Li₂TeS₃ and Li₂TeSe₃: Preparation, Crystal Structure and Impedance **Spectroscopic Characterization**

Christian Preitschaft, Manfred Zabel, and Arno Pfitzner*

Regensburg, Institut für Anorganische Chemie der Universität

Received January 11th, 2005.

Dedicated to Professor Rüdiger Kniep on the Occasion of his 60th Birthday

Abstract. Li₂TeS₃ and Li₂TeSe₃ were synthesized by the reaction of stoichiometric amounts of Li, Te and O (O = S, Se) in the ratio 2:1:3. Both products are extremely air and moisture sensitive. The crystal structures were determined by single crystal X-ray diffraction at room temperature. Red Li₂TeS₃ and metallic black Li₂TeSe₃ crystallize isotypically in the monoclinic space group $P2_1/c$ (no. 14) with four formula units per unit cell and the lattice parameters: Li₂TeS₃: a = 5.437(1) Å, b = 11.564(1) Å, c = $7.907(1) \text{ Å}, \beta = 91.57(1)^{\circ}, V = 496.96(1) \text{ Å}^3; \text{Li}_2\text{TeSe}_3: a =$ 5.658(1) Å, b = 12.032(1) Å, c = 8.278(1) Å, $\beta = 92.690(1)^{\circ}$, V =562.93(1) Å³ (data at 20 °C). The atomic arrangements persist of isolated trigonal pyramidal [TeQ₃]²⁻ anions which are arranged in layers. Li is coordinated by six Q atoms from four (Li1) or five (Li2) different thiotellurate or selenidotellurate units, respectively. Impedance spectroscopic measurements in the temperature range 90 - 200 °C show that Li₂TeS₃ is a semiconductor with an activation energy of 0.71 eV. Li₂TeSe₃ is a mixed conductor with an activation energy of 0.68 eV.

Keywords: Lithium; Thiotellurates; Selenidotellurates; Impedance spectroscopy; Crystal structure

Introduction

Lots of efforts have been made in the past to design new ion-conducting materials. Especially proton, lithium, silver and copper ion conductors are of great interest. Using copper(I) or silver halides as solid solvent revealed a number of solid state compounds with partly good ionic conducting properties [1]. These compounds can be regarded as consisting of a copper(I) or silver halide part on the one hand and of a copper or silver chalcogenometalate on the other hand, see for example [2, 3]. We recently started to transfer the findings concerning the mixed halide thiometalate ion conductors of copper and silver to homologous lithium compounds. A first example for a resulting lithium ion conducting material is (LiI)₂Li₃SbS₃ [4] which is closely related to (CuI)₂Cu₃SbS₃ [3]. Trying to synthesize (LiI)₃Li₂TeS₃ and (LiI)₃Li₂TeSe₃ in analogy to (CuI)₃Cu₂TeS₃ [14] we always obtained Li₂TeS₃ and Li₂TeSe₃ embedded in a LiI flux. These compounds are two new representatives of a larger group of thiotellurates and selenidotellurates. Thiotellurate(IV) ions are observed in several solid state compounds, e. g. in K₂TeS₃ [5], BaTeS₃ [6], (NH₄)₂TeS₃ [7], BaTeS₃ · 2 H₂O [7, 8], $K_3(SH)$ TeS₃ [9], Ag_2 TeS₃ [10], Cs₂Mn(TeS₃)₂ [11], and RbCuTeS₃ [12]. [TeS₃]²-units can also be found in composite copper chalcogenide halides, e. g. (CuCl)Cu₂TeS₃ [13] and (CuI)₃Cu₂TeS₃ [14]. A tetraphenylphosphonium salt with [TeS₃]²-anions is also known [15]. First hints for the existence of a compound with the formula "Li₂TeS₃·2 Li₂S" are given in [16]. In 1902 "Na₂TeS₃·2 Na₂S" was reported [17]. However, details about the synthesis or the structures of "M₂TeS₃·2 M₂S" (M = Li, Na) are very ambiguous. Knowledge about the homologous selenidotellurates is small to date. Only a few compounds are known, i. e., Na₂TeSe₃ and K₂TeSe₃ [18] or (2, 2, 2-crypt-K)₂TeSe₃·en [19]. All these materials have [TeQ₃]²-units in common. These complex anions can be regarded as isolated from each other in the compounds under discussion.

