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Abstract 

Start i n g from the energy density formalism with 
e f f e c t i v e Skyrme forces,we show how a l i q u i d drop 
model l i k e expansion of the nuclear binding energy 
can be systematically obtained. For a model Skyrme 
force with constant e f f e c t i v e nucleon mass, a l l 
l i q u i d drop parameters of symmetric nuclei can be 
given a n a l y t i c a l l y i n terms of the Skyrme parameters-
Numerical tests of the leptodermous expansion are 
presented. 

1. Introduction 

The recent development of Hartree-Fock (HF) 
c a l c u l a t i o n s with e f f e c t i v e nucleon-nucleon forces 
of the Skyrme type 1^ on one hand and of the extended 
Thomas-Fermi (ETF) model for nonlocal potentials with 
va r i a b l e e f f e c t i v e mass and spin-orbit terms 2 / 3> on 
the other hand have made i t possible to describe 
average nuclear bulk properties l i k e binding and de
formation energies, r a d i i and density d i s t r i b u t i o n s 
purely s e m i c l a s s i c a l l y using the energy density f o r 
malism. As was recently shown average HF results 
of such q u a n t i t i e s are hereby reproduced rather 
accurately without the use of any adjustable para
meters, but i n a much more economical way since no 
wavefunctions have to be calculated. This allows us 
to make contact between the HF-Skyrme approach and 
l i q u i d drop model parametrizations of average nuclear 
binding energies. More concretely, i t i s possible to 
determine the l i q u i d drop parameters of a given 
Skyrme force rather accurately using the r e s u l t s of 
the s e m i c l a s s i c a l model. 

In t h i s paper we show how the use of an adequate 
system of c u r v i l i n e a r coordinates allows to obtain 
systematically the "leptodermous" expansion of the 
average binding energy, which holds as long as the 
surface d i f f u s i v i t y i s small compared to the (l o c a l ) 
curvature radius of the nuclear surface. From t h i s 
expansion i t i s possible to discuss i n d e t a i l the 
dependence of the binding energy both of nucleon 
number and of deformation. 

5,6) 
Similar studies were already done some time ago 
However, no s u f f i c i e n t l y r e a l i s t i c energy den

s i t y functional was a v a i l a b l e at that time. With the 
development of the Skyrme forces ^ and the level of 
s o p h i s t i c a t i o n reached for the ETF density f u n c t i o 
n a l to date, i t seems worth while to resume 
t h i s i n v e s t i g a t i o n once again, keeping i n mind that 
one i s s t i l l i n need of more r e l i a b l e sets of l i q u i d 
drop parameters for the extrapolation to unknown 
regions of n u c l e i . 

2. I n t r i n s i c nuclear shape coordinate system 

The experimental fact that the nuclear surface 
d i f f u s i v i t y i s nearly independent of the nucleon 
number and thus of the curvature allows to approxi
mate the nucleon densities to be functions e s s e n t i a l 
l y only of a coordinate along the normal d i r e c t i o n to 
the equivalent sharp l i q u i d drop surface, once i t s 

deformation has been f i x e d . It i s thus natural to 
introduce a system of c u r v i l i n e a r coordinates such 
that two of the coordinates describe the sharp sur
face for each given shape of the nucleus, while the 
t h i r d measures the distance from the surface. Such 
a coordinate system has been introduced i n r e f . 5 

for completeness we r e c a l l here i t s main features. 

R e s t r i c t i n g ourselves to a x i a l l y symmetric 
nuclear shapes, we define p = f ( z ' ) to be the gene
ratin g curve for the sharp surface. The normal to 
the surface i s the new v a r i a b l e u ( p o s i t i v e outside 
and negative i n s i d e ) , and the v a r i a b l e z i s the z' 
coordinate of the surface point (u = 0) (see F i g . 1). 

IPX) 

F i g . 1: A x i a l l y deformed nuclear shape. 

Thus the ranges of these coordinates are ue[-R 2, + °°) 
and z e f z j , z 2 ] . The volume element i n the orthogonal 
set of coordinates (u,z,cp) i s 

d ) 
with the Jacobian 

9(u(EW<f + £)(u + R 4); «> 
Rl and R2 are the main curvature r a d i i . 

