Analyse von Asthma-Kandidatengenen in der humanen chromosomalen Region 12q

DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (DR. RER. NAT.)
DER NATURWISSENSCHAFTLICHEN FAKULTÄT III
- BIOLOGIE UND VORKLINISCHE MEDIZIN -
DER UNIVERSITÄT REGENSBURG

vorgelegt von
Gabriele Dütsch
aus München
September 2008

Tag der mündlichen Prüfung: 02. Februar 2009

Die Arbeit wurde angeleitet von PD Dr. Thomas Illig, Institut für Epidemiologie, Helmholtz-Zentrum München.

Prüfungsausschuss:

Vorsitz: Prof. Dr. Charlotte Förster, Universität Regensburg

1. Prüfer: Prof. Dr. Stephan Schneuwly, Universität Regensburg

2. Prüfer: PD Dr. Thomas Illig, Helmholtz-Zentrum München

3. Prüfer: Prof. Dr. Gernot Längst, Universität Regensburg
Inhaltsverzeichnis

INHALTSVERZEICHNIS...1

ZUSAMMENFASSUNG ...5

ABSTRACT ..7

1. EINLEITUNG ..9

1.1 Asthma bronchiale – Epidemie des 21. Jahrhunderts ...9

1.2 Definition von Asthma bronchiale ...10

1.3 Klassifizierung von Asthma bronchiale ..11

1.3.1 Ätiologie ..11

1.3.2 Klinische Schweregrade ...12

1.4 Mechanismen des allergischen (atopischen) Asthma bronchiale ...14

1.4.1 Sensibilisierung ..14

1.4.2 Frühe Phase der allergischen Reaktion (Sofortreaktion) ..15

1.4.3 Späte Phase der allergischen Reaktion ..16

1.4.4 Das Th1/Th2 - Gleichgewicht ...19

1.5 Genetik von Asthma bronchiale ...21

1.5.1 Asthma bronchiale als komplexe (multifaktorielle) Erkrankung ..21

1.5.2 Methoden zur Identifizierung prädisponierender Gene für Asthma24

1.5.2.1 Kandidatengenanalyse ...24

1.5.2.2 Genomweite Suchen ..25

1.5.2.2.1 Genomweite Kopplungsstudien ...25

1.5.2.2.2 Genomweite Assoziationsstudien ..27

1.5.3 Die chromosomale Kopplungsregion 12q ..28

1.5.4 Asthma-Kandidatengene in der chromosomalen Region 12q13-q2431

1.5.4.1 NOS1 als Asthma-Kandidatengen ..31

1.5.4.2 STAT6 als Asthma-Kandidatengen ..32

1.5.4.3 NAB2 als Asthma-Kandidatengen ...33

1.5.4.4 IGF1 als Asthma-Kandidatengen ...34

1.5.4.5 LTA4H als Asthma-Kandidatengen ...35

1.6 Aufgabenstellung und Ziel der Arbeit ...37

2. PROBANDEN, MATERIAL UND METHODEN ..38

2.1 Probanden ..38

2.1.1 ECRHS-Studie ...38

2.1.2 KORA S4-Studie ...38

2.1.3 Asthma-Familienstudie ..39

2.1.3.1 Studiendesign und Auswahlkriterien ...39

2.1.3.2 Phänotypisierung der Studienteilnehmer ..40

2.2 Material ...41

2.2.1 Geräte ...41

2.2.2 Oligonukleotide (Primer) ..42

2.2.3 Chemikalien und Verbrauchsmaterialien ..42

2.2.4 Reagentien, Lösungen und Puffer ..42

2.2.4.1 Reagentien, Lösungen und Puffer für die PCR ..42

2.2.4.2 Reagentien, Lösungen und Puffer für die Sequenzierung bzw. Fragmentanalyse43

2.2.4.3 Reagentien, Lösungen und Puffer für MALDI-TOF Massenspektrometrie43
3. ERGEBNISSE ... 70

3.1 Analyse des humanen NOS1-Gens ... 70

3.1.1 Validierung der NOS1-SNPs in der Asthma-Familienstudie ... 70

3.1.2 Genotypisierung der NOS1-SNPs in der Asthma-Familienstudie 71
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>3.1.3 Statistische Auswertung - Kopplungs- und Assoziationsanalysen</th>
<th>73</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Analyse des humanen STAT6-Gens</td>
<td>76</td>
</tr>
<tr>
<td>3.2.1 Identifizierung von SNPs im humanen STAT6-Gen</td>
<td>76</td>
</tr>
<tr>
<td>3.2.2 Genotypisierung der STAT6-SNPs in der Asthma-Familienstudie</td>
<td>77</td>
</tr>
<tr>
<td>3.2.3 Statistische Auswertung der SNPs des humanen STAT6-Gens</td>
<td>83</td>
</tr>
<tr>
<td>3.2.3.1 Kopplungs- und Assoziationsanalysen</td>
<td>83</td>
</tr>
<tr>
<td>3.2.3.2 Haplotypenanalyse</td>
<td>86</td>
</tr>
<tr>
<td>3.2.4 Analyse des GT-Repeats in Exon 1 des humanen STAT6-Gens</td>
<td>87</td>
</tr>
<tr>
<td>3.2.4.1 Genotypisierung des GT-Repeats in der Asthma-Familienstudie</td>
<td>87</td>
</tr>
<tr>
<td>3.2.4.2 Statistische Auswertung - Kopplungs- und Assoziationsanalysen</td>
<td>88</td>
</tr>
<tr>
<td>3.3 Analyse des humanen NAB2-Gens</td>
<td>92</td>
</tr>
<tr>
<td>3.3.1 Genotypisierung von NAB2-SNPs in der Asthma-Familienstudie</td>
<td>92</td>
</tr>
<tr>
<td>3.3.2 Statistische Auswertung - Kopplungs- und Assoziationsanalysen</td>
<td>94</td>
</tr>
<tr>
<td>3.4 Analyse des humanen IGF1-Gens</td>
<td>99</td>
</tr>
<tr>
<td>3.4.1 Validierung von IGF1-SNPs in der KORA S4-Studie</td>
<td>99</td>
</tr>
<tr>
<td>3.4.2 Genotypisierung der IGF1-SNPs in der Asthma-Familienstudie</td>
<td>100</td>
</tr>
<tr>
<td>3.4.3 Statistische Auswertung - Kopplungs- und Assoziationsanalysen</td>
<td>104</td>
</tr>
<tr>
<td>3.5 Analyse des humanen LTA4H-Gens</td>
<td>107</td>
</tr>
<tr>
<td>3.5.1 Validierung von SNPs des humanen LTA4H-Gens</td>
<td>107</td>
</tr>
<tr>
<td>3.5.2 Genotypisierung der LTA4H-SNPs in der Asthma-Familienstudie</td>
<td>108</td>
</tr>
<tr>
<td>3.5.3 Statistische Auswertung - Kopplungs- und Assoziationsanalysen</td>
<td>111</td>
</tr>
</tbody>
</table>

4. DISKUSSION

4.1 Analyse des humanen NOS1-Gens	114
4.1.1 NOS1-SNPs zeigen keine Assoziation mit Asthma und Asthma-assoziierten Phänotypen	114
4.2 Analyse des humanen STAT6-Gens	116
4.2.1 Die kodierende Region des humanen STAT6-Gens ist hoch konserviert	116
4.2.2 SNPs in der 3'UTR von STAT6 zeigen eine schwache Assoziation mit Asthma-assoziierten Phänotypen	118
4.2.3 Verschiedene Studien zeigen unterschiedliche Assoziationsergebnisse - eine Analyse am Beispiel zweier SNPs in der 3'UTR von STAT6	119
4.2.4 Ein SNP in der 3'UTR von STAT6 zeigt eine schwache Assoziation mit einem erhöhten SLOPE	122
4.2.5 Polymorphismen in der 3'UTR von Genen können die Regulation der Genexpression beeinflussen	122
4.2.6 Intronsiche STAT6-SNPs sind mit einem erhöhten Gesamt-IgE-Spiegel assoziiert	123
4.2.7 STAT6 In2SNP3 ist inmitten einer NF-xB-Bindestelle lokalisiert	125
4.2.8 STAT6-Haplotypen zeigen keiner Assoziation mit einem erhöhten Gesamt-IgE-Spiegel	126
4.2.9 STAT6-Haplotypen in anderen Assoziationsstudien	128
4.2.10 Ein GT-Repeat in Exon 1 des humanen STAT6-Gens ist hoch polymorph	130
4.2.11 Die Assoziationsergebnisse des STAT6-Dinukleotidrepeats im Vergleich zu anderen Studien	131
4.2.12 Der GT-Repeat in Exon 1 beeinflusst die Promotoraktivität von STAT6	133
4.3 Analyse des humanen NAB2-Gens	135
4.3.1 NAB2 als unmittelbarer Nachbar von STAT6 - ein Interpretationsversuch der NAB2-Assoziationsergebnisse	135
4.4 Analyse des humanen IGF1-Gens	137
4.4.1 Ein SNP in Intron 5 des humanen IGF1-Gens ist mit Asthma assoziiert	137
4.4.2 IGF1-Polymorphismen und IGF1-Spiegel	138
4.5 Analyse des humanen LTA4H-Gens	140
4.5.1 Die kodierende Region des humanen LTA4H-Gens ist hoch konserviert	140
4.5.2 Ein SNP in Intron 3 von LTA4H ist mit einem erhöhten Gesamt-IgE-Spiegel assoziiert	141
4.5.3 LTA4H-Polymorphismen beeinflussen den Gesamt-IgE-Spiegel - ein möglicher Mechanismus	143
4.6 Abschlussbetrachtung	145
Zusammenfassung

Im Rahmen der *NOS1*-Analyse wurden dabei insgesamt zwei SNPs („single-nucleotide polymorphisms“) analysiert, die jedoch mit keinem der untersuchten Phänotypen assoziiert waren. Die Analyse des humanen *STAT6*-Gens hingegen, umfaßte 13 SNPs und einen GT-Dinukleotidrepeat in der 5'UTR. Dabei konnte für drei intronische SNPs und einen SNP in der 3'UTR in den Einzelanalysen eine schwache bzw. moderate Assoziation mit einem erhöhten Gesamt-IgE-Spiegel nachgewiesen werden (p=0,0200; p=0,0260; p=0,0280 und p=0,0070). Ein zweiter SNP in der 3'UTR zeigte eine schwache Assoziation mit dem Lungenfunktionsparameter SLOPE (p=0,0370). Die stärkste Assoziation wurde jedoch zwischen Allel 4 (16xGT) des GT-Repeats und einer erhöhten Eosinophilenzahl beobachtet (p=0,0010). Für das Merkmal Asthma dagegen wurden keine Assoziationen
gefunden. Auch war keiner der insgesamt fünf, getesteten STAT6-Haplotypen mit einem der untersuchten Merkmale assoziiert.

Für das humane NAB2-Gen konnten insgesamt vier SNPs in der Asthma-Familienstudie validiert werden, von denen ein intronischer eine schwache Assoziation mit einem erhöhten Gesamt-IgE-Spiegel zeigte (p=0,0390 bzw. p=0,0300). Eine schwache Assoziation mit einem erhöhten Gesamt-IgE-Spiegel zeigte auch ein intronischer LTA4H-SNP (p=0,0220 bzw. p=0,0210). Weitere Assoziationen konnten für diese beiden Gene jedoch nicht gefunden werden.

Im Gegensatz dazu zeigte von insgesamt fünf, analysierten IGF1-SNPs in der Asthma-Familienstudie keiner eine Assoziation mit den Asthma-assoziierten Phänotypen. Für das Merkmal Asthma dagegen konnte eine signifikante Assoziation mit einem SNP in Intron 5 von IGF1 beobachtet werden (p=0,0363 bzw. p=0,0046).

Aufgrund der, in dieser Arbeit erzielten Ergebnisse kann nun spekuliert werden, dass die Produkte der Gene STAT6, NAB2 und LTA4H in Mechanismen involviert sind, die zu einem erhöhten Gesamt-IgE-Spiegel bzw. einer Eosinophilie führen, IGF1 dagegen eher eine Rolle in dem als „airway remodeling“ bezeichneten Prozeß zu spielen scheint, einem Merkmal von chronischem Asthma.
Abstract

Bronchial asthma is a chronic inflammation of the lower airways and represents one of the most common chronic childhood diseases in developed nations. Besides environmental factors, age, gender and life-style, genetic factors are also involved in the pathogenesis of the disease. Therefore, asthma is considered to be a complex (multifactorial) disease. Many genetic linkage-studies have identified the chromosomal region 12q13-q24 as one of the most common regions linked to asthma and asthma-related phenotypes. Using a genome-wide scan following a fine-mapping study, linkage of this chromosomal region to asthma and asthma-related phenotypes like increased total serum IgE-levels, increased eosinophil cell count or bronchial hyperresponsiveness (BHR) has also been found in a German asthma-family-study ("affected sib-pair"-design). The chromosomal region 12q13-q24 harbours a lot of candidate genes for asthma. As part of this thesis, polymorphisms in five of these genes have been analysed for association with asthma and asthma-related phenotypes in the German asthma-family-study. Both, due to their biological function and the data from the genome-wide scan and the fine-mapping of the German asthma-family-study, the following candidate genes have been selected: NOS1 (neuronal nitric oxide synthase), STAT6 (signal transducer and activator of transcription 6), NAB2 (NGFI-A binding protein 2), IGF1 (insulin-like growth factor 1) and LTA4H (leukotriene A4 hydrolase).

In the context of the NOS1-analysis, two SNPs (single-nucleotide polymorphisms) were analysed which did not show any association with one of the examined phenotypes. For the STAT6-gene, a total of 13 SNPs as well as a GT-dinucleotide repeat in the 5'UTR were analysed. Three intronic SNPs and one SNP in the 3'UTR of the gene showed a weak or moderate association to increased total serum IgE-levels (p=0.0200; p=0.0260; p=0.0280 and p=0.0070). A second SNP in the 3'UTR showed a weak association to the lung function parameter SLOPE (p=0.0370). However, the strongest association was found between allele 4 (16xGT) of the GT-repeat and an increase in eosinophil cell count (p=0.0010). For asthma, no associations could be detected. Additionally, none of the five tested STAT6-haplotypes was associated with one of the examined phenotypes.

For the human NAB2-gene, four SNPs could be validated in the German asthma-family-study. One of these SNPs, an intronic one, was weakly associated to increased total serum IgE-levels (p=0.0390; p=0.0300). A weak association to increased total serum IgE-levels was also found for an intronic LTA4H-SNP (p=0.0220; p=0.0210). Other associations were not found for these two genes.
In contrast to these findings, none of the five validated \textit{IGF1}-SNPs, was associated with any of the asthma-associated phenotypes. However, a significant association was found between a SNP in intron 5 of \textit{IGF1} and asthma (p=0.0363; \(p=0.0046 \)).

Due to these results it can be speculated that the products of the genes \textit{STAT6}, \textit{NAB2} and \textit{LTA4H} are involved in mechanisms leading to an increase of the total serum IgE-level or eosinophilie, whereas IGF1 seems to play a role in the process of so-called "airway remodeling", a feature of persistent asthma.
1. Einleitung

Asthma bronchiale ist eine chronische Atemwegserkrankung, an deren Entstehung genetische Faktoren (genetische Prädisposition) ebenso beteiligt sind wie Umwelteinflüsse, weshalb es in die Kategorie der komplexen (multifaktoriellen) Erkrankungen eingeordnet wird (Barnes und Marsh, 1998; Barnes K.C., 1999; Cookson, 1999).

Die Identifizierung von genetischen Risikofaktoren könnte nicht nur zu einem besseren Verständnis der komplexen Ätiologie und Pathophysiologie von Asthma bronchiale führen. Sie bietet auch die Möglichkeit für die Entwicklung neuer Präventiv- und Therapiemaßnahmen.

1.1 Asthma bronchiale – Epidemie des 21. Jahrhunderts

Asthma und andere allergische Erkrankungen treten dabei keineswegs dort besonders häufig auf, wo die Luft erkennbar verschmutzt ist, wie in verschiedenen, nach der Grenzöffnung durchgeführten, deutsch-deutschen Vergleichsstudien festgestellt werden konnte (von Mutius et al., 1992 und 1994; Nowak et al., 1996; Heinrich et al., 1998; Filipiak et al., 2001). Die Ergebnisse dieser und anderer Studien (Bjorksten et al., 1998) lassen vermuten, dass der
Einleitung

1.2 Definition von Asthma bronchiale

1 aus „Guidelines for the Diagnosis and Management of Asthma“, National Heart, Lung and Blood Institute, 1997 und „GINA Workshop Report“, Kapitel 1; GINA, 2002
1.3 Klassifizierung von Asthma bronchiale

Eine Klassifizierung von Asthma bronchiale kann sowohl nach ätiologischen Gesichtspunkten als auch nach klinischen Schweregraden erfolgen.

1.3.1 Ätiologie

Aus ätiologischer Sicht wird im Allgemeinen zwischen dem allergischen (atopischen) und dem nicht-allergischen Asthma sowie Mischformen (gemischtes Asthma) unterschieden (Gemsa et al., 1997).

Das rein allergische Asthma, auch als rein atopisches Asthma bezeichnet, beruht zumeist auf einer Sensibilisierung gegenüber luftgetragenen Allergenen und wird in der Regel durch eine in den Bronchien ablaufende IgE-vermittelte Hypersensibilitätsreaktion vom Typ I (Soforttyp) ausgelöst (Janeway und Travers, 1997; Kapitel 11). Es tritt normalerweise in Zusammenhang mit einer Allergenexposition auf (Gemsa et al., 1997). Die Symptome können dabei saisonal sein, wenn es sich bei dem Allergen um z. B. Pollen handelt, oder ganzjährig auftreten, wenn es sich um häusliche Allergene handelt (z. B. Hausstaubmilben, Schimmelpilze etc.) (Gemsa et al., 1997). Allergisches (atopisches) Asthma manifestiert sich am häufigsten im Kindes- und Jugendlichenalter, wobei die Betroffenen oft noch weitere atopische Erkrankungen wie atopisches Ekzem oder Rhinitis aufweisen (Ukena und Sybrecht, 1999; Johansson et al., 2001). Auch findet sich häufig eine positive Familienanamnese für atopische Krankheiten (Gemsa, 1997; Ukena und Sybrecht, 1999).

Einleitung

Unter die Kategorie nicht-allergisches Asthma fallen alle Asthmaformen, die keine allergische Komponente aufweisen (Gemsa et al., 1997). Dementsprechend finden sich im Serum betroffener Individuen auch keine allergen-spezifischen IgE-Antikörper; der Gesamt-IgE-Spiegel ist ebenfalls nicht erhöht (Gemsa et al., 1997; Ukena und Sybrecht, 1999). Dagegen ist die Konzentration von Eosinophilen im Blut und Sputum deutlich höher gegenüber derjenigen von allergischen Asthmatikern und unterliegt keinen saisonalen Schwankungen (Ukena und Sybrecht, 1999). Im Gegensatz zum allergischen Asthma manifestiert sich die nicht-allergische Form meistens im Erwachsenenalter und geht häufig mit viralen Atemwegsinfektionen einher (Gemsa et al., 1997). Andere Faktoren wie z. B. Kaltluft, körperliche Anstrengung (Belastungsasthma) oder psychische Faktoren können ebenfalls einen Asthmaanfall auslösen (Gemsa et al., 1997).

Die Mechanismen, die zu einem nicht-allergischen Asthma führen, sind noch weitestgehend unverstanden, obgleich die pathologischen Merkmale und das Wesen der Atemwegsentzündung denjenigen des allergischen Asthmas sehr ähneln (Humbert et al., 1996; Humbert, 2000; Bousquet et al., 2000).

Aufgrund dieser Ähnlichkeiten und des häufigen Auftretens von Mischformen (gemischtes Asthma) wird in neuerer Zeit der Sinn der klassischen Einteilung von Asthma in eine allergische und eine nicht-allergische Form kontrovers diskutiert. Zwar konnte bei über 80% der asthmatischen Kinder eine allergische Komponente nachgewiesen werden, doch nur bei ca. 15%-20% sind Allergien die ausschließliche Ursache der Symptome (Reinhardt, 2000; Gemsa et al., 1997). Der Rest weist eine Mischform aus allergischem und nicht-allergischem Asthma auf.

1.3.2 Klinische Schweregrade

Asthma kann in sehr unterschiedlichen Schweregraden verlaufen. Einzelne Personen können wechselnde Phasen von hoher Krankheitsaktivität und völlig anfallsfreier Zeit aufweisen (Wjst, 1999b). Basierend auf den klinischen Merkmalen, die vor einer Medikation zu beobachten sind, wird Asthma im Allgemeinen in vier klinische Schweregrade eingeteilt, die
in Tabelle 1.1 wiedergegeben sind (GINA, 2002). Die Einteilung erfolgt dabei unabhängig davon, ob eine allergische Komponente vorhanden ist oder nicht und richtet sich im Wesentlichen nach der Anzahl der Asthmaanfälle.

Stufe 1: intermittierendes, periodisch auftretendes Asthma
- Symptome < 1x die Woche; nächtliche Symptome ≤ 2x im Monat
- FEV\(_1\) oder PEF ≥ 80% des Sollwerts, Variabilität < 20%

Stufe 2: geringer Schweregrad
- Symptome > 1x die Woche, aber < 1x am Tag; nächtliche Symptome > 2x im Monat
- FEV\(_1\) oder PEF ≥ 80% des Sollwerts, Variabilität 20%-30%

Stufe 3: mittlerer Schweregrad
- tägliche Symptome, nächtliche Symptome > 1x die Woche
- täglicher Gebrauch von β\(_2\)-Sympathomimetikum
- FEV\(_1\) oder PEF 60%-80% des Sollwerts, Variabilität < 30%

Stufe 4: hoher Schweregrad
- tägliche Symptome; regelmäßig nächtliche Symptome
- körperliche Aktivitäten stark eingeschränkt
- FEV\(_1\) oder PEF ≤ 60% des Sollwerts, Variabilität > 30%

Tabelle 1.1: Klassifizierung von Asthma nach klinischen Schweregraden (nach GINA, 2002, in vereinfachter Form). FEV\(_1\): „forced expiratory volume in 1 second“; PEF: „peak expiratory flow“. Erklärungen der beiden Parameter siehe Text.

1.4 Mechanismen des allergischen (atopischen) Asthma bronchiale

1.4.1 Sensibilisierung

Aeroallergene werden zunächst einmal von Antigen-präsentierenden Zellen (kurz APCs von „antigen-presenting cells“) in der bronchialen Mucosa (Schleimhaut) aufgenommen, prozessiert und die so entstandenen Peptidfragmente mittels MHC-Klasse II- (MHC II-) Molekülen naiven Th0-Lymphozyten präsentiert (Stirling und Chung, 2000; Abb. 1.1). Bei den APCs handelt es sich primär um dendritische Zellen (Maggi, 1998; Holgate, 1999; GINA, 2002). Durch die Bindung des Antigen-MHC II-Komplexes an den T-Zellrezeptor, in Verbindung mit einem zusätzlichen ko-stimulierenden Signal, welches durch die Interaktion zwischen B7-2 auf der Zelloberfläche der APCs und CD28 auf der Zelloberfläche der Th0-Lymphozyten vermittelt wird, werden die Th0-Lymphozyten aktiviert und differenzieren sich selektiv zu reifen Th2-Gedächtniszellen („klonale Expansion“) (Holt et al., 1999; Stirling und Chung, 2000; Abb. 1.1). Dieser als „priming“ bezeichnete Vorgang hängt maßgeblich von dem Zytokinmilieu ab, in dem er statt findet (Holt et al., 1999). So ist das Vorhandensein des
Einleitung

1.4.2 Frühe Phase der allergischen Reaktion (Sofortreaktion)

In sensibilisierten Individuen führt die Inhalation von Aeroallergenen innerhalb weniger Sekunden zu einer allergischen Sofortreaktion (frühe Phase der allergischen Reaktion), der sich in den meisten Fällen eine Spätreaktion (späte Phase der allergischen Reaktion) anschließt (Bousquet et al., 2000; GINA, 2002).

Die allergische Sofortreaktion wird ausgelöst, wenn Aeroallergene allergen-spezifische IgE-Antikörper, welche an hochaffine IgE-Rezeptoren (FceRI) auf der Oberfläche von Mastzellen gebunden sind, quervernetzen (Cookson, 1999; Holt et al., 1999; GINA, 2002; Abb. 1.1). Die so aktivierten Mastzellen schütten eine Reihe vorgefertigter und neu produzierter proinflammatorischer Mediatoren aus wie Histamine, Prostaglandine, Leukotriene (Lipidmediatoren), reaktive Sauerstoffderivate, Heparin sowie eine Reihe proteolytischer und glykolytischer Enzyme wie z. B. die Mastzell-Tryptase (Holgate, 1993 und 1999; GINA, 2002; Abb. 1.1). Die ausgeschütteten Mediatoren induzieren eine schnelle Kontraktion der glatten Atemwegsmuskulatur (akute Bronchokonstriktion), welche das charakteristische Symptom der Sofortreaktion darstellt (Holgate, 1993; Bousquet et al., 2000; Abb. 1.1). Dadurch kommt es zu einer Atemwegsobstruktion (Verengung der Atemwege). Die
freigesetzten Mediatoren tragen jedoch auch direkt zu einigen Symptomen der späten Phase der allergischen Reaktion bei, wie verstärkte Schleimproduktion, Erweiterung der Blutgefäße (Vasodilatation) und mikrovaskuläre Lecks (Vignola et al., 1997; Holt et al., 1999; GINA, 2002; Abb. 1.1).

1.4.3 Späte Phase der allergischen Reaktion

Der allergischen Sofortreaktion schließt sich in den meisten Fällen eine allergische Spätreaktion an, die zwischen sechs und neun Stunden nach Allergenprovokation einsetzt (Bousquet et al., 2000; GINA, 2002).
Das charakteristische Merkmal dieser späten Phase der allergischen Reaktion ist die Rekrutierung inflammatorischer Effektorzellen - insbesondere Eosinophile (De Monchy et al., 1985; Holt et al., 1999) und Th2-Lymphozyten (Robinson et al., 1993; Bousquet et al., 2000), aber auch Basophile (Guo et al., 1994), Neutrophile und Makrophagen (Bousquet et al., 2000) - aus dem Blutkreislauf in die Atemwege und deren Aktivierung. Den anfänglichen Trigger für diese frühe Rekrutierung stellt möglicherweise die Ausschüttung spezifischer Mediatoren durch die aktivierten Mastzellen dar (Bradding et al., 1994; Bousquet et al., 2000). Zum Beispiel aktiviert die Mastzell-Tryptase spezifische Rezeptoren auf der Oberfläche von bronchialen Endothel- und Epithelzellen, was zu einer verstärkten Produktion bestimmter Zytokine und der Expression von Adhäsionsmolekülen führt und in der selektiven Rekrutierung von Eosinophilen und Basophilen resultiert (Holgate, 1999).

Aktivierte Eosinophile schütten ein großes Spektrum an Mediatoren aus wie z.B. freie Sauerstoffradikale, Leukotriene, PAF („platelet-activating factor“), MBP („major basic protein“), GM-CSF, Eotaxin, eosinophile Peroxidase aber auch Th2-Zytokine wie IL-4, IL-13 und IL-5 sowie einige Wachstumsfaktoren (GINA, 2002; Fireman, 2003; Cohn et al., 2004; Abb. 1.1). Die Folgen dieser, zunächst akuten, Entzündung sind Kontraktion der glatten Atemwegsmuskulatur (Rabe et al., 1994), Beschädigung und Ablösung der bronchialen Epithelzellen (GINA, 2002; Cohn et al., 2004), verstärkte Schleimbildung (GINA, 2002; Cohn et al., 2004), bronchiale Hyperaktivität (BHR) (Leff, 1994; Fireman, 2003), erhöhte vaskuläre Permeabilität (Collins et al., 1993; GINA, 2002) und Bildung mikrovaskulärer Lecks (GINA, 2002). Eine erhöhte vaskuläre Permeabilität in Verbindung mit mikrovaskulären Lecks führt zu einem Schleimhautödem, was wiederum eine Verdickung der Atemwegswand zur Folge hat (GINA, 2002).

Bei einer länger andauernden, schweren oder chronischen Entzündung kommt es zu charakteristischen strukturellen Veränderungen, die mit einem Umbau der Atemwege, allgemein bekannt als „airway remodeling“, einhergehen. Pathologische Merkmale sind Hypertrophie und Hyperplasie der glatten Muskelzellen, Vergrößerung der Schleimdrüsen, eine erhöhte Anzahl an Becherzellen sowie eine Verdickung der subepithelialen

Neben Eosinophilen spielen aktivierte Th2-Lymphozyten und die von ihnen sezernierten Zytokine eine Schlüsselrolle in der Initiierung, Instrumentation und Aufrechterhaltung der Entzündung (GINA, 2002; Cohn et al., 2004). Als wichtigstes Th2-Zytokin gilt dabei IL-5. Es fördert die Differenzierung und das Wachstum von Eosinophilen, erhöht ihre Überlebenszeit und beschleunigt ihre Rekrutierung in die Atemwege sowie die Expression ihrer Adhäsionsmoleküle (Lopez et al., 1988; Sur et al., 1995; Stirling und Chung, 2000; siehe Abb.1.1).

Eine Übersicht über die komplexen Mechanismen der asthmatischen Entzündung ist in Abbildung 1.2 wiedergegeben.

1.4.4 Das Th1/Th2 - Gleichgewicht

Beide Th-Subtypen gehen aus einer gemeinsamen Vorläuferzelle, dem Th0-Lymphozyten, hervor (Mosman und Sad, 1996; Romagnani, 1997; Abb. 1.3; siehe auch Abschnitt 1.4.1). Zu welchem Th-Subtyp sich Th0-Vorläuferzellen letztendlich entwickeln, hängt ganz entscheidend von dem Zytokinmilieu ab, das in der unmittelbaren Umgebung der Th0-Lymphozyten zum Zeitpunkt der erstmaligen Präsentation eines Antigens herrscht (Romagnani, 1997; vgl. Abschnitt 1.4.1). So fördert das Vorhandensein von IL-4 die Differenzierung zu Th2-Lymphozyten (Mosmann und Sad, 1996; Romagnani, 1997) und hemmt gleichzeitig die Bildung von Th1-Lymphozyten (Mosmann und Sad, 1996; Romagnani, 1997; Rengarajan et al., 2000; Abb. 1.3). Umgekehrt begünstigen IL-12 und Interferon gamma (IFNγ) die Differenzierung zu Th1-Lymphozyten und hemmen die Bildung
Einleitung

1.5 Genetik von Asthma bronchiale

1.5.1 Asthma bronchiale als komplexe (multifaktorielle) Erkrankung

Weiterhin konnte in einer Vielzahl von Familienstudien eine familiäre Häufung von Asthma nachgewiesen werden (Cooke and van der Veer, 1916; Schwartz, 1952; Leigh und Marley, 1967; Sibbald et al., 1980; Burke et al., 2003). Einer Studie zufolge war das Risiko eines Kindes an Asthma zu erkranken um das dreifache erhöht, wenn ein Elternteil Asthmatischer war und stieg auf das sechsfache, wenn beide Elternteile erkrankt waren (Dold et al., 1992; Wjst, 1999b; Illig und Wjst, 2002). Eine für Asthma positive Familiennamnese ist demnach eine der größten Risikofaktoren für eine Erkrankung (Palmer und Cookson, 2000; Burke et al., 2003).

ebenfalls dort lebenden Inder und Malaie (Wjst, 1999b; Ng et al., 2003). Für die unterschiedlichen Asthmaprävalenzen zwischen in den USA lebenden Schwarzen und Weißen ist diese Theorie jedoch umstritten (GINA, 2002).

Abhängig von der jeweiligen Studie liegt die geschätzte Erblichkeit von Asthma zwischen 36% (Nieminen et al., 1991) und 75% (Duffy et al., 1990). Dagegen wird die Erblichkeit für einen erhöhten Gesamt-IgE-Spiegel auf 50% bis 80% geschätzt (Palmer und Cookson, 2000), diejenige für eine bronchiale Hyperreaktivität (BHR) gegenüber cholinergen Agentien dagegen auf 22% bis 66% (Palmer und Cookson, 2000).

Neben dem komplexen Charakter von Asthma wird die Suche nach prädisponierenden Genen noch durch auftretende unvollständige Penetranzen (genetisch prädisponierte Personen erkranken nicht) sowie eine hohe Phänokopierate (Umwelteinflüsse induzieren einen sehr ähnlichen Phänotyp auch ohne genetische Prädisposition) erschwert (Heinzmann und Deichmann, 2001; Hoffjan und Ober, 2002). Weiterhin legen die Ergebnisse einiger Studien den Verdacht nahe, dass bei der Vererbung von Asthma und den Asthma-assoziierten

Abbildung 1.4: Asthma als komplexe Erkrankung (nach Whittaker, 2003, in abgewandelter Form).

Hält man sich all diese Erkenntnisse vor Augen, dann gleicht die Suche nach Asthamagenen der berühmten Suche nach der Nadel im Heuhaufen. Trotzdem konnten in den letzten Jahren mit der Identifizierung von z.B. ADAM 33 (van Eerdewegh et al., 2002), PHF11 (Zhang et al., 2003), DPP10 (Allen et al., 2003), GPRA (Laitinen et al., 2004) und, mit dem bisher stärksten Effekt, ORMDL3 (Moffatt et al., 2007) als prädisponierende Gene für Asthma und Asthma-assozierte Phänotypen große Erfolge erzielt werden.

1.5.2 Methoden zur Identifizierung prädisponierender Gene für Asthma

Im Rahmen der Suche nach prädisponierenden Genen für Asthma und Asthma-assozierte Phänotypen wurden zwei unterschiedliche Strategien entwickelt, die im Folgenden kurz vorgestellt werden.

1.5.2.1 Kandidatengenanalyse

Kandidatengene sind solche Gene, von deren Genprodukten angenommen wird, dass sie aufgrund ihrer biologischen Funktion eine Rolle in der Pathogenese von Asthma spielen

1.5.2.2 Genomweite Suchen

Als zweite Strategie hat sich die genomweite Suche bewährt. Hierbei wird zwischen genomweiten Kopplungsstudien und genomweiten Assoziationsstudien unterschieden, wie im Folgenden näher erläutert wird.

1.5.2.2.1 Genomweite Kopplungsstudien

Einleitung

Da es sich bei der klassischen positionellen Klonierung jedoch um ein sehr zeit- und arbeitsaufwendiges sowie kostspieliges Verfahren handelt, wird in der Praxis häufig dazu übergegangen, die genomweite Suche mit der klassischen Kandidatengenanalyse (vgl. 1.5.2.1) zu kombinieren. In dieser als „positionelle Kandidatenklonierung“ bezeichneten
Einleitung

Methode (Barnes und Marsh, 1998; Anderson und Cookson, 1999; Holgate, 1999) beschränkt sich die Analyse auf solche Kandidatengene, die in einer bereits identifizierten chromosomalen Kopplungsregion lokalisiert sind. Diese Kandidatengenanalyse kann zwar auch mit einer populationsbezogenen Fall-Kontroll-Studie durchgeführt werden. In der Regel erfolgt sie jedoch mit der gleichen Familienstudie, die bereits in der vorangegangenen, genomweiten Suche verwendet wurde (familienbasierte Assoziationsstudie, vgl. Abschnitt 1.5.2.2.2 und 2.3.2.3). Ein Blick in die öffentlichen Literaturdatenbanken zeigt, dass sich die positionelle Kandidatenklonierung zu einem erfolgreichen und effizienten Werkzeug bei der Suche nach Asthamagenen entwickelt hat.

