Cu₃SbSe₃: Synthese und Kristallstruktur

Arno Pfitzner

Stuttgart, Institut für Anorganische Chemie der Universität

Bei der Redaktion eingegangen am 5. August 1994.

Inhaltsübersicht. Die bisher unbekannte Kristallstruktur von Cu_3SbSe_3 wurde aus Einkristalldaten ermittelt. Die Verbindung kristallisiert orthorhombisch, RG Pnma (Nr. 62) mit a = 7,9865(8), b = 10,6138(9) und c = 6,8372(7) Å, V = 579.6(1) Å³, Z = 4. Die Struktur zeichnet sich durch Baugruppen [Cu₃Se₈] aus drei cis-kantenverknüpften Tetraedern aus,

The Crystal Structure of Cu₃SbSe₃

Abstract. The hitherto unknown crystal structure of Cu₃SbSe₃ has been determined from single crystals. The compound crystallizes in the orthorhombic system, space group Pnma (No. 62), with a = 7.9865(8), b = 10.6138(9) and c = 6.8372(7) Å, V = 579.6(1) Å³, Z = 4. Most remarkable feature of the structure are groups of three cis-edge-sharing tetrahedra [Cu₃Se₈] which are interlinked to a threedimensional

1 Einleitung

Über Untersuchungen an ternären Verbindungen im System Kupfer—Antimon—Selen wurde im Gegensatz zum analogen Schwefel-System bisher in der Literatur nur wenig berichtet. So ist lediglich die Existenz der Kupfer(I)-Verbindungen CuSbSe₂, Cu₃SbSe₃ und Cu₃SbSe₄ beschrieben, wobei Einkristallstrukturuntersuchungen bisher nur an Cu₃SbSe₄ durchgeführt wurden [1]. Ein Strukturvorschlag für CuSbSe₂ wurde aus Elektronenbeugungsuntersuchungen an dünnen Schichten ermittelt [2]. Für Cu₃SbSe₃ finden sich in der Literatur widersprüchliche Angaben bez. Metrik und Symmetrie bzw. Raumgruppe [3, 4].

Da nach bisher vorliegenden Daten die ternären Kupferantimonselenide $CuSbSe_2$ und Cu_3SbSe_4 isotyp zu den entsprechenden Sulfiden [5, 6] sind, stellt sich die Frage, ob dieser Analogieschluß auch für Cu_3SbSe_3 und das strukturell kürzlich aufgeklärte Cu_3SbS_3 [7] erlaubt ist.

2 Experimentelles

Die Darstellung von schwarzem Cu_3SbSe_3 ist sowohl aus entsprechenden Mengen der Elemente (Cu:Sb:Se = 3:1:3, hier: Cu: m5N (Johnson Matthey), Sb: 99,999% (Aldrich) und Se: die über ihre Liganden mit SbSe₃-Gruppen zu einem dreidimensionalen Netzwerk verknüpft sind. Im Gegensatz zu Cu₃SbS₃ konnten Hinweise auf eine Phasenumwandlung im Temperaturbereich von -180 bis 25 °C weder durch röntgenographische noch durch thermoanalytische Untersuchungen gefunden werden.

arrangement by SbSe₃-units. In contrast to Cu_3SbS_3 in the temperature range from -180 to $25 \,^{\circ}C$ no hints for a phase transition could be detected by means of X-ray- and thermoanalytical methods.

Keywords: Copper antimony selenide; crystal structure

m5N (Johnson Matthey)) durch Aufschmelzen und anschließendes Tempern als auch durch Festkörperreaktion von Cu₂Se und Sb₂Se₃ im Molverhältnis 3:1 möglich. So wurden phasenreine mikrokristalline Proben von Cu₃SbSe₃ in evakuierten und zuvor bei 500 °C im Vakuum ausgeheizten Quarzglasampullen nach drei Wochen bei 350 °C erhalten. Für röntgenographische Zwecke geeignete Einkristalle entstanden aus zuvor aufgeschmolzenen Proben nach achtwöchigem Tempern bei 450 °C. Die Verbindung zeigte auch nach längerem Lagern an Luft bei Zimmertemperatur keine Hinweise auf Zersetzung oder Hydrolvse.

Experimentelle Details zur Probencharakterisierung sind an anderer Stelle angegeben [7].

