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CHAPTER 1 I�TRODUCTIO� 

 

1.1 Peptide generalities 

 

 

Peptides (from the Greek πεπτίδια, "small digestibles") are short polymers formed from the 

linking, in a defined order, of α-amino acids. The link between one amino acid residue and the 

next is known as an amide bond or a peptide bond. Proteins are polypeptide molecules (or consist 

of multiple polypeptide subunits). The convention is that peptides are shorter than 50 amino acids 

residues and polypeptides/proteins are longer. Natural peptides and proteins are mainly composed 

of 20 α-amino acids to which we can add a few other ones which are relatively rare in nature. 

Amino acids are organic molecules which possess an amine and a carboxylic acid. α-amino acids 

can present different lateral chains leading to molecules with completely different physical 

properties. The simplest α-amino acid is the glycine, which  is the only achiral amino acid. 

Natural α-amino acids have been classified in five categories: acidic, neutral, basic, hydrophobic 

and hydrophilic. When the amino acid is not A glycine, the Cα is a chiral center and natural 

amino acids are all present in the L-configuration in the nomenclature of Fischer. A few ones 

extracted from exotic molluscs or in cell walls of some bacterias can be in a D-configuration but 

their occurrence in nature is anecdotic in comparison to the supremacy of L-amino acids. (Figure 

1)  

 

H2N COOH

R
COOH

H2N H

R

α-amino acid L-amino acid in Fischer representation

α

 

Figure 1 

 



 2 

Peptides and proteins present four types of primary structure which will be shortly present above. 

 

1.2 Primary structure 

 

In general, polypeptides are unbranched polymers, so their primary structure can often be 

specified by the sequence of amino acids along their backbone. However, proteins can become 

cross-linked, most commonly by disulfide bonds, and the primary structure also requires 

specifying the cross-linking atoms, e.g., specifying the cysteines involved in the protein's 

disulfide bonds. 

 

1.3 Secondary structure 

 

The remarkable and highly diverse biological activities exhibited by proteins rely on the unique 

capacity of these intrinsically flexible chains to fold into well-organized and compact structures. 

Linus Pauli, more than half century ago, first understood that detailed information about these 

molecular and supramolecular structures are a prerequisite for the comprehension of the 

biological events in the living cell. The formation of tertiary and quaternary structures relies only 

on a small set of distinct secondary structural elements: sheets, helices and turns (figure 2). Every 

conformation has is own nomenclature to describe its hydrogen bonding. A non structured 

conformation is called random coil. 

 

 

 

1.3.1 αααα-helix  

 

Helices present a periodic folding having a curly shape. Most of the time, the helix turns 

clockwise and is called right-handed helix. In the other case, it is a left-handed helix. In the 

family of helices can be differentiated a few subcategories depending on the periodicity of the 

helix. The most common is the α-helix,  and it is characterised by the presence of an hydrogen 

bond between the carbonyl of an i residue with the nitrogen of the residue i+4, forming a 13-
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membered ring. Every loop has a length of 0.54 nm and  contains 3.6 residues. The dihedral 

angles ψ and ϕ are between 45 and 60 degrees. The structure is very compact and the lateral 

chains of the amino acids point out of the helix (figure 1).     

  

                                     

 

Figure 2 α-helix 

 

1.3.2 ββββ-sheet 

 

β-sheet are another typical conformation adopted by proteins. This is a planar conformation 

adopted by two fragments far one to each other. The structure is stabilized by the presence of 
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intermolecular hydrogen bonding between the two fragments. The lateral chains of the amino 

acids point outside the plane, alternatively under and over. It exists 2 different types of  β-sheet, 

the parallel (both fragments are orientated in the same direction) and the anti-parallel, when the 

fragments are oriented in opposite directions (Figure 3). 

 

 

                            parallel ββββ-sheet                                          antiparallel ββββ-sheet 

Figure 3  

 

 

 

1.3.3 turns 

 

Turns are small secondary structures that form an elbow in the peptide sequence and can induce 

antiparallel β-sheet by placing two fragments in front one to each other. There are classified 

depending on the ring size of the hydrogen bond forming the turn. β-turns are the most common 

turns and involve hydrogen bonding between the i residue and the i+3 residue with a ten-

membered ring. There are three types of  β-turn depending on the dihedral angles: I, II and III 

(the type III corresponds to a single turn of 310 helix). The mirror images of these turns are called 

I’, II’ and III’ (Figure 4). 
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Figure 4 

 

 

1.4 Tertiary structure 

 

The tertiary structure of a protein or any other macromolecule is its three-dimensional structure, 

as defined by the atomic coordinates. So, we can say it is essentially the way as the different 

secondary structures present in a protein organize them one to each other. For example, some 

residues which are far in the peptidic chains can be close in the three-dimensional structure.  

 

1.5 Quaternary structure 

 

Many proteins are actually assemblies of more than one polypeptide chain, which in the context 

of the larger assemblage are known as protein subunits. In addition to the tertiary structure of the 

subunits, multiple-subunit proteins possess a quaternary structure, which is the arrangement into 

which the subunits assemble. Enzymes composed of subunits with diverse functions are 

sometimes called holoenzymes, in which some parts may be known as regulatory subunits and 

the functional core is known as the catalytic subunit. 
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1.6 Conformational studies of the secondary structure 

 

It is possible to perform more different analysis for the characterization of the secondary structure. 

The most important are the NMR, IR, circular dichroism and X-ray. 

 

1.6.1 �MR studies 

 

Since the hydrogen bonds are the principal responsible for the formation of the secondary 

structure, signals of amide protons are fundamental for the understanding of the peptide 

organization.  

 

1.6.2 Choice of the solvent 

 

The choice of the solvent is of fundamental importance in the NMR studies. In effect, the solvent 

can largely affect the ability of a peptide to form a secondary structure, and it is also quite 

commune that a peptide shows different conformations in different solvents. 

 

1.6.3 2D �MR 

 

2D NMR analysis is one of the most powerful tools for the study of the secondary structure of 

proteins. With unlabelled protein the usual procedure is to record a set of two dimensional 

homonuclear nuclear magnetic resonance experiments through correlation spectroscopy (COSY), 

of which several types include conventional correlation spectroscopy and nuclear Overhauser 

effect spectroscopy (NOESY).1 A two-dimensional nuclear magnetic resonance experiment 

produces a two-dimensional spectrum. The units of both axes are chemical shifts. The COSY 

transfers magnetization through the chemical bonds between adjacent protons. The conventional 

correlation spectroscopy experiment is only able to transfer magnetization between protons on 

adjacent atoms, so it is transferred among all the protons that are connected by adjacent atoms. 

Thus in a conventional correlation spectroscopy, an alpha proton transfers magnetization to the 

beta protons, the beta protons transfers to the alpha and gamma protons, if any are present, then 

the gamma proton transfers to the beta and the delta protons, and the process continues. Thus this 
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experiment is used to build so called spin systems, that is build a list of resonances of the 

chemical shift of the peptide proton, the alpha protons and all the protons from each residue’s 

side chain. Which chemical shifts corresponds to which nuclei in the spin system is determined 

by the conventional correlation spectroscopy connectivities and the fact that different types of 

protons have characteristic chemical shifts. To connect the different spin systems in a sequential 

order, the nuclear Overhauser effect spectroscopy experiment has to be used. Because this 

experiment transfers magnetization through space, it will show crosspeaks for all protons that are 

close in space regardless of whether they are in the same spin system or not. The neighbouring 

residues are inherently close in space, so the assignments can be made by the peaks in the 

NOESY with other spin systems.  

 

1.6.4 Hydrogen deuterium exchange  and variation of temperature 

 

This two different studies allows to identify which protons of a molecule are involved in an 

intramolecular hydrogen bond. In the case of the hydrogen deuterium exchange, to a peptide 

solved in a solvent which does not present exchangeable deuterium will be added CD3OD. The 

amide protons in the protein exchange readily with the deuterium of the solvent, so the hydrogen 

deuterium exchange by NMR spectroscopy follows the disappearance of the amide signals. How 

rapidly a given amide exchanges reflects its solvent accessibility. Thus amide exchange rates can 

give information on which parts of the protein are buried, hydrogen bonded etc.  

The same principle is at the base of the variation of temperature studies. Generally it is accepted 

that an amide proton involved in a strong intramolecular hydrogen bond has a low temperature 

dependence coefficient (∆δ<3 ppb/K), while for a weak intramolecular hydrogen bond is 

significantly higher (∆δ>8 ppb/K). 

 

1.6.5 Circular dichroism 

 

Circular dichroism (CD) is a form of spectroscopy based on the differential absorption of left- 

and right-handed circularly polarized light. It can be used to help to determine the structure of 

macromolecules (including the secondary structure of proteins and the handedness of DNA). CD 

was discovered by the French physicist Aimé Cotton in 1896. This analysis is performed in 
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solution in high dilution (typically <1 mM, to avoid peptide aggregation) in the absorption band 

of amide bonds (180-250 nm). Circular dichroism measures the ellipticity of a peptide in this 

band with UV polarised light. In this band can be observed the absorption π→π* of amides and 

the absorption will vary according to the hydrogen bonded or non hydrogen bonded state of the 

amides, therefore it will give information on the presence of a secondary structure. Indeed, a 

peptide being a chiral molecule, it will present an optical rotation on polarised light but this 

optical rotation can vary with the wavelength. The analysis is often performed in quartz cells of 1 

mm length or less as the solvent absorption can create some parasite noise. All solvents can not 

be used in CD spectroscopy as the circular dichroism must be measured in a band where the 

solvent does not absorb, methanol (limit at 195 nm for a cell 1 mm long), trifluoroethanol (TFE) 

or mixtures methanol/water can be used. Other common organic solvents as THF, acetonitrile, 

chloroform or dichloromethane can not be used in this case as they absorb in the same region as 

amides.  

The ellipticity θ follows the Beer-Lambert law and can be calculated namely: 

θ = CDmeasured/(Cxlxn)  

with θ: ellipticity in deg.cm2.dmol-1 

C. concentration in mol.L-1 

l: length of the cell in dm 

n: number of NH in the molecule 

This technique has the advantage to be fast and one can see almost immediately if the 

peptide adopts a secondary structure or not. The limitation is that one can not deduce exactly 

which amides are involved in hydrogen bonding. It is nevertheless very useful since CD curves of 

α-peptides are typical of a certain secondary structure and so new peptide curves can be 

confronted with references. There has been also a lot of work in the field of β-peptides and some 

references are available but when a peptide containing unnatural amino acids is analysed, this 

comparison can not be always done with certainty as the curves may differ a lot for a same 

secondary structure. 

 

1.6.6 IR in solution 
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Another powerful tools to detect the presence of intramolecular hydrogen is the IR in solution. 

The technique consist in the measurement of an IR spectrum at high dilution (usually in 

dichloromethane or chloroform) to avoid the peptide aggregation. It is so observed the region of 

amide bond, which present, in the case of intramolecular hydrogen bond, two different bands, one 

at less than 3400 cm-1 bonded amides and another at more than 3400 cm-1 for non bonded amide. 

Limits of this technique are the impossibility to use solvent which can form hydrogen bond with 

the peptide or which adsorb in the interesting region (DMSO, methanol, etc.). 

 

1.6.7 X-ray crystallography 

 

This is the most potent tools to directly study the secondary conformation of a peptide. 

Unfortunately, it is not simple to obtain a crystal of a peptide, especially for the high flexible 

linear ones. Actually, the crystal structure of more and more peptides of biological interest are 

available on the Protein Data Bank database. 

 

 

 1.7 Peptidic coupling 

 

Generally speaking, a peptide is formed by the linking of more amino acids by formation of 

amide bonds. The simple mixture of two or more amino acids in solution at room temperature 

just brings to the formation of a salt, and the condition to transform this salt into an amide bond it 

is too harsh for the formation of peptides. Thus, it is necessary therefore to activate the carboxylic 

group of one of the amino acids so that nucleophilic attack by the amino group of the second can 

take place, forming the desired amide under mild conditions. In peptide chemistry, this process is 

called coupling.  

 

1.7.1 Coupling reagents 

 

The most common general coupling method is the use of coupling reagents. This reacts with the 

free carbonyl group, generating a reactive species, which is not isolated and which is sufficiently 
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reactive to allow the amide bond formation at room temperature and in mild condition. The most 

commonly used coupling reagents  are the carbodiimides2 (Figure 5). 

 

 

R N C N R N C N

1 2  

Figure 5 

Addition of the carboxyl group of the N-protected amino acid to one of the C=N bonds of the 

carbodiimmide gives the O-acylisourea intermediate 5, the first active species in the coupling 

reaction. This highly reactive compound can then undergo aminolysis by the amino component, 

leading to the formation of the amide 6 and the dialkilurea by-product 7. 
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Figure 6 

 

 

One of the most important side reaction in the coupling promoted by the carbodiimmides is the 

formation on an oxazolone intermediate which as to be avoid because it can lead to the 

racemisation of the substrate (Figure 7). 
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Figure 7 

 

Many of the side reactions that occur when activation is carried out with the carbodiimide alone 

can be avoid by using some additive. These compounds intercept the O-acylisourea intermediate 

forming forming a less reactive acylating reagent, which is still potent enough to allow rapid 

amide bond formation. The most widely used are HOBt (13) and the most reactive, but also 

expensive HOAt (14). 

 

N
N

N

OH
N

N
N

N

OH

13 14  

Figure 8 

 

Other reagent coupling widely used are the uronium salt, in  particular HBTU and HATU are 

currently used. X-ray crystallography demonstrate that both HBTU (15) and HATU (16) 

crystallized as guanidinium N-oxide (Figure 9). 
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It is possible to perform a peptidic coupling using two different methods, the solution phase and 

the solid phase synthesis.  

 

 

 

 

 

 

 

1.7.2 Solution phase peptide synthesis  

 

Despite the larger and larger applications of solid phase methods, the synthesis of peptides in  

solution remains one of the major chemical approaches to these molecules.3 The principal 

advantage of this technique is the possibility to isolate and characterize all the intermediates at 

every step, having a knowledge about the molecular species obtained at every stage. Thus, 

problems that arise can be immediately identify , when in solid phase synthesis it is possible to do 

that only after the cleavage to the resin. However, classical peptide synthesis is slower than the 

solid phase synthesis and it is not suitable for the synthesis of peptide with a large number of 

residues. In the other hand, it is the most used strategy in some areas, such the high scale 

synthesis of peptides, the synthesis of peptides composed of unusual or uncommon amino acids 

(e.g. peptidomimetics) and the synthesis of cyclic peptides.  

It exists two different basic strategies: linear or convergent. In the linear strategy the amino acids 

are coupled singularly to the chain and it is the most suitable method for short peptides. The 

convergent is based on the condensation of peptidic fragments, and it is adapted for the synthesis 
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of longer peptides. The advantage of this second method is the possibility to prepare in parallel 

the different scaffold d, but the coupling of the different fragment can be slow and difficult for 

the steric reasons due to the use of two big fragments in which the reactive group is not so simply 

accessible. 

 

1.7.3 Solid phase peptide synthesis (SPPS) 

 

Merrifield’s methods for the synthesis of peptides on insoluble polymeric supports has been so 

succefull that the great majority of peptides are now made using this technique.4-6 The advantages 

of this technique over classical synthesis in solution phase are those of simplicity and speed of 

execution. SPPS can be mechanized and has led to the commercialization of automated peptide 

synthesizers which can be programmed to carry out repetitive steps in the synthesis of a peptide. 

In favourable cases, quite complex peptides can be made in a matter of hours by machine-assisted 

synthesis.  

The solid support consists in a polymer chemically inert to all the reagents used in the coupling, 

insoluble in the reaction’s solvent and simple to handle and to filtrate from liquids. It must be 

also possible to modify the resin to attach the first amino acid of the synthesis by formation of a 

covalent bond and remove them at the end of the synthesis. The most common resins are the 

Merrifield resin, which can be cleaved with HBr or HF and it is compatible with the Boc 

protecting group, and the Wang resin, which can be cleaved in less drastic conditions (TFA) and 

it is compatible with the Fmoc protecting group. 

 

1.7.4 Protecting group  

 

In both solution and solid phase synthesis, the choice of the protecting groups plays an important 

role. It is necessary to choice them to have an orthogonal system, which is a system where it is 

possible to deprotect easily a group without affecting the others. For the synthesis of peptides the 

N-protecting group is almost always a urethane derivative. The reason of this choice is the 

simplicity of the protection and deprotection steps and the possibility, choosing an appropriate 

urethane (figure 10) to deprotect them under acidic (in the case of Boc group, 17) or basic (in the 

case of Fmoc group, 18) conditions or under catalytic hydrogenation (in the case of Cbz group, 
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19). Usually the Nα is protected by using Boc or Fmoc group (the first is most employed is 

solution phase synthesis and  the second in solid phase), when the more stable Cbz is usually 

used for the protection of the amino group presents in the lateral chains.  
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Figure 10 

 

 

The carboxylic group is usually protected by esterification (Figure 11) forming a methyl or ethyl 

ester (20, 21 which can be cleaved in basic conditions by aqueous NaOH or LiOH) or an allyl 

ester (22, cleaved by palladium Tetrakis). 
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1.8 Peptidomimetics 

 

In recent years, the understanding of the folded and self-assembly processes at work in proteins, 

which are essentially governed by non-covalent forces, have led to major advances in the de novo 

design of individual protein secondary structure elements and protein folds from α-

polypeptides.7-11 Parallel to this field, chemists have been creating new synthetic oligomers that 

can self organize spontaneously to form defined secondary structures. These molecules aim at 

mimicking peptide structure through substances having controlled spatial disposition of 

functional groups, and for this reason are called peptidomimetics. Peptidomimetics have general 

features analogous to their parent structure, polypeptides, such as amphiphilicity. They have been 

developed, to a large extent, for the purpose of replacing peptide substrates of enzymes or peptide 

ligands of protein receptors.12-15 Peptidomimetic strategies include the modification of amino acid 

side chains, the introduction of constraints to fix the location of different parts of the molecule,16 

the development of templates that induce or stabilize secondary structures of short chains,17, 18
 the 

creation of scaffolds that direct side-chain elements to specific locations, and the modification of 

the peptide backbone. Of these strategies, systematic backbone modifications and structural 

alterations of the repeat units are most relevant to the field of foldamers. Backbone modifications 

may involve isosteric or isoelectronic exchange of units or the introduction of additional 

fragments. For some of these backbones, monomers and sequences giving rise to helical, 

extended (i.e., “strand”), and turn conformations have been identified. In this field, pseudo-amino 

acids (β, χ, and δ), due to their ability of these compounds to adopt in solution well-organised 

secondary structure, can be used as scaffold to place and orient pharmacophores in a predictable 

manner for the design of molecules with an interesting biological activity. In addition, in contrast 

with the natural α-peptides, pseudo-peptides display a remarkably in vitro stability to degradation 

by peptidases from bacterial, fungal and eukaryotic origins (e.g. leucyl aminopeptidase, trypsin, 

amidase, elastase, 20S proteasome, etc.) which makes them even more attractive for biomedical 

applications.19 Altogether, such unnatural oligomers designed to reproduce or mimic essential 

protein structural elements could be of considerable value in the drug discovery.20 In this field, 

geminal works by the groups of Gellman21 and Seebach19 showed that properties such as folding 

and structural diversity are not limited to the α-polypetides, but that are also shared with other 
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peptides containing different amino acids, such as β and χ. Later, it was also demonstrated that 

the more restricted δ-amino acids can lead to folded oligomers, argument which is exhaustively 

treated in the next chapter.  
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CHAPTER 2 δδδδ-AMI�O ACIDS TOWARDS FOLDAMERS A�D 

P�As 

 

 

2.1 Synthesis of cyclic δδδδ-amino acids 

 

In the biomedical research, the synthesis of compound with similar structures to the bioactive 

peptides (peptidomimetics) is very important to obtain molecules with an improved potency or 

stability than the natural compound. In this field, cyclic or polycyclic unnatural amino acids, due 

to the rigidity of the scaffold and to the highly preorganisation of the substituents, are able to 

offer a conformational bias to obtain a desired structural behaviour as part of oligopeptide or 

foldamers. Due to the proper spacing between the amino and the carboxylic function δ-cyclic 

amino acids can be designed as conformationally restricted dipeptide. A first simple classification 

of cycle δ-amino acids can be done on the base of the number of the atom in the ring. A large part 

of cyclic amino acids are carbohydrate derivatives bearing both an amine and a carboxylic acid 

functionality also referred to as sugar amino acid (SAA). In particular furanoid and pyranoid 

amino acids found a large application due to the cheap sugar starting materials, the simplicity of 

the synthesis and the possibility of an high functionalisation by reaction of the hydroxyl functions 

present in the molecule.  

       

 

2.1.1 Three membered ring δδδδ-amino acids 

 

In 1990 Kaltenbronn et al.22 synthesised a dipeptide isostere replacing the amide bond with an 

epoxide ring. The key step of the synthesis was the epoxidation of an alkene by mCPBA, 

obtaining the desired product as a mixture of diastereomers (Figure 12). 
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Figure 12: synthesis of epoxy amino acids by Kaltenbronn et al. 

After this first example, the same strategy was followed by others groups23-25 obtaining δ-amino 

acids with different substituents and diastereomeric ratio of the epoxide ring. In 1996 Mann et 

al.26 (Figure 13) published another synthesis of this promising type of δ-amino acids using a 

Mukaiyama aldol type reaction between the nonstereogenic sylilketene acetal 31 and the chiral 

aldehyde  30. The reaction performed in the presence of boron trifluoride etherate gave product 

32 in a single diastereomers which was then treated with mCPBA obtaining the epoxide δ-amino 

ester 33. 
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Figure 13: route for epoxy amino acid by Mann et al. 

 

A different approach to 3 membered ring δ-amino acid has been performed by Wipf in 200527 

which synthesised substituted cyclopropane dipeptide isostere (Figure 14). Methyl alkyne 36 was 

hydrozirconated with Cp2ZrHCl, transmetalated to Me2Zn and added to 

(diphenylposphinylimino)phenylarene to provide the corresponding allylic amide, which was 

converted to the desired cyclopropane 37 after treatment with CH2I2. Simultaneous N and O   

deprotection followed by selective N-Cbz protection afforded the alcohol 38a and 38b as a 

separable mixture of diastereomers. The desired δ-amino acid 39 was then obtained by a two step 

oxidation of the hydroxyl function to carboxylic acid. 
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Figure 14: synthesis of cyclopropane dipeptide isostere by Wipf et al. 

 

2.1.2 Four membered ring δδδδ-amino acids 

 

Only few works have been published about the synthesis of δ-amino acid with 4 ring atoms. Very 

active in this field, Fleet’s group published different works reporting the synthesis and/or the 

secondary structural investigation of δ-2,4 oxetane amino acids.  
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Figure 15: route for oxetane amino acid by Fleet et al. 

 

For example in 200828, 29 (Figure 15) 2,4-cis oxetane monomers have been synthesised starting 

from inexpensive L-arabinose. Key step of the synthetic route is the ring closure of an α-triflate 

of a γ-lactone in basic methanol, which provide the desired oxetane 44. 
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Figure 16: other oxetane amino acids by Fleet. et al. 

 

With the same methodology, but starting from different sugar like L-rhamnose or D-xylose, was 

possible obtain oxetane  with different substituent30, 31 (figure 16). 
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2.1.3 Five membered ring δδδδ-amino acids 

 

 

 

Figure 17: furanoid amino acid by Smith et al. 

 

In 1999 Smith et al.32 proposed a synthesis of a tetrapeptide based on the trans-5-aminomethyl-

tetrahydrofuran-2-carboxylate (figure 17). Treatment of the open chain triflate 49 with 

methanolic hydrogen chloride give the furan ring via an SN2-like closure of the C-5 hydroxyl 

onto C-2 with inversion of configuration. Treatment of primary mesylate 50 with sodium azide 

afforded the azido ester which was reduced by catalytic hydrogenation to give the free amino 

group.   
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Figure 18:  route for furanoid amino acids by chakraborty et al. 

 

In 2000 Chakraborty et al.33 proposed a synthesis of the furanoid δ-amino acid  57 from the 

hexose substrate 53, involving an unusual 5-exo opening of the terminal aziridine ring of 56 by 

the γ-benzyloxy during the oxidation of the primary hydroxyl group by pyridinium dichromate, 

with a complete stereocontrol of the ring opening under these conditions (Figure 18). 
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Figure 19: route for constrained amino furanoid amino acid by Van Well et al. 
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An original structure was synthesised by Van Well et al.34 in 2003, which synthesised a locked  

furanoid amino acid (figure 19): the key step of the synthesis is the regioselective ring closure of 

the dimesylate 62 to exclusively  afford the four-membered ring.   
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Figure 20: route for furanoid amino acid by Hanessian et al. 
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In 2004 Hanessian and Brassard35 (figure 20) synthesised a constrained oxacyclic 

hydroxyethilene isostere of aspartyl protease inhibitors. Introduction of the nitrogen moiety was 

performed by a nitroaldol reaction  utilising the Shibasaki binol catalyst to obtain 70 as a major 

isomer in moderate yield. 
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Figure 21: furanoid amino acid by Chakraborty et al. 

 

Another synthesis  of a Fmoc protected furanoid δ-amino acid (figure 21) was proposed by 

Chakraborty in 2004.36  After protection of the primary hydroxyl group the starting material was 

reduced with DIBAL-H to the lactol 74. Acylation of the hydroxyl group was followed by 

treatment with trimethylsilyl cyanide in the presence of BF3 etherated  to give 75 as a mixture of  

diastereomers. Reduction of the cyanide group followed by in situ N-Fmoc protection give the 

intermediate 76, which can be easily converted into the desired δ-amino acid by oxidation of the 

hydroxyl group with the Jones’ reagent.  
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Figure 22: route for C6-substituted furanoid amino acid by Chakraborty et al. 

 

The same group in 200537 synthesised a large variety of C6-substituted furanoid amino acid  with 

a completely different strategy (figure 22). Key step of the synthetic route is the selective 

sulfonylation of the primary hydroxyl group of 81 using 2,4,6-triisopropylbenzenesulfonyl 

chloride (TrisCl) which gave a sulfonate intermediate that was treated with anhydrous potassium 

carbonate to carry out an intramolecular ring closure reaction via an epoxide intermediate to give 

the tetrahydrofuran framework 82. The subsequent three steps oxidation of the primary hydroxyl 

group gives the desired δ-amino acid 83. 
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2.1.4 Six membered ring δδδδ-amino acids 

 

 

 

 

 

Figure 23: route for pyranoid amino acid by Graf Von Roedern et Al. 

 

In 1996 Graf von Roedern et al.38 synthesised a pyranoid δ-amino acid starting from glucosamine 

(figure 23). The anomeric hydroxyl was transformed to glycosyl bromide with acetyl bromide, 

which was treated with methanol and pyridine to give the β-methyl glycoside. 

Benzyloxycarbonyl protection of the free amino group was followed by the methanolysis of 

acetyl group and selective oxidation of the primary hydroxyl group obtaining the desired δ-amino 

acid 88. 
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Figure 24: synthesis of pyranoid amino acids by Overkleeft et al. 

 

In 1999, Overkleeft et al.39 synthesised a farnesyltransferase inhibitor based on sugar amino acids 

(figure 24). First step of the synthesis is  a Ferrier rearrangement of 3,4,6-tri-O-acetyl-D-glucal 

89 with trimethylsilyl cyanide and a catalityc amount of  BF3 etherate to give a mixture of  

separable  cyanides. Starting from the major isomer 90 after few steps was possible to obtain the 

2 enantiomeric pure δ-amino acids 91 and 92.    
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Figure 25: Stockle’s pyranoid amino acid 

 

A different synthetic route was proposed by Stockle et al.40. O-acetyl-α-glucopyranosyl bromide 

was reacted with Hg(CN)2 in melt to give the cyanide which was reduced to amine  and then 

protected as tert-butoxy-carbonyl in situ with Boc anhydride. Carboxylic group was then 

introduced by a TEMPO oxidation of the primary hydroxyl group (figure 25).  
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Figure 26: sugar amino acid by Risseuw et al. 

 

In 2007 Risseuw et al.41 proposed a synthesis of an alkylated sugar δ-amino acid by condensation 

of formil glucopyrasonide 99 with both R o S-butanesulfinimide in presence of Ti(OiPr)4, 

followed by the alkylation of the resulting imide with MeMgBr, giving the adduct 101 with an 

excellent diastereomeric excess (figure 26). Hydrolysis with methanolic HCl afforded the free 

amino group which was the protected by treatment with Fmoc succinimide. Selective 

debenzylation of the primary hydroxyl group followed by a TEMPO oxidation allowed to 

introduce the carboxylic function in the desired position. 

  

 

2.1.5 Bicyclic δδδδ-amino acids 

 

 

Between the bicyclic δ-amino acids, azabicyclo[X.Y.0]alkane amino acids or heteroatom 

analogues are particularly attractive dipeptide mimetics because their ability to adopt a 
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conformation which can surrogate a  β-turn. Additionally, it is possible easily change some 

characteristics of the scaffold as rigidity or solubility by inclusion of substituents in different 

positions, insertion of heteroatoms or other modifications affecting the ring size. A quite general 

synthesis was proposed by Belvisi et al.42 in 2004,  based on a radical approach (figure 27). 

Starting from proline derivatives 104, after deprotection and alkylation of the amino group, was 

possible to obtain a small library of  amides 105. Conversion of the alcohols to the corresponding 

brominated products 107 was performed by treatment with mesyl chloride followed by 

displacement with lithium bromide, whereas the selenides were prepared directly from the 

alcohols by treatment with N-phenylphtalimide and tributylphosphine.       
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Figure 27: radical approach for azabicycloalkane by Belvisi et al. 
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Figure 28: route for azabicycloalkane by Wang et al. 

 

A non radical approach was proposed by Wang et al.43 in 2002 (figure 28) and Belvisi at al.42 The 

aldehyde 116 was obtained in few steps starting  from the derivative of pyroglutammic acid 115 

and then converted in the dehydroamino acid 117 via the Horner-Emmons olefination . 

Stereoselective reduction of this compound with the Burk’s catalyst followed by intramolecular 

amido bond formation give the 2 desired δ-amino acids 120 and 121.  
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Figure 29: unsaturated bicyclic amino acid by Millet et al. 

A synthesis of a more rigid bicyclic scaffold due to the presence of an unsaturation in the 6 

member ring cycle was proposed by Millet et al.44 (figure 29). The enantiomeric pure δ-amino 

esters 126 and 127 coming from a Michael addition on Cbz-protected dihydroalanine 125 

followed by an in situ cyclisation promoted by 1-ethyl-3(3’-dimethylaminopropyl)-

carbodiimmide(WSC).   
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Figure 30: polyunsaturated scaffold by Dragovich et al. 

 

A polyunsaturated scaffold was synthesized by Dragovich et al.45 in 2002. Cyclisation of pyridine 

derivative 131 by treatment with an excess of   trifluoromethanesulfonic triflate anhydride in the 

presence of 2,6-lutidine give the pyridium salt 132. Simultaneous O-demethylation and  

desilylation by exposure to tetrabutylammonium fluoride followed by a double step oxidation of 

the hydroxyl function give the desired δ-amino acid 133 (figure 30). 
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Figure 31: route for diazabicycloalkane by Tong et al. 

 

Often, the free amino function was directly incorporated on the ring.46 The proline derivative 134 

(figure 31) was coupled , after deprotection of the Boc group, with the fluoride acid derivative of 

the Cbz-protected phenylalanine. The vinyl group of 135 was oxidized using an ozonolysis 

reaction, which bring, after the reductive workup with dimethyl sulfide, to a spontaneous 

cyclisation to form a six-membered ring hemiaminal. Reduction with hydrogen in the presence of 

a catalityc amount of Palladium on Barium sulfate give the desired peptidomimetic 136.    

 



 37 

NH

HO

HO

COOEt

N

HO

HO

COOEt

NHCbz

R

O

n n

N-Cbz protected amino acid,
DCC, HOBt, DMF

NaIO4, acetone/H2O

137 138

N

O

CHO

COOEt

Cbz

R

n

139  

 

Figure 32: route for diazabicycloalkane by Maison et al. 

 

In 2004 Maison et al.47 proposed a short synthesis of a number of diazabicycloalkane as useful 

mimetics of dipeptide. Compound 137 (figure 32) was obtained by an aza-Diels-Alder 

condensation and then coupled with different natural amino acids to give a small library of 

molecules 138. Oxidative cleavage of this compound followed by a spontaneous cyclisation give 

the desired compound 139 which can further functionalized in few steps.   

 

 

R
1
HN

H
N

O

X

R
1
HN

N

O

X
H

COOR
2

COOR
2

Rh(acac)CO2 (2% mol), BIPHEPHOS (2% mol), 
H2, CO, PTSA (10% mol), toluene

140 141

n n

mm

X = O, S, NBoc

m = 0 or 1 n = 1 or 2

R
1
 = Boc or Cbz

R
2
 = Me or Bn  

Figure 33: one step synthesis of bicyclic amino acids by Chiou et al. 

 

Chiou et al.48 proposed a versatile one step synthesis of diaza- or oxoazabicycloalkane trough a 

Rhodium catalyzed cyclohydrocarbonylation that induces a cascade double cyclisation with an 

extremely high regio- and stereoselectivity (figure 33). 
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Figure 34: synthesis of oxoazabicycloalkane by Bencsik et al. 

 

 

Another way to oxoazabicycloalkane δ-amino acid was adopted by Bencsik et al.49 through the 

condensation of 3-aza-1,5-ketoacids 146 with the racemic serinol (figure 34) followed by a 

TEMPO oxidation of the hydroxyl function. 
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Recently,50 Sellstedt et al. synthesized the new δ-bicyclic amino ester 150 by a regioselective 

nitration of the thioazabicycloalkane 149 followed by reduction of the nitro group. diazotation of 

aminofunctionalized 2-pyridones followed by the hydrolisation of the methyl ester brings to the 

very rigid ring-fused pyrazole-pyridone scaffold 152 (figure 35).  

 

 

2.2 δδδδ-amino acids in foldamers 

 

 

Because δ-amino acids are isosteric to the α-dipeptide, one of their major applications is the 

introduction of them in active α-peptides to replace part of them, making the oligopeptide more 

stable versus the enzymatic hydrolysis. Applications as enkephalin analogues34, 51-54, human -

secretase inhibitors55-59 have been reported. The great interest in this field is also demonstrated by 

the synthesis of the very potent non peptidic renin inhibitor Aliskiren®60 from Novartis which has 

received the approval of the U.S. Food and Drug Administration for the treatment of 

hypertension. In most of the cases, δ-amino acids are not placed in a part of the peptide highly 

involved in the formation of the secondary structure, but their role is limited to avoid the 

enzymatic cleavage.  

Nevertheless, δ-amino acids have a great potential for secondary structures induction for the 

same reasons as they have been used in inhibitors: their backbone mimics α-dipeptides and they 

may offer folding properties similar to the α-peptides. Hofmann et al. calculated the possible 

secondary structures that could be adopted by δ-amino acids.61 The calculations revealed that 

homopeptides of δ-amino acids could adopt a large variety of helical structures presenting 8-, 10-, 

14-, 16-, 20- and 22-membered rings closed by hydrogen bonding. In addition, δ-amino acids can 

induce β-turns, especially cyclic ones which confirmed the importance of a rigid conformation to 

stabilise secondary structures.  