Herein we report about the synthesis and the structural and impedance spectroscopic characterization of Li₂TeS₃ and Li₂TeSe₃ [20].

Results

Structure determination

Crystallographic data of the structure determination are summarized in Table 1. Atomic coordinates and isotropic displacement parameters are collected in Table 2. Table 3 lists the anisotropic displacement parameters, and Table 4 shows selected interatomic distances and angles.

Structure description and discussion

Li₂TeS₃ and Li₂TeSe₃ are isotypic and crystallize in the monoclinic system. The sulphide and selenide ions, respectively, are cubic close packed and form an arrangement of octahedral voids, see Figure 1. Lithium and tellurium atoms are distributed in the octahedral voids in an ordered way.

E-mail: arno.pfitzner@chemie.uni-regensburg.de

^{*} Prof. Dr. A. Pfitzner Institut für Anorganische Chemie Universität Regensburg D-93040 Regensburg (Germany) Fax: +49 941 943 4983

Table 1 Crystallographic data for the structure analysis of Li₂TeS₃ and Li₂TeSe₃.

Compound	Li ₂ TeS ₃	Li ₂ TeSe ₃
Formula weight (g mol ⁻¹)	237.66	378.36
Crystal size (mm ³) and colour	0.07 x 0.08 x 0.12, dark red	0.05 x 0.03 x 0.15, metallic black
Crystal system	monoclinic	monoclinic
Space group	$P2_1/c$ (No. 14)	$P2_1/c$ (No. 14)
Lattice constants (Å) from single crystal	a = 5.437(1)	a = 5.658(1)
()	b = 11.559(1)	b = 12.032(2)
	c = 7.907(1)	c = 8.278(1)
	$\beta = 91.57(1)^{\circ}$	$\beta = 92.69(1)^{\circ}$
Cell volume, Z	496.74(12) Å ³ , 4	$562.92(15) \text{ Å}^3, 4$
$\rho_{\rm calc}$ (g cm ⁻³)	3.178	4.464
Diffractometer	STOE IPDS, MoK α , $\lambda = 0.71073 \text{ Å}$,	STOE IPDS, MoK α , $\lambda = 0.71073 \text{ Å}$,
	oriented graphite monochromator	oriented graphite monochromator
φ -range (°), $\Delta \varphi$ (°)	$0.0 \le \varphi \le 300.0, 1.2$	$0.0 \le \varphi \le 189.0, 1.4$
Absorption correction	numerical, crystal description with 16 faces,	numerical, crystal description with 15 faces,
	shape optimized with X-SHAPE [24]	shape optimized with X-SHAPE [24]
No. of measured images	250	135
Irradiation time/image (min)	8	5
Temperature (°C)	20	20
2θ -range (°)	$6.1 \le 2\theta \le 60.4$	$6.0 \le 2\theta \le 55.9$
hkl-range	$-7 \le h \le 7$	$-6 \le h \le 7$
	$-16 \le k \le 16$	$-15 \le k \le 15$
	$-11 \le l \le 11$	$-10 \le l \le 10$
No. of reflections, R _{int}	8420, 0.0202	4988, 0.0560
No. of independent reflections	1366	1254
No. of parameters	55	55
Program	SHELX 97 [26]	SHELX 97 [26]
Final $R/wR2$ $(I > 2\sigma_I)$	0.0187, 0.0501	0.0334, 0.0773
Final R/wR2 (all reflections)	0.0203, 0.0504	0.0453, 0.0839
GooF	1.160	0.875
Largest difference peak $\Delta \rho_{\rm max}$	1.110	1.247
and hole $\Delta \rho_{\min}$ (e A ⁻³)	-0.720	-1.748

Further details of the crystal structure investigations are available from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), Fax: 0049 7247 808 666, E-mail: crysdata@fiz-karlsruhe.de, on quoting the depository numbers CSD-415121 (Li,TeS₃) or CSD-415120 (Li,TeSe₃), the name of the authors, and the reference of the publication.

