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VALIDITY OF THE STRUTINSKY METHOD, STUDIED WITHIN THE

HARTREE - FOCK FRAMEWORK.

M. BRACK and P, QUENTIN®
The Niels Bohr Institute, Copenhagen, Denmark,

Abstract:

The foundation of the Strutinsky method within the Hartree-
Fock (HF) framework is discussed. Both the basic energy theorem
and the energy averaging method are investigated theoretically
and numerically. The equivalence of the averagina method with
semiclassical expansions is exhibited. Numerical tests of the
basic assumptions of the shell-correction approach are presented,
which make use of the results of constrained HF calculations for
various nuclei and with different effective interactions. The
HF energy is decomposed into a smooth part which is shown to be
very close to a liquid drop model energy, a first order shell-
correction defined in the usual way, and higher order correc-
tions which usually are neglected in standard Strutinsky calcu-
lations. These higher order terms are shown not to contribute
more than ~ 1 -2 MeV to the total energy in medium and heavy
nuclei. New results for the nucleus %9ca show that this is
no longer the case for light nuclei. Alternative ways of de-
fining the smooth part of the energy are also considered. It
is particularly found that if the Strutinsky averaging is per-
formed selfconsistently, the sum of the average energy plus the
first order shell-correction extracted from the average poten-
tial reproduces perfectly well the exact HF energy.
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1. INTRODUCTION

The shell-correction method proposed by Strutinsky [11]
may be considered as a perturbative approach to a selfconsi-
stent theory of nuclear binding and deformation energies avoid-
ing the explicit use of a two body interaction. Starting from
Hartree-Fock (HF) theory with any effective nucleon-nucleon in-
teraction, one can in fact show [2-4] that the main part of the
shell fluctuations in the total nuclear binding energy is con-
tained in the sum of occupied eigenenergies of the averaged self-
consistent field. The nucleon interaction enters explicitly only
in terms of second and higher orders in the fluctuating part 59
of the selfconsfistent density matrix, which can be expected to
be small. The practical shell-correction approach consists in
neglecting these terms and identifying the average part of the
selfconsistent field with one of the available phenomenological

shell model potentials.

Using various versions of deformed shell model potentials
and of the 1iquid drop model,the shell-correction cajculations have
been very successful in reproducing nuclear ground state masses
and in describing the details of the static deformation energy
surfaces of medium and heavy nuclei. Especially thé fact that
the nature of the fission isomers could be explained and that
many experimental fission barriers could be fitted within less
than ~1-2 MeV, belong to the remarkable successes of this hethod.
For discussions of all the details of these calculations, their

applications and comparisons with experimental data, we refer
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to some review articles [3,5-7] which also contain extended
reference lists to many other important publications.

Our present aim is to discuss the foundation of the
Strutinsky method on the basis of the HF theory. The energy
theorem is discussed theoretically in sect. 2. Because of its
practical importance, the energy averaging method is shortly
reviewed in sect. 3 and its relations to some statistical and
semiclassical methods are discussed. In sect. 4, extended
numerical calculations are presented which were performed
in order to test the assumptions made in the usual shell-
correction approach. Other related calculations are compared
and in the conclusions, some approximations are mentioned
which allow to study the effects of various forces in a more
economical way than by doing fully selfconsistent constrained

HF calculations.

2. THE STRUTINSKY ENERGY THEOREM

We sheéll in this section discuss the theoretical deriva-
tion of the Strutinsky method in the framework of the Hartree-
Fock (HF) theory. Since the paper of Strutinsky in 1968 [2],
this derivation has been re-investigated many times by various
authors [3,4,8-14] and we shall therefore restrict ourselves
to a short presentation of the main steps and assumptions.

One starts from the HF-energy,expressed in terms of the
density matrix @ corresponding to a Slater determinant wave-

function:

Eqe(Q) = tr To + itr trg‘Ug . (2.1)

355



356 M. BRACK, P. QUENTIN

Here T is the matrix of the kinetic energy operator and U

the antisymmetrized matrix of an effective two body interac-
tion which we for the moment assume to be local and density
independent (In eq.(2.1) and henceforth, trtr means the double
trace). The density matrix ? is normalized to the number N

of particles
tro = N. (2.2)

(We consider here only one kind of particles). The selfconsi-

stency is given through the HF equation

[+ vy v A3 = &cye (2.3)
In eq. (2.3) Vur is the HF-potential
Vyp = tr U (2.4)

and hq is a constraint (with Lagrange multiplier A ) which
is introduced in order to give solutions with a fixed quadru-

pole moment Q

Q tral?, (2.5)

ﬁ being the quadrupole operator. (Of course, other constraints
can be used to fix different,or several, moments.) In terms

of any basis fx> , we can write the single particle states

as
90 Dciua>, (2.6)
ot
and the coefficients Ci build the density matrix
N ii i
Sup - Z:] Co Cg > (2.7)
i= ’

where the summation goes over the lowest occupied states of
the selfconsistent spectrum iiiz
The first step is now to write the selfconsistent density

matrix as a sum of two terms
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e - §-+5P . (2.8)

Here § is the average part of e which is assumed to generate

the bulk part of the total binding energy in the sense of the
liquid drop model (LDM, see e.g.ref. [15] ). Practically, $

may be obtained by a statistical averaging over many neighbouring
nuclei or by a semiclassical expansion (see the discussion in
sect. 3 below). The shell fluctuations in the energy are then

coming from the term 5P which is assumed to be a small correc-

tion to (' at least in heavy nuclei.