1.5.2.2.2 Genomweite Assoziationsstudien

Unter einer genomweiten Assoziationsstudie versteht man die systematische Durchsuchung des gesamten humanen Genoms nach genetischen Varianten, die mit einem oder mehreren der untersuchten Phänotypen (Asthma, erhöhter Gesamt-IgE-Spiegel etc.) assoziiert sind, d.h. bei Erkrankten häufiger vorkommen als bei Gesunden. Dabei kommen zwei grundlegend verschiedene Studiendesigns zum Einsatz: populationsbezogene Studiendesigns und familienbasierte Studiendesigns (Laird und Lange, 2006). Das Standarddesign einer populationsbezogenen Studie stellt dabei die sog. Fall-Kontroll-Studie dar (vgl. Abschnitt 1.5.2.1). Im Gegensatz zu familienbasierten Studien hat dieses Studiendesign den Vorteil der leichteren, und meist auch kostengünstigeren, Rekrutierung der Studienteilnehmer (Laird und Lange, 2006). Das Standarddesign der familienbasierten Assoziationsstudie hingegen ist dasjenige der Kernfamilien (Trios), wobei jede Kernfamilie aus den Eltern und einem erkrankten Kind besteht (Laird und Lange, 2006; vgl. Abschnitt 2.3.2.3). Im Gegensatz zu populationsbezogenen Studien weisen familienbasierte Studien eine hohe Widerstandsfähigkeit gegenüber Populationsstratifikationen auf und erlauben zudem das
gleichzeitige Auffinden von Assoziation und Kopplung (Laird und Lange, 2006; vgl. Abschnitt 2.3.2.2 und 2.3.2.3).

Genomweite Assoziationsstudien werden im Allgemeinen mit SNPs („single-nucleotide“-Polymorphismen) durchgeführt, deren Daten aus den öffentlichen SNP-Datenbanken entnommen werden. In der Regel kommen dabei nicht alle eingetragenen SNPs zum Einsatz, vielmehr beschränkt man sich bei der Auswahl auf sog. „tag“-SNPs (vgl. Abschnitt 4.4.2). Hierbei handelt es sich um SNPs, die in einer genomischen Region mit hohem Kopplungsungleichgewicht („linkage disequilibrium“, LD) lokalisiert sind und mit einer Vielzahl von benachbarten SNPs im Kopplungsungleichgewicht stehen.

Auch für Asthma und Asthma-assoziierte Phänotypen wurden bereits erste genomweite Assoziationsstudien veröffentlicht (z.B. Moffatt et al. 2007; Choudhry et al., 2008; Hui et al., 2008). Den bisher größten Erfolg können dabei Moffatt und Kollegen verzeichnen. Sie konnten mit ihrer genomweiten, kaukasischen Assoziationsstudie das in der chromosomalen Region 17q21.1 lokalisierte ORMDL3-Gen als neues, prädisponierendes Gen für kindliches Asthma identifizieren (Moffatt et al., 2007).

1.5.3 Die chromosomale Kopplungsregion 12q

Zu den genomweiten Kopplungsstudien, welche den Bereich 12q13-q24 als chromosomale Kopplungsregion für Asthma und/oder Asthma-assoziierte Phänotypen identifizieren konnten, zählt auch eine deutsche Asthma-Familienstudie (Wjst et al., 1999a; Immervoll et al., 2001). Da die Ergebnisse dieser Studie die Ausgangsbasis dieser Arbeit bildeten, sind in Abbildung
1.5 die Ergebnisse der Feinkartierung für die Phänotypen *Asthma bronchiale*, erhöhter Gesamt-IgE-Spiegel, erhöhte Eosinophilenzellzahl und erhöhter SLOPE dargestellt.

Insgesamt wurden 18 Mikrosatellitenmarker in der chromosomalen Region 12q untersucht (Wjst/Illig/Loesgen, persönliche Mitteilung; Abb. 1.5). Ausgehend von einem p-Wert von 0,05 als Signifikanzgrenze konnte für fünf Marker eine signifikante Kopplung mit dem Phänotyp *Asthma bronchiale* gefunden werden (p-Werte = 0,0278; 0,0216; 0,0166; 0,0138 und 0,0136; Immervoll et al., 2001; Loesgen, persönliche Mitteilung; Abb. 1.5). Drei Marker zeigten eine signifikante Kopplung mit SLOPE (p-Werte = 0,0126; 0,0116 und 0,0288; Immervoll et al., 2001; Loesgen, persönliche Mitteilung; Abb. 1.5) und einer mit einer erhöhten Eosinophilenzellzahl (p-Wert = 0,0288; Immervoll et al., 2001; Loesgen, persönliche Mitteilung; Abb. 1.5).

Ein p-Wert von 0,05 wird in der Statistik allgemein als Signifikanzgrenze angesehen und bedeutet eine 5%ige Wahrscheinlichkeit, dass das jeweilige Ergebnis auf Zufall beruht. Demnach gilt: je kleiner der p-Wert, desto größer die Wahrscheinlichkeit, dass das Ergebnis nicht zufällig erzielt wurde.
Abbildung 1.5: Graphische Darstellung der Feinkartierungsergebnisse der deutschen Asthma-Familienstudie für die chromosomale Region 12q. Die Graphik wurde anhand der Originaldaten der Feinkartierung sowie der Daten aus der Ensembl-Datenbank angefertigt (http://ensembl.org/Homo_sapiens). Dargestellt ist die absolute Lage der Mikrosatellitenmarker sowie einiger Asthma-Kandidatengene in bp sowie deren relative Lage bzgl. der zytogenetischen Position auf dem Chromosom. Als Signifikanzgrenze wurde ein p-Wert von 0,05 gewählt (Querlinie).
Einleitung 31

1.5.4 Asthma-Kandidatengene in der chromosomalen Region 12q13-q24

In der chromosomalen Kopplungsregion 12q13-q24 sind eine ganze Reihe bedeutender Asthma-Kandidatengene lokalisiert, darunter die Gene für den „signal transducer and activator of transcription 6“ (STAT6), das NGFI-A-Bindem protein 2 (NAB2), Interferon γ (IFNγ); den Stammzell-Faktor („stem-cell factor“; SCF), die Leukotriene A4 Hydrolase (LTA4H), den Insulin-ähnlichen Wachstumsfaktor 1 („insulin-like growth factor 1“, IGF1), die β Untereinheit des nukleären Transkriptionsfaktor Y („nuclear transcription factor Y, β-subunit“, NFYβ) und die neuronale Stickstoffmonoxid synthase („neuronal nitric oxide synthase“, NOS1). Die absolute Position dieser Gene in bp sowie ihre relative Lage in Bezug auf die, in der deutschen Asthma-Familienstudie untersuchten Mikrosatellitenmarker ist in Abbildung 1.5 wiedergegeben.

Im Folgenden werden diejenigen Asthma-Kandidatengene vorgestellt, die im Rahmen dieser Arbeit untersucht wurden.

1.5.4.1 NOS1 als Asthma-Kandidatengene

Zu den Asthma-Kandidatengenen der chromosomalen Region 12q zählt NOS1. NOS1, auch als nNOS bezeichnet, ist in der zytogenetischen Region 12q24.2-24.31 lokalisiert und kodiert für die neuronale Stickstoffmonoxidsynthase („neuronal nitric oxide synthase“) (Xu et al., 1993). Stickstoffmonoxidsynthasen sind Enzyme, welche die Bildung von Stickstoffmonoxid (NO) aus Arginin katalysieren (Xu et al., 1993; Hall et al., 1994). Neben NOS1 existieren bei Säugern noch zwei weitere Isoformen: die induzierbare NOS (NOS2 oder iNOS) mit dem Genlocus auf 17qcen.q12 und die endotheliale NOS (NOS3 oder eNOS) mit dem Genlocus auf 7q35-q36 (Hall et al., 1994; Förstermann et al., 1998).

In der Lunge fungiert NO unter anderem als Bronchodilatatort, Vasodilatatort, Neurotransmitter und Mediator der Entzündung (Gaston et al., 1994; Barnes P.J., 1996). Folglich könnten Abnormitäten in der NO-Produktion relevant für die Pathophysiologie von Asthma sein.

NO wird von verschiedenen Zelltypen der unteren Atemwege, darunter inflammatorische Zellen und Epithelzellen, produziert und kann generell in der Atemluft nachgewiesen werden (Gustafsson et al., 1991; Kharitonov et al., 1994). Allerdings konnten verschiedene Studien zeigen, dass die NO-Level in der Atemluft von Asthmakern gegenüber denen gesunder Probanden signifikant erhöht waren, sowohl bei Kindern als auch bei Erwachsenen (z.B. Alving et al., 1993; Kharitonov et al., 1994 und 1995; Massaro et al., 1996). In einer irischen Studie mit an Asthma erkrankten Kindern ergab sich sogar eine Korrelation zwischen dem
NO-Level in der Atemluft und dem prozentualen Anteil an Eosinophilen in der BAL-Flüssigkeit (Warke et al., 2002).

Noch ist unklar welche der drei NOS-Isoformen für die erhöhte NO-Produktion bei Asthmaticern verantwortlich ist. Es gibt jedoch Hinweise dafür, dass NOS1 einen wesentlichen Beitrag dazu leistet. So konnten in einem Mausmodell in der Atemluft von NOS1-/- Knockout-Mäusen signifikant niedrigere NO-Level gemessen werden als in der Atemluft von Wildtyp-Mäusen (De Santis et al., 1997 und 1999). Darüberhinaus entwickelten NOS1-/—Mäuse nach anfänglicher Sensibilisierung in Provokationstests weniger häufig eine BHR gegenüber Methacholin als Wildtyp-Mäuse (De Santis et al., 1997 und 1999). Weiterhin wurde mittels RT-PCR und Immunhistochemie die Expression von NOS1 im Lungenepithel von Maus und Ratte nachgewiesen (Asano et al., 1994; North et al., 1994).

Betrachtet man die Feinkartierungsergebnisse der deutschen Asthma-Familienstudie dann ist das NOS1-Gen in der Nähe von Mikrosatellitenmarkern lokalisiert, für die Kopplung mit einer erhöhten Eosinophilenzellzahl bzw. einem erhöhtem SLOPE gefunden wurde (p-Werte < 0,05; siehe Abb. 1.5; Immervoll et al., 2001).

1.5.4.2 STAT6 als Asthma-Kandidatengene

Beweise für die bedeutende Rolle des IL-4-/IL-13-STAT6-Signaltransduktionswegs in der Entwicklung von allergischem Asthma liefern Untersuchungen an \(STAT6^{-/-}\)-Knockout-Mäusen. Im Gegensatz zu Wildtyp-Mäusen entwickelten \(STAT6^{-/-}\)-Mäuse keine BHR infolge eines Provokationstests und waren nicht in der Lage, den Klassenwechsel von IgM zu IgE durchzuführen (Shimoda et al., 1996; Kuperman et al., 1998). Demzufolge fanden sich im Serum von \(STAT6^{-/-}\)-Mäusen auch keine erhöhten IgE-Spiegel (Akimoto et al., 1998; Kuperman et al., 1998; Miyata et al., 1999). Die für Asthma typische Th2-Antwort, Zerstörung des Lungengewebes infolge der Entzündung, erhöhte Schleimproduktion sowie eine erhöhte Anzahl an Eosinophilen in der bronchoalveolaren Lavage-Flüssigkeit (BAL) konnten bei \(STAT6^{-/-}\)-Mäusen ebenfalls nicht beobachtet werden (Takeda et al., 1996; Akimoto et al., 1998; Kuperman et al., 1998; Miyata et al., 1999). Ähnliche Ergebnisse ergaben sich für \(STAT6^{-/-}\)-Mäuse, denen man vor den Provokationstests \textit{in vitro}-differenzierte Antigen-spezifische \(STAT6^{+/+}\)-Th2-Zellen intravenös injiziert hatte (Mathew at al., 2001). Untermauert werden diese Befunde durch die Ergebnisse von STAT6-Expressionsanalysen an humanem Lungengewebe, welches durch Bronchoskopie gewonnen wurde. Demzufolge war die Anzahl an STAT6-exprimierenden Lungeneptelzellen bei sowohl atopischen als auch nicht-atopischen Asthamatikern signifikant höher als bei Gesunden (Christodoulopoulos et al., 2001) und korrelierte sogar mit dem Schweregrad der Erkrankung. So wiesen Personen mit schwerem Asthma eine wesentlich höhere STAT6-Expression auf als Gesunde und Personen mit leichtem Asthma (Mullings et al., 2001).

Im Vergleich mit den Feinkartierungsergebnisse der deutschen Asthma-Familienstudie zeigt sich, dass das humane \(STAT6\)-Gen in derselben Region lokalisiert ist, in der mehrere Mikrosatellitenmarker Kopplung mit einem erhöhten SLOPE zeigten (p-Werte < 0,05; siehe Abb. 1.5; Immervoll et al., 2001).

1.5.4.3 \(NAB2 \) als Asthma-Kandidatengen

Als weiteres Asthma-Kandidatengen der chromosomalen Region 12q wurde im Rahmen dieser Arbeit das humane \(NAB2\)-Gen untersucht, das ebenfalls in der zytogenetischen Region 12q13.3-14.1 lokalisiert ist, in direkter Nachbarschaft zu \(STAT6 \) (Svaren et al., 1996; Svaren et al., 1997). \(NAB2 \) kodiert für das sog. \textit{NGFI-A-Bindeprotein 2}, welches mit dem Zinkfinger-Transkriptionsfaktor NGFI-A (Synonym: Egr-1) interagiert und dessen Transaktivierung

Wie STAT6 auch, liegt NAB2 in einer Region, für die in der deutschen Asthma-Familienstudie Kopplung mit einem erhöhten SLOPE gefunden werden konnte (Svaren et al., 1996). Die höchste Expression konnte jedoch in Gehirn und Thymus gefunden werden (Svaren et al., 1996). Letzterer ist der Hauptort für die Reifung und Differenzierung von T-Lymphozyten (Janeway und Travers, 1997; Kapitel 6).

Wie STAT6 auch, liegt NAB2 in einer Region, für die in der deutschen Asthma-Familienstudie Kopplung mit einem erhöhten SLOPE gefunden werden konnte (p-Werte < 0,05; siehe Abb. 1.5; Immervoll et al., 2001).

1.5.4.4 IGF1 als Asthma-Kandidatengen

Ein weiteres bedeutendes Asthma-Kandidatengen in der chromosomalen Region 12q ist das für den Insulin-ähnlichen Wachstumsfaktor 1 („insulin-like growth factor 1“) kodierende humane IGF1-Gen, welches in der zytogenetischen Region 12q22-q23 lokalisiert ist (Jansen et al., 1983; Mathew et al., 1992). Demzufolge befindet es sich in der Nachbarschaft von Mikrosatellitenmarkern, für die in der deutschen Asthma-Familienstudie Kopplung mit Asthma gezeigt werden konnte (p-Werte < 0,05; siehe Abb. 1.5; Immervoll et al., 2001).

Dabei scheint IGF1 vor allem eine Rolle bei dem als „airway remodeling“ bezeichneten Prozeß zu spielen, bei dem es infolge der chronischen Entzündung der Atemwege zu einem
Umbau der Atemwege kommt (Bousquet et al., 1992; vgl. Abschnitt 1.4.3). Ein Merkmal dieses Prozesses ist eine Verdickung der subepithelialen Basalmembran, hervorgerufen durch die massive Einlagerung verschiedener Kollagentypen und Fibronectin, die von dort ansässigen Fibroblasten sezerniert werden (Roche et al., 1989; Brewster et al., 1990; vgl. Abschnitt 1.4.3). In Untersuchungen an, durch Bronchoskopien gewonnenem, Lungengewebe von Asthmatikern und gesunden Probanden wurde eine signifikante Korrelation zwischen der IGF1-Expression und der Stärke der Basalmembranverdickung bzw. der Anzahl an Fibroblasten gefunden (Hoshino et al., 1998b). Die Einnahme von Kortikosteroiden vor Durchführung der Bronchoskopien führte zu einer signifikanten Abnahme sowohl der Basalmembranverdickung als auch der IGF1-Expression (Hoshino et al., 1998b). Darüberhinaus konnten Versuche mit kultivierten humanen Lungenfibroblasten zeigen, dass die Behandlung mit einem IGF1-Antikörper die zuvor induzierte Proliferation dieser Zellen zum Teil inhibierte (Cambrey et al., 1995).

1.5.4.5 LTA4H als Asthma-Kandidatengen

Ausgehend von den Feinkartierungsergebnissen der deutschen Asthma-Familienstudie stellt das für die Leukotrien A4-Hydrolase kodierende LTA4H-Gen ein weiteres Asthma-Kandidatengen in der chromosomalen Region 12q dar. Das humane LTA4H-Gen ist in der zytogenetischen Region 12q22 lokalisiert (Mancini und Evans, 1995) und liegt demnach in der Nähe von Mikrosatellitenmarkern, für die in der deutschen Asthma-Familienstudie Kopplung mit Asthma gefunden wurde (p-Werte < 0,05; siehe Abb. 1.5; Immervoll et al., 2001).

Bei der LTA4H handelt es sich um ein lösliches, bifunktionelles Zink-Metalloenzym, das die stereospezifische Hydrierung von Leukotrien A4 (LTA4) zu Leukotrien B4 (LTB4) katalysiert (Häggström, 2000 und 2004; Thunnissen et al., 2001). Leukotriene sind eine Klasse von Lipidmediatoren, die eine wichtige Rolle bei einer Vielzahl von inflammatorischen Prozessen und allergischen Reaktionen spielen, einschließlich derjenigen,

1.6 Aufgabenstellung und Ziel der Arbeit

2. Probanden, Material und Methoden

2.1 Probanden

2.1.1 ECRHS-Studie

2.1.2 KORA S4-Studie

2.1.3 Asthma-Familienstudie

2.1.3.1 Studiendesign und Auswahlkriterien

1. In der Familie muss bei mindestens zwei Kindern Asthma bronchiale ärztlich diagnostiziert sein. Die Kinder müssen leiblich und keine Zwillinge sein.
 \textit{Begründung:} „affected sib-pair“-Design

2. Alle Familienmitglieder sollten deutsch sprechen.
 \textit{Begründung:} Vermeidung von Verständigungsschwierigkeiten, ausländische Angehörige wären bei einem späteren Zeitpunkt nicht erreichbar.

 \textit{Begründung:} Ausschluss von Phänokopie Surfactant-Mangel/Lungenreifungsstörungen

4. Das Einverständnis der Eltern muss vorliegen.
 \textit{Begründung:} Juristische und ethische Gründe

5. Das Alter der Kinder sollte zwischen 6 und 18 Jahren liegen.
 \textit{Begründung:} In diesem Alter haben die meisten Kinder bereits Asthma-Symptome entwickelt.

2.1.3.2 Phänotypisierung der Studienteilnehmer

Alle Eltern und Kinder wurden auf Asthma bronchiale sowie auf, mit Asthma-assoziierte Merkmale wie z. B. Gesamt-IgE-Spiegel, spezifischer IgE-Spiegel, periphere Eosinophilenzellzahl und bronchiale Hyperreaktivität (BHR) untersucht.

Asthma bronchiale wurde zunächst klinisch diagnostiziert und später durch Fragebögen bestätigt. Dabei galt folgende Definition: *Asthma bronchiale* liegt dann vor, wenn nach dem 3. Lebensjahr mehrfach (> 10x) und über einen längeren Zeitraum (> 3 Jahre) akut, sich wiederholende Zeichen der Atemwegsobstruktion aufgetreten sind. Zeichen der Atemwegsobstruktion (und/oder Hyperreaktivität) sind Atemnot und pfeifende Atemgeräusche oder ständiger Husten (mehr als 2x am Tag), wobei anatomische Anomalien des Respirationstraktes und andere Lungenerkrankungen wie Zystische Fibrose, chronische Bronchitis etc. ausgeschlossen wurden.

Des weiteren wurden die Teilnehmer mit einem standardisierten Skin-Prick-Test (SPT) auf Allergien gegenüber zwölf häufigen Allergenen (Gräserpollen, Hausstaubmilben, Schimmelpilze, Tierhaare, Birkenpollen, Haselnusspollen etc.) getestet (Wjst und Wichmann, 1995) und der Gesamt-IgE-Spiegel im Serum als auch der spezifische IgE-Spiegel für die im SPT verwendeten Allergene mittels ELISA („enzyme-linked immunosorbent assay“) bzw. RAST („radioallergosorbent assay“) (Pharmacia, Freiburg, D) ermittelt (Wjst, 1999b). Da Astmatiker meist eine Blut-Eosinophilie aufweisen, wurde zusätzlich die periphere Eosinophilenzellzahl wie in Wjst, 1999b beschrieben, bestimmt. Eine Übersicht über die verwendeten Methoden sowie Festlegungen sind in Wjst und Wichmann, 1995 wiedergegeben.
2.2 Material

2.2.1 Geräte

- Gelelektrophorese-Apparatur: Sunrise, horizontal Gel Electrophoresis Apparatus
 (GibcoBRL, Life Technologies, Karlsruhe, D)
 Bio-Rad Power Pac300/3000 (Bio-Rad, München, D)
- Gel-Dokumentationssystem: UVT40 M Transilluminator (Herolab, Wiesloch, D)
- DNA-Sequenzierer: CEQ2000 (Beckman Coulter, Fullerton, USA)
 ABI-Prism 3100 Genetic Analyzer
 (Applied Biosystems, Weiterstadt, D)
- Kühlzentrifugen für Platten: Sigma 4K15C (Sigma Laborzentrifugen, Osterode, D)
 Rotanda 46 RS (Hettich, Darmstadt, D)
- Massenspektrometer: BIFLEX II- TOF
 (Bruker Franzen Analytik GmbH, Bremen, D)
- Mikrowelle: Moulinex (Solingen, D)
- PCR-System: PCR PTC 225 Tetrad, Peltier Thermal Cycler
 (MJ Research, Boston, USA)
 PCR PTC 200 Tetrad, Peltier Thermal Cycler
 (MJ Research, Boston, USA)
 PCR RoboCycler 96 Temperatur Cycler with Hot Top
 (Stratagene, Amsterdam, NL)
- Pipettierroboter: Biomek2000 (Beckman Coulter, Fullerton, USA)
 Genesis RSP 150 Work Station (Tecan AG, Crailsheim, D)
 Multimek96 Automated 96-Channel Pipettor
 (Beckman Coulter, Fullerton, USA)
- Photometer: GeniOS® Fluorescence Plate Reader (Tecan AG, Crailsheim, D)
- Schüttler: Taumelschüttler Unitwist 3D
 (UniEquip Laborgeräte + Vertriebs GmbH, München, D)
- Spotter: SpectroJET™ NP nanoliter pipetting system
 (SEQUENOM GmbH, Hamburg, D)
 SpectroPOINT™ nanoliter pipetting system
 (SEQUENOM GmbH, Hamburg, D)
- Thermomixer: Thermomixer Comfort (Eppendorf AG, Hamburg, D)
2.2.2 Oligonukleotide (Primer)

Die für das Auffinden von SNPs verwendeten PCR- und Sequenzierprimer wurden vom damaligen hauseigenen Syntheseservice (U. Linzner, Abteilung BioDV am Institut für Säugetiergenetik des Helmholtz-Zentrums Münchens) hergestellt.

Im Rahmen der MALDI-TOF- sowie Fragmentanalyse verwendete, HPSF („high purity salt free“)-aufgereinigte PCR- und Extensions-Primer wurden von der Fa. MWG-Biotech AG, Ebersberg, D, bezogen. Alle in der Arbeit verwendeten Primer sind im Anhang aufgelistet.

2.2.3 Chemikalien und Verbrauchsmaterialien

Die verwendeten Chemikalien, Enzyme und sonstigen Verbrauchsmaterialien wurden von den Firmen ABgene (Hamburg, D), ABI (Applied Biosystems, Weiterstadt, D), Amersham Pharmacia Biotech (Freiburg, D), ART (San Diego, USA), Becton Dickinson Labware (Franklin Lakes, NJ, USA), Corning Costar (Bodenheim, D), Dunn Labortechnik (Asbach, D), Eppendorf (Hamburg, D), Fisher Scientific (Schwerte, D), Gentra Systems (Minneapolis, USA), GibcoBRL (Eggenstein, D), Greiner Labortechnik (Solingen, D), Gilson International (Bad Camberg, D), JT Baker (Deventer, NL), Macherey-Nagel (Düren, D), MBI-Fermentas (St. Leon-Rot, D), Merck (Darmstadt, D), Molecular Probes (Leiden, NL), NEB New England Biolabs (Frankfurt, D), Nerbe Plus (Winsen/Luhe, D), QIAGEN (Hilden, D), Roth (Karlsruhe, D), Safe Skin Corp. (San Diego, USA), Sigma-Aldrich (Steinheim, D), bezogen.

2.2.4 Reagentien, Lösungen und Puffer

2.2.4.1 Reagentien, Lösungen und Puffer für die PCR

- 10x Puffer mit (NH₄)₂SO₄: 750 mM Tris-HCl, pH 8,8, 200 mM (NH₄)₂SO₄, 0,1% Tween (MBI Fermentas, St. Leon-Rot, D)
- 10x PCR Puffer: Tris-HCl, KCl, (NH₄)₂SO₄, 15 mM MgCl₂, pH 8,7 (QIAGEN, Hilden, D)
- 25 mM MgCl₂ QIAGEN, Hilden, D
- 25 mM MgCl₂ MBI Fermentas, St. Leon-Rot, D
- dNTP-Set, je 100 mM MBI Fermentas, St. Leon-Rot, D

2.2.4.2 Reagentien, Lösungen und Puffer für die Sequenzierung bzw. Fragmentanalyse
- 10x Running Buffer mit EDTA Applied Biosystems, Weiterstadt, D
- LiChrosolv, H₂O, HPLC grade Merck, Darmstadt, D
- HI-DI Formamid Applied Biosystems, Weiterstadt, D
- FG, 3100 POP6 Sequenziergel Applied Biosystems, Weiterstadt, D
- FG, 3100 POP4 Gel Applied Biosystems, Weiterstadt, D
- CEQ Sequenzier-Gel Beckman Coulter, Fullerton, USA
- CEQ Sequenzier-Puffer Beckman Coulter, Fullerton, USA

2.2.4.3 Reagentien, Lösungen und Puffer für MALDI-TOF Massenspektrometrie
- MassEXTEND™ Nucleotide Tri-Mix Pack SEQUENOM, Hamburg, D
- MassEXTEND™ Nucleotide Di-Mix Pack SEQUENOM, Hamburg, D
- MassEXTEND™ Nucleotide Uni-Mix Pack SEQUENOM, Hamburg, D
- hME MassEXTEND™ Nucleotide Tri-Mix Pack SEQUENOM, Hamburg, D
- 3-Punkt Kalibrant™ SEQUENOM, Hamburg, D
- hME Puffer SEQUENOM, Hamburg, D
- Spectro CLEAN™ SEQUENOM, Hamburg, D

2.2.4.4 Reagentien, Lösungen und Puffer für RFLP-Analysen (Restriktionsverdaus)
- 10x NEBuffer 4:
 (1x Buffer: 50 mM KAc, 20 mM TrisAc, 10 mM MgAc, 1 mM DTT, pH 7,9)
 (NEB New England Biolabs, Frankfurt, D)
- 10x NEBuffer 3:
 (1x Buffer: 100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl₂, 1 mM DTT, pH 7,9)
 (NEB New England Biolabs, Frankfurt, D)
2.2.4.5 Reagentien, Lösungen und Puffer für die DNA Gelelektrophorese

- Agarose ultra pure
 GibcoBRL, Eggenstein, D
- 6x Loading Dye Solution
 MBI Fermentas, St. Leon-Rot, D
- 1x TBE-Laufpuffer
 (Protokoll siehe Sambrook and Russel, 2001)

Alle weiteren Lösungen und Puffer wurden den jeweiligen Reaktionskits entnommen (siehe 2.2.7) und werden deshalb nicht gesondert aufgeführt.

2.2.5 Längenstandards für DNA Agarosegele

- pUC Mix, Marker, 8
 MBI Fermentas, St. Leon-Rot, D

2.2.6 Längenstandards für die Fragmentanalyse (Genescan)

- Genescan 400HD [ROX] Size Standard
 Applied Biosystems, Weiterstadt, D

2.2.7 Reaktionskits

2.2.7.1 Reaktionskits für die Gewinnung von DNA aus Vollblut

- Puregene Genomic DNA Isolation Kit
 Gentra Systems, Minneapolis, USA

2.2.7.2 PCR-Aufreinigungskits

- NucleoSpin® Robot 96-T Extract Kit
 Macherey-Nagel, Düren, D
- QIAquick PCR Purification Kit
 QIAGEN, Hilden, D
- QIAquick Gel Extraction Kit
 QIAGEN, Hilden, D

2.2.7.3 Sequenzierkits

- BigDye™ Terminator v1.0 Cycle Sequencing Kit
 (Applied Biosystems, Weiterstadt, D)
- CEQ™ DTCS Kit, Dye Terminator Cycle Sequencing Kit
 (Beckman Coulter, Fullerton, USA)
2.2.7.4 Reaktionskits für MALDI-TOF Massenspektrometrie
- MassEXTEND™ Core Kit SEQUENOM, Hamburg, D

2.2.7.5 Reaktionskits für die photometrische Konzentrationsbestimmung von DNA
- PicoGreen® dsDNA Quantitation Kit Molecular Probes, Leiden, NL

2.2.8 Enzyme

2.2.8.1 Polymerasen
- HotStar Taq™ DNA Polymerase QIAGEN, Hilden, D
- Taq DNA Polymerase LC, recombinant MBI Fermentas, St. Leon-Rot, D
- Thermosequenase™ Amersham Pharmacia Biotech, Freiburg, D

2.2.8.2 Restriktionsenzyme für RFLP-Analysen
- Ava I, recombinant NEB New England Biolabs, Frankfurt, D
- Dra III NEB New England Biolabs, Frankfurt, D

2.2.8.3 Enzyme für MALDI-TOF Massenspektrometrie
- _Shrimp Alkaline Phosphatase (SAP) SEQUENOM, Hamburg, D

2.2.9 Verwendete Computerprogramme

2.2.9.1 Computerprogramme für Pipettierroboter
- Gemini 3.2 (Visual Basic Programme) Tecan, Crailsheim, D
- Xfluor4 Tecan, Crailsheim, D
- NormalisationWorklistMaker (Visual Basic Programm) Tecan, Crailsheim, D
- Bioworks Beckman Coulter, Fullerton, USA
2.2.9.2 Computerprogramme für MALDI-TOF Massenspektrometrie
- SpectroTYPERTM SEQUENOM, Hamburg, D
- Genotype AnalyzerTM Version 2.0.0.5 SEQUENOM, Hamburg, D
- SpectroDESIGNERTM SEQUENOM, Hamburg, D
- SpectroREADERTM SEQUENOM, Hamburg, D

2.2.9.3 Computerprogramme für Sequenzierung und Fragmentanalyse
- DNA Sequencing Analysis SoftwareTM Version 3.6.1 (Applied Biosystems, Weiterstadt, D)
- 3100 Data Collection SoftwareTM Version 1.0.1 (Applied Biosystems, Weiterstadt, D)
- GeneScan Analysis SoftwareTM Version 3.7 (Applied Biosystems, Weiterstadt, D)
- CEQTM 2000 Software Version 2.0 (Beckman Coulter, Fullerton, USA)

2.2.9.4 Computerprogramme für Primerkonstruktion, Analyse genomischer DNA- Sequenzen, Sequenzalignments
- Vector NTI Suite 6.0 (www.invitrogen.com)

2.2.9.5 Computerprogramme für Datenverwaltung und statistische Analysen
- SIB-PAIR Version 0.99.9 by David L. Duffy davidD@qimr.edu.au
- SAS 8.1 und SAS 8.2 http://www.sas.com
- RC-TDT Version 1.0 by M. Knapp http://www.uni-bonn.de (Knapp 1999a und b)
- QTDT Package Version 2.2.1 by G. Abecasis http://www.well.ox.ac.uk/asthma/QTDT (Abecasis et al., 2000a und b)
- haptx (Dr. Klaus Rohde, Bioinformatik, Max-Delbrück-Zentrum, Berlin, D)
- Arlequin Release 2.001 (EM-Algorithmus) http://lgb.unige.ch/arlequin/software/2.001 (Excoffier und Slatkin, 1995)
2.2.10 Verwendete Internet-Datenbanken

- Ensemble (http://www.ensembl.org)
- UCSC Human Genome Project Working Draft, Genome Browser (http://genome.ucsc.edu)
- Unified Database for Human Genome Mapping (http://genecards.weizmann.ac.il/geneloc)
- http://ihg.helmholtz-muenchen.de/ihg/snps.html

2.3 Methoden

2.3.1 Molekularbiologische Methoden

2.3.1.1 Isolierung genomischer DNA aus Vollblut

Genomische DNA wurde aus peripheren Leukozyten (weiße Blutkörperchen) gewonnen. Dazu wurde den Probanden der Asthma-Familienstudie aus einer peripheren Vene 9-10 ml Vollblut entnommen und mittels des Puregene Genomic DNA Isolation Kits (Gentra Systems, Minneapolis, USA) genomische DNA nach einem Standardprotokoll isoliert. Dabei wurden zuerst die zellkernlosen Erythrozyten mittels Lyse und Zentrifugation von den restlichen Leukozyten abgetrennt. Im Anschluss erfolgte die Lyse der Leukozyten-Zellkerne unter Zugabe eines DNA-Stabilisators. In einem weiteren Schritt wurde die RNA mittels RNase A-Verdaus abgebaut und Proteine durch eine Salzpräzipitation beseitigt. Die sich im Überstand befindliche genomische DNA wurde mit 100% Isopropanol gefällt, gewaschen (70% Ethanol) und das getrocknete Pellet in 1-2 ml TE-Puffer (10 mM Tris, 1 mM EDTA, fertige Lösung ist Bestandteil des Kits) resuspendiert. Mit dieser Methode betrug die Ausbeute an genomischer DNA ca. 300-400 μg pro 9 ml Vollblut.

Die Langzeitlagerung der genomischen DNA-Stammlösungen erfolgte bei -20°C und -80°C in 2 ml Röhrchen, Cluster Mikrotiterplatten (96 Well-Format) und Deep Well-Platten (96 Well-Format).

2.3.1.2 Konzentrationsbestimmung genomischer DNA

Die Konzentration des eingesetzten DNA-Templates stellt eines der Hauptkriterien für das Funktionieren der PCR („polymerase chain reaction“, Polymerasekettenreaktion) dar. Für die Etablierung von PCRs im Hochdurchsatz-Verfahren („High-Throughput“-Technik) ist es deshalb notwendig, möglichst äquimolare Konzentrationen der genomischen DNA-Templates zu verwenden.
Eine herkömmliche photometrische Konzentrationsbestimmung wässriger, doppelsträngiger (ds) DNA-Lösungen mittels Absorptionsmessung bei 260 nm (Absorptionsmaximum doppel- und einzelsträngiger DNA) wirft insofern Probleme auf, da der große Beitrag einzelner Nukleotide und einzelsträngiger DNA (ssDNA) zum Absorptionssignal sowie Verunreinigungen der Probe die Messwerte verfälschen (Singer et al., 1997). Daher wurde die photometrische Konzentrationsbestimmung der genomischen DNA-Stammlösungen unter Verwendung des PicoGreen® dsDNA Quantitation Kits (Molecular Probes, Leiden, NL) durchgeführt.