Table 2 Atomic coordinates and equivalent isotropic displace-

ment parameters U_{eq} for Li₂TeS₃ and Li₂TeSe₃.

Li ₂ TeS ₃						
Atom	x	у	Z	$U_{ m eq}{}^{ m a)}$		
Li1	0.238(1)	0.9149(5)	0.3681(9)	0.038(1)		
Li2	0.739(1)	0.7711(5)	0.1431(7)	0.034(1)		
Te1	0.7173(1)	0.0871(1)	0.1839(1)	0.015(1)		
S1	0.7704(1)	0.2426(1)	0.3784(1)	0.020(1)		
S2	0.7448(1)	0.9270(1)	0.3681(1)	0.021(1)		
S3	0.2859(1)	0.0983(1)	0.1384(1)	0.019(1)		

Li ₂ 1eSe ₃						
Atom	X	у	z	$U_{ m eq}^{ m \ a)}$		
Li1	0.238(4)	0.914(2)	0.367(2)	0.045(4)		
Li2	0.732(3)	0.772(1)	0.146(2)	0.041(3)		
Te1	0.7102(1)	0.0875(1)	0.1891(1)	0.022(1)		
Se1	0.7700(2)	0.2467(1)	0.3850(1)	0.028(1)		
Se2	0.7444(2)	0.9241(1)	0.3746(1)	0.029(1)		
Se3	0.2694(1)	0.0972(1)	0.1340(1)	0.027(1)		

 $^{^{}m a)}$ $U_{
m eq}$ is defined as one third of the trace of the orthogonalized $U_{
m ij}$ tensor.

Having the composition in mind it becomes immediately clear that the structure must be an ordered variant of the rocksalt structure type. However, the coordination spheres of the cations are more or less distorted. Whereas the lithium atom is six-coordinate, see Figure 2, the coordination sphere of the tellurium atom has to be regarded as 3+3. Therefore we find isolated $[TeQ_3]^{2-}$ anions (Q = S, Se), see

Table 3 Anisotropic displacement parameters U_{ij} for Li_2TeS_3 and Li₂TeSe₃.

Li_2TeS_3						
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Lil	0.033(4)	0.042(3)	0.039(3)	0.003(2)	-0.001(2)	0(2)
Li2	0.038(3)	0.029(2)	0.036(2)	0.001(2)	0.001(2)	0(2)
Te1	0.014(1)	0.015(1)	0.015(1)	-0.001(1)	0(1)	0(1)
S1	0.023(1)	0.018(1)	0.019(1)	-0.004(1)	0(1)	-0.001(1)
S2	0.025(1)	0.018(1)	0.020(1)	0.003(1)	0(1)	0.001(1)
S3	0.014(1)	0.023(1)	0.022(1)	-0.001(1)	0(1)	0(1)

Li ₂ TeSe ₃						
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Li1	0.040(1)	0.060(1)	0.034(7)	0.008(7)	-0.004(7)	0.001(9)
Li2	0.040(1)	0.059(9)	0.028(5)	0.003(6)	0.004(5)	0.004(7)
Te1	0.019(1)	0.025(1)	0.023(1)	0(1)	0.002(1)	0(1)
Se1	0.029(1)	0.027(1)	0.026(1)	-0.004(1)	0.002(1)	-0.001(1)
Se2	0.032(1)	0.028(1)	0.027(1)	0.004(1)	0.002(1)	0.001(1)
Se3	0.020(1)	0.033(1)	0.028(1)	0(1)	0.001(1)	0.001(1)

Figure 3, which are typical for Te^{4+} . These $[TeQ_3]^{2-}$ units are comparable with the isosteric [TeO₃]²⁻ or [SO₃]²⁻ anions, i. e., Te has a trigonal pyramidal (ψ-tetrahedral) environment of Q atoms. The short distances d(Te-S) in the $[TeS_3]^{2-}$ ions are 2.357(1), 2.367(1), and 2.378(1) Å, respectively. For d(Te-Se) in $[\text{TeSe}_3]^{2-}$ 2.498(1), 2.517(1), and 2.523(1) Å are found. The S-Te-S bond angles range from 99.15(2) to 100.52(2)°, and the Se-Te-Se bond angles from