One then defines an average potential V by
Vo= tr§v (2.9)
which also varies smoothly with nucleon number and therefore

may be identified with a shell-model potential. It determines

A oA
the"shell-model" states iEi, ?if by

- A A A
[revlg -6, (2.10)
and a density matrix é analogous to eqs. (2.6) and (2.7).
In terms of these quantities one can then show,e.g, by first or-

der perturbation theory [2,3] that
N .
Eyp = ZE; -4t g VUG +U[(61>)’], (2.11)
L=1

This equation, which in fact just relies on the stationarity
of the HF solution against changes of the density 9 , tells
us that all contributions to the energy of first order in J}
are contained in the sum of "shell-model" energies gi . If
the higher order terms can be neglected, the sum Egéi con-
tains all shell effects of the HF-energy. Eq. (2.71) thus

gives the basis to the Strutinsky energy theorem

Ege = E + OE, +0((;S,)2), (2.12)

HF
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where N
JE, = & €.7 ;ffi , (2.13)
E =2¢-1trtrplp. (2.14)

-

1

The quantity 215: is the average part of the exact sum

of the occupied levels éi and will be defined in sect. 3
below. In the practical shell-correction calculations [2-7],
the energy E, which by definition is a smoothly varying quantity,
is replaced by the energy obtained from the liquid drop model
(see e.q. ref. [151 ); SE] is obtained substituting for gi
the energy levels from a phenomenological deformed shell model
potential (e.g. Nilsson model), and the higher order terms

in 39 are neglected. Thus, the two body interaction U~and
the density matrices f uf never appear explicitly in such cal-
culations.

In contrast to the findings of refs. [8,9] , the energy
theorem (2.12) is also true for density dependent effectijve
interactions as obtained from nuclear matter G-matrix calcu-
lations in the local density approximation [16, 17], if the
rearrangement terms are included consistently in all quantities
defined above, esp. also in the averaged potential V (2.9)(see
ref. [41 for a detailed discussion of this point). ~Three or
more body forces are treated readily in the same way. More-
over, the pairing correlations can be easily included in the
BCS approximation (see refs. [2), [6) ). For a discussion of
the energy theorem within the HF-Bogolyubov approximation, we
refer to ref. [181) .

A point of special interest has been the question [10,19]
whether one should include a constraint in the shell-model

Hamiltonian eq. (2.10). If so,it is clear that one has to
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constrain the shell model solution € in such a way that
'bu(g-&)i=0 . But the consideration in SE] of energies £
either with or without the external field contribution, does not
affect significantly the numerical results for the total energy,
as found in Ref.[ZO] (see also sect. 4 below).

Let us summarize at this point the different aspects of
the basic assumptions which underly the usual shell-correction

approach:

1) The selfconsistent density matrix @ can be split into a
smooth part § and an oscillating part é} in such a way,
that all energy terms containing only § vary slowly with
nucleon number and deformation.

2) The terms of second and higher orders in d} in the total
HF energy are negligible. Since the typical shell-correc-
tions & E] one deals with are of order *5-10 MeV, the
neglected terms should not contribute more than ~1-2 MeV.

3) The average potential V eq. (2.9) can be represented by one
or the other of the usual phenomenological shell-model
potentials.

4) The average energy E eq.(2.14) can be represented by some

1iquid drop model energy.

5) The smooth part 1? éi of the single-particle energy sum
in eq.(2.13), which in principle is related to the smooth

matrix §. can practically be defined in a unique way.

Whereas the last point 5) is rather a technical problem
which can be discussed independently of HF calculations - this
will be done fn sect. 3 -, the assumptions 1) - 4) can.only be
tested in numerical calculations explicitly using an effective
interaction V. In sect. 4, we will discuss such numerical cal-
culations which were recently performed in order to check the

validity of the Strutinsky method. An indirect evidence for the
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smallness of the neglected terms is given by the close agree-
ment found between experimental and theoretical fission barriers,
ground state mass corrections and deformations, as well as be-
tween their various theoretical predictions using rather different
shell model potentials and nuclear shape parametrizations.
Before concluding this section, we will discuss

a slightly different form of the energy theorem, which is not
directly related to the practical application of the Strutinsky
method, but which might give some insight into the role of the
quantities defined above. For that, we have to anticipate that
a practical way of defining the smooth density matrix § is
found by introducing the averaged occupation numbers ﬁi which
will be defined in sect. 3 below. One may thus define (cf.
eq.(2.7))

5 :E i* i - - >

Qap = ; Co ° CF ngiotr $ = n. =N, (2.15)
Consistently with this, one can define the smooth part of the
sum of occupied HF levels 81:

1

=& - 218 ny . (2.16)
1

(Eq.(2.16)is only true with some restriction to be discussed in
sect. 3 helow).
Using eqs. (2.1), (2.3) one can easily see that

51_'81 Ay =trTg +trtrgUe+ Atrqp, (2.17)

and that EHF is exactly given by

Eyrle) = E(3) + SENT —Atrddp - 3tr tr gpWdp  (2.18)
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where

E(Q) = trTg + 3trtr §v§ (2.19)

and

-2 &R, (2.20)

i

: Mz

HF
A3

The difference between JE?F (2.20) and ) E1(2.13) is that in
the former quantity, the selfconsistent energy levels Ei are
used. Since they are obtained with a constraint (see eq.(2.3)),
an extra term appears in eq.(2.18). It js easy to show that the
difference between 6E] eq.(2.13) and the two first order terms
in eqs. (2.18) is of second order in @9.

Eq. (2.18) explains the result of ref. [21] , where it
was found that the curvatures around two minima in the selfcon-

325, as well

sistently calculated deformation energy curve of
as the energy difference between the minima, were well repro-

duced in a Strutinsky calculation using the HF levels 81.

One should, however, not confuse the fact that the shell-
correction may be found from the HF levels directly (up to
second-~order terms) with the wrong statement, that the sum of

occupied HF levels ﬁi E1 should contain all first order con-

tributions. This misinterpretation of the Strutinsky energy
theorem has repeatedly lead to erroneous conclusions, when the
sum %EL and the constrained HF energy EHF were found to
behave differently as functions of deformation [10,19,22]

The reason why %é; €. eontains too strong fluctuations can

be seen from the equations above. The formally smoothed quanti-
ty :?'E;ﬁi eq.(2.17) contains also an oscillating term linear

in 5?, namely trtr J}i{ﬁ. This term cancels a part of the fluc-
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tuations contained in ?§1ai_. such that the difference SE]HF
defined by equation (2.20) contains all essential fluctuations
(up to the constraint and higher order terms in eq. (2.18)).
Contrarily, if the eigenvalues éi of the smoothed one body
Hamiltonian are used to define SE], as shown in eqs.(2.9)-(2.14)
above, all fluctuations of first order in é} are contained in

N A
the sum > &; . The numerical results discussed in sect. 4
i=1

will further illustrate this point.