PicoGreen® ist ein ultrasensitiver Fluoreszenzfarbstoff, der sich bevorzugt an doppelsträngige DNA (dsDNA) anlagert (Interkalation). Dies erlaubt eine äußerst genaue Detektion von weniger als 25 pg/ml dsDNA in der Anwesenheit äquimolarer Mengen von ssDNA oder RNA (Singer et al., 1997).

Für eine weitere Verwendung der genomischen DNAs in der PCR wurden die Stammlösungen mit 1x TE-Puffer auf eine Konzentration von 40-60 ng/μl bzw. 1 ng/μl verdünnt und die Verdünnungen in Deep Well-Mikrotiterplatten bei 4°C im Kühlraum gelagert. Alle Verdünnungen wurden vollautomatisch auf der Pipettierstation Genesis RSP 150 Work Station (Tecan, Crailsheim, D) unter Verwendung des Gemini 3.2 Visual Basic Programms (Tecan, Crailsheim, D) durchgeführt.

2.3.1.3 Pooling genomischer DNA aus der KORA S4-Studie

Zur Herstellung des DNA-Pools wurde zunächst die Konzentration der genomischen DNA-Stammlösungen von 286 zufällig ausgewählten Probanden der KORA S4-Studie (vgl. Abschnitt 2.1.2) mit der PicoGreen®-Methode photometrisch bestimmt und mit 1x TE-Puffer auf eine Endkonzentration von jeweils 1 ng/μl eingestellt. Danach wurden die eingestellten DNA-Lösungen durch Transfer von jeweils 18 μl einer jeden Verdünnung in einem Röhrchen vereinigt und gut gemischt („pooling“), um in etwa äquimolare Mengen zu erhalten. Von dieser gepoolten DNA-Lösung wurden in einem weiteren Schritt je 18 μl auf die einzelnen Wells einer 96 Well-Mikrotiterplatte transferiert und über Nacht eingetrocknet, so dass pro
Well 18 ng gepoolter DNA zur Verfügung standen. Die eingetrockneten DNA-Pools wurden bis zur weiteren Verwendung bei 4°C gelagert.
Alle Pipettierschritte erfolgten dabei auf der Genesis RSP 150 Work Station (Tecan, Crailsheim, D) unter Verwendung der Gemini 3.2-Software (Tecan, Crailsheim, D).

2.3.1.4 Konstruktion von Primern (Oligonukleotide)
Primer, die bei der MALDI-TOF-Analyse Verwendung fanden (PCR- und Extensions-Primer) wurden mit dem SpectroDESIGNER™-Programm der Fa. SEQUENOM (Hamburg, D) konstruiert.
Alle im Rahmen dieser Arbeit verwendeten PCR-, Sequenzier- und Extensions-Primer sind, zusammen mit den dazugehörigen Annealing-Temperaturen, im Anhang aufgelistet.

2.3.1.5 Polymerasekettenreaktion (PCR)
Die Polymerasekettenreaktion (PCR von „polymerase chain reaction“) erlaubt die Amplifikation einer spezifischen DNA-Sequenz, ohne auf das Klonieren zurückzugreifen. Die zu amplifizierende DNA-Sequenz wird dabei durch die, in der Reaktion verwendeten Primer definiert.
Damit für anschließende Sequenzierreaktionen ausreichende Mengen aufgereinigter PCR-Produkte zur Verfügung standen, wurden für PCRs, die im Rahmen der SNP-Suche im menschlichen STAT6-Gen bzw. der Genotypisierung verschiedener SNPs in der Asthma-Familienstudie durchgeführt wurden, ein Reaktionsansatz von insgesamt 50 μl gewählt.
Probanden, Material und Methoden

PCR-Reaktionsansatz für ein Gesamtvolumen von 50 μl:
30,0 μl LiChrosolv H₂O (Merck, Darmstadt, D)
1,5 μl genomisches DNA-Template (40 ng/μl)
5,0 μl 2 mM dNTP-Mix (MBI Fermentas, St. Leon-Rot, D)
5,0 μl 10x PCR-Puffer mit (NH₄)₂SO₄ (MBI Fermentas, St. Leon-Rot, D)
3,0 μl 25 mM MgCl₂ (MBI Fermentas, St. Leon-Rot, D)
2,5 μl forward PCR-Primer (10 pmol/μl)
2,5 μl reverse PCR-Primer (10 pmol/μl)
0,5 μl Taq DNA Polymerase (1 U/μl) (MBI Fermentas, St. Leon-Rot, D)

In der Regel wurde für mehrere, gleiche PCR-Ansätze ein sog. Master-Mix angesetzt, der bis auf das DNA-Template alle oben aufgeführten Komponenten enthielt. 48,5 μl dieses Mixes wurden in die einzelnen Wells einer 96 Well-Mikrotiterplatte vorgelegt und danach das DNA-Template dazu pipettiert. Die fertigen PCR-Ansätze wurden gut gemischt, kurz abzentrifugiert und bis zur Beladung der PCR-Thermocycler auf Eis gelagert.

Die Amplifikationen wurden auf PCR PTC 225 Tetrad Peltier Thermal Cyclern der Fa. MJ Research (Boston, USA) bzw. für NOS1 auf dem PCR RoboCycler 96 Temperature Cycler der Fa. Stratagene (Amsterdam, NL) unter folgenden Reaktionsbedingungen durchgeführt:

\[
\begin{align*}
95^\circ C & \quad 5 \text{ min } \quad \text{eineinleitender Denaturierungsschritt} \quad 1 \text{ Zyklus} \\
95^\circ C & \quad 1 \text{ min } \quad \text{Denaturierung} \\
X^\circ C & \quad 1 \text{ min } \quad \text{Annealing der Primer} \quad 35 \text{ Zyklen} \\
72^\circ C & \quad 1 \text{ min } \quad \text{Elongation} \\
72^\circ C & \quad 10 \text{ min } \quad \text{Elongation} \quad 1 \text{ Zyklus}
\end{align*}
\]

Alle eingesetzten Primer-Paare, die Primer-spezifischen Annealing-Temperaturen sowie die Längen der einzelnen PCR-Fragmente in bp sind gesondert im Anhang aufgeführt.

PCRs, die für eine Analyse mit der MALDI-TOF-Methode durchgeführt wurden, werden unter 2.3.1.13. genauer beschrieben.

2.3.1.6 Elektrophoretische Auftrennung von PCR-Fragmenten mit Agarosegelen

Die Überprüfung von PCR-Fragmenten erfolgte mittels elektrophoretischer Auftrennung in Agarosegelen. Dazu wurden je 5 μl PCR-Produkt mit 1 μl 6x Ladepuffer (MBI Fermentas, St. Leon-Rot, D) versetzt und das Gemisch entsprechend der Länge der amplifizierten Fragmente

2.3.1.7 Aufreinigung von PCR-Fragmenten
Für PCRs, die im 96 Well-Format (96 Well-Mikrotiterplatten) durchgeführt wurden, erfolgte die Aufreinigung der PCR-Produkte mit der Pipettierstation Biomek 2000 (Beckman Coulter, Fullerton, USA) nach einem Standardprotokoll unter Verwendung des NucleoSpin® Robot 96-B Extract Kit (Macherey-Nagel GmbH & Co, Düren, D). Einzelne PCRs (bis zu 30 Einzelproben) wurden mit dem QIAquick PCR Purification Kit (QIAGEN, Hilden, D) nach einem Standardprotokoll (siehe QIAquick Spin Handbuch) aufgereinigt. Die aufgereinigten PCR-Produkte wurden mit 30-50 μl LiChrosolv H₂O eluiert, auf einem Agarosegel überprüft und bis zur weiteren Verarbeitung bei -20°C gelagert.

2.3.1.8 Extraktion von PCR-Fragmenten aus Agarosegelen
Um nach erfolgter PCR eine vollständige Abtrennung restlicher dNTPs und anderer Bestandteile des PCR-Ansatzes zu gewährleisten, erfolgte bei einigen PCRs die Aufreinigung der PCR-Produkte über eine Gelextraktion. Dazu wurde der gesamte PCR-Ansatz auf ein 2% Agarosegel aufgetragen, die PCR-Banden nach erfolgter Elektrophorese aus dem Gel ausgeschnitten und mit dem QIAquick Gel Extraction Kit der Fa. QIAGEN (Hilden, D) nach Anleitung (siehe QIAquick Spin Handbuch) aufgereinigt. Die aufgereinigten PCR-Produkte wurden mit 30-50 μl LiChrosolv H₂O eluiert, auf einem Agarosegel überprüft und bis zur weiteren Verarbeitung bei -20°C gelagert.

2.3.1.9 Enzymatischer Verdau von PCR-Fragmenten (Restriktionsverdau)
Enzymatische Verdaus von PCR-Fragmenten mittels Restriktionsenzymen wurden im Rahmen der RFLP-Analyse (Restriktionsfragment-Längenpolymorphismus-Analyse) von SNPs in verschiedenen Genen durchgeführt.
2.3.1.9.1 *Dra* III-Restriktionsverdau

Die Reaktionen wurden in einem Gesamtvolumen von 20 μl durchgeführt:

- 15 μl unaufgereinigtes PCR-Produkt
- 2 μl 10x NEBuffer 3 (NEB New England Biolabs, Frankfurt, D)
- 2 μl BSA (Bovines Serum Albumin, 1:10 verdünnt, New England Biolabs, Frankfurt, D)
- 1 μl *Dra* III (20.000 U/ml)

Um einen möglichst vollständigen Verdau zu gewährleisten, erfolgte der Verdau bei 37°C über Nacht in einem Wasserbad. Die Ergebnisse wurden nachfolgend auf einem 6% Agarosegel überprüft, wobei der gesamte Restriktionsansatz aufgetragen wurde.

2.3.1.9.2 *Ava* I-Restriktionsverdau

Die Reaktionen wurden in einem Gesamtvolumen von 20 μl durchgeführt:

- 15 μl unaufgereinigtes PCR-Produkt
- 2 μl dest. H₂O
- 2 μl 10x NEBuffer 4 (New England Biolabs, Frankfurt, D)
- 1 μl *Ava* I (10.000 U/ml)

Der Verdau wurde für 5 Stunden in einem Wasserbad bei 37°C durchgeführt und nachfolgend die Ergebnisse auf einem 6% Agarosegel überprüft, wobei der gesamte Reaktionsansatz aufgetragen wurde.
2.3.1.10 Sequenzierung von aufgereinigten PCR-Fragmenten

Sequenzierungen erfolgten im Rahmen dieser Arbeit aus zwei Gründen. Zum einen wurden verschiedene SNPs innerhalb der Asthma-Familienstudie mittels Sequenzierung genotypisiert, zum anderen sollten durch einen Sequenzvergleich der PCR-Produkte von 32 Probanden der ECRHS-Studie (vgl. Abschnitt 2.1.1) SNPs in der genomischen Sequenz des humanen \(STAT6 \)-Gens identifiziert werden.

Beide Sequenziemethoden arbeiten mit Fluoreszenz-markierten Didesoxynukleotiden (ddNTPs) nach der Sanger-Abbruch-Methode (Sanger et al., 1977). Genauere Beschreibungen können den jeweiligen Handbüchern der Herstellerfirmen entnommen werden.

2.3.1.10.1 Sequenzierung mit dem ABI Prism 3100 Genetic Analyzer

Sequenzierreaktionen für PCR-Produkte > 300 bp erfolgten mit dem BigDye Terminator Cycle Sequencing Kit der Fa. Applied Biosystems (Weiterstadt, D) nach einem Standardprotokoll der Herstellerfirma (siehe Handbuch). Dabei wurde entsprechend der jeweiligen PCR-Effizienz, 3-5 μl aufgereinigtes PCR-Produkt als Template eingesetzt. Für PCR-Produkte bis zu einer Länge von 300 bp wurde der Reaktionsansatz wie folgt abgeändert:

1-3 μl aufgereinigtes PCR-Template
2 μl BigDye™ Terminator Mix
1 μl Sequenzierprimer (10 pmol/μl)
\(x \) μl LiChrosolv H₂O
Gesamtvolumen: 10 μl

Das Thermocycling erfolgte auf den PCR PTC 225 Tetrad Peltier Thermal Cyclern der Fa. MJ Research (Boston, USA) unter folgenden Bedingungen:

\[
96°C \quad 30 \text{ s} \quad \text{Denaturierung} \\
50°C \quad 15 \text{ s} \quad \text{Annealing des Sequenzierprimers} \quad \text{30 Zyklen} \\
60°C \quad 4 \text{ min} \quad \text{Elongation}
\]

2.3.1.10.2 Sequenzierung mit dem CEQ 2000 Sequenzierer
Sequenzierreaktionen sowie die anschließende Aufreinigung der Sequenzierprodukte erfolgte mit dem CEQ™ 2000 Dye Terminator Cycle Sequencing Kit (Beckman Coulter, Fullerton, USA) nach einem Standardprotokoll der Herstellerfirma. Es wurden entsprechend der PCR-Effizienz, 3-6 μl aufgereinigtes PCR-Template eingesetzt. Das Thermocycling erfolgte auf dem PCR RoboCycler 96 Temperature Cycler der Fa. Stratagene (Amsterdam, NL) unter folgenden Reaktionsbedingungen:

\[
\begin{align*}
96°C & \quad 30 \text{ s} & \text{Denaturierung} \\
50°C & \quad 30 \text{ s} & \text{Annealing des Sequenzierprimers} \\
60°C & \quad 4 \text{ min} & \text{Elongation}
\end{align*}
\]

30 Zyklen

Die aufgereinigten Sequenzierprodukte wurden in 40 μl deionisiertem Formamid (JT Baker, Deventer, NL) aufgenommen und unter Standardbedingungen (siehe Handbuch der Herstellerfirma) sequenziert. Die Analyse der Chromatogramme erfolgte mit dem Analyseprogramm der CEQ™ 2000 Software Version 2.0 (Beckman Coulter, Fullerton, USA).

2.3.1.11 Sequenzalignment zum Auffinden von SNPs
Zum Auffinden von SNPs wurden die Sequenzen des jeweiligen PCR-Fragments aller 32 Probanden der ECRHS-Studie (siehe 2.1.1) mit dem ContigExpress des Vector NTI Programms (www.invitrogen.com) analysiert.
2.3.1.12 Fragmentanalyse

Bei einer Fragmentanalyse dagegen, werden die einzelnen Allele aufgrund der unterschiedlichen Längen der entsprechenden PCR-Fragmente unterschieden. Dazu wird in einem ersten Schritt die den Repeat enthaltende, genomische DNA-Sequenz mittels PCR amplifiziert, wobei jeweils ein Fluoreszenz-markierter und ein nicht-markierter PCR-Primer verwendet werden, so dass Fluoreszenz-markierte PCR-Produkte entstehen (Primer siehe Anhang). Das PCR-Reaktionsvolumen belief sich dabei auf 20 μl:

1,5 μl genomisches DNA-Template (40 ng/μl)
2,5 μl 2 mM dNTP-Mix (MBI Fermentas, St. Leon-Rot, D)
2,5 μl 10x PCR-Puffer mit (NH₄)₂SO₄ (MBI Fermentas, St. Leon-Rot, D)
0,75 μl 25 mM MgCl₂ (MBI Fermentas, St. Leon-Rot, D)
1,25 μl 6-FAM markierter forward PCR-Primer (10 pmol/μl)
1,25 μl unmarkierter reverse PCR-Primer (10 pmol/μl)
0,25 μl Taq DNA Polymerase (1 U/μl) (MBI Fermentas, St. Leon-Rot, D)

Die Amplifikationen wurden auf PCR PTC 225 Tetrad Peltier Thermal Cyclern der Fa. MJ Research (Boston, USA) unter folgenden Bedingungen durchgeführt:
95°C 5 min einleitender Denaturierungsschritt 1 Zyklus
95°C 1 min Denaturierung
58°C 1 min Annealing der Primer 35 Zyklen
72°C 1 min Elongation
72°C 10 min Elongation 1 Zyklus

Nach Überprüfung der PCR auf DNA Agarosegelen, wurden die unaufgereinigten PCR-Produkte zunächst mit LiChrosolv H₂O 1:20 bzw. 1:50 (je nach Bandenstärke) verdünnt. In einem nachfolgenden Schritt wurden dann je 1 μl verdünntes PCR-Produkt und 0,3 μl eines definierten Längenstandards (Genescan 400HD [ROX] Size Standard, Applied Biosystems, Weiterstadt, D) in 15 μl deionisiertem Formamid (Applied Biosystems, Weiterstadt, D) 2 min bei 90°C denaturiert und der Ansatz anschließend sofort auf Eis gekühlt.

Um die Anzahl an GT-Repeats der einzelnen Allele zu bestimmen, wurden PCR-Fragmente, von, für das jeweilige Allel, homozygoten Personen, sequenziert. Als Sequenzierprimer diente der nicht-markierte forward PCR-Primer. Für die entsprechenden PCRs wurden die nicht-markierten PCR-Primer verwendet (Primer siehe Anhang). Die Primersequenzen wurden dabei der Veröffentlichung von Tamura et al., 2001 entnommen.

2.3.1.13 Genotypisierung von SNPs mittels MALDI-TOF Massenspektrometrie

2.3.1.13.1 Prinzip der MALDI-TOF Massenspektrometrie

Da DNA bei dem oben beschriebenen Prozess im Normalfall eine einfache Protonierung erfährt, ist die Ladung aller Proben gleich groß, so dass die Auf trennung im Flugrohr nur nach der Masse erfolgt.

Das Prinzip der MALDI-TOF MS ist in Abbildung 2.1 schematisch dargestellt.

2.3.1.13.2 Primer-Verlängerungs-Reaktion (Primer-Extension)

Für die Analyse von SNPs mittels MALDI-TOF Massenspektrometrie werden zunächst die, den jeweiligen SNP enthaltenden, genomischen DNA-Sequenzen mittels Polymerasekettenreaktion (PCR) amplifiziert. Die PCR-Fragmente dienen dann als Matrize (Template) für eine spezifische Primer-Verlängerungs-Reaktion (Primer-Extension), bei der die o. g. Allel-spezifischen Primer-Extensions Produkte erzeugt werden (Leushner und Chiu, 2000). Im Rahmen dieser Arbeit wurden zwei Varianten der Primer-Verlängerungs-Reaktion angewendet: die sogenannte PROBETM-Reaktion („primer oligo base extension reaction“, Little et al., 1997a und b), für die Validierung von SNPs aus Datenbanken sowie die SNP-Genotypisierung im 96 Well-Format und die hME- („homogeneous MassEXTENDTM“-) Methode (SEQUENOM, Hamburg, D) für die SNP-Genotypisierung im 384 Well-Format. Beide Methoden, inklusive der Massenspektrometrie selbst, sowie alle Analyse- und Auswerteschritte wurden mit dem MassARRAYTM-System der Fa. SEQUENOM (Hamburg, D) durchgeführt, welches eine Plattform für die automatisierte SNP-Genotypisierung mit MALDI-TOF MS im Hochdurchsatz-Verfahren („High-Throughput“) darstellt (Leushner und Chiu, 2000; Jurinke et al., 2001).
2.3.1.13.2.1. PROBETM-Reaktion ("primer oligo base extension reaction")

a) Prinzip

Streptavidin ist ein bakterielles Protein, das, aufgrund seiner sehr hohen Affinität zu Biotin, mit diesem, und damit auch mit biotinyliertem Material, sehr stabile Komplexe bildet (Jurinke et al., 1997).

Aus diesem Grund wird bei der PROBETM-Reaktion zunächst eine PCR mit einem biotinylierten (Biotinylierung am 5'-Ende) und einem nicht-biotinylierten PCR-Primer durchgeführt (Little et al., 1997a und b). Das unaufgereinigte, biotinylierte PCR-Produkt wird dann durch eine Bindung an, mit Streptavidin überschichteten, paramagnetischen Beads (SEQUENOM, Hamburg, D) immobilisiert (Little et al., 1997a und b) und denaturiert. Der Überstand, in welchem sich der nicht-biotinylierte Strang des PCR-Produkts sowie alles nicht-spezifisch gebundene Material befinden, wird verworfen. Der immobilisierte Strang des PCR-Produkts dient dann als Template für die nachfolgende Primer-Extensions-Reaktion. Bei dem sogenannten PROBE-Primer (Extensions-Primer) handelt es sich um ein zum Template-Strang komplementäres Oligonukleotid, dessen 3'-Ende genau eine Base vor dem jeweiligen SNP endet (Little et al., 1997a und b; Leushner und Chiu, 2000). In der nachfolgenden Primer-Extension wird dieser Primer durch die Zugabe einer bestimmten Kombination an Didesoxynukleotiden (Abbruch-Mix, auch Stop-Mix genannt) nach der Sanger-Abbruch-Methode (Sanger et al., 1977) ein bis drei Basenpaare verlängert. Dabei wird die Art der verwendeten Didesoxynukleotide durch die beiden Allele des SNPs bestimmt, wie Abbildung 2.2 am Beispiel des SNPs in Intron 18 des humanen STAT6-Gens verdeutlicht. Nach einem weiteren Denaturierungsschritt befinden sich die Extensions-Produkte im Überstand und stehen in dieser gelösten Form für eine nachfolgende Analyse mit MALDI-TOF MS zur Verfügung.
Abbildung 2.2: Schematische Darstellung der PROBETM-Reaktion für den SNP in Intron 18 des humanen STAT6-Gens, STAT6 In18SNP1 (nach Little et al., 1997a und b, in abgewandelter Form). a) Gezeigt ist der reverse Strang des PCR-Produkts (schwarz), der durch sein biotinyliertes 5'-Ende (Bio) an Streptavidin (Strep) beschichtete paramagnetische Beads (Bead) gebunden ist. Während des Annealing-Schrittes der Primer-Extensions-Reaktion lagert sich der komplementäre Extensions-Primer (grün) an das Template an. Dieser endet mit seinem 3'-Ende genau eine Base vor dem SNP (rot), welcher in diesem Fall ein G>A-Austausch ist. b) Nach Zugabe von ThermosequenaseTM (einer spezifischen DNA-Polymerase) und eines geeigneten Stop-Mixes bestehend aus einem best. Verhältnis dNTPs (blau) und ddNTPs (violett) erfolgt während des Elongationsschrittes der Primer-Extensions-Reaktion die Verlängerung des Extensions-Primers, so dass bei einem heterozygoten Fall zwei Allel-spezifische Extensions-Produkte (Extension Produkt 1 und 2) entstehen, die sich in ihren Molekülmassen deutlich von einander unterscheiden. c) Nach einem Denaturierungsschritt befinden sich die beiden Extensions-Produkte im Überstand und stehen für eine weitere Analyse mit der MALDI-TOF MS zur Verfügung.
b) Polymerasekettenreaktion (PCR)
Um spätere Primer-Kontaminationen im Massenspektrum (siehe Punkt c) zu vermeiden, wurde für PCRs, die im Rahmen der PROBE™-Reaktion erfolgten, die Menge des eingesetzten biotinylierten PCR-Primers so gewählt, dass dessen möglichst vollständiger quantitativer Verbrauch während der Reaktion gewährleistet war, ohne dabei die PCR in irgendeiner Weise zu beeinträchtigen. Das PCR-Reaktionsvolumen betrug dabei für alle Assays 50 μl.
Für die Genotypisierung von SNPs im 96 Well-Format wurde folgender Reaktionsansatz gewählt:

32,4 μl LiChrosolv H2O (Merck, Darmstadt, D)
 1,5 μl genomisches DNA-Template (40 ng/μl)
 5,0 μl 2 mM dNTP-Mix (MBI Fermentas, St. Leon-Rot, D)
 5,0 μl 10x PCR-Puffer mit (NH4)2SO4 (MBI Fermentas, St. Leon-Rot, D)
 3,0 μl 25 mM MgCl2 (MBI Fermentas, St. Leon-Rot, D)
 2,5 μl nicht-biotinylierter PCR-Primer (10 pmol/μl)
 0,1 μl biotinylierter PCR-Primer (10 pmol/μl)
 0,5 μl Taq DNA Polymerase recombinant (1 U/μl) (MBI Fermentas, St. Leon-Rot, D)

Für die Validierung von SNPs mit der gepoolten DNA der KORA S4-Studie wurde folgender Ansatz verwendet, der direkt auf das lyophilisierte DNA-Template (18 ng) pipettiert wurde:

33,9 μl LiChrosolv H2O (Merck, Darmstadt, D)
 5,0 μl 2 mM dNTP-Mix (MBI Fermentas, St. Leon-Rot, D)
 5,0 μl 10x PCR-Puffer mit (NH4)2SO4 (MBI Fermentas, St. Leon-Rot, D)
 3,0 μl 25 mM MgCl2 (MBI Fermentas, St. Leon-Rot, D)
 2,5 μl nicht-biotinylierter PCR-Primer (10 pmol/μl)
 0,1 μl biotinylierter PCR-Primer (10 pmol/μl)
 0,5 μl Taq DNA Polymerase (1 U/μl) (MBI Fermentas, St. Leon-Rot, D)

Die Amplifikationen erfolgten für beide Ansätze auf PCR PTC 225 Tetrad Peltier Thermal Cyclern der Fa. MJ Research (Boston, USA) unter folgenden Reaktionsbedingungen:
95°C 10 min einleitender Denaturierungsschritt 1 Zyklus
95°C 45 sec Denaturierung
X°C 45 sec Annealing der Primer 45 Zyklen
72°C 45 sec Elongation
72°C 10 min Elongation 1 Zyklus
4°C unendlich

c) Primer-Extensions-Reaktion

d) MALDI-TOF Massenspektrometrie
1. Übersetzung des TOF- („time-of-flight“-) Spektrums in ein Massenspektrum
 (SpectroREADER™-Software; Leushner und Chiu, 2000)
2. Prozessierung und Analyse der Spektren sowie deren Übersetzung in entsprechende
 Genotypen (SpectroTYPE™-Software; Buetow et al., 2001).

2.3.1.13.2.2. hME- („homogeneous MassEXTEND™“-) Methode

a) Prinzip

Die hME-Methode, welche für die Genotypisierung von SNPs im 384 Well-Format
verwendet wurde, unterscheidet sich von der PROBE-Reaktion in sofern, dass hier keine
Aufreinigung über das Biotin-Streptavidin-System erfolgt. Weiterhin werden die PCR's mit
sog. „getaggen“ PCR-Primern durchgeführt. Hierbei werden an das 5'-Ende der
sequenzspezifischen Primer zehn zusätzliche Basen, der sog. „tag“, angehängt (siehe
Abbildung 2.3). Diese tags sind für alle Primer gleich und haben folgende Sequenz: 5'-
ACGTTGGATG-3'. Durch den Anhang dieser zusätzlichen Nukleotide wird die
Molekülmassen der PCR-Primer erhöht, so dass sie weit außerhalb des Massenbereichs der
Primer-Extensions-Produkte liegen und somit nicht im Massenfenster erscheinen.
Nach erfolgter PCR wird der Ansatz mit dem Enzym SAP (Shrimp Alkaline Phosphatase;
SEQUENOM, Hamburg, D) behandelt. Dieses baut freie, während der PCR nicht eingebaute,
Desoxynukleotide ab, so dass diese in der darauffolgenden Primer-Extensions-Reaktion nicht
stören. Die Primer-Extension erfolgt nun direkt in dem nicht-aufgereinigten PCR-Ansatz. In
einem letzten Schritt wird die Probe zur Reinigung mit einem Ionenaustauscher-Harz
(SpectroCLEAN™, SEQUENOM, Hamburg, D) behandelt und steht nun für eine weitere
Analyse bereit.

5'-ACGTTGGATGCTTACGGTTGTTCTGTATGC-3'

Abbildung 2.3: hME PCR-Primer mit „tag“ (Anhang). Grün: Sequenzspezifischer Teil des Primers. Rot: 10
Nukleotide langer Anhang (tag).

b) Polymerasekettenreaktion (PCR)

Alle im Rahmen der hME-Methode durchgeführten PCR's erfolgten in 384 Well-
Mikrotiterplatten, wobei das Reaktionsvolumen 5 μl betrug. Dazu wurde ein Mastermix
angefertigt, der mit der Pipettierstation Genesis RSP 150 Work Station der Fa. Tecan
(Crailsheim, D) unter Verwendung des Gemini 3.2 Programms in die einzelnen Wells
vorgelegt wurde. Die, auf 384 Well-Mikrotiterplatten vorgefertigten genomischen DNA-
Templates wurden dann mit einer Mehrkanalpipette manuell zu den Mastermixen dazu pipettiert.

Dabei ergab sich pro Einzelreaktion folgender Ansatz:

1,08 μl LiChrosolv H₂O (Merck, Darmstadt, D)
2,50 μl genomisches DNA-Template (1ng/μl)
0,50 μl 2 mM dNTP-Mix (MBI Fermentas, St. Leon-Rot, D)
0,50 μl 10x PCR-Puffer (QIAGEN, Hilden, D)
0,20 μl 25 mM MgCl₂ (QIAGEN, Hilden, D)
0,10 μl forward PCR-Primer (10 pmol/μl)
0,10 μl reverse PCR-Primer (10 pmol/μl)
0,02 μl HotStar Taq™ DNA Polymerase (5 U/μl) (QIAGEN, Hilden, D)

Die Amplifikationen erfolgten auf PCR PTC 225 Tetrad Peltier Thermal Cyclern der Fa. MJ Research (Boston, USA) unter folgenden Reaktionsbedingungen:

95°C 15 min einleitender Denaturierungsschritt 1 Zyklus
95°C 20 s Denaturierung
X°C 30 s Annealing der Primer 45 Zyklen
72°C 1 min Elongation
72°C 3 min Elongation 1 Zyklus
4°C unendlich

c) Primer-Extensions-Reaktion

d) MALDI-TOF Massenspektrometrie
2.3.1.13.3 Assay-Design - Konstruktion von PCR- und Extensions-Primern

Ein Hochdurchsatz-Verfahren, wie es die Genotypisierung von SNPs mittels MALDI-TOF MS darstellt, erfordert ein optimales Assay-Design. So müssen die Molekülmassen der PCR- und Extensions-Primer genau aufeinander abgestimmt sein. Auch dürfen die Extensions-Primer nicht zu lang sein (Optimum: 16-25 bp), da ihr Molekulargewicht und das der Extensions-Produkte sonst zu groß wäre für eine massenspektrometrische Analyse. Um solche Schwierigkeiten zu vermeiden, wurden alle verwendeten Assays mit dem SpectroDESIGNER™-Programm der Fa. SEQUENOM (Hamburg, D) konstruiert, welches auch gleich die zu erwartenden Molekülmassen der Primer sowie der Extensions-Produkte berechnet.

Eine Übersicht über alle PCR- und Extensions-Primer und die zu erwartenden Extensions-Produkten ist im Anhang aufgelistet.

2.3.2 Statistische Methoden

2.3.2.1 Überprüfung der Genotypenkonformität innerhalb der Familien - Mendel-Check

Die Überprüfung der Genotypenkonformität innerhalb einzelner Familien der Asthma-Familienstudie gemäß den Mendelschen Vererbungsgesetzen wurde für jeden genotypisierten SNP mit dem, von G. Fischer (Institut für Epidemiologie, Helmholtz-Zentrum München) aufbereiteten, Mendel-Check-Programm des SIB-PAIR-Softwarepakets von David L. Duffy (SIB-PAIR Version 0.99.9, davidD@qimr.edu.au) durchgeführt.

2.3.2.2 Test auf Hardy-Weinberg-Gleichgewicht (HWE)

Für einen biallelischen Marker, wie ihn ein SNP darstellt, sei \(p \) die Frequenz des Allels A, \(q \) diejenige des Allels B. Somit gilt \(p+q=1 \). Unter Panmixie ist dann die Wahrscheinlichkeit für eine Person homozygot für das Allel A zu sein \(p^2 \), die Wahrscheinlichkeit homozygot für das
Allel B zu sein q^2 und die Wahrscheinlichkeit heterozygot, AB, zu sein $2pq$. Diese Beziehung zwischen den Allel- und Genotypfrequenzen wird durch das Hardy-Weinberg-Gleichgewicht (Hardy-Weinberg-Equilibrium, kurz HWE) dargestellt:

$$p^2 + 2pq + q^2 = (p+q)^2 = 1$$

2.3.2.3 Reconstruction-Combined TDT (RC-TDT)

Mit dem TDT wird überprüft, ob heterozygote Eltern ein bestimmtes Allel signifikant häufiger an ihre erkrankten Kinder weitergeben, als nach den Mendelschen Regeln zu erwarten wäre, wenn keine Kopplung bzw. Assoziation bestünde (Spielman et al., 1993). Die
statistische Analyse erfolgt dabei mit einem χ^2-Test für verbundene Stichproben über eine Kontingenztafel für biallelische Marker (2x2 Kontingenztafel) (Spielman et al., 1993; Spielman und Ewans, 1996).

Bei dem vom Michael Knapp entwickelten „Reconstruction-Combined Transmission-Disequilibrium“-Test, kurz RC-TDT (Knapp, 1999a), handelt es sich um eine Variante des klassischen TDTs von Spielman (Spielman et al., 1993) bei dem auch Familien in die Berechnungen einfließen, für die keine bzw. nur teilweise Informationen über die Genotypen der Eltern vorliegen (Knapp, 1999a). In solchen Fällen werden die Genotypen der Eltern anhand der Genotypen der Kinder rekonstruiert, wobei alle Geschwister der jeweiligen Familie, erkrankte als auch nicht erkrankte, herangezogen werden (Knapp, 1999a). Dabei wird der aus der Rekonstruktion resultierende systematische Fehler (Bias) korrigiert (Knapp, 1999a und b). Weiterhin ist die Kalkulation exakter p-Werte möglich (Knapp, 1999b). Zwar fließen alle genotypisierten Familien in die Berechnungen ein, jedoch sind nur solche Familien informativ, bei denen mindestens ein Elternteil heterozygot für das zu testende Allel ist. Dabei bilden die Erkrankten (Kinder) die Fallgruppe, die Kontrollgruppe besteht aus „künstlichen“ Individuen (Pseudokontrollen), deren Genotyp aus den nicht an die erkrankten Kinder weitergegebenen Allelen der Eltern gebildet wird.

Der RC-TDT wurde für das qualitative Merkmal Asthma durchgeführt. Die Berechnungen erfolgten für alle untersuchten SNPs als auch für den GT-Repeat in Exon 1 des humanen STAT6-Gens. Für letzteren wurde die Programmversion für multiallelische Marker verwendet (S. Loesgen, persönliche Mitteilung).

2.3.2.4 Quantitativer TDT

hier bestand die Kontrollgruppe aus „künstlichen“ Individuen (Pseudokontrollen), deren Genotyp aus den nicht an die erkrankten Kinder weitergegebenen Allelen der Eltern gebildet wird. Um eine bessere Anpassung an die Normalverteilung zu erhalten, wurden im Falle des Gesamt-IgE-Spiegels die Werte logarithmiert (ln IgE). Die Berechnungen wurden für alle untersuchten SNPs als auch für den GT-Repeat in Exon 1 des humanen \textit{STAT6}-Gens durchgeführt. Für letzteren wurde die Programmversion für multiallelische Marker verwendet, mit der ein globaler p-Wert errechnet wird (http://www.well.ox.ac.uk/asthma/QTDT). Die statistischen Analysen für den QTDT wurden von Diplom-Statistikerin Sabine Loesgen (http://www.loesgen.com) durchgeführt, wobei das QTDT-Softwarepaket Version 2.2.1 von Abecasis verwendet wurde (http://www.well.ox.ac.uk/asthma/QTDT).