 

It exists many examples of δ-amino acids used to induce a secondary structure. A first example 

was proposed by Gellman et al. which prepared the dipeptide isostere 153 and investigated his 

ability to induce a secondary structure preparing the protected monomer 154 and the tripeptide 
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155
62 (Figure 36). NMR and IR in solution studies showed the presence for both of a β-hairpin 

conformation due to the presence of a ten-membered ring formed by the strong intramolecular 

hydrogen bond in the molecule 154. Same behaviour was obtained63 studying other 

tetrasubstituted alkenes isosteres. It was explained that the hairpin structures are stabilised by the 

avoidance of allylic strain compared to the non substituted one which exhibited less stable 

structures.  
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Figure 36 

 

A folded δ-peptide based on ornithine was proposed by Zhao et al.64 and based his folding 

properties on donor-acceptor interactions (Figure 37). The peptide could adopt a zipper-featured 

foldamers since the secondary structure was stabilised by π-stacking between the electron-rich 

1,5-dioxynaphtalene (DAN) and the electron deficient pyromellitic diimide (PDI). The peptide 

156 was named zipper-featured foldamer as the appendages DAN and PDI linked to the a-NH of 

ornithine were arranged alternatively one between each other as in a zipper. 
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Figure 37 Figure with cordial authorisation by Prof. ZhanTing  

 

 

 

Cyclic amino acids, in particular sugar amino acids, found a large application in the field of 

foldamers due to their rigid structure and the relative simple possibility to introduce different 

substituents due to presence of the hydroxyl groups. One of the most active groups in this field is 

the group of Fleet, which synthesised and study a large number of δ-amino acids with different 

ring size (figure 38). 
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Figure 38 

 

It has been proved that the secondary structure of these three analogous furanoid δ-amino acid is 

largely affected by the different substituents present on the ring. In particular, a tetramer and an 

octamer of the molecule 157 showed a β-turn conformation,65 when the octamer of 159 adopts an 

helix with repeated 16-membered rings66 and the tetramer of 160 a β-bend ribbon like structure,67 

as well as the hexamer of the oxetane amino acid 158.29 

Folded structures have been found also in the case of hetero-peptides containing series of α-δ-

amino acids. One of the major examples was presented by Chakraborty et al.68 which synthesised 

the short α-δ-oligopeptide 161 where was possible to observe a series of β-turns plus a nine-

membered ring at the C-terminal of the peptide between an OH of the furanoid δ-amino acid and 

the terminal leucine (Figure 39). 
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A large part of bicyclic amino acids are designed to mimic peptidic motifs of natural compounds 

which adopt a U-shape conformation (β and γ turns). These conformations are characterized by 

specific torsional and angular parameters, so the correctly positioning of the amino and the 

carboxylic group in the peptidomimetic is of fundamental importance. For these reasons, δ-amino 

acids, which are dipeptide isosteres, found a large application, in particular to replace the i + 1 

and  

i + 2 residues in β-turns systems (Figure 40). In particular, azabicyclo[X.Y.0]alkane amino acids 

or heteroatom analogues are particularly attractive dipeptide mimetics because their ability to 

adopt a conformation which can surrogate a  β-turn. Additionally, it is possible easily change 

some characteristics of the scaffold as rigidity or solubility by inclusion of substituents in 

different positions, insertion of heteroatoms or other modifications affecting the ring size. 

 

 

 

Figure 40: comparison between a β-sheet (on left) and a generic δ-bicyclic amino acid (on right) 

 

 

For example, in 2003 Davies et al.69 synthesised the azabycicloalkane 162 as rigid scaffold to 

induce an external β-turn GLDV motif which can be recognized by integrins. 
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162 

Figure 41 

 

2.3 δ-amino acid in peptide nucleic acid (P�A) 

 

Peptide nucleic acids are molecules that are hybrids or chimeras between peptides and nucleic 

acids. In the broadest definition PNAs are composed of a peptide bearing as lateral chain 

nucleobase groups. Due to the identical number of bonds (6) along the backbone of DNA, δ-

amino acids found a large application in this field of research. The first PNA, based on an 

aminoethylglicine (Aeg) oligomer, was synthesized  by Nielsen et al.70, 71
 in 1991 (Figure 42).  
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Figure 42 Chemical structure of the aminoethylglycine monomer (163) and structure of the Aeg-

PNA compared to DNA (164) 
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This very simple structure and his interesting applications in the DNA recognition inspired many 

research’s groups to synthesised analogues and derivatives in order to understand and/or improve 

the properties of this new class of DNA mimics. In particular, many efforts have been done to 

introduce elements of chirality or to rigidify the structure with cyclic amino acids. Because is not 

in the aim of this work to be a review about PNA, this part treats in particular the synthesis and 

the structure of the  δ-amino acid scaffolds used in this field without investigate the interactions 

of PNA with DNA or RNA. To investigate these and other parts which are not exhaustively 

treated in this paper, many reviews about PNA can be consulted.72-74 

 

 

 

2.3.1 P�A based on aminoethylglicine  

 

Many synthetic ways have been reported for the synthesis of this PNA. 

The preparation of the monomer can be divide in the synthesis of a suitable N-protected 

aminoethylglicine backbone, which will then acylated with a nucleobase acetic acid derivative. 

Three different synthetic routes have been employed to aminoethylglicine. First is the alkylation 

of diaminoethane by an α-halogenated carboxylic acid (figure 43).  
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Boc t-But Boc2O, Et3N, 

DCM 

ClCH2COOtBut, 

Et3N, DCM 

Breipohl et al. 199778 

Boc Me Boc2O, DCM 

 

1 ClCH2COOMe Kofoed et al. 200179 

Dde Me 1 ClCH2COOH 

2 MeOH, SOCl2 

Dde-OH, DIPEA, 

DCM/EtOH 

Bialy et al. 200580 

Fmoc Allyl 1 ClCH2COOH 

2 Allyl-OH 

FmocOSu, DIEA Hudson et al. 200581 

NVOC t-But 1 BrCH2COOt-But NVOC-Cl, DIEA Liu et al. 200582 

Bts Et 1 ClCH2COOH 

2 EtOH, HCl 

Bts-Cl, Et3N, DCM Lee et al. 200783 

Boc Et Boc2O, THF BrCH2COOEt, Et3N Vysabhattar et al. 2008 84 

Fmoc Benzyl 1 ClCH2COOH 

2 BenzylOH, TsOH, 

Tolune 

FmocOSu, DIPEA Wojciechowski et al. 200885 

Fmoc Allyl 1 ClCH2COOH 

2 AllylOH, TsOH, 

Benzene 

FmocOSu, DIPEA Wojciechowski et al. 200885 

Fmoc p-nitrobenzyl 1 ClCH2COOH 

2 p-nitrobenzylOH, 

TsOH, Toluene  

FmocOSu, DIPEA Wojciechowski et al. 200885 

Figure 43 Aminoethylglicine backbone by alkylation of diaminoethane 

 

 

 

Second route is the reductive amination of a N-protected aminoacetaldehyde with glicine esters 

(figure 44). 
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R a b C Ref. 

Me Boc2O, NaOH, 

H2O 

KIO4, H20 H2NCH2COOMe.HCl, 

NaOAc, H2, Pd/C 

Dueholm et al. 199386 

Et Boc2O, NaOH, 

H2O 

KIO4, H20 H2NCH2COOMe.HCl, 

NaOAc, H2, Pd/C 

Dueholm et al. 199386 

Et Boc2O, NaOH, 

H2O 

NaIO4, H20 H2NCH2COOMe.HCl, 

NaBCNH3, MeOH 

Finn et al. 199687 

Figure 44 synthesis of Boc Aeg derivative by reductive amination of aminoacetaldehyde with 

glicine esters 

 

 

 

 

 

 

 

Third route is a reductive amination using 1,2-diaminoethane and glyoxylic acid (figure 45) 
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Figure 45 Synthesis of Aeg derivatives by reductive amination of 1,2-diaminoethane and 

glyoxylic acid 
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The second step of the synthesis is then the coupling of the secondary not protected amide with a 

nucleobase acetic acid derivative. In figure 46 is showed as example the synthesis of the thymine 

acetic acid derivative and his coupling with the aminoethyl glycine backbone. The same strategy 

can be adopted to couple the other nucleobases, but in this case an additional 

protection/deprotection step of the free amino function is necessary.  
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Figure 46 Synthesis of acetic acid thymine derivative and his coupling with the Aeg backbone 

 

2.3.2 Linear analogues of Aeg-P�A 

 

A large variety of linear analogues of Aeg-PNA have been synthesised. First attempts were done 

by the same group to investigate the change of the affinity with the DNA just replacing the lateral 

chain bearing the nucleobase, for example adding one bond90 or by alkylation of the free amino 

group with an halogeno alkane91 (167 and 168, figure 47). Additionally, because the central 

nitrogen is not involved in an hydrogen bond, a PNA with a different position of the nitrogen 

(retro-inverso PNA, 169) was synthesised.92-94 
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Figure 47 Other PNA by Nilsen’s group 

 

Elements of chirality can be simply introduced in the scaffold by replacing the glycine with other 

amino acids (figure 48), for example using the L or D lysine (180).95 Recently, Balaji et al.96 

proposed a versatile solid phase synthesis to give PNA containing different lateral chains (181). 

Additionally, Ganesh et al.97 described a dimethyl substitution in the same position (182) to 

introduce a conformational rigidity into backbone and to pre-organized the PNA backbone to 

attempt selective hybridisation properties.    
 

 

 

Figure 48 Chiral PNA where the glicine was substituted with other amino acids 

 

 

 

The possibility of a functionalisation of the ε position (figure 49) was also explored. Introduction 

of a methyl (183)98 or of an amino function (184)99, 100 has been done by a variant of the synthesis 

of AegPNA described previously in this chapter (figure 44) starting respectively from N-

protected L-alanine aldehyde and L-lysine aldehyde instead of the glicine aldehyde. Of particular 

interest is the presence of the free amino group in the molecule 184, which not only allows to 

solve the problem of the poor aqueous solubility of PNA, without affecting the affinity to the 

DNA, but is also a group suitable of further modifications. 
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Figure 49 ε-functionalised PNA 

 

In 1997 by Altmann et al.101 proposed a new PNA scaffold which was readily available in few 

steps starting from L-serine or L-homoserine (figure 50, 185 and 186). Most important  

difference with the Aeg-PNA is the presence of an oxygen at the place of the central nitrogen and 

the subsequent change of the position of the lateral chain bearing the nucleobase. 
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Figure 50 Serinol PNAs synthesised by Altmann et al. 

 

 

 

In order to investigate the effect of the pre-organisation of the monomeric PNA unit in either the 

trans and the cis form of the amide bond, analogues E-OPA (193) and Z-OPA (194), in which the 

central amide bond was replace by a configurationally defined double bond, have been 

synthesised.102, 103 Unfortunately, the too rigid structure has a result a decrease of the affinity to 

DNA in both the case (figure 51). 
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Figure 51 synthesis of the Z-OPA bearing the thymine as nucleobase and general structure of E 

and Z-OPA 

 

In 1997, Bergmeier et Fundy developed a synthesis of  a very flexible PNA based on an 

aminopentanethyl linker,104 which was obtained starting from δ-valerolactam in few steps (figure 

52). 
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Figure 52 Synthesis of aminopentanethyl-PNA 

 

 

2.3.3 Cyclic P�As 

 

The main difference about linear PNAs and DNA is the major flexibility of the firsts comparing 

with the phosphodiester ribose backbone. For this reason, in the aim to improve the stability of 

PNA-DNA or PNA-RNA complex, an adequate restriction of the flexibility can be an interesting 

strategy. This has led to the synthesis of  a large series of conformationally constrained cyclic 

PNA. Particular success had the synthesis of  the aminoethylprolil PNA (Aep-PNA), which is one 

of the few structure able to significantly stabilize the DNA-PNA interaction.105, 106 Aep-PNA was 

synthesised in few steps starting from natural (2S,4S)-4-hydroxyproline (figure 53).  
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Figure 53 Synthesis of Aep-PNA 

 

From the same starting material, a pyrrolidine-PNA107 was also synthesised (figure 54).  
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Figure 54 Synthetic route for pyrrolidone-PNA by Kumar et al. 
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In order to further rigidify the structure of the Aep-PNA a selective oxidation of the C5 carbon 

has been performed.108 This modification brings to the aminoethylpyrrolidinone-PNA (Aepone-

PNA, figure 55). The tetrahedral nature of pyrrolidine nitrogen in Aep-PNA is switched to the 

planar amide in Aepone-PNA, as in unmodified PNA, with a consequent influence on the 

backbone conformation. Unfortunately, the affinity to DNA is lower than Aep-PNA, but more 

than Nielsen’s Aeg-PNA.   
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Figure 55 Synthesis of Aepone-PNA by Sharma et al. 
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Figure 56 Synthetic route of cyclopentane-PNA by Myers et al. 

 

A cyclopentane conformational restraint PNA was also synthesized.109 The single deprotection of 

the di-amine 212 (figure 56) was performed in moderate yield by treatment with just 1 equivalent 

of tri-fluoroacetic acid. Reductive amination of the free amino group with ethylglyoxalate give 

the δ-amino ester 214, which was then alkylated by the acetic acid thymine derivative, to give, 

after hydrolisation of the ethyl ester, the desired PNA 215.  
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Figure 57 Synthesis of Aepone-PNA by Püschl et al. 

 

Another way to Aepone-PNA was presented also by Püschl et al.110 in 2001 which synthesised 

the 2 different diastereomers (3R,5R) and (3S,5R) containing adenine as nucleobase (scheme 17). 

Moreover, starting from the enantiomer of compound 216 the (3R, 5S) and (3S, 5S) monomers 

have been obtained (figure 57). With the same strathegy,110 but starting from the 6-membered 

ring (6R)-6-(tert-butyldiphenylsilyloxymethyl)piperidin-2-one, the same research’s group 

obtained the piperidinone-PNA 225 and 226 (figure 58).  
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Figure 58 Piperidinone-PNA by Püschl et al. 

 

6-membered ring δ-amino acids found less applications in the PNA’s field. The principal reason 

is the rigidity of the chair/boat conformation compared to the more flexible 5-membered ring, 

which is often detrimental for the affinity to DNA or RNA. For example, aminoethylpipecolic-

PNA (Aepip-PNA)111 is one the most promising target., and was obtained in few steps starting 

from the cis-5(S)-hydroxy-2(S)-N1-benzyloxycarbonyl pipecolic acid methyl ester 227 (figure 

59). 
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Figure 59 Synthetic route for Aepip-PNA by Shirude et al. 

 

Less applications found the sugar-PNAs. In figure 60 is reported the synthesis of a sugar-PNA by 

Goodnow et al.112, 113 Key step of the synthesis is the selective glycosylation of the nucleobase 

which gave as result the α-isomer with just few impurities of the β-one.     
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Figure 60 Synthesis of a sugar-PNA by Goodnow et al. 
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2.4 Synthesis of δδδδ-amino acids 

 

2.4.1 Aim of this work 

 

Previously in our group, the synthesis of a novel γ-butyrolactone aldehyde δ-amino acid and a 

homo-tetramer based on this scaffold was performed. The CD analysis of this tetrapeptide 

suggested the presence of an helical conformation, but not other proof have been produced. The 

purpose of my work is the synthesis of the enantiomer of that δ-amino acid (256) and his 

incorporation in short α-δ-oligopeptides to study his ability to induce a secondary structure. The 

retrosynthetic scheme is shown in the figure 61. The δ-amino acid can be obtained starting from 

the asymmetric cyclopropanation developed in our group. The cyclopropanated compound 237 is 

then submitted to ozonolysis and Sakurai allylation affording a chiral allylated cyclopropane 

alcohol. This compound can be lactonised very easily to form the corresponding χ-

butyrolactonaldehyde 249 on which is added a nitrogen moiety by reductive amination. After Boc 

protection, PMB cleavage and oxidation can be obtained the δ-amino acid 256 ready for peptide 

coupling.       
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2.4.2 Cyclopropanation 

 

Due to the structural rigidity of the ring and their present in a large series of natural compound, 

substituted cyclopropanes have been widely employed in the organic synthesis.22-27 In our lab, it 

was developed a regio and enantioselective cyclopropanation114 of the 2-furanoic acid methyl 

ester 236  (figure 62) with the ethyl diazoacetate in the presence of a catalytic amount of cupper 

triflate,  the R,R bis-oxazoline ligand 241 (its synthesis is showed in figure 63)115 and the 

phenylhydrazine. The bis-oxazoline, complexed to the copper carbene, allows the approach of the 

substrate only by the less hindered double bond. Then, the positioning of the substrate is 

controlled by the steric hindrance of the isopropyl groups of the bis-oxazoline ligand and the 

cyclopropanation of the double bond is then directed almost only on one face of the substrate. 

The enanctioselectivity of the reaction, measured by chiral phase HPLC, is of 94% and it can 

improved to up of 99% by a single crystallisation in dichloromethane-pentane at low temperature 

(-27°C). 
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2.4.3 Ozonolysis 

 

Second step of the synthesis is the ozonolysis of the compound 237 to give the cyclopropane 

aldehyde 242. The ozone was gurgled in a dichloromethane solution of 237 until the colour of the 

solution turned to blue, indicating a presence of an excess of ozone. The solution was then purged 

by oxygen for 5 minutes and successively reacted overnight in presence of an excess of dimethyl 

sulphide to avoid the oxidation of the aldehyde to carboxylic acid. A simple extraction afforded 

the desired product in an excellent yield.  
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Figure 64 

 

 

2.4.4 Sakurai allylation 
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Figure 65 

The stereoselectivity of addition of nucleophiles to α-chiral carbonyl compound was first 

postulated by Cram116 and its mechanism was improved by Felkin and Anh.117, 118 For 
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stereoelectronic reasons, cyclopropyl-substituted carbonyl compounds are more stable in bisected 

conformations. In our case, two bisected conformations are possible: s-cis and s-trans. The s-

trans conformation should be favoured because of steric interactions and the anti-Felkin-Anh 

product 246 should be obtained. But in fact it was obtained the Felkin-Anh product 244 and some 

interactions specific should explain the higher stability of the s-cis compound in our case. The 

reaction of 242 with BF3•Et2O and allytrimethylsilane afforded quantitatively the allylated 

cyclopropane alcohol 244 in a 95/5 ratio (Scheme 47). 

 

 

2.4.5 Retroaldol lactonisation  

 

The cyclopropane compound 244 presents many interesting features for further synthetic 

transformations. The free OH group is located in γ-position relatively to the ethyl ester and the 

cyclopropyl-methyl oxalic diester should saponify easily under basic conditions. The retro-aldol 

lactonisation (figure 66, pathway a) can be realised with barium hydroxide in methanol affording 

the γ-butyrolactonaldehyde 249 in good yields (60%) with the same excellent diastereoisomeric 

ratio as the starting material. The problem relied to this protocol are the difficult purification, in 

particular the very tedious removal of the barium hydroxide, and the dramatic drop of the yield 

when the reaction was performed in high scale (up to 1 gram). To avoid these problems, other 

different base have been employed. First attempt was done with a strong basic Dowex resin in 

methanol, which allows to improved the yield to 70% (also in gram scales reaction) and to 

simplify the work-up. The resin could be then simply filtrated and reused for a further reaction 

after reactivation by treatment with aqueous sodium hydroxide. The problem of this procedure 

was a progressive decrease of the resin activity after several utilisations, which makes this 

protocol inapplicable for economical reasons. During the tests of this protocol, it was possible to 

observe by TLC the formation of an unknown product which was not present in the reactions 

carry out with the most reactive barium hydroxide. Of particular interest, the fact that collecting 

this product and reacting them in the same conditions with other strong basic Dowex resin, it was 

possible to obtain a further amount of the lactone 249. This observation clearly indicates as the 

unknown product should be an intermediate of the lactonisation reaction. The unknown 

compound could be purified and fully characterised by 2D-NMR. It resulted from the 
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rearrangement of the starting material to an acetal in a diasteromeric ratio of 80/20 of the 

anomeric carbon (251). This suggested a new mechanism of the reaction (pathway b, figure 42). 

A last protocol was done employing organic amines, in particular triethyl amine, in methanol. It 

resulted in a very simple protocol (after the reaction it was enough evaporated the solvent and do 

directly the column), and it was possible to have a good yield (up to 70%) also in a 30 grams 

scale reaction. Also in this case, it was recovered the intermediate 251, which could reacted in the 

same conditions to give a further amount of the lactone 249. It is interesting to mark that it was 

not possible to obtain a full conversion of the compound 251 to the lactone 249, which probably 

indicates the presence of an equilibrium between the two products.     
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Figure 66 

 

 

2.4.6 Introduction of the nitrogen moiety 

 

The nitrogen moiety was introduce by a reductive amination of the aldehyde. The mechanism of 

the reaction consist in a first time in the formation of an imine intermediate which can be then 
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reducted to amine with different reductive agents as sodium borohydride,119 NaBCNH3
120, by 

catalytic hydrogenation121 etc... This reaction is usually performed in methanol because a source 

of proton is necessary to complete the reduction. Moreover, the imination step release a molecule 

of water, for this reason the presence of a drying agent, such as molecular sieves or sodium 

sulphate, can push the equilibrium to the product. The reductive amination was initially 

performed with the benzylamine, but the successive cleavage by catalytic hydrogenation of the 

benzyl group resulted in a very low yield. For this reason, it was decide to use the para-methoxy 

benzyl amine, which can be cleaved by an oxidative treatment with cerium ammonium nitrate122 

or TEMPO. It was quite hard to find good experimental condition for this reaction, in particular 

due to two different problems. The first problem was the presence of a parasite lactamisation 

reaction (figure 54), which was solved by a short reduction time (5-10 minutes at 0°C) and 

performing the reaction in a dichloromethane-methanol mixture instead of in pure methanol. 

Second problem was relied to the low stability of the unprotected amine 252 in contact with the 

silica gel. This problem was overcome by an acidic extraction of the amine 252 by 1M 

hydrochloric acid, followed by basification of the aqueous phase with solid sodium bicarbonate 

and re-extraction with dichloromethane. This protocol allowed to obtain the compound 252 in a 

good yield with an acceptable amount of impurities (less than 5% by proton NMR).    

 

 

 

Figure 67 

 

2.4.7 Lactamisation 

 

Heterocycles are among the most important structural classes of chemical substances and are 

particularly well-represented among natural products and pharmaceuticals. It is estimated that far 

more then 50% of the published chemical literature concerns heterocyclic structures. One striking 

structural feature inherent to heterocycles, which continues to be exploited to great advantage by 

the drug industry, lies in their ability to manifest substituents around a core scaffold in a defined 

three-dimensional representation, thereby allowing for far less degrees of conformational 
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freedom than the corresponding conceivable acyclic structures. In addition, as a result of the 

presence of heteroatoms such as O, N, and S, heterocycles often exhibit altered absorption, 

distribution, metabolism, and excretion properties. For all these reasons pyrrolidinones are very 

studied compounds.123-126 and it can be then interesting develop a synthesis for the 

enantiomerically pure pirrolidinone 253 which was obtain as parasite product in the reductive 

amination of the aldehyde 249. The imination step was then performed in methanol at room 

temperature for half hour, the NaBH4 was then added portionwise at 0°C and, after a further half 

hour, the solution was heated to reflux and reacted overnight. In these conditions it was possible 

to obtain directly in one pot the lactame 253 in a moderate yield. The moderate yield largely 

depended by the presence, at the end of the reaction, of a considerable amount of the amine 252 

(nearly 40%) which can be recovered and converted in a further amount of lactame.     

 

 

 

Figure 68 

 

2.4.8 Boc-protection 

 

Boc-protection of the free amino group was performed by a standard protocol by using Boc 

anhydride in a mixture of dioxane-1M aqueous solution of potassium carbonate with a good yield.  
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2.4.9 PMB removal by cerium ammonium nitrate 

 

The PMB group was removed in mild condition by oxidation with cerium ammonium nitrate 

(CAN). As described by Yoshimura et al.122, the yield of the reaction is very dependent by the 

concentration of at ammonium cerium nitrate. In particular, with a concentration of the CAN of 

0.25M it was possible to obtain the desired product with a yield of 79%, when with a lower 

concentration as 0.05M the yield dropped to 30%. 
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Figure 70 

 

2.4.10 Double bond oxidation 

 

In literature, just few example of one step oxidation of a double bond to carboxylic acid are 

reported. In particular, the most used protocol consists in a sodium periodate oxidation in the 

presence of a catalytic amount of hydrate ruthenium trichloride in a mixture of water, acetonitrile 

and carbon tetrachloride at 0°C.127 The purification was achieved by a simple extraction with 

diethyl ether, followed by the filtration of the catalyst, to give the desired acid 256 in a good yield. 
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Figure 71 

 

2.5 Synthesis of αααα-δδδδ-pentapeptide 

 

The lactone δ-amino acid 256 is a suitable building block for the synthesis of oligopeptides. Of 

particular interest is the synthesis of mixed α-δ-oligopeptides to check the ability of our scaffold 

to induce a secondary structure. The selected α-amino acid was the natural L-phenylalanine, 



 67 

which does not present overlap in the proton NMR signals with our lactone, simplifying the 

NMR studies. In our case, the choice of the Boc protection of the N-terminal amine is suitable for 

the solution phase synthesis, by using a classical Boc strategy. The first coupling was performed 

between the δ-amino acid 256 and the trifluoacetic salt of the phenylalanine benzylester 257 in 

dichloromethane in the presence of HOBt, EDC and DIPEA to give dipeptide 258 in a good yield. 

Deprotection of the urethane with trifluoroacetic acid followed by coupling of the resulting salt 

with the Boc-protected phenylalanine in the presence of HOAt, EDC and DIPEA afforded the 

desired tripeptide 259 in 84% yield. For this and the successively coupling it was employed as 

coupling reagent the most reactive HOAt instead of the HOBt to achieve better yield. The same 

protocol was the employed in the next coupling between the tripeptide 259 and the lactone 256 to 

afford the tetrapeptide 260. Finally, deprotection of the tetrapeptide 260 and its coupling with the 

lactone 256 afforded the desired pentapeptide 261, which was purified by column 

chromatography and then analysed with different techniques to study its secondary structure. The 

techniques employed for the conformational analysis were the IR in solution, circular dichroism 

spectroscopy, NMR analysis and molecular modelling studies. Attempts to obtain stable crystal 

to carry out X-ray analysis unfortunately had a negative outcome.    



 68 

O

O

N COOBn
BocHN

O

H

Bn

86%H2N COOBn

Bn

257

O

O

N COOBn

O

H

Bn

N
BocHN

H

O

Bn

84%

O

O

N COOBn

O

H

Bn

N

H

O

Bn

O

O

O

BocHN
N

77%

H

O

O

N COOBn

O

H

Bn

N

H

O

Bn

O

O

O

N
N

H

BocHN

O

Bn

86%

H

TFAOO

NHBoc

256

COOH
+

1.4 eq. HOBt, 1.4 eq. EDC,
5.0 eq. DIPEA, DCM

258

1. TFA:DCM 1:1
2. 1.5 eq. Boc-Phe, 1.5 eq. EDC,
1.5 eq. HOAt, 5.0 eq. DIPEA, DCM

1. TFA:DCM 1:1
2. 1.5 eq. 256, 1.5 eq. EDC,

1.5 eq. HOAt, 5.0 eq. DIPEA, DCM

1. TFA:DCM 1:1
2. 1.5 eq. Boc-Phe, 1.5 eq. EDC,
1.5 eq. HOAt, 5.0 eq. DIPEA, DCM

259

260

261
 

Figure 72 

 

 

 

 

 



 69 

2.6 Conformational analysis of the pentapeptide 261 

 

2.6.1 IR in solution 

 

The IR in solution was performed in dichloromethane at the concentration of 1 mM to avoid the 

aggregation of the oligopeptide. The result showed in the region of the amide stretching two 

different peaks (figure 58), one at 3421 cm-1, typical for a not hydrogen bonded  amide and a 

second at 3317 cm-1, which indicates the presence of an amide implicate in an intramolecular 

hydrogen bond.  

 

  

Figure 73 IR spectrum of the pentapeptide 261 and, on right, particular of the amide region 

signals 

 

2.6.2 CD spectroscopy 

 

CD measurement was performed in trifluoroethanol at the concentration of 0.3 mM. The 

spectrum (figure 74) showed the presence of two positive peaks at 203 nm and 218 nm, which 

indicates the presence of a secondary structure. Unfortunately, due to the absence of data about 

the CD spectra of α-δ-peptides, it is not possible to correlate the spectrum to a particular 
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conformation. In every case, in literature a similar spectrum was obtained by Claridge et al.66 for 

an homo-octamer of the δ-amino acid 159, which adopted an helix structure in methanol.  
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Figure 74 

 

2.6.3 �MR analysis 

 

The NMR analysis were performed at the concentration of 2 mM in CDCl3. To have the 

maximum possible of information, a set of different analysis has been done. In figure 75 is 

showed the numeration adopted for the NH of the pentapeptide 261. 
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2.6.4 Temperature scan and measurement of the coupling constants 

 

A temperature scan (figure 76) has been performed with two different objectives. The first 

objective was to find the best temperature to perform the 2D NMR studies, it means the 

temperature with a better dispersion of the amide signals, in our case 288 K. The second 

objective was to measure the measure the displacement of the chemical shift at the change of the 

temperature.   

 

 1 2 3 4 5 

∆δ/∆T 2.0 8.8 10.4 6.0 8.8 

3J HN-Hα 8.2  6.2  7.6 

Figure 76 

 

Generally it is accepted that an amide proton involved in a strong intramolecular hydrogen bond 

has a low temperature dependence coefficient (∆δ<3 ppb/K), while for a free hydrogen is 

significantly higher (∆δ>8 ppb/K). In our case only the NH1 of the urethane showed a low 

temperature coefficient (2.0 ppb/K) which indicates that it is involved in a strong hydrogen bond. 

Moreover, the central NH4, with a temperature coefficient of 6.0 ppb/K, is probably also 

involved in a weak additional hydrogen bond, when the other amides, with coefficients larger 

than 8 ppb/K are not involved in hydrogen bonds. For the NH1,NH3 and NH5 protons it was also 

possible to calculate the vicinal coupling constant, which is directly related to the dihedral angle 
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(and, as consequence, to the conformation) between two protons by the Karplus relationship. In 

particular, it is usually accepted that a 3J<6 indicates an helix conformation, while a 3J>8 

indicates a sheet. In the case of vicinal coupling constant between these two values, as in our case, 

it is possible the presence of an equilibrium between the two conformations.       

 

2.6.5 2D �MR and molecular modelling studies 

 

Despite of the partial overlap between the signals due to the repetition of the same subunit in our 

oligopeptide, in NOESY and ROESY spectra it was possible to clearly identify some long range 

contacts. Of particular interest, the strong contacts formed by the NH1, which indicate a presence 

of well-defined structure in this part of the molecule. Moreover, other interesting contacts can be 

detected between the NH3 and the NH5 and between the NH4 and the lactone in position 2. 

Based on these contacts, two different constraints were individuated (the black lines in the 

scheme 77) and used to perform the molecular modelling studies.  
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Figure 77 

 

In figure 78 is shown the result of the molecular modelling performed imposing to the model the 

constraints illustrated above (the molecular modelling studies were done by Lucia Formicola and 

Karine Guitot), with the presence of an extended helical conformation. In particular, it looks that 

the part of the molecule between the NH1 and NH3 has a more organised structure, which is 

partially loose in the rest of the molecule.  
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Figure 78 

 In conclusion, the experiments performed (IR, CD spectroscopy, NMR and molecular modelling 

studies) indicate the presence of an organised structure for the pentapeptide 261. In the other 

hand, the data in our possession are not able to elucidate with certainty the exact conformation of 

the molecule 261, but it is probable the presence of an extend helical conformation.   

 

 

 

2.7 Synthesis of αααα-δδδδ heptapeptide 

 

Because the structural analysis about the pentapeptide suggested the presence of a non 

completely define secondary structure, it was decide to elongate the peptidic chain to investigate 

if, with a longer peptide, it was possible to obtain a more ordered structure. Thus, starting from 

the pentapeptide 261 and using the same protocol showed before, two additional solution phase 

coupling were performed. First step was the TFA deprotection of the pentapeptide 261 followed 

by the coupling with the δ-amino acid 256 in the presence of DIPEA, EDC and HOAt to give the 

hexapeptide 262 in good yield. Treatment of this compound with trifluoacetic acid to give the 

corresponding TFA salt was followed by the coupling in standard conditions with the Boc-

phenylalanine to afford the heptapetide 263. We repeated on compound 263 the same structural 

investigation performed on the pentapeptide 261.    
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Figure 79 

 

2.7.1 IR in solution 

The IR in solution was performed in dichloromethane at the concentration of 1 mM to avoid the 

peptide aggregation. The result showed in the region of the amide stretching two different peaks 

(figure 58), one at 3421 cm-1, typical for a not hydrogen bonded  amide and a second at 3301 cm-1, 

which indicates the presence of an amide implicate in an intramolecular hydrogen bond. 
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Figure 80 IR spectrum of the heptapeptide 263 and, on right, particular of the amide region 

signals 

 

 

 

 

2.7.2 CD spectroscopy 

CD measurement was performed in trifluoroethanol at the concentration of 0.3 mM. The 

spectrum (figure 74) showed a positive peak at 218 nm, which indicates the presence of a 

secondary structure. Unfortunately, due to the absence of data about the CD spectra of α-δ-

peptides, it is not possible to correlate the spectrum to a particular conformation. 
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Figure 81 

 

 

2.7.3 Temperature scan and measurement of the coupling constants 

The NMR analysis were performed at the concentration of 2 mM in CDCl3. To have the 

maximum possible of information, a set of different analysis has been done. In figure 82 is 

showed the numeration adopted for the NH of the heptapeptide 263. 
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Figure 82 

 

 

NH 1 2 3 4 5 6 7 

∆δ/∆T 0.7 7.8  7.7 7.3 7.8  3.9 7.2 

3J HN-Hα 8.5  5.8  8.5  6.8 

Figure 83 

As for the pentapeptide 261, the temperature scan showed a low temperature dependence 

coefficient (less than 3 ppb/K) only for the NH of the Boc function, which indicates that this 

proton is involved in a strong intramolecular hydrogen bond. Moreover, the NH6, with a 
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temperature dependence coefficient of 3.9 ppb/K, is probably involved in a weak intramolecular 

hydrogen bond. The better dispersion of the NH signals was found at the temperature of 292 K, 

for this reason the successive 2D NMR experiments were performed at this temperature. 

 

2.7.4 2D �MR and molecular modelling studies 
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The problem of the partial overlap of the signals due to the repetition of the same subunit, which 

was found in the pentapeptide 261 is also present in our heptapeptide 263. In every case, in 

NOESY and in particularly in ROESY spectra it was possible to clearly identify some long range 

contacts. Of particular interest, the long range contact between the NH1 and the NH3. Moreover, 

in the same region of the molecule, additional contacts were found, suggesting a presence of a 

well defined structure in this part of the molecule. Other interesting contacts can be detected 

between the lactone in position 2 and the lactone in position 4, indicating a proximity between 

these two amino acids. Less long range contacts could be identify in the right part of molecule, in 

particular between the NH6 and NH7 and between the NH6 and the terminal benzylester. These 

considerations should indicate as, like for the pentapeptide 261, the heptapeptide 263 is well 

folded in the region near to the NBoc terminus and less ordered in the region near to the 

benzylester terminus. The molecular modelling with the constrained indicate in the 84 were 

performed by Lucia Formicola and Karine Guitot and the result shows in the figure 85 confirmed 

these hypotheses. In particular, also in this case, the analyses indicates that the most probable 

conformation adopted is an extended helical structure. 
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Figure 85 

 

In conclusion, we have demonstrated that the introduction of our δ-amino acid 256 in α-δ-

oligopeptides is able to induce a defined secondary structure also in relatively short chains such 

as the pentapeptide 261. In particular, in both the penta- and heptapeptide 2D NMR analysis 

showed the presence of an extended helical structure. In the other hand it is not possible, only on 

the base of our NMR data, to elucidate the helical secondary structure with certainly.  

