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The low-lying quantum states of three anyons confined in a harmonic-oscillator well are obtained nu-
merically. The interpolation of these states between the limits of noninteracting bosons to noninteracting
fermions in the well is established. Particular attention is paid to the transformation of the fermionic
ground state to an excited Bosonic state, and its overlap with Laughlin-Wu-type correlated states.
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In two space dimensions, particles may obey fractional
statistics and have multiple-valued wave functions [1-4].
The quantum mechanics of such particles may be studied
by considering them to be bosons (or fermions) having
single-valued wave functions, but interacting with long-
range Aharonov-Bohm-type vector potentials. Whereas
many-anyon systems have been studied in both the
single-particle [5] as well as collective hydrodynamic [6]
approaches, not much attention has been paid to solving
the few-anyon problem. The quantum spectrum of two
anyons in a harmonic oscillator [1] or on a circle [7] was
solved early, and used to evaluate the second virial
coefficient of an anyon gas [7,8]. The quantum problem
of three electrons in a strong magnetic field, occupying
the same Landau level, was examined in detail by Laugh-
lin [9], which led him to propose the Jastrow-type corre-
lated variational many-body wave function that is so suc-
cessful in the explanation of the fractional quantum Hall
effect [10]. Such a Laughlin state was shown [11] to be
the exact nondegenerate ground state of a many-particle
system in a uniform magnetic field, interacting with a
repulsive interaction of vanishing range. Numerical ei-
genvalues of such few-particle systems with various filling
factors were studied in this connection. It should also be
noted that numerical studies of few-semion systems have
been made on a square lattice with periodic boundary
conditions in one direction [12] and on a spherical surface
[13] (to eliminate edge effects) with a view to study
semion pairing in the ground state.

The problem of a few-anyon system in the absence of
an external magnetic field and confined in a potential well
is rather different, however, and is worth studying to ex-
amine the interpolation of these states between the limits
of Bose and Fermi results. The three-anyon problem in a
harmonic potential was first studied in this connection by
Wu [14]. He eliminated the long-range vector potential
by a gauge transformation, and proposed a multiple-
valued correlated state of Laughlin type that interpolated
linearly between the Bose and Fermi limits. The bosonic
ground state transmutes in this manner to an excited fer-
mionic state carrying three units (in A) of angular
momentum. The behavior of the fermionic ground state,
together with a whole class of other excited states, is
more complicated, however, and throws some light on the
quantum mechanics of many-anyon systems. The pri-
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mary aim of this paper is to study the behavior of these
low-lying states as a function of the strength of the sta-
tistical interaction. Such a study has also been made by
Sporre, Verbaarschot, and Zahed [15] using a different
method. Khare and McCabe [16] have recently studied
the behavior of the fermionic ground state perturbatively
in this connection. At the end, we shall give a simple
physical interpretation of our numerical work.

For this purpose, we express the three-anyon Hamil-
tonian in Jacobi coordinates and eliminate the center-of-
mass part. A general method of constructing a complete-
ly symmetric (or antisymmetric) basis is then briefly out-
lined, and the Hamiltonian diagonalized in such a basis.
The Lagrangian for the three-anyon problem is given by
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where r; denote the particle coordinates. The second
term is the statistical interaction whose strength is given
by a (in the range 0 <a=<1) and 6;; =tan ~'[(y; —y;)/
(x; —x;)]. The corresponding Hamiltonian is given by
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where I;; =(r; —r;) x (p; —p;).

After eliminating the center of mass, one is left with
two internal coordinates which may be chosen to be
p=01/v2)(r;—r;) and A=(1//6)(r;+r,—2r;3). Since
the Hamiltonian is symmetric, while computing the ma-
trix elements of H with a symmetric (or antisymmetric)
set of states, it is sufficient to consider only one of the
three terms involving the statistical interaction multiplied
by 3. The Hamiltonian in relative coordinates, after
eliminating the center of mass, is
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We now briefly discuss the method of constructing the
basis. We choose as our basis the eigenstates of the
harmonic-oscillator Hamiltonian with three particles.
We first note that all such states may be expressed as
finite inhomogeneous polynomials in p and A apart from
the Gaussian factor expl— + mw(p?+12)], which is
completely symmetric under permutation of the ry’s.
Thus the symmetry of the polynomial completely deter-
mines the symmetry of the state. Below we indicate our
method of constructing homogeneous polynomials (in p
and A) of definite permutation symmetry.

If P;; denotes a permutation of i,; particle coordinates,

NiL, NiLy,  N>L,

od =g, 19,2+ 91" 101
¢;V L_¢N L|¢N2L2+¢p sz N 1Ly

(symmetric) ,

then we have
Poptr=—p+, Pph+=+Ar+,
Pupr=3(p++V3r1), (4)
Pyh+ =1+ (\/—p+ —A+),
where p+ =p, *+ip, and similarly for A+. Notice that
p+ and A+ are polynomials of degree 1 w1th angular
momentum /, and /== 1. In general, if ¢p "1 denotes a
polynomial of degree N, and angular momentum L,
which transforms like p under permutations and ¢£sz2 a
polynomial of degree N, and angular momentum L,
which transforms like A, then we have the following
classification of polynomials constructed out of ¢, and ¢;:

(mixed symmetry p type) ,

(5)

oL =g) gl — g VilipVole (mixed symmetry A type)
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where N=N|+N,, L =L,+L,. Equations (5) provide a
recursive algorithm for constructing all possible states of
a given N and L starting from the elementary ¢’s,
¢p ' =p+ and gl F'=24.

