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ABSTRACT
We review the extended Thomas-Fermi theory for systems
at finite temperature and present numerical results of
applications to semi-infinite nuclear matter and to hot

finite nuclei.

1. INTRODUCTION

The semiclassical density variational method using the extended
Thomas-Fermi (ETF) density functionals and Skyrme-type effective nuclear
interactions has become a competitive economical tool for calculating
average nuclear ground-state properties and deformation energies. (See
ref.1) for a recent review.) Quantitative agreement with the averaged
results of - much more time consuming - Hartree-Fock (HF) calculations
is reached. Hereby the inclusion of the second- and fourth-order gra-
dient corrections to the ETF kinetic energy functional with their
correct coefficients and the corresponding contributions from variable
effective nucleon masses and spin-orbit potentials have been shown to

be crucial, in particular when calculating fission barriers.1’2)

The growing interest in the properties of hot nuclear systems,
stimulated by recent progress both in astrophysics and heavy ion reac-
tions, have necessitated the generalization of the ETF theory to finite
temperatures, i.e. in particular the determination of the temperature-

dependent gradient corrections to the functionals of the free (kinetic)
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energy F[p] and of the entropy S[p]. This has recently been achieveds’aa
The new functionals have been shown to become quantum-mechanically
exact at nuclear temperatures T 2 3 MeV where the shell effects are
washed out.4) (At lower temperatures they do not describe correctly the
shell fluctuations.) Therefore, at the corresponding excitation ener-
gies, which nowadays can easily be reached in heavy ion reactions, the
density variational method using these functionals becomes completely
equivalent to the microscopical HF method, however at appreciably lower

computational costs.

In the present paper we shall briefly review the finite-temperature
ETF theory in section 2. In sect. 3 we apply the density variational
method to semi-infinite nuclear matter in which case the fourth-order,
nonlinear Euler differential equation has been solved numerically."
Two situations are discussed:
a) the case of phase equilibrium between the gas and the condensed
(liquid) phase at finite pressure, such as it might be encountered in
a collapsing star and thus is of interest in the astrophysical con-
text;
b) the case of zero pressure in the region of the condensed phase, such
as will be the situation of an isolated, hot compound nucleus,
formed in a heavy ion collision, which is metastable (similarly to
a superheated liquid drop).
The latter situation is studied in sect. 4 in variational calculations
for finite hot nuclei, and the question of a Limiting temperature at
which the nucleus ceases to be bound, is discussed. We finally also
summarize some recent calculations for sum rules for nuclear monopole
and dipole giant resonances using the variational finite-temperature

ETF densities.

Much of the material presented here is the result of various
collaborations which will be referred to at the appropriate places. I
take the occasion here to thank J. Bartel, C. Guet, J. Meyer, P. Quentin
and E. Strumberger for their important contributions.
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2. THE FINITE-TEMPERATURE ETF THEORY

We shall only quote here the key results; for derivations and

1,4)

more detailed expressions we refer to refs. ALl quantities given

in this section hold for one kind of nucleons.

2.1 The ETF Density Functionals

The local density functionals-including gradient corrections -
for the kinetic energy K[pl, the entropy S[p] and the free energy F[p]

Flel = Kigl « [v@rp@® de - Tsled .

of a system of Fermions moving in a local potential V(:) at temperature
T (measured in energy units with k = 1) with density p(?), are most
conveniently derived with the help of a semiclassical fi-expansion of
the density matrix p(:,?’) originally due to Wigner and Kirkuoog.:z
277

- -
At finite temperature, the Wigner transform of p(r,r’), i.e. the Wigner

(For alternative derivations of the same h-expansion, see refs.

function, becomesa)

- B Avre)
ferr (7.3) = nc(A-Ho)- E;;AV(Q) or (A-Ho ) + 2

e (T & R V@ Tt (aHa ) +0)

where nT(E) is the Fermi function
-1
ne(e8) = [4+ exp(-E/T)] &)

and n? €, nf’(E), etc. are its derivatives, and HCL is the classical

Hamilton function
2
Ho (3.3) = QE“:' +V(3). )