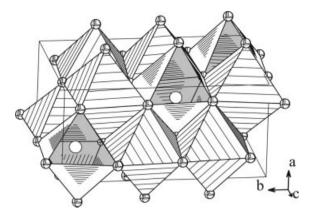
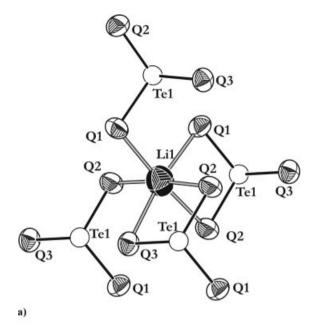


Figure 1 Section of the crystal structure of Li₂TeO₃ showing the octahedral voids formed by the chalcogenide ions. Two thirds of the octahedral voids are occupied by Li, and one third is occupied by Te (open octahedra). Q atoms are cubic closed packed.


100.55(3) to 101.44(3)°. Three further sulphur or selenium atoms are observed in the coordination sphere of the Te atom. These Q neighbours show distances of more than 3.0 Å (Li₂TeS₃: 3.125(1), 3.136(1), 3.329(1) Å; Li₂TeSe₃: 3.220(2), 3.241(1), 3.484(1) A). The difference between the short bonds Te-Q and the so-called non bonding distances Te-O gives an idea about the distortion of the corresponding TeQ6 octahedra. Te is located off centre and shifted towards one face of the octahedra.

In the crystal structures of the title compounds the [TeQ₃]²⁻ anions are located in layers parallel to the abplane (see Figure 3). Lithium is localized between the $[TeQ_3]^{2-}$ -units. The alkali metal ions have six Q neighbours arranged as distorted octahedra. The Q atoms belong to four different [TeQ₃]²⁻-units in case of Li1 and to five different complex anions in case of Li2, see Figure 2a and b. The distances d(Li-S) in Li₂TeS₃ range from 2.684(7) to 2.809(6) Å for Li1 and from 2.523(6) to 3.159(6) Å for Li2, cf. Table 4. Comparable distances for six-coordinate Li in rhombohedral LiSbS₂ [21] are about 2.56 to 2.81 Å. The Li-Se contacts in Li₂TeSe₃ are in the range from 2.80(2) to 2.94(2) Å for Li1 and from 2.63(2) to 3.26(1) Å for Li2. Searching for further examples for Li with a sixfold coordination by Se in an ordered structure to the best of our knowledge reveals only one example in the literature. This example is the perselenoborate Li₂B₂Se₅ [22] with distances d(Li-Se) in the range from 2.54 to 3.38 A. Usually Li prefers a coordination number of four by Se.

Figure 4 gives a view over the complete crystal structure of Li₂TeQ₃. It becomes obvious that the TeQ₃ units are separated from each other, i.e., there are no Te-Q-Te fragments to be observed.

At a very first glance K₂TeS₃ [5] seems to be closely related to Li₂TeQ₃ since the lattice constants of the lithium compound and the potassium compound show similar ratios and the monoclinic angle is close to 90° for all of them. However, the unit cells cannot be transformed into each other. A closer inspection of the structure of K₂TeS₃ shows

Z. Anorg. Allg. Chem. 2005, 631, 1227-1232

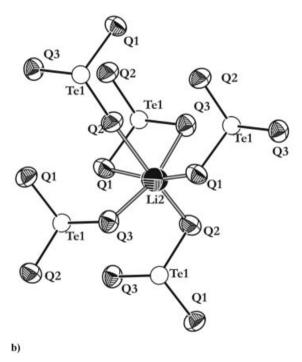
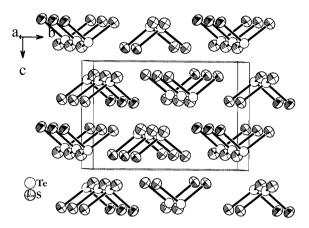