Our approximation to the semic l a s s i c a l nucleon 
densities i s that they only depend on the v a r i a b l e u. 
As found i n the v a r i a t i o n a l cacluations of ref. 
Fermi functions minimize rather well the s e m i c l a s s i 
c a l Skyrme energy i n the spherical case. We thus 
parametrize the d e n s i t i e s as follows 

(a)-
ft (3) 

Thus, we allow the protons and neutrons to have d i f 
ferent (but " p a r a l l e l " ) surfaces with a radius d i f f e 
rence 2A. This leaves us, together with an o v e r a l l 
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scale parameter (e.g. 2c = Z j • z 2 ) , with 6 parame
t e r s , two of which are eliminated by the p a r t i c l e 
number conservation. The other 4 parameters are deter
mined v a r i a t i o n a l l y by minimizing the t o t a l energy 
(see eq. 5 below). In c a l c u l a t i n g the Skyrme energy 
density e [ p n , p p ] with the s e m i c l a s s i c a l k i n e t i c 
energy density functionals t[p] and J[p] (see 
r e f s . 2' 3*, we need also the f i r s t and second d e r i 
vatives of pqCr). In the present coordinates, one 
obtains simply 

(11) 

(4) 

— +
 A 

3. Liquid drop expansion of the energy for symmetri-
c a l nuclei 

We now proceed to ca l c u l a t e the t o t a l energy for 
symmetric nuclei (with p n = p p = 1/2p): 

E - 2nrJcLa ^ 9(u.,st) eT^Ca)] CUL (5) 
i n the so-called "leptodermous" approximation, i . e . 
i n the l i m i t where the radius R2 i s everywhere 
large compared to the surface d i f f u s i v i t y a = a p = a n: 

(6) 

Then the lower l i m i t of the u-integration in eq. (5) 
(which, i n f a c t , i s the only reason for the i n t e g r a l 
not to separate i n u and z!) can be p r a c t i c a l l y re
placed by - » for a l l contributions except the one 
which gives the volume energy. We therefore separate 
the l a t t e r out i n w r i t i n g 

where the functions, 96 and (J may only depend on p 
and Vp, one gets 

b0 -J{£(u)*9(u)y-cu)+aeto[yv)f 

-a v ?(iOjdu ; h!,-j((u?tu)+9fu)j>,(u) 
• oo 

+ I & (u) s *(u) ?V) -ua v $(u) ? ol u ; 

+1*«(u) C?'(u)]z - u*av ?fu) j da. 
In eqs. (11), the primes on p denote de r i v a t i o n with 
respect to u. In a r r i v i n g at t h i s r e s u l t , we have 
neglected a term 

2< 4 \ 
whose deformation dependence i s more complicated than 
that of the above simple invariants C,S or a constant. 
However, t h i s term i s seen to be exactly zero i n the 
spherical case and n e g l i g i b l y small otherwise. 

In order to sort out the deformation and nucleon 
number (A) dependence of S and C, we must now impose 
the conservation of A. We introduce i n the usual 
manner the shape functions B$ and B^, which are nor
malized to unity for the spherical case, by defining 

C - Hie R . 
With that we get 

E =• QyA + AEj Qv -EZ^qI/^j (7) from where we f i n d i n a very good approximation 

(13) 

(14) 

where pQ i s the density at the centre. The correction 
AE i s then approximately 

A ^ - ^ L l

A - % B c (15) 

1/3 

AF * 2% Jclajdu^(u^)|&[?]-av^(u)j. (8) 

Here the radius r 0 i s defined by r 0 = (3/4irp 0) 
We now can ins e r t R j / 2 eq. (15) into eqs. (14) and 
ar r i v e with eqs. (7,9) at the following expansion of 
the t o t a l energy: 

Since the i n t e g r a l now can be separated, we obtain 
(16) 

(9) AE «b 0S+2b„Oi*irb a , 
where S and C are the sharp drop surface area and 
t o t a l mean curvature, r e s p e c t i v e l y . 