The form (2.18) of the Strutinsky energy theorem corres-
ponds to a Taylor expansion of the HF energy functional around
the smooth value © of the density matrix. We may thus speak

of an expansion of EHF into a "shell-correction series", the

zeroth order term of which js the average (LDM) binding energy,
the other terms being the first and higher order shell-correc-
tions. The fact that no third order term appears in eq.(2.18)
1s due to the special choice of the interaction; this will no
longer be so in the presence of e.aq. a three body force. The
convergence of the shell-correction series may depend on the
special definitfon of § and of JE] (or SE]HF), the inter-
action used, the specific nucleon number, etc. The numerical
results presented in sect. 4 below will show that by a
suitable choice of the first two terms of the shell-correction
series, one may minimize the sum of the remaining higher order

corrections even for rather light nuclei.
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3. THE STRUTINSKY ENERGY AVERAGING METHOD

For the definition of the smooth part of the single part-
icle energy sum appearing in the definjtion of the shell-correc-
tion 5E1(2.13) above, Strutinsky introduced a special energy-
averaging technique [1,2] which is very convenient for practical
use. We refer again to the Titerature for the details and dis-
cuss here mainly fts relation to some alternatjve methods which

have been proposed. We ignore in this section the difference

between the selfconsistent energies E1 and the shell-model ener-

gies éi made in the last section, and assume just that Ei
are the eigenvalues of the single particle Hamiltonian H

with some potential V:

Hy, = (T+V) yi = & v . (3.1)
The smooth single particle energy is defined in terms of an
average level density g(E) obtained by smearing the spectrum

€, over an energy range y :

2
P - 2121 - fsa(s)ds, (3.2)
- A E-E.
3(E) = Ygﬁ,(—?ﬁ—) (3.3)

In eq. (3.2), N\ s the Fermi energy determined by the particle

number conseryation

A
N = fa(z)ds; (3.4)
(o]

hereby the hottom of the potential V has heen normalized to zero

energy. In eq. (3.3),'FM(x) is some smooth distribution function,

normally taken to be a Gaussian, including the curvature-correc-

363
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tions. These corrections are an essential ingredient of the
procedure; they guarantee that any smooth part of the level
density through the definition (3.3) is implicitly approximated
by the first 2M+1 terms of its Taylor expansion.

The procedure has been formulated in ref. [237 in terms of
a general class of averaging functions fﬁ(x) and it has been
shown that, independently of the specific shape of fh(x), the

smooth energy E eq.(3.2) can be written as

m

3.5
Y (3.5)

for all values of y and M. The average occupation numbers

ny are given by

X
Ry a}fﬂ,,( EFOeE > 3 5 Ly, (3.6)
0

i 1

Practically, the second term in eq.(3.5) does not contribute,

since E and with it the shell-correction JE, defined by
< N
JE = :2:81 -k, (3.7)

have to fulfjll the plateau-condition, i.e. they have not to

depend on Y in a region of values somewhat larger than the
mean distance L of shells in the spectrum {Ei} . The plateau

condition may be written in an infinitesimal form [23 1 as

dF |
dy

= -igill =0 (3.8)

e Yo

and 1s usually fulfilled for values of M and y, given by

0<Mg6-12; NLY<L20&A. (3.9)
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For realistic finjte depth potentials, the distance of
the Fermi level A from the continuum region jis normally of
the order of the main shell spac1ng»fl, such that non-negligible
contributions to g(E) come from this region. If no continuum
states are included in the sums in eqs.(3.3) and (3.5), the
level density suddenly drops to zero there and the values of
g(E) close to the Fermi level become too low. This problem is
usually circumvented [3,23,24] by including some artificial
unbound states in the lower part of the continuum. This leads,
however, to some amhiguities in the determination of E. (For
numerical estimates of these ambiguities, see the discussion
below.) A more correct method would be to
include the resonances, as demonstrated by Ross and Bhaduri
[253 , but this is practically not realizable for realistic
deformed potentials.

Majnly due to this continuum problem and the uncertainties
related to 1t, seyveral alternative methods have recently been
proposed for the definition of the smooth energy E or the average
leve] density g(E).

In the thermodynamjical-statistical theory of a system of
independent particles (see,e.g. ref. [26]1 ), it is a well-known

feature that the shell-effects disappear at large temperatures

(i.e. at large excitationenergfes). Some asymptotic relations

between entropy S and excitation energy E® can be obtained in

365

which the ground state shell-correction appears as a parameter[27].

Ramamurthy gﬁ_gl.[ZB] have used this fact and proposed a method
to extract the shell-correction energy by calculating S and

£*for large temperatures and extrapolating their average parts
back to zero temperature. The shell-corrections found in this

way for a Nilsson model spectrum agreed well with the values
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of SE given by eq.(3.7). In order to find unique values one
has, however, to use the same kind of curvature-corrections as
in the Strutinsky averaging method. 1In fact, one can show that
the two methods are analytically equivalent, as was established
independently by Kolomiets [18] and Bhaduri and Das Gupta [29]
The fact that the average quantities obtained in the temperature
method have to be extrapolated back to zero temperature, makes
evident that the Strutinsky smoothing leads to a cold average
(i.e. without excitation). This can also be seen qualitatively
from eq. (3.5) above (see also ref. [13]). With the identifica-
tion ¥ =T, the Strutinsky-smoothed energy E(3.2,3.5) fulfils

an equation analogous to the equation for the free energy

= F - - , d
F=E TS—Eifini-TT. (3.10)

Thus, the quantity g% in eq. (3.5) corresponds to the nega-
tive entropy. If, however, the plateau-condition (3.8) is ful-
filled - which is only possible for curvature-corrections with
M>0 - this entropy is zero.