Figure 2 Section of the crystal structure of Li₂TeO₃ showing the connectivity for a) Li1 and b) Li2 in a distorted [LiQ₆] octahedron. The Q atoms belong to four different [TeQ₃]²-units in case of Lil and to five different [TeQ₃]²-units in case of Li2. Ellipsoids are drawn at the 95 % level.

that the arrangement of the [TeS₃]²⁻-units and the connectivity towards the KS6 octahedra differ significantly from the findings for Li₂TeQ₃. A more detailed discussion of these and other $M_2^I TeQ_3$ compounds with M^I = alkaline metal and Q = S, Se will be given in a forthcoming publication on Na₂TeQ₃ [27].



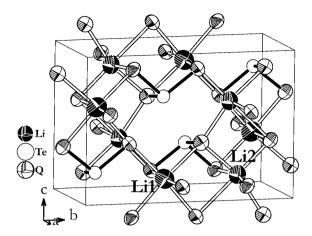

Figure 3 Section of the crystal structure of Li₂TeQ₃ showing the arrangement of the [TeQ₃]²⁻-anions. They are located in layers parallel to the ab-plane.

Table 4 Selected interatomic distances (in Å), and angles (in degrees) for Li_2TeQ_3 (Q = S, Se) at room temperature. Compare Figure 2 for the labelling scheme.

	Li_2TeS_3	Li ₂ TeSe ₃
Li1-Q1	2.709(6)	2.83(2)
Li1-Q1	2.786(6)	2.91(2)
Li1-Q2	2.760(7)	2.87(2)
Li1-Q2	2.773(6)	2.89(2)
Li1-Q2	2.684(7)	2.80(2)
Li1-Q3	2.809(6)	2.94(2)
Li2-Q1	2.696(6)	2.86(2)
Li2-Q1	2.791(6)	2.86(2)
Li2-Q2	2.532(6)	2.63(2)
Li2-Q2	3.159(6)	3.26(1)
Li2-Q3	2.647(6)	2.79(2)
Li2-Q3	2.690(6)	2.79(2)
Te1-Q1	2.378(1)	2.523(1)
Te1-Q2	2.357(1)	2.498(1)
Te1-Q3	2.367(1)	2.517(1)
O2 T-1 O2	100 52(2)	101 25(2)
Q2-Te1-Q3	100.52(2)	101.25(3)
Q2-Te1-Q1	100.90(2)	101.44(3)
Q3-Te1-Q1	99.15(2)	100.55(3)

Conductivity Measurements

The finely grounded powders of the title compounds were pressed into pellets for temperature dependent conductivity measurements. They were contacted to gold electrodes and then loaded into a home made measuring cell. The samples were kept under a stream of purified Ar gas in order to prevent hydrolysis. The use of blocking electrodes allows recording impedance spectra that show significant hints either for ionic or for electronic conductivity. Figures 5 and 6 display typical impedance plots of the title compounds. The impedance spectrum of Li₂TeS₃ (Figure 5) shows only a semicircle whereas the spectrum of Li₂TeSe₃ (Figure 6) consists of a semicircle in the high frequency region and an inclined spike at low frequencies. A low frequency spike is typical for ionic conductors in combination with blocking

Figure 4 The crystal structure of Li_2TeQ_3 viewed along the *a* axis. Ellipsoids are drawn at the 95 % level.

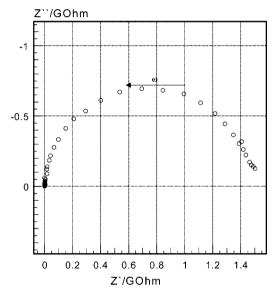
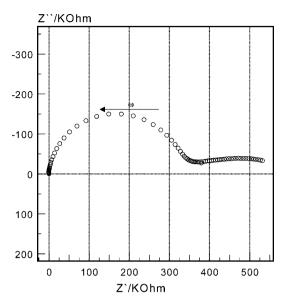