- -
From fETF(p,q) eq. (2), all Local densities of interest (density p,

kinetic energy density t, entropy density o, etc.) can be derived

easily. Eliminating the Fermi energy A, the potential V and its
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3,4)

derivatives, one obtains after some tedious algebra the ETF functio-

nal for the free energy

Fere 191 = [ [V« &1 + B 11+ K 1 Jo

A (2wmVh s,
Trlf - %( h‘) T ]3/1(’2); )

z
n

3:2 [E] = 2w 2(7) (VP) (¢9)]

22 (Ag) Ap(Tp) 7o)*
Ril- (G200 T A HERT] o

Hereby the parameter n is a function of p and T: n = n(p,T), defined by

the (unique) solution of the equation

£ f(F) = 2:11 (21::)/1 T 34/: ('Z)- 9

The so-called Fermi integrals Uu(n) in eqgs. (6) and (9) are defined by
oo

M
Juln) =f4\.xex"z dx. “10)

The coefficients z(n) and 6ﬂ(n) in egs. (7,8) are universal, analytical

functions of n defined in terms of 31/2(n) and itsAgerivatives; they
can be computed once for all and are given in ref. Since all Llocal
densities (p,T,0 etc.) are analytical functions at T > 0 (as long as
V(?) is analytical), one has no turning point problem as it arises1)

at T = 0, so that the functional FETF[Q] is strictly valid also in the

classically forbidden regions.

The functional SETF[p] for the entropy is obtained from FETF[p]

eq. (5) simply by the canonical thermodynamical relation
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DF (]

ST~ 5T oeconst

Once FETF[p] and SETF[D] are known, the kinetic energy functional

KETF[p] is trivially found from eq. (1).

In refs.1'4) it was shown that in the limit T > 0, S goes to

grelP]

zero like T and KETF[p] goes over into the old kinetic energy functio-

nal known at T = 01,6, @]

4 @)

Kere U1 7507 2 f"\g NET _PE_ * TPl *? a2
with « = 3/5(3""3)2/3 and the form of 1 [p] given first by Hodges.s)
Since the Limit T » 0 can be taken lo:ally at any point in space where
p(?) > 0, this constitutes the first rigorous proof that the old ETF
functional for t[p] at T=0 is valid also beyond the classically
allowed region.

According to the theorem by Hohenberg and Kohn9) and its generali-
zation to T > 0 by Mermin1°), the functionals K[p] and S[p] are univer-
sal and independent of the local potential V(®). Due to the semiclassi-
cal nature of the ETF model and its underlying +fi-expansion, the ETF
functionals cannot reproduce correctly the fluctuating shell effects in
the total energies or entropies; they apply, however, to the shell-
averaged quantities. This has been demonstrated numerically in refs.11'
12) with the help of microscopically Strutinsky-averaged densities at
T=0. (See ref.13) for a model case where average and shell fluctuating

parts are separated analytically.)

A well-known result of the smearing of the Fermi level at finite
temperatures is the disappearence of the shell effects. In HF calcu-
lations for finite nuclei at T > 0 it was shown 14,15 that indepen-
dently of the nucleon numbers, the shell effects disappear at about

~ 2.5 to 3 MeV. At and beyond these temperatures, the energy and all
other expectation values are smooth functions of deformation and

nucleon numbers,and one should expect the semiclassical functionals to
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become appropriate. Indeed, it was shown in ref.a) in model calculations
for a deformed harmonic oscillator potential that for T 23 MeV, the
above ETF functionals yield the exact quantum-mechanical free energy or
entropy within less than 0.1 % in terms of the exact density p(¥). (The
convergence of the series in eq. (5) is so fast that the sum of sixth
and higher order terms can be expected to contribute less than 0.1 %.)
Thus, for all practical purposes, the ETF functionals up to fourth

order become quantum-mechanically exact at temperatures where the shell

effects vanish.