It is easy to see that there are no symmetric or an-
tisymmetric polynomials for N =1, while the first an-
tisymmetric polynomial occurs at N =2, ¢3%=psA_
—p-A+. This indeed corresponds to the fermionic
ground state which occurs at energy 4A o for a =0 in Eq.
(3). We should, however, caution that even though Eq.
(5) provides a global algorithm to construct polynomials
of all possible symmetries under the permutation of three
particles, not all the polynomials for a given N,L and
symmetry constructed from /V; and NV, are distinct. Con-
struction of such irreducible sets will be discussed else-
where. However, for the L =0 symmetric states, the fol-
lowing combination completely exhausts all polynomials
(see, for example, Ref. [17]):

0 0=5254Sk, N=2i+4j+6k, (6)
where
Sy=p2+A2, S4=Qp-1)2+(p?—212)2,

Se=02 =2 (2 —12)2—-32p-2)?]

are each symmetric under permutations. Corresponding-
ly the antisymmetric L =0 polynomials may be written as
oY 0=0%%%& 20 Unlike ¢§V‘°, this does not exhaust all
the antisymmetric polynomials, and the lowest of these at
N =6 (with energy 8 A w) has the structure

05°=0p- M) BHI—AD1—12(p-2)13.

A new class of antisymmetric states may then be generat-
ed starting at 84w, denoted by ¢5°=¢5%% %% In our
calculations in this Letter, these states were not included.

Instead of constructing the eigenstates of the oscillator
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Hamiltonian, we propose to find the eigenvalues of H ) in
the nonorthogonal basis provided by the set of all sym-
metric (antisymmetric) polynomials of a given L. How-
ever, since the bosonic states do not necessarily vanish at
the origin, the centrifugal terms in H, cause the energy
to diverge. Following Wu, we therefore introduce the
Jastrow-type pair correlations and define

WS A (P,X) = H Irl —rjl ¢N i —me(p2+A2)/2 @)

where a is the strength of the anyonic interaction. The
correlation factor is symmetric and does not alter the
symmetry of the state. For a#0, this factor introduces
zeros in the wave function necessary to avoid divergence.
In addition, we find that the overlap defined as OV
=(y¥ LI|H1<je'6i’|l/I,’4V"‘> is appreciable only when N’ is
close to IV, at least for the low-lying states.

It is interesting to note that in some special cases
O™V =1, indicating a one-to-one correspondence between
some states. For example, the L =0 bosonic ground state
has structure IT; <;|r; —r;|% “molp?+AN/2 ith energy
2hw at a=0. At a=1, the corresponding anyon wave
function is given by

I eie”|ri —rjle —mw(p?+12)/2 =033 —mo(p?+1?)/2 ,

i<y
which is in fact the lowest fermionic oscillator eigenstate
with L =3, N =3, and energy Shw. Indeed, as we shall
see later, in all such cases where there exists a one-to-one
correspondence the interpolation in energy is linear.
These are precisely the states singled out by Wu. The
N =2 fermionic ground state, however, has overlaps oV
with bosonic L =3 states with N =3 (65%) and N =5
(35%). The interpolation in this and similar cases is non-
linear.

The result of diagonalizing the anyonic Hamiltonian
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FIG. 1. The low-lying energy levels of the Hamiltonian [Eq.
(3)] are displayed as a function of a. The angular momenta of
the states are labeled at the ends. At the left end, @ =0 corre-
sponds to the relative energy of three noninteracting bosons in
an oscillator while at the right extreme a=1 is for three nonin-
teracting fermions in the oscillator. The dashed curves indicate
that the diagonalization is done from the Fermi end to a= T
and the extrapolation to the bosonic end is schematic. All states
up to Shw are shown. At 6hw, there are only three states at
the fermionic end (all shown) and six at the bosonic end (only
one shown). The number of states increases rapidly from 7h .

given by Eq. (3) for various values of a (in the range
0<a<1) is displayed in Fig. 1. For economy of the
basis, this range is spanned by starting from the Bose as
well as Fermi ends separately and matching the eigenval-
ues at @ =%, especially when the variation is nonlinear.
Typically, for a given L, we took about ten states in a
basis. Adding a few more changed the lowest eigenvalue
only within 1%. This does not guarantee, however, that
the energy would not be lowered more if the basis were
increased by many more states. A more exhaustive study
of convergence will be presented elsewhere [18], where a
more detailed exposition of the formalism will also be
given.

In Fig. 1, the interpolation pattern of states with
|IL] =<3 and only up to 6hw are shown. It will be seen
from the spectrum that the time-reversed states (1, —1)
are split in energy by the anyonic interaction. In our con-
vention, L increases by 34 in going from the bosonic to
the fermionic end. Those states that interpolate linearly
change in energy by 34w in this range, while the non-
linear ones change in energy only by Aw. These non-
linearly interpolating states suffer large mixing of the
basis states for nonzero a, while the linear ones remain

almost pure. The large number of level crossings results
in the bunching of quantum states for a=1% and % and
also possibly at § .

Finally, a simple physical interpretation of the linear
and nonlinear interpolating states in Fig. 1 may be given.
Consider the bosonic ground state at a =0 where all three
particles are in the 1s state. (In Fig. 1, the energy along
the y axis is shown after the center-of-mass energy of
lhw is subtracted off.) This state goes over to a nonin-
teracting fermionic state with relative energy SAw, with
one particle each in ls, 1p, and 1d states, with total L =3.
There is only one such state with L =3 at ShAw. This
one-to-one correspondence yields linear behavior in inter-
polation. On the other hand, the fermionic ground state
with L =0 (at E =4hw) has one particle in 1s and two in
1p. This state interpolates on the bosonic side to a state
with £ =5h® and L = — 3 that is a linear combination of
the configurations [1s,1p,1d], [(1p)3], and [(1s)2,1f].
This more complicated structure seems to lead to the
nonlinear behavior in Fig. 1, and the anyonic energy may
only be found numerically for such states.
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