 

 

 

 

 

 

 

2.8 Synthesis of P�As 

 

Since their discovery in 1991,70 PNAs found a large interest for their ability in DNA and RNA 

recognition. Aim of this part of my work, is the synthesis of novel PNA based on the δ-amino 

acid scaffold showed in the previous paragraphs. In figure 86 is showed the retrosynthetic scheme 

for the synthesis of the PNAs. Starting from the compound 252, the free amino group was 

protected as Fmoc, which is a suitable protective group for the solid phase synthesis of 
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oligopeptides. Next step is the reduction of the lactone followed by acetylation of the alcohol to 

give the compound 265. Key step of the synthesis is the coupling of this compound with an 

activated DNA base in the presence of a Lewis acid (in figure 86 is showed as example the 

thymine). This reaction bring to the formation of two diastereomers which have to be separate in 

the following steps. The synthetic route continues with the PMB removal by CAN followed by 

the oxidation of the double bond with sodium periodate in the presence of a catalytic amount of 

ruthenium trichloride to afford the desired compound 269.     

 

 

 

Figure 86 

2.8.1 Fmoc protection 

The Fmoc protection of the free amino group was performed by treatment with Fmoc 

succinimide in basic conditions to afford 264 in a good yield. The protection was also performed 

in the same condition by using the Fmoc chloride, obtaining the desired product in a non 

satisfactory yield (65%).   
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2.8.2 Reduction of the lactone  

Reduction of the lactone moiety with DIBAL-H in dry dichloromethane at low temperature128 

was directly followed by the acetylation of the alcohol the afford the acetylated product 265 in a 

overall yield of 86% with a diastereomeric ratio of 3:1 measured by 1H-NMR. 
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Figure 88 

 

The reaction coupling was performed first using as nucleobase the persilylated thymine in the 

presence of a Lewis acid.113 Thymine was chosen for the absence of a free amino group which 

required an additional protection step. The persilylated thymine was freshly prepared by standard 

methodology129 by refluxing overnight the thymine in hexamethyldisilazane in the presence of a 

catalytic amount of ammonium sulphate and used after coevaporation of the solvent with toluene 

without further purification. The reaction was performed in the presence of different Lewis acids 

(TMSOTf, EtAlCl2), but the best result was obtained reacting the acetylated compound 265 with 

1.5 eq. of persilylated thymine in the presence of 1.0 eq. of  SnCl4 in dichloromethane, obtaining 

the desired product 266 in 75% yield with a diastereomeric ratio of 1.7:1 measured by 1H-NMR. 

Also the effect of the solvent has been studied. In effect, the reaction in acetonitrile is faster and 

with a slightly better yield than in dichloromethane, but, as reported in literature,130 in this solvent 

the reaction completely loose the diastereoselctivity. 

 

2.8.3 Coupling with thymine 
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Next step is the PMB removal by CAN, which was performed in the same conditions used in the 

case of the compound 254. At this stage it is also possible to separate the two diastereomers by 

column chromatography.  

 

2.8.4 PMB removal by CA� 
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Figure 90 

 

The analysis of the 2D-NMR (NOESY and ROESY spectra) indicated the configuration of the 

anomeric carbon for the two diastereomers. In particular (figure 91), it was possible to identify 

for the compound 267 a set of ROESY contacts between the methyl of the thymine and the allylic 

protons, indicating a special proximity between the thymine and the allyl group. In the other hand, 

compound 268 presented some ROESY contacts between the same methyl and some protons of 

the Fmoc group, indicating a special proximity between the thymine and the Fmoc group.  
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The oxidation of the double bond to give the desired PNA 269 was tried with the same 

methodology applied in the synthesis of the δ-amino acid 256 by treatment of the compound 267 

with NaIO4 in presence of a catalytic amount of hydrate RuCl3 (figure 92). Unfortunately, in this 

case, it was not possible to isolate the desired δ-amino acid 269. The problem was probably relied 

to the presence of an additional double bond in the thymine. In fact, the less hindered allylic 

double bond did not be enough more reactive of the thymine double bond , and, for this reason, 

the result of the reaction was a complex mixture of products which was not possible to separate 

and to completly characterise. In every case, it was possible to identify (by means of NMR and 

mass spectra) in the mixture also the presence of the desires product 269. As reported in 

literature,131 one of the undesired products present in the mixture was due to the oxidation of the 

internal double bond to give a diol. Furhter attempts with a more strictly control of the reaction 

conditions (in particular the time, the temperature and the concentration of the reaction) can 

maybe allow to give the desired compound 269 avoiding the undesired side reactions.  
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2.8.5 Coupling with adenine 

The coupling was performed in the same conditions also with the persilylated adenine. In this 

case, it was chosen to do the reaction in acetonitrile, because the reaction in dichloromethane was 

too slow and was not completed also after several days. 
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Figure 93 

The Cbz protection of the adenine was first tried in standard condition by reaction with Fmoc 

succinimide, but in these conditions it was possible to collect only the starting material. The 

reaction was then performed by means of the Rapoport’s reagent,132 which is commonly used for 

the Cbz protection of the adenine. Unfortunately, following the standard protocol, we just 

observed the degradation of the starting material, without recovering the desired compound 271. 

To overcome this problem it was then decide to perform the coupling directly with the Cbz 

protected adenine 273.133 In this case, the adenine cannot activated by persilylation, and for this 

reason it resulted not enough reactive to perform the substitution in the same conditions used 

with the persilylated thymine. It was so decided (figure 94) to activate the compound 265 by 

bromination with trimethylsilyl bromide. The resulting intermediate 272 was not isolated and was 

directly reacted with 273 to afford the desired compound 271 in a good yield.  
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Figure 94 

 

In conclusion, we showed a synthetic way to introduce a nucleobase (thymine or Cbz-protected 

adenine) in our furanoid scaffold previous reduction and acetylation of the lactone functionality. 

The obtained compounds 267 and 271 are suitable intermediates for the synthesis of new PNAs 

based on our δ-amino acid scaffold.  
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CHAPTER 3 PROTEASOME A�D I�HIBITORS 

 

3.1 Role of 20S proteasome 

 

Intracellular proteolysis is a fundamental cellular process. In eukaryotes the non-lysosomial 

protein degradation is performed by the ubiquitin-proteasome pathway. Since the proteasome is 

responsible of the degradation of a large number of proteins regulating cell cycle, transcription 

factors and antigenic proteins, it is a promising target for the development of drugs potentially 

useful for the treatment of a range of pathologies such as cancer,134, 135 inflammation136, 137 or 

immune diseases.138 Another important function of the proteasome is the degradation of mutated, 

damaged or unfolded proteins. A large part of the newly synthesized proteins (maybe until one 

third) cannot fold properly and for this reason are degraded by the proteasome.139 This function is 

really important because these abnormal proteins are responsible of many genetic diseases such 

cystic fibrosis140, 141 and hereditary α1-antitrypsin deficiency, which can be a cause of 

emphysema.142  

  

3.2 Mechanism of the ubiquitin-proteasome pathway 

 

The mechanism of the protein’s degradation is strictly successive (Figure 95). First, the substrate 

is marked by covalent attachment of multiple molecules of ubiquitin, a small 8 kDa protein.134 

The covalent bond is usually an isopeptide bond with a free amino group on the lateral chain of 

the substrate, usually a lysine. A chain of ubiquitin is then formed by reaction of an ubiquitin 

molecule with the Lys48 of the preceding ubiquitin. This is an ATP depending process which is 

accomplished by three enzymes, E1, E2 and E3. The resulting ubiquitinylated complex is then 

recognized and degraded to amino acids or small peptides by the 20S proteasome, a 2.4 MDa 

multicatalytic enzyme.  

 

 



 86 

 

Figure 95 Figure with cordial authorisation by Prof. Kisselev 

 

The 26S proteasome is a multifunctional proteolytic complex which differs in many aspects from 

typical proteolytic enzymes. In particular, between the unique properties of the proteasome we 

can mention the enormous size, the substrate recognition by polyubiquitin chain with an ATP 

dependent mechanism, the presence of 6 active sites with 3 different specificities, the N-terminal 

threonine-based proteolytic mechanism and the possibility to degrade the globular proteins. The 

26S proteasome consist in a proteolytic core particle (CP), the 20S proteasome (720 kDa), 

sandwiched between two 19S143 (890 kDa) regulatory cap (Figure 96). 
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Figure 96 Figure with cordial authorisation by Prof. Kisselev 

 

X-ray analysis of the proteasome crystals from the archaeon Thermoplasma acidophilum
144

 first 

showed the proteasome architecture at atomic resolution. The data showed that the CP is 

composed of four stacked rings, with each ring consisting on seven α- and β-type subunits, 

following a α1-7β1-7β1-7α1-7 stoichiometry. Each  β-ring contains 3 active sites, β1, β2 and β5, 

which were identify by X-ray analysis of the proteasome co-crystallized with calpain inhibitor I 

(Figure 97).145  

 

Figure 97 Figure with cordial authorisation by Prof. Groll 
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The x-ray structure allows also to identify the N-terminal Thr1Oγ as responsible of proteolytic 

effect, because from the data it was clear that the functional aldehyde of the inhibitor formed a 

covalent hemiacetal bond with this residue.146 Mutagenesis studies confirmed than Thr1, with 

Glu17 and Lys33, is the major responsible of the activity of this enzyme. This structure showed 

that 20S proteasome belongs to the new class of proteolytically active enzymes named threonine 

proteases. The versatility of the proteasome in the protein degradation is demonstrated by its 

ability to cleave the peptidic chain in vivo almost after each amino acid.147, 148 However, in vitro 

assays with chromogenic substrates showed that proteasome activity is limited to five different 

cleavage preferences: chymotrypsin-like (CL), trypsin-like (TL), peptyl-glutamyl-peptide-

hydrolysing (PGPH), branched chain amino acid-preferring (BrAAP) and small neutral amino 

acid-preferring (SNAAP). The three different active sites show a specific activity which could be 

identify by structural an mutational studies.146, 149, 150 The X-ray structure showed that every 

active site contains two different hydrophobic pockets (called S1 and S3), which are responsible 

of the peculiar activities of the active site. Generally, the major responsible for the formation of 

the S1-specificity pocket is locate in the position 45. Additionally, adjacent subunits in the β-

rings to the S1 pockets contribute to their selectivity. β1 subunit presents in position 45 a charged 

arginine, for this reason electrostatic interactions have a fundamental role in the activity of this 

subunit. It was demonstrate than this site is the major responsible for the PGPH activity, and for 

this reason it was traditionally called “peptidyl glutamyl peptide hydrolase”,151 however it has 

been found that it cleaves after aspartic acid residues faster than after glutamates152, 153, and for 

this reason this site is commonly called “post-acidic” (PA) or “caspase-like”.154 (Caspase is an 

intracellular cysteine protease involved in cytokine processing and apoptose, which cleaves 

peptides only after aspartates155). In the subunit β2, glycine is situated in position 45. For this 

reason, S1 pocket in this subunit is very spacious and suitable for very large residues. 

Additionally, the presence of a glutamic acid in position 53 explains the high preference of this 

subunit for the cleavage after basic amino acid residues. For this reason the active sites present in 

this subunits are usually referred as “trypsin-like”. β5 subunit present in the key position 45 a 

methionine, which minimize the space of the S1 pocket. The active sites present in these subunits 

cut preferably after hydrophobic residues and are usually called “chymotrypsin-like”.    

However, mutational analysis showed also that β2 and β5 subunits have the tendency to cleave 

after small neutral and branched side chains assigning to these subunits also the BrAAP and the 
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SNAAP activities152, 156. These names of the active sites are useful just to indicate the similarity 

to the substrate specificities of “classical” proteases, but they do not imply a similarity in the 

hydrolysis mechanism.  

Proteasome activity is in effect completely different and involve for all the proteolytic sites the 

N-terminal threonine as the active site nucleophile. Much of our understanding about this 

mechanism is due to mutagenesis studies or by using inhibitors.152, 157 
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Figure 98 

 

The mechanism is similar to that of serine proteases. First, the hydroxyl group attacks a scissile 

bond (figure 98). This attacks results in the formation of a tetrahedral intermediate which 

collapsed in an acyl-enzyme with the release of the downstream product. Deacylation promoted 

by a molecule of water leads the upstream product and the free N-terminal threonine, which is in 

this way able to promote the cleavage of a new substrate. This hypothesis was confirmed by X-

ray analysis, which showed the acyl-intermediate formed by proteasome and a β-lactame 

inhibitor.146 
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3.3 Proteasome inhibitors 

 

3.3.1 Covalent inhibitors 

 

Covalent proteasome inhibitors are usually short peptides bearing a reactive group, generally 

linked to the C-terminus. The pharmacophore interacts with the catalytic residue forming a 

reversible or irreversible bond, while the peptide portion is design to mimic the natural 

proteasome substrate. Although the proteasome has many active sites, inhibition of every active 

site is not necessary to significantly reduce the protein degradation. In fact, it has been proved 

that the inhibition of chymotrypsin-like site permit to reduce significantly the protein degradation 

rate.150, 158 In contrast, the inhibition of trypsin-like or caspase-like site, does not affect the most 

of the activity of the proteasome. In addition, the hydrophobic residues necessary for the 

inhibition of the chymotrypsin-like site are more cell-permeable than the inhibitors of the trypsin-

like or caspase-like activity which usually contain charged residues. As consequence, most of the 

synthetic inhibitors are designed for the chymotrypsin-like site, but they usually have also some 

inhibition activity versus the other catalytic sites.  We can classify the covalent proteasome 

inhibitors in different classes according to their chemical structure. They can be classified more 

generally in reversible covalent inhibitors and irreversible covalent inhibitors. In the first class we 

have for example peptide aldehydes and peptide boronates and in the second peptide vinyl 

sulfones or the peptide epoxyketones. In the class of reversible inhibitors we have also lactacystin 

and its derivatives, which differs from the other inhibitors because they are not peptidic but based 

on a β-lactame ring.     
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3.3.2 Peptide aldehydes 

 

Peptide aldehydes (figure 99) were the first proteasome inhibitors which have been developed 

and are actually widely used to study proteasome activities and properties.158 They are also well-

known as general inhibitors of cysteine and serine proteases, and thus they are not selective for 

proteasome. For example, ALLN (Ac-Leu-Leu-Nle-al) was first study as inhibitors of calpains 

and cathepsins, and for this reason it is usually called as Calpain inhibitor I, 274). Despite its lack 

of specificity it has been widely used to study the effect of the proteasome inhibition in vivo.159 

Calpain inhibitor I react with the Thr1Oγ  forming an hemiacetal bond in all the active sites, as 

confirmed by X-ray structure of the complex. The tripeptide aldehyde adopts a β-conformation 

and fills the gap between β-strands, forming covalent bonds with the residues 20, 21 and 47 with 

consequent generation of an anti-parallel β-sheet. The terminal norleucine P1 is inserted in the S1 

proteasome pocket, when the leucine P3 interacts with residues in the S3 pocket. It was so clear 

that a good filling of both S1 and S3 pockets of the proteasome are important for the affinity 

between inhibitors and proteasome.146 These inhibitors have fast dissociation rates and are rapidly 

oxidized into inactive compounds by cells. Consequently, in experiment involving the 

proteasome, the inhibition effect can be rapidly reversed by removal of the inhibitor. Other 

peptide aldehydes have been then synthesized, but only few of them are actually widely used. For 

example MG132 (Z-Leu-Leu-Leu-al, 275) is not more potent of calpain inhibitor I, but is really 

more selective and in fact it does not show an appreciable inhibition of calpains or cathepsins at 

the concentration required for the proteasome inhibition.160, 161 Other good inhibitors of this class 

are also PSI (Z-Leu-Glu(OtBu)-Ala-Leu-al, 276)162 and CEP1612 (277).163 
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Figure 99 

 

3.3.3 Peptide boronates 

 

Peptide boronates are one of the most important classes of covalent inhibitor of the proteasome 

(figure 100). They are much more potent than peptide aldehydes, for example the boronate 

analogue of MG 132, MG262 (Z-Leu-Leu-Leu-boronates, 278) is 100-fold more potent than the 

corresponding aldheyde.164 with a Ki of 18 pM. The boronate-proteasome adducts have a very 

slow dissociation rate, for this reason, also if they belong to the category of reversible inhibitors, 

the inhibition is practically irreversible over hours. Another very interesting characteristic of this 

class of compound is the very high selectivity for the proteasome, for example they are very weak 

inhibitors of thiol proteases due to the weak interaction between sulphur and boron. Many 

peptide boronates are also weak inhibitors of serine proteases, such as PS341 (pyrazilcarbonyl-

Phe-Leu-boronate, or Bortezomid, 279), which is 1000-fold a weaker inhibitor of serine proteases 

than proteasome. For all these reasons, peptide boronates are really interesting compound, and in 

particular Bortezomid 6 is at the moment the first and the only proteasome inhibitor which 

reached the market with the commercial name of Velcade.      
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Figure 100 

 

3.3.4 Lactacystin and its derivatives 

 

Lactacystin (280, figure 101) is a Streptomyces metabolite which has the ability to induce the 

differential in cultural neuronal cell. It was first discovered by Omura et al.165, 166 and later 

synthesized by Corey at al.167 Lactacystin is able to bind and inactivate the chymotrypsin-like site  

of the proteasome in a irreversible manner, and to block in a reversible manner also the other two 

active sites with a really slow dissociation rate.168  In effect, it was demonstrate that lactacystin is 

not active, but it spontaneously undergoes at neutral pH to the active clasto-lactacystin-lactone  

(omuraline) 281.169 One of the most potent inhibitors of this class is the Salinosporamide A (282), 

a natural compound extracted from the marine bacterium Salinispora Tropica and which is 

currently in development for the treatment of multiple myeloma and other cancers.170, 171 

Recently, a fluorinated analogues of this compound, the fluorosalinosporamide (283) has been 

also synthesised.172 
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Figure 101 

 

3.3.5 Peptide vinyl sulfones 

 

Peptide vinyl sulfones are irreversible inhibitors which were first synthesised and described by 

Bogyo et al.173 The mechanism of the reaction is currently studied, but it is currently accepted 

that the hydroxyl group of the Thr1 of the proteasome reacts by a Michael addition with the 

double bond of the inhibitor with consequent inactivation of the active site. Vinyl sulfones do not 

inhibit serine proteases, but have an inhibition effect on cystein proteases, and the selectivity 

depends essentially to the peptidic part of the inhibitor. For example, the vinyl sulfone analogue 

of MG 132, ZLVS (284), it is also a strong inhibitor of the cathepsins S and B, but when the Z 

group is substituted with a NIP (3-nitro-4-hydroxy-5-iodophenylacetate) group (NLVS, 285), this 

effect decrease considerably (Figure 102). 

 

O N
H

H
N

O

O

N
H

O

284

S

O

O

N
H

H
N

O

O

N
H

O

285

S

O

O

I

HO

O2N

ZLVS NLVS  

Figure 102 

 

 

 

 

 

 

 

 

 

 

 

 



 95 

 

 

 

 

 

3.3.6 Epoxyketones 

 

Epoxyketones are the most selective proteasome inhibitors known. Epoxomicin (286) and 

dihydroeponemycim (287) belong to this class (Figure 103).136, 174 The reason of their high 

selectivity is the unique mechanism of binding with the Thr1, which involved both the hydroxyl 

and the amino functionality, by formation of a cyclic morpholino ring (288) , which is not 

possible in the absence of a free N-terminus as in the case of serine or cysteine proteases. The 

presence of the morpholino ring was also confirmed by the X-ray structure of the adduct.145 

Moreover, the crystallographic analysis showed a good filling of the S1 and S3 pockets by 

respectively the lateral chain of the leucine and of the isoleucine, and the presence of an array of 

hydrogen bonds between the main chain of the epoxomicin and the residues 21, 47 and 49 of the 

proteasome. This result is very similar to that obtained for the Calpain inhibitor I, which was 

illustrate previously and confirm the necessity of these features to have a good proteasome 

inhibition.  
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3.3.7 �on covalent proteasome inhibitors 

 

In this class of inhibitors, contrary to the previous classes, there is not a reactive group able to 

bind covalently the Thr1 in the active site. The binding is due to the formation of an array of 

hydrogen bond and to the hydrophobic and electrostatic interactions between the inhibitor and the 

active site. For this reason, the inhibitory effect is reversible and time-limited. Because a 

irreversible inhibition of the proteasome usually induce apoptosis and cause cell death175, it can 

be expected that the cytotoxic effects may be reduced using this class of inhibitory. In addition, 

because the interaction is possible only in the presence of a particular conformation of the active 

site, it is also reasonable to think that this class of compounds can show a really good selectivity 

for the proteasome, without affecting the activity of the other proteases. Actually, just few 

compounds show this mechanism of inhibition. One of the most study is a natural compound 

isolated from Apiospora Montagnei, called TMC-95A (289 figure 104), which blocks the 

proteolytic activity of all the active sites of the proteasome in a nanomolar range concentration.176, 

177 This compounds is not related to the other known inhibitors and consists in a macrocyclic 

ring-system made of modified amino acids. In fact, a large contribution to the elucidation of the 

inhibition mechanism of this compound has been done by Groll and coworkers,178 which co-

crystallized the TMC-95A with the proteasome obtaining the X-ray structure of the complex for 

all the active sites. It was clear that TMC-95A binds the β subunits without modify their N-

terminal threonine. A tight network of hydrogen bonds connects TMC-95A with the proteasome, 

and stabilizes its position. All these interactions are performed between the main chain atoms of 

TMC95-A and strictly conserved residues of the protein. The arrangement of the TMC-95A is 

similar to the already described aldehyde and epoxyketone inhibitors145 and it is the same in all 

the active sites. The n-propylene group protrudes into S1 pocket, whereas the lateral chain of the 

asparagines is deeply inserted into the S3 pocket. The NMR-structure of unbounded TMC95-A in 

solution177 superimposed with the crystal structure of the complex showed that the binding with 

the active site does not comport a conformational rearrangement of the inhibitor, so the optimal 

binding is probably due to the strained conformation of the TMC95-A, caused by the cross-link 

between the tyrosine and the oxoindol side chain. Additionally, also the crystal structure of the 
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unbounded proteasome shows a perfect superimposition with the crystal structure of the complex 

with the inhibitor,178 which means that also the structure of the protein is not affected by the 

presence of the inhibitor. Due to the complexity of the structure of this compound, which does 

not permit an application of this very interesting compound as drug, some simpler macrocycles 

mimicking the structure of the TMC-95A have been synthesized (290), but unfortunately the new 

compounds showed a significant decrease in the inhibitory activity.179 
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Other natural compounds show also an inhibitory activity of the proteasome. For example, green 

tea contains many polyphenols with this characteristic. The most active between them is the  

(-)-epigallocatechin-3-gallate (ECGC) (291, figure 104).180 The inhibitory mechanism of this 

compound is not yet completely explained, but different studies of structure-activity relationship, 

atomic orbital energy analysis and analysis of the products of interaction between ECGC and 

proteasome strongly suggest that the ester bond in this molecule is attacked by proteasome 

leading to the Acylation of the threonine in the active site. Analysis also suggested that this bond 

is slowly hydrolyzed by water, leading to the reactivation of the proteasome. 

 

In 2007, Basse et al.181 reported the synthesis and the biological evaluation of a library of 45 

linear oligopeptides designed as linear analogues of the TMC95A (the most active in figure 105). 

Despite the absence of the entropically favourable constrained conformation, some of these 

compounds presented submicromolar inhibition constants.         
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Recently, some novel non covalent inhibitors have been synthesized with an activity of 

nanomolar range. For example, a research’s group of Novartis synthesized a new non covalent 

inhibitor based on an aminostatine skeleton (293, figure 106).182 Despite the nanomolar range 

activity of this inhibitor in vitro, the cellular tests do not expressed its high enzymatic inhibitory 

activity at the cellular level. Assuming that the reason was the poor cell penetration, the same 
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group designed new similar scaffolds to decrease the size and the peptidic character of the 

molecule. These efforts lead to the novel compound 294, a selective inhibitor of the 

chymotrypsin-like site of the proteasome, with an IC50 of 7 nM. Cellular tests of this new 

compound are not yet published, for this reason it is not possible to know if this smaller and less 

peptidic molecule gave better results than the lead molecule 293. In the binding model proposed 

by the authors and based on molecular modelling and structure-activity relationship  the N-benzyl 

group of 294 fills the S1 pocket is mimicked when the 3,4,5-trimethoxyphenylalanine interacts 

with the S3 pocket. Finally, the terminal biphenyl is able to interact with the accessory AS1 and 

AS2 hydrophobic pocket. 
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3.4 Biological effects of proteasome inhibitors 

 

Since the discovery of specific and efficient inhibitors, a large number of data documenting the 

critical role of the ubiquitin-proteasome pathway has been produced. These results clearly 

showed that proteasome performs precise regulated degradations of key proteins to switch off 

specific pathways. The effects of treatment of cells with proteasome inhibitors can give 

completely different results which are depending not only by the cell status, but also by the type 

and the amount of the inhibitor.183 Additionally, it is not often simple to identify in vivo the effect 

of the inhibition of the proteasome, because most of the inhibitors affect also the activity of  other 

proteases, and a part of the biological effects observed can be explain by this secondary effect.  

Because the degradation of many proteins regulating the cell cycle (G1 and mitotic cyclins, CDK, 

inhibitors, p53) is regulated by the proteasome, cell proliferation is significantly affected by the 

proteasome inhibition. In effect, it was demonstrated that proteasome inhibition can arrest the cell 

cycle at various stages.184 Of particular interest is the ability of proteasome inhibitors to induce 

the apoptosis in proliferating cells and to inhibit the angiogenesis185, which makes these 

compounds attractive candidates as drugs for the cancer treatment. In particular, several studies 

demonstrated that proliferating cells are usually more sensitive that non proliferating ones,185-187 

and they may undergoes to apoptosis in 4-48 hrs.186, 188 

In addition, proteasome inhibitors affect also other biological process as inflammatory and 

immune responses. The critical biochemical event in the initiation of the inflammatory response 

is the rapid destruction of the inhibitory protein IkB which occurs in response to various toxic 

stimuli. IkB was the first substrate of the ubiquitin-proteasome pathway identified by using the 

proteasome inhibitors.160 IkB is an inhibitor of transcription factor NF-kB, which actives the 

expression of many genes encoding inflammatory mediators (e.g. tumor necrosis factor), 

enzymes (cyclooxygenase, nitric oxide synthetase) and leukocyte adhesion molecules.189 

Consequently, in cultured cells and in vivo, proteasome inhibitors, by stabilizing IkB, maintain 

NF-kB in the inhibited state and prevent production of these proteins, decreasing significantly the 

inflammatory state. 
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3.5 Molecular modeling 

 

The use of theoretical models which allow to understand or predict structures, properties or 

molecular interactions is known as molecular modeling. It allows to give some informational data 

that can’t be easily empirically obtained, such, for example, the structure of a transition state. One 

of the most interesting application is the virtual screening (VS), i.e. the possibility to screen in 

silico the interactions between large libraries of small-molecular-weight ligands and 

therapeutically relevant macromolecules to identify leads or able to complex the selected targets. 

Among the most commonly VS tools are docking methods, which have been able to predict the 

binding modes of many potent enzyme inhibitors as well as receptor antagonist. As result, many 

drugs designed computer-aided methods are in late-stage clinical trial or reached the market.190 

       

3.5.1 Docking 

 

Docking’s programs allow the systematic exploration of the configurations of a ligand interacting 

with a receptor. To date, over of 60 docking programs are avaible191, but just few of them are 

widely used (Autodock, Dock, Flex, FREED, Glide, GOLD, ICM, QXP/Flo+, Surflex). Each 

docking program has 2 different components: 

• A methodology to explore the conformational space of the ligand and of the protein 

target 

• A scoring function which allows to evaluate the result 

The first aspect is the most important to have an accurate prediction of the binding mode. The 

second allows to distinguish between the highly active compounds, which should have a better 

score, and non-binders or poor-binders. For this reason, the score function is critical in virtual 

screening, where it is necessary to extract information about the possible hits from a large library.  

Between the different algorithms used in academic and pharmaceutical context, we choose to use 

Autodock.192-194 This program allows to predict the conformation of a ligand interacting with a 

rigid or semi-rigid receptor. The knowledge of the structure of the receptor is an essential pre-
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requirement to use this technique, but fortunately the structure of a large number of proteins or 

enzymes obtained by X-ray or NMR studies is available on “Protein data bank PDB” database. 

The first algorithm used by Autodock was of Monte Carlo type, which in the actual version is 

replaced by a genetic algorithm of Lamarckian type.195 In effect it was demonstrated that this 

type of algorithm has a better fitting with X-ray structures of ligand-receptor complexes.194 The 

energy of interaction is calculated with a methodology which is based on the use of grid of 

potential interactions. 

Autodock is the most cited docking program in the scientific literature.196 The first version of 

1989 was the first docking program able to consider the conformational flexibility of the ligand 

and the last version (Autodock 4) introduces also the possibility of calculate the flexibility of the 

lateral chains of the receptor, for example a protein. 

 

3.5.2 Genetic algorithm 

 

The genetic algorithm of Lamarckian type in commonly used for the conformational analysis of 

the ligands, in particular dihedral angles. The name Lamarckian comes from Jean-Baptiste 

Lamarck and his theory about the genetic inheritance, now rejected. 

This algorithm describes the states of freedom of the ligand as a suite of binary number which is 

considered as a gene. The state of the ligand corresponds to the genotype and its coordinates to 

the phenotype. An initial population of different genes is generated by chance and every gene is 

evaluated by the energy function of the program (score function). The genes are selected on the 

base of there score to form the next population. The genes can also combine to have a better 

solution starting from 2 conformations with a good score. Is it also possible for some genes to 

have a mutation which generate a hazardous modification.  

Because a gene is represented by a suite of binary numbers, also the combination or mutation of 

the genes are represented by binary operations. For these reasons, these operators can generate a 

large number of non interesting solutions, which can slowdown the calculation. A number of 

methods has been adopted to avoid this problem, but as often as not these solutions are really 

expensive for the time of the calculation.197 The methodology adopted by Autodock 3 is to 

associate a local research of the minimum to the genetic algorithm. 
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The difference between a genetic algorithm based on the Darwin and Mendel theory and another 

based on Lamarckian genetic algorithm is shown in the figure 107.  In particular, in the case of 

Lamarckian theory (part B) accepted idea is that an organism can pass on characteristics that it 

acquired during its lifetime to its offspring (also known as based on heritability of acquired 

characteristics or "soft inheritance"), which is not allowed in the Mendel theory (part A ). 

In this figure, the function f(x) is the score function. It represents the force, or health, of a subject 

with a determined genotype and phenotype: a structure with a low energy is a subject with a good 

health. In the part B, which depicts the Lamarckian genetic algorithm, it is possible to explore the 

phenotype space to find a local minimum of the score function. In Autodock case, the 

algorithm194 try to minimize the score function in the genotype space (configuration of the ligand: 

torsion angles) instead of the phenotype space (coordinates). For every generation, a part of the 

population (parameter which can be change by the user, in our case 0,06) follow this route of 

local research. 

 

          

 

Figure 107 The principle of the genetic algorithm 
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3.5.3 Free energy function 

 

The free energy function used by Autodock was optimized using as references 188 complexes 

protein-inhibitor with structure and inhibition constant known. The thermodynamic cycle of the 

receptor (R) - inhibitor (I) complexation in both the gas and liquid phase take care of the 

mechanism of de-solvatation at the base of the hydrophobic interactions.    

 

 

∆Gcomplex/solvent = ∆GSolvatation (R + I) + ∆Gcomplex/vacuum + ∆Gsolvatation (RI) 

 

where ∆Gcomplex/solvent  and ∆Gcomplex/vacuum are the free energies of the complex in the solvent and 

in the vacuum and ∆GSolvatation (R + I) and ∆Gsolvatation (RI) are the free energies of solvatation of the 

separated entities and of the complex. 

 

Autodock allows to calculate the free energy of complexation in the vacuum and can estimate the 

change of the free energy of the separated species and of the complex after solvatation. It is 

possible to calculate the free energy of complexation in solution and consequently the inhibition 

constant. 

 

 

3.5.4 3D grids 

 

Autodock use 3D grids which are calculated before the docking. It generates a grid for every 

element present in the molecule (at exclusion of the carbon, which is just differentiate between 

aliphatic and aromatic). This improve the calculation’s speed because the grids are generated just 

once and then can be re-used to calculate the docking between others ligands (but containing the 

same atoms) and the same inhibitor. Autodock’s grids are constituted by a three-dimensional set 

of points (it is possible to parameter the distance and the number of points) which forms a region 

containing the active site of the receptor. In every point of this grid, the potential energy of an 

atom-probe or of a functional group in interaction with the atoms of the receptor is calculated and 

stored.  
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A supplementary 3D grid of the electrostatic potential calculated by the interactions between the 

receptor and a probe of charge |e| is also necessary. To simulate the presence of the solvent, a 

dielectric function ε depending of the distance is used. 

 

 

3.5.5 Hydrogen bonds 

 

Hydrogen bonds are essential in a complexation process. For this reason, they are explicit in the 

Autodock calculations. Only the hydrogen able to form an hydrogen bond (hydrogen bonded to 

an heteroatom as nitrogen, oxygen or sulphur) are defined in the 3D grid of the atoms. A 

potential of the type Lennard-jones is used, and a function depending of the angle θ (figure 108) 

is also imposed. 

 

 

Figure 108 

 

An hydrogen bond has the maximum of strength for an angle θ of 180° between the donor, the 

polar hydrogen and the acceptor. If the angle decreases, it decreases also the energy of the 

hydrogen bond. In the case of an angle between 0 and 90° the hydrogen bond is not possible. 

 

3.5.6 The torsional term 

 

A measurement of the loss of entropy due to the loss of degree of freedom after the complexation 

is also required. This term is proportional to the number of torsional angle (Ntor) of the ligand. 

In particular: 
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∆Gtor = Wtor * Ntor 

 

where Wtor is an empirical parameter. 

 

 

 

3.6 Previous works in this lab and aim of this work 

 

In the last two years, the challenge of the design and the synthesis of novel non covalent 

inhibitors of the 20S proteasome has been tackled by Lucia Formicola. Her efforts brought to the 

synthesis of a fluorinated pseudo amino acid (295) which, opportunely substituted, allows to 

inhibit the different active sites of the proteasome. Fluorine has become a fundamental tool in 

drugs development.198, 199 In particular trifluoromethyl group is often used in medicinal chemistry 

to improve metabolic stability and/or biological activity.200 It is hydrophobic, electron-rich, bulky 

and it can mimic functional groups as methyl, isopropyl and phenyl. Consequently, incorporating 

trifluoromethyl group in peptides or peptidomimetics can greatly alter their structural properties 

and thus their ability to interact with receptors and enzymes. The incorporation of a 

trifluoromethyl group into peptidomimetics to produce potent inhibitors of various enzymes has 

been extensively studied. In particular, the scaffold 295 was chosen because the presence of the 

trifluomethyl group can greatly improve the acidity of the neighbouring hydrazine functional 

group and thus improve its hydrogen bond donor ability.199 In particular, the biological tests of a 

short library of molecules based on this peptidomimetics showed the ability of four of them to 

inhibit the 20S proteasome in a micromolar range (figure 109). Molecular modelling was the tool 

used for the conception of these molecules. The superimposition of two inhibitors (TMC-95A 

289, figure 104 and epoxomicin 286, figure 103) crystallized in the chymotrypsin-like site of the 

proteasome showed a perfect superimposition of the main chain of these two inhibitors, with the 

presence of the hydrogen bonds with the same residues of the proteasome (T21, G47 and A 49). 