3 Untersuchungen an mikrokristallinen Proben

Die Gitterkonstanten von Cu_3SbSe_3 sind in Tab. 1, die d-Werte in Tab. 2 angegeben. Da zwischen -180 und +25 °C, abgesehen von der zu erwartenden leichten Änderung der Gitterkonstanten auch durch DSC-Untersuchungen keine weiteren Effekte (z. B. Phasenumwandlungen wie bei Cu_3SbS_3 [7]) beobachtet werden, kann hier auf eine Beschreibung des thermischen Verhaltens verzichtet werden.

4 Einkristallstudien

Zur Bestimmung der Beugungsintensitäten wurden geeignete Einkristalle auf einem CAD4-Vierkreisdiffraktome-

Cusobes (Furtheration, 'En Tub 2)					
T∕°C	a/ Å	b∕ Å	c/ Å	$V_{EZ}/Å^3$	Lit.
-33	7,97	1 0,6 1	6,83	578	[3]
	7,34	9,75	6,06	434	[4]
+25	7,9865(8)	10,6138(9)	6,8372(7)	579,6(1)	d. Arb.

Tabelle 1Gitterkonstanten(Standardabweichungen)vonCu₃SbSe₃ (Pulverdaten, vgl. Tab. 2)

Tabelle 2 Reflexiiste^a) von Cu₃SbSe₃ (CuK α_1 , $\lambda = 1,54060$ Å, Stoe-PSD)

h	k	1	$d_{beob}(\text{\AA})$	d _{ber} (Å)	\mathbf{I}_{beob}	\mathbf{I}_{ber}	
0	2	0	5,3059	5,3069	5	6	
2	0	0	3,9942	3,9932	14	14	
2	1	0	3,7371	3,7375	38	36	
1	2	1	3,7117	3,7119	14	14	
0	0	2	3,4175	3,4186	13	14	
2	1	1	3,2796	3,2795	70	68	
2	2	0	3,1913	3,1908	11	10	
1	1	2	3,0121	3,0134	21	20	
1	3	1	2,9248	2,9240	31	26	
0	2	2	2,8741	2,8739	37	37	
1	2	2	2,7044	2,7042	100	100	
0	4	0	2,6527	2,6535 ^b)	52	36	
2	3	0		2,6503 ^b)		21	

^a) nur Reflexe mit $I_{obs} > 0,05*I_{obs,max}$

^b) Reflexpaar nicht aufgelöst

ter mit Kühleinrichtung vermessen. Kristallographische Daten sowie Angaben zur Messung finden sich in Tab. 3. Anhand der Auslöschungen und der Intensitätsstatistik wurde die Raumgruppe Pnma (Nr. 62) ausgewählt. Im untersuchten Temperaturbereich ($-130 \le T \le 25$ °C) wurden keine auffallenden Änderungen bez. der Raumgruppe und Abmessungen der Elementarzelle beobachtet. Aus diesem Grund sollen hier nur die Resultate der Messung bei +25 °C beschrieben werden.

Mittels Direkter Methoden wurden die Positionen aller Atome bestimmt. Die anschließende Strukturverfeinerung (least squares, volle Matrix) konvergierte unter Berücksichtigung von Reflexen mit I > 2,5 σ (I) unter Einbeziehung eines Extinktionskoeffizienten bei R = 0,036. Tab. 4 enthält die Lageparameter, Tab. 5 eine Aufstellung der anisotropen Temperaturfaktoren. Die daraus berechneten Abstände und Winkel sind in Tab. 6 aufgeführt. In Abb. 1 sind die charakteristische Baugruppe und einige Winkeldaten wiedergegeben. Die dreidimensionale Atomanordnung ist in Abb. 2 dargestellt.

Auffallend an der Kristallstruktur von Cu₃SbSe₃ ist das Auftreten von Tetraeder-Tripeln der Art [Cu₃Se₈], in denen die Tetraeder cis-kantenverknüpft sind. Darin liegen relativ kurze Abstände d(Cu—Cu) = 2,665(2) Å vor. Diese Abstände sind nur wenig größer als z. B. in (β -Cu₃SbS₃ (d(Cu—Cu) \geq 2,627 Å [7]) oder in elementarem Kupfer (d(Cu—Cu) = 2,556 Å). Die Tetraeder-Tripel sind so angeordnet, daß sie entlang [0 1 0] wiederum über gemeinsame Kanten verknüpft sind. Die Abstände