The temperature method has the same deficiency as the Stru-
tinsky averaging in finite depth potentials, due to the continuum
region, and is not more practical in use than the 1atterﬂ

A method, which also relies upon statistical mechanics,
but is formulated in a different mathematical way, was proposed
by Bhaduri and Ross [31] and further developed by Jennings and
Bhaduri [32, 33]. It consists in expressing the level density,

the particle number and the single particle energy sum in terms

of the partition function and expanding the latter in a series of

powers of 4 . Such asemiclassical expansion is indeed possible
for any smooth local potential and has been developed by Wigner

and Kirkwood (34]. Using only the first few terms of the expanded

* :
) For a compilation of several practical realizations of the

temperature method, see Ref. (30] .
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partition function, one obtains the average parts of level den-
sity and single-particle energy sum. These average quantities
have been shown [32]to be the same as those obtained in the ex-
tended Thomas-Fermi model [35,36] or those obtained by Balian
and Bloch [37] in an asymptotic expansion for large nucleon
numbers. The partition function method allows to determine the
average single-particle energy E to an accuracy of less than
~1 MeV for an arbitrarily deformed realistic local potential.
The inclusion of a spin-orbit potential is possible [38], and a
generalization of the method to rotating nuclei has also been
proposed [39]. Jennings [40] has shown that for an infinite po-
tential, the partition function method is equivalent to the Stru-
tinsky averaging method, if in the latter the stationary equa-
tion (3.8) and the inequalities (3.9) for the smoothing width
Y. are fulfilled.

For finite potentials, the partition function method has the

advantage that the continuum region is never used in the nume-
rical calculations. This allows therefore to test the validity
of the commonly practised inclusion of artificial unbound states
in the Strutinsky averaging procedure. Such a test has been done
in ref. [35] for realistic Woods-Saxon potentials, both spheri-
cal and deformed up to a typical saddle point shape of heavy
nuclei. The smooth energies E thereobtained with the two me-
thods for nuclei with A 70 agree within ~ 1MeV . This is also
the order of the uncertainties coming from the truncation of the
semiclassical expansion in one method and from the determination
of the stationary points Yy,, eq. (3.8),in the other method.

An asymptotic expansion similar to that of Balian and Bloch

b7] was proposed for the sum of occupied single-particle energies
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by Bohr and Mottelson f{41] :

N 2 1
:E: £ =aN +aN 13 4 aN /3, a g+ ... +3E,
=1 (3.11)

where a ,a . are constants which depend on the form of the

s
potential, and 3E 1s the shell-correction collecting all oscilla-

ting terms. The volume coefficient a, is determined by the

A
Thomas-Fermi result for the smooth energy, and the surface
coefficient has been given by Siemens and Sobiczewski L[42]

in terms of phase shifts. For the curvature coefficient a.

no general analytical expression has been given so far; it

may however be found by a numerical fit for the smooth part

of eq. (3.25). This method is, however, met with some difficul-
ties for realistic, deformed potentials. For spherical Woods-
Saxon potentials without spin-orbit terms, numerical calculations
of the coefficients in eq. (3.11) are in progress [43] . Since
the results depend only on the occupied bound states &; (ig£N),
such calculations give also the opportunity to check the Strutin-
sky-averaged energies in finite potentials (see the discussion

above).

4. NUMERICAL TESTS OF THE ENERGY THEOREM

4.7.Usual sheli-correction expansion

In this section we will discuss numerical calculatjons per-
formed in order to test the basic assumptions of the shell-cor-
rection method within the Hartree-Fock (HF) framework. We have
earlier [20] presented some results obtained with the Skyrme

effective interaction SIII for nuclei in the rare-earth region.



VALIDITY OF STRUTINSKY METHOD 369

These calculations have since been extended (see also ref. [44] )
to a larger number of nuclei and to other jnteractions as Skyrme
IT and the interaction of Negele in the density matrix expansion
(DME) [45]1 . We do not here need to introduce these interactions,
since they are discussed extensively at this conference.

The idea of these tests is to perform numerically the pro-
gram outlined by Strutinsky [2] to justify the shell-correction
method, as discussed in sect.2 above. Let us first summarize

the different steps involved and their practical realization.

1. Full HF calculations are performed for different nuclei.
A quadratic constraint on the quadrupole moment Q is used
to obtain selfconsistent deformation energy curves EHF(Q)
(see ref. (461 ). The variational equations are solved
by diagonaljzation of the HF Hamiltonian in a deformed
harmonic oscillator basis 1«27 . Pairing correlations
are included consistently (see ref. [47] ). Hereby the
uniform gap method [2,37, which allows to use one single
parameter A for all nuclei and deformatjons, was applied

in determining the pairing strengths Gn for protons and

P

neutrons.

2. At each deformation qQ of a given nucleys, the selfconsi-
stent density matrix o is nymerically smoothed ysing the

Strutinsky averaging method to obtain
Sap = 2 < 112 <1 18> Ry (4.1)
t

(1ndependently both for protons and neutrons). Here ﬁi
are the occupatjon numbers defined by eq. (3.6) in tefms
of the HF single-particle energies € and <i lu» is the
projection of the 9i-th HF single-particle state on the
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basis state Ix> . (Note that with 81, we mean always the
variational energies which contain contributions from the

constraint, and not the physical removal energies!)

3. From the average density matrix é an average HF-Hamjl-
tonian ("shell model" Hamjltonjan) jis calculated and its

A
eigenvalues &; found by diagonalization.

4, The average energy E, defined analogouysly to eq.(2.14)
including the rearrangement terms, and the first order
shell~correction SE] eq.(2.13) are explicitly calculated
and can separately be compared to the LDM energies and

shell-corrections obtained in the wsual approach.

5. By taking the difference between EHF and the sum of E and
3E1, one obtains the sum of all higher order shell-correc-

tions, which we here call &F,:

Ewp = E + 5E1 + 3E2 . (4.2)
Explicit expressions for all these quantities, including the
constraint and pairing terms, have been given for the Skyrme

force in ref. [20] and need not be repeated here. In the Stru-
tinsky averaging of the spectra Ei and i;i’ the stationary
condition (3.8) is used so that no single parameter enters the
decomposition (4.2) of the HF energy. We shall in the following
present some selected results, which supplement those of ref. [20]-
An extended compilation of all results with discussions of the

technical details will be published elsewhere [48].