Moreover, also the lateral groups of the two inhibitors showed the same filling of the S1 and S3 

pockets of the proteasome. In addition, Novartis research’s group also demonstrated by molecular 

modelling and structure-activity relationship that the same hydrogen bonds were also formed by 

the aminobenzylstatine 294 (figure 106). The design of these molecule was inspired by the 
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structure of the aminobenzylstatine inhibitor 294 synthesised by Novartis. Based on this model, 

the N-benzyl group of 294 which fills the S1 pocket is mimicked by a phenylalanine methyl ester, 

when the 3,4,5-trimethoxyphenylalanine interacting with the S3 pocket is substituted by a 

dimethoxypheylalanine or by the lysine, which is particularly able to bind the S3 pocket of the 

trypsin-like site and improve the solubility of the compound.181 These two parts are then 

connected by the fluorinated peptidomimetic 295. Finally, the terminal biphenyl was directly 

taken by the Novartis inhibitors for his ability to interact with the accessory AS1 and AS2 

hydrophobic pocket. Superimposition of the resulted molecules with 294 was followed by a 

minimisation in vacuum using the MMFF94 Force Field201 to prove that the inhibitors candidates 

were able to mimic the conformation of the known inhibitors.  
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Figure 109 Chemical structures and IC50 or % of inhibition at 100 µmolar of the active molecules 

previously synthesised in our lab of rabbit 20S proteasome at pH 7.5 and 37°.  

x: activation factor  

 

On the other hand, other similar molecules (figure 110) containing the same peptidomimetic 

didn’t show any inhibitory effect. In particular, molecules 300 and 301 are precursor of the active 

296 and 298 with the amino group of the lateral chain of the lysine protected as Cbz, when in the 

molecule 302 the biphenyl is directly attached to the peptidomimetic scaffold without the 

presence of an additional amino acid. 
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Figure 110 

 

The understanding of the mechanism of interaction between these molecules and the different 

active sites of the proteasome is of great importance for the rational design of new inhibitors. In 

the aim to develop a useful tool able to supply some important indications for the synthesis of 

new inhibitors, a docking approach, which allows to evaluate the interactions between a ligand 

and a receptor, has been choose.  

My one year research project was divided in the following steps: 

 

1. Identification by means of literature and crystallography studies of the mechanism of 

interaction between the known inhibitors and the proteasome. This allows to identify the 

essential features (occupation of hydrophobic pockets, hydrogen bonds etc.) necessary 

for the inhibition of the proteasome. 



 109 

 

2. Docking of known inhibitors to compare our results with the crystallised structures or 

with the reported molecular modelling studies. This allows to define the docking 

parameters and to validate the model. 

 

3. Docking of the lead molecule (296) to formulate a first hypothesis of interaction. 

 

4. Systematic modification of the lead molecule and subsequently docking of the suggested 

molecules to address the synthetic work. 

 

5. Use of the biological evaluation results of the synthesised molecules to refine the 

docking parameters and for a well understanding of the binding interaction between 

molecules and  proteasome.  

 

 

 

3.6.1 Literature and crystallographic studies 

 

Protein data bank is as useful tool which allows to obtain the X-ray structure of a large number 

of proteins crystallised both alone and in the presence of an inhibitor. The structures are 

available in a .pdb file format, which can be read by the most common molecular modelling and 

docking program (such, in our case, Sybyl, Accelrys DS Visualizer, Autodock4 and Pymol). In 

particular, it is possible to find different X-ray structures of the 20S proteasome crystallised 

alone146, 202 or in complex with non covalent178, 179 or covalent145, 203, 204 inhibitors. As reported 

in literature, the structure of the active site does not differ substantially in the case of yeast, 

rabbit or mammalian proteasome. The differences are just limited to the presence of different 

amino acids in not-key position, without affecting the structure of the active site. In addition, it 

is also demonstrate that the X-ray structure of the proteasome in presence of an inhibitor is 

perfectly super-imposable to the crystal structure of the proteasome alone,205 which simplify the 

docking studies because it is possible to consider the proteasome as a rigid structure without 

affecting the accuracy of the results.  
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The bibliographic research allowed to identify some “ligand-receptor” (in docking studies 

receptor is a general macromolecule which interacts with the ligand) interactions which are 

common to all the non covalent inhibitors of the proteasome and which are also often present in 

the covalent inhibitors. The first and most important characteristic is the ability of these low-

yield molecules to have a good filling of both the S1 and S3 pockets (in figure 111 it is showed 

as example the binding mode of the TMC-95A  in the CT-like site). The region between the two 

pockets is also very important for the stability of the complex. In effect this region is 

sandwiched between two β-sheets, for this reason the inhibitor has to present functional groups 

which are able to stabilise the complex by means of the formation of hydrogen bonds. In 

particular, it was demonstrated that the hydrogen bonds with some residues, i.e. T21, G47, A49, 

are necessary for the formation of a stable receptor-ligand complex. In addition, other hydrogen 

bonds can be suitable, such as with G23, D114 (which is present only in the chymotrypsin-like 

and the trypsin-like site, but not in the caspase) and D120 (which is present at the bottom of the 

S3 pocket only in the trypsin-like site). A last common feature is the distance between the part 

ligand which protrudes in the S1 pocket and the T1, which is usually between 3 and 4 Å. 
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Figure 111: Binding mode of the TMC95-A in the 20S proteasome 

 

 

   

 

   

 

 

3.6.2 Choice of docking parameters and docking of the known inhibitors 

 

A docking experiment with Autodock consists in different steps. The first step is the preparation 

of both the receptor and the ligand. The file containing the three-dimensional structure of the 

proteasome co-crystallised with the TMC95-A was obtained directly by the professor Groll in 

the .pdb format and converted by autodock4 in a .pdbqt file, which is the format required by this 

docking program. In effect, just the two β-subunits forming the different active sites have been 
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used, reducing the calculation time. The ligands were prepared by using the program Sybyl 

as .mol2 format and then automatically converted by Autodock4 in .pdbqt files.  

The second step is the preparation of a potential grid containing the active site where the ligand 

has to be free to explore the conformational space. This grid was centred on the position of the 

TMC95-A and was big enough to allows a good mobility to the ligand (the box was of 60-60-50 

points with a spacing of 0.375Å for all the three active sites). 

The third step is the choice of the docking parameters and this is the trickiest step. Approaching 

our problem, it was immediately clear that it was necessary not only to have a technique able to 

give us good docking results, but also, due to the large number of molecules to test, able to give a 

result in a relatively short time (less than 24 hrs.). These two exigencies go in opposite directions 

because a most accurate calculation needs obviously more time, which is in contrast with the 

exigency to screen a large number of molecules.  

In particular, Autodock4 program allows to modify different parameters which are directly 

related with the quality of the results and the running time machine. The two most important are 

the number of conformations generated by the program and the number of evaluations done by 

the program for every conformation generated. The different conformations generated by the 

program are organised in clusters, it means groups of molecules which adopt similar 

conformation. Autodock generate automatically the clusters using the RMSD parameter and 

assign for every cluster a binding energy obtained by its score function. More molecules are 

present in the same cluster, better is the docking result. Typically a larger number of evaluations 

for every conformation leads to have clusters of bigger dimensions, and theoretically an infinitive 

number of evaluations leads to just one cluster containing always the same conformation. In 

figure 112 is represented a typical example of the variation of the clusters at the variation of the 

number of evaluations (ga_num_eval in the scheme). In the first case, with 250K evaluations for 

every conformation, we can see as the best cluster is not the cluster with the lower binding energy 

(indicate here as Best Dock), but with 2.5M evaluations the best dock and the best cluster are 

coincident and contains up to 70% of the conformation generated. In this case the situation joined 

the convergence and a larger number of evaluations does not change significantly the result. In 

the scheme it is also indicated the running time machine, which is proportional to the number of 

evaluation.   
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Figure 112 

 

Our first docking experiments was done on the TMC95-A and its biaryl analogues (figure 89), 

because they are the only non covalent inhibitors co-crystallised with the 20S proteasome. In this 

case it was simple to join the convergence after 2.5M evaluations and the docking results fitted 

the experimental structure in an excellent way, with an RMSD less than 2.0 Å (figure 113).  
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Figure 113 In green the crystallised structure of the TMC95-A in chymotrypsin-like site, in blue 

the calculated one. 

 

Due to its rigidity, this macrocycle is unfortunately simpler than the linear and flexible molecules 

in our job. For this reason, we started to analyze other non covalent inhibitors with a well-known 

binding interaction (obtained by molecular modelling and structure-activity relationship), but 

without a crystallographic proof. The major contributions have been obtained from some 

animostatine based inhibitors (293 and 294, figure 106) synthesised by a research group of 

Novartis.182 In particular, the docking result for the molecule 294 (figure 114) in CT-L site fitted 

quite good the molecular modelling studies reported. In effect, in our calculation it was possible 

to find the filling of the S1 and S3 pockets by the same groups described by the authors, and also 

the presence of the same principal hydrogen bonds, between the main chain of 294 and the 

residues 21, 47 and 49 of the proteasome and between the methoxy groups of the central 3,4,5-

trimethoxyphenylalanine and some serines (in particular the residues 118) present at the bottom 

of the S3 pocket. The main problem was that in the case of a so flexible inhibitor, similar to our 

molecules for the number of torsions, the system could not join the convergence after several 

days (only 4 conformations on 50 generated in the main cluster after 3 days), which was not 

compatible with the purpose of our project.  
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Figure 114 

 

To overcome this problem another strategy has to be adopted. An interesting idea was obtained 

by Smith et al.,206 which reported a docking study about some polyphenols of the green tea 

showing an inhibitory effect of the 20S proteasome (for example the (-)-epigallocatechin-3-

gallate (ECGC) 291, figure 89). In this paper the authors overcome the problem of the lack of a 

good clustering by analysing the clusters obtained with a better free energy of binding and 

choosing the most probable conformation following as criteria the distance between the ester 

carbonyl carbon of the ligand and the hydroxyl group of the Thr1 and the occupation of the S1 

pocket by the A-C ring of the polyphenol. With this procedure they could obtain a linear 

correlation between the ∆G of binding calculated by Autodock and the experimental Ki. Another 

input has been obtained by a publication of Cozzini et al. in 2004207 who explored the possibility 

to use docking methodology in case of few (or lack of) crystallographic data to produce new lead 

candidates. Based on the crystal structures of just three ligand-ERα receptor complexes they 
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identify common features, in particular hydrogen bonds with some residues of the receptor, 

present in all the complexes. They then docked a small set of known ligands assigning them a 

rate on the base of the Autodock binding energy, the distance between the ligand and the key 

residues of the receptor and the HINT score function (which essentially measure the hydrophobic 

interactions). For the same admission of the authors, with this approach it is difficult to obtain a 

quantitative range or scoring scales (specially because the error associated with the scoring 

Autodock function is of nearly 2 Kcal/mol), but these results are able to drive further QSAR 

analysis and even the synthesis.  

Adapting these main guides to our case, we decided to set the parameters to 50 conformations 

generated and 10 millions evaluations. We were aware of with these conditions it was not 

possible to join the convergence, but we were able to limit the time to 16-18 hours for every 

calculation, depending of the number of torsions present in the ligand. Because it was not 

possible to clearly identify the best conformation due to the absence of a good clustering, we 

decide then to analyse the most favourable conformations (at least 5) searching for the criteria 

discussed in the last paragraph. In particular, for every candidate, the simultaneous occupation of 

both S1 and S3 pockets was the first discriminating. In other words, it has been supposed that to 

have an inhibitory effect, a molecule have to fill both this two hydrophobic pockets, and the 

absence of this feature lead to discard the molecule. Related to this characteristic, it was also 

measured the distance between the ligand and the T1, which should be between 3 and 4 Å and 

help to indicate a good filling of the S1 pocket. Secondary, it was analysed the presence of 

intermolecular hydrogen bonds between the ligand and the active site, in particular with T21, 

G47 and A49, which indicate a good filling of the region between the 2 β-sheet indispensable for 

a stabilisation of the complex. Moreover, the presence of additional hydrogen bonds, such as with 

G23, D114 and D120 (these last two not always present), and a good binding energy calculated 

by Autodock, were considered important features. 

 

3.6.3 Docking of the lead molecule and virtual screening of new candidates 

 

At the begin of my work, from the molecules with an inhibitory effect presented above, only the 

molecule 296 was tested and for this reason all the efforts to propose a first mechanism of 

binding were done only on the base of the molecule 296. Moreover, the biological test was done 
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only on the chymotrypsin-like site, and for this reason the first studies were done in the CT-L site. 

In this case, different dockings changing the Autodock parameters were performed to find the 

best conditions and to obtain a more reliable result, the docking was done with a larger number of 

evaluations (25 millions). Additionally, because the pseudo amino acid 295 is obtained as 

racemic, it was necessary to perform two different calculations, respectively with the S and R 

configuration of the chiral centre bearing the CF3. The result suggested that the Boc group was 

inserted in the S1 pocket and the phenylalanine in the S3, whereas the free amino group of the 

lateral chain of the lysine was involved in an hydrogen bond with the residue T21 (in figure 115 

is represented the result for the S configuration, in green dashed the intermolecular hydrogen 

bonds).  Deeply analysing this result, it was possible to see as the Boc group is inserted in the S1 

pocket, with a distance between the tert-butyl group and the T1 of 3.1 Å, which indicates a good 

filling of this pocket. The phenylalanine is inserted in the S3 pocket and the methoxy group could 

form an additional hydrogen bond with the serine 118, which is at the bottom of the S3 pocket. 

This hydrogen bond, also if is not on of fundamental for the interaction with the proteasome, is 

also reported by Novartis208 as useful to stabilise the complex. In the region between the two 

hydrophobic pockets, the ligand formed hydrogen bonds with the residues G47 and A49 

respectively with the oxygen and the nitrogen of the urethane moiety, and with T21 with the free 

amino group on the lateral chain of the lysine and with the hydrazine moiety. It was also present a 

strong interaction between the trifluoromethyl group and the residue D114. Moreover, the 

binding energy calculated by Autodock was excellent, with a value of -9.20 Kcal/mol. In addition, 

the other clusters generated by the program, presented an higher binding energy (more than -6.0 

Kcal/mol) suggesting as this is the most probable conformation. Thus, we can conclude than in 

this active molecule it was possible to find all the features common to the other proteasome 

inhibitors. Less clear was the result obtained  for the molecule with the R configuration of the 

carbonyl bearing the CF3. In every case, when the cluster at minor binding energy did not present 

a good conformation, the second better cluster presented a result quite similar to that obtained for 

the S diastereomer, with the Boc group in the S1 pocket and the phenylalanine in the S3. The Boc 

group was less inserted in the S1 pocket (the distance with the T1 was of 4.8 Å), when the 

phenylalanine had a good filling of the S3 pocket (also in this case it was observed the hydrogen 

bond with the S118). Less intermolecular hydrogen bonds could be found (only with T21 and 

D114) and this fact was reflected in an higher binding energy (-6.30 Kcal/mol).  
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Figure 115 

 

Based on this first model, we decided to perform pharmacomodulation on the lead molecule 296 

to evaluate the influence of each part of the molecule to try to establish structure-activity 

relationship and to try to obtain better proteasome inhibitors. We decided to substituted the Boc 

group with other adapt to fill better the S1 pocket, the phenylalanine with group able to fill the S3, 

the lysine with other amino acids and we also tried to see the influence of the substitution the 

central core of the molecules (in figure 116 the groups tested and, with a red bar, the rejected). 
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It was decided to substitute the Boc group with a dimethoxy-phenylacetic acid group and the 

docking result showed that a trimethoxyl group in position two of the ring was the most 

favourable to have a good interaction with the T1. The lysine was substituted by different amino 

acids and the docking results showed that the most favourable amino acids were asparagine and 

glutamine, whereas tryptophan and the unnatural 3,4-di-(trimethoxy)-phenylalanine have the 

tendency to fill the S3 pocket without leaving enough space for a good filling of the S1 pocket by 

the part 1. For the part 3 other peptidomimetics used as β-sheet mimetics and non fluorinated 

analogues of the same peptidomimetic have been evaluated. In particular, this is interesting to 

prove the role of the fluorine to reinforce the hydrogen bond of the adjacent groups. In the part 4 

it was decide to substitute the phenylalanine with a trimethoxy-benzylamine, which is 

particularly able to form hydrogen bonds with the serines present at the bottom of the S3 pocket 

of the CT-L site, as proved by Novartis.182, 208 

Herein, we present the synthesis of a small library of peptidomimetics, their biological evaluation 

and a first attempt of a rational explication of the binding mode based on our model. 
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3.6.4 Synthesis of the fluorinated peptidomimetic 295 

 

First step of the synthesis is the preparation of the fluorinated ethyl acrylate 305 by reduction of 

the 4,4,4-Trifluoro-3-oxo-butyric acid ethyl ester 303 with sodium boro hydride and successive 

hydrolysis in presence of hydrochloric acid gave the alcohol 304 which was then dehydrate by 

heating in the presence of P2O5 (figure 117), to give the desired compound 305 in 52% overall 

yield. 
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F3C
COOEt

O

1.5 eq NaBH4, MeOH, then HCl

303 305

F3C
COOEt

OH
304

0.15 eq P2O5, heating

52% on two steps

 

Figure 117 

 

Michael addition with Boc-hydrazine was performed in methanol to give the β-hydrazino ester 

306 in excellent yield. Due to the low boiling point of the acrylate 305 (comparable with that of 

the methanol) the reaction was performed in a seal tube with an oil bath temperature of 80°C. The 

reaction is completely non stereoselectivity and the product 306 was obtained as a racemic 

mixture. Unfortunately, also in the next steps, it was not possible the two compounds, for this 

reason the molecules were tested as a mixture of diastereomers. 
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Figure 118 
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2.6.5 Solution phase synthesis of the inhibitors 

 

Starting from the pseudo amino acid 295 a set of different molecules has been synthesised. The 

first diversity was introduced at the level of the first coupling with the free carboxylic group of 

295. This coupling has been performed both with L-phenylalanine methyl ester hydrochloride 

and 3,4,5-trimethoxy benzylamine in good yield (Figure 119). 
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Figure 119 

 

At this point, it was possible to introduce a second element of diversity coupling the fragments 

307 and 308 with different amino acids. In particular L-lysine and L-asparagine have been 

choiced (Figure 120). 
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Figure 120 a. 1)TFA:DCM 1:1 2) 1.2 eq. NαBocNεLysine, 1.2 eq. HBTU, 1.2 eq. HOBt, 5 eq. 

DIPEA   b. 1)TFA:DCM 1:1 2) 1.2 eq. NBocAsn, 1.2 eq. HBTU, 1.2 eq. HOBt, 5 eq. DIPEA   

 

Starting from the molecule 309 the following molecules were prepared (Figure 121). Molecule 

312 was obtained by a standard Boc deprotection of 309 as trifluoroacetic acid salt in quantitative 

yield and it was then coupled in standard conditions with the 2,5-dimethoxyphenylacetic acid to 

give the product 313. Unfortunately, hydrogenolysis of the Cbz group in the presence of 10% 

Pd/C did not give the desired product, but only starting material has been recovered. Addition of 

a further amount of catalyst or of acetic acid did not give the desired compound 314, but, also 

after more days, only the starting material and some unidentified subproducts were recovered.     
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Figure 121 
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The same protocol were followed to obtain compounds 297, 315, and 316 from 300 (figure 122) 

i.e., 

 i. Cleavage of the Boc group ton give the 297 in a quantitative yield 

ii. Coupling with 2,5-dimethoxyphenylacetic acid to give the intermediate 315 in 84% yield 

iii. Cleavage of the Cbz group to afford 316 in 82% yield 
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Figure 122 
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The cleavage of the Boc group of 311 followed by a coupling with 2,5-dimethoxyphenylacetic 

acid afforded the desired compound 317 in 65% yield after two steps (Figure 123). 
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Figure 123 

 

Because our pseudo amino acid 295 could be a spacer enough long to maybe bear directly the 

groups filling the S1 and S3 pockets, the molecule 318 has been also designed and synthesized 

(Figure 124). 
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Figure 124 

 

In addition, to verify the influence of the fluorine in the binding with the proteasome, some non 

fluorinated analogues of these molecules have been also designed and synthesized. It was so 

decided to synthesize the pseudo amino acid 324 (Figure 125). The first attempt was a Michael 

addition of Boc-hydrazine 320 and the methyl acrylate 319 in the conditions used for the 

fluorinated scaffold. Unfortunately the methyl acrylate resulted a too reactive substrate and for 

this reason instead of the desired product 321, which was recovered just in traces, was obtained 
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the product 322. The same result was obtained performing the reaction at low temperature and for 

a short time reaction. Thus, it was decided to synthesized the pseudo amino acid reacting the 

ethyl bromoacetate 323 with Boc-hydrazine 320.
209, 210 The desired product 323 was obtained in a 

moderate yield. Basic hydrolysis of this compound gave the desired Boc-protected amino acid 

324.   
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Figure 125 

 

 

Following the same synthetic ways of the fluorinated scaffold, the peptidomimetic 324 was then 

coupled with at the free carboxylic group with the phenylalanine ethyl ester hydrochloride to give 

the product 325 in a good yield. Compound 325 was then deprotected at the N-terminus by 

reaction with trifluoroacetic acid and coupled with the NαBocNεCbz-L-Lysine to obtain the 

molecule 326 in a good yield. A further deprotection of the urethane brings to the molecule 327 

as TFA salt. Coupling reaction with the 3-phenoxy-phenyl acetic acid gives the product 328. 

Unfortunately, the deprotection of the Cbz group by hydrogenolysis was difficult and only 

starting material and some unidentified subproducts were recovered (figure 126). Hydrogenolysis 

of the compound 328 under different conditions (more pressure, a different amount of catalyst or 

in the presence of acetic acid) was not carried out. 
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3.7 Results and discussion 

 

In figure 127 are represented the final molecules and the intermediates which were purified and 

prepared for the biological tests. Due to the relatively low number of experimental data and to the 

quite different structures of the tested molecules it is not possible to have a structure-activity 

relationship, but it is possible to do some general considerations about the binding mode of the 

selected molecules. Moreover, it is possible to explain the different behaviour of quite similar 

molecules in the binding with the active sites of the proteasome. To integrate the results also the 

seven molecules previously synthesized by Lucia Formicola (molecules 296-302) have been 

studied. Moreover, all the fluorinated molecules, were tested as a mixture of diastereomers. The 

diastereomeric ratio for each molecule have been determine by 19F-NMR and it is reported in the 

experimental part of this thesis. The biological tests have been carried out in the laboratory of 

Enzymologie Moléculaire et Functionelle, FRE2852, CNRS-UPMC (Université Paris VI) by 

Nicolas Basse and Xavier Maréchal under the supervision of Professor Michèle Reboud-Ravaux. 

CT-L, PA and T-L activities were determined by monitoring the hydrolysis of Suc-LLVY-AMC, 

Z-LLE-bNA and Boc-LRR-AMC and, respectively, for 45 min at 37 °C in the absence (control) 

or presence of test compounds (0.1-200 µM). The buffers (pH 7.5) were 20 mM Tris, 1 mM 

DTT, 10 % glycerol, 0.02 % (w/v) SDS for CT-L and PA activities, and 20 mM Tris, 1 mM 

DTT, 10 % glycerol for T-L activity. The IC50 values (inhibitor  concentrations giving 50 % 

inhibition) were obtained  by plotting the percent inhibition against inhibitor concentration  to 

equation  % inhibition = 100[I]/(IC50 
nH + [I] nH) or equation % inhibition = 100[I] nH /(IC50 

nH + 

[I] nH) where nH  is the Hill number. The Km values of the fluorogenic substrates in our 

experimental conditions were: XX (Suc-LLVY-AMC), YY (Z-LLE-bNA) and ZZ (Boc-LRR-

AMC). 
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Molecule CT-L PA T-L 

296 32±2 6±0.5 30%  

297 5.9±0.5 NI 4.4±1.2 

298 1.6±0.1 2.7±0.1 8,4±1.3 

299 85±15 72±0.7 X4 

300 N.I. N.I. N.I. 

301 N.I. N.I. N.I. 

302 N.I. N.I. N.I. 

309 N.T. N.T. N.T. 

310 30% 77 x2.7 

311 N.T. N.T. N.T. 

312 10.1±0.4 I I 

313 N.I. N.I. x1.8 

315 30% 54 x1.6 

316 8.6±0.3 I. I. 

317 N.I. N.I. N.I. 

318 N.I. N.I. N.I. 

326 48.5±2.4 I. I. 

327 18.2±0.4 I. I. 

328 N.T. N.T. N.T. 

Figure 127 Chemical structures and IC50 or % of inhibition at 100 µmolar of the active molecules 

previously synthesised in our lab of rabbit 20S proteasome at pH 7.5 and 37°.  

x: activation factor I. = inhibition at 200 µM, 100 µM and 50µM N.I. = not inhibition N.T. = not 

tested 

NB : Due to complex variations of inhibition percentages according to the inhibitor 

concentrations, IC50 could not be determined for molecules 312, 316, 326, 327 for PA and T-L 

activities. 
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Due to the large variety and the flexibility of the molecules, it is not possible with these few data 

to establish some reliable structure-activity relationship, but in every case it is possible to explain 

the different activities of series of similar molecules which probably interact in the same way 

with the active sites of the proteasome. The first step of the analysis was to find, between the 

clusters at lower energy generated by Autodock, the conformations corresponding to the criteria 

expose above (see paragraph 3.6.2). In particular, the first thing was to recognize the 

conformations able to fill both the S1 and the S3 pockets of the proteasome. Whereas this 

research was quite simple for the active molecules, in the case of the inactive compounds it was 

often not possible to find conformations with these characteristics. The second step was the 

research of the intermolecular hydrogen bonds between the ligand and the receptor, in particular 

with the residues T21, G23, G47, A49 and D114 (this last residue not present in the caspase), and 

with D120 (in T-L), which are, as illustrated above, the most important for the interaction with 

the active site of the proteasome. When possible, additionally hydrogen bonds were identified. 

Last element analyzed was the distance between the ligand and the T1, which can give us 

additional information about the filling f the S1 pocket. All these analysis have been repeated 

twice for all the molecules, one for the S configuration of the carbon bearing the trifluoromethyl, 

and one for the R configuration. For these analysis, two different programs have been used, 

Pymol Visualizer, which allows to fast generate an electrostatic surface of the receptor (the 

following images have been prepare with this program) and Accelerys DS Visualizer, which is 

useful to find the intermolecular hydrogen bonds and to measure distance or angle between 

different atoms. The results of these studies have been then reported in a table, which present also 

other features derived by the Autodock program, such as the number of cluster in which the 

conformation was found (the clusters are classed by the program in the base of the binding 

energy, so the first cluster is that at lowest energy), the number of conformations present in the 

cluster and the binding energy (see Annex 1). Analyzing the data, it was possible to do some 

general considerations. In the case of the molecule with the C-terminus in the S1 (or S3) pocket 

and the N-terminus in the S3 (or S1) pocket, the number of bonds between the two groups was 

larger than that of the known inhibitors, and for this reason the rest of the molecule adopt a 

conformation quite folded which does not allow to form a large number of hydrogen bonds in the 

crucial region of the proteasome between the two β-sheets. In effect, the pseudo amino acid 295 

contains two more bonds than the valine present in both the TMC-95A and in the Novartis 
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inhibitor, and this can probably explain why the peptidomimetics is sometimes docked outside of 

the region of the proteasome between the two β-sheets.  Another consideration is that the result 

obtained for the S and R diastereomers often differ, which can suggest a different activity 

between the two diastereomers. For this reason, an interesting future work can be the separation 

of the mixture of diastereomers to carry out the biological tests on the diastereomerically pure 

products. Moreover, the presence of a free amino group is often decisive for the activity. In fact, 

all the compounds presenting a free amino group (296, 297, 298, 312, 316 and 327) are active, 

when the protected precursors are or inactive (300, 301, 309, 313) or in every case less active 

(315, 326).   

Analyzing the biological results, it was possible to see that very similar molecules could present a 

completely different activity. It was so interesting to limit the analysis of the docking results to 

small set of similar molecules to try to understand their behaviour. A first set can be obtained by 

the molecule with the free amine in the lateral chain of the lysine. For all this molecules, the 

docking in the trypsin-like site showed as driving force of the interaction a strong hydrogen bond 

between this free amino group and the aspartic acid 120 situated at the bottom of the S3 pocket. 

This is also confirmed by precedent studies which indicate the formation of a ionic bond with this 

residue, making the lysine a good amino acid to target the trypsin-like site.181 In particular 

molecule 296, 298, and 316 differ just in the group present at the N terminal, which is 

respectively a tert-butoxy carbonyl, a 3-phenoxyphenyl acetic acid and a 2,5-di-methoxyphenyl 

acetic acid (figure 128a, b and c respectively, if not indicates all the images in the next pages are 

referred to the S configuration of the carbon bearing the trifluoromethyl). 
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Figure 128a molecule 296 in trypsin-like site            Figure 128b 298 in trypsin-like site 

   

Figure 128c molecule 316 in trypsin-like site 

 

 

Comparing the images, it is possible to see as the biphenyl of the molecule 298 is deeply inserted 

in the S1 pocket when the Boc group of 296 is just at the entry of the S1 pocket. This is reflected 

by the different activity of the two molecules, with an IC50 of 8.4 for 298 and an inhibition of 

30% at 100 µM for 296. In the case of 316, the phenyl ring is less inserted in the S1 pocket, but, 

on the other hand the molecule in this region is more flexible and the methoxy group in the 

position 2 of the ring is close to the T1 with the formation of an hydrogen bond.  
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 Another set is that formed by the molecules 300, 301 and 315. In this case, the only active 

molecule is the 315 with an IC50 of 54 in the caspase site (figure129a, b and c respectively).  

 

   

Figure 129a molecule 300 in caspase                          Figure 129b molecule 301 in caspase 

  

figure 129c molecule 315 in caspase 

 

In this case, we can see as for the molecules 300 and 301 no groups interact with the S1 pocket, 

whereas for the molecule 315 the phenyl ring is slightly inserted in this pocket, explaining the 

weak activity of this compound. 

Molecule 297 present a quite good activity in chymotrypsin-like and trypsin-like site, but it is not 

active at all in caspase (figure 130a, b and c). 
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Figure 130a molecule 297 in chymotrypsin-like        Figure 130b molecule 297 in trypsin-like 

 

Figure 130c molecule 297 in caspase 

 

 

 

As shown, the most favourable conformation of the molecule 297 interacts with both the S1 and 

S3 pockets in the chymotrypsin-like and trypsin-like active sites, but in the case of caspase it was 

not possible to find a good conformation analysing the ten clusters with a lower binding energy 

(in figure 130c the conformation with a lowest binding energy generated by Autodock4). Similar 

to the molecule 297 is the molecule 312 which differs from the first only for the presence of a 

trimethoxybenzyl amine at the place of the phenylalanine (in Figure 131 as example the docking 

in the trypsin-like site). As expected, also this molecule shows an inhibitory activity of the 
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proteasome, inhibiting all the three active sites. In particular, in the chymotrypsin-like site the 

order of magnitude of the IC50 is the same of the molecule 297, suggesting that this substitution 

has not a large effect in the inhibitory activity of this active site.  It is also interesting to see as 

molecule 312 resulted active in the caspase, when the molecule 297 was not active. 

 

 

Figure 131 molecule 312 in trypsin 

 

In the aim to synthesise molecules with a lower molecular weight, which is an important 

parameter for the absorption of a drug in the cell, molecule 318 was prepared. The molecule 302, 

which differs from the 318 just by the presence of a 2-phenoxy phenyl instead of a dimethoxy-

phenyl was tested with negative response. The comparison between the 2 molecules (figure 132a 

and b) showed that the phenylalanine is inserted in S1 pocket for both the molecules, but whereas 

the phenoxyphenyl group of 302 was too big to fill the S3 pocket, the dimethoxyphenyl is enough 

small and flexible to be inserted in this pocket. Unfortunately, despite the good docking result, 

also the molecule 318 did not show an inhibitory activity of the proteasome. In effect, all the 

known non covalent (and the most of covalent) proteasome inhibitors present in literature are 

molecule with a quite high molecular weight, thus probably the presence of additional groups 

which can help to stabilise the position of the molecule is required.     

 



 138 

  

Figure 132a molecule 302 in chymotrypsin-like        figure 132b molecule 312 in chymotrypsin-

like 

 

A last consideration can be done about the presence of the trifluoromethyl group in our scaffold. 

At the moment, just few non fluorinated analogues have been synthesised and tested, but it is 

possible to do some consideration. The molecule 327, which is the analogue of the fluorinated 

297, shows an inhibitory effect of all the active sites of the proteasome. The IC50 of molecule 327 

was calculated only for the chymotrypsin-like active site, but also if this molecule resulted 

slightly less active of the molecule 297, it was in the same order of magnitude (18.2 µM for 327 

and 5.9 µM for 297). We can also observe the apparition of a PA inhibition with the non-

fluorinated molecule 327. A greater difference was found between the behaviour of molecule 300, 

which is not active, and its non fluorinated analogue 326, which has an inhibitory activity in all 

the three active sites. Also if they are just preliminary results and a larger series of non 

fluorinated compounds is necessary to have a good comparison, it seems that the presence of the 

trifluoromethyl group does not greatly improve the activity of our inhibitors. In fact, we generally 

observed for the non fluorinated compounds an improvement of the solubility, which can also 

play an important role in the difference of reactivity observed between the molecules 300 and 327. 

Moreover, as observed previously, the presence of a free amine is often very important for the 

activity. Thus, in the non fluorinated compounds the behaviour of the nitrogen of the hydrazine 

group is more similar to that of a free amine, due to the lack of the effect of the vicinal 

trifluoromethyl group. 
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In conclusion, we demonstrated here that the docking can be a useful tool for a better 

understanding of the binding mechanism between small molecules and 20S proteasome. In 

particular, it is possible to explain the differences in the activity between sets of similar 

molecules which bind the receptor in a similar manner. The limits in our methodology are 

particularly relied to the high number of torsions of the inhibitor candidates, which does not 

allow to obtain a good clustering. Moreover, the structural diversity of the molecules synthesised 

joined with their high flexibility, makes plausible that it does not exist just one mechanism of 

binding interaction common to all the molecules, making more complicated the establishment of 

a structure-activity relationship. Although these problems, our methodology can be an useful tool 

to support and to drive the synthesis of new candidates for the inhibition of the 20S proteasome.  

 

3.8 Conclusions 

 

From these biological results we can establish some preliminary structure-activity relationship 

that will have to be confirmed in the future with the synthesis and the docking of a large number 

of analogues : 

 • The presence of a free amino group is often decisive for the activity. In fact, all the 

compounds presenting a free amino group (296, 297, 298, 312, 316 and 327) are active, when the 

protected precursors are or inactive (300, 301, 309, 313) or in every case less active (315, 326).  

 • Concerning the part 1 of the molecules (Vide supra, Paragraph 3.6.3, Fig 116) : the 2,5-

dimethoxyphenyl acetic group is comparable (316 versus 296 and 298) or slightly superior (315 

versus 300 and 301) to a Boc group or to the 3-phenoxyphenylacetic acid. 

 • Concerning the part 2 of the molecules, a Lysine residue is favourable, specially a free 

Lysine residue which is superior to the 3,4-dimethoxyphenylalanine residue (compare 298 and 

299) specially on the T-L activity. Moreover a protected or a free Lysine residue is slightly 

superior to the asparagine residue (compare 315 to 317, 316 to 317 and 311 to 296). 