Figure 5 Impedance spectrum of Li₂TeS₃ at 200 °C. From the missing spike in the impedance plot it can be concluded that Li₂TeS₃ is predominantly an electronic conductor.

electrodes. Therefore we conclude from the spectra that the conductance of Li₂TeS₃ is predominantly electronic whereas Li₂TeSe₃ turns out to be a mixed conductor with a significant ionic concutivity. Figure 7 illustrates the temperature dependence of the specific conductivities of Li₂TeS₃ and Li₂TeSe₃. A pure linear dependence of log σ vs 1/T is observed for Li₂TeS₃ and Li₂TeSe₃. The activation energies are 0.71 eV for Li₂TeS₃ and 0.68 eV for Li₂TeSe₃. The specific conductivities are about two to three orders of magnitude higher for the selenide as compared to the sulphide. Selected conductivity data are 2.5 x 10⁻⁸ Scm⁻¹ (Li₂TeS₃ at 200 °C) and 4.5 x 10^{-6} Scm⁻¹ (Li₂TeSe₃ at 200 °C). The different conductivity behaviour of the title compounds might be due to the increased polarizability of selenium in comparison to sulphur. However, the mobility of the Li⁺

Figure 6 Impedance plot of Li₂TeSe₃ at 200 °C. We obtain the typical semicircle in the high frequency region and an inclined spike in the low frequency region. It can be concluded that the compound is a mixed conductor.

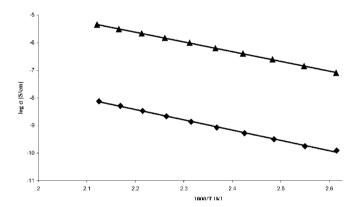


Figure 7 Arrhenius type representation of the specific conductivities of the title compounds (heating cycle). Li_2TeS_3 shows semiconducting properties and Li_2TeSe_3 seems to be a mixed conductor. $\blacktriangle = \text{Li}_2\text{TeSe}_3$, $E_a = 66 \text{ kJ/mol}$ (0.68 eV); $\spadesuit = \text{Li}_2\text{TeS}_3$, $E_a = 69 \text{ kJ/mol}$ (0.71 eV).

ion in octahedral coordination is usually much smaller than for the Li⁺ ion in tetrahedral coordination [23]. Therefore, one could expect only small ionic conductivities from regarding the crystal structures even if the displacement parameters of Li⁺ are much bigger than those for the heavier elements.

Experimental Part

Li₂TeS₃ and Li₂TeSe₃ were synthesized from stoichiometric amounts of the elements. Li (Merck), Te (99.999 % Alfa Aesar), S (99.9995 %, Alfa Aesar), and Se (99.999 %, Alfa Aesar), respectively, in a ratio of 2:1:3 were filled into small graphite crucibles.

The crucibles were closed and then put into evacuated silica ampoules. All manipulations were performed in a glove box under an atmosphere of argon. In each case the starting materials were slowly heated up to 200 °C, and then faster to 460 °C for 48 hours. Then they were cooled down to room temperature within 72 hours. Red crystals of Li₂TeS₃ and metallic black crystals of Li₂TeSe₃, both suitable for a single crystal X-ray structure determination, could be separated from the pure reaction products. X-ray powder diffraction showed the purity of the samples. The polycrystalline samples contained only some traces of graphite but no other phases Li-Te-O were observed. Both compounds are extremely air and moisture sensitive. For the structure determination at room temperature single crystals were placed in a glass capillary, sealed under argon, and then mounted on an IPDS (Stoe) single crystal diffractometer providing monochromatic Mo $K\alpha$ radiation (λ = 0.71073 Å). Crystallographic data are collected in Table 1. Absorption was corrected numerically after an optimization of the description of the crystal shape with the X-SHAPE [24] routine.

Differential thermal analysis measurements were performed on a SETARAM TG-DTA 92-16 in evacuated silica tubes. Li₂TeS₃ decomposes peritectically at 433 °C (onset temperature). Li₂TeSe₃ melts at 428 °C (onset temperature) without decomposition.

