Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Michael Schaefer, ${ }^{\text {a }}$ Daniel Kurowski, ${ }^{\text {b }}$ Arno Pfitzner, ${ }^{\text {b }}$ Christian Näther ${ }^{\text {a }}$ and Wolfgang Bensch ${ }^{\text {a }}$

${ }^{\text {a }}$ Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany, and ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
H -atom completeness 97%
Disorder in solvent or counterion
R factor $=0.028$
$w R$ factor $=0.083$
Data-to-parameter ratio $=26.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

[Tris(2-aminoethyl)amine]manganese(II) heptasulfidotetraantimony(III) hemihydrate

Yellow crystals of the title compound, $\left[\mathrm{Mn}(\text { dien })_{2}\right]\left[\mathrm{Sb}_{4} \mathrm{~S}_{7}\right]$-$0.5 \mathrm{H}_{2} \mathrm{O}$ (dien = diethylenetriamine $=\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}$) were synthesized under solvothermal conditions by reacting $\mathrm{MnSb}_{2} \mathrm{~S}_{4}$ with pure dien. The Mn^{2+} ion is in an octahedral environment of six N atoms of the tridentate dien molecules. The $\left[\mathrm{Sb}_{4} \mathrm{~S}_{7}\right]^{2-}$ units, and anions are joined together to form two-dimensional layers. In the layered anion, $\mathrm{Sb}_{2} \mathrm{~S}_{2}, \mathrm{Sb}_{4} \mathrm{~S}_{4}$ and $\mathrm{Sb}_{8} \mathrm{~S}_{8}$ heterorings are found.

Comment

Until now, more than a dozen thioantimonates(III) with the $\left[\mathrm{Sb}_{4} \mathrm{~S}_{7}\right]^{2-}$ anion with different dimensionalities have been reported (Sheldrick \& Häusler, 1988; Dittmar \& Schäfer, 1978a,b; Cordier et al., 1984; Dittmar \& Schäfer, 1977; Bensch \& Schur, 1997; Stephan \& Kanatzidis, 1997). For example, in $\mathrm{K}_{2} \mathrm{Sb}_{4} \mathrm{~S}_{7}$ (Graf \& Schäfer, 1972), a three-dimensional network is observed. Incorporation of water yields a layered $\left[\mathrm{Sb}_{4} \mathrm{~S}_{7}\right]^{2-}$ anion (Eisenmann \& Schäfer, 1979). To the best of our knowledge, most of the $\left[\mathrm{Sb}_{4} \mathrm{~S}_{7}\right]^{2-}$ compounds were prepared by reacting elements under solvothermal conditions or in a reactive flux. During our systematic search for new materials which are suitable as educts for solvothermal reactions, we synthesized the layered compound $\left[\mathrm{Mn}(\operatorname{dien})_{2}\right]-$ $\mathrm{Sb}_{4} \mathrm{~S}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, (I), applying the ternary compound $\mathrm{MnSb}_{2} \mathrm{~S}_{4}$ and dien as the solvent.

The structure of (I) is composed of isolated $\left[\mathrm{Mn}(\mathrm{dien})_{2}\right]^{2+}$ cations and layered $\left[\mathrm{Sb}_{4} \mathrm{~S}_{7}\right]^{2-}$ anions (Fig. 1). The Mn^{2+} ion is surrounded by six N atoms of two dien ligands forming a distorted octahedron $\left(\mathrm{MnN}_{6}\right)$, which adopts the mer configuration. The $\mathrm{Mn}-\mathrm{N}$ distances range from 2.241 (4) to 2.326 (4) \AA, with $\mathrm{N}-\mathrm{Mn}-\mathrm{N}$ angles between 75.2 (1) and 176.2 (1) ${ }^{\circ}$. All values are in the normal ranges for MnN_{6} octahedra (von Zelewsky, 1996; Ellermeier \& Bensch, 2002; Schaefer et al., 2003). In the anionic part of the structure, two SbS_{3} trigonal pyramids and two SbS_{4} units are the primary building units. Both SbS_{3} moieties share a common corner, forming an $\mathrm{Sb}_{2} \mathrm{~S}_{5}$ unit. The $\mathrm{Sb}-\mathrm{S}$ bond lengths vary between 2.388 (1) and 2.479 (1) \AA, with $\mathrm{S}-\mathrm{Sb}-\mathrm{S}$ angles between 90.01 (3) and 104.79 (4) ${ }^{\circ}$. The two SbS_{4} units share a common

