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A semiclassical study of bubble formation (nucleation) in nuclei at finite temperature is presented. The effects of the Coulomb 
interaction and of the density profile parametrization are investigated. Significant nucleation probabilities are found. 

Since the equation o f  state of  hot nuclear matter is 
o f  van der Waals type, one might expect that hot 
nuclei exhibit phase transitions. Their existence has 
been conjectured in experiments with high-energy 
protons on nuclei and in heavy-ion collisions [ 1,2 ]. 
The role o f  statistical and quantum fluctuations 
which lead to phase transitions has been first ana- 
lyzed in a microscopic approach in ref. [ 3 ], based on 
relativistic mean field theory o f  nuclei [4 ]. In a recent 
work [ 5 ], a similar approach, also using the path 
integral technique to calculate phase transitions, has 
been applied to bubble formation in hot and dense 
nuclear matter. In this work we improve upon ref. 
[5 ] by including Coulomb forces which are of  great 
importance in realistic calculations. In addition, we 
use a more appropriate parametrization o f  the bub- 
ble density profiles and take gradient corrections to 
the free kinetic energy functional into account. 

The picture we have in mind is that hot com- 
pressed nuclear matter produced in a heavy-ion reac- 
tion, may by subsequent (isentropic) expansion reach 
the region of  metastability, where bubbles of  lower 
than liquid density may be formed. The formation 
of  droplets in a gas background can be excluded by 
the argument that the gas density is below freeze out. 
The phase transitions are due to statistical fluctua- 
tions. Quantum fluctuations have been shown to be 

relevant only for temperatures T <  1 MeV [ 5 ] n. The 
transition probability W from a metastable phase to 
a stable one has a WKB-like form 

Woc exp ( - ~max/T), (1) 

where ~max is the maximum of  the thermodynamical  
potential [3,5],  see eq. (3) and fig. 1. We normalize 
W to 1 at vanshing potential barrier [ 5 ]. 

The relevant potential for isothermal processes in 
a grand canonical ensemble is the thermodynamical  
potential I2, defined as 

t ' 2 = E -  T S - # N ,  (2) 

where F = E - T S  is the free energy calculated from 
the internal energy E and the entropy S at given tem- 
perature T. The chemical potential/ t  is the Lagrange 
multiplier o f  the particle number  N. We assume a 
homogeneous liquid background density PL, on which 
bubble formation can take place. Therefore we intro- 
duce a thermodynamical  potential ~ ,  in which the 
constant potential associated with the homogeneous 
background S'2[pL] is subtracted. 

The thermodynamical  treatment of  charged sys- 
tems, however, is a difficult issue, since the Coulomb 
interaction is a long-range force and hence has no 
clear place in thermodynamics.  We adopt the sub- 
traction prescription of  refs. [ 6-8 ] where the ther- 
modynamical  potential for a charged bubble takes the 
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:l This holds true also for the present calculation, as the mass 
parameters resulting from eq. (5) are almost the same as in 
ref. [5]. 
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form 

I-')~ =.Q[p] ---Q[PL] --E~[p--pL], (3) 

p is the density profile of the bubble and 

e2 f [p(rl ) --PL] [P(r2) --PL] 
Ec= ~ d3rld3r2 Irl --r21 (4) 

Eq. (4) describes the Coulomb energy content of the 
bubble alone, i.e. excludes the contribution of the 
background and of the relative interaction between 
background and bubble. Exchange terms of the Cou- 
lomb energy are neglected and equal proton and neu- 
tron densities are assumed (so that pp=p/2). 

The density of a bubble is parametrized in spheri- 
cal symmetry in analogy to ref. [ 9 ] as 

[pc(R)  --PL][ 1 +cosh(R/a)] 
p(rIR)=pL + cosh(R/a)+cosh(r/a) ' (5) 

where R is the radius parameter of the bubble and a 
its surface thickness. The gas density pc(R) is 
extracted from ref. [9] and describes the depen- 
dence of the central bubble density on the radius. As 
the radius parameter R goes to zero or plus infinity, 
the density p(r, R) approaches the homogeneous liq- 
uid PL and the gas Pc (oo) density, respectively. The 
values PL and pc(co)  are taken as in ref. [5] and 
describe the homogeneous liquid and gas phases at 
equal chemical potential # and temperature T. In our 
present case of interest, PL is metastable in the sense 
that the corresponding thermodynamical energy 
density has a higher minimum at PL than at Pc (oo). 
The effective region of metastability is, however, 
modified in the presence of surface and Coulomb 
energies of a finite-size bubble, as compared to 
homogeneous nuclear matter. 

We are aware of the fact that the background den- 
sity is distorted due to the Coulomb interaction, as 
was found in Hartree-Fock calculations [7]. But 
since the background contribution is subtracted off, 
we are confident that our simple parametrization is 
reasonable. In fact, the subtracted densities of refs. 
[7,8] do look very much like a parametrization of 
the form of eq. (5). 