The fi-expansion and the ETF functionals can,with some algebraic
effort, be extended to velocity-dependent one-body potentials, such as
they occur in HF calculations with SKyrme-type effective nuclear

forces16)
A - o= - T = =
H= -V zm.(.'.)V + VE)-(WE-(9x7) 13

with a variable effective mass and a spin-orbit potential. For the
corresponding contributions to the second-order gradient corrections at

1,4

T 2 0, see refs. and to the fourth-order corrections at T=0, see

ref.7).

2.2 Density Variation And The Euler Equation

Using the above semiclassical functionals, the total HF energy of
a nucleus can be expressed as a local functional of the proton and
neutron densities alone, if a Skyrme-type force is used. For a finite-
range force, density matrix expansion (DME) techniques17) can be used
to arrive at similar local functionals. For the following discussion,
we neglect for simplicity the difference between protons and neutrons
and omit the Coulomb interaction. The total free energy is then

Fue = Xo\"‘ Fle T, )

where the free energy density functional F[p] contains the sum of all
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integrands in eq. (5) after, however, replacing V(F)p(:) by the HF po-
tential energy density. Including gradient corrections to the ETF
functionals up to fourth order in fi, we can write F[p] in the following

form:
Flp) = Talp) « s(p) (¥
*%(f)ﬁf)“* ‘at(f)(Af)t'r{(f)Af (7). a»

Hereby ji(p) is the free energy density for infinite nuclear matter as
a function of the density p; s,g,h and 2 are functions of p containing
the T-dependent coefficients in eqs. (7,8) and those parameters of the

force which describe its nonlocal or finite-range components.

A nucleus at a finite temperature is not stable unless it is in
thermodynamical equilibrium with a surrounding nucleon gas. The
quantity to be minimized is therefore the Gibbs free energy, which

leads to the variational equation

8;(-’-) go\;r{?[f] -Ap *R% = 0. (16

Hereby the chemical potential )\ is the Lagrange multiplier which keeps

the particle number constant, and Po is the finite external pressure
necessary to maintain the phase equilibrium. Doing the variation in
eq. (16) leads to the Euler differential equation

d Flp) ds(f) 3? 35X, [p]
7& 2¢(p)Ap - (Tp)'s 3 =A; an

P

the last term on the %.h. side is the variational derivative of the
fourth-order gradient term eq. (8) - i.e. the sum of the last three
terms in eq. (15) - which contains up to fourth derivatives of p(?).
Eq. (17) is thus a highly nonlinear fourth-order differential equation
which in general is very difficult to solve. The boundary condition

is such that far outside the nucleus, where the gas has a constant



424

density p_ , the integrand in eq. (16) must vanish, so that

P = ﬂfa-"f.,(fa). (18)
This means just that Po is the pressure of an infinitely extended gas
with constant density pg. This is the situation which may approximately
be reached locally in a collapsing massive star, where condensed nuclei
exist in phase equilibrium with a surrounding gas of nucleons (and lep-

tons).

The situation is different for an isolated, hot nucleus such as it
may be formed in a heavy ion collision. Since there is no external
pressure, the nucleus will evaporate nucleons and thus be metastable,
similar to a superheated liquid drop (see, e.g. ref.18)). The variation
in eq. (16) must therefore be done at Po = 0. This leads to the same
Euler equation as eq. (17) above, however with different boundary con-
ditions. Before we discuss these and some corresponding numerical equa-
tions in sect. 4, we shall in the following section turn to the semi-
infinite case which corresponds to the lLimit of a very large nucleus

where curvature effects can be neglected.

3. SEMI-INFINITE NUCLEAR MATTER

We discuss here an infinite two-phase system in which condensed
(liquid) nuclear matter is separated from a nucleon gas by the z-plane.