Tabelle 3RöntgenographischeDaten(Standardabweichun-
gen) zur Kristallstrukturanalyse von Cu₃SbSe₃ [8]

emp. Formel, Molmasse (a.u.)	Cu ₃ SbSe ₃ , 549,268
Kristallgröße (mm ³)	$0,2 \times 0,2 \times 0,23$
Kristallsystem	orthorhombisch
Raumgruppe	Pnma (Nr. 62), $Z = 4$
Gitterkonstanten (Å)	a = 7,9865(8)
aus Pulverdaten	b = 10,6138(9)
	c = 6,8372(7)
Zellvolumen (Å ³)	V = 579,6(1)
$d_{ro} (g cm^{-3})$	6,295
lin. Absorptionskoeffizient	
$\mu_{MoK\alpha}$ (cm ⁻¹)	340,7
Diffraktometer	CAD4,
	Graphit-Monochromator,
	MoK α , Szintillationszähler
Scanart	$\omega/2\theta$ -Scan
Meßtemperatur (°C)	25
Meßbereich (°)	$2 \le 2\theta \le 60$
Datenbereich	$0 \le h \le 11$
	$0 \le k \le 14$
	$0 \le 1 \le 9$
gem. Reflexe	883
davon symmetrieunabhängig	883
davon berücksichtigt (I > 2,5 σ (I)) 740
Zahl der verfeinerten Parameter	38
R(F), R(alle)	0,036, 0,047
Rw(F), Rw(alle)	0,044, 0,051
Extinktionskoeffizient	0,27(1)
Restelektronendichte	
$\Delta \rho_{\rm min}$ (e Å ⁻³)	-2,6
$\Delta ho_{\rm max}$ (e Å ⁻³)	3,0

Strukturlösung u. Verfeinerung NRCVAX [9], volle Matrix

Tabelle 4 Ortsparameter und isotrope Temperaturfaktoren B_{iso} (Å²) für Cu₃SbSe₃

Atom	x	у	Z	B _{iso}
Sb	,2511(2)	,25	,8885(2)	1,61(4)
Cu(1)	,0913(2)	,0427(2)	,2446(4)	3,00(8)
Cu(2)	,1912(4)	.25	,4309(4)	3,0(1)
Se(1)	,0060(2)	.25	,1357(3)	1,66(6)
Se(2)	,1611(2)	,0658(1)	,6553(2)	1,50(4)

d(Cu-Cu) sind hier wesentlich größer als innerhalb der Tripel, da diese Kanten durch die 2,874 Å lange Cu(1)-Se(2)-Bindung gebildet werden.

Die Kristallstruktur von Cu₃SbSe₃ weist deutliche Unterschiede zur Struktur von β -Cu₃SbS₃ [7] auf, wo alle Metallatome dreifach durch Chalkogenatome koordiniert sind. So ist die Koordinationszahl von Cu in Cu₃SbSe₃ 3 + 1 für Cu(1) in [Cu(1)Se(1)_{1/5}Se(2)_{3/5}] bzw. 4 für Cu(2) in [Cu(2)Se(1)_{2/5}Se(2)_{2/5}] (verzerrte Tetraeder, vgl. Abb. 1, 2). Die Abstände d(Cu(2)—Se) entsprechen denen in Cu₃SbSe₄ (2,40 Å < d(Cu—Se) < 2,44 Å [1]), für Cu(1) findet man drei kurze Abstände d(Cu(1)—Se) \approx 2,4 Å und einen größeren mit d(Cu(1)—Se) = 2,874 Å.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
Sb	,0190(5)	,0177(5)	,0246(6)	0	0025(4)	0	
Cu(1)	,0275(8)	,0236(8)	,063(1)	,0048(7)	,0087(9)	.0070(9)	
Cu(2)	,050(2)	,030(1)	,035(1)	0	-,006(1)	0	
Se(1)	,0230(8)	,0155(7)	,0245(9)	0	-,0005(7)	0	
Se(2)	,0203(6)	,0154(5)	,0212(6)	-,0001(4)	-,0004(4)	,0009(4)	

Tabelle 5 Anisotrope Temperaturfaktoren U_{ij} (Å²) für Cu₃SbSe₃

Die anisotropen Temperaturfaktoren sind definiert als: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2h k a^{*} b^{*} U_{12}]$

Tabelle 6Ausgewählte Abstände (Å) und Winkel (°) in Cu_3SbSe_3 (Standardabweichungen)