Fig. 1 shows different deformation energy curves calculated for

2

the nucleus 40Pu with the interaction Skyrme III. The solid line

is the HF energy EHF which has been published before [49]. The
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Fig. 1: Deformation energy curves of 240Pu obtained with the

Skyrme III interaction. Q 1is the mass quadrupole moment in

barn. Pairing is included. Solid line: HF energy Eyp. Heavy

dashed line: average energy E. The thin lines are LEE deforma-

tion energies. The dashed-dotted curve ELD is taken along the (0)
path 62 s 04 in deformation space as £ ." The dashed thin line ELD

is taken along the LD-valley (see text), leading over the LD
saddle point.

heavy dashed curve is the smooth energy E obtained in the way outlined
in sect.2 (see eq.(2.14)). It exhibits none of the shell-structure

of the HF curve, but is very smooth as a function of deformation

with one minimum at spherical shape. The energy E thus behaves very
much 1ike a LDM energy. The small wigales around the deformation of
the ground state and the first barrier of the curve EHF(Q) are ex-

plained by the fact that the path in the deformation space, along
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which E is obtained, does not follow the path of lowest energy
in the LDM energy surface (the so-called "LD-valley"). This is
demonstrated with the two thin curves in fig. 1. They are calcu-
lated with a simple liquid drop model consisting of surface and
Coulomb energy only, using the Myers-Swiatecki LDM-parameters [lﬂ.
The thin dashed line Eﬁg) is the energy along the LD valley going
over the "true" saddle point (limiting the shapes to Pz and ﬁ4
deformations only), whereas the dashed-dotted line ELD(QZ,Q4)

is calculated along the same path (Qz, 64) along which the smooth
energy E has been obtained. The wiggles and the barrier height
in the latter curve are well reproduced by this LDM calculation.
There js, however, a smooth discrepancy of ~1 - 2.5 MeV between
the two curves around the first barrier region, which may be Jue
to one or several of the following reasons. In comparing the
curves E and ELD , one should remember that the HF wavefunctions,
which are Slater determinants, are not eigenstates of linear

and total angular momentum. Consequently, the HF-energy

contains spurifous center of mass motion and rotational contri-
butions (see also refs. [491 ). The average parts of these
spurious energies are also contained in the quantity E, but
certainly not in the experimental binding energies to which

the LDM parameters are fitted. Their magnitude and deforma-

tion dependence are not easy to determine, but an estimate of

~ 2-3 MeV of the rotational energy around the ground state

and isomer minima is reasonable [491 . Other effects on the

HF energy curve in 240Pu might come from dynamics, the un-

known dependence of the pairing strength on deformation and,
technically, from the truncation [49) . A1l these effects go
aiso into the smooth energy E (and are not, as in the Strutinsky
method, renormalized on the average!) Bearing this in mind, one
may consider the curve E(Q) to be fitted reasonable well by a

standard LDM calculation.
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Fig. 2: First order shell-correction BE] and sum of higher
order corrections SEZ of 240Pu (Skyrme III). (Note that the

scale of SE, is twice as large as that of SE]S) The thin
dashed curve® E] is obtained from a standard Woods-Saxon
potential.

Fig.2 shows the shell-corrections 5E] and 5E2, defined by eqs.
(2.13) and (4.2), for the same case. Clearly 5E] contains all
important fluctuations of more than 15 MeV, whereas 5E2 oscil-
lates by less than ~ t1Mey around a constant average yalue of
~0.5 MeY (Note that the scale of 6E2 is twice as large as

that of 6E]1) In the lower part of fig. 2(dashed curve) is
also added the shell-correction SE] obtained from a Woods~Saxon

potential used in extended Strutinsky type calculations [3,6] .
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1t does not agree very well with the curve 8E, extracted from
the HF calcylation. This {s, however, not surprising, since
the Skyrme - HF results overestimate the barriers of 240Pu-
partially dueto the various effects mentioned above - whereas
the Woods-Saxon-Strutinsky calculations give the correct expe-
rimental barrier heights[3,6] . (In both calculations presented

here, only axially and left-right symmetric shapes are considered).

——— HF Skyrme I

10 -
—_ - HF M
[MeV] Negele DME
5 — - — Woods -Saxon
-~ =
0
-5 _ 1 1 1 - 1 1 1 1—
-20 0 20 40 [b]

Fig. 3: The same as in fig. 2, but for ]68Yb and both the inter-
actions SIII and Negele-DME. (Note the different scales for SEI
and $ Ezf) The parameters of the Woods-Saxon Strutinsky calcu-
lation “(dashed-dotted 1ine) were not fitted to this special case.
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Fig. 3 shows the shell-corrections Y E] and 8E2 obtained

for the nucleus ]68Yb

both with the Negele-DME and the
Skyrme SIII interaction. (See fig. 7 below for the Skyrme III
curves Eqp and E and ref.(44] . for the DME curves). Here,
too, the oscillations in SE2 are much smaller than those in
SE], amounting in the upper case to + n 1 MeV. Furthermore,
both quantities obtained with the two different forces agree
within 1.5-MeV at all deformations. This seems to indicate
the weak dependence of the shell-corrections on the detailed
form of the interaction. The dashed-dotted curve E]
obtainedfroma standard Woods-Saxon-Strutinsky calcula-
tion (not fitted to this special purpose!) agrees very well
with those extracted from the HF results, especially with the
SII1 force. This excellent agreement might be accidental;
it rroves, however, at least that the averaged effective HF
potentials V(g) may very well be fitted by a Woods-Saxon poten-
tial.
The results presented so far, which were confirmed for
o ther nuclei and also with the force Skyrme II (see refs.[20,
467 and also fig. 6 below) allow us to draw the fol owing con-

clusions.

1) The shell-correction expansion (4.2) converges rapid-
1y for heavy and medium heavy nuclei. The sum of
all higher-order shell-corrections 6‘E2 fluctuates
not more than ~ ¥ 1 MeV as a function of both defor-

mation and nucleon number in nuclei with A 2 100.

2) The first order shell-corrections 3E1 contain
therefore all important fluctuations. 1In parti-
cular, the locations of the stationary points of the
deformation energy curves are correctly reproduced

by the sum of E and 551.
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3) The average energies E found numerically are smooth
as functions of deformation and have all the ex-
pected features of LDM energies, This by itself
confirms the adequateness of the Strutinsky averag-
ing procedure in defining the smooth density matrix
? eq.(4.1).

4) The neglection of the higher order corrections 5‘E2
would affect the barrier heightsin heavy nuclei by
not more than ~1 MeV; it would not affect the e-

quilibrium deformations at all.