We only consider the symmetric (isoscalar) case with Pn = Py = %-p. The

p
interface is described by a one-dimensional density profile p(z) with

the Limiting values

?(_.o\-.- P plteo) = Py - 9

The finite quantity which is made stationary in this case is the (Gibbs)

19 .
free interface energy per unit area (see also ref. ))uh1ch we call

here simply the surface tension ¢ as in the T = 0 case:
“ o0

g = f?_?if(u]—hf(zhﬁg dz . (20

- O
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Variation of g with respect to p(z) leads again to the same Euler
equation (17), except that the gradients are replaced by d/dz (see

ref.k)

for its full form). Since the z variable does not show up expli-
citely - in consistency with translational invariance - one can trans-

form the equation with the substitution

plp) = [g'(‘t)’]1 @n

into a differential equation for p(p). It can be integrated once ana-

lytically to the second-order equation
Fo-Np+P = sp+ (33-6')‘)‘
14
3o (p) - p (Bpr); (22)

the primes denote here derivatives with respect to p. Eq. (22) can be
solved numerically with standard methods, using the appropriate boundary
conditions (see below). In terms of the solution p(p), the inverse sur-
face profile z(p) can then be determined through eq. (21) by a simple

quadrature:

1
e _9{~J?q=—'>‘ dp’ ~ Cj @3

the integration constant C is irrelevant. The surface tension g (20)

can be expressed directly in terms of p(p) as4)

.?o

Y (24)
Q= ?( )-A *\) S( plp)

3.1 The Equ1L1br1um Case

In the case of phase equilibrium, one has the equality of the

chemical potential at the constant Limiting densities eq. (19) on either

A = ﬁ:(ﬁ) = f;(?,) 25

side
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and pressure equilibrium
Po = hPo-fb(f.) = ?Lfa ‘yco(f’) (26)

It is then easily seen from egs. (17) and (22) that the boundary con-

ditions for p(p) are
plp.) = plpy) = p'(p) = ppy) = O. @

The four constants A, Po’ po and pg are at each temperature deter-
mined by eqs. (25) and (26) which Lead to the well-known Maxwell con-
struction. The solutions are illustrated in Figs. 1 and 2 for the
Skyrme force SkM*.1'2°) Fig. 1 shows the pressure isotherms. At each
temperature (except T = 5 MeV), the solutions for o and pg are indi-
cated by dots connected with a dashed horizontal line. The critical

temperature is seen to be Tc ¢ = 14.6 MeV. In Fig. 2 we show Po’ o

ri
P(O)L Figure 1:
05 Pressure isotherms for
SkM (») infinite nuclear matter
04 obtained with the SkM*
force. The temperature is
03 given in MeV. from ref.1)
02
0V F r T T .
0
o
-02
-04
-06 F
PO 1 A a | PO S S |

0 05 glfmo: 0%
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02 1 Figure 2:
% Equilibrium pressure p, ,
%‘ 1 Lliquid density pe and gas
(Mevfm™~) density Pg from fig. 1
0 versus temperature T.
Case of phase equilibrium
0 (at py): solid lines.
015 1 Metastable case (with
3 pressure pg = 0 in liquid
(fm) { phase): dashed lines (see
text in sect. 3.2 below).
From ref.1).
010 T
Om 1
Oerit / 7
/ i
0,(T),/ P
[ T ]
0 PO S R —— il S 79 .‘l

0 T 5 MV 0T, Teit

and pg versus temperature T by the solid lines. The critical density
Perit is seen to be close to one-third of the saturation density Qw
at T = 0.

Eqs. (22), (25)-(27) have been solved numerically in ref.é). The
resulting profiles p(z) are shown in Fig. 3 for the same SkM* force by
the solid lines. The dashed lines are varijational trial densities of
the following form:

Po- Dy
(2) = + ) (28)
g P} (4 + eE/o‘ )Y

The parameters o and y where hereby determined by minimizing o eq. (20).

The densities eq. (28) are seen to approximate the exact ones extremely
well. The corresponding values of the surface tension g agree within
less than 1 % at low T and within Less than 0.1 % at T > 5 MeV. This
gives a nice confirmation of earlier variational calculations for finite

nuclei1) using generalized Fermi functions of the form (28).
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T T T T T T l T T T T T
02 4
30 Q (z) SkM -
(fm) 1
010
0 -6 -5 4 -3 -2 1y 0 (fm)’ 3 A S
Figure 3:

Density profiles p(z) for infinite nuclear matter (SkM* force)
at three temperatures (in MeV). Solid lines: exact numerical
solution. Dashed lines: optimized trial densities eq. (28).
From ref.4).