 • Concerning the part 3 of the molecules, non fluorinated scaffold do not seem to decrease 

the activity. However, diastereoisomeric fluorinated compound must be separated and 

biologically evaluated individually as we really observe a big influence of the chiral center 

stereochemistry on the Docking analysis. 
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 • Concerning the part 4 of the molecules, the phenylalanine residue is comparable to the 

3,4,5-trimethoxy benzylamine (compare 312 and 297). Even then an inhibitory activity on the PA 

site is observed with 312 while no inhibitory activity was shown on this site with 297. This result 

would be very interesting if it is confirmed because in this case we suppressed the peptide 

character of the C-terminal part of our pseudo-peptides. 
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CHAPTER 4 EXPERIME�TAL PART 

 

4.1 Instruments and general techniques 

 
1
H-�MR spectra were recorded on Bruker AC 250 (250 MHz), Bruker Avance 300 (300 MHz), 

Bruker Avance 400 (400 MHz) and Bruker Avance 600 (600 MHz). The chemical shifts are 

reporter in δ (ppm) relative to chloroform (CDCl3, 7.26 ppm), dimethylsulfoxide (DMSO-d6, 2.49 

ppm), methanol-d3 (CD3OH, 3.34 ppm) with presaturation to eliminate attenuate the OH peak 

and tetramethylsilane (TMS, 0.00 ppm) as an internal standard. The spectra were analysed by 

first order, the coupling constant (J) are reported in Hertz (Hz). Characterisation of signals: s= 

singlet, bs= broad singlet, d= doublet, t= triplet, q= quartet, m= multiplet, bm= broad multiplet, 

dd= double doublet, dt= double triplet, ddd= double double doublet. Integration is determined as 

the relative number of atoms. Diastereoisomeric ratios were determined by comparing the 

integrals of corresponding protons in the 1H-NMR spectra. 

 
13

C-�MR spectra were recorded on Bruker AC 250 (62.9 MHz), Bruker Avance 300 (75.5 MHz), 

Bruker Avance 400 (100.6 MHz) and Bruker Avance 600 (150.9 MHz). The chemical shifts are 

reported in δ (ppm) relative to chloroform (CDCl3, 77 ppm), dimethylsulfoxide (DMSO-d6, 39.52 

ppm), methanol-d3 (CD3OH, 49 ppm) and tetramethylsilane (TMS, 0.00 ppm) as an internal 

standard. 

 

2D-�MR spectra (COSY, NOESY, ROESY, HETCORR) were recorded on Bruker Avance 400 

(400 MHz) and Bruker Avance 600 (600 MHz). 

 

IR spectra were recorded with a Bio-Rad Excalibur series FT-IR 

 

MS spectra were recorded in the mass spectroscopy departments of Regensburg 

 

Optical rotations were measured on a Perkin-Elmer-polarimeter 241 with sodium lamp at 589 

nm in the specified solvent. 
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CD spectra were measured on a JASCO model J-710/720 at the Institute of Bioanalytic and 

Sensoric of the University of Regensburg at 21°C between 250 and 190 nm in the specified 

solvent, with 10 scans. The length of the rectangular cuvette was 0.1 mm, the resolution was 0.2 

nm, the band width 1.0 nm, the sensitivity 10-20 mdeg, the response 2.0 s, the speed 10 nm/min. 

The background was substracted for each spectrum. The absorption value is measured as molar 

ellipticity per residue (deg.cm2.dmol-1). The spectra were smoothed by adjacent averaging 

algorithm or FFT filter with the Origin 6.0 program. 

 

Thin layer chromatography (TLC) was performed on alumina plates coated with silica gel 

(Merck silica gel 60 F 254, layer thickness 0.2 mm) or glass plates coated with flash 

chromatography silica gel (Merck silica gel 60 F 254, layer thickness 0.25 mm). Visualisation 

was accomplished by UV light (wavelength λ = 254 nm), permanganate solution, 

ninhydrin/acetic acid solution, vanillin/H2SO4 solution and paramethoxybenzaldehyde solution. 

The solvents were purified according to standard laboratory method. DMF was distilled over 

CaH2 before use. After distillation, dry THF was stored in a Schlenk flask under nitrogen over 

molecular sieves 4 Å. BF3•Et2O was distilled under nitrogen and stored in a Schlenk flask under 

nitrogen in the refrigerator. In Regensburg dichloromethane were purified by a solvent 

purification system apparatus, when in Paris was distilled over CaH2 
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4.2 Synthesis of the compounds 

 

 

H2N
OH

239  
 

(D)-amino-3-methylbutan-1-ol 239 

To a solution of NaBH4 (8.1g, 214 mmol,2.5 eq.) in dry THF (135 mL) was added L-valine (10.0 

g, 85.3 mmol, 1.0 eq.) under nitrogen atmosphere. The reaction mixture was cooled to 0°C in an 

ice bath and a solution of iodine (21.6 g,85.3 mmol, 1.0 eq.) in dry THF (50 mL) was slowly 

added over 1 h, resulting in production of hydrogen. After gas ceased, the reaction mixture was 

refluxed for 20 h and then cooled to room temperature. Methanol was added cautiously until the 

stirred solution became clear. The solution was stirred for 30 minutes and concentrated in vacuo 

to give a white paste, which was dissolved in 20% aqueous KOH (50mL).The solution was 

further stirred for four hours and extracted with DCM (3 x 140 mL). The combined organic layers 

were dried over anhydrous MgSO4, filtered and concentrated in vacuo to afford 239 (8.15 g, 92%) 

as a colourless oil. 

 

Analitycal data are accorded with the literature 

 

1
H �MR (250 MHz, CDCl3): δ 3.64 (dd, J = 10.6, 8.7Hz, 1H),3.31 (dd, J = 10.6, 8.7 Hz, 1H), 

2.57 (ddd, J = 8.6, 6.4, 3.9 Hz, 1H), 2.20 (bs, 2H), 1.5-1.7 (m, 1H), 0.93 (d, J = 6.8 Hz, 3H), 0.91 

(d, J = 6.8 Hz, 3H). 
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N
H

O

N
H

O

OH OH

240  

 

(+)-(R, R)-�,�'-bis-(1-hydroxymethyl-2-methyl-propyl)-2,2-dimethyl-malonamide 240 

To a cold solution (0°C) of L-valinol 239 (15.4 g, 150.0 mmol, 2.0 eq.) in dry DCM (150 mL) 

were slowly added triethylamine (52.3 mL, 375mmol, 5 eq.) and a solution of 

2,2-dimethylmalonyl dichloride (10 mL, 75 mmol, 1 eq.) in dry DCM (70 mL). Then, the ice bath 

was removed and the reaction mixture was stirred for 45 minutes to room temperature, resulting 

in a colourless precipitate which was dissolved again by addition of dry DCM (350 mL). After 

addition of 1M HCl (100 mL), the aqueous layer was separated and extracted with DCM (3 x 50 

mL). The combined organic layers were washed with saturated NaHCO3 (100 mL) and brine 

(100 mL), dried over MgSO4, filtered and concentrated in vacuo. Crystallisation of the crude 

product from ethyl acetate (100 mL) and subsequent recrystallisation of the residue of the mother 

liquor afforded 240 (18.76 g, 83%) as colourless crystals. 

Rf = 0.26 (SiO2, EtOAc/MeOH 95:5); m.p. = 98-99°C; [ ]
20

D
α = +6.3 (c=0.50, DCM). 

1
H �MR (250 MHz, CDCl3): δ ppm 6.41 (d, J = 8.8 Hz, 2H), 3.84-3.72 (m, 4H), 3.56-3.48 (m, 

2H), 3.21 (bs, 2H), 1.80 (hept., J = 6.8 Hz, 2H), 1.49 (s, 6H), 0.95 (d, J = 6.74, 6H), 0.92 (d, J = 

6.74 Hz, 6H) 

13
C �MR (62.9 MHz, CDCl3): δ ppm 174.6, 64.0, 57.2, 50.1, 29.1, 23.6, 19.7, 18.8 

IR (KBr): 3326, 2963, 2877, 1642, 1543, 1391, 1368, 1287, 1186, 1071, 1024, 899, 651 cm-1 

MS (DCI, NH3): m/z (%) = 304.5 (16), 303.5 (100) [M+H+]
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N

OO

N

241  

 

(+)-(R,R)-isopropylbisoxazoline 241 

To a mixture of (-)-(S, S)-N,N'-bis-(1-hydroxymethyl-2-methylpropyl)-2,2-dimethylmalonamide 

240 (18.76 g, 620.0 mmol, 1.0 equiv.) and 4-dimethylamino pyridine (0.75 g, 6.2 mmol, 0. 1 

equiv.) in dry CH2CI2 (400 mL) was slowly added triethylamine (37.6 mL, 270.0 mmol, 4.4 

equiv.) over 15 min. Subsequently a solution of tosyl chloride (23.65 g, 124.0 mmol, 2.0 equiv.) 

in dry CH2CI2 (50 mL) was added dropwise via the addition funnel. The reaction mixture was 

stirred for additional 48 h at room temperature where the colour changed to yellow and cloudy 

precipitate occurred. The precipitate was dissolved in CH2CI2 (150 mL). The reaction mixture 

was then washed with saturated NH4Cl (250 mL) followed by water (150 mL) and saturated 

NaHC03 (200 mL). The combined aqueous layers were extracted with CH2CI2 (3 x 200 mL) and 

the combined organic layers were dried over Na2SO4. After filtration and concentration in vacuo 

the residue was purified by hot n-pentane extraction to afford 241 (7.466 g, 44%) as a colourless 

oil. 

Rf = 0.26 (Si02, DCM/MeOH 19: 1); [ ]
20

D
α = +108.1 (c = 1.01, CH2CI2) 

1
H �MR (250 MHz, CDCl3): δ ppm 4.27-4.09 (m, 2 H), 4.04-3.92 (m, 4 H),  1.91-1.72 (m, 2 H), 

1.52 (s, 6 H), 0.92 (d, J = 6.84 Hz, 6 H), 0.85 (d, J = 6.79 Hz, 6 H); 

13
C �MR (100.6 MHz, CDCl3): δ ppm 168.8, 71.5, 69.9, 38.6, 32.2, 24.4, 18.5, 17.3 

IR (Film): υ  = 3411, 3225, 2960, 1660, 1468, 1385, 1352, 1301, 1247, 1146, 1109, 980, 925, 

795, 737 cm-1 

MS (DCI, �H3): m/z (%) = 391.6 (7), 313.5 (7), 268.4 (17), 267.4 (100) [M + NH4
+] 
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OMeO2C

H

H

CO2Et

237  

(1R,5R,6R)-(+)-2-Oxabicyclo[3.1.0]hex-3-ene-3,6-dicarboxylic 6-ethylester-3-methyl ester 

237 

In a three-neck flask equipped with a slow addition funnel under nitrogen at 0°C were added 

successively 53.2 g (421 mmol, 1 eq.) of furanoic acid methylester, 0.88 g (3.32 mmol, 0.008 eq.) 

of ligand 241 and 1.08 g (2.98 mmol, 0.007 eq.) of Cu(OTf)2. The inner walls of the flask were 

rinsed with a few millilitres of dry DCM to allow all of the copper to dilute in the solution. After 

10 minutes, three drops of phenylhydrazine were added in the solution which turned from a deep 

blue to a dark red colour testifying of the reduction of the metal complex. The slow addition 

funnel was then filled with 500 mL of a solution of diazoacetate in DCM (153.97g.L-1, 76,98 g, 

675 mmol, 1.6 eq.). After half an hour, the solution was added dropwise at the frequency of one 

drop every 6 seconds and the reaction was let at 0°C for four days. Once the solution was totally 

added, the reaction mixture was filtered on a 10 cm pad of basic alumina and washed with 

500 mL of DCM. The solution was evaporated under vacuum and column chromatographed on 

silica gel with a solution hexanes/Ethyl acetate 5:1 as eluent. The fractions were collected and the 

solvent evaporated under vacuum. The product was obtained as a slightly yellow oil and was 

crystallised in pentane/DCM affording 29.6 g (139.5 mmol, 33%) of 237 as enantiomerically 

pure white crystals (ee>99% measured by chiral HPLC). 

Rf (PE/EE 5:1)= 0.14; m.p. 42 °C;  [ ]
20

D
α = +272 (c=1.0, CH2Cl2) 

1
H �MR (250 MHz, CDCl3): δ ppm 1.16 (dd, J=2.7, 1.1 Hz, 1H), 1.23 (t, J=7.1 Hz, 3H), 2.87 

(ddd, J=5.3, 2.9, 2.7 Hz, 1H), 3.78 (s, 3H), 4.12 (q, J=7.1 Hz, 2H), 4.97 (dd, J=5.3, 1.1 Hz, 1H), 

6.39 (d, J=2.9 Hz, 1H) 

13
C �MR (62.9 MHz, CDCl3): δ ppm 14.2, 21.5, 31.9, 52.1, 61.0, 67.5, 116.0, 149.3, 159.5, 

171.7  

IR (KBr): 3118, 2956, 1720, 1617, 1428, 1380, 1297, 1166, 1124, 1041, 954, 831, 725 cm-1 

MS (70 eV, EI): m/z (%): 212.1 [M+] (9.8), 153.0 [M+-CO2Me] (11.5), 139.0 [M+-CO2Et] (100), 

124.9 (24.4), 98.9 (28.6), 96.9 (31.7), 78.9 (11.3), 59.0 (13.5), 52.1 (11.5);  

Elemental Analysis calcd (%) for C10H12O5 C 56.60, H 5.70; found C 56.51, H 5.73.
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(1R,2R,3R)-(+)-Oxalic acid 2-ethoxycarbonyl 3-formyl-cyclopropyl ester methyl ester 242 

A solution of 237 (2.50 g, 11.78 mmol) in dry CH2Cl2 (125 mL) was cooled to -78°C and treated 

with ozone until the mixture turned blue. Excess ozone was expelled by passing oxygen through 

the solution, followed by addition of dimethyl sulfide (4.3 mL, 58.91 mmol, 5.0 equiv). The 

reaction mixture was allowed to warm to room temperature and stirring was continued for 24 h. 

Saturated NaHCO3 (10 mL) was added and layers were separated. The organic layer was washed 

with water (2 x 10 mL), dried, filtered and evaporated. The residue was recrystallized from Et2O 

at -27°C to give 242 as a colourless solid (2.70 g, 94%).  

M.p. 52°C; [ ]
20

D
α =+37.7 (c=1.0, CH2Cl2) 

1
H �MR (250 MHz, CDCl3): δ ppm 1.28 (t, J=7.1 Hz, 3H), 2.79 (ddd, J_7.3, 6.0, 4.0 Hz, 1H), 

2.90 (dd, J=6.0, 3.6 Hz, 1H), 3.91 (s, 3H), 4.19 (q, J=7.1 Hz, 2H), 4.83 (dd, J=7.3, 3.6 Hz, 1H), 

9.45 (d, J=4.0 Hz, 1H) 

13
C �MR (62.9 MHz, CDCl3): δ ppm 14.1, 26.4, 34.9, 54.0, 58.9, 62.0, 156.6, 156.9, 168.1, 

192.7 

IR (KBr): υ = 3066, 3015, 2963, 2892, 1785, 1751, 1735, 1706, 1445, 1345, 1313, 1210, 1167, 

1086, 1011, 963, 867, 790, 715, 613, 495 cm-1 

MS (DCI, NH3): m/z (%): 262.0 [M++NH4] (100), 176.0 (20), 160.0 (55), 120.9 (15);  

Elemental Analysis calcd (%) for C10H12O7 (244.2): C 49.19, H 4.95; found C 49.22, H 4.99. 

O

OHC

COOEt

COOMe

O

242
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(1R, 1’R/R,2R, 3R)-Oxalicacid-hydroxy-but-3’-enyl-3-ethoxycarbonyl-cyclopropylester 

methylester 244 

A solution of 242 (5.00 g, 20.5 mmol) in dry CH2Cl2 (200 mL) was treated with BF3•Et2O (3.0 mL, 

20.5 mmol) at -78°C. After 10 minutes allyltrimethylsilane (5.0 mL, 30.75 mmol, 1.5 equiv) was 

added and stirring was continued for 24 h. The reaction was quenched with saturated NaHCO3 (6.0 

mL) and the mixture was allowed to warm to 0°C. After separation of the organic layer and drying 

with MgSO4 , the solvent was evaporated under vacuum to yield the corresponding alcohol 244 as a 

colourless oil (5.82 g, 100% crude yield, dr 95:5). 

1
H �MR (250 MHz, CDCl3): δ ppm 1.25 (t, J=7.0 Hz, 3H), 1.81 ± 1.92 (m, 1H), 2.15 (dd, J=6.2, 

2.7 Hz, 1H), 2.31 ± 2.51 (m, 4H), 3.70 (ddd, J=7.3, 7.3, 5.4 Hz, 1H), 3.88 (s, 3H), 4.13 (q, J=7.0 

Hz, 2H), 4.72 (dd, J=7.5, 2.8 Hz, 1H), 5.14 ± 5.22 (m, 2H), 5.76 ± 5. 93 (m, 1H), characteristic 

signals of the diastereomer: δ ppm 4.14 (q, J=7.0 Hz, 2H), 4.67 (dd, J=6.9, 3.0 Hz, 1H). 

13
C �MR (75.5 MHz, CDCl3): δ ppm 170.6, 133.0, 118.9, 61.3, 58.8, 41.7, 31.2, 24.6, 14.1  

MS (DCI, �H3): 304.2 [M+NH4
+], 287.2 [MH+], 269.1 [MH+-H2O] 

 

 

 

 

 

 

 

 

 

 

 

O COOMe

O

COOEt

OH

244
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O

CHO

O

249  

(2R/S,3R)-2-Allyl-5-oxotetrahydrofuran-3-carbaldehyde 249 

A solution of 244 (6.15 g, 21.48 mmol, 1 eq.) in 100 mL dry MeOH was put in an ice bath. 5.96 mL 

of triethylamine (4.35 g, 42.99 mmol, 2 eq.) were then slowly added and the reaction was let at 0°C 

for two hours. The ice bath was then removed and the reaction was warmed to room temperature 

until no more evolution could be seen on TLC. The reaction mixture was evaporated under vacuum 

and the residue was chromatographed on silica gel (hexanes/ethyl acetate 1:1) and afforded 2.21g of 

249 (yield=67%) as a slightly yellow coloured oil with a diastereomeric ratio of 95/5. During the 

reaction, the stable intermediate 251 could be isolated and fully characterised in a diastereomeric 

ratio of 80/20. 

Rf (hexanes/EA 1:1) = 0.17; [ ]
20

D
α =+31.7 (c=1.35 in CH2Cl2) 

1
H �MR (250 MHz, CDCl3): δ ppm 2.35 ± 2.59 (m, 2H), 2.71 (dd, J_18.2, 9.9 Hz, 1H), 2.89 

(dd, J=18.2, 7.5 Hz, 1H), 3.19 (dddd, J=10.0, 7.3, 6.0, 1.2 Hz, 1H), 4.74 (dd, J=11.9, 6.2 Hz, 1H), 

5.10 ± 5.27 (m, 2H), 5.75 (dddd, J=17.3, 10.0, 7.0, 3.5 Hz, 1H), 9.69 (d, J=1.2 Hz, 1H), 

characteristic signals of the diastereomer (2R): δ ppm 3.00 (dd, J=17.7, 5.8 Hz, 1H), 9.82 (d, J=1.7 

Hz, 1H) 

13
C �MR (75.5 MHz, CDCl3): δ ppm 197.3, 174.0,130.9, 120.5, 78.0, 51.3, 39.2, 28.9, 

characteristic signals for the minor compound: δ ppm 198.0, 131.3, 120.0, 49.6, 39.4, 28.7 

IR (film): υ  = 3080, 2980, 2939, 2841, 1774, 1727, 1642, 1419, 1359, 1193, 1111, 1000, 924 cm-1 

MS (EI, 70 eV): m/z (%): 154.2 (5) [M+], 113.1 (100) [M+-C3H5], 85.1 (95), 57.1 (95);  

Elemental Analysis calcd (%) for C8H10O3 (154.2): C 62.33, H 6.54; found: C 62.36, H 6.83. 
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O

CHOEtO2C

HO

MeOOC

251  

(2R/S, 3R, 4R, 5R)-5-Allyl-4-formyl-2-hydroxy-tetrahydro-furan-2,3-dicarboxylic acid 3-ethyl 

ester 2-methyl ester 251 

Rf (hexanes/EA 1:1) = 0.67 

1
H �MR (300 MHz, CDCl3): δ ppm  9.79 (d, J = 1.4 Hz, 0.8H, major), 9.75 (d, J = 1.9 Hz, 0.2H, 

minor), 5.83-5.68 (m, 1H), 5.22-5.13 (m, 2H), 4.50 (s, 0.2H, minor), 4.46 (s, 0.8H, major), 4.37-

4.07 (m, 3H), 3.95 (dd, J = 11.5H, J = 1.2 Hz, 1H), 3.87 (s, 2.4H, major), 3.79 (s, 0.6H, minor), 

3.65-3.57 (ddd, J = 1.4 Hz, J = 9.0 Hz, J = 11.5 Hz, 1H), 2.77-2.44 (m, 2H), 1.22-1.17 (t, J  = 7.13 

Hz, 3H) 

13
C �MR (300 MHz, CDCl3): δ ppm 198.3, 169.5, 167.3, 132.7, 119.0, 100.3, 80.6, 61.6, 55.9, 

53.9, 53.6, 40.8, 13.9 

MS (LR): m/z (%): 304.2 (100) [M+NH4
+], 286.3 (7.35) [M+NH4

+-H2O] 
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(4R,5R)-5-Allyl-4-[(4-methoxy-benzylamino)-methyl]-dihydro-furan-2-one 252 

 

To a solution of 249 (880 mg, 5.24 mmol, 1.0 eq.) in dry DCM (50 ml) were added sequentially 

sodium sulphate (1.49 g, 10.48 mmol, 2.0 eq.) and 4-methoxybenzylamine (750 µL, 5.77 mmol, 1.1 

eq.). The reaction mixture was stirred at room temperature for 3 h. The resulting slightly yellow 

solution was cooled at 0°C in an ice bath and NaBH4 (397 mg, 10.48 mmol, 2.0 eq.) and dry MeOH 

(15 ml). The reaction mixture was stirred for further 30 min at 0°C and then filtrated on a celite pad. 

The solution was cooled at 0°C in an ice bath and a 1M solution of HCl was added until the pH 

solution was 1. The organic phase was separated  and extracted with 1M solution of HCl (2 x 50 ml). 

The combined aqueous layers were washed with EtOAc (2 x 50 ml) and cooled at 0°C in an ice bath. 

Solid sodium hydrogen carbonate was added until the pH of the solution was 8. 

The aqueous phase was the extracted with diethyl ether (3 x 80 mL), the combined organic layers 

were dried over Na2SO4, filtered and concentrated in vacuo to give 252 as a slightly yellow oil 

(1.101 g, 4.00 mmol, 76%) which was used for the next step without further purification.  

An analytic sample was obtained by column chromatography (ethylacetate). 

Rf = 0.40 (SiO2, ethylacetate); [ ]20
Dα = +19.42 (c=1.04, DCM) 

1
H-�MR (300 MHz, CDCl3): δ ppm 7.23 (dd, J = 11.5, 8.5 Hz, 2H), 6.89-6.81 (m, 2H), 5.79 (m, 

1H), 5.20-5.13 (m, 2H), 4.34 (dd, J = 11.7, 5.4 Hz, 1H), 3.80 (s, 3H), 3.71 (s, 2H), 2.73-2.61 (m, 

2H), 2.53-2.20 (m, 5H) 

13
C-�MR (75.5 MHz, CDCl3): δ ppm 176.4, 158.8, 132.4, 132.0, 129.2, 119.0, 113.9, 83.1, 55.3, 

53.3, 51.4, 39.9, 39.1, 33.2 

IR (KBr): υ  = 3329, 3070, 2924, 2831, 2357, 2057, 1772, 1679, 1611, 1508, 1454, 1288, 1176, 

1029, 985, 819 

MS (CI, �H3): m/z (%) = 276.3 (100) [M+ H+] 

HRMS (EI, 70 eV): Calculated for [C16H21NO3]: 275.1521, found 275.1515 [M+] 
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(2R,3R)-(2-Allyl-5-oxo-tetrahydro-furan-3-ylmethyl)-(4-methoxy-benzyl)-carbamic acid tert-

butyl ester 254 

To a solution of 252 (1.28 g, 4.65 mmol, 1.0 eq.) in dioxane / 1M aqueous solution of K2CO3 (12 

mL / 16 mL) was added di-tert-butyldicarbonate (1.52 g, 6.99 mmol, 1.5 eq.). The reaction mixture 

was stirred at RT overnight and extracted with EtOAc (3 x 50 ml). The combined organic layers 

were washed with 10% aqueous solution of citric acid (2 x 30 ml) and brine (2 x 30 ml), dried over 

Na2SO4, filtrated and evaporated in vacuo to give a slightly yellow oil which was purified by 

column chromatography (PE:EtOAc 3:1) to afford 254 (1.294 g, 3.44 mmol, 74%)as a colourless 

oil. 

 

Rf = 0.35 (SiO2, PE:EtOAc 3:1) ; [ ]20
Dα = + 10.37 (c = 0.96, DCM) 

1
H-�MR (300 MHz, CDCl3): δ ppm 7.20-7.11 (m, 2H), 6.92-6.84 (m, 2H), 5.85-5.67  (m, 1H), 

5.23-5.10 (m, 2H), 4.40 (s, 2H), 4.24 (bs, 1H), 3.80 (s, 3H), 3.26 (bs, 2H), 2.59-2.22 (m, 5H), 1.50 

(s, 9H) 

13
C-�MR (75.5MHz,CDCl3) δ ppm 175.7, 159.1, 155.8, 132.1, 129.6, 128.8, 119.1, 114.1, 82.5, 

80.7, 55.3, 48.4, 39.9, 38.6, 33.0, 28.4 

IR (film): υ  = 3076, 2976,2931, 2837, 2372, 1778, 1690 

MS (EI, 70 eV): m/z (%) = 375.3 (100) [M+] 

HRMS (EI, 70 eV): Calculated for [C21H29NO5]: 375.2046, found 375.2046 [M+] 
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255                                                                        

(2R,3R)-(2-Allyl-5-oxo-tetrahydro-furan-3-ylmethyl)-carbamic acid tert-butyl ester 255 

 

To a cold (0°C) solution of 254 (633 mg, 1.69 mmol, 1.0 eq.) in water / acetonitrile (7mL / 21mL) 

cerium ammonium nitrate (3.70 g, 6.75 mmol, 4.0 eq, c = 0.25 M) was added portionwise. 

The reaction was stirred at 0°C for 1 h and then at RT for additional 2 h until the total consumption 

of the starting material. Water (30 ml) was added and the aqueous phase was extracted with EtOAc 

(3 x 50 mL). The combined organic layers were washed with a saturated aqueous solution of 

NaHCO3 (30 mL), dried with Na2SO4, filtrated and evaporated in vacuo to give an oil which was 

purified by column chromatography (PE:EtOAc 3:1) to afford 255 (340 mg, 1.33 mmol, 79%) as a 

colourless solid. 

Rf  = 0.29 (SiO2, PE:EtOAc 3:1) ; [ ]20
Dα = + 21.58 (c = 1.01, DCM) 

1
H-�MR (300 MHz, CDCl3): δ ppm 5.81 (ddd, J= 17.8, 16.5, 7.1 Hz, 1H), 5.25-5.15 (m, 2H), 4.72 

(bs, 1H), 4.31 (dd J =11.8, 5.8 Hz, 1H), 3.33-3.17 (m, 2H), 2.68 (dd J =17.2, 8.1 Hz, 1H), 2.59-2.42 

(m, 3H), 2.34 (dd J=17.3, 7.1 Hz, 1H), 1.41 (s, 9H) 

13
C-�MR (75.5MHz,CDCl3): δ ppm 175.7, 156.0, 131.0, 119.3, 82.3, 80.0, 40.2, 38.7, 38.5, 28.3 

IR (KBr): υ  = 3474, 2976, 2931, 2837, 2372, 1778, 1690, 1168,910, 855 

MS (CI, �H3): m/z (%) = 273.2 (71.32) [M+NH4
+], 256.1 (1.07) [NH+] 

Elemental analysis calcd (%) for [C13H21NO4]: C 61.16, H 8.29, N 5.49; found C 61.04, H 7.86, N 

5.35 
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256  

(2R,3R)-[3-(tert-Butoxycarbonylamino-methyl)-5-oxo-tetrahydro-furan-2-yl]-acetic acid 256 

or (+)-GBA 

To a cold (0°C) solution of 255 (340 mg, 1.33 mmol, 1.0 eq.) in water / acetonitrile / carbon 

tetrachloride          (6 mL / 3 mL / 3 mL) were added sodium periodate (1.14 g, 5.32 mmol, 4 eq.) 

and RuCl3•xH2O (25 mg, 0.09 mmol, 0.07 eq.). The solution was stirred for 1 h at 0°C and for 2 h 

at RT. Water (10 ml) was added and the solution was then extracted with diethyl ether (3 x 50 mL). 

The combined organic layers were dried over Na2SO4, filtrated through a celite pad and evaporated 

in vacuo to obtain 256 (317 mg, 1.15 mmol, 86%) as a colourless solid. 

Rf = 0.15 (SiO2, EtOAc) ; [ ]20
Dα = + 7.41 (c = 1.01, DMSO) 

1
H-�MR (300 MHz, DMSO d6): δ ppm 12.75-12.20 (bs, 1H), 7.07 (t J = 5.9 Hz, 1H), 4.55 (m, 

1H), 3.15-2.96 (m,2H), 2.74-2.25 (m, 5H) 

13
C-�MR (75.5MHz, DMSO d6): δ ppm 175.8, 171.3, 155.8, 78.9, 77.8, 41.3, 39.8, 39.0, 31.6, 

28.0  

IR (KBr): υ  = 3327, 3101, 2989, 2938, 2569, 1783, 1658, 1256 

MS [ESI, DCM/MeOH + 10 mmol/L �H4Ac)�H3]: m/z (%)= 290.8 (100) [M+NH4
+], 273.3 (4.7) 

[NH+] 

Elemental analysis calcd (%) for [C12H19NO6]: C 52.74, H 7.01, N 5.13; found C 52.40, H 6.73, N 

5.03 
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253                                                                              

(4R, 1’R)-4-(1-Hydroxy-but-3-enyl)-1-(4-methoxy-benzyl)-pyrrolidin-2-one 253 

To a solution of 249 (288 mg, 1.87 mmol, 1.0 eq.) in MeOH (15 ml) was added the 4-methoxy 

benzylamine (360 µL, 3.80 mmol, 1.5 eq.). The solution was reacted at RT for 4 h, then the NaHB4 

was added and the solution was stirred for 2 h at RT and refluxed overnight. The mixture was 

cooled at RT, washed with 1M aqueous solution of HCl (2 x 15 ml) and brine (2 x 15 ml), dried 

over Na2SO4, filtrated and evaporated in vacuo to obtain a sticky solid which was purified by 

column chromatography (EtOAc) to afford 253 (187 mg, 0.68 mmol, 36%) as a slightly yellow oil. 

 

Rf = 0.2 (SiO2 EtOAc)  [ ]20
Dα = + 16.42 (c=1.04, DCM) 

1
H �MR (300 MHz, CDCl3): δ ppm 7.18-7.15 (d, J = 8.7 Hz, 2H), 6.87-6.84 (d, J = 8.7 Hz, 2H), 

5.81-5.68 (m, 1H), 5.19-5.10 (m, 2H), 4.42-4.32 (d, J = 4.2 Hz, 2H), 3.81 (s, 3H), 3.60-3.53 (m, 1H), 

3.29-3.23 (dd, J = 8.4Hz, J = 9.7Hz, 1H), 3.12-3.06 (dd, J = 6.6Hz, J = 9.8Hz, 1H), 2.54-1.98 (m, 

6H) 

13
C �MR (75 MHz, CDCl3): δ ppm 173.9, 159.1, 133.9, 129.5, 128.5, 119.1, 114.1, 71.5, 55.3, 

48.6, 45.9, 39.7, 36.5, 32.9 

MS (LR): m/z (%): 293.2 (9.6) [M+NH4
+], 276.2 (100) [M+H+]  
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258  

Boc-(+)-GBA-L-Phe-COOBn 258 

A solution of Boc-(L)-Phe-COOBn (640 mg, 1.78 mmol, 1.5 eq.) in DCM/TFA 50:50 (10 ml) was 

stirred for 1 h at RT. The solvent was evaporated in vacuo and the resulting TFA salt was 

precipitated by addition of diethyl ether. The solvent was removed and the resulting colourless solid 

was dissolved in DCM (10 ml) and DIPEA (1.02 mL, 6.0 mmol, 5.0 eq.) was added. Meanwhile a 

solution of  256 (317 mg, 1.16 mmol, 1.0 eq.) and EDC•HCl (307 mg, 1.60 mmol, 1.4 eq.) in DCM 

(5 mL) was stirred for half an hour at RT and added to the phenylalanine solution. After further 5 

min HOBt (245 mg, 1.60 mmol, 1.4 eq.) was added and the solution was stirred for 20 h at RT. The 

solution was diluted with ACOEt (50 mL) and washed with 10% aqueous solution of citric acid (2 x 

30 mL) and a saturated aqueous solution of NaHCO3 (2 x 30 mL), dried over Na2SO4, filtrated and 

evaporated in vacuo to give a slightly yellow solid which was purified by column chromatography 

(EtOAc) to give 258 as a colourless solid (501 mg, 0.99 mmol, 85%). 

Rf = 0.3 (SiO2, EtOAc)    [ ]20
Dα = +12.10 (c=1.05, DCM) 

1
H-�MR (300 MHz, CDCl3)  δ ppm 1H-NMR (300 MHz) 7.40-7.20 (m, 8H), 7.09-6.90 (m, 2H), 

6.78 (s, 1H), 6.44 (d, 1H, J=7.9Hz), 5.22-5.06 (m, 2H), 4.90 (dd, 1H, J=6.3Hz, J=14.1Hz), 4.65 (q, 

1H, J=6.1Hz), 3.26-3.02 (m, 4H), 2.63-2.48 (m, 2H), 2.38-2.26 (m, 2H), 1.42 (m, 9H) 

13
C-�MR (75.5MHz, CDCl3) δ ppm 175.2, 171.2, 168.5, 156.3, 135.7, 135.0, 129.3, 128.7, 128.5, 

128.4, 127.1, 121.3, 79.8, 79.2, 67.4, 53.3, 41.0, 40.7, 37.8, 32.4, 28.4  

IR (KBr): υ  = 3332, 2189, 1789, 1722, 1661, 1529, 1456, 1369, 1251, 1170, 1009, 752, 699 cm-1 

MS (LR): m/z (%): 528.3 (100) [M+NH4
+], 511.3 [MH+] 
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259  

Boc-(L)-Phe-(+)-GBA-(L)-Phe-COOBn 259 

A solution of 258 (382 mg, 0.75 mmol, 1.0 eq.) in DCM/TFA 50:50 (8 ml) was stirred for 1 h at RT. 

