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Abstract: We report on density variational extended Thomas-Fermi calculations for plane 

metal surfaces and spherical metal clusters. They reproduce very well, on the average, the 

earlier microscopic Kohn-Sham results for surface energies and work functions of alkali 

metals, both using the pure jellium model and including the ionic structure by pseudopo-

tentials, and for finite clusters. For the latter we discuss the average behaviour of total 

energies, ionisation potentials and electron affinities. 

1. Semiclassical density variational method within the jellium model 

The jel l ium model has been successfully used for the density variational description of metal 

surfaces [1-4] and spherical metal clusters [5-7], both microscopically using the well-known 

Kohn-Sham (KS) method [2,3,5] and semiclassically using the extended Thomas-Fermi 

( E T F ) functional [8] of the kinetic energy T3[p] including gradient corrections up to second 

[6] or fourth order [1,4,7]. In all E T F calculations except that of Tarazona and Chacon [4] 

who solved numerically the exact Euler variational equation, a restricted variational space 

of parametrized tr ia l electron densities was used. We propose here to use the following 

parametrisation for the electron density profile: 

in conjunction with the full fourth-order E T F functional [8] for Ta[p]. 

l .a) Metal surfaces 

For a plane metal surface (z = normal variable; jel l ium edge at z = 0), po = poj is the 
jel l ium density, ZQ is fixed by charge neutrality, so one has two variational parameters 
a, 7 for minimizing the surface tension a (see refs. [1-4]). To test the quality of (1), our 
results are compared in Tab. I with recent numerical solutions of the exact Euler variational 
equation [4] for various Wigner-Seitz radi i r9. We show a and the work function evaluated 
by two expressions: 

M . E . S p i n a , M.Seidl and M.Brack 

p{z) = pQ{l + exp[(z-Z0)/a]} 7 (1) 

W = (v?(oo) - v?(-oo)] - / i 6 , W = [<p(oo) - <p0] - eb , (2) 



<p(z) being the electrostatic potential (<po at the jel l ium edge), m the bulk chemical po
tential , and Cft the bulk energy per particle. W' is given by Koopman's theorem [2]; W 

was given by M a h a n and Schaich [10] and is identical to W i f exact variational densi
ties are used; for parametrized tr ia l densities W should be used, being less sensitive to 
details of the density profile [3J. The agreement between our results, which require only 
little computational effort, and the exact numerical solutions [4] is very good in the whole 
range of metallic densities, i n particular for W. This indicates that (1) is an excellent 
parametrization of the exact solutions [4], better than the frequently used exponential 
profile [1]. 

l .b) Finite spherical clusters 

For spherical clusters, we replace in eq.(l) z by the radial variable r and ZQ by the radius 
parameter R which is adjusted to fix the number of electrons / p(r) dzr = N. Thus, with 
pQ, a and 7 we have three variational parameters. Minimiz ing the total energy leads to 
an excellent reproduction [7] of average results of microscopical K S calculations [5] and of 
the quantum-mechanical tails of the densities p(r). In the following, we present some more 
systematical calculations using the E T F variational method for spherical metal clusters 
with Z monovalent atoms. We use the Gunnarsson-Lundqvist L D A functional [9] for 
exchange and correlation energies. 

(i) Liquid-drop expansion of total energy for neutral clusters: From our variational E T F 
results we have determined numerically the surface energy a9 and the curvature energy 
ac of the liquid-drop model ( L D M ) expansion for the total energy of neutral clusters with 
Z = N: E(Z) = ebZ + a9Z2^ + aeZ1** + • • •. In Tab. II we show these coefficients for 
various r a , determined by least-square fits to energies of clusters wi th Z up to 10 5 . The 
surface energy is related to the surface tension by a3 = 47rr*(7; it can be seen that this 
relation is very well fulfilled with the results obtained from the semi-infinite calculations 
shown in Tab. I, demonstrating the consistency of our approach. 

(ii) Ionisation potential and electron affinity: In F i g . 1 we present the E T F ionisation 
potential J and electron affinity A for N a clusters with 8 < Z < 125'000 versus Z - 1 / 3 . Both 
are shown to approach linearly the correct bulk work function W (not W !) for Z - 1 / 3 —• 0. 
Th is holds for a l l metallic values of r a , thus representing a numerical improvement over 
similar older results [6] using less flexible density profiles and truncating Ts[p] at second 
order. The work function W*(Z) in F i g . 1 is evaluated as W in eq.(2) but in terms 



of the variational density profile p(r) of the finite cluster wi th Z atoms. Its constancy 

is remarkable and the fact that the correct bulk work function can be found from the 

density profile of a cluster with 8 atoms is almost a miracle! - Our E T F results are 

ideal for determining the slope parameters a , /? i n the asymptotic expressions I ~ W + 

ae2/Ri, A ~ W-Pe2/Rj, (Rj = r , Z * / 3 ) . These hold even for suprisingly small clusters 

(see the perfect linear behaviour of I and the almost linear behaviour of A in F i g . 1). Our 

values of a and are also given i n Tab. II. Unfortunately, the experimental error bars in 

I , A and W are too large to check our prediction for the r , dependence of these slopes. 