\subsection*{2.3.2.5 Bestimmung von Haplotypen}

Die statistischen Analysen wurden von Herrn Dr. Klaus Rohde (Bioinformatik, Max-Delbrück-Zentrum für Molekulare Medizin, Berlin, D) durchgeführt.

\subsection*{2.3.2.6 Assoziation von Haplotypen mit den quantitativen Merkmalen}

Überprüfung der Normalverteilung der Merkmale wurden die Rangsummentests Kruskal-Wallis-Test und Wilcoxon-Test angewendet (K. Rohde, persönliche Mitteilung). Die statistischen Analysen wurden von Herrn Dr. Klaus Rohde (Bioinformatik, Max-Delbrück-Zentrum für Molekulare Medizin, Berlin, D) durchgeführt.

2.3.2.7 Bestimmung des Kopplungsungleichgewichts zwischen SNPs
(„pairwise linkage disequilibrium“; pairwise LD)

Der Test für die Bestimmung des Kopplungsungleichgewichts zwischen den einzelnen SNPs des humanen \(STAT6 \)-Gens erfolgte paarweise für alle Zweier-Kombinationen der 13 SNPs und wurde mit der „Maximum-Likelihood“-Methode von Excoffier und Slatkin (Excoffier und Slatkin, 1995) unter Verwendung von 10.000 Permutationen durchgeführt (Software-Paket: Arlequin Release 2.001).
3. Ergebnisse

3.1 Analyse des humanen NOS1-Gens

Das humane *NOS1*-Gen ist ein „single-copy“-Gen (nur eine Gen-Kopie im gesamten Genom), das für die neuronale Stickstoffmonoxidsynthase („neuronal nitric oxide synthase“) kodiert und auf der chromosomalen Region 12q24.2-24.31 lokalisiert ist (Xu et al., 1993; Hall et al., 1994). Es besteht aus 29 Exons, 28 Introns und einer „upstream“ des ersten Exons gelegenen Promotorregion, die sich zusammen über eine mehr als 160 kb umfassende genomische Sequenz erstrecken (Hall et al., 1994). Der Translationsstartpunkt für das 1.434 Aminosäure große Protein befindet sich in Exon 2, so dass Exon 1 die 5'UTR darstellt (Hall et al., 1994). Die 3'UTR wird von den letzten zwei Dritteln von Exon 29 gebildet (Hall et. al., 1994).

In einer früheren Veröffentlichung wurden für das humane *NOS1*-Gen zwei SNPs beschrieben, von denen einer in Exon 18 lokalisiert ist (*NOS1* Ex18SNP1), der andere in der 3'UTR von Exon 29 (*NOS1* Ex29SNP1) (Grasemann et al., 1999a; Tabelle 3.1, Spalte 4). Bei beiden SNPs handelt es sich um eine C>T-Transition, die jedoch, im Falle von Exon 18, zu keinem Aminosäureaustausch führt (Grasemann et al., 1999a; Tabelle 3.1, Spalte 2). Für den SNP in Exon 29 konnte in einer Fall-Kontroll-Studie eine Assoziation mit dem asthmatischen Phänotyp gefunden werden (Grasemann et al., 1999).

Im Rahmen dieser Arbeit wurde getestet, ob auch in der deutschen Asthma-Familienstudie eine Kopplung/Assoziation dieser SNPs mit Asthma und/oder den Asthma-assoziierten, quantitativen Merkmalen, erhöhter Gesamt-IgE-Spiegel, erhöhte Eosinophilenzellzahl und dem Lungenfunktionsparameter SLOPE (Erklärung siehe Abschnitt 1.5.3), nachgewiesen werden kann. Dies erforderte zunächst einmal die erfolgreiche Validierung der SNPs, an die sich eine möglichst vollständige Genotypisierung aller zur Verfügung stehenden Familien anschloss. Die Daten wurden im darauffolgenden statistisch analysiert und auf Assoziation bzw. Kopplung getestet.

3.1.1 Validierung der NOS1-SNPs in der Asthma-Familienstudie

Zur Validierung der *NOS1*-SNPs in der Asthma-Familienstudie wurden die entsprechenden genomischen Sequenzen von jeweils 30 zufällig ausgewählten, genetisch unabhängigen Probanden (Eltern) der Asthma-Familienstudie spezifisch amplifiziert und die PCR-Fragmente mittels Sequenzierung überprüft. Dabei konnten für beide SNPs alle drei Allelkombinationen, homozygot CC, heterozygot CT und homozygot TT, nachgewiesen werden.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Position in bp entsprechend mRNA</th>
<th>GenBank Accession-Nr.</th>
<th>Lage im Gen entsprechend der Exon / Intron-Grenzen</th>
<th>Genotyp.-Methode Sequenz. (S) / RFLP-Analyse (R)</th>
<th>GenBank ref. SNP Id (rs#) / GenBank Assay Id (ss#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOS1 Ex18SNP1</td>
<td>3391C>T</td>
<td>NM_000620</td>
<td>Exon 18</td>
<td>R / S</td>
<td>1047735 / 1520025</td>
</tr>
<tr>
<td>NOS1 Ex29SNP1</td>
<td>5266C>T</td>
<td>NM_000620</td>
<td>Exon 29 (3'UTR)</td>
<td>S</td>
<td>2682826 / 3787441</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Übersicht über die beiden SNPs im humanen NOS1-Gen. Die Position der SNPs in bp bzgl. der mRNA des NOS1-Gens (GenBank Accession-Nr.: NM_000620, Spalte 3) ist in Spalte 2 wiedergegeben, die Lage im Gen entsprechend der Exon/Intron-Grenzen in Spalte 4. Bei beiden SNPs handelt es sich um einen C>T-Austausch (Spalte 1). Die Genotypisierung in der Asthma-Familienstudie erfolgte für den SNP in Exon 18, NOS1 Ex18SNP1, mittels RFLP-Analyse (R) und Sequenzierung (S), für den SNP in Exon 29, NOS1 Ex29SNP1, nur mittels Sequenzierung (S) (Spalte 5). Beide SNPs sind bereits in die öffentliche SNP-Datenbank eingetragen (http://www.ncbi.nlm.nih.gov/SNP; Spalte 6).

3.1.2 Genotypisierung der NOS1-SNPs in der Asthma-Familienstudie

Zu Beginn der Arbeit standen 108 Familien (474 Probanden, 216 Eltern, 258 Kinder) zur Verfügung, die möglichst vollständig genotypisiert werden sollten, um für nachfolgende Assoziationstests eine möglichst hohe Power (Teststärke) zu erreichen.

Eine computergestützte Sequenzanalyse ergab für den SNP in Exon 18 eine, für das C-Allel spezifische, Dra III-Erkennungssequenz (Abbildung 3.1a), so dass die Genotypisierung innerhalb der Familienstudie zunächst mittels einer RFLP-Analyse (Restriktionsfragmentlängenpolymorphismus-Analyse) erfolgen konnte. Dazu wurden die entsprechenden PCR-Fragmente einem Dra III-Restriktionsverdau unterzogen und das, bei der Agarosegelelektrophorese entstandene, Bandenmuster analysiert. Die PCR-Primer wurden dabei so gewählt, dass das resultierende 179 bp große PCR-Fragment keine zusätzlichen Dra III-Schnittstellen enthielt (Abbildung 3.1a). Für das C-Allel homozygote Probanden zeigten demnach zwei Banden, ein 118 bp großes Fragment und ein 61 bp großes Fragment, während im Falle einer TT-Homozygotie nur das ungeschnittene 179 bp große PCR-Fragment
zu finden war (Abbildung 3.1b). Bei heterozygoten Probanden dagegen wurden alle drei Fragmente nachgewiesen (Abbildung 3.1b).

a)

<table>
<thead>
<tr>
<th>forward PCR-Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GTCCTCAATTTTTGCTCTG GCTCAGGAC ATACCCCTAAC TTTTGCAGCT</td>
</tr>
<tr>
<td>CAAGAGTCAA AAACGGGACG CGAGTCCTCG TATGGGAGGTT AAAACGCGGA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>reverse PCR-Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 TCGGACAGCC GTTGGACACC CTCTGGAAG AACTGGGAGG GGAGAGGATC</td>
</tr>
<tr>
<td>AGCTGTGCG GTAACCTTGAG GAGGACTCTC TTGACCCTCC CCTCCTTAG</td>
</tr>
</tbody>
</table>

| 101 CTGAAGATGA GGGAAGGGGA TGAGCTCTGT GGGCAGGAAG AGGCTTTCAG |
| GACTTTACT CCCTCCCTCT ACTGAGACA CCGCTCTTC TCCGAAAGCT |

| 151 GACCTGGGCC AAGAAGGTCT TCAAGGTAA CTGGACC |
| GGTTCTCAGTT TTTGGCCTCG CGG TTCTTCCAGA AGTTCCATT |

b)

Die Genotypisierung des SNPs in Exon 29, \textit{NOS1} Ex29SNP1, erfolgte ausschließlich mittels Sequenzierung der entsprechenden PCR-Fragmente (Tabelle 3.1, Spalte 5). Die Genotypisierungsrate lag dabei bei 87%.

Im Anschluss an die Genotypisierungen wurde für beide SNPs des \textit{NOS1}-Gens ein computergestützter Test durchgeführt, bei dem für jede Familie die elterlichen Genotypen auf Konformität mit den Genotypen ihrer Kinder überprüft wurden („Mendel-Check“). Dabei wurden für beide SNPs keinerlei Unstimmigkeiten festgestellt. Weiterhin zeigten sich keine Abweichungen vom Hardy-Weinberg-Gleichgewicht (p-Werte $> 0,05$; Tabelle 3.2, Spalte 5), so dass Genotypisierungsfehler weitestgehend ausgeschlossen werden konnten.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{NOS1} Ex18SNP1</td>
<td>78</td>
<td>92</td>
<td>24</td>
<td>0,6954 / 0,7571</td>
</tr>
<tr>
<td>\textit{NOS1} Ex29SNP1</td>
<td>86</td>
<td>75</td>
<td>18</td>
<td>0,7820 / 0,8611</td>
</tr>
</tbody>
</table>

3.1.3 Statistische Auswertung - Kopplungs- und Assoziationsanalysen

Um einen besseren Bezug zu den Ergebnissen der genomweiten Suche (Wjst et al., 1999a) und der anschließenden Mikrosatelliten-Feinkartierung (Immervoll et al., 2001) herzustellen, flossen in die statistischen Analysen für die beiden SNPs des \textit{NOS1}-Gens zunächst nur die 97 Familien ein, die auch für die vorangegangenen Studien herangezogen worden waren (Immervoll et al., 2001; Illig, persönliche Mitteilung). Die elterlichen Allelverteilungen sind sowohl in absoluten Zahlen als auch als relative Frequenzen in Tabelle 3.3 wiedergegeben.

Die statistische Analyse für Asthma erfolgte mit dem RC-TDT („Reconstruction-Combined Transmission-Disequilibrium-Test“; Knapp, 1999a und b), wobei definitionsgemäß alle genotypisierten Kinder aus allen Familien in die Berechnungen einflossen (Loesgen,
persönliche Mitteilung). Dabei wurde weder für den SNP in Exon 18, *NOS1* Ex18SNP1, noch denjenigen in Exon 29, *NOS1* Ex29SNP1, Kopplung/Assoziation mit Asthma nachgewiesen (p-Werte > 0,05; Tabelle 3.3, Spalte 5; Immervoll et al., 2001).

<table>
<thead>
<tr>
<th>SNP</th>
<th>Allel</th>
<th>Anzahl der elterlichen Allele [N]</th>
<th>Allelfrequenz der elterlichen Allele [%]</th>
<th>RC-TDT p-Wert Asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOS1 Ex18SNP1</td>
<td>1 (C)</td>
<td>219</td>
<td>63,29</td>
<td>0,3010</td>
</tr>
<tr>
<td></td>
<td>2 (T)</td>
<td>127</td>
<td>36,71</td>
<td></td>
</tr>
<tr>
<td>NOS1 Ex29SNP1</td>
<td>1 (C)</td>
<td>226</td>
<td>68,48</td>
<td>0,7971</td>
</tr>
<tr>
<td></td>
<td>2 (T)</td>
<td>104</td>
<td>31,52</td>
<td></td>
</tr>
</tbody>
</table>

*Tabelle 3.3: Kopplungs-/Assoziationsanalyse für die beiden SNPs des humanen *NOS1*-Gens mit Asthma.*

Die Analysen erfolgten mit dem RC-TDT (Knapp, 1999a und b), wobei nur die 97 Familien in die Berechnungen einflossen, die auch für die genomweite Suche und die Feinkartierung herangezogen wurden. Keiner der beiden SNPs des *NOS1*-Gens zeigte eine Kopplung/Assoziation mit Asthma (p-Werte > 0,05; Spalte 5). Die elterlichen Allelverteilungen für die 97 Familien sind sowohl in absoluten Zahlen [N] als auch in relativen Frequenzen [%] wiedergegeben (Spalte 3 und 4).

Um den Einfluss der SNPs auf die quantitativen Merkmale erhöhter Gesamt-IgE-Spiegel, erhöhte Eosinophilenzellzahl und erhöhter SLOPE zu testen, wurde für die beiden SNPs ein quantitatter TDT, kurz QTDT (Abecasis et al., 2000a und b), durchgeführt. Dabei wurden die Genotypen aller Familienmitglieder berücksichtigt. Da die Ausprägung der quantitativen Phänotypen alters- und geschlechtsabhängig ist, flossen zusätzlich Alter und Geschlecht als Ko-Variablen in die Berechnungen ein. Die Analysen erfolgten sowohl für die schon erwähnten 97 Familien (S1) als auch für alle 108 Familien (S2). Es wurde für keine der beiden Stichproben eine Assoziation der SNPs mit den quantitativen Merkmalen nachgewiesen (p-Werte > 0,05; Tabelle 3.4).

Da sich für die quantitativen Analysen bezüglich der Signifikanzen keine Unterschiede zwischen den beiden Stichproben (97 Familien und alle 108 Familien) ergaben, wurde darauf verzichtet, auch die Assoziationsanalyse für Asthma mit allen 108 Familien durchzuführen.
Tabelle 3.4: Assoziationsanalyse für die beiden SNPs des humanen NOS1-Gens mit den quantitativen Merkmalen erhöhter Gesamt-IgE-Spiegel, erhöhte Eosinophilenzellzahl und erhöhter SLOPE.

Die Analysen erfolgten mit dem QTDT (Abecasis et al., 2000a und b) und wurden einmal für die 97 Familien (S1) als auch für alle 108 Familien (S2) durchgeführt. In beiden Fällen wurde für keinen der beiden SNPs des NOS1-Gens eine Assoziation mit den quantitativen Phänotypen nachgewiesen (p-Werte alle > 0,05; Spalte 3,5 und 7). In Spalte 2,4 und 6 ist der Einfluss des jeweiligen Allels auf den quantitativen Phänotyp in Form einer deskriptiven Statistik wiedergegeben. Der Einfluss ist nur dann von Bedeutung, wenn auch der p-Wert signifikant ist (p < 0,05).

<table>
<thead>
<tr>
<th>SNP</th>
<th>mit erhöhtem Gesamt-IgE assoziiertes Allel</th>
<th>p-Wert Gesamt-IgE</th>
<th>mit erhöhter Eos.zellzahl assoziiertes Allel</th>
<th>p-Wert Eos.zellzahl</th>
<th>mit erhöhtem SLOPE assoziiertes Allel</th>
<th>p-Wert SLOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOS1 Ex18SNP1</td>
<td>S1: 2 (T) > 0,1000 S2: 2 (T) > 0,1000</td>
<td>> 0,1000</td>
<td>S1: 2 (T) > 0,1000 S2: 2 (T) > 0,1000</td>
<td>> 0,1000</td>
<td>S1: 2 (T) > 0,1000 S2: 2 (T) > 0,1000</td>
<td>> 0,1000</td>
</tr>
<tr>
<td>NOS1 Ex29SNP1</td>
<td>S1: 2 (T) > 0,1000 S2: 2 (T) > 0,1000</td>
<td>> 0,1000</td>
<td>S1: 2 (T) > 0,1000 S2: 2 (T) > 0,1000</td>
<td>> 0,1000</td>
<td>S1: 2 (T) > 0,1000 S2: 2 (T) > 0,1000</td>
<td>> 0,1000</td>
</tr>
</tbody>
</table>
3.2 Analyse des humanen STAT6-Gens

Das ca. 19 kb umfassende STAT6-Gen, welches in der chromosomalen Region 12q13.3-q14.1 lokализiert ist, besteht aus 23 Exons und 22 Introns, wobei die ersten beiden Exons nicht-kodierend sind (5'UTR) (Patel et al., 1998). Von den insgesamt 1.350 bp von Exon 23 kodieren nur die ersten 186 bp für das insgesamt 847 Aminosäure große Protein, die restlichen 1.164 bp stellen die 3'UTR dar (Patel et al., 1998). Dem Gen ist eine ca. 3,6 kb große Region vorgeschaltet (5'flankierende Region), die Promotor- und Enhancerelemente enthält (Patel et al., 1998).

Im Rahmen der Arbeit wurden alle 23 Exons als auch die upstream gelegene Promotorregion des Gens systematisch auf das Vorhandensein von Polymorphismen, insbesondere SNPs, untersucht und diese dann in der Asthma-Familienstudie auf Assoziation mit Asthma und den quantitativen Phänotypen getestet.

3.2.1 Identifizierung von SNPs im humanen STAT6-Gen

Mit dieser Strategie konnten insgesamt 10 biallelische SNPs identifiziert werden. Zwei dieser SNPs, STAT6 5'flankingSNP1 und STAT6 5'flankingSNP2, sind in der Promotorregion des Gens lokalisier (Tabelle 3.5 und Abb. 3.6). Bei dem ersten SNP, STAT6 5'flankingSNP1, handelt es sich um einen G>A Austausch, der 1.771 bp upstream des bekannten Transkriptionsstartpunkts liegt (Patel et al., 1998) und 77 bp upstream einer CCAAT-Box, die ein mutmaßliches Enhancerelement darstellt (Patel et al., 1998). Der zweite SNP der Promotorregion, STAT6 5'flankingSNP2, ist ein C>T-Austausch, welcher 1.216 bp upstream
Ergebnisse

des Transkriptionsstartpunkts lokalisiert ist und 474 bp downstream der CCAAT-Box. Von den weiteren acht SNPs sind drei intronisch, wobei einer in Intron 16 (STAT6 In16SNP1), einer in Intron 17 (STAT6 In17SNP1) und einer in Intron 18 (STAT6 In18SNP1) lokalisiert ist (Tabelle 3.5). Die restlichen fünf SNPs, hier mit STAT6 3'UTRSNP1-5 bezeichnet, befinden sich alle in der 3'UTR von Exon 23 (Tabelle 3.5). Der erste SNP der 3'UTR, STAT6 3'UTRSNP1, liegt dabei 258 bp downstream des Translationsendes. Es konnte kein SNP in der kodierenden Region gefunden werden.

Bis auf den fünften SNP in der 3'UTR, STAT6 3'UTRSNP5, existiert mittlerweile für jeden der gefundenen SNPs ein Datenbankeintrag (http://www.ncbi.nlm.nih.gov/SNP, Tabelle 3.5, Spalte 7). Eine Zusammenfassung über die gefundenen SNPs, ihre Position in bp entsprechend der jeweiligen GenBank Accession-Nummer sowie die jeweiligen Referenznummern für die öffentliche SNP-Datenbank finden sich in Tabelle 3.5.

3.2.2 Genotypisierung der STAT6-SNPs in der Asthma-Familienstudie

Für nachfolgende Kopplungs- und Assoziationsstudien wurden alle 10 SNPs des humanen STAT6-Gens in 108 Familien (474 Probanden, 216 Eltern, 258 Kinder) der Asthma-Familienstudie genotypisiert, wobei für die einzelnen SNPs unterschiedliche Genotypisierungsmethoden verwendet wurden (Tabelle 3.5, Spalte 6). Dabei konnten alle 10 SNPs als biallelisch bestätigt werden.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Position in bp entspr. der GenBank Accession-Nr.</th>
<th>Lage im Gen entsprech. Exon / Intron-Grenzen</th>
<th>GenBank Accession-Nr.</th>
<th>in Asthma-Studie bestätigt</th>
<th>Genotyp.-Methode MALDI-TOF MS (M) / Sequenzierung (S) / RFLP-Analyse (R)</th>
<th>GenBank ref. SNP Id (rs#) / GenBank Assay Id (ss#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT6 5'flankingSNP1</td>
<td>1882G>A Promotorregion AF067572</td>
<td>ja M/S/R</td>
<td>ja</td>
<td>ja</td>
<td>2598483 / 3654370</td>
<td></td>
</tr>
<tr>
<td>STAT6 5'flankingSNP2</td>
<td>2437C>T Promotorregion AF067572</td>
<td>ja M</td>
<td>ja</td>
<td>ja</td>
<td>3001428 / 4225476</td>
<td></td>
</tr>
<tr>
<td>STAT6 In2SNP1</td>
<td>5021C>T Intron 2 AF067572</td>
<td>ja M</td>
<td>ja</td>
<td>ja</td>
<td>167769 / 223750</td>
<td></td>
</tr>
<tr>
<td>STAT6 In2SNP2</td>
<td>5814C>T Intron 2 AF067572</td>
<td>ja M</td>
<td>ja</td>
<td>ja</td>
<td>324012 / 414465</td>
<td></td>
</tr>
<tr>
<td>STAT6 In2SNP3</td>
<td>6613C>T Intron 2 AF067572</td>
<td>ja M</td>
<td>ja</td>
<td>ja</td>
<td>324011 / 414464</td>
<td></td>
</tr>
<tr>
<td>STAT6 In8SNP1</td>
<td>9114C>T Intron 8 AF067572</td>
<td>nein M</td>
<td>ja</td>
<td>ja</td>
<td>2626575 / 2386190</td>
<td></td>
</tr>
<tr>
<td>STAT6 In8SNP2</td>
<td>9234C>G Intron 8 AF067572</td>
<td>nein M</td>
<td>ja</td>
<td>ja</td>
<td>2629435 / 2386181</td>
<td></td>
</tr>
<tr>
<td>STAT6 In12SNP1</td>
<td>105936C>T Intron 12 AC023237</td>
<td>nein M</td>
<td>ja</td>
<td>ja</td>
<td>703816 / 1182241</td>
<td></td>
</tr>
<tr>
<td>STAT6 In16SNP1</td>
<td>763A>C Intron 16 AF067575</td>
<td>ja M</td>
<td>ja</td>
<td>ja</td>
<td>3024972 / 4250935</td>
<td></td>
</tr>
<tr>
<td>STAT6 In17SNP1</td>
<td>1309A>G Intron 17 AF067575</td>
<td>ja M</td>
<td>ja</td>
<td>ja</td>
<td>841718 / 1187093</td>
<td></td>
</tr>
<tr>
<td>STAT6 In18SNP1</td>
<td>1570C>T Intron 18 AF067575</td>
<td>ja M</td>
<td>ja</td>
<td>ja</td>
<td>3024974 / 4250936</td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP1</td>
<td>4219G>A 3'UTR AF067575</td>
<td>ja M</td>
<td>ja</td>
<td>ja</td>
<td>324015 / 1298593</td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP2</td>
<td>4491A>G 3'UTR AF067575</td>
<td>ja M/S</td>
<td>ja</td>
<td>ja</td>
<td>703817 / 1332328</td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP3</td>
<td>4610A>G 3'UTR AF067575</td>
<td>ja S</td>
<td>ja</td>
<td>ja</td>
<td>1059513 / 1542078</td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP4</td>
<td>4671A>G 3'UTR AF067575</td>
<td>ja S</td>
<td>ja</td>
<td>ja</td>
<td>4559 / 7385</td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP5</td>
<td>4703A>G 3'UTR AF067575</td>
<td>ja S</td>
<td>ja</td>
<td>ja</td>
<td>neu</td>
<td></td>
</tr>
</tbody>
</table>

Für die restlichen neun SNPs des humanen \textit{STAT6}-Gens erfolgte die Genotypisierung mittels MALDI-TOF Massenspektrometrie (vgl. Abbildung 3.3c und 3.4) oder Sequenzierung, im Fall von \textit{STAT6} 3\'UTRSNP2 auch mit beiden Methoden (Tabelle 3.5, Spalte 6).

Neben den 10, durch Sequenzanalyse identifizierten, SNPs wurden noch sechs weitere, aus der öffentlichen SNP-Datenbank bekannte SNPs in der Asthma-Familienstudie untersucht. Drei dieser SNPs sind in Intron 2 lokalisiert (\textit{STAT6} In2SNP1-3, Tabelle 3.5, Spalte 3), zwei in Intron 8 (\textit{STAT6} In8SNP1-2, Tabelle 3.5, Spalte 3) und einer in Intron 12 (\textit{STAT6} In12SNP1, Tabelle 3.5, Spalte 3). Die Genotypisierung erfolgte für alle sechs SNPs mittels MALDI-TOF Massenspektrometrie (Tabelle 3.5, Spalte 6). Es konnten jedoch nur die drei SNPs in Intron 2 bestätigt werden (Tabelle 3.5, Spalte 5). Demnach standen insgesamt 13 SNPs des humanen \textit{STAT6}-Gens für weitere statistische Analysen zur Verfügung (Tabelle 3.5, Spalte 5), wobei die Genotypisierungsraten zwischen 88% (\textit{STAT6} 3\'UTRSNP5) und 97% (\textit{STAT6} In18SNP1) lagen. Eine graphische Übersicht über die Lage der 13 SNPs entsprechend der Exon/Intron-Grenzen des Gens ist in Abbildung 3.6 wiedergegeben.

Bei keinem der 13 SNPs gab es Unstimmigkeiten zwischen den Genotypen der Eltern und denen der Kinder („Mendel-Check“). Auch waren für die elterlichen Genotypen keine Abweichungen vom Hardy-Weinberg-Gleichgewicht festzustellen (p-Werte > 0,05; Tabelle 3.6), so dass Genotypisierungsfehler weitestgehend ausgeschlossen werden konnten.
Abbildung 3.3: Übersicht über die drei Genotypisierungsmethoden des SNPs STAT6 5’flankingSNP1.

Ergebnisse

Abbildung 3.4: MALDI-TOF Massenspektrometrie des SNPs STAT6 In18SNP1. Stellvertretend für alle mittels MALDI-TOF Massenspektrometrie genotypisierten SNPs sind hier die Massenspektren der Extensions-Produkte für alle drei Allelkombinationen des SNPs in Intron 18, STAT6 In18SNP1, dargestellt.
<table>
<thead>
<tr>
<th>SNP</th>
<th>Anzahl der Eltern homozygot Allel 11</th>
<th>Anzahl der Eltern heterozygot Allel 12</th>
<th>Anzahl der Eltern homozygot Allel 22</th>
<th>p-Wert nach Pearson's Test / Elston + Forthofer</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT6 5'flankingSNP1</td>
<td>170</td>
<td>34</td>
<td>1</td>
<td>0,6128 / 1,0000</td>
</tr>
<tr>
<td>STAT6 5'flankingSNP2</td>
<td>185</td>
<td>24</td>
<td>1</td>
<td>0,8165 / 0,5615</td>
</tr>
<tr>
<td>STAT6 ln2SNP1</td>
<td>67</td>
<td>110</td>
<td>33</td>
<td>0,2719 / 0,3218</td>
</tr>
<tr>
<td>STAT6 ln2SNP2</td>
<td>53</td>
<td>101</td>
<td>43</td>
<td>0,6940 / 0,7755</td>
</tr>
<tr>
<td>STAT6 In2SNP3</td>
<td>63</td>
<td>105</td>
<td>38</td>
<td>0,6189 / 0,6728</td>
</tr>
<tr>
<td>STAT6 ln16SNP1</td>
<td>200</td>
<td>8</td>
<td>0</td>
<td>0,7773 / 1,0000</td>
</tr>
<tr>
<td>STAT6 ln17SNP1</td>
<td>75</td>
<td>100</td>
<td>32</td>
<td>0,8884 / 1,0000</td>
</tr>
<tr>
<td>STAT6 In18SNP1</td>
<td>173</td>
<td>41</td>
<td>1</td>
<td>0,3835 / 0,7023</td>
</tr>
<tr>
<td>STAT6 3'UTRSNP1</td>
<td>123</td>
<td>71</td>
<td>13</td>
<td>0,5261 / 0,5606</td>
</tr>
<tr>
<td>STAT6 3'UTRSNP2</td>
<td>51</td>
<td>108</td>
<td>42</td>
<td>0,2763 / 0,3233</td>
</tr>
<tr>
<td>STAT6 3'UTRSNP3</td>
<td>172</td>
<td>28</td>
<td>2</td>
<td>0,4797 / 0,3540</td>
</tr>
<tr>
<td>STAT6 3'UTRSNP4</td>
<td>83</td>
<td>94</td>
<td>23</td>
<td>0,6411 / 0,7560</td>
</tr>
<tr>
<td>STAT6 3'UTRSNP5</td>
<td>172</td>
<td>22</td>
<td>0</td>
<td>0,4025 / 1,0000</td>
</tr>
</tbody>
</table>

3.2.3 Statistische Auswertung der SNPs des humanen STAT6-Gens

3.2.3.1 Kopplungs- und Assoziationsanalysen

Für keinen der 13 SNPs konnte eine Kopplung/Assoziation mit Asthma gefunden werden (p-Werte alle > 0,05; Tabelle 3.7, Spalte 6). Auch scheint keiner der SNPs einen Einfluss auf die Eosinophilenzellzahl zu haben (p-Werte alle > 0,1000; Tabelle 3.8, Spalte 6). Schwache Assoziationen ergaben sich für STAT6 3’UTR SNP3 mit dem Lungenfunktionsparameter SLOPE (p-Wert = 0,0370; Tabelle 3.8, Spalte 8), STAT6 In2SNP3 mit einem erhöhten Gesamt-IgE-Spiegel (p-Wert = 0,0200; Tabelle 3.8, Spalte 4), STAT6 In17SNP1 mit einem erhöhten Gesamt-IgE-Spiegel (p-Wert = 0,0260; Tabelle 3.8, Spalte 4) sowie STAT6 3’UTR SNP4 mit einem erhöhten Gesamt-IgE-Spiegel (p-Wert = 0,0280; Tabelle 3.8, Spalte 4). Der stärkste Effekt wurde jedoch zwischen dem SNP in Intron 18, STAT6 In18SNP1, und einem erhöhten Gesamt-IgE-Spiegel beobachtet (p-Wert = 0,0070; Tabelle 3.8, Spalte 4).

Aufgrund einer zu geringen Anzahl informativer Genotypen (Allelfrequenz von 1,92% für das seltenere Allel, Tabelle 3.7, Spalte 5) konnten für den SNP in Intron 16, STAT6 In16SNP1, keine quantitativen Analysen durchgeführt werden (Tabelle 3.8).
<table>
<thead>
<tr>
<th>SNP</th>
<th>Gesamtzahl der genotypisierten Individuen</th>
<th>Allel</th>
<th>Anzahl der elterlichen Allele [N]</th>
<th>Allelfrequenz der elterlichen Allele [%]</th>
<th>RC-TDT p-Wert Asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT6 5'flankingSNP1</td>
<td>454</td>
<td>1 (G)</td>
<td>374</td>
<td>91,22</td>
<td>1,0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (A)</td>
<td>36</td>
<td>08,78</td>
<td></td>
</tr>
<tr>
<td>STAT6 5'flankingSNP2</td>
<td>452</td>
<td>1 (C)</td>
<td>394</td>
<td>93,81</td>
<td>0,4514</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (T)</td>
<td>26</td>
<td>06,19</td>
<td></td>
</tr>
<tr>
<td>STAT6 In2SNP1</td>
<td>452</td>
<td>1 (C)</td>
<td>244</td>
<td>58,10</td>
<td>0,5032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (T)</td>
<td>176</td>
<td>41,90</td>
<td></td>
</tr>
<tr>
<td>STAT6 In2SNP2</td>
<td>441</td>
<td>1 (C)</td>
<td>209</td>
<td>52,78</td>
<td>0,2971</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (T)</td>
<td>187</td>
<td>47,22</td>
<td></td>
</tr>
<tr>
<td>STAT6 In2SNP3</td>
<td>446</td>
<td>1 (C)</td>
<td>231</td>
<td>56,07</td>
<td>0,4043</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (T)</td>
<td>181</td>
<td>43,93</td>
<td></td>
</tr>
<tr>
<td>STAT6 In16SNP1</td>
<td>451</td>
<td>1 (A)</td>
<td>408</td>
<td>98,08</td>
<td>0,3018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (C)</td>
<td>8</td>
<td>01,92</td>
<td></td>
</tr>
<tr>
<td>STAT6 In17SNP1</td>
<td>448</td>
<td>1 (A)</td>
<td>250</td>
<td>60,39</td>
<td>0,3161</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (G)</td>
<td>164</td>
<td>39,61</td>
<td></td>
</tr>
<tr>
<td>STAT6 In18SNP1</td>
<td>461</td>
<td>1 (C)</td>
<td>387</td>
<td>90,00</td>
<td>0,5716</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (T)</td>
<td>43</td>
<td>10,00</td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP1</td>
<td>449</td>
<td>1 (G)</td>
<td>317</td>
<td>76,57</td>
<td>0,6160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (A)</td>
<td>97</td>
<td>23,43</td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP2</td>
<td>433</td>
<td>1 (A)</td>
<td>210</td>
<td>52,24</td>
<td>0,9458</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (G)</td>
<td>192</td>
<td>47,76</td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP3</td>
<td>436</td>
<td>1 (A)</td>
<td>372</td>
<td>92,08</td>
<td>0,1237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (G)</td>
<td>32</td>
<td>07,92</td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP4</td>
<td>432</td>
<td>1 (A)</td>
<td>260</td>
<td>65,00</td>
<td>0,2930</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (G)</td>
<td>140</td>
<td>35,00</td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP5</td>
<td>420</td>
<td>1 (A)</td>
<td>366</td>
<td>94,33</td>
<td>1,0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 (G)</td>
<td>22</td>
<td>05,67</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.7: Kopplungs-/Assoziationsanalyse für die 13 SNPs des humanen STAT6-Gens mit Asthma. Die Analysen innerhalb der 108 Familien der Asthma-Familienstudie erfolgten für alle 13 SNPs des humanen STAT6-Gens mit dem RC-TDT (Knapp, 1999a und b). Für keinen der 13 SNPs konnte eine Kopplung/Assoziation mit Asthma gefunden werden (p-Werte alle > 0,05, Spalte 6). Die elterlichen Allelverteilungen sind sowohl als absolute Zahlen [N] als auch relative Frequenzen [%] wiedergegeben (Spalte 4 und 5). Die Genotypisierungsgraten lagen zwischen 88,6% für STAT6 3'UTRSNP5 und 97% für STAT6 In18SNP1 (Spalte 2).
Tabelle 3.8: Assoziationsanalyse für die 13 SNPs des humanen \textit{STAT6}-Gens mit den quantitativen Merkmalen erhöhter Gesamt-IgE-Spiegel, erhöhte Eosinophilenzellzahl und erhöhter SLOPE.