Received 17 November 2003 Accepted 4 December 2003 Online 17 January 2004

Figure 1

The asymmetric unit of $\left[\mathrm{Mn}(\operatorname{dien})_{2}\right] \mathrm{Sb}_{4} \mathrm{~S}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, together with some symmetry-equivalent S atoms to complete the coordination of Sb . Displacement ellipsoids are drawn at the 50% probability level. The symmetry codes are given in Table $1 . \mathrm{H}$ atoms have been omitted.
edge, forming an $\mathrm{Sb}_{2} \mathrm{~S}_{2}$ hetero-ring within a $\mathrm{Sb}_{2} \mathrm{~S}_{6}$ unit. In both SbS_{4} units, two longer distances are found [2.692 (1) and 2.832 (1) \AA for Sb 3 , and 2.728 (1) and 2.746 (1) \AA for Sb 4$].$ The longer separations are in trans-position to each other, with angles of 171.92 (3) ${ }^{\circ}$ for $\mathrm{S} 5-\mathrm{Sb} 3-\mathrm{S} 7$ and 174.53 (3) ${ }^{\circ}$ for $\mathrm{S} 6-$ Sb4-S1 ${ }^{\text {iii }}$ (see Table 1). Angles and distances are comparable with those reported in the literature (Sheldrick \& Häusler, 1988; Dittmar \& Schäfer, 1978a,b; Cordier et al., 1984; Schur \& Bensch, 1997). The secondary building blocks $\mathrm{Sb}_{2} \mathrm{~S}_{5}$ and $\mathrm{Sb}_{2} \mathrm{~S}_{6}$ share a common corner (S 5) and further condensation leads to $\mathrm{Sb}_{4} \mathrm{~S}_{4}$ and $\mathrm{Sb}_{8} \mathrm{~S}_{8}$ rings. The eight-membered rings are fused to each other parallel to the a and b axis (Fig. 2). The mer$\left[\operatorname{Mn}(\operatorname{dien})_{2}\right]^{2+}$ cations and the water molecules are found above and below the $\mathrm{Sb}_{8} \mathrm{~S}_{8}$ hetero-rings. The coordination numbers of the Sb 1 and Sb 2 atoms are enhanced from three to four by S atoms at longer distances of 3.118 (1) and 3.264 (1) \AA, respectively. We note that (I) is isostructural with $\left[\mathrm{Ni}(\text { dien })_{2}\right] \mathrm{Sb}_{4} \mathrm{~S}_{7} \cdot \mathrm{H}_{2} \mathrm{O}$ (Stähler et al., 2003). The unit-cell volume of the latter compound is $40 \AA^{3}$ smaller than that of the title compound.

Experimental

[$\left.\mathrm{Mn}(\text { dien })_{2}\right] \mathrm{Sb}_{4} \mathrm{~S}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ was obtained in nearly 30% yield by the reaction of $\mathrm{MnSb}_{2} \mathrm{~S}_{4}$ (Pfitzner \& Kurowski, 2000) (0.100 g , 0.234 mmol) in a pure solution of 3 ml dien (99%) (Merck). The mixture was heated in Teflon-lined steel autoclaves with an inner volume of 30 ml for 14 d at 403 K and then cooled to room temperature within 3 h . After washing with water, dried under vacuum, yellow crystals of $\left[\mathrm{Mn}(\text { dien })_{2}\right] \mathrm{Sb}_{4} \mathrm{~S}_{7} \cdot 0.5 \mathrm{H}_{2} 0$ were obtained. The compound is stable in air and water. Analysis calculated for $\left[\mathrm{Mn}(\text { dien })_{2}\right] \mathrm{Sb}_{4} \mathrm{~S}_{7} .0 .5 \mathrm{H}_{2} 0$: C $9.78, \mathrm{H} 2.87, \mathrm{~N} 8.55, \mathrm{~S} 22.84 \%$; found: C 9.59, H 2.61, N 8.75 , S 22.15%.