From the numerical solutions, one can easily determine the symme-
tric liquid-drop parameters of the free energy of a nucleus in equili-
brium with its surrounding gas

243 173
/ A /

F=aA+aA + a + ...
v s c
+ asymmetry terms + Coulomb energy . Q9
: _1/3
The surface energy coefficient is ag = 4nrlg with r_ = C4mp /3) / ;
1,4) ° ° °

for the coefficient ac see refs. . In Fig. 4 we show the parameters
a_ and a_ versus temperature by the solid lines. ac contains also the

s
so-called compression energy1’21) (about - 2.8 MeVv at T = 0). Both para-
where they loose

rit
their meaning. The asymmetric (isovector) liquid-drop parameters can be

meters go to zero at the critical temperature Tc

obtained analogously by solving two coupled Euler equations for two
densities pn(z) and p,(z). Their evaluation is the object of a forth-

coming publication.z?)
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Figure 4:
- SKM » Liquid drop parameters ag
- (surface energy) and a,
curvature energy) versus
temperature T (SkM* force).
15 equilib. Solid lines: phase equi-
N (R=FR) librijum. Dashed Llines:
metastable case (see
(MeV) ———— metast. sect. 3.2). From ref.22),
(P°=0)
10
S
0

T 5  (MeV) 10 15

3.2 The Metastable Case (PO = 0)

If we want to simulate the situation of an isolated, metastable
nucleus in the Llimit A > «, we have to require Po = 0 in the condensed
phase j.e. at z = - ». The limiting density Po is then just the satu-

ration density found at each temperature from the equation

3:.:(_9.) = A = —5:%-2 30)

However, as was pointed out already by Stocker and Burzlaff in TF
calculations at T > 023), there is no other solution to the Euler
equation (17) at P° = 0 with a constant density (except the trivial
case p =0at T =0; for T > 0,3;;(0) diverges logarithmically for

p +» 0!'). Instead, Stocker and Burzlaff found23) that integrating out-
wards from the saturation density Py * the solution p(z) decreases until

it reaches a minimum at a finite distance from the surface, say at z .,
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at which the density is nonzero:

]

») &1D)

)

Q'(=.)
g(z.)= g3 >0. (T>0) 32)

Beyond L the profile p(2) increases again, so that the solution must
be cut at z = 2 - The density fq at L is such that the integrand of

eq. (20) (with Po = 0) vanishes there:

3:;(5,) = /193- (33)

The same qualitative solutions are also found if the ETF gradient

1’24): there exists a

corrections are included in the Euler equation
finite distance z, at which eqs. (31) - (33) are fulfilled. The non-
zero difference betweenii'(pg) and A in eq. (17) is made up by nonzero
values of some of the higher derivatives of p(2) at L If only the
second-order gradient corrections are taken into account (i.e. if

5i[p] is neglected) ,one finds p” (zo)¢ 0.24) Including also the varia-
tion Of.ji[p], we learn from eq. (22) that also p’(pg) and thus p” (zo)
must be zero. The boundary conditions (27) for the function p(p) remain
thus the same. The interface profile p(2) must, however, be cut at 2=z .
This procedure may look somewhat strange, but it is the prize we have
to pay for treating a metastable system by a static variational proce-

dure.

The solutions found in this way for [ pg at various temperatures
are shown in figs. 1,2. In fig. 1, the saturation densities Po aregiven
by the crosses along the axis P = 0. There is a maximum temperature
Tm = 11.6 MeV for which the curve P(p) touches the abscissa at a finite
value of p. In the corresponding phase diagram for a finite system,
this is the Llimiting temperature at which the system can exist at zero
external pressure in a metastable state. (For experimental values of
Tm and the corresponding discussion for classical superheated liquid

18)

drops, see Temperley. ) In fig. 2, the densities Po and pg obtained
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for the metastable case (Po = 0) are shown versus T by the dashed-dotted
curves. The density Pm at the Limiting temperature is seen to be very