Die Analysen erfolgten mit dem QTDT (Abecasis et al., 2000a und b). Signifikante p-Werte sind fett gedruckt (Spalte 4, 6 und 8). In Spalte 3, 5 und 7 ist der Einfluss des jeweiligen Allels auf den quantitativen Phänotyp in Form einer deskriptiven Statistik wiedergegeben, wobei das jeweils häufigere Allel mit 1, das seltenere mit 2 kodiert ist. Der Einfluss ist nur dann von Bedeutung, wenn auch der p-Wert signifikant (p < 0,05) ist.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Allel 1 / Allel 2</th>
<th>mit erhöhtem Gesamt-IgE assoziiertes Allel</th>
<th>p-Wert Gesamt-IgE</th>
<th>mit erhöhter Eos.zellzahl assoziiertes Allel</th>
<th>p-Wert Eos.zellzahl</th>
<th>mit erhöhtem SLOPE assoziiertes Allel</th>
<th>p-Wert SLOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT6 5'flankingSNP1</td>
<td>G / A</td>
<td>2 (A) > 0,1000</td>
<td>1 (G) > 0,1000</td>
<td>2 (A) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 5'flankingSNP2</td>
<td>C / T</td>
<td>2 (T) > 0,1000</td>
<td>2 (T) 0,0950</td>
<td>2 (T) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 In2SNP1</td>
<td>C / T</td>
<td>1 (C) 0,0990</td>
<td>1 (C) > 0,1000</td>
<td>2 (T) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 In2SNP2</td>
<td>C / T</td>
<td>1 (C) > 0,1000</td>
<td>1 (C) > 0,1000</td>
<td>2 (T) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 In2SNP3</td>
<td>C / T</td>
<td>1 (C) 0,0200</td>
<td>1 (C) > 0,1000</td>
<td>2 (T) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 In16SNP1</td>
<td>A / C</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
</tr>
<tr>
<td>STAT6 In17SNP1</td>
<td>A / G</td>
<td>2 (G) 0,0260</td>
<td>2 (G) > 0,1000</td>
<td>2 (G) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 In18SNP1</td>
<td>C / T</td>
<td>2 (T) 0,0070</td>
<td>2 (T) > 0,1000</td>
<td>2 (T) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP1</td>
<td>G / A</td>
<td>2 (A) > 0,1000</td>
<td>2 (A) > 0,1000</td>
<td>1 (G) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP2</td>
<td>A / G</td>
<td>2 (G) > 0,1000</td>
<td>2 (G) > 0,1000</td>
<td>1 (A) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP3</td>
<td>A / G</td>
<td>1 (A) > 0,1000</td>
<td>1 (A) > 0,1000</td>
<td>1 (A) > 0,1000</td>
<td></td>
<td></td>
<td>0,0370</td>
</tr>
<tr>
<td>STAT6 3'UTRSNP4</td>
<td>A / G</td>
<td>2 (G) 0,0280</td>
<td>2 (G) > 0,1000</td>
<td>2 (G) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 3'UTRSNP5</td>
<td>A / G</td>
<td>1 (A) > 0,1000</td>
<td>2 (G) > 0,1000</td>
<td>2 (G) > 0,1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.3.2 Haplotypenanalyse

Die 12 häufigsten Haplotypen und ihre Frequenzen sind in Tabelle 3.9 dargestellt. Insgesamt machen sie 93,82% aller möglichen Haplotypen aus. Von den restlichen 6,18% hatten alle Haplotypen eine Frequenz $< 0,01\%$. Interessanterweise sind in Haplotyp Nummer 5 (1112112212121; Frequenz 5,65\%, Tabelle 3.9, Spalte 2 und 3) und Haplotyp Nummer 10 (1111112212121, Frequenz 2,12\%; Tabelle 3.9, Spalte 2 und 3) all diejenigen Allele der einzelnen SNPs vereint, die in den Einzelanalysen eine Assoziation mit einem der quantitativen Phänotypen gezeigt haben (vgl. Tabelle 3.8, Spalten 3,4,7 und 8). Aus diesem Grund wurden diese beiden Haplotypen, zusammen mit den drei häufigsten, auf Assoziation mit den quantitativen Merkmalen getestet. Dabei wurde für keinen der getesteten Haplotypen eine Assoziation gefunden (p-Werte > 0,06; K. Rohde, persönliche Mitteilung).

Eine paarweise Testung der 13 SNPs auf Kopplungselequilibrium („linkage disequilibrium“, LD) zeigte, dass sich die meisten SNP-Paare in einem signifikanten Kopplungselequilibrium befanden (p-Werte $< 0,05$; Daten nicht gezeigt). Für folgende Paare konnte kein Kopplungselequilibrium gezeigt werden: \textit{STAT6} 5'flankingSNP1/\textit{STAT6} 5'flankingSNP2 (p-Wert = 0,3606), \textit{STAT6} 5'flankingSNP1/\textit{STAT6} In18SNP1 (p-Wert = 0,0755), \textit{STAT6} In2SNP2/\textit{STAT6} In18SNP1 (p-Wert = 0,1246), \textit{STAT6} In16SNP1/\textit{STAT6} 3'UTRSNP2 (p-Wert = 0,0981), \textit{STAT6} In16SNP1/\textit{STAT6} 3'UTRSNP3 (p-Wert = 0,3106), \textit{STAT6} 5'flankingSNP2/\textit{STAT6} 3'UTRSNP5 (p-Wert = 0,8554) und \textit{STAT6} 3'UTRSNP1/\textit{STAT6} 3'UTRSNP5 (p-Wert = 0,0559).
<table>
<thead>
<tr>
<th>Haplotyp-Nummer</th>
<th>Haplotyp</th>
<th>Frequenz [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1122211111111</td>
<td>34,74</td>
</tr>
<tr>
<td>2</td>
<td>1111112122121</td>
<td>17,22</td>
</tr>
<tr>
<td>3</td>
<td>2111111111111</td>
<td>08,43</td>
</tr>
<tr>
<td>4</td>
<td>1122211111112</td>
<td>05,77</td>
</tr>
<tr>
<td>5</td>
<td>1112112212121</td>
<td>05,65</td>
</tr>
<tr>
<td>6</td>
<td>1111111112211</td>
<td>05,41</td>
</tr>
<tr>
<td>7</td>
<td>1211112122121</td>
<td>04,73</td>
</tr>
<tr>
<td>8</td>
<td>1111112112111</td>
<td>04,05</td>
</tr>
<tr>
<td>9</td>
<td>1111211111111</td>
<td>02,32</td>
</tr>
<tr>
<td>10</td>
<td>1111112212121</td>
<td>02,12</td>
</tr>
<tr>
<td>11</td>
<td>1111111212211</td>
<td>02,03</td>
</tr>
<tr>
<td>12</td>
<td>1111111112121</td>
<td>01,35</td>
</tr>
</tbody>
</table>

3.2.4 Analyse des GT-Repeats in Exon 1 des humanen *STAT6*-Gens

2001 wurde in der 5'UTR (Exon 1) des humanen *STAT6*-Gens ein Dinukleotidpolymorphismus (GT-Repeat) beschrieben (Abbildung 3.5), für den in einer japanischen Studie eine Assoziation mit allergischen Erkrankungen nachgewiesen werden konnte (Tamura et al., 2001). Im Rahmen dieser Arbeit wurde nun getestet, ob auch innerhalb der Asthma-Familienstudie eine Kopplung/Assoziation dieses Polymorphismus mit Asthma und/oder den quantitativen Phänotypen erhöhter Gesamt-IgE-Spiegel, erhöhter Eosinophilenzellzahl und erhöhter SLOPE nachzuweisen war.

3.2.4.1 Genotypisierung des GT-Repeats in der Asthma-Familienstudie

Die Genotypisierung der 108 Familien der Studie erfolgte für den GT-Repeat in Exon 1 des humanen *STAT6*-Gens mittels Fragmentanalyse, wobei die Genotypisierungsrate bei ca. 94% lag. Insgesamt konnten fünf Allele, Allel 1-5, identifiziert werden (Tabelle 3.10; Abbildung
3.5). Die elterlichen Allelverteilungen sind in absoluten Zahlen [N] und als relative Frequenzen [%] in Tabelle 3.10 wiedergegeben. Interessanterweise waren Allel 1 (Frequenz = 40,14%, Tabelle 3.10, Spalte 5) und Allel 3 (Frequenz = 43,51%, Tabelle 3.10, Spalte 5) nicht nur die häufigsten Allele, sondern die Allelkombination A1/A3 stellte auch den häufigsten Genotyp der Eltern dar (Daten nicht gezeigt).

<table>
<thead>
<tr>
<th>Allel</th>
<th>Größe des PCR-Produkts in bp</th>
<th>Anzahl der GT-Repeats</th>
<th>Anzahl der elterlichen Allele [N]</th>
<th>Frequenz der elterlichen Allele [%]</th>
<th>RC-TDT p-Wert Asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>326</td>
<td>13</td>
<td>167</td>
<td>40,14</td>
<td>0,2488</td>
</tr>
<tr>
<td>A2</td>
<td>328</td>
<td>14</td>
<td>13</td>
<td>03,13</td>
<td>0,2478</td>
</tr>
<tr>
<td>A3</td>
<td>330</td>
<td>15</td>
<td>181</td>
<td>43,51</td>
<td>0,0536</td>
</tr>
<tr>
<td>A4</td>
<td>332</td>
<td>16</td>
<td>30</td>
<td>07,21</td>
<td>0,7825</td>
</tr>
<tr>
<td>A5</td>
<td>334</td>
<td>17</td>
<td>25</td>
<td>06,01</td>
<td>1,0000</td>
</tr>
</tbody>
</table>

Tabelle 3.10: Übersicht über die fünf Allele des GT-Repeats in Exon 1 des humanen STAT6-Gens. Die elterlichen Allelverteilungen sind als absolute Zahlen [N] (Spalte 4) als auch relative Frequenzen [%] (Spalte 5) wiedergegeben. In Spalte 2 ist die Größe der einzelnen PCR-Fragmente in bp aufgeführt. Spalte 3: Anzahl der GT-Repeats für die jeweiligen Allele. Für keines der fünf Allele konnte eine Kopplung/Assoziation mit Asthma gefunden werden (p-Wert > 0,05; Spalte 6).

Um die Anzahl der GT-Repeats der verschiedenen Allele zu bestimmen, wurden die PCR-Fragmente von, für das jeweilige Allel, homozygoten Probanden sequenziert. Dabei stellte sich heraus, dass Allel 1 13x und Allel 5 17x den Repeat enthielten (Tabelle 3.10, Spalte 3).

3.2.4.2 Statistische Auswertung - Kopplungs- und Assoziationsanalysen

Wie schon für die SNPs beschrieben, wurde auch im Falle des GT-Repeats ein RC-TDT (Knapp, 1999a und b) verwendet, um innerhalb der Studie auf Kopplung/Assoziation mit Asthma zu testen. Für die quantitativen Merkmale erfolgte die statistische Analyse mittels eines quantitativen TDTs, QTDT (Abecasis et al., 2000a und b).

Während für keines der fünf Allele eine Kopplung/Assoziation mit Asthma, erhöhtem Gesamt-IgE-Spiegel und erhöhtem SLOPE gefunden wurde (p-Werte > 0,05; Tabelle 3.10,
Spalte 6 und Tabelle 3.11, Spalte 2 und 4), war Allel 4 (16xGT) signifikant mit einer erhöhten Eosinophilenzellzahl assoziiert (p-Wert = 0,0010; Tabelle 3.11, Spalte 3).

Aufgrund einer zu geringen Anzahl an informativen Genotypen (Frequenz = 3,13 %, Tabelle 3.10, Spalte 4 und 5) konnten für Allel 2 keine quantitativen Analysen durchgeführt werden (Loesgen, persönliche Mitteilung; Tabelle 3.11).

<table>
<thead>
<tr>
<th>Allel</th>
<th>p-Wert Gesamt-IgE</th>
<th>p-Wert Eos.zellzahl</th>
<th>p-Wert SLOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>>0,1000</td>
<td>>0,1000</td>
<td>>0,1000</td>
</tr>
<tr>
<td>A2</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
</tr>
<tr>
<td>A3</td>
<td>>0,1000</td>
<td>>0,1000</td>
<td>>0,1000</td>
</tr>
<tr>
<td>A4</td>
<td>>0,1000</td>
<td>0,0010</td>
<td>>0,1000</td>
</tr>
<tr>
<td>A5</td>
<td>0,0510</td>
<td>>0,1000</td>
<td>>0,1000</td>
</tr>
</tbody>
</table>

Tabelle 3.11: Assoziationsanalyse für den GT-Repeat in Exon 1 des humanen STAT6-Gens mit den quantitativen Merkmalen erhöhter Gesamt-IgE-Spiegel, erhöhte Eosinophilenzellzahl und erhöhter SLOPE. Für keines der fünf Allele konnte eine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel und erhöhtem SLOPE gefunden werden (p-Werte > 0,05; Spalte 2 und 4). Dagegen ist Allel 4 signifikant mit einer erhöhten Eosinophilenzellzahl assoziiert (p-Wert = 0,0010, Spalte 3). Aufgrund einer zu geringen Anzahl informativer Genotypen konnten für Allel 2 keine quantitativen Analysen durchgeführt werden (Spalte 2,3 und 4).

Alle für das humane STAT6-Gen, in dieser Arbeit erzielten, Ergebnisse wurden bereits veröffentlicht und finden sich in Duetsch et al., 2002 wieder.
3.3 Analyse des humanen NAB2-Gens

Das humane *NAB2*-Gen, welches aus 7 Exons und 6 Introns besteht, kodiert für das 525 Aminosäure große **NGFI-A Bindeglied 2** (EGR1-Bindeglied 2) (Svaren et al., 1997). Es ist, wie das humane *STAT6*-Gen, in der chromosomalen Region 12q13.3-q14.1 lokalisiert (Svaren et al., 1996; Svaren et al., 1997). Sowohl Transkriptions- als auch Translationsstartpunkt liegen im ersten Exon, so dass gut zwei Drittel der Gesamtlänge von Exon 1 für die 5'UTR reserviert sind (http://www.ensembl.org/Homo_sapiens). Die 3'UTR dagegen umfasst etwa drei Viertel von Exon 7 (http://www.ensembl.org/Homo_sapiens).

3.3.1 Genotypisierung von NAB2-SNPs in der Asthma-Familienstudie

Insgesamt konnten vier der acht SNPs validiert werden, drei waren in der Studie nicht vorhanden (Tabelle 3.12, Spalte 4). Mit dem Assay für *NAB2 In6SNP2* wurden keine Ergebnisse erzielt (Tabelle 3.12, Spalte 4).

Drei der vier validierten SNPs sind intronisch, wobei je einer in Intron 2 (*NAB2 In2SNP1*), einer in Intron 3 (*NAB2 In3SNP1*) und einer in Intron 6 (*NAB2 In6SNP1*) lokalisiert ist (Tabelle 3.12, Spalte 3). Der vierte SNP befindet sich in Exon 3 (*NAB2 Ex3SNP1*; Tabelle 3.12, Spalte 3). Er führt jedoch zu keinem Aminosäureaustausch (Thr>Thr). Die Position der SNPs im Gen bezüglich der Exon/Intron-Grenzen wurde anhand der Daten aus der Ensembl-Gendatenbank bestimmt (www.ensembl.org/Homo_sapiens; Ensembl Transkript-ID: ENST00000300131). Eine graphische Übersicht über die Lage der vier SNPs entsprechend der Exon/Intron-Grenzen des Gens ist in Abbildung 3.7 wiedergegeben.
Tabelle 3.12: Übersicht über die acht, aus der öffentlichen SNP-Datenbank entnommenen, SNPs des humanen NAB2-Gens.

- **NAB2 In1SNP1**: 1477A>T, Intron 1, nein, GenBank ref. SNP Id (rs#) / GenBank Assay Id (ss#): 429669 / 569804, NT_029419
- **NAB2 In2SNP1**: 2995A>C, Intron 2, ja, 324020 / 1971763, NT_029419
- **NAB2 Ex3SNP1**: 3240G>A, Exon 3, ja, 1057290 / 1537886, NT_029419
- **NAB2 In3SNP1**: 3609G>A, Intron 3, ja, 324019 / 1868469, NT_029419
- **NAB2 In6SNP1**: 4691G>T, Intron 6, ja, 324018 / 1868468, NT_029419
- **NAB2 In6SNP2**: 4776C>A, Intron 6, nicht funktioniert, 324017 / 1868467, NT_029419
- **NAB2 In6SNP3**: 5133G>C, Intron 6, nein, 406270 / 530806, NT_029419
- **NAB2 In6SNP4**: 5137G>A, Intron 6, nein, 412567 / 541436, NT_029419

Durch die Rekrutierung weiterer Familien standen für die Genotypisierung der SNPs des NAB2-Gens erstmals 172 Familien (748 Probanden: 344 Eltern, 404 Kinder) zur Verfügung. Die Genotypisierungsrationen lagen dabei zwischen 92% und 96%.

Für alle vier SNPs stimmten die Genotypen von Eltern und Kindern mit dem mendelschen Erbgang überein („Mendel-Check“). Die elterlichen Genotypen folgten dem zu erwartenden Hardy-Weinberg-Gleichgewicht (p-Werte > 0,05; Tabelle 3.13, Spalte 5), wobei die Berechnungen sowohl für die 172 Familien (S2) als auch die bereits beschriebenen 108 Familien der Anfangsstudie (S1) durchgeführt wurden (Tabelle 3.13, Spalte 2, 3 und 4). Beide Kriterien ließen demnach auf eine gute Qualität der Genotypisierung schließen.

3.3.2 Statistische Auswertung - Kopplungs- und Assoziationsanalysen

Durch die Aufstockung der Asthma-Familienstudie auf 172 Familien standen für die statistischen Analysen insgesamt 64 Familien mehr als bisher zur Verfügung. Um zu testen, in wieweit diese zusätzlichen Familien zu einer Erhöhung der Teststärke (Power) führen, erfolgten die statistischen Analysen für alle vier SNPs des NAB2-Gens sowohl mit den 172 Familien (S2) als auch den 108 Familien (S1). Die elterlichen Allelverteilungen sind dabei für beide Stichproben in absoluten Zahlen [N] und als relative Frequenzen [%] in Tabelle 3.14 wiedergegeben.

Im Falle des RC-TDTs (Knapp, 1999a und b) konnte weder für die 108 Familien (S1), noch die 172 Familien (S2) Kopplung/Assoziation zwischen einem der vier SNPs und dem asthmatischen Phänotyp gefunden werden (p-Werte > 0,05; Tabelle 3.15, Spalte 2).
a)

<table>
<thead>
<tr>
<th>SNP</th>
<th>Allel</th>
<th>Anzahl der elterlichen Allele [N]</th>
<th>Allelfrequenz der elterlichen Allele [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAB2 In2SNP1</td>
<td>1 (A)</td>
<td>212</td>
<td>52,48</td>
</tr>
<tr>
<td></td>
<td>2 (C)</td>
<td>192</td>
<td>47,52</td>
</tr>
<tr>
<td>NAB2 Ex3SNP1</td>
<td>1 (G)</td>
<td>396</td>
<td>95,19</td>
</tr>
<tr>
<td></td>
<td>2 (A)</td>
<td>20</td>
<td>04,81</td>
</tr>
<tr>
<td>NAB2 In3SNP1</td>
<td>1 (G)</td>
<td>254</td>
<td>61,35</td>
</tr>
<tr>
<td></td>
<td>2 (A)</td>
<td>160</td>
<td>38,65</td>
</tr>
<tr>
<td>NAB2 In6SNP1</td>
<td>1 (G)</td>
<td>250</td>
<td>60,68</td>
</tr>
<tr>
<td></td>
<td>2 (T)</td>
<td>162</td>
<td>39,32</td>
</tr>
</tbody>
</table>

b)

<table>
<thead>
<tr>
<th>SNP</th>
<th>Allel</th>
<th>Anzahl der elterlichen Allele [N]</th>
<th>Allelfrequenz der elterlichen Allele [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAB2 In2SNP1</td>
<td>1 (A)</td>
<td>348</td>
<td>53,87</td>
</tr>
<tr>
<td></td>
<td>2 (C)</td>
<td>298</td>
<td>46,13</td>
</tr>
<tr>
<td>NAB2 Ex3SNP1</td>
<td>1 (G)</td>
<td>631</td>
<td>95,03</td>
</tr>
<tr>
<td></td>
<td>2 (A)</td>
<td>33</td>
<td>04,97</td>
</tr>
<tr>
<td>NAB2 In3SNP1</td>
<td>1 (G)</td>
<td>397</td>
<td>59,61</td>
</tr>
<tr>
<td></td>
<td>2 (A)</td>
<td>269</td>
<td>40,39</td>
</tr>
<tr>
<td>NAB2 In6SNP1</td>
<td>1 (G)</td>
<td>375</td>
<td>60,10</td>
</tr>
<tr>
<td></td>
<td>2 (T)</td>
<td>249</td>
<td>39,90</td>
</tr>
</tbody>
</table>

Tabelle 3.14: Elterliche Allelverteilungen für die vier validierten SNPs des humanen NAB2-Gens. Die elterlichen Allelverteilungen sind in absoluten Zahlen [N] und als relative Frequenzen [%] wiedergegeben (Spalte 3 und 4). a) Angaben für die 108 Familien (S1). b) Angaben für die 172 Familien (S2).
Ergebnisse

<table>
<thead>
<tr>
<th>SNP</th>
<th>RC-TDT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p-Wert</td>
</tr>
<tr>
<td></td>
<td>Asthma</td>
</tr>
</tbody>
</table>

NAB2 In2SNP1	S1: 0,6079
	S2: 0,5110
NAB2 Ex3SNP1	S1: 0,3915
	S2: 0,1237
NAB2 In3SNP1	S1: 0,3531
	S2: 0,6161
NAB2 In6SNP1	S1: 0,6117
	S2: 0,4655

Tabelle 3.15: Kopplungs-/Assoziationsanalyse für die vier SNPs des humanen NAB2-Gens mit Asthma.

Die Analysen erfolgten mit dem RC-TDT (Knapp, 1999a und b) und wurden sowohl für die 108 Familien (S1) als auch die 172 Familien (S2) durchgeführt. Für keine der beiden Stichproben konnte Kopplung/Assoziation zwischen einem der vier SNPs des NAB2-Gens und Asthma gefunden werden (p-Werte > 0,05; Spalte 2).

Zusätzlich zu dem Gesamt-IgE-Spiegel, der Eosinophilenzellzahl und dem SLOPE wurde für die SNPs des NAB2-Gens erstmals auch der Lungenfunktionsparameter Peak-Flow (Erklärung siehe Abschnitt 1.3.2) als ein weiteres quantitatives Merkmal in die quantitativen Analysen einbezogen (Tabelle 3.16). Der Peak-Flow ist, wie die anderen quantitativen Merkmale, von Alter und Geschlecht abhängig und ist aufgrund der bei Asthma bronchiale vorliegenden Atemwegsobstruktion bei Asthmakern vermindert (Petro, 1998; Boenisch, 2003; vgl. Abschnitt 1.3.2).

Die Berechnungen erfolgten mit dem QTDT (Abecasis et al., 2000a und b) unter Einbeziehung der Genotypen aller Familienmitglieder (Loesgen, persönliche Mitteilung). Da für die neuen Familien der SLOPE nicht bestimmt wurde (Altmüller/Wjst, persönliche Mitteilung), konnte die statistische Analyse für dieses quantitative Merkmal nur für die 108 Familien durchgeführt werden (Tabelle 3.16). Für die anderen quantitativen Phänotypen erfolgten die statistischen Berechnungen sowohl mit den 172 Familien (S2) als auch den 108 Familien (S1) (Tabelle 3.16). Aufgrund einer zu geringen Anzahl informativer Genotypen erschien, im Falle der 108 Familien, eine Testung der quantitativen Merkmale erhöhter Gesamt-IgE-Spiegel, erhöhter SLOPE und vermindertem Peak-Flow für NAB2 Ex3SNP1 als nicht sinnvoll (Loesgen, persönliche Mitteilung; Tabelle 3.16).

Betrachtet man die Ergebnisse der quantitativen Analysen, so zeigt sich, dass für die meisten SNPs des NAB2-Gens keine Assoziation mit den quantitativen Phänotypen nachgewiesen wurde (Tabelle 3.16, Spalte 3, 5, 7 und 9). Lediglich der SNP in Intron 6, NAB2 In6SNP1, zeigte eine schwache Assoziation des T-Allels (selteneres Allel) mit einem erhöhten Gesamt-IgE-Spiegel. Dabei unterscheidet sich der p-Wert für die 108 Familien (p-Wert = 0,0390; Tabelle 3.16, Spalte 3) nicht wesentlich von demjenigen der 172 Familien (p-Wert = 0,0300; Tabelle 3.16, Spalte 3).
<table>
<thead>
<tr>
<th>SNP</th>
<th>mit erhöhtem Gesamt-IgE assoziiertes Allel</th>
<th>p-Wert</th>
<th>mit erhöhter Eosinophilenzellzahl assoziiertes Allel</th>
<th>p-Wert</th>
<th>mit erhöhtem SLOPE assoziiertes Allel</th>
<th>p-Wert</th>
<th>mit vermindertem Peak-Flow assoziiertes Allel</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAB2 In2SNP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1: A</td>
<td>> 0,1000</td>
<td>S1: C</td>
<td>> 0,1000</td>
<td>S1: C</td>
<td>> 0,1000</td>
<td>S1: A</td>
<td>> 0,1000</td>
<td></td>
</tr>
<tr>
<td>S2: A</td>
<td>> 0,1000</td>
<td>S2: A</td>
<td>> 0,1000</td>
<td>/</td>
<td>/</td>
<td>S2: A</td>
<td>> 0,1000</td>
<td></td>
</tr>
<tr>
<td>NAB2 Ex3SNP1</td>
<td>niet getestet</td>
<td>nicht</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
<td>nicht getestet</td>
<td></td>
</tr>
<tr>
<td>S2: G</td>
<td>> 0,1000</td>
<td>S2: A</td>
<td>> 0,1000</td>
<td>/</td>
<td>/</td>
<td>S2: G</td>
<td>> 0,1000</td>
<td></td>
</tr>
<tr>
<td>NAB2 In3SNP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1: A</td>
<td>0,0480</td>
<td>S1: A</td>
<td>> 0,1000</td>
<td>S1: A</td>
<td>> 0,1000</td>
<td>S1: A</td>
<td>> 0,1000</td>
<td></td>
</tr>
<tr>
<td>S2: A</td>
<td>0,0590</td>
<td>S2: A</td>
<td>0,0850</td>
<td>/</td>
<td>/</td>
<td>S2: A</td>
<td>> 0,1000</td>
<td></td>
</tr>
<tr>
<td>NAB2 In6SNP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1: T</td>
<td>0,0390</td>
<td>S1: T</td>
<td>> 0,1000</td>
<td>S1: T</td>
<td>> 0,1000</td>
<td>S1: T</td>
<td>> 0,1000</td>
<td></td>
</tr>
<tr>
<td>S2: T</td>
<td>0,0300</td>
<td>S2: T</td>
<td>> 0,1000</td>
<td>/</td>
<td>/</td>
<td>S2: T</td>
<td>> 0,1000</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.16: Assoziationsanalyse für die SNPs des humanen NAB2-Gens mit den quantitativen Merkmalen erhöhter Gesamt-IgE-Spiegel, erhöhte Eosinophilenzellzahl, erhöhter SLOPE und vermindelter Peak-Flow. Für Gesamt-IgE-Spiegel, Eosinophilenzellzahl und Peak-Flow wurden die Analysen sowohl für die 172 Familien (S2) als auch die 108 Familien (S1) durchgeführt, für SLOPE nur mit den 108 Familien (Spalte 6 und 7). Signifikante p-Werte sind fett gedruckt (Spalte 3). In Spalte 2, 4, 6 und 8 ist der Einfluss des jeweiligen Allels auf den quantitativen Phänotyp in Form einer deskriptiven Statistik wiedergegeben. Der Einfluss ist nur dann von Bedeutung, wenn auch der p-Wert ein signifikanter ist (p < 0,05).
3.4 Analyse des humanen IGF1-Gens

Das humane IGF1-Gen, ist ein „single-copy“ Gen (nur eine Gen-Kopie im Genom), das für den Insulin-ähnlichen Wachstumsfaktor 1 („insulin-like growth factor 1“), auch Somatomedin C genannt, kodiert und auf der chromosomalen Region 12q22-q23 lokalisiert ist (Jansen et al., 1983; Rotwein et al., 1986; Mathew et al., 1992). Mehrere molekulare Studien konnten für IGF1 eine sehr komplexe Genstruktur nachweisen. Während Rotwein und Kollegen in ihrer Veröffentlichung Mitte der 80iger Jahre den IGF1-Genlocus als ein aus fünf Exons und vier Introns bestehender beschrieben (Rotwein et al., 1986), ist in neueren Veröffentlichungen von sechs Exons und fünf Introns die Rede, die sich über einen genomischen Bereich von mehr als 85 kb erstrecken (Smith et al., 2002; Bonapace et al., 2003). Laut der Ensembl-Datenbank (www.ensembl.org/Homo_sapiens) befindet sich der Translationsstartpunkt dabei in Exon 2, so dass das gesamte Exon 1 sowie das erste Viertel von Exon 2 die 5'UTR des Gens darstellen (Ensembl Gentranskript-ID: ENST00000392904, Q13429_human; Ensembl Gen-ID: ENSG00000017427). Die 3'UTR dagegen nimmt fast das gesamte Exon 6 ein (Ensembl Gentranskript-ID: ENST00000392904; Q13429_human; Bonapace et al., 2003).

3.4.1 Validierung von IGF1-SNPs in der KORA S4-Studie

Von den fünf validierten SNPs befinden sich zwei in Intron 3 (IGF1 In3SNP1 und IGF1 In3SNP4, Tabelle 3.17, Spalte 3) und drei in Intron 5 (IGF1 In5SNP3, IGF1 In5SNP4 und IGF1 In5SNP7, Tabelle 3.17, Spalte 3).

NW_925395). Dabei orientierte man sich an den aktuellsten Veröffentlichungen, in denen der IGF1-Genlocus aus sechs Exons bestehend beschrieben wird (Smith et al., 2002; Bonapace et al., 2003).

Häufig findet man in den gängigen Datenbankeinträgen IGF1-Transkripte mit nur fünf Exons. Dies hängt wohl damit zusammen, dass für das humane IGF1-Gen zwei primäre Translationsprodukte existieren, IGF1A mit 153 Aminosäuren und IGF1B mit 195 Aminosäuren, deren mRNAs aus einem einzigen Primärtranskript durch alternativessplice der beiden letzten Exons hervorgehen (Rotwein et al., 1986; Smith et al., 2002; Bonapace et al., 2003). Erfolgte nun in den Datenbanken die Annotation der IGF1-Exons mit der genomischen Sequenz anhand dieser mRNAs, ergeben sich für das IGF1-Gen logischerweise nur fünf Exons. In diesen Fällen sind die hier analysierten SNPs nicht mehr in Intron 3 und 5 lokalisiert, sondern finden sich in Intron 2 bzw. 4 wieder, bleiben also intronisch. Daher ist es empfehlenswert, sich für weitere Analysen an den in Tabelle 3.17, Spalte 5 angegebenen rs-Nummern zu orientieren.

3.4.2 Genotypisierung der IGF1-SNPs in der Asthma-Familienstudie

Auch für die fünf SNPs des humanen IGF1-Gens folgten die ermittelten Genotypen der Eltern und Kinder dem mendelschen Erbgang („Mendel-Check“). Abweichungen vom Hardy-Weinberg-Gleichgewicht wurden ebenfalls keine festgestellt (p-Werte > 0,05; Tabelle 3.18, Spalte 5), wobei die Berechnungen sowohl für die 172 Familien (S2), als auch die 108 Familien der Anfangsstudie (S1) durchgeführt wurden (Tabelle 3.18). Somit konnten Genotypisierungsfehler ausgeschlossen werden.
<table>
<thead>
<tr>
<th>SNP</th>
<th>Position in bp relativ zum Translationsstartpunkt</th>
<th>Lage im Gen entsprechend Exon / Intron-Grenzen</th>
<th>in KORA-Pool bestätigt</th>
<th>GenBank ref. SNP Id (rs#) / GenBank Assay Id (ss#)</th>
<th>GenBank Contig-Accession-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF1 In3SNP1</td>
<td>9736G>T</td>
<td>Intron 3</td>
<td>ja</td>
<td>1019731 / 1483908</td>
<td>NT_019546</td>
</tr>
<tr>
<td>IGF1 In3SNP2</td>
<td>27076C>T</td>
<td>Intron 3</td>
<td>nicht funktioniert</td>
<td>2033178 / 2942184</td>
<td>NT_019546</td>
</tr>
<tr>
<td>IGF1 In3SNP3</td>
<td>37688C>T</td>
<td>Intron 3</td>
<td>nein</td>
<td>1015693 / 1479286</td>
<td>NT_019546</td>
</tr>
<tr>
<td>IGF1 In3SNP4</td>
<td>49265G>A</td>
<td>Intron 3</td>
<td>ja</td>
<td>972936 / 1423511</td>
<td>NT_019546</td>
</tr>
<tr>
<td>IGF1 In5SNP1</td>
<td>62562C>A</td>
<td>Intron 5</td>
<td>nein</td>
<td>6213 / 7835</td>
<td>NT_019546</td>
</tr>
<tr>
<td>IGF1 In5SNP2</td>
<td>64302C>G</td>
<td>Intron 5</td>
<td>nicht funktioniert</td>
<td>764911 / 151636</td>
<td>NT_019546</td>
</tr>
<tr>
<td>IGF1 In5SNP3</td>
<td>71946G>A</td>
<td>Intron 5</td>
<td>ja</td>
<td>978458 / 1430956</td>
<td>NT_019546</td>
</tr>
<tr>
<td>IGF1 In5SNP4</td>
<td>76878T>C</td>
<td>Intron 5</td>
<td>ja</td>
<td>1520222 / 2357597</td>
<td>NT_019546</td>
</tr>
<tr>
<td>IGF1 In5SNP5</td>
<td>77328A>G</td>
<td>Intron 5</td>
<td>nein</td>
<td>1520221 / 2357596</td>
<td>NT_019546</td>
</tr>
<tr>
<td>IGF1 In5SNP6</td>
<td>77380A>C</td>
<td>Intron 5</td>
<td>nein</td>
<td>1549593 / 2392317</td>
<td>NT_019546</td>
</tr>
<tr>
<td>IGF1 In5SNP7</td>
<td>77649G>C</td>
<td>Intron 5</td>
<td>ja</td>
<td>1520220 / 2357595</td>
<td>NT_019546</td>
</tr>
</tbody>
</table>

Abbildung 3.8: MALDI-TOF Massenspektrometrie von IGF1 In5SNP7. Stellvertretend für alle fünf SNPs des humanen IGF1-Gens sind hier die Massenspektren der Extensions-Produkte für alle drei Allelkombinationen des IGF1 In5SNP7 dargestellt.