The solvent was evaporated in vacuo and the resulting TFA salt was precipitated by addition of 

diethyl ether. The solvent was removed and the resulting colourless solid was dissolved in DCM (8 

ml) and DIPEA (650 µL, 3.75 mmol, 5.0 eq.) was added. Meanwhile a solution of  Boc-Phe (300 

mg, 1.13 mmol, 1.5 eq.) and EDC•HCl (217 mg, 1.13 mmol, 1.5 eq.) in DCM (5 mL) was stirred 

for half an hour at RT and added to the solution of 6 derivative. After further 5 min HOAt (154 mg, 

1.13 mmol, 1.5 eq.) was added and the solution was stirred for 20 h at RT. The solution was diluted 

with ACOEt (40 mL) and washed with 10% aqueous solution of citric acid (2 x 30 mL) and a 

saturated aqueous solution of NaHCO3 (2 x 30 mL), dried over Na2SO4, filtrated and evaporated in 

vacuo to give a slightly yellow solid which was purified by column chromatography (PE:EtOAc 1:1) 

to give 259 as a colourless solid (411 mg, 0.63 mmol, 84%). 

Rf = 0.1 (SiO2, PE:EtOAc 1:1)   [ ]20
Dα = +18.03 (c=1.01, DCM) 

1
H-�MR (300 MHz, CDCl3): δ ppm 740-7.28 (m, 12H), 7.08-6.90 (m, 3H), 6.94-6.88 (m, 1H), 

6.85-6.78 (m, 1H), 5.25-5.20 (m, 1H), 5.18-5.10 (m, 2H), 4.91 (dd, 1H, J=7.8Hz, J=13.6Hz), 4.40 

(q, 1H, J=5.9Hz), 4.30 (dd, 1H, J=7.2Hz, J=15.5Hz), 3.48 (dt, 1H, J=7.2Hz, J=14.2Hz), 3.13 (d, 1H, 

J=5.8Hz), 3.05-2.90 (m, 3H), 2.65-2.34 (m, 3H), 2.24-2.18 (m, 2H), 1.40 (s, 9H) 

13
C-�MR (75.5MHz, CDCl3): 174.1, 171.3, 135.7, 134.8, 133.9, 128.3, 128.2, 127.7, 127.6, 127.4, 

126.1, 1259, 79.4, 77.9, 66.5, 59.4, 55.3, 52.5, 39.1, 39.0, 38.4, 37.5, 36.6, 31.2, 27.3, 20.1, 13.2    

IR (KBr): υ  = 3314, 2189, 1650, 1541, 1455, 1175, 1030, 750, 698 cm-1 

MS (LR): m/z (%): 658.5 [MH+] 
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260  

Boc-(+)-GBA-(L)-Phe-(+)-GBA-(L)-Phe-COOBn 260 

A solution of 259 (312 mg, 0.47 mmol, 1.0 eq.) in DCM/TFA 50:50 (8 ml) was stirred for 1 h at RT. 

The solvent was evaporated in vacuo and the resulting TFA salt was precipitated by addition of 

diethyl ether. The solvent was removed and the resulting colourless solid was dissolved in DCM (8 

ml) and DIPEA (400 µL, 2.35 mmol, 5.0 eq.) was added. Meanwhile a solution of  249 (194 mg, 

0.71 mmol, 1.5 eq.) and EDC•HCl (136 mg, 0.71 mmol, 1.5 eq.) in DCM (5 mL) was stirred for 

half an hour at RT and added to the solution of 259 derivative. After further 5 min HOAt (109 mg, 

0.80 mmol, 1.7 eq.) was added and the solution was stirred for 20 h at RT. The solution was diluted 

with ACOEt (30 mL) and washed with 10% aqueous solution of citric acid (2 x 20 mL) and a 

saturated aqueous solution of NaHCO3 (2 x 20 mL), dried over Na2SO4, filtrated and evaporated in 

vacuo to give a slightly yellow solid which was purified by column chromatography (EtOAc) to 

give 260 as a colourless solid (293 mg, 0.36 mmol, 77%). 

Rf = 0.11 (SiO2, EtOAc)   [ ]20
Dα  = +15.03 (c=1.00, DCM) 

1
H-�MR (300 MHz, CDCl3) δ ppm  7.27 (m, 13H), 7.07 (m, 3H), 5.37 (s, 1H) , 5.21-5.07 (m, 2H), 

4.80 (td, 2H, J=6.7Hz, J=13.6Hz), 4.75-4.60 (m, 3H), 4.46 (q, 1H, J=6.0Hz), 3.51-3.40 (m, 1H), 

3.12-2.93 (m, 8H), 2.60-2.40 (m, 4H), 2.39-2.10 (m, 4H), 1.41 (s, 9H)  

13
C-�MR (75.5MHz, CDCl3) δ ppm 175.7, 175.6, 172.0, 169.6, 169.1, 136.7, 135.8, 134.9, 129.3, 

129.2, 128.6, 128.4, 127.1, 127.0, 79.9, 79.7, 79.4, 67.4, 54.9, 53.7, 40.9, 40.4, 39.5, 37.7, 37.5, 

32.3, 28.4    

IR (KBr): υ  = 3416, 2197, 2082, 1646, 1541, 1455, 1175, 1030, 750, 698 cm-1 

MS = [ESI (DCM/MeOH + 10 mmol/l NH4Ac)] : m/z (%) 713.4 [M + H+ - Boc] (11), 757.4  [M + 

H+ - C4H8] (25), 813.4 [M + H+] (80), 830.5 [M + NH4
+] (100) 
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261  

Boc-(L)-Phe-(+)-GBA-(L)-Phe-(+)-GBA-(L)-Phe-COOBn 261 

 

A solution of 260 (298 mg, 0.37 mmol, 1.0 eq.) in DCM/TFA 50:50 (6 ml) was stirred for 1 h at RT. 

The solvent was evaporated in vacuo and the resulting TFA salt was precipitated by addition of 

diethyl ether. The solvent was removed and the resulting colourless solid was dissolved in DCM (6 

ml) and DIPEA (320 µL, 1.85 mmol, 5.0 eq.) was added. Meanwhile a solution of  Boc-Phe (146 

mg, 0.55 mmol, 1.5 eq.) and EDC•HCl (106 mg, 0.55 mmol, 1.5 eq.) in DCM (4 mL) was stirred 

for half an hour at RT and added to the solution of 260 derivative. After further 5 min HOAt (75 mg, 

0.55 mmol, 1.5 eq.) was added and the solution was stirred for 20 h at RT. The solution was diluted 

with ACOEt (30 mL) and washed with 10% aqueous solution of citric acid (2 x 20 mL) and a 

saturated aqueous solution of NaHCO3 (2 x 20 mL), dried over Na2SO4, filtrated and evaporated in 

vacuo to give a slightly yellow solid which was purified by column chromatography (EtOAc) to 

give 261 as a colourless solid (300 mg, 0.32 mmol, 86%). 

Rf = 0.3 (SiO2, EtOAc);   [ ]20
Dα = +19.05 (c=1.03, DCM) 

1
H-�MR (600 MHz, CDCl3):  δ ppm 8.25 (t, 1H, J=5.2Hz), 8.14 (d, 1H, J=5.3Hz), 7.68 (d, 1H, 

J=7.5Hz), 7.61 (d, 1H, J=6.8Hz), 7.30-6.90 (m, 20H), 5.23 (d, 1H, J=7.8Hz), 5.19-5.06 (m, 2H), 

4.85-4.76 (m, 1H) ppm 4.72-4.62 (m, 1H), 4.60-4.50 (m, 1H), 4.48-4.36 (m, 2H), 3.75-3.72 (m, 2H), 

3.36 (t, 1H, J=6.2Hz), 3.20-3.10 (m, 2H), 3.10-2.90 (m, 2H), 2.90-2.70 (2H), 2.63-2.50 (m, 6H), 

2.45-2.30 (m, 4H), 1.39 (s, 9H) 

13
C-�MR (125MHz, CDCl3) δ ppm 175.8, 175.7, 175.6, 172.0, 171.3, 169.6, 169.1, 155.8, 136.7, 

135.8, 134.9, 129.3, 129.2, 128.6, 128.4, 127.1, 127.0, 79.9, 79.7, 79.4, 79.2, 67.4, 54.9, 53.7, 41.3, 

40.9, 40.4, 39.8, 39.5, 39.0, 37.7, 37.5, 32.3, 28.4    

IR (KBr): υ  = 3420, 2190, 2062, 1643, 1521, 1435, 1170, 1035, 760, 698 cm-1 

MS = [ESI (DCM/MeOH + 10 mmol/l NH4Ac)] : m/z (%) 960.5 [M + H+] (100), 977.5 [M + NH4
+] 

(25) 
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Boc-(+)-GBA-(L)-Phe-(+)-GBA-(L)-Phe-(L)-Phe-(+)-GBA -COOBn 262 

A solution of 261 (200 mg, 0.21 mmol, 1.0 eq.) in DCM/TFA 50:50 (8 ml) was stirred for 1 h at RT. 

The solvent was evaporated in vacuo and the resulting TFA salt was precipitated by addition of 

diethyl ether. The solvent was removed and the resulting colourless solid was dissolved in DCM (5 

ml) and DIPEA (180 µL, 1.05 mmol, 5.0 eq.) was added. Meanwhile a solution of  249 (82 mg, 

0.32 mmol, 1.5 eq.) and EDC•HCl (61 mg, 1.05 mmol, 1.5 eq.) in DCM (3 mL) was stirred for half 

an hour at RT and added to the solution of 261 derivative. After further 5 min HOAt (44 mg, 0.32 

mmol, 1.5 eq.) was added and the solution was stirred for 20 h at RT. The solution was diluted with 

ACOEt (20 mL) and washed with 10% aqueous solution of citric acid (2 x 15 mL) and a saturated 

aqueous solution of NaHCO3 (2 x 15 mL), dried over Na2SO4, filtrated and evaporated in vacuo to 

give a slightly yellow solid which was purified by column chromatography (EtOAc:MeOH 9:1) to 

give 260 as a colourless solid (211 mg, 0.19 mmol, 90%). 

Rf = 0.5 (SiO2, EtOAc:MeOH 9:1)   [ ]20
Dα = +16.12 (c=1.03, DCM) 

1
H-�MR (300 MHz, CDCl3): 8.55 (d, 1H, J=6.1Hz), 8.48 (d, 1H, J=5.0Hz), 8.34 (d, 1H, J=9.7Hz), 

7.75 (d, 1H, J=7.2Hz), 7.53-7.00 (m, 20H), 5.22 (d, 1H, J=8.5Hz), 5.25-5.05 (m, 2H), 4.74-4.67 (m, 

1H), 4.65-4.59 (m, 1H), 4.57-4.50 (m, 1H), 4.47-4.42 (m, 1H), 4.24-4.18 (m, 1H), 3.86-3.80 (m, 

1H), 3.75-3.72 (m, 1H), 3.10-2.80 (m, 12H), 2.78-2.65 (m, 3H), 2.57-2.47 (m, 3H), 2.42-2.20 (m, 

8H), 1.39 (s, 9H) 

 13
C-�MR (75.5MHz, CDCl3): 175.4, 174.8, 172.5, 168.6, 168.0, 167.4, 166.8, 166.5, 166.2, 166.1, 

138.9, 138.4, 136.6, 136.3, 135.5, 134.6, 129.1, 128.9, 128.7, 128.6, 128.5, 128.1, 127.2, 127.1, 

81.0, 79.9, 79.7, 79.4, 79.2, 67.4, 54.9, 53.7, 41.3, 40.9, 40.4, 39.8, 39.5, 39.0, 37.7, 37.5, 32.3, 28.4      

IR (KBr): υ  =  3425, 2170, 2062, 1633, 1521, 1455, 1140, 1055, 750, 668 cm-1 

MS = [ESI (DCM/MeOH + 10 mmol/l NH4Ac)] : [ESI (DCM/MeOH + 10 mmol/l NH4Ac)] : m/z 

(%) 1115.5 [M + H+] (100), 1132.5 [M + NH4
+] (40) 
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Boc-(L)-Phe-(+)-GBA-(L)-Phe-(+)-GBA-(L)-Phe-(+)-GBA-(L)-Phe-(+)-COOBn 263 

 

A solution of 262 (192 mg, 0.17 mmol, 1.0 eq.) in DCM/TFA 50:50 (6 ml) was stirred for 1 h at RT. 

The solvent was evaporated in vacuo and the resulting TFA salt was precipitated by addition of 

diethyl ether. The solvent was removed and the resulting colourless solid was dissolved in DCM (6 

ml) and DIPEA (150 µL, 0.85 mmol, 5.0 eq.) was added. Meanwhile a solution of  Boc-Phe (69 mg, 

0.26 mmol, 1.5 eq.) and EDC•HCl (50 mg, 0.26 mmol, 1.5 eq.) in DCM (4 mL) was stirred for half 

an hour at RT and added to the solution of 260 derivative. After further 5 min HOAt (33 mg, 0.26 

mmol, 1.5 eq.) was added and the solution was stirred for 20 h at RT. The solution was diluted with 

ACOEt (30 mL) and washed with 10% aqueous solution of citric acid (2 x 20 mL) and a saturated 

aqueous solution of NaHCO3 (2 x 20 mL), dried over Na2SO4, filtrated and evaporated in vacuo to 

give a slightly yellow solid which was purified by column chromatography (EtOAc) to give 261 as 

a colourless solid (131 mg, 0.10 mmol, 61%). 

Rf = 0.3 (SiO2, EtOAc)    [ ]20
Dα = +19.03 (c=1.05, DCM)  

1
H-�MR (600 MHz, CDCl3):  δ ppm 8.55 (d, 1H, J=6.1Hz), 8.48 (d, 1H, J=5.0Hz), 8.34 (d, 1H, 

J=9.7Hz), 8.00 (d, 1H, J=9.2Hz), 7.75 (d, 1H, J=7.2Hz), 7.53-7.33 (m,19H), 7.31.7-00 (m, 6H), 

5.22 (d, 1H, J=8.5Hz), 5.25-5.05 (dd, 2H), 4.81 (dd, 1H, J=7.8Hz, J=14.1Hz), 4.74-4.67 (m, 1H), 

4.65-4.59 (m, 1H), 4.57-4.50 (m, 1H), 4.47 (dd, 1H, J=8.7Hz, J=14.5Hz), 4.26-4.18 (m, 1H), 3.90-

3.80 (m, 1H), 3.75-3.68 (m, 2H), 3.10-2.80 (m, 14H), 2.78-2.65 (m, 4H), 2.57-2.47 (m, 3H), 2.42-

2.20 (m, 8H), 1.39 (s, 9H) 
13

C-�MR (125MHz, CDCl3): 175.4, 174.8, 172.5, 168.6, 168.5, 168.0, 167.4, 166.8, 166.5, 166.2, 

166.1, 138.9, 138.4, 136.6, 136.3, 135.5, 134.65, 134.60, 129.10, 129.05, 128.9, 128.7, 128.6, 

128.58, 128.54, 128.51, 128.1, 127.2, 127.1, 81.0, 79.9, 79.7, 79.4, 79.2, 79.1, 67.4, 54.9, 53.7, 41.3, 

40.9, 40.4, 39.8, 39.5, 39.0, 37.7, 37.5, 32.3, 28.4   

IR (KBr): υ  = 3445, 2180, 2052, 1646, 1525, 1455, 1150, 1055, 750, 678 cm-1 

MS = [ESI (DCM/MeOH + 10 mmol/l NH4Ac)] : m/z (%) 1261.6 [M + H+] (100), 1278.6 [M + 

NH4
+] (35) 
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264  

(2R,3R)-(2-Allyl-5-oxo-tetrahydro-furan-3-ylmethyl)-(4-methoxy-benzyl)-carbamic acid 9H-

fluoren-9-ylmethyl ester 264 

 

To a cold (0°C) solution of 252 (880 mg, 5.44 mmol, 1.0 eq.) in dioxane / 1M aqueous solution of 

K2CO3 (20 ml / 16 ml) was added portionwise FmocSu (1.605 gr, 4.80 mmol, 1.2 eq.). The reaction 

was allowed to come at RT and stirred overnight. The mixture was poured in water (30 m) and 

extracted with EtOAc (3 x 50 mL). 

The combined organic layers were dried over Na2SO4, filtered and evaporated in vacuo to give a 

sticky solid which was purified by column chromatography (PE:EtOAc 2:1) to obtain 264 (1.679 g, 

3.38 mmol, 84%) as a sticky, colourless solid. 

 

Rf = 0.23 (SiO2, PE:EtOAc 2:1) ; [ ]20
Dα = +10.40 (c = 1.00) 

1
H-�MR (300 MHz, CDCl3): δ ppm7.75 (d, 2H, J=7.4 Hz), 7.55 (bs, 2H), 7.45-7.22 (m, 4H), 7.07-

6.79 (m, 4H), 5.83-5.42 (m, 1H), 5.22-4.93 (m, 2H), 4.83 (s, 1H),  4.63 (s, 1H), 4.27-4.07 (m, 4H), 

3.78 (s, 3H), 3.26 (s, 1H), 2.66 (s, 1H), 2.52-2.17 (m, 3H), 2.11-1.84 (m, 2H) 

13
C-�MR (75.5MHz, CDCl3): δ ppm 159.2, 143.8, 143.7, 141.4, 132.1, 129.1, 129.0, 128.9, 128.8, 

127.8, 127.3, 127.2, 124.6, 124.4, 120.0, 118.8, 114.1, 82.2, 77.5, 77.1, 76.7, 67.1, 60.4, 55.3, 50.7, 

47.5, 38.7, 38.5, 32.9 

IR (KBr): υ  = 3046, 2966,2921, 2835, 2362, 1768, 1680 

MS = [ESI (DCM/MeOH + 10 mmol/l NH4Ac)] : m/z (%) 498.3 [M + H+] (21), 515.3 [M + NH4
+] 

(100), 1012.6 [2M + NH4
+] (5) 
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(4R,5R)- Acetic acid 5-allyl-4-v-tetrahydro-furan-2-yl ester 265 

To a cold (-78°C) solution of 264 (1.47 g, 2.95 mmol, 1.0 eq.) in dry DCM (50 mL) under nitrogen 

was added portionwise in 30 min a 1M solution in DCM of DIBAL-H (3.0 mL, 3.0 mmol, 1.1 eq.) 

until the total consumption of the starting material. The reaction was quenched with dry MeOH (4 

mL) and warmed to RT. Then DCM (30 mL) and a saturated solution of NaHCO3 (5 mL) were 

added to the mixture. The organic phase was separated and the aqueous phase was extracted with 

DCM (3 x 20 mL). The combined organic layers were dried over Na2SO4, filtrated through a celite 

pad, evaporated in vacuo to give a sticky solid which was dissolved in DCM (10 mL) and cooled at 

0°C with an ice bath. To the solution were added sequentially acetic anhydride (550 µL, 5.90 mmol, 

2.0 eq.) and DIPEA (1.00 mL, 5.90 mmol, 2.0 eq.) and the reaction was then allowed to come at RT 

and stirred overnight. The solution was diluted with water (20 mL) and extracted with EtOAc (3 x 

30 mL). The combined organic layers were dried over Na2SO4, evaporated in vacuo to obtain a 

sticky solid which was purified by column chromatography (PE:EtOAc 2:1) to give 265 (1.374 g, 

2.53 mmol, 86%, diastereomic ratio 3:1) as a sticky, colourless solid. 

 

Rf = 0.33 (SiO2, PE:EtOAc 2:1)   
1
H-�MR (300 MHz, CDCl3):  7.77 (s, 2H), 7.65-7.49 (m, 2H), 7.45-7.22 (m, 4H), 7.11-6.71 (m, 

4H), 6.30-5.95 (m, 1H), 5.85-5.57 (m, 1H), 5.12-4.91 (m, 2H), 4.82-4.49 (m, 2H), 4.46-4.29 (m, 

1H), 4.27-4.24 (2H, m), 3.81 (s, 3H), 3.80-3.72 (m, 1H), 3.52-3.18 (m, 2H), 2.41-2.18 (m, 2H), 2.10 

(s, 3H), 2.08-2.00 (m, 3H)  
13

C-�MR (75.5MHz, CDCl3): 170.3, 159.0, 156.4, 143.9, 141.4, 134.0, 133.7, 129.2, 128.7, 127.7, 

127.1, 124.7, 120.0, 117.8, 117.5, 114.2, 98.2, 67.2, 60.4, 55.3, 50.1, 47.4, 41.3, 39.0, 21.2, 14.2     

IR (KBr): υ  =  3016, 1750, 1640, 1520, 1318, 1151, 1027   

MS = [ESI (DCM/MeOH + 10 mmol/l NH4Ac)] : m/z (%) 482.3 [MH+ - CH3COOH]+ (84), 499.3 

[MNH4
+ - CH3COOH]+ (6), 559.4 [MNH4

+] (100) 
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(4R,5R)-[2-Allyl-5-(5-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-tetrahydro-furan-3-

ylmethyl]-   (4-methoxy-benzyl)-carbamic acid 9H-fluoren-9-ylmethyl ester 266 

To a cold (-10°C) solution of 17 (542 mg, 1.00 mmol, 1.0 eq.) in dry acetonitrile (20 mL) under 

nitrogen was added a precomplexed solution of SnCl4 (120 µL, 1.00 mmol, 1.0 eq.) and persilylated 

thymine (1.5 mmol, 405 mg, 1.5 eq.) in dry acetonitrile (10 ml). The reaction was stirred for 30 min, 

warmed at RT and stirred for further 20 min until the total consumption of the starting material. The 

reaction was then quenched with a saturated solution of NaHCO3 (5 mL) and stirred for further 5 

min. The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 15 mL). 

The combined organic layers were dried over Na2SO4, filtrated and evaporated in vacuo to give a 

sticky solid which was purified by column chromatography (PE:EtOAc 1:1) to give 18 (418 mg, 

0.75 mmol, 75%) as a colourless solid. 

 

 

Rf = 0.2 (SiO2, PE:EtOAc 1:1)  
1
H-�MR (300 MHz, CDCl3):  8.81 (bs, 1H), 7.75 (2H, s), 7.64-7.44 (2H, m), 7.45-7.13 (5H, m), 

7.07-6.77 (4H, m), 5.99 (d, 1H, J=6.1Hz), 5.88-5.51 (m, 1H), 5.20-4.94 (m, 2H), 4.90-4.71 (m, 2H), 

4.67-4.47 (m, 1H), 4.20-4.05 (m, 2H), 3.79 (s, 3H), 3.80-3.75 (m, 1H), 3.25 (bs, 1H), 2.81-2.65 (m, 

1H), 2.41-2.28 (m, 1H), 2.10-1.90 (m, 2H), 1.93 (d, 3H, J=6.2Hz), 1.90-1.53 (m, 2H) 
13

C-�MR (75.5MHz, CDCl3): 163.8, 159.1, 157.8, 156.3, 150.1, 148.6, 143.8, 141.4, 133.5, 133.4,  

129.1, 128.8, 127.7, 127.1, 124.6, 120.0, 114.1, 112.8, 110.4, 82.7, 55.3, 47.5, 37.5, 35.8, 31.0, 12.7  

IR (KBr): υ  = 3015, 1718, 1490, 1332, 1170, 1035 

MS = ESI (DCM/MeOH + 10 mmol/l NH4Ac)] : m/z (%) 608.4 [M + H+] (47), 625.4 [M + NH4
+] 

(100) 
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(2R, 4R, 5R)-[2-Allyl-5-(5-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-tetrahydro-

furan-3-ylmethyl]-carbamic acid 9H-fluoren-9-ylmethyl ester 267 

and  (2S, 4R, 5R)-[2-Allyl-5-(5-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-tetrahydro-

furan-3-ylmethyl]-carbamic acid 9H-fluoren-9-ylmethyl ester 268 

 

To a cold (0°C) solution of 266 (340 mg, 0.56 mmol, 1.0 eq.) in acetonitrile / water (7 mL / 2.4 mL) 

CAN (1.23 g, 2.24 mmol, 4.0 eq., conc. 0.25 M) was added portionwise. The reaction was stirred at 

0°C for 1 h and at RT for 2 additional hours until the total consumption of the starting material. The 

reaction was then poured in water (30 mL), extracted with EtOAc (3 x 30 mL). The combined 

organic layers were washed with a saturated solution of NaHCO3 (30 mL), dried over Na2SO4, 

filtered and evaporated in vacuo to obtain a colourless solid which was purified by column 

chromatography (PE:EtOAc 1:1) to give 267 (104 mg, 0.21 mmol, 38%) and 268 (94 mg, 0.19 

mmol, 34%) as colourless solids. 

 

267 

Rf = 0.06 (SiO2, PE:EtOAc 1:1) ; [ ]20
Dα = +8.92 (c = 1.03) 

1
H-�MR (600 MHz, CDCl3): δ ppm 9.35 (s, 1H) ppm 7.76 (d, 2H, J=7.5Hz) ppm 7.58 (d, 2H, 

J=7.3Hz) ppm 7.40 (t, 2H, J=7.3Hz) ppm 7.35-7.25 (m, 3H), 6.04-5.95 (m, 1H), 5.92-5.80 (m, 1H), 

5.25-5.10 (m, 2H), 4.50-4.42 (m, 1H), 4.24-4.18 (m, 2H), 3.83-3.78 (m, 1H), 3.37-3.27 (m, 1H), 

3.25-3.15 (m, 1H), 2.60-2.45 (m, 1H), 2.40-2.15 (m, 2H), 2.08-2.04 (m, 1H), 1.93 (s, 3H), 1.78 (m, 

1H) 
13

C-�MR (150MHz, CDCl3): 163.9, 156.6, 150.4, 143.8, 141.3, 135.3, 133,4, 127.7, 127.0, 124.9, 

120.0, 118.5, 110.6, 85.0, 82.7, 82.5, 66.6, 47.3, 42.2, 38.4, 36.6, 12.6   

IR (solid): υ  = 2926, 1685, 1513, 1468, 1244, 1105, 915  

MS = [ESI, (DCM/MeOH + 10 mmol/l NH4Ac)]: m/z (%) 488.4 (8) [M + H+], 505.4 (100) [M + 

NH4
+], 992.8 (16) [2M + NH4

+] 
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268 

Rf = 0.13 (SiO2, PE:EtOAc 1:1) ; [ ]20
Dα = +3.10 (c = 1.02) 

1
H-�MR (600 MHz, CDCl3):  δ ppm 9.55 (bs, 1H), 7.75 (d, 2H, J=7.5Hz), 7.60 (m, 2H), 7.39 (t, 

2H, J=7.2Hz), 7.31 (m, 3H), 7.13 (s, 1H), 5.88-5.77 (m, 2H), 5.20-5.10 (m, 2H), 4.40-4.28 (m, 1H), 

4.22-4.18 (m, 2H), 3.49-3.40 (m, 1H), 3.31-3.26 (m, 1H), 2.52-3.44 (m, 1H), 2.43-3.37 (m, 2H), 

2.36-3.27 (m, 1H), 2.26 (m, 1H), 1.94 (s, 3H), 1.91-1.86 (m, 1H) 
13

C-�MR (7150MHz, CDCl3): 163.8, 156.8, 150.9, 143.9, 141.3, 135.2, 133,4, 127.6, 127.0, 125.1, 

120.0, 118.4, 111.1, 88.7, 80.2, 78.8, 66.9, 47.2, 42.0, 39.9, 33.0, 12.7     

IR (solid): υ  = 2985, 1723, 1522, 1473, 1253, 1095, 902   

MS = [ESI, (DCM/MeOH + 10 mmol/l NH4Ac)]: m/z (%) 488.4 (12) [M + H+], 505.4 (100) [M + 

NH4
+], 992.8(18) [2M + NH4

+ 

 

 

 

 

 

 

 

 

 

 

 

(2R/S,3R,5R)-[2-Allyl-5-(6-amino-purin-9-yl)-tetrahydro-furan-3-ylmethyl]-(4-methoxy-

benzyl)-carbamic acid 9H-fluoren-9-ylmethyl ester 270 

 

To a cold (-10°C) solution of 265 (450 mg, 0.83 mmol, 1.0 eq.) in dry acetonitrile (20 ml) under 

nitrogen was added a solution of persylilated adenine (350 mg, 1.25 mmol, 1.5 eq.) and SnCl4 (100 

µL, 0.83 mmol, 1.0 eq.) in dry acetonitrile (5 mL). The mixture was stirred at -10°C for 30 min, 

warmed at RT, stirred for additional 15 min and quenched with a saturated solution of NaHCO3. 

The organic phase was separated and the aqueous phase was extracted with  AcOEt (3 x 15 mL). 

The combined organic layers were dried over Na2SO4, filtrated and evaporated in vacuo to obtain a 

amorphous solid which was purified by column chromatography (EtOAc) to give 19 (333 mg, 0.54 

mmol, 65%) as a colourless solid. 
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Rf = 0.14 (SiO2, EtOAc)  

1
H-�MR (300 MHz, CDCl3): δ ppm 8.37-8.22 (m, 1H), 8.11-7.78 (m, 1H), 7.72 (d, 2H, J=7.3 Hz), 

7.63-7.46 (m, 2H), 7.43-7.17 (m, 4H), 7.08-6.71 (m, 4H), 6.64-6.41 (m, 2H), 6.19 (s, 0.6H, first 

diastereomers), 6.04-5.86 (m, 0.4H, second diastereomers), 5.84-5.50 (m, 1H), 5.16-4.90 (m, 2H), 

4.80 (s, 1H), 4.60 (d, 1H, J=4.4 Hz), 4.34-4.14 (m, 2H), 3.89-3.81 (m, 1H), 3.78 (s, 3H), 3.46-3.17 

(m, 1H), 2.96-2.69 (m, 1H), 2.57-1.83 (m, 6H) 
13

C-�MR (75.5MHz, CDCl3): 159.1, 156.4, 155.0, 151.6, 143.0, 143.9, 143.8, 141.5, 139.2, 133.6, 

129.1, 128.8, 127.7, 127.2, 124.8, 124.7, 124.6, 124.5, 120.2, 120.0, 118.1, 117.7, 114.0, 82.7, 55.3, 

48.1, 47.6, 37.0, 32.0    

IR (solid): υ  = 3320, 3172, 1693, 1639, 1595, 1297, 1367, 1032 

MS = [ESI, (DCM/MeOH + 10 mmol/l NH4Ac)]: m/z (%) = 617.4 (100) [M + H +] 

 

 

 

 

 

 

 

 

 

 

[9-(5-Allyl-4-{[(9H-fluoren-9-ylmethoxycarbonyl)-(4-methoxy-benzyl)-amino]-methyl}-

tetrahydro-furan-2-yl)-9H-purin-6-yl]-carbamic acid benzyl ester 271 

To a cold solution (0°C) of  12 (953 mg, 1.73 mmol, 1 eq.) in dry DCM (20 ml) was added 

bromotrimethylsilane (340 µl, 2.57 mmol, 1.5 eq.). The reaction was stirred for 4 hours and 20 (930 

mg, 3.46 mmol, 2 eq.) was added. The precipitate was then dissolved by addition of DMF (20 ml), 

the solution was warmed at RT and stirred overnight. The obtained suspension was quenched with a 

saturated solution of NaHCO3, the aqueous layer was separate and extracted with EtOAc (3 x 20 

ml). The combined organic layers were dried with MgSO4, filtrated and evaporated in vacuo to 
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obtain a sticky solid which was purified by column chromatography to give 21 (962 mg, 1.28 mmol, 

74%) as a white solid.  

Rf = 0.14 (SiO2, PE:EtOAc 1:1)  

1
H-�MR (300 MHz, CDCl3): δ ppm 8.75 (s, 1H), 8.12-7.81 (m, 1H), 7.72 (d, 2H, J=7.0 Hz), 7.61-

7.18 (m, 11H), 7.02-6.69 (m, 4H), 6.25-5.87 (m, 1H), 5.83-5.46 (m, 1H), 5.30 (d, 2H, J=3.69), 5.14-

4.92 (m, 2H), 4.90-4.74 (m, 1H), 4.66-4.49 (m, 1H), 4.40-4.10 (m, 3H),  3.90-3.81 (bs, 1H), 3.78 (s, 

3H), 3.47-3.16 (m, 2H), 2.95-2.62 (m, 1H), 2.60-1.82 (m, 6H) 

13
C-�MR (75.5MHz, CDCl3): δ ppm  159.1, 156.4, 152.6, 151.0, 149.3, 143.9, 143.8, 141.4, 141.3, 

135.4, 133.6, 133.5, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 127.7, 127.3, 127.1, 124.8, 124.7, 

124.5, 124.4, 123.1, 122.7, 121.4, 120.0, 118.1, 114.0, 67.8, 55.3, 47.4, 42.0, 36.9   

IR (KBr): υ  = 2910, 1754, 1693, 1609, 14460, 1118, 910 

MS = [ESI, (DCM/MeOH + 10 mmol/l NH4Ac)]: m/z (%) 751.3 
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3-(�'-tert-Butoxycarbonyl-hydrazino)-4,4,4-trifluoro-butyric acid ethyl ester 306 

A solution of 1 (1.74 g, 10.35 mmol, 1.0 eq.) and hydrazinecarboxylic acid tert-butyl ester (2.73 g, 

20.70 mmol, 2.0 eq.) in MeOH (15 ml) was stirred in a sealed tube at 80°C over 5 days. The solvent 

was evaporated under vacuum and purified by chromatography (cyclohexane:EtOAc  8:2), 

obtaining 2 (2.80 g, 9.35 mmol, 90%) as a slightly yellow oil. 

 

1
H �MR (200 MHz, CDCl3) δ ppm 6.48 (br s, 1 H), 4.80 (br s, 1 H), 4.46 (q, J = 7.2 Hz, 2H), 4.16 

(m, 1H), 2.90 (m, 2H), 1.71 (s, 9H), 1.53 (t, J = 7.2 Hz, 3H).  

 13
C �MR (75 MHz, CDCl3) δ ppm  169.8, 125.3, 81.3 (CBoc), 61.3, 58.5, 32.1, 28.2 , 14.0 

19
F (188 MHz, CDCl3) δ ppm -75.3 (d, J = 5.6 Hz). 

Rf: 0.3 (EtOAc:cyclohexane  1:4) 

IR (cm
-1 

):  3193, 1715, 1157, 1121, 774  

MS (ESI Positive) m/z: 323 [M+Na]+ 

Elemental Anal. Calculated for [C11H19F3N2O4] C 44.00, H 6.38, N 9.33 found C 43.72, H 6.16, N 

9.69 
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3-(�'-tert-Butoxycarbonyl-hydrazino)-4,4,4-trifluoro-butyric acid 295 

To a solution of 396 (985 mg, 3.28 mmol, 1.0 eq.) in THF/MeOH (5 ml/5 ml) a 2N solution of 

NaOH (1.8 ml, 3.6 mmol, 1.1 eq.) was added. The reaction was stirred at RT over 3 hrs. The solvent 

was removed under vacuum (without distilling the water) and the remaining solution was bring at 

pH=1 by addition of 1N solution of HCl. The aqueous phase was extracted with EtOAc (3x 20 ml). 

The combined organic layers were dried with MgSO4, filtered and concentrated under vacuum to 

obtain the product 295 (844 mg, 3.10 mmol, 95%) as a white solid which was used in the next step 

without further purification. 
 

1
H �MR (300 MHz, DMSO-d6) ) ) ) δ ppm 12.54 (br s, 1H) 8.39 (br s, 1H), 3.82 (m, 1H), 2.61 (dd, J 

= 16.6 and 5.4 Hz, 1H), 2.44 (dd, J  = 16.6 and 6.8Hz, 1H), 1.38 (s, 9H). 