The c o e f f i c i e n t s b 0, b : and b 2 can be obtained 
once for a l l for a given energy density as functions 
of p 0, a and the force parameters and do not depend 
on deformation and nucleon number A. The main A 
dependence (except a very weak one through p 0 and a) 
and the e n t i r e deformation dependence are contained 
i n S and C. 

The e x p l i c i t expressions for the c o e f f i c i e n t s b n 

are given i n the f o l l o w i n g . Because of the e x p l i c i t z 
dependence (through Rx, R 2) of the Laplacian AqCu.) 
eq. (4 ) we have to s p l i t up the t o t a l energy density. 
Writing 

(17) 

where 

a s -HTrr o *B 5 b 0 , 
a c -8irr 0 B 0 b„ , <18> 

a 0

 s 4 « n ; b ^ - § T r V 2 B s B 0 b e . a9> 
The terms of order A" 1^ 3 and lower contribute less 
than 1 MeV to the t o t a l energy of heavy nuclei and 
are thus p r a c t i c a l l y unimportant. The deformation de
pendence of the energy (16) i s e n t i r e l y contained i n 
the shape functions B§ and Br,. The main A dependence 
of the energy i s also separated out i n eq. (16); a 
very smooth v a r i a t i o n i s , however, s t i l l coming from 
the b n and r 0 through t h e i r dependence on p Q and a. 



4. Dependence of the central density p 0 on the 
nucleon number A 

The derivation of the central density p 0 of 
f i n i t e nuclei from the saturation density of i n f i 
n i t e nuclear matter has t r a d i t i o n a l l y been estimated 
from the saturation condition i t s e l f 5' 6>. The l a t t e r 
i s automatically f u l f i l l e d i f we write the energy 
density of i n f i n i t e nuclear matter i n the form 

Here Koo i s the nuclear incompressibility. For a given 
Skyrme force â J/p*, and are uniquely given constants. 
Now, the v a r i a t i o n a l equation for a f i n i t e symmetric 
nucleus (without Coulomb forc e ) , v i z . 

(21) 

with the Lagrange m u l t i p l i e r A for nucleon number 
conservation, can be solved e a s i l y at the centre of 
the nucleus using the functional e^p) eq. (20), i f 
the surface contributions are a l l exponentially small 
there. Then, the only parameter to be varied i s p , 
and eq. (21) takes the form 0 

-4^ 
(22) 

The A dependence thus comes in only through the Fermi 
energy X. 

Expanding the c o e f f i c i e n t s a v and a s around the 
saturation density p one gets up to order A~ 2^ 3 

(23) 

with 

# OO Z 

a m a + 
c c As we w i l l show below eq. (23) does not reproduce 

very well the central density p 0 found numerically 
with the energy density method. The reason for t h i s 
i s not the inadequacy of the leptodermous expansion 
as such, but the fact that the Fermi type densities 
used above (and i n the droplet model) are not exactly 
solutions of the Euler equations (21). Thus, the 
l o c a l v a r i a t i o n at the centre, eq. (22), does not 
lead to the same result as the global v a r i a t i o n of 
the t o t a l energy with respect to the parameters of 
the Fermi function. 

It i s therefore more consistent to derive the 
central density p from the v a r i a t i o n of the t o t a l 
energy as obtained i n the leptodermous expansion i n 
eq. (16). Neglecting the a dependence (which i s very 
weak, as shown below), we thus write 

dE 
Expanding a v , 
A" 2/ 3, one obtains 

o 
and a c 

0. (25) 

as above up to terms of order 

dermous expansion. 

Based on these r e s u l t s , i t i s easy to derive an 
expression for the in c o m p r e s s i b i l i t y of f i n i t e n uclei, 
which we here define as 

(27) 

(see e.g. r e f . 7 ) ) . i n expanding consistently up 
to order A" 1' 3 one a r r i v e s at 

(28) 

We w i l l see i n the next section that t h i s expression 
agrees very well with the numerical r e s u l t s for 
eq. (27). 