1
close to -2- P®
In passing we mention that the qualitative features of the curves

in figs. 1 and 2 can be obtained by the simplified equation of state
3
P(?\ = Tf - th “+ b? (34)

with constant parameters a,b. For the critical point at phase equili-

brium one finds

(2 a]’
9cr&t= —3‘9‘ 5 Tc,u T 3p Pc'(& = FIOT . (35)

With the saturation density at T = 0 given by P, = a/b, we find Perit =

= p/3 which is closely fulfilled for the SkM* force. For the limiting

values of the metastable situation we find

Qo _ 4
Om = J0 = 2 P, (36)

which again is very closely fulfilled for the SkM* force, and

-l _3
Tm = 4 - [f,TCn'Ej (37)

this ratio is not far from Tm/Tcrit = 0.79 found with the SkM* force.
The equation of state (34) may thus be used for schematic discussions.
We have, however, not used it since it is simple enough to calculate
P(p) for a Skyrme force exactly.

We have again solved the Euler equation numericallyZZ) with the

boundary conditions (30) - (33). The liquid-drop parameters a and a
corresponding to this metastable situation are shown as functions of
the temperature in fig. 4 by the dashed lines. They obviously vanish
at'the (imiting temperature Tm. In an attempt to parametrize the result-

ing variational density profiles p(z), we used the ansatz



.- 1
(@) = yc[e‘/ A, (41—62"‘)?]" (z<2) a®

the parameter B was chosen
to fulfil egs. (31) and (32). The parameters a and Yy were again deter-
mined by minimizing o eq. (20) with P° = 0. As in the equilibrium case,
the values of ¢ found .in this restricted variational calculation were
in excellent agreement with those obtained from the exact numerical
solutions of p(z): the error was less than 1 % for 0 < T S 4 MeV and
less than 0.1 % for T 2 5 Mev.

The fact that the two pairs of curves in fig. 4 (Po # 0 and
Po = 0, resp.) agree rather accurately for 0 £ T S 4 MeV suggests that
the treatment of the gas component for z > 0 has Little effect on the
results at lower temperatures; this is understood by the exponentially
small numerical values of either of the pg values up to T = 4 MeV (see
fig. 2). In fact, even if pg is put artificially equal to zero, one
obtains values of ag and a. which agree within less than 1 % with
those shown in fig. 4 up to T = 4 MeV. This shows that up to this tem-
perature the instability of the heated nucleus can be numerically neg-

lected, as it was done in earlier density variational calculations1).

Similar conclusions were drawn also from HF calculations at T>014’1S’252

4. FINITE NUCLEI

Encouraged by the results with the trial density eq. (38) in the
semi-infinite case, we are in the process of adapting these variational
calculations to finite, isolated nuclei at higher temperatures.ZZ) The
spherical densities are chosen in the form (q = n or p for neutrons or
protons)

r-Rq

) =p. e ™ ﬁ‘* ! (C SR )39

1 g Ry ) ¥y N Reut

l+re Xy
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with, in principle, different values of the parameters aq, ﬁq, Y., Rq

and poq for protons and neutrons. The values of pq are again determined

by requiring
/
Sq (Reut) = 0. 40)

0f course, the correct nucteon numbers N and Z are imposed which allows

to eliminate e.g. the parameters Rq - The densities are cut at r = Rcut

which means that the nucleus is put into a spherical box with radius

Rcut‘ The free energy
F = fdsr 'f’[fn(r), fp(r)] %N

is then minimized, subject to the boundary condition (40), with respect

top ,a and for each given R_ .. The cut-off radius R itself
oq” "q )3 cu

is also determined variationally; g:tturns out that the free :nergy F
has a maximum at a finite value of Reut for 0 < T < T; (see sect. 4.1
for the limiting temperature Tm). For T =0, Rcut = » and the densities
(39) reduce to generalized Fermi functions used in earlier ETF calcu-
lations.1) Such simple profiles can, in fact, be used also at moderate
temperatures (T < 3 MeV) - thus neglecting the nucleon evaporation -

t1,3)

and yield results in excellent agreemen with the correspohding

earlier HF results.14)