Crystal data


```
Mr=980.71
Monoclinic, P2 / c
a=9.7216(19) \AA
b=16.113 (3) \AA
c=17.339 (4) \AA
\beta=91.88 (3)}\mp@subsup{}{}{\circ
V=2714.6 (9) \AA \AA
Z=4
```

```
\(D_{x}=2.400 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 8000
    reflections
\(\theta=2.5-28^{\circ}\)
\(\mu=4.93 \mathrm{~mm}^{-1}\)
\(T=293\) (2) K
Polyhedron, yellow
\(0.2 \times 0.2 \times 0.1 \mathrm{~mm}\)
\(D_{x}=2.400 \mathrm{Mg} \mathrm{m}^{-3}\)
Cell parameters from 8000
reflections
\(\theta=2.5-28^{\circ}\)
\(\mu=4.93 \mathrm{~mm}^{-1}\)
\(T=293\) (2) K
\(0.2 \times 0.2 \times 0.1 \mathrm{~mm}\)
```


Data collection

Stoe IPDS diffractometer
φ scans
Absorption correction: numerical
[X-SHAPE (Stoe \& Cie, 1998)
and X-RED (Stoe \& Cie, 1998)]
$T_{\min }=0.390, T_{\max }=0.609$
31130 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.083$
$S=1.05$
6508 reflections
245 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0547 P)^{2}\right.$
6508 independent reflections
5824 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-21 \rightarrow 21$
$l=-22 \rightarrow 22$

$$
+3.6221 P]
$$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.12 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00169 (13)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Mn-N4	2.241 (4)	Sb3-S6	2.3893 (12)
$\mathrm{Mn}-\mathrm{N} 2$	2.256 (4)	Sb3-S2 ${ }^{\text {i }}$	2.4451 (11)
$\mathrm{Mn}-\mathrm{N} 5$	2.259 (4)	Sb3-S7	2.6917 (13)
$\mathrm{Mn}-\mathrm{N} 1$	2.270 (4)	Sb3-S5	2.8322 (13)
$\mathrm{Mn}-\mathrm{N} 3$	2.320 (4)	Sb4-S7	2.3907 (13)
Mn-N6	2.326 (4)	Sb4-S4 ${ }^{\text {ii }}$	2.4495 (11)
Sb1-S1	2.4076 (10)	Sb4-S1 ${ }^{\text {iii }}$	2.7279 (13)
Sb1-S2	2.4539 (11)	Sb4-S6	2.7459 (13)
Sb1-S3	2.4790 (10)	$\mathrm{S} 1-\mathrm{Sb} 4^{\text {iv }}$	2.7279 (13)
Sb2-S5	2.3883 (10)	S2-Sb3 ${ }^{\text {v }}$	2.4451 (11)
Sb2-S4	2.4682 (11)	$\mathrm{S} 4-\mathrm{Sb} 4^{\text {vi }}$	2.4495 (11)
Sb2-S3	2.4701 (10)		
$\mathrm{N} 4-\mathrm{Mn}-\mathrm{N} 2$	107.09 (13)	S1-Sb1-S2	99.30 (4)
N4-Mn-N5	77.15 (16)	S1-Sb1-S3	92.19 (4)
$\mathrm{N} 2-\mathrm{Mn}-\mathrm{N} 5$	98.22 (16)	S2-Sb1-S3	92.35 (4)
$\mathrm{N} 4-\mathrm{Mn}-\mathrm{N} 1$	176.26 (13)	S5-Sb2-S4	104.82 (4)
$\mathrm{N} 2-\mathrm{Mn}-\mathrm{N} 1$	76.64 (13)	S5-Sb2-S3	92.03 (4)
$\mathrm{N} 5-\mathrm{Mn}-\mathrm{N} 1$	102.89 (16)	S4-Sb2-S3	91.09 (4)
$\mathrm{N} 4-\mathrm{Mn}-\mathrm{N} 3$	100.00 (15)	S6-Sb3-S7	87.18 (4)
N2-Mn-N3	152.13 (15)	S6-Sb3-S5	87.83 (4)
N5-Mn-N3	93.99 (16)	S7-Sb3-S5	171.94 (3)
N1-Mn-N3	76.26 (15)	S7-Sb4-S6	85.92 (4)
N4-Mn-N6	75.19 (15)	Sb2-S3-Sb1	102.56 (4)
N2-Mn-N6	90.53 (14)	Sb2-S5-Sb3	88.68 (3)
N5-Mn-N6	152.33 (17)	Sb3-S6-Sb4	92.68 (4)
N1-Mn-N6	104.66 (15)	Sb4-S7-Sb3	94.02 (4)
N3-Mn-N6	90.12 (15)		
Symmetry codes: (i) $-x, y-\frac{1}{2}, \frac{3}{2}-z$; (ii) $1+x, y, z$; (iii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (v) $-x, \frac{1}{2}+y, \frac{3}{2}-z$; (vi) $x-1, y, z$.			