5. Numerical tests for symmetric nuclei 

Before presenting some quantitative t e s t s of the 
q u a l i t y of the leptodermous approximation, we s h a l l 
write down some e x p l i c i t expressions using the t r a d i 
t i o n a l parametrizing of Skyrme forces, r e s t r i c t i n g 
ourselves hereby to symmetric nuclei without Coulomb 
in t e r a c t i o n . The energy density then has the e x p l i c i t 
form 1 } 

• f c ( 3 V 5 y«**jw 0 v V 5 . 
(29) 

The semiclassical functionals x[p] and J[p] developed 
to 4th order i n the t» parameter are given i n r e f . 3*. 
The in t e g r a l s entering the d e f i n i t i o n of the surface 
tension b 0 eq. (11) can a l l be done a n a l y t i c a l l y 3*. 
This i s no longer so for some contributions to the 
parameters bj and b 2 i n eq. (11). However, for a force 
with constant e f f e c t i v e nucleon mass m* = m ( i . e . i f 
$ = 0), a l l the leptodermous i n t e g r a l s i n eq. (11) 
can be done once for a l l and t h e i r e x p l i c i t depen
dence on the density parameters p g and a i s known. g. 
Such a force has been published with the label SVII 
and used i n the present numerical c a l c u l a t i o n s . 

Fig. 2 shows the values of p Q and a obtained for 
spherical nuclei with the Skyrme force SVII as func
tions of the mass number A. The v a r i a t i o n of a, 
less than 1 % over the range considered here, i s so 
weak for the present case that we may replace i t by 

Skyrme a (N=Z=|A ; no Coulomb) 

a, 

80 200 400 A 600 800 1 000 

£ . g-rasteJA-V<(gJA-fr] 
3{ ^ * i K f e.")A*<(«-JA^j 

(26) 

With eq. (26), the central densities found numeri
c a l l y are reproduced within less than tO" 3p 0 for 
A £ 100, thus demonstrating the v a l i d i t y of the lepto-

F i g . 2: Central density p 0 and surface 
diffuseness o versus nucleon number 
A for symmetrical nu c l e i . 

the value = 0.412 (obtained by minimizing the sur
face tension b 0 at p 0 = p^, which e a s i l y i s done ana
l y t i c a l l y ) , without a f f e c t i n g the t o t a l energies by 
more than % 0.5 MeV. Then, the determination of p 0 

can be done as described i n sect. 4 above; the r e s u l t 



quoted i n eq. (26) then s t i l l reproduces the exact 
numerical values p 0(A) within % 1 ° / 0 0 for A > 100. 
The dashed l i n e i n Fig. 2 shows the central density 
obtained by applying the v a r i a t i o n a l equation l o c a l l y 
at the centre of the nucIeus,leading to the usual 
droplet model value 6 ) e = - 2a|A~1/3/K00. 

The values of the i n t e g r a l s eq. (11), taken at 
P 0

 = Poo/ 3 r e 

b0-0.3374 MeV fw"2, 

^ -0.33M7 McV f-m"1 <3o> 

-0.6632 MeV. 

From them and t h e i r v a r i a t i o n s with p 0 we f i n d ( a l l 
q u a n t i t i e s i n MeV): 

(31) 

With that, the leptodermous expansion of the t o t a l 
energy eq. (16), a f t e r expanding out the A dependence 
using eq. (26), becomes 

E « a - A * a ? A z / * * a * A < / j + a t . «2> 

The expression for a* has already been given i n 
eq. (24). The quantity a j receives many contributions 
from expanding a v , a s and a c around ptt; i t s expres
sion i n terms of the qu a n t i t i e s i n eq. (31) i s 
straightforward but cumbersome and has not much prac
t i c a l value, since the parameter a * can not be deter
mined reasonably well i n any least-squares f i t , as we 
s h a l l see below. 

In Table 1 we l i s t the 4 parameters of eq. (32) 
obtained i n the leptodermous approximation along with 
the r e s u l t s of several least-squares f i t s to the 
t o t a l exact energies (obtained numerically from the 
v a r i a t i o n a l c a l c u l a t i o n without any further approxi
mation). We see that, apart from the ambiguities of 
such f i t s themselves ( e s p e c i a l l y concerning the con
stant term a j ! ) , there i s an excellent agreement. 
This shows, that one i s i n p r i n c i p l e able to deter
mine s u f f i c i e n t l y accurately the three leading terms 
of the expansion (32) for a given Skyrme force just 
in terms of the simple 1-dimensional i n t e g r a l s 
eq. (11). 

