Horster (Physiologisches 



Institut der Universität München) and Dr. L. C. Moore (Health Science Center 
of the State University of New York) for their valuable help concerning the 
physiological model 
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