3.4.3 Statistische Auswertung - Kopplungs- und Assoziationsanalysen

Für die SNPs des \textit{IGF1}-Gens wurden die statistischen Analysen sowohl mit den 172 Familien (S2) als auch den 108 Familien der Anfangsstudie (S1) durchgeführt. Die Tests erfolgten dabei für die Merkmale Asthma (RC-TDT, Knapp, 1999a und b), erhöhter Gesamt-IgE-Spiegel, erhöhte Eosinophilenzellzahl, erhöhter SLOPE und vermindelter Peak-Flow (QTDT, Abecasis et al., 2000a und b), wobei für SLOPE nur die 108 Familien für die Berechnungen herangezogen wurden (Tabelle 3.21). Die elterlichen Allelverteilungen sind für beide Stichproben als absolute Zahlen [N] sowie relative Frequenzen [%] in Tabelle 3.19a und b wiedergegeben.

Eine Assoziation mit den quantitativen Phänotypen wurde für keinen der fünf SNPs gefunden (Tabelle 3.21, Spalte 3,5,7 und 9). \textit{IGF1} In5SNP7 jedoch zeigte für die 108 Familien eine schwache Kopplung/Assoziation mit Asthma (p-Wert = 0,0363, Tabelle 3.20, Spalte 2), die sich im Fall der größeren Stichprobe (172 Familien) deutlich verstärkte (p-Wert = 0,0046, Tabelle 3.20, Spalte 2).

\begin{table}[h!]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
SNP & Allel & Anzahl der elterlichen Allele [N] & Allelfrequenz der elterlichen Allele [%] \\
\hline
\textit{IGF1} In3SNP1 & G & 362 & 88,29 \\
 & T & 48 & 11,71 \\
\textit{IGF1} In3SNP4 & G & 294 & 71,53 \\
 & A & 117 & 28,47 \\
\textit{IGF1} In5SNP3 & G & 280 & 71,43 \\
 & A & 112 & 28,57 \\
\textit{IGF1} In5SNP4 & T & 293 & 71,12 \\
 & C & 119 & 28,88 \\
\textit{IGF1} In5SNP7 & G & 320 & 81,22 \\
 & C & 74 & 18,78 \\
\hline
\end{tabular}
\caption{Tabelle 3.19a: Elterliche Allelverteilungen für die fünf SNPs des humanen \textit{IGF1}-Gens. Die elterlichen Allelverteilungen sind in absoluten Zahlen [N] sowie als relative Frequenzen [%] wiedergegeben (Spalte 3 und 4). Angaben für die 108 Familien (S1).}
\end{table}
Ergebnisse 105

b)

<table>
<thead>
<tr>
<th>SNP</th>
<th>Allel</th>
<th>Anzahl der elterlichen Allele [N]</th>
<th>Allelfrequenz der elterlichen Allele [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF1 In3SNP1</td>
<td>G</td>
<td>578</td>
<td>87,31</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>84</td>
<td>12,69</td>
</tr>
<tr>
<td>IGF1 In3SNP4</td>
<td>G</td>
<td>474</td>
<td>72,37</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>181</td>
<td>27,63</td>
</tr>
<tr>
<td>IGF1 In5SNP3</td>
<td>G</td>
<td>464</td>
<td>72,27</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>178</td>
<td>27,73</td>
</tr>
<tr>
<td>IGF1 In5SNP4</td>
<td>T</td>
<td>474</td>
<td>72,48</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>180</td>
<td>27,52</td>
</tr>
<tr>
<td>IGF1 In5SNP7</td>
<td>G</td>
<td>518</td>
<td>82,48</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>110</td>
<td>17,52</td>
</tr>
</tbody>
</table>

Tabelle 3.19b: Elterliche Allelverteilungen für die fünf SNPs des humanen IGF1-Gens. Die elterlichen Allelverteilungen sind in absoluten Zahlen [N] sowie als relative Frequenzen [%] wiedergegeben (Spalte 3 und 4). Angaben für die 172 Familien (S2).

<table>
<thead>
<tr>
<th>SNP</th>
<th>RC-TDT p-Wert Asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF1 In3SNP1</td>
<td>S1: 0,5341</td>
</tr>
<tr>
<td></td>
<td>S2: 0,0670</td>
</tr>
<tr>
<td>IGF1 In3SNP4</td>
<td>S1: 0,5310</td>
</tr>
<tr>
<td></td>
<td>S2: 0,5370</td>
</tr>
<tr>
<td>IGF1 In5SNP3</td>
<td>S1: 0,4127</td>
</tr>
<tr>
<td></td>
<td>S2: 1,0000</td>
</tr>
<tr>
<td>IGF1 In5SNP4</td>
<td>S1: 0,6981</td>
</tr>
<tr>
<td></td>
<td>S2: 1,0000</td>
</tr>
<tr>
<td>IGF1 In5SNP7</td>
<td>S1: 0,0363</td>
</tr>
<tr>
<td></td>
<td>S2: 0,0046</td>
</tr>
</tbody>
</table>

Tabelle 3.20: Kopplungs-/Assoziationsanalyse für die fünf SNPs des humanen IGF1-Gens mit Asthma. Die Analysen erfolgten mit dem RC-TDT (Knapp, 1999a und b) und wurden sowohl für die 108 Familien (S1) als auch die 172 Familien (S2) durchgeführt. Signifikante p-Werte sind fett gedruckt (Spalte 2).
<table>
<thead>
<tr>
<th>SNP</th>
<th>mit erhöhtem Gesamt-IgE-assoziertes Allel</th>
<th>p-Wert</th>
<th>mit erhöhter Eosinophilenzellzahl assoziertes Allel</th>
<th>p-Wert</th>
<th>mit erhöhtem SLOPE assoziertes Allel</th>
<th>p-Wert</th>
<th>mit vermindertem Peak-Flow assoziertes Allel</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF1In3SNP1</td>
<td>S1: G</td>
<td>0,0830</td>
<td>S1: G</td>
<td>0,0670</td>
<td>S1: G</td>
<td>> 0,1000</td>
<td>S1: G</td>
<td>> 0,1000</td>
</tr>
<tr>
<td></td>
<td>S2: G</td>
<td>> 0,1000</td>
<td>S2: G</td>
<td>0,0490</td>
<td>/</td>
<td>/</td>
<td>S2: G</td>
<td>> 0,1000</td>
</tr>
<tr>
<td>IGF1In3SNP4</td>
<td>S1: A</td>
<td>> 0,1000</td>
<td>S1: A</td>
<td>> 0,1000</td>
<td>S1: A</td>
<td>> 0,1000</td>
<td>S1: A</td>
<td>> 0,1000</td>
</tr>
<tr>
<td></td>
<td>S2: A</td>
<td>> 0,1000</td>
<td>S2: A</td>
<td>> 0,1000</td>
<td>/</td>
<td>/</td>
<td>S2: A</td>
<td>> 0,1000</td>
</tr>
<tr>
<td>IGF1In5SNP3</td>
<td>S1: A</td>
<td>> 0,1000</td>
<td>S1: A</td>
<td>> 0,1000</td>
<td>S1: A</td>
<td>> 0,1000</td>
<td>S1: A</td>
<td>> 0,1000</td>
</tr>
<tr>
<td></td>
<td>S2: A</td>
<td>> 0,1000</td>
<td>S2: A</td>
<td>> 0,1000</td>
<td>/</td>
<td>/</td>
<td>S2: A</td>
<td>> 0,1000</td>
</tr>
<tr>
<td>IGF1In5SNP4</td>
<td>S1: C</td>
<td>> 0,1000</td>
<td>S1: C</td>
<td>> 0,1000</td>
<td>S1: C</td>
<td>> 0,1000</td>
<td>S1: C</td>
<td>> 0,1000</td>
</tr>
<tr>
<td></td>
<td>S2: C</td>
<td>> 0,1000</td>
<td>S2: C</td>
<td>> 0,1000</td>
<td>/</td>
<td>/</td>
<td>S2: C</td>
<td>> 0,1000</td>
</tr>
<tr>
<td>IGF1In5SNP7</td>
<td>S1: C</td>
<td>> 0,1000</td>
<td>S1: C</td>
<td>> 0,1000</td>
<td>S1: C</td>
<td>> 0,1000</td>
<td>S1: C</td>
<td>> 0,1000</td>
</tr>
<tr>
<td></td>
<td>S2: C</td>
<td>> 0,1000</td>
<td>S2: C</td>
<td>> 0,1000</td>
<td>/</td>
<td>/</td>
<td>S2: C</td>
<td>> 0,1000</td>
</tr>
</tbody>
</table>

Tabelle 3.21: Assoziationsanalyse für die fünf SNPs des humanen IGF1-Gens mit den quantitativen Merkmalen erhöhter Gesamt-IgE-Spiegel, erhöhte Eosinophilenzellzahl, erhöhter SLOPE und vermindelter Peak-Flow. Für Gesamt-IgE-Spiegel, Eosinophilenzellzahl und Peak-Flow erfolgten die Analysen sowohl für die 172 Familien (S2) als auch die 108 Familien (S1), für den SLOPE nur für die 108 Familien (Spalte 6 und 7). Für keinen der fünf SNPs des humanen IGF1-Gens konnte eine Assoziation mit den quantitativen Phänotypen gefunden werden (p-Werte > 0,05, Spalte 3,5,7 und 9). In Spalte 2,4,6 und 8 ist der Einfluss des jeweiligen Allels auf den quantitativen Phänotyp in Form einer deskriptiven Statistik wiedergegeben. Der Einfluss ist nur dann von Bedeutung, wenn auch der p-Wert ein signifikanter ist (p < 0,05).
3.5 Analyse des humanen LTA4H-Gens

Wie schon für die Gene NAB2 und IGF1 beschrieben, beschränkte sich auch die Analyse des humanen LTA4H-Gens auf die Untersuchung bereits bekannter SNPs aus der öffentlichen SNP-Datenbank (http://www.ncbi.nlm.nih.gov/SNP).

3.5.1 Validierung von SNPs des humanen LTA4H-Gens

Für das humane LTA4H-Gen wurden zunächst sieben SNPs aus der öffentlichen SNP-Datenbank (http://www.ncbi.nlm.nih.gov/SNP) ermittelt (Tabelle 3.22). Die Validierung erfolgte dann für vier dieser SNPs mittels MALDI-TOF Massenspektrometrie in einem Pool aus genomischer DNA von 286 zufällig ausgewählten adulten Probanden einer deutschen populationsbezogenen Studie (KORA S4-Studie; vgl. Abschnitt 2.1.2). Dabei konnte nur der SNP in Intron 6, LTA4H In6SNP1, bestätigt werden (Tabelle 3.22, Spalte 4). Der SNP in der 3'UTR des Gens, LTA4H Ex19SNP2, war dagegen nicht vorhanden (Tabelle 3.22, Spalte 4). Mit den Assays für LTA4H In3SNP1 und LTA4H Ex19SNP1 wurden keine Ergebnisse erzielt (Tabelle 3.22, Spalte 4). Für die restlichen drei SNPs des humanen LTA4H-Gens (LTA4 In3SNP2, LTA4H In3SNP3 und LTA4H In11SNP1), erfolgte die Validierung direkt in der Asthma-Familienstudie mittels MALDI-TOF Massenspektrometrie im 384 Well-Format (Tabelle 3.22, Spalte 5). Dabei konnten alle drei SNPs bestätigt werden.

3.5.2 Genotypisierung der LTA4H-SNPs in der Asthma-Familienstudie

Die Genotypisierung innerhalb der 172 Familien (748 Probanden: 344 Eltern, 404 Kinder) der Asthma-Familienstudie erfolgte für alle vier validierten SNPs des humanen LTA4H-Gens mittels MALDI-TOF Massenspektrometrie im 384 Well-Format. Für Probanden, bei denen eine Genotypisierung im ersten Ansatz fehlgeschlug, wurde diese im 96 Well-Format wiederholt. Allerdings konnten für den SNP in Intron 6, LTA4H In6SNP1, keine eindeutigen Massenspektren erzielt werden (Tabelle 3.22, Spalte 5), weshalb keine weiteren Analysen durchgeführt wurden. Demnach standen drei SNPs, zwei in Intron 3 (LTA4H In3SNP2 und LTA4H In3SNP3) und einer in Intron 11 (LTA4H In11SNP1), für weitere statistische Analysen zur Verfügung (Tabelle 3.22, Spalte 5). Die Genotypisierungsarten lagen dabei
zwischen 91% und 95%. Eine graphische Übersicht über die Lage der drei SNPs im humanen LTA4H-Gen entsprechend der Exon/Intron-Grenzen ist in Abbildung 3.10 wiedergegeben.

Eine Überprüfung der Genotypen ergab für keinen der drei SNPs Unstimmigkeiten zwischen den Genotypen der Eltern und denen ihrer Kinder („Mendel-Check“). Für die elterlichen Genotypen wurden keine Abweichungen vom Hardy-Weinberg-Gleichgewicht beobachtet (p-Werte > 0,05; Tabelle 3.23, Spalte 5), wobei die Tests sowohl für die 172 Familien (S2) als auch die 108 Familien der Anfangsstudie (S1) durchgeführt wurden (Tabelle 3.23). Somit konnten Genotypisierungsfehler weitestgehend ausgeschlossen werden.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{LTA4H} In3SNP2</td>
<td>S1: 181 S2: 280</td>
<td>S1: 20 S2: 30</td>
<td>S1: 0 S2: 0</td>
<td>0,4579 / 1,0000 0,3706 / 1,0000</td>
</tr>
<tr>
<td>\textit{LTA4H} In3SNP3</td>
<td>S1: 168 S2: 265</td>
<td>S1: 35 S2: 60</td>
<td>S1: 2 S2: 2</td>
<td>0,9062 / 0,6992 0,4785 / 0,7531</td>
</tr>
<tr>
<td>\textit{LTA4H} In11SNP1</td>
<td>S1: 65 S2: 102</td>
<td>S1: 108 S2: 172</td>
<td>S1: 32 S2: 52</td>
<td>0,2421 / 0,3149 0,1454 / 0,1735</td>
</tr>
</tbody>
</table>
3.5.3 Statistische Auswertung - Kopplungs- und Assoziationsanalysen

Alle drei SNPs des humanen \textit{LTA4H}-Gens wurden in der Familienstudie auf Kopplung/Assoziation mit Asthma, erhöhtem Gesamt-IgE-Spiegel, erhöhter Eosinophilenzellzahl, erhöhtem SLOPE und vermindertem Peak-Flow untersucht. Mit Ausnahme des SLOPE, für den die Berechnungen nur mit den 108 Familien der Anfangsstudie (S1) durchgeführt wurden, erfolgten die statistischen Analysen für alle Merkmale sowohl mit den 172 Familien (S2) als auch den 108 Familien (S1). Die elterlichen Allelverteilungen sind für beide Stichproben als absolute Zahlen [N] sowie relative Frequenzen [%] in Tabelle 3.24, Spalte 3 und 4 angegeben.

\begin{table}
\centering
\begin{tabular}{|l|l|l|l|}
\hline
SNP & Allel & Anzahl der elterlichen Allele [N] & Allelfrequenz der elterlichen Allele [%] \\
\hline
\textit{LTA4H} In3SNP2 & G & 382 & 95,02 \\
& A & 20 & 04,98 \\
\textit{LTA4H} In3SNP3 & C & 371 & 90,49 \\
& T & 39 & 09,51 \\
\textit{LTA4H} In11SNP1 & T & 238 & 58,05 \\
& C & 172 & 41,95 \\
\hline
\end{tabular}
\caption{Elterliche Allelverteilungen für die drei SNPs des humanen \textit{LTA4H}-Gens. Die elterlichen Allelverteilungen sind in absoluten Zahlen [N] und als relative Frequenzen [%] wiedergegeben (Spalte 3 und 4). a) Angaben für die 108 Familien (S1). b) Angaben für die 172 Familien (S2).}
\end{table}
Während keiner der SNPs eine Kopplung/Assoziation mit Asthma zeigte (p-Werte > 0,05; Tabelle 3.25, Spalte 2), konnte für *LTA4H* In3SNP2 mit beiden Stichproben eine schwache Assoziation des häufigeren Allels (Allel G) mit einem erhöhten Gesamt-IgE-Spiegel beobachtet werden (p-Werte: 0,0220 und 0,0210; Tabelle 3.26, Spalte 3). Im Falle der kleineren Stichprobe (108 Familien, S1) ergab sich für diesen SNP auch eine schwache Assoziation des häufigeren Allels (Allel G) mit einem verminderten Peak-Flow-Wert (p-Wert = 0,0300; Tabelle 3.26, Spalte 9), die jedoch mit der größeren Stichprobe (172 Familien) nicht bestätigt werden konnte (p-Wert > 0,1000; Tabelle 3.26, Spalte 9).

<table>
<thead>
<tr>
<th>SNP</th>
<th>RC-TDT p-Wert Asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTA4H In3SNP2</td>
<td>S1: 0,1433 S2: 0,3581</td>
</tr>
<tr>
<td>LTA4H In3SNP3</td>
<td>S1: 0,4694 S2: 0,2666</td>
</tr>
<tr>
<td>LTA4H In11SNP1</td>
<td>S1: 0,3006 S2: 0,2122</td>
</tr>
</tbody>
</table>

Tabelle 3.25: Kopplungs-/Assoziationsanalyse für die drei SNPs des humanen *LTA4H*-Gens mit Asthma.

Die Analysen erfolgten mit dem RC-TDT (Knapp, 1999a und b) und wurden sowohl für die 108 Familien (S1) als auch die 172 Familien (S2) durchgeführt. Keiner der drei SNPs zeigte eine Kopplung/Assoziation mit Asthma (p-Werte > 0,05; Spalte 2).
<table>
<thead>
<tr>
<th>SNP</th>
<th>mit erhöhtem Gesamt-IgE assoziiertes Allele</th>
<th>p-Wert</th>
<th>mit erhöhter Eos.zellzahl assoziiertes Allele</th>
<th>p-Wert</th>
<th>mit erhöhtem SLOPE assoziiertes Allele</th>
<th>p-Wert</th>
<th>mit vermindertem Peak-Flow assoziiertes Allele</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTA4H In3SNP2</td>
<td>S1: G</td>
<td>0,0220</td>
<td>S1: G >0,1000</td>
<td>S1: A >0,1000</td>
<td>S1: G >0,1000</td>
<td>S2: G</td>
<td>S1: G >0,1000</td>
<td>0,0300</td>
</tr>
<tr>
<td></td>
<td>S2: G</td>
<td>0,0210</td>
<td>S2: G >0,1000</td>
<td>/</td>
<td>/</td>
<td>S2: G >0,1000</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>LTA4H In3SNP3</td>
<td>S1: T</td>
<td>>0,1000</td>
<td>S1: T >0,1000</td>
<td>S1: T >0,1000</td>
<td>S1: T >0,1000</td>
<td>S2: C</td>
<td>S1: C >0,1000</td>
<td>>0,1000</td>
</tr>
<tr>
<td></td>
<td>S2: T</td>
<td>>0,1000</td>
<td>S2: C >0,1000</td>
<td>/</td>
<td>/</td>
<td>S2: C >0,1000</td>
<td>0,0750</td>
<td></td>
</tr>
<tr>
<td>LTA4H In11SNP1</td>
<td>S1: T</td>
<td>>0,1000</td>
<td>S1: C >0,1000</td>
<td>S1: T >0,1000</td>
<td>S1: T >0,1000</td>
<td>S2: T</td>
<td>S1: T >0,1000</td>
<td>>0,1000</td>
</tr>
<tr>
<td></td>
<td>S2: T</td>
<td>>0,1000</td>
<td>S2: T >0,1000</td>
<td>/</td>
<td>/</td>
<td>S2: T >0,1000</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.26: Assoziationsanalyse für die drei SNPs des humanen LTA4H-Gens mit den quantitativen Merkmalen erhöhter Gesamt-IgE-Spiegel, erhöhte Eosinophilenzellzahl, erhöhter SLOPE und vermindelter Peak-Flow. Für Gesamt-IgE-Spiegel, Eosinophilenzellzahl und Peak-Flow erfolgten die Analysen sowohl für die 172 Familien (S2) als auch die 108 Familien (S1), für den SLOPE nur für die 108 Familien (Spalte 6 und 7). Signifikante p-Werte sind fett gedruckt (Spalte 3 und 9). In Spalte 2,4,6 und 8 ist der Einfluss des jeweiligen Allels auf den quantitativen Phänotyp in Form einer deskriptiven Statistik wiedergegeben. Der Einfluss ist nur dann von Bedeutung, wenn auch der p-Wert signifikant ist (p < 0,05).
4. Diskussion

4.1 Analyse des humanen NOS1-Gens

4.1.1 NOS1-SNPs zeigen keine Assoziation mit Asthma und Asthma-assoziierten Phänotypen

Für das humane NOS1-Gen wurden im Rahmen dieser Arbeit insgesamt zwei SNPs untersucht, die erstmals von Grasemann und Kollegen in einer US-amerikanischen Fall-Kontroll-Studie bestehend aus Kaukasiern, auf Assoziation mit Asthma getestet wurden (Grasemann et al., 1999a). Dabei konnte für den SNP in Exon 18, NOS1 Ex18SNP1, übereinstimmend in sowohl der eigenen Asthma-Familienstudie als auch der Grasemann-Studie keine Assoziation mit Asthma nachgewiesen werden (p=0.3010; vgl. Tabelle 3.3;
Grasemann et al., 1999a). Da dieser SNP allerdings zu keinem Aminosäureaustausch führt, ist er von keiner funktionellen Relevanz und hätte, im Falle einer Assoziation, nur einen weiteren Marker dargestellt.

Von weitaus größerer funktioneller Bedeutung ist der zweite NOS1-SNP, NOS1 Ex29SNP1. Dieser SNP ist in der 3'UTR des Gens lokalisiert, einem Bereich, dem eine Rolle in der post-transkriptionellen Regulation der Genexpression zukommt, wie im Rahmen der STAT6-Diskussion in einem späteren Abschnitt ausführlich erläutert wird (vgl. Abschnitt 4.2.5). Allerdings konnte die, für diesen SNP in der Grasemann-Studie gefundene, signifikante Assoziation mit Asthma (p<0,05; Grasemann et al., 1999a) in der eigenen Asthma-Familienstudie nicht bestätigt werden (p =0,7971; vgl. Tabelle 3.3). Auch in einer chinesischen Fall-Kontroll-Studie, bestehend aus asthmatischen und gesunden Kindern, zeigte dieser SNP keine Assoziation mit sowohl Asthma als auch Atopie sowie einem erhöhten NO-Spiegel in der Atemluft (Leung et al., 2005). Da es sich bei der Grasemann-Studie um erwachsene Probanden handelt, die eigene Studie jedoch asthmatische Kinder und deren Eltern umfaßt („affected sib-pair“-Design; vgl. Abschnitt 2.1.3), erwecken diese Ergebnisse den Anschein, dass NOS1 Ex29SNP1 in der Entwicklung des kindlichen Asthmas keine Rolle spielt. Dies setzt jedoch voraus, dass die erwachsenen Probanden in der Grasemann-Studie nicht bereits im Kindesalter an Asthma erkrankt waren. Die Ergebnisse weiterer, ebenfalls aus erwachsenen Probanden bestehender, Studien, sprechen ebenfalls gegen diese Vermutung. So konnte weder in einer kolumbianischen Fall-Kontroll-Studie noch in einer tschechischen Fall-Kontroll-Studie eine Assoziation von NOS1 Ex29SNP1 mit Asthma nachgewiesen werden (Hollá et al., 2004; Martinez et al., 2007). Aufgrund der unterschiedlichen ethnischen Hintergründe der Studien scheinen ethnische Unterschiede bezüglich der Rolle von NOS1 Ex29SNP1 in der Pathogenese von Asthma ebenfalls nicht in Frage zu kommen.

Die in den verschiedenen Studien erzielten, unterschiedlichen Assoziationsergebnisse für Asthma können jedoch auch damit zusammenhängen, dass die Rekrutierung von Asthmapatienten für genetische Studien keinen einheitlichen medizinischen Standards folgt, was wiederum auf die bis heute fehlende allgemeingültige Standarddefinition von Asthma zurückzuführen ist (vgl. Abschnitt 1.2). Gerade in der Patienten- und Familienanamnese können die einzelnen Studien mehr oder weniger stark voneinander abweichen, was einen direkten Vergleich der einzelnen Studienergebnisse erschwert.

Daneben spielen auch das unterschiedliche Studiendesign (Fall-Kontroll- versus Familienstudie) sowie Anzahl und Zusammensetzung der, in die statistischen Tests eingeflossenen, Stichproben eine bedeutende Rolle, wie in einem späteren Abschnitt am Beispiel der SNPs in der 3'UTR des humanen STAT6-Gens ausführlich diskutiert wird (vgl.
Abschnitt 4.2.3). Letzteres ist vor allem beim Vergleich der Assoziationsergebnisse von quantitativen Merkmalen wie Gesamt-IgE-Spiegel oder Eosinophilie zu berücksichtigen. Während das T-Allel von NOS1 Ex29SNP1 sowohl in der o.g. chinesischen als auch der tschechischen Studie mit einem erhöhten Gesamt-IgE-Spiegel assoziiert war (Hollá et al., 2004; Leung et al. 2005), ergab sich in der kolumbianischen Studie keine Assoziation (Martinez et al., 2007). In der eigenen Asthma-Familienstudie konnte für NOS1 Ex29SNP1 ebenfalls keine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel nachgewiesen werden (p>0,1000; vgl. Tabelle 3.4).

4.2 Analyse des humanen STAT6-Gens

4.2.1 Die kodierende Region des humanen STAT6-Gens ist hoch konserviert

Im Rahmen der Analyse des humanen STAT6-Gens wurden alle 23 Exons, jeweils 20-100 bp der angrenzenden Introns sowie die upstream des Gens gelegene Promotorregion mittels direkter Sequenzierung der DNA von 32 genetisch unabhängigen Probanden einer deutschen Studie (vgl. Abschnitt 2.1.1) systematisch auf das Vorhandensein von Polymorphismen untersucht. Dabei wurden 10 Single-Nukleotid-Polymorphismen (SNPs) identifiziert, von
denen zwei in der Promotorregion (\textit{STAT6} 5\textquotesingle flankingSNP1-2) und fünf in der 3\textquotesingle UTR (Exon 23, \textit{STAT6} 3\textquotesingle UTRSNP1-5) des Gens lokalisiert sind (vgl. Tabelle 3.5). Die restlichen drei SNPs sind alle intronisch (\textit{STAT6} In16SNP1, \textit{STAT6} In17SNP1 und \textit{STAT6} In18SNP1, vgl. Tabelle 3.5).

Aufgrund fehlender Polymorphismen in der kodierenden Region des \textit{STAT6}-Gens ist ein möglicher Einfluß von STAT6 auf die Ätiologie von \textit{Asthma bronchiale} und/oder den Asthma-assoziierten Phänotypen eher auf Polymorphismen zurückzuführen, die z. B. in einer Veränderung der \textit{STAT6}-Transkriptions- oder Translationsrate resultieren als auf eine Veränderung der Aminosäuresequenz.
4.2.2 SNPs in der 3'UTR von STAT6 zeigen eine schwache Assoziation mit Asthma-assozierten Phänotypen

Insgesamt wurden fünf, in der 3'UTR (3' untranslatierte Region) des humanen STAT6-Gens lokalierte SNPs, STAT6 3'UTRSNP1-5, in der deutschen Asthma-Familienstudie auf Assoziation mit Asthma und Asthma-assozierten Phänotypen untersucht. Dabei konnte weder für Asthma noch für eine erhöhte Eosinophilenzellzahl (Eosinophilie) eine Assoziation mit einem dieser SNPs gefunden werden (p>0,05; vgl. Tabelle 3.7 und 3.8). Lediglich STAT6 3'UTRSNP3 zeigte eine schwache Assoziation mit einem erhöhten SLOPE (p=0,0370; vgl. Tabelle 3.8). Für den benachbarten STAT6 3'UTRSNP4 dagegen ergab sich eine, ebenfalls schwache, Assoziation mit einem erhöhten Gesamt-IgE-Spiegel (p=0,0280; vgl. Tabelle 3.8).

Die meisten der, in der 3'UTR gelegenen, SNPs wurden mittlerweile in weiteren Studien, mit teilweise unterschiedlichem ethnischen Hintergrund, auf Assoziation mit Asthma und/oder Asthma-assozierten Phänotypen untersucht. Den am häufigsten untersuchten SNP stellt dabei STAT6 3'UTRSNP1 dar. Für diesen SNP konnte in der hier verwendeten deutschen Asthma-Familienstudie für keinen der untersuchten Phänotypen eine Assoziation beobachtet werden (vgl. Tabelle 3.7 und 3.8). Diese Befunde stehen im Einklang mit den Ergebnissen einer finnischen Familienstudie, die weder für Asthma noch für einen erhöhten Serum-IgE-Spiegel eine Assoziation mit STAT6 3'UTRSNP1 finden konnten (Pykäläinen et al., 2005). Gleiche Ergebnisse erzielten auch Gao und Kollegen in einer britischen Fall-Kontroll-Studie. In dieser Studie zeigte STAT6 3'UTRSNP1 weder Assoziation mit Asthma (p=0,470) noch einem erhöhten IgE-Spiegel (p=0,302) noch Atopie (p=0,442; Gao et al., 2000). Eine weitere Analyse, bei der die Unterteilung des Phänotyps Asthma in die beiden Formen atopisches Asthma und nicht-atopisches Asthma erfolgte, liefernte in der britischen Studie ebenfalls keine signifikante Assoziation (p=0,555; Gao et al., 2000). Da es sich bei allen drei Studien um Probanden mit annähernd gleichem ethnischen Hintergrund handelt, legen diese Ergebnisse die Vermutung nahe, dass STAT6 3'UTRSNP1 in der europäisch-kaukasischen Bevölkerung keinen Einfluß auf die Ätiologie von Asthma bzw. einem erhöhten IgE-Spiegel hat und zwar unabhängig davon, ob es sich um kindliches Asthma (deutsche und finnische Familienstudie) oder adulte Asthma (britische Studie) handelt.

Etwas anders sieht es da in der japanischen Bevölkerung aus. So konnten Gao und Kollegen in einer großen japanischen Fall-Kontroll-Studie eine signifikante Assoziation von STAT6 3'UTRSNP1 mit dem Phänotyp leichtes, atopisches Erwachsenen-Asthma nachweisen (p=0,0043; Gao et al., 2000). Für die Phänotypen schweres atopisches Erwachsenen-Asthma, schweres atopisches kindliches Asthma, intrinsisches (nicht-atopisches) Erwachsenen-
Asthma, erhöhter IgE-Spiegel sowie Atopie dagegen konnten in der gleichen Studie keine Assoziationen mit STAT6 3'UTR SNP1 gefunden werden (p-Werte alle >0,1; Gao et al., 2000).

In einer anderen japanischen Fall-Kontroll-Studie, bei der die Fälle aus Kindern mit einer atopischen Erkrankung (atopisches Asthma, atopisches Ekzem und lebensmittelinduzierte Anaphylaxie) bestanden, war STAT6 3'UTR SNP1 ebenfalls mit keinem der untersuchten Phänotypen assoziiert (p-Werte zwischen 0,01369 und 0,4974; Tamura et al., 2001; Tamura et al., 2003). Zusammen weisen diese Ergebnisse auf eine, bereits seit langem postulierte (vgl. Abschnitt 1.5.1), genetische Heterogenität von Asthma und Asthma-assoziierten Phänotypen hin. Die Ergebnisse der japanischen Studien erwecken zusätzlich den Anschein, dass diese genetische Heterogenität nicht nur auf unterschiedliche ethnische Gruppen beschränkt zu sein scheint, sondern auch innerhalb einer ethnischen Gruppe auftreten kann. So könnten für die verschiedenen Asthmatypen innerhalb einer Population unterschiedliche Polymorphismen im STAT6-Gen verantwortlich sein.

Wie bereits im Rahmen der NOSI-Diskussion erwähnt (vgl. Abschnitt 4.1.1), gibt es neben einer genetischen Heterogenität noch weitere Gründe, mit denen sich unterschiedliche Assoziationsergebnisse für ein und denselben Polymorphismus in verschiedenen Studien erklären lassen, wie im nächsten Abschnitt am Beispiel der SNPs STAT6 3'UTR SNP3 und STAT6 3'UTR SNP4 näher erläutert wird.

4.2.3 Verschiedene Studien zeigen unterschiedliche Assoziationsergebnisse - eine Analyse am Beispiel zweier SNPs in der 3'UTR von STAT6

Die für das humane STAT6-Gen in der Asthma-Familienstudie erzielten und 2002 in Duetsch et al. veröffentlichten Ergebnisse waren der Anlaß, die für einzelne STAT6-SNPs nachgewiesenen Assoziationen in zwei weiteren deutschen Studien zu replizieren (Schedel et al., 2004; Weidinger et al., 2004). Bei beiden Studien handelt es sich dabei um große, populationsbezogene Fall-Kontroll-Studien, wobei sich die erste Studie aus insgesamt 1.120 deutschstämmigen Schulkindern aus München (n=528) und Leipzig (n=592) zusammensetzte (Schedel et al., 2004). Die zweite Studie hingegen bestand aus Erwachsenen im Alter zwischen 24 und 74 Jahren (KORA C-Studie; Weidinger et al., 2004). Weiterhin umfaßte das zu untersuchende SNP-Panel in beiden Studien nicht alle 13, in dieser Arbeit untersuchten, STAT6-SNPs, sondern beschränkte sich hauptsächlich auf solche STAT6-SNPs, für die in der Asthma-Familienstudie eine Assoziation mit Asthma-assoziierten Phänotypen gefunden wurde (Schedel et al., 2004; Weidinger et al., 2004; vgl. Tabelle 3.8). Neben den intronischen SNPs STAT6 In2SNP3 und STAT6 In18SNP1 waren dies vor allem die beiden, in der 3'UTR
lokalierten, SNPs STAT6 3'UTR SNP3 und STAT6 3'UTR SNP4 (vgl. Tabelle 3.8). Dabei stimmten für alle vier SNPs die, in den beiden deutschen Fall-Kontroll-Studien erzielten, Allelfrequenzen mit den elterlichen Allelfrequenzen der Asthma-Familienstudie weitestgehend überein (Schedel et al., 2004; Weidinger et al., 2004; vgl. Tabelle 3.7). Diese Übereinstimmung und die Tatsache, dass sich alle elterlichen Genotypen der Asthma-Familienstudie im Hardy-Weinberg-Gleichgewicht befanden (vgl. Tabelle 3.6), spricht für eine gute Qualität der Genotypisierung, so dass Genotypisierungsfehler ausgeschlossen werden können.

Übereinstimmungen ergaben sich auch hinsichtlich der für Asthma erzielten Assoziationsergebnisse. So konnte sowohl in der Kinderstudie von Schedel und Kollegen als auch in der Erwachsenenstudie von Weidinger und Kollegen weder für STAT6 3'UTR SNP3 noch STAT6 3'UTR SNP4 eine signifikante Assoziation mit Asthma nachgewiesen werden, was mit den eigenen Ergebnissen konform geht (Schedel et al., 2004; Weidinger et al., 2004; Klopp, persönliche Mitteilung; vgl. Tabelle 3.7).