5) The two well-known deficiencies which occurred in
most shell-correction calculations, the so-called
"Th-anomaly" (the inner barriers of Th-isotopes are
~2 MeV too high) and the “Pb-anomaly" (the ground-

208pp is too Tow by~2 - 5

state shell-correction of
MeV if finite depth potentials are used), can there-
fore not be explained by the neglection of higher-

order shell-corrections.

6) In transition regions between spherical and deformed
nuclei, where the first-order correction <;E1 is small,
the higher-order terms might be decisive for finer
details of the energy surface, 1ike e.g. the prolate-

oblate energy differences.

7) The constraint problem mentioned {in sect. 2 has been
settled in ref.[20] by doing the above numerical

test both with and without including a constraint in
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the averaged Hamiltonjan (2.70]. The changes in

f and 6E1 were completely negligible and the

higher order term 5E2 was changed by Jess than ~0.5
MeV. This proves that a shell-correction calculation
without constraint 1{s correct and closely reproduces

the HF-energy also at deformations off equilibrium.

8) The obtained results for the average energies E may
be used to determine the "effective 1iquid drop para-
meters" of the interaction used. Some crude fits
in medium and heavy nuclei indicate that the surface
energy coefficient of the force Skyrme III could be
close to the 1966 Myers-Swiatecki value a =18.56 MeV [15];
that of the Negele-DME force (without starting energy

corrections) is somewhat larger.

It is interesting to perform similar calculations for

1ight nuclei, because one cannot a priori expect the separation
of the total energy into a liquid drop and a shell-correction
part to work well in light nuclei. We have done some CHF cal-
culations for the nucleus 40Ca using the Skyrme III interaction.
Since the strength of the pairing interaction is not well known
in this case, we have done the calculatjons both without and
with inclusion of pairing. In the latter case two different
values of the constant average gap 5 have been used: Z= 1 MeV
and Z = 2 MeV, corresponding to the roughly constant pairing

strengths G ~03.50 MeV and 6 = 0.63 MeV, respectively. In the
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Fig. 4: Deformation energy curves of 4OCa obtained with the

Skyrme III interaction. HF energy and average energy_ E as_in

fig. 1. Three different pairing constants are used (2=0, X=1 MeV
and X=2 MeV). In the.case without pairing, the three branches of
the curves correspond to three different configurations (np,nh)
with n particle-hole excitations with respect to the closed (s,d)-
shell core of the ground state.
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case without pairing, 3 different configurations were consider-
ed in different regions of the axially symmetric deformations,
namely the closed s-d-shell as the ground state configuration
(0 particles, 0 holes), the configuratfon with 2 neutrons and

2 protons in the 1f7/2. K = 3 state (4p,4h) and the one with
additionally 2 protons and 2 neutrons in the 1f7/2, K= 3/2
state (8p,8h).

Fig. 4 shows the HF energies together with the ayeraged ener-
gies E versus the quadrupole moment QZ' We see that the secon-
dary minima of the (4p,4h) and the (8p,8h) configurations are
washed out already for a rather weak pairing constant ( A< 1MeV).
The energy curves E(Qz) behave 1ike LDM curves also in this case,
It is not surprising that the three branches in the case without
pairing do not join smoothly, since the corresponding HF
curves go along different paths in deformation space. The two
curves E(Qz) obtained with pairing closely agree: they differ
only by the increase in the average pairing energy which is con-
stant as a function of deformation and depends quadratjcally on
the average gap 5 .

Fig. 5 displays the shell-corrections 5E1 and JEZ for the
same three cases.(In contrast to figs. 2 and 3, both quantities
are plotted in the same scale here!) It js jmmediately strik-
ing that the two quantities are of the same order. Even when

the pairing is used to smooth out the cusps, 5E2 oscillates

by almost the same amoynt as EE]. Furthermore the oscilla-
tions of the two quantities are of opposite phases, such that
the neglectijon of 6E2 would lead to a drastic overestimation

of the shell effects (at most deformatjons by more than 100%).

We can conclude that the shell correctjon expansion (4.2)
converges much slower in this case than fn heavy nuclei, such

that the higher order corrections may not be neglected. If
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Fig. 5: First order § E] and sum of higher order shell-correc-
tions SEZ obtained for 40Ca with the 3 different pairing strengths
(Skyrme III interaction). Note the opposite phases of the oscilla-
tions in SE] and BEZ.
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the shell model (e.g.Nilsson model) energijes are to be jdenti-
A

fied with the Si , this should give a warning to the blind

application of the shell-correction method to the region of

light nuclei (see e.g. ref. [507 ):

4.2. Taylor series expansion

At the end of section 2, we have indicated the possibjlity
of making a Taylor expansion of the HF energy functional EHF(9)
around the averaged value \9 of the density matrix. This Jeads
to an alternative form of the shell-correction expansion for
EHF’ which we rewrite here for convenience:

E. (o) = E(3) + O WFA8Q - atrer UEp. (4.3
wr(g) = E(§) + oF,
In this equation wh{ch is exact for a density independent two
body force U, EE?F is the first order shell-correction defined
in the usual way but in terms of the constrained HF single
particle energies E‘1 (see eq.(2.20)) and SQ is the shell-

correction to the quadrupole moment:
8 =q-§ = tridg. (4.4)
Although the term A&Q fn eq.(4.3) is formally of first order

in 5}, one can expect it to be rather small. From calculations

with shell model potentials, one knows that J&Q is of the order

of ~1 - 2 barns (see ref. [3]1). On the other hand, the Lagrange

parameter A , which is equal to the negative slope -dEHF/dQ

381

of the HF curve EHF(Q)’ is not larger in magnitude than ~1 MeV per

barn in medium and heavy nuclei, so that AdQ is of the order

of +e~1 - 2 MeV.
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We have checked numerically the different terms in eq.(4.3)
It turned out that E(§) 1s close to the quantity E above, the
difference being not larger than 0.5 - 1 MeV. This is 41]u-
strated in Fig. 6 for the nucleus ]SOCe, calculated with the
force Skyrme II. The solid and dashed lines show EHF and E

versus the (mass) quadrupole moment Q,, as in the figures above.

-1180

-1185

-1190

Fig. 6: The same as in fig. 1, but for 150Ce and the Skyrme III
force (no LD calculation shown). The crosses show the results
for the average energy E(().