4.1 Limiting Temperature Of An Isolated Nucleus

In the context with heavy-ion collisions, there has been some
speculation about the maximum amount of excitation energy (or heat)
which can be stored in an excited compound nucleus.26) The correspond-
ing limiting temperature is expected to be different from Tm obtained
in the infinite case (see sect. 3.2) for three reasons:

1) The finiteness of the system. It should not change Tm much for medi-
um or heavy systems.
2) The asymmetry Pn # pp. It is known to lower the critical temperature

T 27)

in the phase equilibrium and thus presumably also Tm.

crit
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3) The Coulomb repulsion. It has the most dramatic effect. In recent
25)

HF calculations it was shown to reduce the limiting temperature from

T = 12.5 MeV (for the uncharged nucleus 2oan) to Tm ~ 8 MeV (for the
208

real Pb nucleus).

In Fig. 5 we present results of our calculations for a system with
N =12 =100, omitting the Coulomb interaction. The Limiting temperature
is found to be close to Tm = 11.6 MeV. The densities pg at the cut-off
radius are also close to the ones found in the semi-infinite case (see
Fig. 2).

Figure 5:
p(P) ‘ variational density profiles
eq. (39) for a nucleus with
N =12 = 100 (no Coulomb inter-
015 action) obtained_with the SkM*
force. From ref.
(fm?)
0.10
0.05
0

r S (fm) 10

Calculations with asymmetric nuclei including the Coulomb force are

in progress.ZZ) As a preliminary result, we find for 208Pb a limiting
temperature
8 MeV £ TF < 8.5 MeV ("“ Pb) 42

with the SkM* force. Beyond this temperature, no minimum could be found

for the free energy F eq. (41) for any stationary value of Rcut: the
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system ceases to be bound. The reason for this instability is clearly

25’28)). Real nuclei will there-

fore not reach any liquid-to-gas phase transition point.26)

the Coulomb repulsion (see also refs.

The result eq. (42) is in close agreement with that found by
Bonche et aL.ZS) in their HF calculations, although they used a Skyrme
force (SkM) with a lower surface tension1’2°) which thus should Llead to
Llower limiting temperatures. A higher value of T; would be
explained by the different boundary conditions used in ref.25) which,

in fact, seem to be closer to those of a phase-equilibrium situation.

our results allow a simple estimation of the evaporation time of
the metastable nucleus. The finite gas density Pg = p(Rcut) at the
confining wall corresponds to a gas pressure Pg which, for the small
values of Pq found for T < 6 Mev, is that of an ideal gas:

P, = Tg,. (43)

Using the equipartition law, this corresponds to an average radial
velocity

V. = \/Pa [mp, = /T/m (44)

with which the nucleons knock at the wall at Rcut' If the wall were

released, they would escape with a flux jr = ngr through the surface

4mR? e giving an evaporation rate

cu
2
dN ~ breReat Py /T/m - )
dt
From our preliminary results for 208Pb at T = 8 MeV, we obtain in this
way an evaporation time of Tevap ~ 1.5 x 10-2“sec which is clearly un-

physical. This means that the mean-field approach is no longer consis-

-22
>
evap. ~ 10 "“sec, T should

stay below ~ 5 MeV. We thus draw the preliminary conclusion that real

tent at such temperatures. In order to have T

nuclei will hardly exist beyond T ~ 5 MeV since then the mean field no

longer exists. To be more cautious: In a static meanfield approach, we

cannot predict the existence of finite, metastable nuclei with tempera~
tures higher than T x~ 5 Mev.
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4.2 Other Applications

We finally mention very briefly two applications of the finite
temperature ETF theory to finite nuclei at temperatures T g 4 MeV where
the gas component was neglected (pg = 0). Static deformation energies
were calculated and temperature-dependent fission barriers were obtained

1,3

in refs. As a first step towards nuclear dynamics, sum rules and

energies of giant monopole and dipole resonances were calculated as

29)

functions of the temperature . The newest results of both kinds of

calculations will be presented at the conference.
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