13
C �MR (75 MHz, DMSO-d6) ) ) ) δ ppm 170.8, 156.4, 125.9 (q, J = 280.5 Hz), 78.9, 57.4, 32.4, 28.0    

 19
F (188 MHz, DMSO-d6) ) ) ) δ ppm  -74.1 (d, J = 6.8 Hz). 

Rf: 0.3 (EtOAc/cyclohexane: 70/30) 

mp: 138-140 °C (crude) 

IR (cm
-1 

): 3325 (NH), 3100 (OH), 1732 (C=O), 1687 (C=O), 1122 (C-O), 760 (CF3) 

MS (ESI �egative) m/z: 271 [M-H]-
 

 
Elemental Anal. Calculated for [C9H15F3N2O4] C 39.71, H 5.55, N 9.3310.29 found C 39.83, H 

5.50, N 10.29 
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307  

�'-{2,2,2-Trifluoro-1-[(3,4,5-trimethoxy-benzylcarbamoyl)-methyl]-ethyl}-

hydrazinecarboxylic acid tert-butyl ester 307 

 

To a solution of 295 (1.34 g, 4.92 mmol, 1.0 eq.) and HBTU (2.23 g, 5.90 mmol, 1.2 eq.) in DMF  

(10 ml) pre-complexed for 30 min. were added in the order HOBt (798 mg, 5.90 mmol, 1.2 eq.), 

DIPEA (1.65 ml, 9.84 mmol, 2.0 eq.) and phenylalanine hydroxychloride. The reaction was 

performed under argon atmosphere a RT overnight. The solvent was evaporated over vacuum and 

the product dissolved in EtOAc (25 ml). The organic layer was washed with 10% aqueous solution 

of citric acid (2 x 15 ml),water (30 ml), a 10% aqueous solution of K2CO3 (2 x 15 ml) and brine  

(20 ml), dried over Na2SO4, filtrated and evaporated in vacuo to give a slightly yellow solid which 

was purified by column chromatography (EtOAc:cyclohexane 1:1) to give 307 as a colourless solid 

(1.70 g, 3.76 mmol, 76%). 

 

 
1
H �MR (300 MHz, CDCl3) ) ) ) δ ppm 6.64 (s, 2H), 6.29 (s, 1H), 4.45 (m, 2H), 4.34 (m, 1H), 3.89 (s, 

6H), 3.86 (s, 3H), 3.79 (m, 2H), 2.57 (s, 1H), 1.67 (s, 9H)  

13
C �MR (75 MHz, CDCl3)    δ ppm 168.2 ,156.7, 153.2, 137.1, 105.1, 81.5, 60.8, 59.0, 56.1, 44.0, 

33.3, 28.2 

 19
F (188 MHz, CDCl3) ) ) ) δ ppm -75.09 (d, 1H, J=7.0Hz) 

Rf: 0.5 (SiO2, cyclohexane:EtOAc 1:1) 

mp: 138-140 °C (crude) 

IR (cm
-1 

): 3300, 1652, 1506, 1234, 1123 

MS (ESI �egative) m/z: 474.2 [M+Na
+
] 

Elemental Anal. Calculated for [C19H28F3N3O6+1H2O] C 48,61 H 6.45 N8.95 found C 48.40 H 

5.88 N 8.49 
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309  

[5-tert-Butoxycarbonylamino-5-(�'-{2,2,2-trifluoro-1-[(3,4,5-trimethoxy-benzylcarbamoyl)-

methyl]-ethyl}-hydrazinocarbonyl)-pentyl]-carbamic acid benzyl ester 309 

 

A solution of 307 (926 mg, 1.99 mmol, 1.0 eq.) in DCM/TFA 3:1 (12 ml) was stirred for 2 h at RT. 

The solvent was evaporated in vacuo and the excess of trifluoroacetic acid was coevaporated with 

methanol. The resulting slightly yellow solid was dissolved in DMF (5 ml), then DIPEA (1.6 ml, 

10.0 mmol, 5.0 eq.)  and HOBt (323 mg, 2.39 mmol, 1.2 eq.) were added. Meanwhile a solution of  

NαBocNεZlysine (910 mg, 2.39 mmol, 1.2 eq.) and HBTU (906 mg, 2.39 mmol, 1.2 eq.) in DMF 

(5 mL) was stirred for half an hour at RT. The two solutions were then combined and the resulting 

mixture was stirred at RT overnight. The solvent was evaporated under vacuum and the resulting 

yellow oil was diluted with ACOEt (30 mL) and washed with 10% aqueous solution of citric acid (2 

x 20 mL), a 10% aqueous solution of K2CO3 (2 x 20 mL) and brine (30 ml), dried over Na2SO4, 

filtrated and evaporated in vacuo to give a slightly yellow solid which was purified by column 

chromatography (cyclohexane:EtOAc 1:1) to give 309 as a colourless solid (1.19 g, 1.67 mmol, 

84%). 

1
H �MR (300 MHz, DMSO-d6) ) ) ) δ ppm 1H-NMR (300 MHz) 9.48 (d, 1H, J=5.2Hz), 8.57 (m, 1H), 

7.28-7.36 (m, 5H), 7.23 (t, 1H, J=5.3Hz), 6.85 (m, 1H), 6.58 (s, 2H), 5.54 (m, 1H), 5.00 (s, 2H), 

4.20-4.27 (m, 3H), 3.85 (m, 1H), 3.74 (s, 6H), 3.62 (s, 3H), 2.97 (m, 2H), 1.52 (m, 2H), 1.42 (m, 

9H), 1.22 (m, 4H) 

13
C �MR (75 MHz, DMSO-d6) ) ) ) δ ppm 167.9, 163.2, 163.0, 155.9, 152.6, 137.1, 136.1, 134.6, 

128.2, 127.6, 104.3, 104.3, 77.8, 65.0, 59.8, 55.6, 28.9, 28.0, 22.6 

 19
F (188 MHz, DMSO-d6) ) ) ) δ ppm -74.62 (d, 1F, J=7.5Hz), -74.89 (d, 1F, J=6.3Hz) 

Rf: 0.6 (SiO2, cyclohexane:EtOAc 1:1) 
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mp: 112-114 °C  

IR (cm
-1 

): 3312, 1637, 1525, 1250, 1126 

MS (ESI �egative) m/z: 714.4 [M+H
+
] 

Elemental Anal. Calculated for [C33H46F3N5O9+1H2O] C 54.19  H 6.63 N 9.58  found C 54.17 

H 6.19 N 9.43 

H2N

H
N

N
H

N
H

O

CF3 O

OMe

OMe

OMe

NHCbz

TFA

312  

[5-Amino-5-(�'-{2,2,2-trifluoro-1-[(3,4,5-trimethoxy-benzylcarbamoyl)-methyl]-ethyl}-

hydrazinocarbonyl)-pentyl]-carbamic acid benzyl ester trifluoroacetic acid salt 312 

 

A solution of 309 (741 mg, 1.04 mmol, 1.0 eq) in DCM/TFA 3:1 (15 ml) was stirred for 2 h at RT. 

The solvent was evaporated in vacuum and the excess of TFA was coevaporated with methanol. 

The crude was then precipitate with diethyl ether and washed with cyclohexane (3 x 15 ml) to 

afford 312 (745 mg, 1.04 mmol, quantitative) as a colourless solid. 

 

1
H �MR (300 MHz, DMSO-d6) ) ) ) δ ppm 9.98 (m, 1H), 8.59 (m, 1H), 8.14 (s, 2H), 7.38-7.26 (m, 

5H), 6.57 (s, 2H), 5.00 (s, 2H), 4.20-4.30 (m, 2H), 3.89 (m, 1H), 3.74 (s, 6H), 3.65 (m, 1H), 3.62 (s, 

3H), 2.98 (m, 2H), 2.58 (m, 2H), 1.65-1.69 (m, 2H), 1.38-1.42 (m, 2H), 1.25-1.29 (m, 2H) 

13
C �MR (75 MHz, DMSO-d6) ) ) ) δ ppm 171.0, 169.9, 169.8, 159.0, 138.4, 138.2, 135.8, 129.5, 

129.0, 128.8, 106.0, 67.4, 61.1, 60.1, 59.7, 56.6, 53.2, 53.1, 44.5, 41.4, 34.7, 34.6, 32.2, 30.5, 23.0 

19
F (188 MHz, DMSO-d6) ) ) ) δ ppm -76.51 (m, 1F), -77.33 (s, 1F)  

Rf: 0.3 (SiO2, EtOAc/MeOH/NH4OH: 79/20/1)  

mp: 136-138 °C  

IR (cm
-1 

): 2924, 1667, 1594, 1123  

MS (ESI) m/z: 614 [M+H
+
] 

Elemental Anal. Calculated for [C30H39F6N5O9+ 1.5 H2O] C 47.74 H 5.72 N 9.28 found C 47.52 

H 5.04 N 8.80  
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[5-[2-(2,5-Dimethoxy-phenyl)-acetylamino]-5-(�'-{2,2,2-trifluoro-1-[(3,4,5-trimethoxy-

benzylcarbamoyl)-methyl]-ethyl}-hydrazinocarbonyl)-pentyl]-carbamic acid benzyl ester 313 

To a solution of 312 (563 mg, 0.77 mmol, 1.0 eq.) in DMF (4 ml), DIPEA (640 µl, 3.85 mmol, 5.0 

eq.)  and HOBt (157 mg, 1.16 mmol, 1.5 eq.) were added. Meanwhile a solution of  2,5-

dimethoxyphenylacetic acid (227 mg, 1.16 mmol, 1.5 eq.) and HBTU (440 mg, 1.16 mmol, 1.5 eq.) 

in DMF (4 mL) was stirred for half an hour at RT. The two solutions were combined and the 

resulting mixture was stirred at RT overnight. The solvent was evaporated under vacuum and the 

resulting yellow oil was diluted with ACOEt (20 mL) and washed with 10% aqueous solution of 

citric acid (2 x 15 mL), a 10% aqueous solution of K2CO3 (2 x 15 mL), brine (20 ml), and distilled 

water, dried over Na2SO4, filtrated and evaporated in vacuo to give a slightly yellow solid which 

was purified by precipitation in an hot mixture of methanol/EtOAc to give 313 as a colourless solid 

(434 mg, 0.59 mmol, 77%). 

 

1
H �MR (300 MHz, DMSO-d6) ) ) ) δ ppm 9.57 (d, 1H, J=5.4Hz), 8.56 (t, 1H, J=5.8Hz), 7.95 (d, 1H, 

J=8.0Hz), 7.37-7.22 (m, 5H), 7.22 (t, 1H, J=5.4Hz), 6.86-6.76 (m, 2H), 6.70-6.65 (m, 1H), 6.57 (s, 

2H), 5.76 (s, 1H), 5.54 (t, 1H, J=4.4Hz), 5.00 (s, 2H), 4.24 (m, 3H), 3.86 (m, 1H), 3.73 (s, 6H), 3.67 

(s, 6H), 3.62 (s, 3H), 2.99-2.81 (m, 2H), 2.50-2.40 (m, 2H, under DMSO), 1.57-1.49 (m, 2H), 1.46-

132 (m, 2H), 1.30-1.20 (m, 2H)  

13
C �MR (75 MHz, DMSO-d6) ) ) ) δ ppm 171.3, 169.8, 168.0, 156.5, 152.9, 152.7, 151.3, 137.2, 

136.3, 134.7, 128.3, 127.9, 127.7, 125.6, 125.5, 116.7, 111.9, 111.6, 104.5, 65.1, 59.9, 55.8, 55.7, 

55.2, 51.1, 51.0, 42.4, 36.7, 36.6, 33.2, 31.8, 29.0, 22.4  

 19
F (188 MHz, DMSO-d6) ) ) ) δ ppm  

Rf: 0.3 (SiO2, EtOAc) 

mp: 138-140 °C (crude) 

IR (cm
-1 

): 3298, 1633, 1503, 1228, 1126, 698 

MS (ESI) m/z: 793 [M+H
+
] 
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Elemental Anal. Calculated for [C38H48F3N5O10+1H2O]  C 56.34 H 6.23 N 8.65 found C 56.55 

H 6.38 N 8.41 

H
N

N
H

N
H
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CF3 O

OMe

OMe

OMe

BocHN

NH2

O

310  

[2-Carbamoyl-1-(�'-{2,2,2-trifluoro-1-[(3,4,5-trimethoxy-benzylcarbamoyl)-methyl]-ethyl}-

hydrazinocarbonyl)-ethyl]-carbamic acid tert-butyl ester 310 

 

A solution of 307 (547 mg, 1.18 mmol, 1.0 eq.) in DCM/TFA 3:1 (12 ml) was stirred for 2 h at RT. 

The solvent was evaporated in vacuo and the excess of trifluoroacetic acid was coevaporated with 

methanol. The resulting slightly yellow solid was dissolved in DMF (3 ml), then DIPEA (1.0 ml, 

5.9 mmol, 5.0 eq.)  and HOBt (190 mg, 1.41 mmol, 1.2 eq.) were added. Meanwhile a solution of  

NBocAsn (328 mg, 1.41 mmol, 1.2 eq.) and HBTU (536 mg, 1.41 mmol, 1.2 eq.) in DMF (5 mL) 

was stirred for half an hour at RT The two solutions were then combined and the resulting mixture 

was stirred at RT overnight. The solvent was evaporated under vacuum and the resulting colourless 

solid was washed with Et2O, EtOAc and petroleum ether to give 16 as a colourless solid (0.65 g, 

1.67 mmol, 55%). 

 

1
H �MR (400 MHz, DMSO-d6) ) ) ) δ ppm 1H-NMR 9.41 (dd, 1H, J=4.9Hz, J=16.2Hz), 8.51 (d, 1H, 

J=7.8Hz), 7.25 (s, 1H), 6.88 (s, 2H), 6.58 (bs, 1H), 5.53 (m, 1H), 4.24 (m, 3H), 3.83 (m, 1H), 3.74 

(s, 6H), 3.62 (s, 3H), 2.60-2.50 (2H under DMSO) 2.39 (m, 2H), 1.36 (s, 1H) 

13
C �MR (100 MHz, DMSO-d6) ) ) ) δ 171.0, 168.0, 154.9, 152.7, 137.2, 137.0, 135.7, 134.8, 128.3, 

125.4, 78.9, 59.9, 57.72 (dd, 1H, J=7.8Hz, J=27.1Hz), 53.6, 50.0, 37.6, 33.6, 28.1 

19
F (188 MHz, DMSO-d6) ) ) ) δ ppm -73.5 (m)   

Rf: 0.2 (SiO2, EtOAc:MeOH 9:1) 

mp: 174-176 °C  

IR (cm
-1 

): 3319, 2361,1637, 1127  

MS (ESI �egative) m/z: 566 [M+H
+
] 

Elemental Anal. Calculated for [C23H34F3N5O8+0.5 H2O] C 48.12 H 6.16 N 12.20 found C 

48.27 H 5.88 N 11.86 
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308  

 

2-[3-(�'-tert-Butoxycarbonyl-hydrazino)-4,4,4-trifluoro-butyrylamino]-3-phenyl-propionic 

acid methyl ester 308 

To a solution of 295 (2.55 g, 9.37 mmol, 1.0 eq.) and HBTU (3.56 g, 9.37 mmol, 1.0 eq.) in DMF  

(20 ml) pre-complexed for 30 min. were added in the order HOBt (1.52 g, 11.24 mmol, 1.2 eq.), 

DIPEA (3.1 ml, 18.74 mmol, 2.0 eq.) and phenylalanine hydroxychloride. The reaction was 

performed under argon atmosphere a RT overnight. The solvent was evaporated over vacuum and 

the product dissolved in EtOAc (30 ml). The organic layer was washed with 10% aqueous solution 

of citric acid (2 x 25 ml),water (30 ml), a 10% aqueous solution of K2CO3 (2 x 25 ml) and brine  

(30 ml), dried over Na2SO4, filtrated and evaporated in vacuo to give a slightly yellow solid which 

was purified by column chromatography (EtOAc:cyclohexane 7:3) to give the 308 as a colourless 

solid (3.49 g, 8.06 mmol, 86%). 

 

1
H �MR (400 MHz, DMSO-d6) ) ) ) δ ppm 8.56;8.58 (2 d, J = 6.3;6.4 Hz, 1H, 2 dia), 8.36 (m, 1H), 

7.27-7.17 (m, 5H), 4.98;5.02 (2 br s, 1H, 2 dia), 4.46 (m, 1H), 3.73 (m, 1H), 3.56-3.57 (2s, 3H), 

3.00 (dd, J = 13.6 and 5.8 Hz, 1H), 2.89 (m, 1H), 2.38-2.48 (m, 2H), 1.36;1.37 (s, 9H, 2 dia) 

13
C �MR (100 MHz, DMSO-d6) ) ) ) δ ppm 172.2, 172.1, 168.7, 156.7, 137.5, 137.4, 129.4, 129.3, 

128.7, 127.0, 126.3 (q, J = 27.8 Hz), 79.3, 58.3, 58.0, 54.1;54.0 (2 dia), 52.1, 52.2, 37.2, 37.1, 33.4, 

28.5 

19
F (188 MHz, DMSO-d6) ) ) ) δ ppm  (-73.6) −(-73.8) (m).     

Rf: 0.7 (EtOAc/cyclohexane: 70/30) 

mp: 94-96 °C (crude) 

IR (cm
-1 

): 3351, 3288, 1739, 1709, 1683, 1164, 1124, 698 

MS (ESI Positive) m/z: 456 [M+Na]+             
 

Elemental Anal. Calculated for [C19H26F3N3O5] C. 52.65, H 6.05, N. 9.69 found C 52.15, H 

6.07, N 9.37 
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300  

 

2-{3-[�'-(6-Benzyloxycarbonylamino-2-tert-butoxycarbonylamino-hexanoyl)-hydrazino]-4,4,4 

trifluoro-butyrylamino}-3-phenyl-propionic acid methyl ester 300 

 

A solution of 308 (197 mg, 0.44 mmol, 1.0 eq.) in DCM/TFA 3:1 (4 ml) was stirred for 2 h at RT. 

The solvent was evaporated in vacuo and the excess of trifluoroacetic acid was coevaporated with 

methanol. The resulting slightly yellow solid was dissolved in DMF (2 ml), then DIPEA (360 µl, 

2.2 mmol, 5.0 eq.)  and HOBt (90 mg, 0.66 mmol, 1.5 eq.) were added. Meanwhile a solution of  

NαBocNεZLysine (251 mg, 0.66 mmol, 1.5 eq.) and HBTU (250 mg, 0.66 mmol, 1.5 eq.) in DMF 

(2 mL) was stirred for half an hour. The two solutions were then combined and the resulting 

mixture was stirred at RT overnight. The solvent was evaporated under vacuum and the resulting 

yellow oil was diluted with ACOEt (10 mL) and washed with 10% aqueous solution of citric acid (2 

x 10 mL), a 10% aqueous solution of K2CO3 (2 x 10 mL) and brine (15 ml), dried over Na2SO4, 

filtrated and evaporated in vacuo to give a slightly yellow solid which was purified by column 

chromatography (cyclohexane:EtOAc 6:4) to give 300 as a colourless solid (207 mg, 0.30 mmol, 

68%). 

 

 
1
H �MR (400 MHz, DMSO-d6) ) ) ) δ ppm 9.42 (m, 1H), 8.61 (d, J = 7.6 Hz, 1H), 7.40-7.19 (m, 11 

H), 6.81 (m, 1H), 5.40 (bs, 1H), 5.00 (s, 2H), 4.49 (m, 1H), 3.83 (m, 1H), 3.74 (m, 1H), 3.58 (s, 

3H,), 3.05-2.89 (m, 4H), 2.46 (m, 2H), 1.46 (m, 2H), 1.40-1.28 (m, 11H), 1.26 (m, 2H) 

13
C �MR (100 MHz, DMSO-d6) ) ) ) δ ppm 171.8, 168.1, 156.1, 155.2, 137.3, 137.0, 129.0, 128.9, 

128.3, 128.2, 127.7, 126.5, 78.0, 65.1, 57.5 (q, J = 20.9 Hz), 53.6, 52.8, 51.8, 39.7, 36.7, 32.8, 31.3, 

29.0, 28.1, 22.7   

19
F (188 MHz, DMSO-d6) ) ) ) δ ppm  -76.4 (d, J = 7.4 Hz), -76.5 (d, J = 7.2 Hz).  

Rf: 0.6 (EtOAc/cyclohexane: 70/30) 

mp: 92-94 °C (crude) 

IR (cm
-1 

): 3321 (NH), 1741 (C=O), 1686 (C=O), 1634 (C=O), 1161 (C-O), 1127 (C-O), 698 (CF3)  

HRMS (EI) m/e: [M+Na]+ 
 calcd 718.3040, found 718.3019  
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2-{3-[�'-(2-Amino-6-benzyloxycarbonylamino-hexyl)-hydrazino]4,4,4trifluorobutyrylamino}-

3-phenyl-propionic acid methyl ester trifluoroacetic acid salt 297 

 

A solution of 300 (318mg, 0.45 mmol, 1.0 eq.) in DCM/TFA 3:1 (4 ml) was stirred for 2 h at RT. 

The solvent was evaporated in vacuum and the excess of TFA was coevaporated with methanol. 

The crude was then precipitate with diethyl ether to afford 297 (319 mg, 0.45 mmol, quantitative) as 

a colourless solid. 

 

1
H �MR (400 MHz, DMSO-d6) ) ) ) δ ppm   9.94 (d, J = 4.2 Hz, 1H), 8.62 (m, 1H), 8.17 (m, 3H), 

7.38-7.12 (m, 11 H), 5.70 (m, 1H), 5.00 (s, 2H), 4.50 (m, 1H), 3.80 (m, 1H), 3.63 (m, 1H), 3.58 (s, 

3H), 3.02 (m, 1H), 2.96 (m, 2H), 2.89 (m, 1H), 2.49 (m, 2H), 1.66 (m, 2H), 1.39 (m, 2H), 1.26 (m, 

2H). 

13
C �MR (100 MHz, DMSO-d6) ) ) ) δ ppm 171.8, 168.2, 168.1, 156.1, 137.2, 137.0, 129.0, 128.9, 

128.3, 128.2, 127.7, 126.6, 65.1, 57.5 (q, J = 22.4 Hz), 53.6, 51.8, 50.9, 40.1, 36.7, 32.8, 30.6, 28.9, 

21.4   

19
F (188 MHz, DMSO-d6) ) ) ) δ ppm -76.6 (d, J = 7.5 Hz), -76.7 (d, J = 5.6 Hz).  

Rf: 0.5 (EtOAc/MeOH/NH4OH: 79/20/1) 

m.p.: 92-94 °C (crude) 

IR (cm
-1 

): 3297, 1666, 1172, 1130, 697   

MS (ESI �egative) m/z: 708 [M-H]- 

Elemental Anal. Calculated for [C31H41F6N5O8] +2 H2O  52.65, H 6.05, N 9.69 found C 52.15, 

H 6.07, N 9.37 
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315  

2-[3-(�'-{6-Benzyloxycarbonylamino-2-[2-(2,5-dimethoxy-phenyl)-acetylamino]-hexanoyl}-

hydrazino)-4,4,4-trifluoro-butyrylamino]-3-phenyl-propionic acid methyl ester 315 

 

To a solution of 297 (319 mg, 0.45 mmol, 1.0 eq.) in DMF (2 ml), DIPEA (370 µl, 2.25 mmol, 5.0 

eq.)  and HOBt (90 mg, 0.67 mmol, 1.5 eq.) were added. Meanwhile a solution of  2,5-

dimethoxyphenylacetic acid (132 mg, 0.67 mmol, 1.5 eq.) and HBTU (254 mg, 0.67 mmol, 1.5 eq.) 

in DMF (2 mL) was stirred for half an hour at RT. The two solutions were then combined and the 

resulting mixture was stirred at RT overnight. The solvent was evaporated under vacuum and the 

resulting yellow oil was diluted with ACOEt (10 mL) and washed with 10% aqueous solution of 

citric acid (2 x 10 mL), a 10% aqueous solution of K2CO3 (2 x 10 mL) and brine (15 ml), dried 

over Na2SO4, filtrated and evaporated in vacuo to give a slightly yellow solid which was purified by 

precipitation in a mixture of cyclohexane/EtOAc to give 315 as a colourless solid (298 mg, 0.38 

mmol, 84%). 

 

1
H �MR (300 MHz, DMSO-d6) ) ) ) δ ppm 9.53 (t, 1H, J=5.6Hz), 8.64 (dd, 1H, J=7.3Hz, J=8.7Hz), 

7.95 (m, 1H), 7.36-7.20 (m, 10H), 6.87-6.76 (m, 3H), 5.01 (s, 2H), 4.50 (m, 1H), 4.20 (m, 1H) 3.79 

(m, 1H), 3.69 (s, 3H), 3.68 (s, 3H), 3.59 (s, 3H), 3.42 (d, 2H, J=3.2Hz), 3.06-2.90 (m, 4H), 2.46 (m, 

2H), 1.57-1.53 (m, 2H), 1.41-1.36 (m, 2H), 1.28-1.21 (m, 2H) 

13
C �MR (75 MHz, DMSO-d6) ) ) ) δ ppm 171.7, 171.6, 171.4, 169.8, 168.1, 156.0, 152.9, 151.3, 

137.2, 137.0, 136.9, 129.0, 128.9, 128.3, 128.2, 127.7, 126.5, 116.7, 111.9, 111.6, 79.4, 78.9, 78.5, 

65.1, 55.8, 55.2, 53.7, 53.6, 51.8, 51.0, 50.9, 36.7, 36.6, 32.9, 31.7, 29.0, 22.4 

19
F (188 MHz, DMSO-d6) ) ) ) δ ppm -73.74 (d, 0.4F, J=7.3Hz) I diastereomer -73.91 (d, 0.6F, 

J=7.5Hz) II diastereomer 

Rf: 0.5 (SiO2, EtOAc) 

mp: 140-142 °C 

IR (cm
-1 

): 3283, 2943, 1739, 1684, 1637, 1531, 1502, 1443, 1360, 1261, 1227, 1207 739  

MS (ESI) m/z: 796.7 [M+Na
+
] 
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Elemental Anal. Calculated for [C38H46F3N5O9+0.75H2O] C 57.95 H 6.09 N 8.90 found C58.04 

H 6.02 N 9.01  
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316  

2-[3-(�'-{6-Amino-2-[2-(2,5-dimethoxy-phenyl)-acetylamino]-hexanoyl}-hydrazino)-4,4,4-

trifluoro-butyrylamino]-3-phenyl-propionic acid methyl ester trifluoro acetic acid salt 316 

 

To a solution of 315 (461 mg, 0.60 mmol, 1.0 eq.) in dry methanol (8 ml) was added palladium on 

activate charcoal 10% (46 mg, 1% massive of palladium). The mixture was stirred overnight under 

hydrogen atmosphere a RT. The catalyst was filtrated on a celite pad and the solvent was 

evaporated under vacuum obtaining a yellowish solid oil. The crude was dissolved in DCM/TFA 

3:1 (8 ml) and stirred for half an hour. The solvent was evaporated in vacuum and the excess of 

TFA removed by coevaporation with methanol. The crude was dissolved in DCM/Et2O with just 

few drops of MeOH and precipitate at -20°C. It was obtained a yellowish solid which was washed 

with Et2O to afford 316 (461 mg, 0.49 mmol, 82%). 

 
1
H �MR (300 MHz, MeOD) ) ) ) δ ppm 7.23-7.17 (m, 5H), 6.86-6.75 (m, 3H), 4.65 (m, 1H), 4.29 (m, 

1H), 3.74 (s, 3H), 3.69 (s, 3H), 3.65 (s, 3H), 3.51-3.44 (m, 3H), 3.15-3.08 (m, 1H), 3.00 (m, 1H), 

2.88-2.82 (m, 2H), 2.52-2.46 (m, 2H),  1.57-1.53 (m, 2H), 1.41-1.36 (m, 2H), 1.28-1.21 (m, 2H) 

 13
C �MR (75 MHz, MeOD) ) ) ) δ ppm 155.5, 153.5, 153.4, 152.0, 138.5, 130.6, 129.9, 129.6, 128.3, 

126.3, 118.7, 114.3, 114.2, 113.1, 67.3, 60.7, 60.2, 59.9, 59.7, 56.9, 56.4, 56.0, 53.2, 53.1, 40.9, 

39.0, 38.7, 34.6, 33.0, 28.4, 23.8, 15.8 

 19
F (188 MHz, MeOD) ) ) ) δ ppm -76.67 (d, 0.3F, J=7.3Hz), -76.62 (d, 0.7F, J=7.5Hz), for the partial 

overlap of the signals it is not possible calculate accurately the diastereomeric ratio, -77.34 (s, 1F) 
Rf: 0.3 (SiO2, EtOAc/MeOH/NH4OH: 79/20/1)  

mp: 120-122 °C  

IR (cm
-1 

): 3324, 1639, 1503, 1126, 700 

MS (ESI) m/z: 640.3 [M+H
+
] 
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Elemental Anal. Calculated for [C32H41F6N5O9+0.5 H2O] C 50.39 H 5.56 N 9.18 found C 50.04 

H 5.37 N 8.73 
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2-{3-[�'-(2-tert-Butoxycarbonylamino-3-carbamoyl-propionyl)-hydrazino]-4,4,4-trifluoro-

butyrylamino}-3-phenyl-propionic acid methyl ester 311 

 

A solution of 308 (218 mg, 0.49 mmol, 1.0 eq.) in DCM/TFA 3:1 (4 ml) was stirred for 2 h at RT. 

The solvent was evaporated in vacuo and the excess of trifluoroacetic acid was coevaporated with 

methanol. The resulting white solid was dissolved in DMF (2 ml), then DIPEA (400 µl, 2.45 mmol, 

5.0 eq.)  and HOBt (100 mg, 0.74 mmol, 1.5 eq.) were added. Meanwhile a solution of 

NBocAsparagine (170 mg, 0.74 mmol, 1.5 eq.) and HBTU (280 mg, 0.74 mmol, 1.5 eq.) in DMF (2 

mL) was stirred for half an hour at RT. The two solutions were then combined and the resulting 

mixture was stirred at RT overnight. The solvent was evaporated under vacuum and the resulting 

yellow oil was diluted with ACOEt (10 mL) and washed with 10% aqueous solution of citric acid (2 

x 10 mL), a 10% aqueous solution of K2CO3 (2 x 10 mL) and brine (15 ml), dried over Na2SO4, 

filtrated and evaporated in vacuo to give a white solid which was purified by column 

chromatography (EtOAc:MeOH 9:1) to give 311 as a colourless solid (168 mg, 0.30 mmol, 63%). 

 

 
1
H �MR (300 MHz, DMSO-d6) ) ) ) δ ppm 9.44 (m, 1H), 8.60 (d, 1H, J=7.6Hz), 7.35-7.17 (m, 5H), 

6.90 (d, 2H, J=7.6Hz), 5.43 (m, 1H), 4.49 (m, 1H), 4.19 (m, 1H), 3.74 (m, 1H), 3.59 (s, 3H), 3.05-

2.85 (m, 2H), 2.60-2.40 (m, 2H, under DMSO), 2.40-2.31 (m, 2H), 1.37 (s, 1H) 

13
C �MR (75 MHz, DMSO-d6) ) ) ) δ ppm 171.6, 171.3, 171.1, 171.0, 168., 154.9, 137.0, 129.0, 

128.2, 126.5, 78.1, 53.7, 51.7, 50.0, 37.1, 36.7, 32.8, 28.1, 
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19
F (188 MHz, DMSO-d6) ) ) ) δ ppm -73.71 (d, 1H, J=7.4Hz) 

Rf: 0.2 (SiO2, EtOAc:MeOH 9:1) 

m.p.: 150-152 °C (crude) 

IR (cm
-1 

): 3477, 2149, 1639, 1524, 1165  

MS (ESI) m/z: 548.2 [M+H
+
] 

Elemental Anal. Calculated for [C23H32F3N5O7+ 0.15H2O] C 50.23 H 5.93 H12.74 found 

C49.75 H 5.75 N 13.61 
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317  

 

2-[3-(�'-{3-Carbamoyl-2-[2-(2,5-dimethoxy-phenyl)-acetylamino]-propionyl}-hydrazino)-

4,4,4-trifluoro-butyrylamino]-3-phenyl-propionic acid methyl ester 317 

 

 

A solution of 311 (355 mg, 0.64 mmol, 1.0 eq.) in DCM/TFA 2:1 (9 ml) was stirred for 2 h at RT. 

The solvent was evaporated in vacuo, the excess of trifluoroacetic acid was coevaporated with 

methanol and the resulting yellowish solid oil precipitated with Et2O. The resulting white solid was 

dissolved in DMF (3 ml), then DIPEA (540 µl, 3.25 mmol, 5.0 eq.)  and HOBt (129 mg, 0.95 mmol, 

1.5 eq.) were added. Meanwhile a solution of  2,5-dimethoxyphenylacetic acid  (187 mg, 0.95 mmol, 

1.5 eq.) and HBTU (361 mg, 0.95 mmol, 1.5 eq.) in DMF (3 mL) was stirred for half an hour at RT. 

The two solutions were combined and the resulting mixture was stirred at RT overnight. The 

solvent was evaporated under vacuum and the resulting yellow oil was diluted with ACOEt (15 mL) 

and washed with 10% aqueous solution of citric acid (2 x 10 mL), water (15 ml), a 10% aqueous 

solution of K2CO3 (2 x 10 mL) and brine (15 ml), dried over Na2SO4, filtrated and evaporated in 

vacuo to give a white solid which washed several times with EtOAc, cyclohexane and Et2O to 

obtain 317 (259 mg, 0.42 mmol, 65%). 

 
1
H �MR (300 MHz, DMSO-d6) ) ) ) δ ppm 7.34-7.22 (m, 5H), 6.92-6.82 (m, 3H), 4.69 (dd, 1H, 

J=5.9Hz, J=8.8Hz), 3.78 (s, 3H), 3.75 (s, 3H), 3.68 (d, 3H, J=3.2Hz), 3.46 (s, 1H), 3.18-3.11 (m, 

1H), 3.04-2.97 (m, 1H), 2.52 (m, 1H) 
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13
C �MR (75 MHz, DMSO-d6) ) ) ) δ ppm 171.8, 171.7, 171.1, 171.0, 170.6, 169.8, 168.2 ,152.9, 

151.1, 137.0, 129.0, 128.2, 126.5, 116.6, 112.1, 55.9, 55.3, 53.7, 53.6, 51.7, 48.4, 37.0, 36.7, 32.8 

19
F (188 MHz, DMSO-d6) ) ) ) δ ppm -73.72 (d, 0.7F, J=7.4Hz) I diastereomer -73.85 (d, 0.3, J=7.8Hz) 

II diastereomer 

Rf: 0.2 (SiO2, EtOAc) 

mp: 168-170 °C  

IR (cm
-1 

): 3286, 1639, 1537, 1406, 1226, 1124 

MS (ESI �egative) m/z: 626.3 [M+Na
+
] 

Elemental Anal. Calculated for [C28H34F3N5O2] C 53.76 H 5.48 N 11.19 found C 53.79 H 5.30 

N 10.75  
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318  

 

2-(3-{�'-[2-(2,5-Dimethoxy-phenyl)-acetyl]-hydrazino}-4,4,4-trifluoro-butyrylamino)-3-

phenyl-propionic acid methyl ester 318 

 

A solution of 308 (392 mg, 0.88 mmol, 1.0 eq.) in DCM/TFA 3:1 (4 ml) was stirred for 2 h at RT. 