The crosses indicate the values of E(§). The smooth bump
in the curve E(Q) around the spherical point may be partially
due to the anomalous behaviour of the Coulomb energy, which
is connected with a slight breathing of the HF solution at these

small deformations (see ref. 1461 ).
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Numerically, the quantity E(§) turned out to be much more
sensitive than E to the optimization of the basis parameters,
the convergence of the HF result and the uncertaintjes discussed
in sect. 3 in solving the statfonary equation (3.8) which de-
termines the smoothing width Yo Similar results for E(§) as

shown in fig. 6 were also obtained in all the other nuclei considered.

In calcuylating the shell-correction EE]HF from the HF
spectrum £, , we found in all cases that 1t agrees within
less than ~ 0.5 MeY with the sum of the quant1t1es‘ 5E1 + éEz
discussed above. (Remember that JE] is defined in terms of
the eigenvalues gi of the averaged single particle Hamjltonian).
The expansion (4.3) conyerges more rapidly than the standard
shell-correction expansion, eq. (2.12), although it is numeri-
cally less stable.

This result is not of much practical use, since one needs
the HF results to calculate <5ETF . But it illustrates the
fact that by a suitable definition of the average energy and
the first-order shell-correction the sum of the remaining
corrections may be minimized. A more interesting way to achieve

this is discussed in the next section.

4.3. Selfconsistent averaging

Another way of obtaining the smooth part of the total
energy, which might have some practical consequences, is to
perform the averaging of the density matrix in a selfconsistent
way. The possibility of introducing a selfconsistent average
energy has indeed been discussed theoretically by Tyapin [51]
in connection with the Strutinsky energy theorem, but no nume-
rical calculations were done. We present here some new re-

sults along these lines.



384 M. BRACK, P. QUENTIN

The (curvature-corrected) average occupation numbers

ﬁi (3.6) can, in fact, be included in the iterative solution

of the HF variational equation, as was discussed in a general
way by Vautherin [47] in connection with the pairing treatment.

This leads to a selfconsistent average energy [

E(3) = tr Tp + ptrtr VUG, (4.5)
The selfconsistent average potential V is defined by
V=trgV, (4.6)

and the variational equation has the form

~ ~

L1+ V+Xal§ = & §; (4.7)
with the condition
tr<‘1§ =62 (4.8)

for the constraint. (We have here, again, for simplicity
written the formulae for a density independent force. Eqs.(4.5,6)
can, however, immediately be reformulated for the Skyrme and
Negele - DME forces.) The density matrix § is defined exactly
in the same way as ® in eq.(4.1), but in the following we
shall use the tilde "~" for the selfconsistently averaged
quantities. The constraint in eq.(4.7) has to be uéed to fix
the quadrupolée moment 61(4.8). If it were missing, the solu-
tions of @qs.(4.5)-(4.7) would always have spherical symmetry,
since the energy E (4.5) has the properties of a LDM energy.
In Fig.7 , the HF energy Equr (thin solid 1ine) and the

average energy E (thick solid line) are plotted against the



VALIDITY OF STRUTINSKY METHOD

T T T T T T T
168
®yb sm
—— Ew l
-1320 _
-1330 — ~ E (approx.) -
— E (self-
( MeV ) (tszgnsistent )
1 1 1 1 1 1 1 1
-20 0 20 40 (b)

Fig. 7: Deformation energy curves for ]58Yb obtained with the

Skyrme III force. The thin solid line_is the HF energy and the
heavy dashed line the average energy E as in figs. 1,2,4 and 6.
The heavy solid line is the selfconsistent average energy E and

the thin dashed line is the approximation (4.10) to the HF energy.

168

quadrupole moment Q2 = 52 for the nucleus Yb  (Skyrme III

force). The energy E, obtained as in the other calculations

presented above, is shown by the heavy dashed line. It is
striking that the two Smooth curves agree with each other with-
in less than 0.5 MeV over the whole range of deformations.

This shows that the a priori not selfconsistent density matrix

§, extracted from the HF solution, in fact is very close to

the selfconsistent density matrix § .

385
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The thin dashed line in fiq. 7 shows the sum of the
smooth energy £ and the first order shell-correction SE](Ei)

which is defined in terms of the solutions of eq.(4.7):
- N ~
SE(§)) = 2 &, - ZEN, . (4.9)
i=1 i

The sum E + SE1(§1) agrees surprisingly well with the HF

energy E”E; the deviation is less than 500 keV at all defor-
mations. The energy differences between the stationary points
are even better reproduced (within~ 300 keV) by this approxi-
mation. Similar results are also obtained for 40Ca s, Wwhich
is remarkable in view of the size of 5E2 found in Fig. 5
with the non-selfconsistent average density §3.

With the same arguments as used in deriving the energy
theorem in sect. 2, one can show that the sum of E and 5-E](§i)
is equal to the exact energy EHF up to second order terms in
the difference () -§. The fact that these terms add up to less
than ~ 0.5 MeV is so far not clearly understood and the excel-

lent quality of the approximation

Ege = E + SE,(E)) (4.10)

HF

has to be taken as a numerical result. More detailed discus-
sions and further results will be presented in a forthcoming
publication [48]. /
Let us summarize these results and draw some conclusions.
1) The average density matrix 9 obtained by the non
selfconsistent averaging of the HF density matrix is

found numerically to be very nearly selfconsistent.

2) The shell-correction expansion of the HF energy con-
verges better when the averaging is done selfconsis-

tently. The exact HF energy is perfectly well repro-
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duced by the sum of its first two terms, see eq.(4.10),
the error being less than ~ 0.5 MeV even in the rela-

tively light nucleus 4OCa.

3) A practical application of eq.(4.10) might consist in
calculating iteratively the selfconsistent average
energy £ eq.(4.5) in a semiclassical model, such as
the extended Thomas-Fermi model discussed in sect. 3.
If this can be done with a sufficient numerical accu-
racy, a standard Strutinsky calculation added at the
end would give an excellent approximation to the exact
HF energy. Such a procedure - if technically realiz-
able - would provide a fast and economical way to go
around the very time consuming constrained HF calcu-
lations. Investigations along these lines are in

progress.