To test the v a l i d i t y of the leptodermous expan
sion as a function of the deformation, we have made 
a c a l c u l a t i o n for A = 240 using the shape parametri-
zation (c,h) used i n connection with f i s s i o n b a r r i e r 
c a l c u l a t i o n s 9 ) . In Table 2 we present various quanti
t i e s as a function of the elongation parameter c(h=0). 
The spherical shape corresponds to c = 1, the l i q u i d 
drop saddle point of ac t i n i d e nuclei to c * 1.5. The 
second column shows the neck radius of the corres
ponding shape which i s strongly constricted at c=2.0. 
The next three columns contain the shape functions 
B s and B c and the radius s c a l i n g parameter R i / 2 * from 
which the surface area S and the t o t a l mean curvature 
C are obtained v i a eqs. (13). It i s worth noting that^ 
with the values p 0 = 0.1492 frrT 3, a = 0.408 fm v a l i d 
for A = 240, the Leptodermous resu l t R j y f t eq. (15), 
shown i n the next column, reproduces the exact values 
within ^ 10~l*Rl/2

 e v e n a t the largest deformation. In 
columns 7 and 8 we show the t o t a l energy minus the 
volume energy and the leptodermous r e s u l t eq. (9) for 
AE, r e s p e c t i v e l y ; t h e i r difference i s shown i n the 
last column. Apart from a constant error of ̂  10 MeV, 
which r e f l e c t s the d i f f i c u l t i e s i n determining the 
constant term a j of the energy expansion eq. (32) 
observed above, there i s only a small v a r i a t i o n of 
£ 1.3 MeV over the whole range of deformation. This 
i s rather astonishing, observing the small neck 
radius of 2.26 fm at the largest deformation. Up to 
t y p i c a l saddle point deformations (c < 1.6), the 
error i n the deformation energy brought about by the 
leptodermous expansion i s even not larger than 
0.3 MeV. 

Table 1: Liquid drop parameters of the expansion eq. (32) of the t o t a l energy obtained i n the exact v a r i a 
t i o n a l c a l c u l a t i o n for symmetric nuclei with the force SVII (no Coulomb). ( A l l r e s u l t s i n MeV). 
The f i r s t l i n e gives the parameters obtained i n the leptodermous expansion. The others give the 
res u l t s of d i f f e r e n t least-squares f i t s to the exact re s u l t s for 24 nuclei ranging from A = 80 to 
A = 10OO (except i n the l a s t l i n e for only 21 nuclei with 200 £ A £ 1000). a i s the root mean 
square deviation i n MeV. a-i and a_ 2

 a r e the c o e f f i c i e n t s of terms proportional to 
respectively, a) Value fixed i n the f i t t i n g to 24 nuc l e i , b) Value fixed i n the f i t t i n g to 21 nuclei. 

0 
00 

a 
V 

00 

a 
s 

* 
a 
c 

* 
a 
0 

a-1 a-2 

leptod. - 15.782 17.61 8.53 - 2.74 - -
0.004 - 15.789 17.56 8.57 - 10.01 4.6 8.7 

0.06 - 15.778 17.34 9.81 - 10.81 o a ) o a ) 

3.45 - 15.782 a ) 17.61 a ) 8.53 a ) - 16.24 o a ) o a ) 

0.51 - 15.782 a ) 17.61 a ) 6.40 0.47 o a ) o a ) 

0.30 - 15.782 b ) 17.61 b ) 6.17 2.48 o b ) o b ) 



Table 2: Various quantities obtained for A =* 240 with force Skyrme SVII versus elongation c (see text 
for d e t a i l s ) . 

c 
neck radius 

(fm) B 
s 

B 
c 

R1/2(fm) 
K1/2 (fm) 

E - a v A 

(MeV) 

AE. . 
lept . 