The solvent was evaporated in vacuo and the excess of trifluoroacetic acid was coevaporated with 

methanol. The resulting slightly yellow solid was dissolved in DMF (3 ml), then DIPEA (730 µl, 

4.4 mmol, 5.0 eq.)  and HOBt (179 mg, 1.32 mmol, 1.5 eq.) were added. Meanwhile a solution of  

2,5-dimethoxyphenylacetic acid (259 mg, 1.32 mmol, 1.5 eq.) and HBTU (499 mg, 1.32 mmol, 1.5 

eq.) in DMF (3 mL) was stirred for half an hour at RT. The solutions were combined and the 

resulting mixture was stirred at RT overnight. The solvent was evaporated under vacuum and the 

resulting yellow oil was diluted with ACOEt (10 mL) and washed with 10% aqueous solution of 

citric acid (2 x 10 mL), a 10% aqueous solution of K2CO3 (2 x 10 mL) and brine (15 ml), dried 

over Na2SO4, filtrated and evaporated in vacuo to give a slightly yellow solid which was purified by 

column chromatography (EtOAc) to give 318 as a colourless solid (347 mg, 0.68 mmol, 77%). 

 

1
H �MR (300 MHz, DMSO-d6) ) ) ) δ ppm 9.37 (d, 1H, J=5.1Hz), 8.60 (d, 1H, J=7.4Hz), 8.03 (t, 1H, 

J=8.8Hz), 7.34-7.22 (m, 5H), 6.88-6.80 (m, 3H), 5.43 (d, 1H, J=3.7Hz), 4.58-4.50 (m, 2H), 3.68 (s, 
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3H), 3.67 (s, 3H), 3.58 (s, 3H), 3.52-3.56 (bs, 1H), 3.40 (s, 2H), 3.05-2.88 (m, 2H), 2.50-2..4 (m, 

2H) 

13
C �MR (75 MHz, DMSO-d6) ) ) ) δ ppm 172.3, 171.6, 168.4, 168.2, 153.7, 151.0, 136.4, 129.2, 

129.1, 128.4, 126.9, 123.1, 117.1, 113.4, 11.5, 55.7, 53.8, 53.7, 52.4, 37.3, 37.1, 33.3 

 19
F (188 MHz, DMSO-d6) ) ) ) δ ppm -74.99 (d, 0.7F, J=7.3Hz) I diastereomer -75.37 (d, 0.3F, 

J=7.1Hz) II diastereomer 

Rf: 0.7 (SiO2, EtOAc) 

mp: 100-102 °C  

IR (cm
-1 

): 3301, 1648, 1502, 1229, 1122 698 

MS (ESI ) m/z: 534.4 [M+Na
+
] 

Elemental Anal. Calculated for [C24H28F3N3O] C 56.36 H 5.52 N 8.22 found C 56.08 H 5.43 N 

8.01  

 

 

 

 

 

3-(�'-tert-Butoxycarbonyl-hydrazino)-propionic acid ethyl ester 323 

 

A solution of 3-Bromo-propionic acid ethyl ester (2 ml, 15.7 mmol, 1.0 eq.), DIPEA (2.6 ml, 15.7 

mmol, 1.0 eq.) and Boc-hydrazine (3.1 g, 3.1 g, 23.55 mmol, 1.5) in toluene was heated at 80 °C for 

4 days. The solvent was evaporated and the product purified  by column chromatography 

(cyclohexane:EtOAc 6:4) to give 323 as a slightly yellow oil (1.58 g, 6.80 mmol, 43%). 

 

1
H �MR (300 MHz, CDCl3) ) ) ) δ ppm 6.26 (bs, 1H), 4.08 (q, 2H, J=7.1Hz), 3.06 (t, 2H, J=6.6Hz), 

2.41 (t, 2H, J=6.6Hz), 1.39 (s, 9H), 1.19 (dt, 3H, J=1.5Hz, J=7.1Hz) 

13
C �MR (75 MHz, CDCl3) ) ) ) δ ppm 172.2, 156.7, 80.3, 60.3, 47.3, 33.0, 28.2, 14.0 

Rf: 0.7 (SiO2, EtOAc) 

IR (cm
-1 

): 2980, 1714, 1252, 1151, 1025 

MS (ESI �egative) m/z: 233 [M+H
+
] 

Elemental Anal. Calculated for [C10H20N2O4] C 51.71 H 8.68 N 12.06 found C 51.61 H 8.25 N 

11.58  
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324  

 

3-(�'-tert-Butoxycarbonyl-hydrazino)-propionic acid 324 

 

To a solution of 323 (2.00 g, 8.6 mmol, 1.0 eq.) in THF/MeOH (10 ml/10 ml) a 2N solution of 

NaOH (4.8 ml, 9.6 mmol, 1.1 eq.) was added. The reaction was stirred at RT over 3 hrs. The solvent 

was removed under vacuum (without distilling the water) and the remaining solution was brought at 

pH=5 by addition of 1N solution of HCl. The aqueous phase was extracted with EtOAc (3x 20 ml). 

The combined organic layers were dried with MgSO4, filtered and concentrated under vacuum to 

obtain the product 324 (1.64 g, 8.0 mmol, 93%) as a white solid which was used in the next step 

without further purification. 

 

1
H �MR (300 MHz, DMSO-d6) ) ) ) δ ppm 8.17 (m, 1H), 2.87 (t, 2H, J=7.0Hz, 2.30 (t, 2H, J=6.9Hz), 

1.39 (s, 9H) 

13
C �MR (75 MHz, DMSO-d6) ) ) ) δ ppm 173.2, 156.3, 78.2, 46.7, 32.5, 28.0 

Rf: 0.3 (SiO2, EtOAc) 

mp: 112-114 °C (crude) 

IR (cm
-1 

): 3350, 2981, 1679, 1437, 1156, 860  

MS (ESI �egative) m/z: 227 [M+Na
+
], 431.1 [2M+Na

+
] 

Elemental Anal. Calculated for [C8H16N2O4] C 47.05 7.90 N 13.72 found C 47.43 H 7.90 N 

13.33 
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325  

2-[3-(�'-tert-Butoxycarbonyl-hydrazino)-propionylamino]-3-phenyl-propionic acid methyl 

ester 325 

 

To a solution of 324 (819 0g, 4.0 mmol, 1.0 eq.) and HBTU (1.52 g, 4.0 mmol, 1.0 eq.) in DMF (10 

ml) pre-complexed for 30 min. were added in the order HOBt (650 mg, 4.8 mmol, 1.2 eq.), DIPEA 

(1.4 ml, 8.0 mmol, 2.0 eq.) and phenylalanine hydroxychloride (1.04 g, 4.8 mmol, 1.2 eq.). The 

reaction was performed under argon atmosphere a RT overnight. The solvent was evaporated over 

vacuum and the product dissolved in EtOAc (15 ml). The organic layer was washed a 10% aqueous 

solution of K2CO3 (2 x 15 ml) and brine (20 ml) and distilled water (2 x 15 ml), dried over Na2SO4, 

filtrated and evaporated in vacuo to give a slightly yellow solid which was purified by column 

chromatography (EtOAc) to give the 325 as a colourless solid (1.26 g, 3.3 mmol, 82%). 

 

 

 

1
H �MR (300 MHz, CDCl3) ) ) ) δ ppm 7.53 (s, 1H), 7.26-7.13 (m, 5H), 6.22 (s, 1H), 4.79 (dd, 1H, 

J=7.3Hz, J=13.2Hz), 3.64 (s, 3H), 3.13-2.92 (m, 4H), 2.24 (t, 2H, J=6.0Hz), 1.38 (s, 9H) 

13
C �MR (75 MHz, CDCl3) ) ) ) δ ppm 172.0, 171.1, 137.2, 129.2, 129.0, 128.1, 126.5, 78.3, 53.4, 

51.7, 47.4, 36.7, 33.8, 28.1  

Rf: 0.4 (SiO2, EtOAc) 

mp: 86-88 °C  

IR (cm
-1 

): 2935, 1728, 1529, 1156, 837  

MS (ESI �egative) m/z: 388.3 [M+Na
+
] 

Elemental Anal. Calculated for [C18H27N3O5] C 59.16 H 7.45 N 11.50 found C 59.20 H 7.20 N 

11.05 
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326  

2-{3-[�'-(6-Benzyloxycarbonylamino-2-tert-butoxycarbonylamino-hexanoyl)-hydrazino]-

propionylamino}-3-phenyl-propionic acid methyl ester 326 

 

A solution of 325 (914 mg, 2.41 mmol, 1.0 eq.) in DCM/TFA 3:1 (12 ml) was stirred for 2 h at RT. 

The solvent was evaporated in vacuo and the excess of trifluoroacetic acid was coevaporated with 

methanol. The resulting slightly yellow solid was dissolved in DMF (5 ml), then DIPEA (2.0 ml, 

12.0 mmol, 5.0 eq.)  and HOBt (390 mg, 2.89 mmol, 1.2 eq.) were added. Meanwhile a solution of  

NαBocNεZLysine (1.10 g, 2.89 mmol, 1.2 eq.) and HBTU (1.09 mg, 2.89 mmol, 1.2 eq.) in DMF 

(5 mL) was stirred for half an hour at RT. The solutions were then combined and the resulting 

mixture was stirred at RT overnight. The solvent was evaporated under vacuum and the resulting 

yellow oil was diluted with ACOEt (15 mL) and washed a 10% aqueous solution of K2CO3 (2 x 20 

mL) and brine (30 ml) and water (2 x 20 ml), dried over Na2SO4, filtrated and evaporated in vacuo 

to give a slightly yellow oil which was purified by column chromatography (EtOAc) to give 20 as a 

colourless solid (940 mg, 1.50 mmol, 62%). 

 

1
H �MR (400 MHz, CDCl3) ) ) ) δ ppm 8.12 (s, 1H), 7.37-7.23 (m, 8H), 7.16 (m, 2H), 5.20-5.04 (m, 

3H), 4.88 (dd, 1H, J=6.4Hz, J=13.9Hz), 3.99 (dd, 1H, J=7.8Hz, J=14.8Hz), 3.74 (d, 3H, J=1.9Hz), 

3.20-3.15 (m, 3H), 3.10-3.05 (m, 3H), 2.27 (t, 2H, J=5.6Hz), 1.79-1.74 (m, 1H), 1.66-1.60 (m, 1H), 

1.59-1.49 (m, 2H), 1.43 (s, 9H), 1.38-1.33 (m, 2H) 

13
C �MR (100 MHz, CDCl3) ) ) ) δ ppm 172.7, 171.5, 157.8, 156.3, 137.3, 136.6, 136.0, 128.8, 127.7, 

126.7, 80.4, 67.5, 66.7, 65.8, 52.9, 52.2, 47.8, 40.2, 38.2, 37.2, 34.4, 32.4, 30.3, 28.0, 23.0 

Rf: 0.2 (SiO2, EtOAc) 

mp: 106-108 °C (crude) 

IR (cm
-1 

): 3309, 1686, 1653, 1524, 1248, 1167  

MS (ESI �egative) m/z: 650.8 [M+Na
+
] 

Elemental Anal. Calculated for [C32H45N5O8] C 61.23 H 7.23 N 11.16 found C 61.03 H 7.14 N 

10.94 
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327  

2-{3-[�'-(2-Amino-6-benzyloxycarbonylamino-hexanoyl)-hydrazino]-propionylamino}-3-

phenyl-propionicacid methyl ester trifluoroacetic acid 327 

 

A solution of 326 (99 mg, 0.16 mmol, 1.0 eq) in DCM/TFA 3:1 (4 ml) was stirred for 2 h at RT. 

The solvent was evaporated in vacuum and the excess of TFA was coevaporated with methanol. 

The crude was then precipitate with diethyl ether and washed with cyclohexane (3 x 15 ml) to 

afford 327 (101 mg, 0.16 mmol, quantitative) as a colourless solid. 
 

1
H �MR (300 MHz,  MeOD) ) ) ) δ ppm 7.33-7.20 (m, 10H), 5.06 (s, 2H),  4.69 (ddd, 1H, J=2.2Hz, 

J=4.7Hz, J=5.9Hz), 3.74-3.68 (m, 1H), 3.69 (s, 3H), 3.19-3.11 (m, 3H), 3.01-2.94 (m, 3H), 2.35 (dt, 

2H, J=2.9Hz, J=6.5Hz), 1.86-1.80 (m, 2H), 1.57-1.51 (m, 2H), 1.42-1.37 (m, 2H) 

13
C �MR (75 MHz, MeOD) ) ) ) δ ppm 174.5, 174.1, 169.5, 159.4, 138.8, 138.5, 130.8, 130.6, 130.2, 

129.8, 129.4, 129.2, 128.3, 67.8, 55.7, 53.6, 53.1, 41.6, 38.7, 35.3, 32.5, 30.8, 23.5  

 Rf: 0.4 (SiO2, EtOAc/MeOH/NH4OH: 79/20/1) 

m.p.: 96-98 °C (crude) 

IR (cm
-1 

): 2929, 1668, 1531, 1199, 1129  

MS (ESI �egative) m/z: 528 [M+H
+
] 

Elemental Anal. Calculated for [C29H38F3N5O8+1.5 H2O] C 52.12 H 6.20 N 10.48 found C 

52.48 H 6.28 N 10.13 
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328  

2-[3-(�'-{6-Benzyloxycarbonylamino-2-[2-(4-phenoxy-phenyl)-acetylamino]-hexanoyl}-

hydrazino)-propionylamino]-3-phenyl-propionic acid methyl ester 328 

 

To a solution of 327 (491 mg, 0.76 mmol, 1.0 eq.) in DMF (4 ml), DIPEA (630 µl, 3.8 mmol, 5.0 

eq.)  and HOBt (125 mg, 0.92 mmol, 1.2 eq.) were added. Meanwhile a solution of  2-

phenoxyphenylacetic acid (210 mg, 0.92 mmol, 1.2 eq.) and HBTU (349 mg, 0.96 mmol, 1.2 eq.) in 

DMF (4 mL) was stirred for half an hour at RT. The solutions were combined and the resulting 

mixture was stirred at RT overnight. The solvent was evaporated under vacuum and the resulting 

yellow oil was diluted with ACOEt (20 mL) and washed with a 10% aqueous solution of K2CO3 (2 

x 15 mL), brine (20 ml) and distilled water (2 x 15 ml), dried over Na2SO4, filtrated and evaporated 

in vacuo to give a slightly yellow oil which was purified by column chromatography (EtOAc) to 

give 22 as a colourless solid (452 mg, 0.61 mmol, 81%). 

 

1
H �MR (300 MHz, DMSO-d6) ) ) ) δ ppm 9.40 (bs, 1H), 8.38 (bs, 1H), 8.20 (bs, 1H), 7.34-7.22 (m, 

15H), 7.15-6.85 (m, 6H),  5.00 (s, 2H), 4.94-4.89 (m, 1H), 4.49-4.44 (m, 1H), 4.15-4.09 (m, 1H), 

3.58 (s, 3H), 3.47 (bs, 2H), 3.00-2.93 (m, 4H), 2.76-2.68 (m, 2H), 2.20-2.16 (m, 2H), 1.57-1.53 (m, 

2H), 1.41-1.36 (m, 2H), 1.28-1.21 (m, 2H)  

13
C �MR (75 MHz, DMSO-d6) ) ) ) δ ppm 165.9, 165.8, 158.3, 146.6, 139.3, 139.3, 139.0, 138.4, 

137.7, 137.5, 137.5, 137.1, 135.9, 132.7, 128.6, 127.9, 113.0, 87.4, 86.6, 74.5, 63.4, 46.1, 32.2, 

31.9, 25.6 

Rf: 0.1 (SiO2, EtOAc) 

mp: decomposition at 70-80 °C (crude) 

IR (cm
-1 

): 3264, 1645, 1529, 1210 

MS (ESI �egative) m/z: 760 [M+Na
+
], 776.5 [M+K

+
] 

Elemental Anal. Calculated for [C41H47N5O8+0.75 H2O] C 65.58 H 6.52 N 9.53 found C 65.95 

H 6.40 N 8.87  
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SUMMARY 

In the first part of my PhD, which was done in the group of the organic chemistry of the professor 

Reiser in Regensburg, the δ-constrained sugar-like amino acid 256 were synthesised. To investigate 

its ability to induce a secondary structure if inserted in a sequence of α-δ-amino acid, the 

pentapeptide 261 and the heptapeptide 263 were also synthesised (Figure 133). Conformational 

studies and molecular modelling, which were performed in cooperation with Karine Guitot and 

Lucia Formicola) of both the penta- and hepta-peptide 261 and 263 showed the presence of a well 

ordered structure, but just on the base of the NMR spectroscopy data, it was not possible to 

elucidate the exact structure of the two compounds. Moreover, molecular modelling studies 

performed using as constraints the contacts obtained by NOESY and ROESY data, indicate for both 

the compounds the presence of an helix structure, which can not unfortunately completely described 

in the base of the data in our possession.  
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Figure 133 

The lactone 249 was also used for the synthesis of some PNAs precursor (Figure 134). After the 

introduction and the successive protection of the nitrogen moiety to give the compound 264, the 

lactone function was reduced to lactol and the acetylated to give the compound 265. This key 

compound could be coupled with a freshly prepared persylilated thymine in the presence of a Lewis 

acid to give 266 as a mixture of diastereomers. After the PMB-removal by CAN it was also possible 

to separate the two diastereomers 267 and 268 and identify the absolute configuration of the 

anomeric carbon by means of the analysis of the ROESY spectra of both the compounds. 
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Figure 134 

In the same conditions, it was also possible to perform the coupling with the persylilated adenine, 

but the successive Cbz-protection of the free amino group of the adenine did not give the desired 

compound 271 both with Cbz-Cl and Rapoport’s reagent (figure 135).  
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To solve this problem, it was so decide to perform the coupling directly with the Cbz-protected 

adenine. The Cbz-protected adenine resulted not enough reactive, so it was decided to activated in 

situ the compound 265 by bromination with trimethylsilyl bromide. The resulting intermediate 272 

was not isolated and was directly reacted with the Cbz-protected adenine to afford the desired 

compound 271 in a good yield (Figure 136).  
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The second part of my PhD have been done at the University of Paris XI, in the Laboratoire de 

Molécules Fluorées et Chimie Médicinale, BioCIS, UMR-CNRS 8076. In the previous two years, in 

our lab, the challenge of the design and the synthesis of novel non covalent inhibitors of the 20S 

proteasome has been tackled by Lucia Formicola. Her efforts brought to the synthesis of a 

fluorinated pseudo amino acid (295) which, opportunely substituted, allows to inhibit the different 

active sites of the proteasome. In particular, the lead inhibitor 296, with an IC50 in the order of µM 

for CT-L and caspase active sites, was synthesised (figure 137).   
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My project was try to elucidate the mechanism of the interaction between the compound 296 and 

the proteasome and to synthesise new more active compounds. For that purpose, the following steps 

were followed.  

 

• Identification by means of literature and crystallography studies of the mechanism of 

interaction between the known inhibitors and the proteasome. This allowed to identify the 

essential features (occupation of hydrophobic pockets, hydrogen bonds etc.) necessary for 

the inhibition of the proteasome. 

 

• Docking of known inhibitors to compare our results with the crystallised structures or with 

the reported molecular modelling studies. This allowed to define the docking parameters 

and to validate the model. 

 

• Docking of the lead molecule (296) to formulate a first hypothesis of interaction. 

 

• Systematic modification of the lead molecule and subsequently docking of the suggested 

molecules to address the synthetic work. 

 

• Use of the biological evaluation results of the synthesised molecules to refine the docking 

parameters and for a well understanding of the binding interaction between molecules and  

proteasome.  
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The methodology exposed above gave as result the synthesis of a series of molecules (figure 138) 

which showed an inhibitory activity of the 20S proteasome. 
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Figure 138 

 

In conclusion, we demonstrated here that our methodology can be an useful tool to support and to 

drive the synthesis of new candidates for the inhibition of the 20S proteasome. Moreover, the 

docking can be an important help for a better understanding of the binding mechanism between 

small molecules and 20S proteasome. In particular, we showed that it is possible to explain the 

differences in the activity between sets of similar molecules which bind the receptor in a similar 

manner (see the docking results exposed in the paragraph 3.7). The limits in our methodology are 

particularly relied to the high number of torsions of the inhibitor candidates, which does not allow 

to obtain a good clustering, making more complicated the analysis of the results. Moreover, the 

structural diversity of the molecules synthesised joined with their high flexibility, makes plausible 

that it does not exist just one mechanism of binding interaction common to all the molecules, 

making more complicated the establishment of a structure-activity relationship.  
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A��EX I Docking results 

CASPASE In this active site it is not present the D114 

�ame clust 

rank 

�° 

conf 

deltaG dist 

Thr1 

T21 G23 G47 A49 D114 Others 

HB 

S1 S3 

315 2 1 -6.76 4.0 n n y n X Y 1 4 
315R 1 1 -6.29 HB n n y n X T22, 

S129 
4 2 

 3 1 -5.62 3.9 n n n y X S129 4 1 
311 1 1 -6.18 HB y n y n X T22 1 4 
 2 3 -5.31 HB y y n n X  4 1 
311R 2 1 -6.24 HB y n y n X  1 4 
 3 1 -5.68 HB y n y n X R19, 

T22 
1 4 

297 1 1 -8.37 6.0 n n n n X H114 X 2 
297R Not found conformations corresponding to the selected criteria 
296 1 4 -4.94 4.8 y n n n X D51 4 1 
296R 1 1 -5.43 HB n n n y X D51 4 1 
298 2 1 -6.07 5.0 y y n n X D51 

Q91 
N94 

1 4 

298R 3 1 -6.21 3.5 n n n y X T22 
D51 

1 4 

299 2 1 -6.53 3.6 n n n n X A50 1 4 
299R 2 2 -6.05 3.3 y n n n X T22, 

A50 
1 4 

300 Not found conformations corresponding to the selected criteria 
300R Not found conformations corresponding to the selected criteria 
301 Not found conformations corresponding to the selected criteria 
301R Not found conformations corresponding to the selected criteria 
302 Not found conformations corresponding to the selected criteria 
302R Not found conformations corresponding to the selected criteria 
318 1 1 -5.96 2.2 y n n y X S118 

H114 
2 4 

318R 1 1 -6.33 3.1 y n n n X R45 
H114 
D120 

1 2 

317 2 4 -5.97 3.5 n y n y X H114 
S118 
A50 

4 1 

317R 1 5 -5.92 3.6 y n n n X S48 
A50 
T98 

4 1 

312 Not found conformations corresponding to the selected criteria 
312R 3 1 -5.52 HB y n n n X S118 

V30 
2 1 
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316 4 1 -5.23 3.0 y y n y X D120 1 2 
316R 1 1 -5.89 4.1 y n n n X A50 

D120 
1 2 

 
 
CHYMOTRYPSI�-LIKE  

�ame clust 

rank 

�° 

conf 

deltaG dist 

Thr1 

T21 G23 G47 A49 D114 Others 

HB 

S1 S3 

315 1 1 -7.85 3.4 y n n y n  CF3  1 
315R 2 2 -6.08 4.0 n n n y y  1 2 
311 1 1 -6.30 2.9 y n y y y  1 4 
311R 2 1 -6.08 HB y n y n y S168 1 4 
297 1 1 -8.21 3.8 y y n y y  CF3 1 m 
297R 1 1 -8.70 6.0 y n y n y  4 2 
296 1 1 -9.20 3.1 y n y y y S118 1 4 
296R 2 1 -6.30 4.8 y n n n y S118 1 4 
298 2 1 -6.73 3.4 y n y n y  1 4 
298R 1 1 -7.79 2.9 y n n y y  1 2 
299 1 1 -7.78 3.0 n n n y y  1 2 
299R 1 1 -7.60 HB y n y y y  4 1 
301 Not found conformations corresponding to the selected criteria 
301R 1 1 -8.51 2.6 y n y n n  4 1 
300 Not found conformations corresponding to the selected criteria 
300R Not found conformations corresponding to the selected criteria 
302 Not found conformations corresponding to the selected criteria 
302R 2 1 -8.13 3.5 n n n n y  1 2 
318 1 1 -6.00 HB y n y y y S96 4 2 
318R 3 1 -6.33 HB y n y y n S112 2 4 
317 1 1 -7.54 HB y n n y y Q53 4 1 
317R 1 2 -7.77 HB y n n y y D50 4 1 
312 1 2 -7.16 2.8 y n y y y  4 2 
312R 1 3 -8.22 3.7 y y n y y  4 2 
316 1 1 -6.37 3.3 n n n n y A50 1 4 
316R 3 2 5.39 3.5 n y n n y  4 1 
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TRIPSI�-LIKE 

�ame clust 

rank 

�° 

conf 

deltaG dist 

Thr1 

T21 G23 G47 A49 D114 Others 

HB 

S1 S3 

315 1 1 -6.25 <2.5 n y n n n  Cbz X 
315R 1 1 -6.08 5.3 y n n y n  1 X 
311 1 1 -6.21 <2.5 y n n y n  4 1-2 
311R 1 1 -5.89 3.0 y y y n n Q22 1 4 
297 1 1 -5.89 4.9 y y n n n  Cbz CF3  
297R 1 1 -7.44 <2.5 y n y n y  CF3 Cbz 
296 1 1 -6.01 3.0 y n n n n G22 

D120 
1 2 

296R 1 2 -7.24 2.9 y n n n y D120 1 2 
 2 3 -6.64 3.1 y n n y y D120 1 2 
298 1 3 -8.96 3.3 y n n y y D120 1 2 
298R 1 1 -9.60 5.0 y n n n y D120 1 2 
 2 2 -9.02 5.3 y n n n n R91 

D120 
1 2 

 3 4 -9.01 3.0 y n n n y D120 1 2 
299 1 2 -6.85 2.8 n n n y n T48 1 X 
299R 1 1  3.1 n n n y n T48 

R91 
1 X 

300 Not found conformations corresponding to the selected criteria 
300R Not found conformations corresponding to the selected criteria 
301 Not found conformations corresponding to the selected criteria 
301R Not found conformations corresponding to the selected criteria 
302 Not found conformations corresponding to the selected criteria 
302R Not found conformations corresponding to the selected criteria 
318 1 1 -6.46 3.2 y n n y y I119 1 2 
318R 1 2 -6.50 2.9 y n y y y D120 1 2 
317 1 2 -6.90 3.8 y n n y y  4 1 
317R Not found conformations corresponding to the selected criteria 
312 1 1 -6.72 3.0 y n n y y C118 4 1 
312R 1 1 -9.09 <2.5 n n n n y S20 4 1 
316 1 1 -7.24 <2.5 y n n n y T48 

D120 
1 2 

316R 1 1 -6.73 2.8 y n n n y R91 
T48 

1 2 

 
Clust. rank = cluster ranking of the conformation obtained by the Autodock score function 

N° conf = number of conformation in the cluster (with an RMSD < 2Å) 

Delta G = energy of binding calculated by Autodock 

Dist Thr1 = distance between the ligand and the threonine 1, HB if it is detected an hydrogen bond 

T21, G23, G47, A49, D114 = y: it is present an hydrogen bond between the ligand and this residue 

N = no hydrogen bonds detected 
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Others HB = presence of additionally hydrogen bonds  

S1 = group of the molecule which fills the S1 pocket (Vide supra, Paragraph 3.6.3, Fig 116) 

S3 = group of the molecule which fills the S3 pocket (Vide supra, Paragraph 3.6.3, Fig 116) 
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A��EX II �MR SPECTRA 

(1R,5R,6R)-(+)-2-Oxabicyclo[3.1.0]hex-3-ene-3,6-dicarboxylic-6-ethylester-3-methyl ester (237) in 

CDCl3 
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(1R,2R,3R)-(+)-Oxalic acid 2-ethoxycarbonyl 3-formyl-cyclopropyl ester methyl ester 242 

 



 214 

 

 

 

 

(1R, 1’R/R,2R, 3R)-Oxalicacid-hydroxy-but-3’-enyl-3-ethoxycarbonyl-cyclopropylester 

methylester 244 

 



 215 

 

2R/S,3R)-2-Allyl-5-oxotetrahydrofuran-3-carbaldehyde 249 



 216 

 

 

 

 



 217 

(2R/S, 3R, 4R, 5R)-5-Allyl-4-formyl-2-hydroxy-tetrahydro-furan-2,3-dicarboxylic acid 3-ethyl 

ester 2-methyl ester 251 

 

 

 



 218 

(4R,5R)-5-Allyl-4-[(4-methoxy-benzylamino)-methyl]-dihydro-furan-2-one 252 

 

 

 

 

 

 



 219 

4R, 1’R)-4-(1-Hydroxy-but-3-enyl)-1-(4-methoxy-benzyl)-pyrrolidin-2-one 253 

 

 

 



 220 

(2R,3R)-(2-Allyl-5-oxo-tetrahydro-furan-3-ylmethyl)-(4-methoxy-benzyl)-carbamic acid tert-

butyl ester 254 

 

 

 



 221 

(2R,3R)-(2-Allyl-5-oxo-tetrahydro-furan-3-ylmethyl)-carbamic acid tert-butyl ester 255 

 

 

 



 222 

(2R,3R)-[3-(tert-Butoxycarbonylamino-methyl)-5-oxo-tetrahydro-furan-2-yl]-acetic acid 256 

or (+)-GBA 

 

 

 

 



 223 

Boc-(+)-GBA-L-Phe-COOBn 258 

 

 



 224 

Boc-(L)-Phe-(+)-GBA-(L)-Phe-COOBn 259 

 

 



 225 

Boc-(+)-GBA-(L)-Phe-(+)-GBA-(L)-Phe-COOBn 260 

 

 



 226 

Boc-(L)-Phe-(+)-GBA-(L)-Phe-(+)-GBA-(L)-Phe-COOBn 261 

 

 

 

 



 227 

Boc-(+)-GBA-(L)-Phe-(+)-GBA-(L)-Phe-(L)-Phe-(+)-GBA -COOBn 262 

 

 

 

 



 228 

 

 

Boc-(L)-Phe-(+)-GBA-(L)-Phe-(+)-GBA-(L)-Phe-(+)-GBA-(L)-Phe-(+)-COOBn 263 

 

 

 

 

 



 229 

 

(2R,3R)-(2-Allyl-5-oxo-tetrahydro-furan-3-ylmethyl)-(4-methoxy-benzyl)-carbamic acid 9H-

fluoren-9-ylmethyl ester 264 

 

 



 230 

(4R,5R)- Acetic acid 5-allyl-4-v-tetrahydro-furan-2-yl ester 265 

 

 



 231 

(4R,5R)-[2-Allyl-5-(5-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-tetrahydro-furan-3-

ylmethyl]-   (4-methoxy-benzyl)-carbamic acid 9H-fluoren-9-ylmethyl ester 266 

 

 

 

 



 232 

(2R, 4R, 5R)-[2-Allyl-5-(5-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-tetrahydro-

furan-3-ylmethyl]-carbamic acid 9H-fluoren-9-ylmethyl ester 267 

 

 

 

 

 

 

 

 

 

 

 



 233 

(2S, 4R, 5R)-[2-Allyl-5-(5-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-tetrahydro-furan-

3-ylmethyl]-carbamic acid 9H-fluoren-9-ylmethyl ester 268 

 

 

 

 

 

 

 

 

 

 



 234 

(2R/S,3R,5R)-[2-Allyl-5-(6-amino-purin-9-yl)-tetrahydro-furan-3-ylmethyl]-(4-methoxy-

benzyl)-carbamic acid 9H-fluoren-9-ylmethyl ester 270 

 

 

 

 

 

 

 

 

 



 235 

[9-(5-Allyl-4-{[(9H-fluoren-9-ylmethoxycarbonyl)-(4-methoxy-benzyl)-amino]-methyl}-

tetrahydro-furan-2-yl)-9H-purin-6-yl]-carbamic acid benzyl ester 271 

 

 

 

 

 

 

 

 

 

 



 236 

�'-{2,2,2-Trifluoro-1-[(3,4,5-trimethoxy-benzylcarbamoyl)-methyl]-ethyl}-

hydrazinecarboxylic acid tert-butyl ester 307 

 

 

 



 237 

[5-tert-Butoxycarbonylamino-5-(�'-{2,2,2-trifluoro-1-[(3,4,5-trimethoxy-benzylcarbamoyl)-

methyl]-ethyl}-hydrazinocarbonyl)-pentyl]-carbamic acid benzyl ester 309 

 

 

 

 

 



 238 

 

[5-Amino-5-(�'-{2,2,2-trifluoro-1-[(3,4,5-trimethoxy-benzylcarbamoyl)-methyl]-ethyl}-

hydrazinocarbonyl)-pentyl]-carbamic acid benzyl ester trifluoroacetic acid salt 312 

 

 

 

 

 

 

 

 

 



 239 

 

[5-[2-(2,5-Dimethoxy-phenyl)-acetylamino]-5-(�'-{2,2,2-trifluoro-1-[(3,4,5-trimethoxy-

benzylcarbamoyl)-methyl]-ethyl}-hydrazinocarbonyl)-pentyl]-carbamic acid benzyl ester 313 

 

 

 

 

 

 

 

 



 240 

 

[2-Carbamoyl-1-(�'-{2,2,2-trifluoro-1-[(3,4,5-trimethoxy-benzylcarbamoyl)-methyl]-ethyl}-

hydrazinocarbonyl)-ethyl]-carbamic acid tert-butyl ester 310 

 

 

 

 

 

 

 

 



 241 

 

2-[3-(�'-{6-Benzyloxycarbonylamino-2-[2-(2,5-dimethoxy-phenyl)-acetylamino]-hexanoyl}-

hydrazino)-4,4,4-trifluoro-butyrylamino]-3-phenyl-propionic acid methyl ester 315 

 

 

 

 

 

 

 



 242 

2-[3-(�'-{6-Amino-2-[2-(2,5-dimethoxy-phenyl)-acetylamino]-hexanoyl}-hydrazino)-4,4,4-

trifluoro-butyrylamino]-3-phenyl-propionic acid methyl ester trifluoro acetic acid salt 316 

 

 

 

 

 

 

 



 243 

 

2-{3-[�'-(2-tert-Butoxycarbonylamino-3-carbamoyl-propionyl)-hydrazino]-4,4,4-trifluoro-

butyrylamino}-3-phenyl-propionic acid methyl ester 311 

 

 

 

 

 

 

 

 

 



 244 

2-[3-(�'-{3-Carbamoyl-2-[2-(2,5-dimethoxy-phenyl)-acetylamino]-propionyl}-hydrazino)-

4,4,4-trifluoro-butyrylamino]-3-phenyl-propionic acid methyl ester 317 

 

 

 

 

 

 

 

 

 



 245 

2-(3-{�'-[2-(2,5-Dimethoxy-phenyl)-acetyl]-hydrazino}-4,4,4-trifluoro-butyrylamino)-3-

phenyl-propionic acid methyl ester 318 

 

 

 

 

 

 

 

 

 

 



 246 

3-(�'-tert-Butoxycarbonyl-hydrazino)-propionic acid ethyl ester 323 

 

 

 

 

 



 247 

3-(�'-tert-Butoxycarbonyl-hydrazino)-propionic acid 324 

 

 

 

 



 248 

 

2-[3-(�'-tert-Butoxycarbonyl-hydrazino)-propionylamino]-3-phenyl-propionic acid methyl 

ester 325 

 

 

 

 

 



 249 

2-{3-[�'-(6-Benzyloxycarbonylamino-2-tert-butoxycarbonylamino-hexanoyl)-hydrazino]-

propionylamino}-3-phenyl-propionic acid methyl ester 326 

 

 

 



 250 

 

 

2-{3-[�'-(2-Amino-6-benzyloxycarbonylamino-hexanoyl)-hydrazino]-propionylamino}-3-

phenyl-propionicacid methyl ester trifluoroacetic acid 327 

 

 

 

 

 

 

 



 251 

 

 

2-[3-(�'-{6-Benzyloxycarbonylamino-2-[2-(4-phenoxy-phenyl)-acetylamino]-hexanoyl}-

hydrazino)-propionylamino]-3-phenyl-propionic acid methyl ester 328 

 



 252 

 