4.4 Results of other related calcylations

Bassichis gg_gl.[]0,19] performed first-order HF calculations
with the Tabakin potential [52] which, in contrast to the effect-
ive interactions of Negele and Skyrme,is a realistic free nucleon-
nucleon potential. In ref. [10] a program for testing the Strutin-
sky method was outlined, which is essentially based on the energy
theorem (2.12) and differs from the one used in sect. 4.1 only
in the explicit form of some second order terms. We shall not
comment here on the conclusions drawn from a not selfconsistent
test [531 , where Nilsson levels and LDM parameters were fitted
to some HF results.

In a more recent paper, Bassichis et al. [54] presented re-
sults of the selfconsistent test outlined in ref. [10] , using
a HF deformation energy curve obtained for ]osRu with the Tabakin

potential. The averaging of the density matrix @ was, however,
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performed using BCS occupation numbers with a yery large gap

(A~5 - 12 MeV). Such a smoothing without curvature-corrections

fntroduces some excitation in § and the average energies derived
from it, as discussed in sect. 3, and is obviously not consistent
with the averaging used in extracting the shell-correction JE]
from the spectrum €1 . Consequently, all results strongly de-
pend on the value of the smoothing gap & , which is clearly seen

in fig. 2 of ref. [541 . Apart from this smooth dependence, the
sum of all higher order corrections obtained there oscillates by

~¥ MeV. Taking further into account that no pairing correlations
were included in the HF calculation of ref. [54], these results
are consistent with the ones presented in sect. 4.1. Unfortunate-
1y, no plot of the average energy E(Q) was shown in ref. [54]

and the constraint problem (see sect.2) was not considered.

Prior to all these HF‘tests. Bunatian et al. [47 calculated
the second order shell-corrections 552 in a way which does not
require any HF results. This is in fact possible, as shown
in ref. [4]1. Extending the perturbation treatment which Jeads to
the energy theorem (2.12) to second order, the quantity 6E2
(which here, in contrast to sect. 4.1, does not contain terms of
third or higher order 1n§ﬂ can be expressed in terms of the
shell model density § and the scattering amplitude. Bunatian
et al. [4] applied this to the Fermi liquid theory of Migdal [55]
and calculated EEZ using Migdal's quasiparticle amplitude and
spherical Woods-Saxon shell model densities for a series of nuclei
around 208Pb. The results for 8[2 vary from ~0.3 MeV to ~ 3.4
MeV for the nuclei considered (76 < Z < 88 and 120 € N € 132).
Except for those nuclei far away from 208Pb for which a spherical
shape might not be appropriate, the fluctuations in GEZ do not
exceed ~1 MeV. This result is consistent with what was found in
the HF calculations described above, although obtained from a

rather different point of view.
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5. Conc]us1pns

We have seen that in three independent sets of calculatjons
the second and higher order shell-corrections are found to con-
tribute not more than ~ 1 MeV to the fluctuations in the total
energy of medium and heavy nuclei. This has to be compared with
the typical values of + ~10 MeV of the first order shell-correc-
tions on one hand, and with the uncertainties in extracting
those from a given single particle spectrum on the other hand.
These uncertainties were discussed in sect. 3 and are of the
order of 0.5 - 1.5 MeV in finite depth potentials. We can thus
conclude that the hjgher order shell-correction terms do not
play an important ro]e‘in most cases.

Different definitions of the average part of the HF energy
lead for 40Ca to different results for the higher order terms.

A definite conclusion would therefore be premature for this nuc-
lTeus.

The liquid drop like behaviour of the average energies ex-
hibited in extensive results of sect. 4 and the smallness of
the higher order corrections show that the Strutinsky method
works well in medjum and heavy nuclej and reproduces deformation
energies obtained from HF calculations within ~1-2 MeV. When
the average energy and the average potential are calculated self-
consistently, the higher order terms are found to be completely
negligible even in the nucleus 40Ca. It will be a task for the
future to construct 1jquid drop models and shel) model potentials
which fit as closely as possible the"ideal" ones extracted from
HF results.

The comparfson of the results obtained with different effec-
tive interactifons seems to suggest that the shel]l effects are

less sensitive to the details of the interactjon but are determin-
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ed by the shape of the average potential, whereas the interac-
tion 1s important for the average energy, i.e. for the LDM
parameters. This has, however, to be confjrmed by similar cal-
culations with finite range forces.

The results discussed in this talk might also have some
practical applications in the search of approximative ways to
calculate static deformation energy surfaces for a given effecti-

ve interaction without going through the heavy and time consu-
ming constrained HF calculations. One such way is to extract
the optimal shell model and LDM parameters from HF calculations
for some selected nuclei and deformations and to use those in
normal Strutinsky calculations for extrapolations to other re-
gions. Another way, strongly suggested by the numerical results
presented in sect. 4.3 and already discussed there, would be
to solve the selfconsistent problem for the average energy in
some semjclassical approach and to add a Strutinsky calculation
at the end of it. Another related approach has recently been
proposed by Ko et al. [563 , in which the shell model wavefunc-
tions obtained in standard Strutinsky calculations are used to
calculate the expectation value of the many body (Skyrme) Hamil-
tonian. Especially for light nuclei, this method gives results

rather close to those obtained in HF calculations.

The overall uncertainty of ~1-2 MeY in the usual shell-correc-
f1on results, which may be concluded from these HF tests, is con-
sistent with the fact that most experimental fissfon barriers and
ground state mass corrections are reproduced within ~1-2 MeV in
different Strutinsky calculations using various shel]l model poten-
tials and rather different shape parametrizations.

We should finally like to mention that the Strutinsky method
has also served as a basis in statistical calculations of excitation

energies, entropies and level density parameters (see e.g.ref. [57]
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and references quoted therein). The quiet assumption in such cal-
culations is that the shell model and Jiquid drop parameters do not
significantly depend on the nuclear temperature,

This has been jnvestigated recently in some constrained HF
calculations with inclusion of finite temperatures [581 . It
was found that, indeed, the dependence of the selfconsistent field
on the temperature is very weak and that the use of the level spectra
obtajned - at zero temperature in calculating the entropy as func-
tion of excitation energy leads to an excellent approximation of
the selfconsistent quantities. This result is in close relation
to the one presented above in sect. 4.3, where the Strutinsky averag-
ing was included selfconsistently. The connection between these two

subjects is being further investigated [48] .
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