The thermodynamical potential eq. (3) is calcu- 
lated semiclassically for symmetric nuclear matter 
using the SkM* force in a finite-temperature extended 
Thomas-Fermi approximation [ 10]. We omit the 
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Fig. 1. The thermodynamical potential ~ as a function of the bub- 
ble radius parameter R at T=5 MeV and/t=-20.2 MeV, for 
charged (full line) and uncharged (dashed line) bubbles. The 
dotted line represents uncharged bubbles with the parametriza- 
tion ofref. [5]. 

gradients of the effective mass as well as the 
spin-orbit terms like in ref. [ 5 ], but include the sec- 
ond-order gradient corrections to the free kinetic 
energy functional at finite temperature (Weizs~icker- 
like term). 

In fig. 1 we compare the thermodynamical poten- 
tials ~ as functions of the bubble radius R calculated 
at T=  5 MeV and chemical potential/z = -20 .2  MeV 
with (solid line) and without (dashed line) Cou- 
lomb interaction, taking a surface thickness of a = 1 
fm. The barrier which exists between the liquid 
( R = 0 )  and gas (R~oo)  phases is due to an inter- 
play of volume and surface energies (and Coulomb 
energy, if present). The Coulomb energy influences 
the results by diminishing the barrier and shifting the 
critical radius Rcr (at which ~ has a maximum) to 
smaller values. This happens because the Coulomb 
energy favors the gas phase, since a bubble has a 
"missing charge" as compared to the liquid phase. 
The dotted line in fig. 1 corresponds to the uncharged 
bubbles in the parametrization of ref. [ 5 ], where the 
radius parameter R is defined down to -oo .  This 
parametrization has the unrealistic feature that for 
small I R I the density profile exhibits a cusp at r = 0, 
and thus distorts the surface energy. 

Fig. 2 presents the statistical phase transition 
probability W, eq. (1), as a function of the back- 
ground density PL in eq. (5) which is uniquely related 
to the chemical potential /~. Phase transitions are 
substantially enhanced for charged bubbles (solid 
line) as compared to the uncharged case (dashed 
line). For pL~0.95 fm -3, the barriers of ~ vanish, 
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F ig .2.  T h e  b u b b l e  f o r m a t i o n  p r o b a b i l i t y  W at  T =  5 M e V  ( l e f t  
scale) as a function of the liquid background density PL for 
charged (solid line) and uncharged (dashed line) systems. 
Right scale: the corresponding critical radii Rcr. 

the various contr ibut ions to the energy functional. 
The qualitative behavior  of W remains similar as 

that for T =  5 MeV for smaller or higher tempera- 
tures. Quantitatively,  W drops less rapidly as a func- 
t ion ofpL as the temperature increases. In conclusion 
we note, that if in a heavy-ion collision a hot nucleus 
reaches a metastable density below a certain value, 
our model predicts a probabili ty of order 1 to form 
bubbles due to statistical fluctuations. The Coulomb 
energy is seen to enhance the transi t ion probabili ty 
by orders of magnitude. The real scenario will depend 
of course on the dynamics of the reaction. 

References 

since at this value of PL the homogeneous phase at 
P=PL has no energy m i n i m u m  any more. As PL 
approaches Peq, the potentials of the homogeneous 
phases P=PL and p=pG(ov)  become the same. 
Therefore the volume energy contr ibut ion of ~ van- 
ishes and due to the positive surface energy 
increases monotonical ly with increasing R. There- 
fore, W drops to zero. The Coulomb energy "post- 
pones" this drop of W. 

The corresponding critical radii Rcr are also shown 
(scale on the right); they tend to a finite value R ~ 2 
fm as W-~ 1 (vanishing barrier of ~ ) .  The dips in 
both the W and Rcr curves are due to an interplay of 

[ 1 ] M.W. Curtin, H. Toki and D.K. Scott, Phys. Lett. B 123 
(1983) 289. 

[2] A.D Panagiotou et al., Phys. Rev. Lett. 52 (19840 496. 
[ 3 ] H. Reinhardt and H. Schulz, Nucl. Phys. A 432 (1985 ) 630. 
[4] J.D. Walecka, Ann. Phys. 83 (1974) 491; Phys. Lett. B 59 

(1975) 109; S.A. Chin, Ann. Phys. 108 (1977) 301. 
[ 5 ] A.H. Blin, B. Hiller, H. Reinhardt and P. Schuck, submitted 

to Nucl. Phys. 
[6] P. Bonche, S. Levit and D. Vautherin, Nucl. Phys. A 427 

(1984) 278. 
[ 7 ] P. Bonche, S. Levit and D. Vautherin, Nucl. Phys. A 436 

(1985) 265. 
[8] E. Suraud, preprint ISN Grenoble (February 1986). 
[9] P. GleiBl et al., to be published. 

[ 10] M. Brack, C. Guet and H.-B. HAkansson, Phys. Rep. 123 
(1985) 275. 

241 