Die in der Asthma-Familienstudie gefundene schwache Assoziation von STAT6 3'UTR SNP4 mit einem erhöhten Gesamt IgE-Spiegel (p=0,0280; vgl. Tabelle 3.8) konnte dagegen in keiner der beiden Fall-Kontroll-Studien bestätigt werden (Schedel et al., 2004; Weidinger et al., 2004). Dafür war STAT6 3'UTR SNP3 in der Kinderstudie signifikant mit einem erhöhten Serum (Gesamt)-IgE-Spiegel assoziiert (p=0.003; Schedel et al., 2004). Dies konnte sowohl in der gesamten Population (München und Leipzig) als auch den beiden Subpopulationen, München bzw. Leipzig, beobachtet werden (Schedel et al., 2004). Sowohl in der eigenen Asthma-Familienstudie als auch in der Studie von Weidinger und Kollegen war dieser SNP hingegen nicht mit einem erhöhten Gesamt-IgE-Spiegel assoziiert (Weidinger et al., 2004; vgl. Tabelle 3.8). Da die beiden SNPs jedoch nur 61 bp voneinander entfernt liegen (vgl. Tabelle 3.5) und sich in der Asthma-Familienstudie in einem signifikanten Kopplungsungleichgewicht befanden (vgl. Abschnitt 3.2.3.2), sind diese Unterschiede jedoch nur dann von Bedeutung, wenn es sich bei einem der SNPs um einen funktionellen (kausalen) SNP handeln würde. Sind sie nicht kausal und stellen lediglich genetische Marker dar, ist es aufgrund des bestehenden Kopplungsungleichgewichts unbedeutend ob nun STAT6 3'UTR SNP3 oder STAT6 3'UTR SNP4 mit einem erhöhten Gesamt-IgE-Spiegel assoziiert ist. Ob, und wenn ja, welcher der beiden SNPs von funktioneller Relevanz für die Entwicklung eines erhöhten Gesamt-IgE-Spiegels ist, muß sowieso in funktionellen Studien geklärt werden.

Die unterschiedlichen Assoziationsergebnisse sind am ehesten auf das unterschiedliche Studiendesign der einzelnen Studien zurückzuführen. So handelt es sich bei der, in dieser
Arbeit untersuchten, Studie um eine Familienstudie, bei der sich die einzelnen Familien aus jeweils den Eltern und mindestens zwei an Asthma erkrankten Kindern zusammensetzten („affected sib-pair“-Design; Wjst et al., 1999a; Immervoll et al., 2001; vgl. Abschnitt 2.1.3). Aufgrund dieses Studiendesigns flossen in die statistischen Tests (TDT und QTDT, vgl. Abschnitte 2.3.2.3 und 2.3.2.4) jeweils nur die Familien ein, bei denen mindestens ein Elternteil heterozygot für den zu untersuchenden SNP war. Es bestand somit die Möglichkeit, dass aufgrund einer zu geringen Anzahl an informativen Genotypen (heterozygoten Eltern) die in die statistischen Tests eingeflossene Stichprobe so klein war, dass die statistische Power (Aussagekraft) nicht ausreichte um eine Assoziation zu entdecken (falsch negatives Ergebnis).

Dies könnte für den STAT6 3'UTRSNP3 der Fall sein, da die Allelfrequenz der elterlichen Allele für das seltene Allel in der Familienstudie nur 07,92% betraf (vgl. Tabelle 3.7). Bei den anderen beiden Studien dagegen handelt es sich um Fall-Kontroll-Studien. Hier bestehen sowohl die Fälle (erkrankte Personen) als auch die Kontrollen aus genetisch unabhängigen Individuen (vgl. Abschnitt 1.5.2.1). Die Stichproben, die in die statistischen Tests einfließen sind bei diesem Studiendesign in der Regel größer als diejenigen von Familienstudien, vor allem wenn es sich wie hier um sehr große Studien handelt. Dies würde erklären, warum STAT6 3'UTRSNP3 in der Kinderstudie eine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel gezeigt hat, in der Asthma-Familienstudie dagegen nicht. Ein weiterer Punkt ist die unterschiedliche Zusammensetzung der Stichproben, die in die IgE-Analysen einflossen. Während für die Untersuchungen in der Familienstudie gezielt Familien mit asthmatischen Kindern herangezogen wurden, bestand die Stichprobe in beiden Fall-Kontroll-Studien sowohl aus Astmatikern als auch aus Probanden mit anderen atopischen Erkrankungen (Heuschnupfen, atopisches Ekzem) (Schedel et al., 2004; Weidinger et al., 2004). Darüberhinaus hängt die Höhe des Gesamt-IgE-Spiegels im Serum von Alter und Geschlecht des Probanden ab. Demnach gelten für die einzelnen Altersstufen nicht nur unterschiedliche Soll-Werte, der Wert, ab dem ein erhöhter Gesamt-IgE-Spiegel vorliegt ist ebenfalls ein anderer. Allerdings wurde in allen drei Studien der Gesamt-IgE-Spiegel für die statistischen Tests auf Alter und Geschlecht adjustiert, so dass die Altersabhängigkeit des Gesamt-IgE-Spiegels keinen Einfluss auf das Ergebnis hatte.

Ein unterschiedliches Studiendesign ist wahrscheinlich auch dafür verantwortlich, dass die, in der eigenen Studie beobachtete, Assoziation von STAT6 3'UTRSNP4 mit einem erhöhten Gesamt-IgE-Spiegel nicht auch in einer finnischen Studie nachgewiesen werden konnte (Pykäläinen et al., 2005). Zwar handelt es sich bei dieser Studie ebenfalls um eine Familienstudie, das Studiendesign wicj jedoch von demjenigen der eigenen Studie erheblich ab. So umfasste die finnische Studie auch Familien bei denen ein Elternteil an Asthma
Diskussion

erkrankt war, die jeweiligen Kinder jedoch nicht (Laitinen et al., 1997). Auch wurden
asthmatische Verwandte zweiten Grades in die Studie aufgenommen und das
Durchschnittsalter der asthmatischen Studienteilnehmer lag deutlich über dem der Probanden
der eigenen Studie (Laitinen et al., 1997).

4.2.4 Ein SNP in der 3'UTR von STAT6 zeigt eine schwache Assoziation mit
einem erhöhten SLOPE

Wie bereits in Abschnitt 4.2.2 erwähnt, konnte für den SNP STAT6 3'UTRSNP3 in der
Asthma-Familienstudie eine schwache Assoziation mit einem erhöhten SLOPE nachgewiesen
werden (p=0,0370; vgl. Tabelle 3.8). Da er jedoch der einzige STAT6-SNP ist, der eine
Assoziation mit diesem Merkmal zeigte, und aufgrund des grenzwertigen p-Wertes, ist es
fraglich, ob man hier nicht doch von einem falsch positiven Ergebnis ausgehen muß. Da der
SLOPE in anderen Studien nicht untersucht wurde, liegen für dieses Merkmal auch keine
Vergleichswerte vor. Gegen ein falsch positives Ergebnis spricht jedoch die Tatsache, dass
das humane STAT6-Gen in derselben chromosomen Region lokalisiert ist, wie
Mikrosatellitenmarker, für die die Feinkartierung der Asthma-Familienstudie eine Assoziation
mit einem erhöhten SLOPE ergab (vgl. Abb. 1.5 sowie Abschnitt 1.5.3 und 1.5.4.2). Zur
endgültigen Abklärung wären daher Untersuchungen in einer Replikationsstudie sowie in
weiteren Studien mit unterschiedlichem Studiendesign und/oder unterschiedlichem ethnischen
Hintergrund hilfreich.

4.2.5 Polymorphismen in der 3'UTR von Genen können die Regulation der
Genexpression beeinflussen

Seit längerem ist bekannt, dass die 3'UTRs (3' untranslated Regionen) von Genen eine
deutende Rolle in der post-transkriptionellen Regulation der Genexpression spielen
(Mignone et al., 2002; Mazumder et al., 2003). Die Effekte reichen dabei über die Modulation
des Transports der mRNA aus dem Zellkern ins Zytoplasma, der Regulation ihrer
subzellulären Lokalisation und Stabilität sowie der Translationseffizienz (Mignone et al.,
2002; Mazumder et al., 2003). Von großer Wichtigkeit ist dabei die Regulation der mRNA-
Stabilität, da von ihr abhängt, wieviel Protein letztendlich synthetisiert werden kann. Die
Regulation der mRNA-Stabilität wird dabei hauptsächlich durch bestimmte cis-agierende
Elemente, welche in der 3'UTR lokalisiert sind, vermittelt (Mignone et al., 2002). In jüngster
Zeit konnte für das TNF-alpha-Rezeptor 2-Gen (TNFR2-Gen) gezeigt werden, dass ein
bestimmter Haplotyp, bestehend aus zwei SNPs in der 3'UTR des Gens, die Stabilität der
Diskussion

mRNA herabsetzt (Puga et al., 2005). Untersuchungen mit zwei SNPs in der 3'UTR des humanen CRTH2-Gens, welches für einen G-Protein-gekoppelten Rezeptor kodiert, untermauern diese Beobachtungen. Hier konnte für einen bestimmten Haplotyp eine signifikant schnellere Abbaurate der mRNA beobachtet werden, während die mRNA-Stabilität bei einem anderen Haplotyp signifikant erhöht war (Huang et al., 2004). Darüberhinaus zeigte dieser Haplotyp eine signifikante Assoziation mit Asthma sowohl in einer afrikanisch-amerikanischen Population (p=0,004) als auch in einer chinesischen Population (p<0,001; Huang et al., 2004).

Eine Beeinflussung der STAT6-mRNA-Stabilität könnte nun auch für den STAT6 3'UTRSNP4 angenommen werden. Er ist unweit eines 78 bp umfassenden Sequenzbereichs in der 3'UTR von STAT6 lokalisiert, in welchem sich ein Sequenzmotive befindet, das den schnellen Abbau der mRNA vermittelt (Svaren et al., 1997; vgl. Abschnitt 4.3.1). Darüberhinaus wurde in der Asthma-Familienstudie eine Assoziation des seltenen G-Allels dieses SNPs mit einem erhöhten Gesamt-IgE-Spiegel gefunden (p=0,0280; vgl. Tabelle 3.8). Basierend auf diesen Daten kann spekuliert werden, dass die mRNA-Stabilität durch das G-Allel erhöht wird. Eine Erhöhung der mRNA-Stabilität könnte bedeuten, dass in, für das G-allele heterozygoten bzw. homozygoten, Probanden die STAT6-mRNA länger für die Translationsmaschinerie zur Verfügung steht. In Folge dessen würden mehr STAT6-Proteine gebildet werden, welche an den Promotor des IgE-Gens binden und diesen aktivieren können. Dadurch käme es zu einer erhöhten Transkription des IgE-Gens was wiederum eine vermehrte Bildung von IgE zur Folge hätte. STAT6-Bindestellen im Keimbahn-Promotor des IgE-Gens wurden bereits identifiziert (Messner et al., 1997; Linehan et al., 1998).

4.2.6 Intronsstäte STAT6-SNPs sind mit einem erhöhten Gesamt-IgE-Spiegel assoziiert

Von den insgesamt sechs, in der Asthma-Familienstudie validierten und analysierten, intronischen STAT6-SNPs zeigten STAT6 In2SNP3 und STAT6 In17SNP1 eine schwache, STAT6 In18SNP1 eine moderate Assoziation mit einem erhöhten Gesamt-IgE-Spiegel (p=0,0200; 0,0260 und 0,0070; vgl. Tabelle 3.8). Für die Merkmale Asthma, Eosinophilie und erhöhter SLOPE dagegen, konnten keine Assoziationen nachgewiesen werden (vgl. Tabelle 3.7 und 3.8).

Zwei dieser SNPs, STAT6 In2SNP3 und STAT6 In18SNP1, wurden in der Zwischenzeit in drei weiteren kaukasischen Studien untersucht. Bei diesen Studien handelt es sich um die beiden deutschen Fall-Kontroll-Studien sowie die finnische Familienstudie, die im Rahmen
der Diskussion um die, in der 3'UTR von STAT6 lokalisierten, SNPs in Abschnitt 4.2.3 bereits beschrieben wurden. Dabei konnte weder für STAT6 In2SNP3 noch STAT6 In18SNP1 in einer der drei Studien eine Assoziation mit Asthma nachgewiesen werden (Schedel et al., 2004; Weidinger et al., 2004; Klopp, persönliche Mitteilung; Pykäläinen et al., 2005), was mit den eigenen Ergebnissen konform geht.

Von weitaus größerer Bedeutung sind jedoch die, in den einzelnen Studien, für das Merkmal erhöhter Gesamt-IgE-Spiegel erzielten Assoziationsergebnisse. Trotz des unterschiedlichen Studiendesigns und der unterschiedlichen Stichproben, die in die statistischen Tests einflossen, zeigte STAT6 In2SNP3 übereinstimmend in allen drei deutschen Studien eine schwache Assoziation mit einem erhöhten Gesamt-IgE-Spiegel mit annähernd gleichen p-Werten (p=0,014, Schedel et al., 2004; p=0,015, Weidinger et al., 2004; p=0,0200, vgl. Tabelle 3.8). Von insgesamt sechs, in allen drei deutschen Studien analysierten, STAT6-SNPs ist dieser SNP damit der einzige, der so ein Ergebnis verzeichnen kann. Dies ist umso interessanter, da es sich bei diesem SNP tatsächlich um einen kausalen handeln könnte, wie im nächsten Abschnitt näher erläutert wird. Allerdings ist zu vermerken, dass sowohl in der Studie von Schedel und Kollegen als auch derjenigen von Weidinger und Kollegen das seltener T-Allel das Risikoallel für einen erhöhten Gesamt-IgE-Spiegel darstellte und nicht, wie in der eigenen Asthma-Familienstudie, das häufigere C-Allel (Schedel et al., 2004; Weidinger et al., 2004; vgl. Tabelle 3.8). Dies kann jedoch tatsächlich mit dem unterschiedlichen Studiendesign zusammenhängen, sollte jedoch in weiteren Replikationsstudien überprüft werden. Auch wäre es von Vorteil herauszufinden, warum die, in den deutschen Studien gefundene, Assoziation von STAT6 In2SNP3 mit einem erhöhten Gesamt-IgE-Spiegel nicht auch in der finnischen Familienstudie nachgewiesen werden konnte (Pykäläinen et al., 2005).

Im Gegensatz zu den Assoziationsergebnissen für STAT6 In2SNP3 konnte die, in der eigenen Studie gefundene, moderate Assoziation von STAT6 In18SNP1 mit einem erhöhten Gesamt-IgE-Spiegel in keiner der drei Studien bestätigt werden (Schedel et al., 2004; Weidinger et al., 2004; Pykäläinen et al., 2005) und das, obwohl die Allelfrequenzen für diesen SNP in den beiden deutschen Studien identisch mit den elterlichen Allelfrequenzen der eigenen Studie waren (Schedel et al., 2004; Weidinger et al., 2004; vgl. Tabelle 3.7). Als Gründe für diese abweichenden Ergebnisse kommen die gleichen in Frage, die bereits in Abschnitt 4.2.3 für die unterschiedlichen Ergebnisse der SNPs in der 3'UTR von STAT6 ausführlich erläutert wurden. Auch ist STAT6 In18SNP1 inmitten von Intron 18 lokalisiert, so dass er höchstwahrscheinlich von keiner funktionellen Relevanz ist und deshalb als kausaler Polymorphismus für einen erhöhten Gesamt-IgE-Spiegel nicht in Frage kommt. Es ist nämlich keineswegs so, dass
kausale Polymorphismen auch automatisch die stärkste Assoziation für das untersuchte Merkmal zeigen. Gleiches ist auch für \textit{STAT6 In17SNP1} anzunehmen. Aufgrund dieser Tatsachen ist davon auszugehen, dass es sich bei \textit{STAT6 In18SNP1} und \textit{STAT6 In17SNP1} um genetische Marker handelt, die mit dem/n eigentlichen kausativem/n \textit{STAT6}-Polymorphismus/en in einem Kopplungungleichgewicht stehen. Als kausative SNPs kommen dabei die SNPs in der 3'UTR (vgl. Abschnitt 4.2.5), aber auch \textit{STAT6 In2SNP3}, wie in Abschnitt 4.2.7 näher erläutert, in Frage. Tatsächlich befanden sich sowohl \textit{STAT6 In18SNP1} als auch \textit{STAT6 In17SNP1} in der Asthma-Familienstudie sowohl mit allen fünf SNPs in der 3'UTR als auch \textit{STAT6 In2SNP3} in einem signifikanten Kopplungungleichgewicht (vgl. Abschnitt 3.2.3.2).

4.2.7 \textit{STAT6 In2SNP3} ist inmitten einer NF-κB-Bindestelle lokalisiert

Dieses Ergebnis ist umso bedeutender, da Untersuchungen an sowohl Nagern als auch humanen Zelllinien darauf hindeuten, dass STAT6 und NF-κB bei dem IL-4 vermittelten class-switching zu IgE funktionell synergistisch wirken (Messner et al., 1997; Tinnell et al., 1998; Stütz und Woisetschläger, 1999). So konnten im sowohl murinen als auch humanen Keimbahn-Promotor des IgE-Gens Bindestellen für beide Transkriptionsfaktoren gefunden werden (Tinnell et al., 1998; Stütz und Woisetschläger, 1999). Diese Befunde und die, in allen drei deutschen Studien gefundene, Assoziation von STAT6 In2SNP3 mit einem erhöhten Gesamt-IgE-Spiegel erwecken nun den Anschein, dass dieser SNP von weitaus größerer funktioneller Relevanz für die Entwicklung eines IgE-vermittelten allergischen (atopischen) Asthmas zu sein scheint als die SNPs in der 3’UTR von STAT6.

Über den genauen Mechanismus, wie das Vorhandensein des Risikoallels von STAT6 In2SNP3 letztendlich zu einem erhöhten Gesamt-IgE-Spiegel beiträgt, kann nur spekuliert werden. So besteht die Möglichkeit, dass das Risikoallel die Bindungseigenschaften der NF-κb-Bindestelle erhöht und es somit zu einer stärkeren und längeren Bindung von NF-κB kommt, was wiederum zu einer erhöhten STAT6-Expression führen würde. Folglich stünden mehr STAT6-Proteine für eine Bindung an den IgE-Promotor zur Verfügung was wiederum in einer verstärkten IgE-Expression resultieren könnte. Bindestellen für sowohl STAT6 als auch NF-κB sind jedoch auch im IL-4-Promotor zu finden, wie verschiedene Studien unter Verwendung von Inhibitionsassays herausfanden (Betelli et al., 2005; Zhou et al., 2007; Kwon et al., 2008). Dies führt wiederum zu der Annahme einer genau aufeinander abgestimmten Ko-Regulation der STAT6-Expression mit dem IL-4-induzierten class-switching zu IgE (vgl. Abschnitt 1.4 und 1.5.4.2). Als möglicher Regulationsmechanismus käme hierbei eine negative Rückkopplung („feedback“) in Frage, die im Falle einer STAT6 In2SNP3-bedingten veränderten STAT6-Expressionsrate nicht mehr 100%ig greifen würde. Um diese Vermutungen zu untermauern bedarf es jedoch weiterführender, funktioneller Studien.

4.2.8 STAT6-Haplotypen zeigen keine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel

Betrachtet man die zwölf häufigsten Haplotypen, die sich für die 13 SNPs von STAT6 ergaben (Tabelle 3.9), so zeigt sich, dass die Haplotypen mit der Nummer 5 und 10 all diejenigen Allele der verschiedenen SNPs beinhalten, die in den Einzelanalysen eine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel gezeigt haben (vgl. Tabelle 3.8). Deswegen wäre nun auch für diese beiden Haplotypen eine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel
zu erwarten gewesen, was jedoch nicht der Fall war (p-Werte > 0,06; K. Rohde, persönliche Mitteilung).

Da Genotypisierungsfehler weitestgehend ausgeschlossen werden können, besteht die Möglichkeit, dass diese Inkompatibilitäten auf Rekombinationsereignisse innerhalb des \(STAT6 \)-Gens zurückzuführen sind. Dafür würden auch die, für einzelne SNP-Paare gefundenen, Abweichungen vom Kopplungsungleichgewicht („linkage disequilibrium“, LD) sprechen (vgl. Abschnitt 3.2.3.2). Die meisten Kopplungsungleichgewichte konnten dabei für die SNPs \(STAT6 \text{In}16\text{SNP1} \) und \(STAT6 \text{3'UTRSNP5} \) beobachtet werden (vgl. Abschnitt 3.2.3.2). Diese Beobachtungen, sowie Ergebnisse aus weiteren Haplotypen Tests, bei denen nach Rekombinationsereignissen zwischen den einzelnen SNPs gesucht wurde, legen die Vermutung nahe, dass in der Mitte des Gens (Exon 16 bis 18) bzw. innerhalb der 3’UTR (im Bereich von \(STAT6 \text{3'UTRSNP5} \)) eine oder mehrere Rekombinationen stattgefunden haben könnten (K. Rohde, persönliche Mitteilung).

Abweichungen vom LD können jedoch auch durch eine unzureichende Teststärke (Power) bedingt sein, die vor allem dann zustande kommt, wenn es sich bei den zu testenden SNPs um solche handelt, bei denen ein Allel in einer sehr niedrigen Frequenz vorkommt (Bickeböller, persönliche Mitteilung). So weisen die selteneren Allele derjenigen SNPs, für die sich in der Asthma-Familienstudie die meisten LD-Abweichungen ergaben, tatsächlich Frequenzen von \(\leq 10 \% \) auf (vgl. Tabelle 3.7 und Abschnitt 3.2.3.2). Vor allem für die SNPs \(STAT6 \text{In16SNP1} \) und \(STAT6 \text{3'UTRSNP5} \) lagen die Allelfrequenzen der selteneren Allele bei nur 1,92% bzw. 5.67% (vgl. Tabelle 3.7).
4.2.9 STAT6-Haplotypen in anderen Assoziationsstudien

STAT6-Haplotypen wurden mittlerweile in weiteren Studien auf Assoziation mit Asthma und/oder Asthma-assoziierten Phänotypen untersucht. Die wichtigsten Ergebnisse lieferten dabei die beiden deutschen Fall-Kontroll-Studien, welche bereits im Rahmen der Diskussion um die SNPs in der 3'UTR von STAT6 ausführlich beschrieben wurden (Schedel et al., 2004; Weidinger et al., 2004; vgl. Abschnitt 4.2.3).

In beiden Studien wurden sowohl die Einzel-SNP-Analysen als auch die Haplotypenanalysen jedoch für nur sechs, der insgesamt 13, im Rahmen dieser Arbeit analysierten, STAT6-SNPs durchgeführt. Bei diesen sechs SNPs handelte es sich um die beiden in der Promotorregion von STAT6 lokализierten SNPs, STAT6 5'flanking SNP1 und 2, die beiden intronischen SNPs STAT6 In2SNP3 und STAT6 In18SNP1 sowie den, in der 3'UTR gelegenen SNPs, STAT6 3'UTRSNP3 und 4 (Schedel et al., 2004; Weidinger et al., 2004; vgl. Abschnitt 4.2.3). Mit dieser SNP-Gruppe wurden in der Kinderstudie von Schedel und Kollegen insgesamt sieben Haupt-Haplotypen mit Frequenzen von >3% ermittelt (Schedel et al., 2004), welche auch in der Erwachsenenstudie von Weidinger und Kollegen die sieben häufigsten Haplotypen darstellten (Weidinger et al., 2004). Dabei konnten für alle sieben Haplotypen in beiden Studien annähernd gleiche Frequenzen erzielt werden (Schedel et al., 2004; Weidinger et al., 2004). Interessanterweise sind alle sieben Haplotypen auch Bestandteil von einem oder mehreren der 12 häufigsten Haplotypen der Asthma-Familienstudie (vgl. Tabelle 3.9). In diesen Fällen stimmen die geschätzten Frequenzen der Haplotypen der Asthma-Familienstudie ebenfalls mit denjenigen der anderen Haplotypen überein (vgl. Tabelle 3.9).

Da es sich bei allen drei Studien um Studien mit gleichem ethnischem Hintergrund handelt, scheinen die berechneten Haplotypen somit tatsächlich die häufigsten STAT6-Haplotypen in der deutschen Bevölkerung darzustellen. Auch bekräftigen diese Übereinstimmungen das Argument, dass die in der Asthma-Familienstudie, für einzelne Familien, beobachteten Unstimmigkeiten zwischen einzelnen Haplo- und Genotypen nicht auf Genotypsicherungsfehler zurückzuführen sind (vgl. Abschnitt 4.2.8). Der, in der Studie von Weidinger und Kollegen ermittelte, achte Haplotype mit einer Frequenz von nur 1,28% war dagegen in keinem der 12 häufigsten Haplotypen der Asthma-Familienstudie vertreten (Weidinger et al., 2004; vgl. Tabelle 3.9).

Betrachtet man die, in den einzelnen Studien für die STAT6-Haplotypen erzielten Assoziationsergebnisse, findet man weit weniger Übereinstimmungen. Während in der Asthma-Familienstudie für keinen der untersuchten Haplotypen eine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel gefunden wurde (vgl. Abschnitt 3.2.3.2 und 4.2.8), war in der Kinderstudie von Schedel und Kollegen das Vorhandensein des häufigsten Haplotypen...
signifikant mit einem erhöhten Risiko für eine Erhöhung des Gesamt-IgE-Spiegels assoziiert (p=0,015; p=0,032; p=0,015; Schedel et al., 2004). Zu gleichem Ergebnis kamen auch Weidinger und Kollegen, auch in ihrer Studie war eine signifikante Assoziation zwischen diesem Haplotyp und einem erhöhten Gesamt-IgE-Spiegel zu beobachten (p=0,015; p=0,032; p=0,007; Weidinger et al., 2004). Die Autoren führen diese positiven Assoziationen in erster Linie auf das Vorhandensein des T-Risikoallels von \textit{STAT6} In2SNP3 in dem Haplotyp zurück, welches in beiden Studien in den Einzel-SNP-Analysen eine signifikante Assoziation mit einem erhöhtem Gesamt-IgE-Spiegel zeigte (Schedel et al., 2004; Weidinger et al., 2004; vgl. Abschnitt 4.2.6 und 4.2.7). Dies könnte auch erklären, warum der häufigste Haplotyp der Asthma-Familienstudie, welcher den IgE-Risikohaplotyp der beiden anderen Studien beinhaltet, keine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel gezeigt hat. Denn in der Asthma-Familienstudie stellte nicht das T- sondern das C-Allel das Risikoallel für einen erhöhten Gesamt-IgE-Spiegel dar (vgl. Tabelle 3.8 und Abschnitt 4.2.6). Daneben ist zu berücksichtigen, dass die Haplotypenberechnungen für die Asthma-Familienstudie unter Einbeziehung aller 13 validierten \textit{STAT6}-SNPs durchgeführt wurden, in den beiden anderen deutschen Studien die Haplotypen jedoch anhand von nur sechs SNPs konstruiert wurden. Weitere Gründe für die negativen Assoziationsergebnisse in der Asthma-Familienstudie wurden bereits in Abschnitt 4.2.8 genannt.

4.2.10 Ein GT-Repeat in Exon 1 des humanen STAT6-Gens ist hoch polymorph

Im Rahmen der Analyse des humanen STAT6-Gens wurde zusätzlich zu den 13 SNPs auch ein, in Exon 1 (5'UTR) des humanen STAT6-Gens lokalisierter, Dinukleotidrepeat (GT-Repeat) untersucht.

Erstmals 2001 von Tamura und Kollegen beschrieben, erwies sich der GT-Repeat in einer japanischen Allergie-Studie mit insgesamt vier identifizierten Allelen, Allel 1 (13xGT) - Allel 4 (16xGT), als hoch polymorph (Tamura et al., 2001). Alle vier, in der japanischen Studie identifizierten, Allele konnten auch in der Asthma-Familienstudie bestätigt werden (vgl. Tabelle 3.10, Abbildung 3.5). Darüberhinaus wurde noch ein weiteres Allel mit 17xGT (Allel 5) gefunden (vgl. Tabelle 3.10, Abbildung 3.5). Die Existenz eines zusätzlichen fünften Allels in der Asthma-Familienstudie, welches in der japanischen Studie nicht vorkommt, läßt auf Unterschiede bezüglich der Allelverteilung des GT-Repeats in den unterschiedlichen ethnischen Populationen schließen. Mittlerweile liegen Daten aus einer Reihe von Studien mit unterschiedlichem ethnischem Hintergrund vor, die genau diese Vermutung untermauern. Während sowohl in der japanischen als auch in der chinesischen Bevölkerung nur die von Tamura und Kollegen beschriebenen vier Allele des GT-Repeats (13xGT - 16xGT) auftreten (Tamura et al., 2001; Tamura et al., 2003; Shao et al., 2004; Moller et al., 2007; Yabiku et al., 2007), weisen Kaukasier und Inder ein weitaus breiteres Allel-Spektrum auf. Demnach konnte in der britischen Bevölkerung (Kaukasier) neben den Allelen 1-4 sowohl das, in der Asthma-Familienstudie identifizierte, Allel 5 (17xGT) als auch ein weiteres Allel 6 mit 18xGT identifiziert werden (Gao et al., 2004a; Moller et al., 2007). Letzteres war bei weißen Amerikanern nicht vorhanden, dafür aber ein Allel, welches nur 12x das GT-Dinukleotid enthieilt (Gao et al., 2004a). Die meisten Allele waren jedoch in einer nord-indischen Population zu finden. Hier traten neben den Allelen 1-6, noch Allele mit 19xGT, 20xGT, 22xGT und 24xGT auf, wenn auch nur in sehr niedriger Frequenz (Nagarkatti et al., 2004). Erstaunlicherweise waren in den meisten Studien, inklusive der Asthma-Familienstudie, Allel 1 (13xGT) und Allel 3 (15xGT) die häufigsten Allele (Tamura et al., 2001; Tamura et al., 2003; Gao et al., 2004a; Shao et al., 2004; Moller et al., 2007; Yabiku et al., 2007; Tabelle 3.10). Lediglich in der nord-indischen Population lagen Allel 3 und Allel 5 bei der Frequenz vorne (Nagarkatti et al., 2004).

Doch nicht nur bezüglich der Einzelallel-Frequenzen waren Allel 1 und Allel 3 am häufigsten anzutreffen, auch was die Frequenz der Genotypen betrifft, waren sowohl in der Asthma-Familienstudie als auch in den beiden japanischen Studien die Genotypen Allel 1/Allel 3 und Allel 3/Allel 3 die häufigsten (Tamura et al., 2001; Tamura et al., 2003; Shao et al., 2004).
Die hier für den GT-Repeat im humanen STAT6-Gen beschriebenen, unterschiedlichen Allelverteilungen in verschiedenen ethnischen Populationen sind keine Seltenheit und wurden bereits für Repeatpolymorphismen in einer Reihe anderer Gene nachgewiesen (z.B. Mateu et al., 1999; Kharrat et al., 2007; Liu et al., 2007), darunter auch die beiden Repeats im NOS1-Gen, die in diversen Studien eine Assoziation mit Asthma oder Asthma-assoziierten Phänotypen aufwiesen (Grasemann et al., 1999b, Leung et al., 2005; vgl. Abschnitt 4.1.1).

4.2.11 Die Assoziationsergebnisse des STAT6-Dinukleotidrepeats im Vergleich zu anderen Studien

Von allen in dieser Arbeit analysierten Polymorphismen zeigte der GT-Repeat in Exon 1 des humanen STAT6-Gens den stärksten Effekt. Mit einem p-Wert von $p=0,001$ konnte in der Asthma-Familienstudie eine signifikante Assoziation zwischen Allel 4 (16xGT) des Repeats und einer erhöhten Eosinophilenzellantzahl nachgewiesen werden (vgl. Tabelle 3.11).

Uneinigkeit herrscht auch darüber, welches Allel des GT-Repeats letztendlich mit einem erhöhten Risiko an Asthma zu erkranken assoziiert ist. So konnte in der nordindischen Studie eine signifikante Assoziation ($p<10^{-4}$) zwischen Asthma und Allel 3 (15xGT) des Repeats und nicht, wie in der britischen Studie von Gao und Kollegen mit Allel 1 (13xGT), nachgewiesen werden (Nagarkatti et al., 2004). Dem gegenüber stehen die von Shao und Kollegen in einer
japanischen Fall-Kontroll-Studie erzielten Ergebnisse. Zwar konnte in dieser Studie der signifikante Unterschied in der Gesamtallelverteilung zwischen Asthmaticern und der Kontrollgruppe primär auf die unterschiedliche Frequenz von Allel 3 zurückgeführt werden. Allerdings war die Frequenz dieses Allels in der Patientengruppe signifikant niedriger als in der Kontrollgruppe (p=0,0044; Shao et al., 2004) und nicht umgekehrt, wie es für die nord-indische Studie zutraf. Darüberhinaus hatten für das Allel 3 homozygote Probanden ein signifikant niedrigeres Risiko an Asthma zu erkranken als Probanden mit anderen Genotypen (p=0,0035; Shao et al., 2004). Demzufolge scheint in der japanischen Bevölkerung Allel 3 des GT-Repeats das für die Entwicklung eines Asthma bronchiale protektive Allel darzustellen und nicht Allel 4, wie sowohl für die britische als auch die nord-indische Studie angenommen. Auch in einer zweiten japanischen Fall-Kontroll-Studie trat der Genotyp Allel 3/Allel 3 in der Kontrollgruppe häufiger auf als in der Patientengruppe, jedoch statistisch nicht signifikant (p=0,046; Tamura et al., 2001). Der Genotyp Allel 1/Allel 3 dagegen war signifikant mit Allergie assoziiert (p=0,0002 und p=0,006; Tamura et al., 2001; Tamura et al., 2003). Allerdings bestand in dieser Studie die Fallgruppe nicht nur aus Asthmaticern mit allergischem Asthma, sondern umfaßte auch Patienten mit atopischer Dermatitis und lebensmittelinduzierter Anaphylaxie (Tamura et al., 2001; Tamura et al., 2003; vgl. Abschnitt 4.2.2). In der nord-indischen Population hingegen war der Genotyp Allel 3/Allel 5 in Asthmaticern überrepräsentiert im Vergleich zur Kontrollgruppe (p<0,0001; Nagarkatti et al., 2004).

Für das quantitative Merkmal erhöhte Eosinophilenzellzahl liegen aus anderen Studien keine Daten vor, so dass hier kein direkter Vergleich mit den, in der Asthma-Familienstudie erzielten, Assoziationsergebnissen gezogen werden kann.

Vergleicht man die, in den einzelnen Studien gewonnenen, Ergebnisse so scheint es, dass in den verschiedenen ethnischen Populationen unterschiedliche Allele des GT-Repeats in Exon 1 von STAT6 einen unterschiedlichen Einfluß auf Asthma und die Asthma-assoziierten Phänotypen zu haben scheinen, was jedoch eher unwahrscheinlich ist. Vielmehr können die unterschiedlichen Ergebnisse, wie bereits in Kapitel 4.2.3 für die SNPs in der 3'UTR von
Diskussion

STAT6 ausführlich diskutiert, auf die unterschiedlichen Studiendesigns (Familienstudie versus Fall-Kontroll-Studie) und den damit verbundenen unterschiedlichen statistischen Tests (RC-TDT/QTDT versus Tests für Fall-Kontroll-Studien) zurückzuführen sein. Daneben spielen die Art und Größe der, in die Tests eingeflossenen, Stichproben eine Rolle (vgl. Abschnitt 4.1.1 und 4.2.3). So handelte es sich sowohl bei der nord-indischen als auch der britischen Studie um erwachsene Probanden (Nagarkatti et al., 2004; Shao et al., 2004), bei der japanischen Allergiestudie dagegen waren die Probanden Kinder (Tamura et al., 2001; Tamura et al., 2004). Die zweite japanische Fall-Kontroll-Studie wiederum setzte sich aus Kindern und Erwachsenen zusammen (Shao et al., 2004).