(MeV) 

error 

(MeV) 

1.0 7.19 1.0 1.0 7.1935 7.1939 712.3 722.1 9.8 

1.2 6.45 1.0151 1.0168 7.1922 7.1927 723.0 733.0 10.0 

1.4 5.73 1.0546 1.0654 7.1885 7.1890 751.7 761.7 10.0 

1.6 4.93 1.1146 1.1486 7.1822 7.1828 796.0 806.1 10.1 

1.8 3.90 1.1925 1.2750 7.1725 7.1733 854.5 865.0 10.5 

2.0 2.26 1.2745 1.4730 7.1576 7.1586 920.0 931.1 11.1 

In order to test f i n a l l y the expression given 
above for the incompressibility of f i n i t e nuclei 
eq. (28), we present i n Fig. 3 the numerical resu l t s 
of K A according to eq. (27) with the SVII force. The 
behaviour of versus A" 1' 3 i s l i n e a r : 

* 565 MeV. (33) 

With the values in eq. (31) and with p^aO" = 5.8 MeV 
for SVII we obtain for the leptodermous expansion 
eq. (28) 

V MeV-A"2/*x6MeVS:34) 

K s K - 5 6 5 A" 
A ° ° 

0.0 01 A - i , 3 0.2 0 3 

F i g . 3: Incompressibility K A for 
symmetric nuclei versus 
p a r t i c l e number A. 

6. R e a l i s t i c Skyrme forces and droplet model para
meters 

For r e a l i s t i c nuclei with N#Z and the Coulomb 
i n t e r a c t i o n included, the above expansion becomes 
much more elaborate, although i n p r i n c i p l e i t could 
be c a r r i e d through. Rather than doing that, we s h a l l 
take the above r e s u l t s for the symmteric case to be a 
strong evidence for the fact that the Skyrme force 
plus energy density approach i s completely equivalent 

to an extended l i q u i d drop type approach (including 
curvature terms). 

Thus, we s h a l l use the energies obtained numeri
c a l l y with the semiclassical model *»'io) f o r r e a l i s 
t i c cases and f i t them by an energy functional of the 
form 

E(A,I) -a, (̂  - X , I*)A •aSH-'KsI*) A % 

(34) 

+ a c (1-x tIZ) Av» + a. * Ecui., 
which suggests i t s e l f from the r e s u l t *»'io) that the 
energies of asymmetric nuclei are proportional to 
I 2=((N-Z)/A) 2 even up to values of I = 0.4 - 0.5. 
The volume energy, a v , and the volume symmetry energy, 
a V K V are uniquely given f o r each force and need thus 
not to be f i t t e d . In terms of droplet model parame
ters we write 

(35) 

which means that we do not use the f u l l expression 
for the surface asymmetry i n the droplet model. 
Instead we make the usual expansion of the central 
density asymmetry 

6-
which, as w i l l be seen below, i s j u s t i f i e d for the 
values of Q here encountered. 

An important point i n most droplet model studies 
i s that the curvature corrections are neglected. This 
i s at variance with our model using Skyrme forces, as 
v i s i b l e i n f i g . 4 where we have plotted the quantity 
(E/A wa v)A

1^ 3 against A~ 1 / 3. The ordinate at or i g i o n 
provides the surface energy, a s , while the slope mea
sures the curvature energy, ar, which c l e a r l y here i s 
not zero. 

Fig. 4: | 
Determination of g— 
the surface and ^ 
curvature energies • 
for the forces SIII J 
and SkM. The SkM ~ 
force was i n t r o 
duced i n r e f . 1 1 ) . 

•20(19) 

-mm 

_ i * — i 
0.1 0.2 0 3 



The surface asymmetry c o e f f i c i e n t i s determined by 
using the fact that the central density asymmetry 
<5 = <PR " PpMpR + Pp> depends l i n e a r l y on the i s o -
spin I when the t o t a l nucleon number, A, i s kept 
constant, see eq. (36). This l i n e a r behaviour pre
dicted by the droplet model i s also found to be 
exact i n our energy density formalism, see f i g . 5. 

F i g . 5: Two ways of determining the 
surface asymmetry c o e f f i 
c ient Q. 