Sb—Se(1) —Se(2) 2× Cu(1)—Se(2) —Se(2)	2,586(2) 2,623(1) 2,368(2) 2,420(2)	Se(1)—Sb—Se(2) 2 Se(2)—Sb—Se(2) Se(1)—Cu(1)—Se(2) Se(1)—Cu(1)—Se(2)	2×	100,94(4) 96,38(5) 106,11(8) 106,56(7)
$-Se(1)$ $-Se(2)$ $Cu(2)-Se(2) 2\times$ $Se(1)$	2,421(2) 2,874(2) 2,497(2) 2,503(3)	Se(1)— $Cu(1)$ — $Se(2)Se(2)$ — $Cu(1)$ — $Se(2)Se(2)$ — $Cu(1)$ — $Se(2)Se(2)$ — $Cu(1)$ — $Se(2)$		126,71(9) 85,76(7) 97,53(7)
—Se(1)	2,554(3)	S(2) = Cu(1) = Se(2) Se(1) = Cu(2) = Se(1) Se(1) = Cu(2) = Se(2) Se(1) = Cu(2) = Se(2) Se(2) = Cu(2) = Se(2)	2× 2×	122,47(7) 116,0(1) 116,03(8) 101,78(8)
Cu(2)—Cu(1) 2× Sb—Cu(2)	2,665(2) 3,165(3)	Cu(1)—Cu(2)—Cu(1)		111,3(1)

Cu(1) ist um 0,29 Å aus der Ebene der drei nächsten Selenatome herausgerückt. Die Anisotropie der thermischen Parameter steht mit dieser 3 + 1-Koordination in Einklang. Zusätzlich zu den vier benachbarten Selenund zwei Kupferatomen wird für Cu(2) ein Antimonatom im Abstand d(Cu(2)—Sb) = 3,165(3) Å beobachtet.

Antimon zeigt die für dessen Oxidationsstufe +3 typische, trigonal-pyramidale Koordination gemäß $[SbSe(1)_{1/5}Se(2)_{2/5}]$. Die Abstände der Antimonatome zu

Abb. 1 Charakteristische Baugruppe $[Cu_3Se_8]$ mit verbrückendem $[SbSe_3]$ in Cu₃SbSe₃ mit ausgewählten Abständen (Å), Ellipsoide entsprechen 90% Aufenthaltswahrscheinlichkeit [10]

Abb. 2 Ausschnitt aus der Kristallstruktur von Cu_3SbSe_3 , Cu: schwarz, Sb: schattiert, Se: leere Kreise [11], zur besseren Übersichtlichkeit sind kurze Abstände zwischen den Kupferatomen nicht eingezeichnet

umgebenden Selenatomen sind hier deutlich separiert, d. h. im Gegensatz zu Sb₂Se₃ mit Koordinationszahlen von 3 + 3 bzw. 3 + 4 beobachtet man in Cu₃SbSe₃ eine Koordination durch nur drei Selen (d(Sb—Se) \approx 2,6 Å), weitere Selenatome werden erst in einem Abstand von d(Sb—Se) \approx 3,85 Å gefunden.

Für die Selenatome resultiert eine unregelmäßige fünffache Koordination durch die Metallatome.

Dank gilt Herrn *Prof. Dr. Deiseroth* für die großzügige Unterstützung, Herrn *W. Röthenbach* für die Anfertigung einer Tieftemperatur-Röntgenaufnahme und Herrn *Dipl.-Chem. K. Unterderweide*, Universität Siegen, für eine Tieftemperatur-DSC-Messung.

Literatur

- [1] A. Pfitzner, Z. Kristallogr. 209 (1994) 685
- [2] R. M. Imamov, Z. G. Pinsker, A. I. Ivchenko, Sov. Phys.-Crystallogr. 9 (1965) 721
- [3] H. J. Whitfield, Solid State Commun. 33 (1980) 747
- [4] A. N. Babushkin, G. I. Baturin, L. Ya. Kobelev, G. V. Fursova, Depos. Doc. VINITI (1980) 3369, CA 96, 44175x
- [5] W. Hofmann, Z. Kristallogr. 84 (1933) 177

- [6] J. Garin, E. Parthé, Acta Crystallogr. B28 (1972) 3672
- [7] A. Pfitzner, Z. anorg. allg. Chem. 620 (1994) 1992
- [8] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-401 095, des Autors und des Zeitschriftenzitates angefordert werden
- [9] E. J. Gabe, Y. Le Page, J.-P. Charland, F. L. Lee, P. S. White, J. Appl. Crystallogr. 22 (1989) 384
- [10] C. K. Johnson, ORTEP, 3rd. Rev., Oak Ridge National Laboratory ORNL-5138 1976
- [11] E. Keller, SCHAKAL92, Universität Freiburg 1992

Anschr. d. Verf .:

Dr. A. Pfitzner Fachbereich 8-AC II Universität-GH D-57068 Siegen