The H atoms were positioned with idealized geometry [C$\mathrm{H}($ methylene $)=0.97 \AA$ and $\mathrm{N}-\mathrm{H}($ amine $)=0.90 \AA]$ and refined with fixed isotropic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }} \mathrm{C}_{\text {methylene }}\right.$ and $\mathrm{C}($ amine $)=1.2 U_{\text {eq }} \mathrm{N}($ amine $\left.)\right]$ using a riding model.

Data collection: IPDS (Stoe \& Cie, 1998); cell refinement: IPDS; data reduction: $I P D S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

Financial support by the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

References

Bensch, W. \& Schur, M. (1997). Z. Naturforsch. Teil B, 52, 405-409.
Brandenburg, K. (1999). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
Cordier, G., Schäfer, H. \& Schwidetzky, C. (1984). Z. Naturforsch. Teil B, 39, 131-134.
Dittmar, G. \& Schäfer, H. (1977). Z. Anorg. Allg. Chem. 437, 183-187.
Dittmar, G. \& Schäfer, H. (1978a). Z. Anorg. Allg. Chem. 441, 93-97.
Dittmar, G. \& Schäfer, H. (1978b). Z. Anorg. Allg. Chem. 441, 98-102.
Eisenmann, B. \& Schäfer, H. (1979). Z. Naturforsch. Teil B, 34, 383-385.
Ellermeier, J. \& Bensch, W. (2002). Monatsh. Chem. 133, 945-957.
Graf, H. A. \& Schäfer, H. (1972). Z. Naturforsch. Teil B, 27, 735-739.
Pfitzner, A. \& Kurowski, D. (2000). Z. Kristallogr. 215, 373-376.
Schaefer, M., Näther, C. \& Bensch, W. (2003). Solid State Sci. 5, 1135-1139.
Schur, M. \& Bensch, W. (1997). Eur. J. Solid State Inorg. Chem. 34, 457-466.
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and CIFTAB. University of Göttingen, Germany.
Sheldrick, W. S. \& Häusler, H.-J. (1988). Z. Anorg. Allg. Chem. 557, 105-111.
Stähler, R., Näther, C. \& Bensch, W. (2003). J. Solid State Chem. 174, 264-275.
Stephan, H.-O. \& Kanatzidis, M. G. (1997). Inorg. Chem. 36, 6050-6057.
Stoe \& Cie (1998). X-SHAPE (Version 1.03), X-RED (Version 1.11) and IPDS (Version 2.89). Stoe \& Cie, Darmstadt, Germany.
Zelewsky, A. von (1996). Stereochemistry of Coordination Compounds. Chichester: Wiley.

Figure 2
Arrangement of the cations and anions in $\left[\mathrm{Mn}(\text { dien })_{2}\right] \mathrm{Sb}_{4} \mathrm{~S}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, viewed along [001]. The cations are located above and below the $\mathrm{Sb}_{8} \mathrm{~S}_{8}$ rings. The H atoms of the dien ligands have been omitted for clarity.