We should like to stress that the approximate agreement, found for the lighter alcalines, 

with the often wrongly [11] assumed 'classical values' a = 3/8, ^ = 5/8 is accidental In 

fact, the correct classical value [11] for both these slope parameters is 1/2. The differences 

of their values from 1/2 are due to quantum-mechanical effects (kinetic and exchange-

correlation energies, tai l of electron density). Their contributions can be systematically 

studied in the L D M expansion of the energy of a cluster wi th Z atoms and N electrons: 

E(Z, N) = E^oul + ( Z - t f ) M o o ) - <p0) + ebN + (terms oc Z 2 / 3 and N2'*) + • • • , (3) 

where the classical Coulomb energy (for squared densities) is 

41,(2, N) = (5^/3 + Z « / » - \ N Z ^ (N < Z) (4) 
from which the correct asymptotic classical result / ^ — A ~ e2 /2Rj is immediately 

derived. The quantum-mechanical corrections to a and /? thus stem from the surface 

terms i n eq.(3); we are presently working on the analytical derivation of these terms. 

2. Inclusion of ionic structure by pseudopotentials 

It is well known that for high-density metals ( r , < 3 a.u.) the je l l ium model fails in 

reproducing reasonable surface energies. In the case of finite clusters, the jel l ium model 

predicts too low polarizabilities and too high ionization potentials. It is therefore desirable 

to go beyond this model by taking into account the ionic structure. As in refs. [2,12], 

we use the local pseudopotentials proposed by Ashcroft [13]. In order to preserve the 

simplicity of our above variational E T F approach, we use the smooth profiles (1). 

2.a) Metal surfaces 

We have calculated the face-dependent surface tension a and work function W for plane 

metal surfaces. A s in [12], the positive charges are smeared out uniformly over each lattice 



plane, so that the one-dimensional symmetry is preserved (see this work for the pertinent 
definitions of a and W). We compare our results with those of the microscopic non-
perturbative K S calculations [12] in Tab. I l l for different metals and faces. Although some 
discrepancies are observed for high density metals, the general trends are well reproduced 
by our semiclassical model, in spite of the simple smooth densities (1). In fact, in the 
surface region our variational profiles are very similar to the ones shown in [12]. 

2.b) S p h e r i c a l m e t a l c lus te rs 

The next step is to introduce the pseudopotential model in the semiclassical description 
of finite clusters. For simplicity and according to calculations by Manninen [14], showing 
that a relaxed configuration for the ions is more stable than the corresponding ion lattice 
structure, we preserve spherical symmetry. That is, we smear out the positive charges 
over a number of spherical shells, whose radii R\, R 2 , ••• and surface charges are variational 
parameters together with those of the electronic density (1). Doing so, we are able to 
investigate simultaneously geometric and electronic effects also in a range (Z > 10 3) where 
microscopic calculations become prohibitive. So far, we have performed systematical cal
culations in the medium size range where comparison to microscopic results [15] is sti l l 
possible. As an example, for Na3o, we assume the ions to be distributed on two shells 
with charges Z i e , Z 2

e - Minimizing the total energy, we obtain R\ = 6.6 a.u., Z\ = 10.5, 
R2 = 10.7 a.u., Z2 = 19.5, and for the work function W = 3.95 eV (to be compared with 
W = 3.77 eV for the jel l ium model). Since these results are very sensitive to the number 
of ionic shells, it is crucial to find a criterium to fix it for large clusters in the mesoscopic 
range. Work along this line, also by microscopic K S calculations, is being persued. 
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Figure 1 

Ionisation potential I and electron affinity A for Na clusters (see text for 

work functions W). Variational ETF results in jellium model. 



Table I 

Surface tension a (in erg cmT2) and work functions W, W eq.(2) (in eV) for various 
Wigner-Seitz radii r , (in a.u.). Variational ETF results in pure jellium model. 

r» This work Ref.[4] r» 
a W W a W 

2.0 -1086 3.50 3.54 -1090 3.54 
3.0 157 3.44 3.24 153 3.24 
4.0 138 3.25 2.91 132 2.89 
5.0 87 3.04 2.63 81 2.60 
6.0 55 2.82 2.39 50 2.35 

Table II 

LDM expansion coefficients (definitions see text) of ionisation potentials, electron 
affinities, and energies of spherical metal clusters. Variational ETF results in pure jellium 

model. Surface and curvature energies as and ac are in Ry, rs in a.u. 

rs a 0 

2.0 0.426 0.570 -0.06198 0.1282 
3.0 0.411 0.587 0.02568 0.0798 
4.0 0.401 0.605 0.03642 0.0520 
5.0 0.386 0.615 0.03494 0.0376 
6.0 0.380 0.620 0.03156 0.0266 

Table III 

Surface tensions and work functions for various metals. Variational ETF results with 
plane-averaged pseudopotentials (see text). Results in Ref. [12] are from Table VII. 

Units as in Tab.I. 

r, 
[110] if bee, [111] if fee [100] if bee, [100] if fee 

r, This work Ref.[12] This work Ref.[12] r, 
a W a W a W a W 

K 4.96 114 2.89 135 2.9 146 2.81 147 2.7 
Na 3.96 192 3.17 223 3.3 241 3.15 245 3.0 
Li 3.28 307 3.76 331 3.5 479 3.44 501 3.4 
Pb 2.30 632 5.76 550 3.7 1975 3.78 2155 3.8 
A l 2.07 380 3.03 643 4.0 1264 3.77 1460 4.7 