Impedance spectroscopic investigations were performed in the frequency range from 100 mHz to 4 MHz, using an IM6 impedance analyzer from Zahner Elektrik. The temperature was varied between 90 °C and 200 °C (heating and cooling mode). Pressed pills (8 mm in diameter and about 1.2 mm thick) of finely grounded crystalline samples of the title compounds were contacted between gold electrodes and platinum wires. During the measurements the pellets were kept continuously under an atmosphere of purified argon. Further details of the experimental setup are given in ref. [25].

Acknowledgement. Financial support of the University of Regensburg and the State of Bavaria is gratefully acknowledged. We thank F. Rau, F. Truksa, D. Garcia and S. Stempfhuber for some experimental help.

References

- [1] A. Pfitzner, Chem. Eur. J. 2000, 6, 1891.
- [2] T. Nilges, S. Reiser, J. H. Hong, E. Gaudin, A. Pfitzner, Phys. Chem. Chem. Phys. 2002, 4, 5888.
- [3] A. Pfitzner, Chem. Eur. J. 1997, 3, 2032.
- [4] A. Pfitzner, C. Preitschaft, F. Rau, Z. Anorg. Allg. Chem. 2004, 630, 75.
- [5] C. Rumpf, C. Näther, W. Bensch, *Acta Crystallogr.* 1999, C55, 1046.
- [6] P. J.-C. Jumas, M. Ribes, M. Maurin, E. Philippot, Acta Crystallogr. 1976, B32, 444.
- [7] H. Gerl, B. Eisenmann, P. Roth, H. Schäfer, Z. Anorg. Allg. Chem. 1974, 407, 135, and references therein.
- [8] G. Dittmar, H. Schäfer, Z. Anorg. Allg. Chem. 1978, 439, 212.
- [9] H. Gerl, H. Schäfer, Z. Naturforsch. 1972, 27b, 1421.
- [10] F. Pertlik, Monatsh. Chem. 1997, 128, 157.
- [11] X. Zhang, M. Kanatzidis, Inorg. Chem. 1994, 33, 1238.
- [12] X. Zhang, M. Kanatzidis, J. Am. Chem. Soc. 1994, 116, 1890.
- [13] A. Pfitzner, Inorg. Chem. 1998, 37, 5164.

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim

[14] A. Pfitzner, S. Zimmerer, Angew. Chem. 1997, 109, 1031; Angew. Chem. Int. Ed. Eng. 1997, 36, 982.

- [15] W. Bubenheim, G. Frenzen, U. Müller, Z. Anorg. Allg. Chem. 1994, 620, 1046.
- [16] F. A. Jaeger, J. B. Menke, Z. Anorg. Allg. Chem. 1912, 75, 251.
- [17] A. Gutbier, F. Flury, Z. Anorg. Allg. Chem. 1902, 32, 276.
- [18] R. Zagler, B. Eisenmann, Z. Anorg. Allg. Chem. 1988, 183, 193.
- [19] M. Björgvinsson, J. F. Sawyer, G. J. Schrobilgen, *Inorg. Chem.* 1991, 30, 4238.
- [20] C. Preitschaft, A. Pfitzner, Z. Anorg. Allg. Chem. 2004, 630, 1753.
- [21] J. Olivier-Fourcade, M. Maurin, E. Philippot, *Rev. Chim. Min.* 1983, 20, 196.
- [22] A. Lindemann, J. Kuchinke, C. Koester, A. Hammerschmidt, M. Doech, T. Pruss, B. Krebs, *Phosphorus, Sulfur, Silicon, Rel. Elem.* 2001, 168–169, 493.
- [23] H. D. Lutz, P. Kuske, A. Pfitzner, Ber. Bunsen-Ges. Phys. Chem. 1989, 93, 1340.
- [24] X-SHAPE, STOE, Darmstadt 1996.
- [25] E. Freudenthaler, A. Pfitzner, Solid State Ionics 1997, 101–103, 1053.
- [26] G. M. Sheldrick, SHELX 97 Programs for the solution and refinement of crystal structures, University of Göttingen, Germany, 1997.
- [27] A. Pfitzner, C. Preitschaft, in preparation.