(For the sake of c l a r i t y the Coulomb i n t e r a c t i o n i s 
not included.) An a l t e r n a t i v e way of getting the sur
face asymmetry c o e f f i c i e n t Q i s to look at the depen
dence of the neutron skin thickness t ( t = Rn - Rp, 
where the r a d i i are the equivalent sharp surface 
r a d i i ) upon the v a r i a b l e 6, which according to the 
droplet model i s also l i n e a r : 

(37) 

a statement here confirmed. The value of Q extracted 
from the slope dt/d6 i s i n perfect agreement with the 
previous estimation (see f i g . 5). F i n a l l y the curva
ture asymmetry c o e f f i c i e n t can also be, with a larger 
uncertainty however, deduced from the slope d E / d l 2 

for a given A. 

In table 3 we have written a l l the c o e f f i c i e n t s 
we calculated by these simple methods and compared 
them to the output of a least squares f i t of the 
function E(A,I 2) eq. (34) to the calculated binding 
energies of a randomly chosen ensemble of n u c l e i . 
Note that the root-mean-square-errors (RMS) for these 
f i t s are less than 0.06 MeV. A good agreement between 
the two methods i s observed, thus unambigously showing 
the strong analogy between the elaborated droplet mo
del and the energy density formalism such as the pre
sent ETF model. 

7. Conclusions and outlook 

Using the leptodermous expansion, we have de
monstrated that the energy density formalism using 
Skyrme forces allows a qu a n t i t a t i v e determination of 
the droplet model type parameters for symmetric nuc
l e i . For asymmetric nuclei including the Coulomb i n 
t e r a c t i o n , the analysis becomes more cumbersome, 
since d i f f e r e n t density parameters R\/2* P 0 '

 a have 
to be used for protons and neutrons. Recent r e s u l t s 
have shown that the difference i n the diffuseness 
parameters a n - ap i s c l e a r l y correlated to the i s o -
spin (N-Z)/A of tne nucleus which i s an effect 
not included i n the droplet model 6*. Apart from that, 
the e s s e n t i a l droplet model r e l a t i o n s for the asymme
tr y parameters, i n p a r t i c u l a r the e f f e c t i v e surface 
s t i f f n e s s Q, seem to be f u l f i l l e d at least q u a l i t a 
t i v e l y . A d e t a i l e d analysis of the leptodermous expan
sion i n the asymmetric case i s presently under way 1 0 \ 

Concerning the deformation dependence of the 
t o t a l energy obtained i n the sem i c l a s s i c a l energy 
density method, the leptodermous expansion has been 
shown here to be very accurate even beyond t y p i c a l 
saddle point deformations of heavy n u c l e i . A numeri
ca l test of the corresponding expansion of the Coulomb 
energy i s a c t u a l l y under way; i f i t holds equally well 
we may conclude that a f u l l v a r i a t i o n a l c a l c u l a t i o n 
i s not needed i n the deformed case. Instead, i t would 
be s u f f i c i e n t to c a l c u l a t e the droplet model parame
ters for a given force on one hand and the shape 
functions B s, B c and B Coul

 o n the other hand once for 
a l l and then use eqs.(7),(9) (including the Coulomb 
energy) to obtain the deformation energy. Work along 
these l i n e s i s now i n progress. 
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Table 3: Droplet model parameters of the forces SIII and SkM. The stars indicate that these quantities have 
been calculated for i n f i n i t e 
nuclear matter. The four l a s t 
columns have been obtained by 
a least square f i t of the func
t i o n eq. 34 (upper l i n e s ) , or 
by the graphical procedures des
cribed i n the text and f i g s . 
4, 5 (lower l i n e s ) . 
(a = - a K ) 

cs c c 

Force k*[fm" 1] a*[MeV] J*[MeV] a [MeV] 
s 

Q[MeV] a c[MeV] a c s[MeV] 

SIII 1.29 -15.86 28.16 18.30 49.4 4.87 23.4 
18.3 50 5.0 21.3 

SkM 1.33 -15.78 30.75 17.18 38.9 6.09 23.7 
17.2 35.5 6.4 36.5 