Trotz dieser unterschiedlichen Ergebnisse zeichnet sich eines deutlich ab: der GT-Repeat in der 5'UTR des humanen *STAT6*-Gens scheint von funktioneller Bedeutung für die Pathogenese von Asthma und Asthma-assoziierten Phänotypen zu sein.

4.2.12 Der GT-Repeat in Exon 1 beeinflusst die Promotoraktivität von *STAT6*

Seit langem ist bekannt, dass Dinukleotidrepeats von funktioneller Relevanz sein können, vor allem wenn sie in regulatorischen Bereichen wie der 5'- bzw. 3'UTR oder der Promotorregion von Genen lokalisiert sind. Der Einfluss ist mannigfaltig und reicht über die Beteiligung an der Organisation des Chromatins sowie der DNA-Replikation, über die Beeinflussung von Spiegelvorgängen (Gabellini, 2001) bis hin zur Bereitstellung von spezifischen Rekombinationsstellen (Majewski und Ott, 2000; Übersichten in Travers und Klug, 1990; Li et al., 2002). Von besonderer Bedeutung ist jedoch der regulatorische Einfluss solcher Repeats auf die Transkriptionsrate von Genen durch Veränderung der Promotoraktivität, wie bereits für eine Reihe von Genen beobachtet werden konnte (z. B. Rothenburg et al., 2001a; Borrmann et al., 2003; Funke-Kaiser et al., 2003; Wang et al., 2005; Chen et al., 2007). Abhängig von der Repeatlänge wird die Promotoraktivität dabei entweder verstärkt oder vermindert. Der gängigen Hypothese zufolge ist ein solcher Effekt in erster Linie auf die Eigenschaft von Dinukleotidrepeats zur Bildung einer linkshändigen Z-DNA-Konformation zurückzuführen (Travers und Klug, 1990; Rich, 1993; Rothenburg et al., 2001a und b; Wong et al., 2007).

Der hier untersuchte GT-Repeat in Exon 1 des humanen *STAT6*-Gens ist in der 5'UTR, in unmittelbarer Nachbarschaft zur upstream gelegenen Promotorregion von *STAT6*, lokalisiert (Patel et al., 1998; Tamura et al., 2001; vgl. Abbildung 3.6). Demnach wäre auch für diesen Repeat ein Einfluss auf die Promotoraktivität von *STAT6* zu erwarten. Diese Vermutung wurde von Gao und Kollegen vor einigen Jahren bestätigt (Gao et al., 2004a). So konnten die
Autoren unter Verwendung von Reportergen-Assays in drei verschiedenen humanen Zelllinien (Mastzelllinie HMC-1, Jurkat T-Zelllinie und bronchiale Epithelzelllinie BEAS-2b) für Allel 1 (13xGT) eine, im Vergleich zu anderen Allelen [12xGT, Allel 4 (16xGT) und Allel 5 (17xGT)], signifikant höhere Transkriptionsaktivität nachweisen (Gao et al., 2004a). Dagegen zeigte das Allel mit 12xGT eine durchwegs niedrigere Aktivität (Gao et al., 2004a). Darüberhinaus variierten die relativen Transkriptionsaktivitäten für alle vier untersuchten Allele in den verschiedenen Zelllinien, weshalb die Autoren eine Zelltyp-spezifische Regulation der Promotoraktivität von STAT6 durch den GT-Repeat annehmen (Gao et al., 2004a).

Gel-shift-Assays zeigten zudem für alle vier untersuchten Allele die Bildung von DNA-Protein-Komplexen mit einem jeweils ähnlichen Bindungsmuster der nukleären Proteine an die verschiedenen Repeat-Allele (Gao et al., 2004a). Allerdings scheint die Stabilität dieser Komplexe für verschiedene Allele unterschiedlich stark zu sein. So wiesen in reziproken, kompetitiven Assays die beiden längeren Allele des Repeats, Allel 4 (16xGT) und Allel 5 (17xGT) eine stabilere Bindung an nukleäre Proteine auf als die beiden kurzen Allele mit 12x bzw. 13xGT (Gao et al., 2004a).

Neben der Beeinflussung der Promotoraktivität scheint der GT-Repeat auch bei der Aktivierung des STAT6-Proteins eine Rolle zu spielen, wie die Ergebnisse von Yabiku und Kollegen vermuten lassen. Sie konnten zeigen, dass kultivierte, für das Allel 1 (13xGT) homozygote, humane B-Lymphozyten nach einer Stimulierung mit IL-4 bzw. IL-13 bei gleicher Gesamtmenge an STAT6-Protein eine bis zu 2fach größere Menge an phosphoryliertem, und damit aktiviertem, STAT6 aufwiesen als Zellen mit anderen Genotypen (p<0,05; Yabiku et al., 2007).

Eine gesteigerte Aktivierung von STAT6 bedeutet, dass mehr aktive STAT6-Proteine für eine Bindung an den IgE-Promotor zur Verfügung stehen, was wiederum eine gesteigerte Transkription von IgE zur Folge hätte (vgl. Abschnitt 1.4.1 und 4.2.5). Weiterhin ist anzunehmen, dass ein stabiler DNA-Protein-Komplex die Aktivität des STAT6-Promotors erhöht bzw. verlängert. Dies würde ebenfalls in einer erhöhten Anzahl von STAT6-Proteinen resultieren. Aufgrund dieser Überlegungen wäre auch in der Asthma-Familienstudie eine Assoziation der entsprechenden Allele (Allel 1,4 und 5) mit einem erhöhten Gesamt-IgE-Spiegel zu erwarten gewesen. Dies war jedoch nicht der Fall.

Die signifikante Assoziation von Allel 4 mit einer erhöhten Eosinophilenzellzahl in dieser Studie dagegen, geht schon eher mit einer verstärkenden Wirkung dieses Allels auf den STAT6-Promotor konform. Da für die Differenzierung und Aktivierung von Eosinophilen jedoch in erster Linie IL-5 das verantwortliche Zytokin ist, wäre ein Einfluss von Allel 4 auf

4.3 Analyse des humanen NAB2-Gens

4.3.1 NAB2 als unmittelbarer Nachbar von STAT6 - ein Interpretationsversuch der NAB2-Assoziationsergebnisse

Die Entscheidung, im Rahmen dieser Arbeit auch das humane NAB2-Gen in die Analysen miteinzubeziehen, erfolgte in erster Linie aufgrund der besonderen Lage des NAB2-Gens. So befindet sich der NAB2-Gen-Locus in unmittelbarer Nachbarschaft zum STAT6-Gen-Locus (Svaren et al., 1997; Patel et al., 1998). Die Besonderheit besteht dabei darin, dass die 3'UTRs der beiden Gene einen 58 bp großen Überlappungsbereich aufweisen, so dass die beiden Transkripte konvergieren und die Stop-Codons nur 1.852 bp voneinander entfernt sind (Svaren et al., 1997). Dieser Überlappungsbereich wiederum befindet sich innerhalb einer 78 bp umfassenden Sequenz, die streng konserviert ist zwischen Mensch und Maus (Svaren et al., 1997). Interessanterweise beherbergt diese Sequenz neben Polyadenylierungssignalen auch ein Sequenzmotiv, welches einen schnellen Abbau von mRNAs, einschließlich derjenigen von Zytokinen und „immediate-early“-Genen, vermittelt (Lagnado et al., 1994; Zubiaga et al., 1995; Svaren et al., 1997). Eine Beeinflussung der Genexpression durch Motive in der 3'UTR ist, wie bereits in Abschnitt 4.2.5 diskutiert, seit längerem bekannt. Die geschilderten Besonderheiten führen zu der Annahme einer gemeinsamen, koordinierten Regulation der Expression von NAB2 und STAT6 (Svaren et al., 1997). Aufgrund dieser Vermutung könnten nun Polymorphismen in der 3'UTR von NAB2 einen Einfluß auf die Expression von NAB2 als auch auf diejenige von STAT6 haben und umgekehrt.

In letzter Zeit konnte gezeigt werden, dass NAB2 als Ko-Aktivator bei der Aktivierung von T-Lymphozyten eine Rolle spielt, indem es die NGFI-A-vermittelte IL-2-Produktion fördert

Allerdings waren alle, im Rahmen dieser Arbeit analysierten, NAB2-Polymorphismen in Introns bzw. Exons lokalisiert (vgl. Tabelle 3.12 und Abb. 3.7). Dies hängt damit zusammen, dass die SNP-Daten aus der öffentlichen SNP-Datenbank (www.ncbi.nlm.nih.gov/SNP) entnommen wurden und zum damaligen Zeitpunkt noch keine Informationen über SNPs in der 3'UTR des NAB2-Gens vorlagen. Ein SNP in Intron 6 von NAB2, NAB2 In6SNP1, zeigte dabei in der Asthma-Familienstudie für beide Stichproben eine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel (p=0,0390 bzw. p=0,0300; vgl. Tabelle 3.16). Da der ermittelte p-Wert für die größere Stichprobe (p=0,0300), und der damit verbundenen größeren statistischen Teststärke, gegenüber der kleineren Stichprobe (p=0,0390) leicht erniedrigt war, kann dieses Ergebnis als echte Assoziation und nicht als falsch positiv gewertet werden. NAB2 In6SNP1 ist jedoch mitten im Intron, weit entfernt von jeglichen Spleißstellen, lokalisiert, womit er als kausaler SNP für eine Erhöhung des Gesamt-IgE-Spiegels ausscheidet. Vielmehr könnte die, für diesen SNP gefundene, Assoziation ein Hinweis auf das Vorhandensein weiterer, in der Nähe des SNPs lokalisierter, Polymorphismen sein, welche die eigentlichen funktionellen Polymorphismen darstellen. Aufgrund der Überlappung der 3'UTRs von NAB2 und STAT6, kämen als kausale Polymorphismen demnach die in der 3'UTR von STAT6 identifizierten SNPs in Frage (vgl. Abschnitt 4.2.5). Ein Vergleich der für das NAB2-Gen gewonnenen Ergebnisse mit denjenigen von STAT6 und die Ergebnisse aus weiteren Assoziationsstudien (vgl. Abschnitt 4.2.2 und 4.2.3) untermauern diese Vermutung.

Von allen untersuchten NAB2-SNPs ist NAB2 In6SNP1 derjenige, der die geringste Entfernung zu demjenigen SNP in der 3'UTR von STAT6 aufweist, für den in der Asthma-Familienstudie ebenfalls eine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel gefunden wurde: STAT6 3'UTRSNP4 (vgl. Tabelle 3.8 und Abschnitt 4.2.3). So liegen die beiden SNPs nur ca. 2.000 bp voneinander entfernt. Mit einem p-Wert von p=0,0280 (vgl. Tabelle 3.8)
Diskussion

4.4 Analyse des humanen *IGF1*-Gens

4.4.1 Ein SNP in Intron 5 des humanen *IGF1*-Gens ist mit Asthma assoziiert

Seit langem wird vermutet, dass der insulin-ähnliche Wachstumsfaktor 1, IGF1, eine Rolle in der Pathogenese von Asthma spielt (vgl. Abschnitt 1.5.4.4). Umso verwunderlicher ist, dass in der öffentlichen Literaturdatenbank bisher keine Veröffentlichungen über genetische Studien zu finden sind, die Assoziation und/oder Kopplung zwischen Polymorphismen im *IGF1*-Gen und Asthma und/oder Asthma-assoziierten Phänotypen untersucht haben. Lediglich für diverse Arten von Krebs und Wachstum bzw. Entwicklung diverser Organismen liegen unzählige Daten vor. Unter diesem Aspekt stellt die hier dargestellte Arbeit eine Pionierleistung dar, die umso mehr an Bedeutung gewinnt, betrachtet man die erzielten Ergebnisse.

Von ursprünglich 11 ausgewählten SNPs im humanen *IGF1*-Gen zeigte ein SNP im fünften Intron, *IGF1* In5SNP7, eine signifikante Assoziation mit Asthma (p=0,0363 bzw. p=0,0046, vgl. Tabelle 3.20). Da der p-Wert bei annähernd gleicher Allelverteilung (vgl. Tabelle 3.19a und b) für die größere Stichprobe signifikant niedriger war als für die kleinere Stichprobe

\subsection*{4.4.2 \textit{IGF1}-Polymorphismen und IGF1-Spiegel}

Tatsächlich konnte vor kurzem in einer britischen, populationsbezogenen Studie eine signifikante Assoziation zwischen dem zirkulierenden IGF1-Spiegel und einem SNP im humanen \textit{IGF1}-Gen gefunden werden (Al-Zahrani et al., 2006). Es handelt sich dabei um den gleichen SNP, der in der Asthma-Familienstudie eine signifikante Assoziation mit Asthma gezeigt hat, \textit{IGF1} In5SNP7 (vgl. Abschnitt 4.4.1). In der britischen Studie war das seltenere
C-Allel mit einem erhöhten IGF1-Spiegel assoziiert, allerdings nur in der weiblichen Kohorte, nicht der männlichen (p-trend=0,003; Al-Zahrani et al., 2006). So wiesen für das C-Allel heterozygote Probandinnen einen um durchschnittlich 11% erhöhten IGF1-Spiegel auf, bei homozygoten Probandinnen dagegen lag der IGF1-Spiegel um durchschnittlich 17% höher (Al-Zahrani et al., 2006). Darüberhinaus war das C-Allel in einer britischen Fall-Kontroll-Studie mit einem erhöhten Risiko für Brustkrebs assoziiert (p-trend=0,03; Al-Zahrani et al., 2006).

Da IGFI In5SNP7 jedoch mitten in Introns 5 von IGFI lokalisiert ist, ist es eher unwahrscheinlich, dass er von funktioneller Bedeutung ist und somit einen regulatorischen Einfluss auf die Transkription bzw. Translation des IGFI-Gens hat. Allerdings handelt es sich bei IGFI In5SNP7, was die kaukasische Population betrifft, um einen sog. „tag“-SNP (Al-Zahrani et al., 2006). Tag-SNPs sind repräsentative SNPs, die in einer genomischen Region mit hohem Kopplungsungleichgewicht („linkage disequilibrium“, LD), einem sog. LD-Block, liegen und mit einer Vielzahl von benachbarten SNPs im Kopplungsungleichgewicht stehen (vgl. Abschnitt 1.5.2.2.2). Demnach besteht eine sehr hohe Wahrscheinlichkeit, dass IGFI In5SNP7 mit einem anderen, in der Nähe gelegenen, Polymorphismus im Kopplungsungleichgewicht steht, welcher den eigentlichen kausalen Polymorphismus für eine Beeinflussung des IGF1-Spiegels darstellt. Als solcher bietet sich ein, in der 3'UTR (Exon 6) des Gens identifizierter SNP an, für den ein Patient mit einem extrem niedrigen IGF1-Spiegel homozygot war (Bonapace et al., 2003). Bei diesem SNP handelt es sich um eine, mitten in der Konsensussequenz des Polyadenylierungssignals lokализierte, T>A-Transition, die laut Autoren zu einer fehlerhaften Reifung der IGFI-mRNA führt und deshalb für den extrem niedrigen IGF1-Spiegel verantwortlich sein könnte (Bonapace et al., 2003). Eine Beeinflussung des IGF1-Spiegels wird aber auch einem, in der Promotorregion des IGFI-Gens lokализierten, CA-Repeat-Polymorphismus zugeschrieben, wie Kinoshita und Kollegen in einer japanischen Studie mit Kleinkindern herausfanden (Kinoshita et al., 2007).

4.5 Analyse des humanen LTA4H-Gens

4.5.1 Die kodierende Region des humanen LTA4H-Gens ist hoch konserviert

4.5.2 Ein SNP in Intron 3 von LTA4H ist mit einem erhöhten Gesamt-IgE-Spiegel assoziiert

Von insgesamt drei, in der Asthma-Familienstudie analysierten, LTA4H-SNPs, zeigte ein SNP in Intron 3, LTA4H In3SNP2, für das häufigere G-Allel eine Assoziation mit einem erhöhten Gesamt-IgE-Spiegel. Da die p-Werte dabei für beide Stichproben (108 Familien und 172 Familien) fast identisch sind (p=0,0220 und p=0,0210; vgl. Tabelle 3.26), ist es unwahrscheinlich, dass es sich hierbei um ein falsch positives Ergebnis handelt. Es kann daher von einer „echten“, wenn auch schwachen, Assoziation ausgegangen werden. Dagegen stellt die, ebenfalls für diesen SNP, in der kleineren Stichprobe beobachtete, schwache, Assoziation mit einem verminderten Peak-Flow (p=0,0300; vgl. Tabelle 3.26) tatsächlich ein falsch positives Ergebnis dar. Sie konnte in der größeren Stichprobe nämlich nicht bestätigt werden (p>0,100; vgl. Tabelle 3.26).

Ein weiteres Manko ist das Fehlen von Daten aus anderen Studien, die als Vergleich für die in der Asthma-Familienstudie erzielten Ergebnisse herangezogen werden können. So beschränkte, wie bereits ausführlich beschrieben, eine Forschergruppe ihre Analysen lediglich auf die Suche nach Polymorphismen in der kodierenden Region von LTA4H (vgl. Abschnitt 4.5.1; Heinzmann et al., 2000).

Vielversprechender sind da schon die Ergebnisse, die Lima und Kollegen erzielten. Die Forscher untersuchten, in wieweit Polymorphismen in Genen des Leukotrien-Pathways das Risiko für eine Verschlechterung von Asthma-Symptomen beeinflussen (Lima et al., 2006). Für die Assoziationsanalysen diente eine Studie bestehend aus 61 weißen (kaukasischen), adulten Asthma-Patienten, die seit sechs Monaten ein Medikament erhielten, welches die Wirkung von Leukotrienen unterdrückt (Lima et al., 2006; vgl. Abschnitt 1.5.4.5). Dabei konnte für einen SNP mit der Datenbanknummer rs2660845 eine Assoziation mit einem erhöhten Risiko für eine Verschlechterung der Asthma-Symptome gefunden werden (Lima et
Diskussion

Allerdings ist dieser SNP nicht im LTA4H-Gen selbst lokalisiert, sondern liegt ca. 12 kb upstream der 5'UTR, wie Datenbankanalysen ergaben (http://genome.ucsc.edu). Er befand sich jedoch in einem moderaten Kopplungsgleichgewicht mit einem SNP, welcher ca. 7 kb downstream der 3'UTR von LTA4H lokalisiert ist (Lima et al., 2006). Dies legt die Vermutung nahe, dass, zumindest was die kaukasische Bevölkerung betrifft, das humane LTA4H-Gen innerhalb eines LD-Blocks lokalisiert ist.

Da LTA4H In3SNP2 mitten in Intron 3 des LTA4H-Gens lokalisiert ist, ist es unwahrscheinlich, dass er den kausalen SNP für eine Erhöhung des Gesamt-IgE-Spiegels darstellt. Unter der Annahme des Vorhandenseins eines, das LTA4H-Gen, umspannenden LD-Blocks jedoch, besteht die Möglichkeit, dass er mit dem eigentlichen kausalen Polymorphismus in einem Kopplungsgleichgewicht steht. Ein kausaler Polymorphismus ist vor allem in den Bereichen des Gens zu suchen, die Motive enthalten, welche einen regulatorischen Einfluß auf die Genexpression oder den Spießmechanismus haben. Hier bietet sich unter anderem die ca. 4 kb upstream des Transkriptionsstartpunkts lokalisierte Promotorregion des Gens an (Häggström, 2000). Da es sich bei der LTA4H um ein Enzym handelt, sind weiterhin Polymorphismen von großer Bedeutung, die entweder zu einer veränderten Enzymaktivität führen oder die Stabilität des Enyzms bzw. dessen Wechselwirkung mit seinem Substrat beeinflussen. Dieses wären in erster Linie
Polymorphismen, die zu einem Aminosäureaustausch führen. Unter der Prämisse einer hoch konservierten kodierenden Region, wie sie Heinzmann und Kollegen postulieren (vgl. Abschnitt 4.5.1), wäre die Beeinflussung des Gesamt-IgE-Spiegels jedoch am ehesten durch eine veränderte $LTA4H$-Genexpression zu erklären.

4.5.3 $LTA4H$-Polymorphismen beeinflussen den Gesamt-IgE-Spiegel - ein möglicher Mechanismus

Gesetzt den Fall, es existieren funktionelle Polymorphismen in den relevanten regulatorischen Bereichen des $LTA4H$-Gens oder dessen kodierender Region, die in verschiedenen Studien eine Assoziation mit dem Gesamt-IgE-Spiegel gezeigt hätten. Wie könnte es dann zu einer Beeinflussung desselbigen kommen?

Ein möglicher Mechanismus ergibt sich aus der Erkenntnis, dass neben Th2-Lymphozyten (CD4⁺-T-Lymphozyten), denen eine Schlüsselrolle bei der Initiierung und Aufrechterhaltung des allergischen Asthma zukommt (vgl. Abschnitt 1.4), auch CD8⁺-T-Lymphozyten (zytotoxische T-Lymphozyten) eine Rolle in inflammatorischen Prozessen sowie der Entwicklung einer bronchialen Hyperreaktivität spielen (z.B. Hamelmann et al., 1996; Miyahara et al., 2004; Zusammengefasst in Kay, 1997). Normalerweise besteht die Aufgabe dieser, im Zytosol lokализierten, CD8⁺-T-Lymphozyten darin, mit Viren infizierten Zellen gezielt zu töten (Janeway und Travers, 1997; Kapitel 1). Studien mit Allergen-sensibilisierten Mäusen sowie mit, aus Blut isolierten, CD8⁺-T-Lymphozyten von atopischen Astmatikern konnten jedoch nachweisen, dass CD8⁺-T-Lymphozyten in einem allergischen Milieu so umgepolt werden können, dass sie ein Th2-spezifisches Zytokinspektrum, d.h. IL-4, IL-13 und sogar IL-5, sezernieren (Schaller et al., 2005; Stanciu et al., 2005; Koya et al., 2007). Die Ausschüttung von Th2-spezifischen Zytokinen durch CD8⁺-T-Lymphozyten scheint dabei wesentlich von dem Vorhandensein von IL-4 während der Sensibilisierungsphase bzw. Stimulation abzuhängen (Schaller et al., 2005; Stanciu et al., 2005; Koya et al., 2007).

In den letzten Jahren konnten eine Reihe von in vitro-Studien zeigen, dass die chemoattractive Rekrutierung eines bestimmten Subtyps von CD8⁺-T-Lymphozyten, den sog. T-Effektorzellen (T_{EFF}), zum Entzündungsherd LTB4-abhängig ist und dass diese T-Effektorzellen den für LTB4 hoch-affinen BTL1-Rezeptor exprimieren (Goodarzi et al., 2003; Ott et al., 2003; Miyahara et al., 2005; Taube et al., 2006). Wie bereits erwähnt entsteht LTB4 durch die LTA4H-vermittelte stereospezifische Hydrierung von LTA4 und wird u.a. von
aktivierten Mastzellen während der IgE-vermittelten frühen Phase der allergischen Reaktion sezerniert (vgl. Abschnitt 1.4.2 und 1.5.4.5).

Kommt es nun aufgrund von Polymorphismen in den regulatorischen Bereichen des LTA4H-Gens zu einer Überexpression von LTA4H, stehen für die LTB4-Synthese mehr LTA4H-Proteine als unter normalen Bedingungen zur Verfügung. Eine daraus resultierende vermehrte Bildung von LTB4 wiederum würde den LTB4-Spiegel immens erhöhen und somit zu einer verstärkten Rekrutierung von CD8\(^+\)-T-Effektorzellen führen, die, in einem IL-4 geprägten Milieu, Th2-spezifische Zytokine sezernieren. Dies wiederum hätte eine immense Erhöhung des IL-4- und IL-13-Spiegels zur Folge, zumal diese Zytokine auch von aktivierten Th2-Lymphozyten sezerniert werden. Da sowohl IL-4 als auch IL-13 in B-Lymphozyten das class-switching zu IgE induzieren (vgl. Abschnitt 1.4.1), würde ein erhöhter Spiegel dieser Zytokine zu einer vermehrten Bildung von IgE führen, was wiederum eine Assoziation von LTA4H-Polymorphismen mit einem erhöhten Gesamt-IgE-Spiegel erklären würde.

Daneben fördert IL-4 aber auch die Reifung von TH2-Lymphozyten (vgl. Abschnitt 1.4.1 und 1.4.4), weshalb eine erhöhte LTB4-Synthese indirekt auch zu einer Erhöhung der Anzahl von Th2-Lymphozyten beitragen würde. Aber auch auf die LTB4-Synthese selbst scheinen IL-4 und IL-13 einen Einfluß zu haben. So konnten Zaitsu und Kollegen in Versuchen mit kultivierten humanen polymorphkernigen Leukozyten nachweisen, dass eine Inkubation mit IL-4 bzw. IL-13 die Aktivität der LTA4H signifikant erhöhte und damit die LTB4-Synthese ankurbelte (Zaitsu et al., 2000). In Verbindung mit der vermehrten Aktivierung und Rekrutierung von Eosinophilen aufgrund der a) durch aktivierte CD8\(^+\)-T-Lymphozyten bedingten, vermehrten Ausschüttung von IL-5 und b) der chemoattraktiven Wirkung von LTB4 auf Eosinophile (vgl. Abschnitt 1.4.3 und 1.5.4.5), käme es so zu einem Aufschaukelungsprozeß, einem circulus vitiosus, der, ohne therapeutisches Eingreifen, zwangsläufig zu einer Verschlechterung der Asthma-Symptome führen würde.

Eine Erhöhung des LTB4-Spiegels kann jedoch auch durch eine verstärkte LTA4H-Enzymaktivität, aufgrund von Polymorphismen in der kodierenden Region des Gens, verursacht werden. Dabei kann es jedoch nur dann zu einer vermehrten LTB4-Produktion kommen, wenn auch genügend LTA4-Substrat zur Verfügung steht. Gleiches gilt natürlich auch für die vermehrte Bildung von LTB4 aufgrund einer erhöhten Menge an funktionellem LTA4H-Protein. Der oben beschriebene Mechanismus der Beeinflussung des Gesamt-IgE-Spiegels setzt demnach das Vorhandensein einer unbegrenzten bzw. ausreichend hohen Menge an LTA4-Substrat voraus.
4.6 Abschlussbetrachtung

Die in dieser Arbeit erzielten Ergebnisse, Ergebnisse vieler anderer Studien sowie die Identifizierung von bis dato mehr als 100 prädisponierenden Asthma-Kandidatengenen lassen vermuten, dass einzelne Polymorphismen nur einen kleinen Effekt auf die Entwicklung von Asthma bzw. Asthma-assoziierten Phänotypen haben, was die Hypothese einer Beteiligung von vielen Genen an der Asthma-Pathogenese (vgl. Abschnitt 1.5.1) untermauert. Additiv betrachtet erhöhen diese vielen kleinen Effekte das Risiko für Asthma oder eine Erhöhung des Gesamt-IgE-Spiegel jedoch beträchtlich, wie Kabesch und Kollegen am Beispiel von Polymorphismen in vier Hauptgenen des IL-4/IL-13-Pathways zeigen konnten (Kabesch et al., 2006).

Zum Nachweis kleiner Effekte sind jedoch große Studien mit einer ausreichend großen statistischen Teststärke (Power) nötig, um das Risiko von falsch positiven bzw. negativen Ergebnissen zu minimieren. Aufgrund der wesentlich schwierigeren Rekrutierung geeigneter Studienteilnehmer ist eine solche Teststärke mit Familienstudien oftmals nicht zu erreichen. Aus diesem Grund ist man in den letzten Jahren immer mehr dazu übergegangen, für die Analyse komplexer Erkrankungen - auch für initiale genomweite Suchen - große Fall-Kontroll-Studien heranzuziehen (vgl. Abschnitt 1.5.2.2.2). Die Auswahl der Probanden muß bei diesem Studiendesign allerdings sehr sorgfältig geschehen, um die Gefahr von Populationsstratifikationen, welche die Ergebnisse verfälschen können, so gering wie möglich zu halten (vgl. Abschnitt 1.5.2.2.2).

Oberstes Ziel für zukünftige Forschungen sollte demnach die Bestätigung der, in der Asthma-Familienstudie erzielten, Assoziationen in großen Studien mit unterschiedlichem ethnischen Hintergrund sein, wie es für die STAT6-Polymorphismen zum Teil bereits geschehen ist (vgl. Abschnitt 4.2). Die rasante Weiter- und Neuentwicklung von „High-Throughput“-Genotypisierungstechniken in den letzten Jahren bietet mittlerweile die Möglichkeit, viele Polymorphismen parallel in einem Assay, schnell und effizient, auch in sehr großen Studien zu genotypisieren.

Für die Entwicklung einer neuen, effizienteren und individuell angepaßten Asthma-Medikation ist darüberhinaus das Verständnis, wie letztendlich das Zusammenspiel zwischen prädisponierenden Genen und Umweltfaktoren zu so einem komplexen und heterogenen Phänotyp wie Asthma führt, von essentieller Bedeutung.
5. Literaturverzeichnis

Filipiak B., Heinrich J., Nowak D. and Wichmann H.E. (2001). The distribution in specific IgE and the prevalence of allergic symptoms in 25-64-years old inhabitants of an eastern and a western German city - Results from Augsburg and Erfurt. Eur J Epidemiol 17: 77-84

Stütz A.M. and Woisetschläger M. (1999). Functional synergism of STAT6 with either NF-κB or PU.1 to mediate IL-4-induced activation of IgE germline gene transcription. *J. Immunol.* 163: 4383-4391

Yabiku K., Hayashi M., Komiya I., Yamada T., Kinjo Y. et al. (2007). Polymorphisms of interleukin (IL)-4 receptor alpha and signal transducer and activator of transcription-6 (Stat6) are associated with increased IL-4Ra-Stat6 signalling in lymphocytes and elevated serum IgE in patients with Graves' disease. Clin. Exp. Immunology 148: 425-431

6. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td>antigen-presenting cell</td>
</tr>
<tr>
<td>BAL</td>
<td>bronchoalveolare Lavage</td>
</tr>
<tr>
<td>BHR</td>
<td>bronchiale Hyperreaktivität</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaar(e)</td>
</tr>
<tr>
<td>cM</td>
<td>centi-Morgan</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxynukleosidtriphosphat</td>
</tr>
<tr>
<td>ddNTP</td>
<td>Didesoxynukleosidtriphosphat</td>
</tr>
<tr>
<td>dsDNA</td>
<td>double-stranded DNA</td>
</tr>
<tr>
<td>ECRHS</td>
<td>European Community Respiratory Health Survey</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EM-Algorithmus</td>
<td>Expectation-Maximization-Algorithmus</td>
</tr>
<tr>
<td>FEV₁</td>
<td>forced expiratory volume in 1 second</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte-macrophage-colony stimulating factor</td>
</tr>
<tr>
<td>hME-Methode</td>
<td>homogeneous MassEXTEND™-Methode</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-Performance Liquid Chromatographie</td>
</tr>
<tr>
<td>HPSF</td>
<td>High Purity Salt Free</td>
</tr>
<tr>
<td>HWE</td>
<td>Hardy-Weinberg-Equilibrium</td>
</tr>
<tr>
<td>IFNγ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>IFNγ</td>
<td>Interferon gamma, Gensymbol</td>
</tr>
<tr>
<td>IgE</td>
<td>Immunglobulin E</td>
</tr>
<tr>
<td>IGF1</td>
<td>Insulin-like growth factor 1</td>
</tr>
<tr>
<td>IGF1</td>
<td>Insulin-like growth factor 1, Gensymbol</td>
</tr>
<tr>
<td>IgG2a</td>
<td>Immunglobulin G2a</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus-Kinase</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase(n)</td>
</tr>
<tr>
<td>LD</td>
<td>Linkage Disequilibrium</td>
</tr>
<tr>
<td>LDI</td>
<td>laser desorption/ionization</td>
</tr>
<tr>
<td>LTA4</td>
<td>Leukotrien A4</td>
</tr>
<tr>
<td>LTA4H</td>
<td>Leukotrien A4 Hydrolase</td>
</tr>
<tr>
<td>LTA4H</td>
<td>Leukotrien A4 Hydrolase, Gensymbol</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>LTB4</td>
<td>Leukotrien B4</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>Matrix-assisted laser desorption/ionization time-of-flight</td>
</tr>
<tr>
<td>MBP</td>
<td>major basic protein</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MS</td>
<td>Massenspektrometrie</td>
</tr>
<tr>
<td>NAB2</td>
<td>NGF1 A-binding protein 2</td>
</tr>
<tr>
<td>NAB2</td>
<td>NGF1 A-binding protein 2, Gensymbol</td>
</tr>
<tr>
<td>NFYβ</td>
<td>nuclear factor Y, β-Untereinheit</td>
</tr>
<tr>
<td>NFYβ</td>
<td>nuclear factor Y, β-Untereinheit, Gensymbol</td>
</tr>
<tr>
<td>NOS1</td>
<td>neuronal nitric oxide synthase</td>
</tr>
<tr>
<td>NOS1</td>
<td>neuronal nitric oxide synthase, Gensymbol</td>
</tr>
<tr>
<td>PAF</td>
<td>platelet-activating factor</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain-reaction</td>
</tr>
<tr>
<td>PEF</td>
<td>peak expiratory flow</td>
</tr>
<tr>
<td>PROBE</td>
<td>primer oligo base extension</td>
</tr>
<tr>
<td>QTDT</td>
<td>quantitativer Transmission-Disequilibrium-Test</td>
</tr>
<tr>
<td>RAST</td>
<td>radioallergosorbent assay</td>
</tr>
<tr>
<td>RC-TDT</td>
<td>Reconstruction-Combined Transmission-Disequilibrium-Test</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriktionsfragment-Längenpolymorphismmus</td>
</tr>
<tr>
<td>SAP</td>
<td>Shrimp Alkaline Phosphatase</td>
</tr>
<tr>
<td>SCF</td>
<td>stem cell factor</td>
</tr>
<tr>
<td>SCF</td>
<td>stem cell factor, Gensymbol</td>
</tr>
<tr>
<td>SPT</td>
<td>Skin-Prick-Test</td>
</tr>
<tr>
<td>ssDNA</td>
<td>single-stranded DNA</td>
</tr>
<tr>
<td>STAT6</td>
<td>signal transducer and activator of transcription 6</td>
</tr>
<tr>
<td>STAT6</td>
<td>signal transducer and activator of transcription 6, Gensymbol</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borat-EDTA</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>TDT</td>
<td>Transmission-Disequilibrium-Test</td>
</tr>
<tr>
<td>3'UTR</td>
<td>3’ untranslatierte Region</td>
</tr>
<tr>
<td>5'UTR</td>
<td>5’ untranslatierte Region</td>
</tr>
</tbody>
</table>
7. Eigene Veröffentlichungen

Veröffentlichungen, die aus dieser Arbeit hervorgingen:

Veröffentlichungen, die Ergebnisse dieser Arbeit enthalten:

Weitere Veröffentlichungen:

8. Danksagung

Herrn Prof. Dr. Dr. H.-Erich Wichmann danke ich für die freundliche Vergabe des Themas, die Bereitstellung der KORA S4-Studie sowie der Möglichkeit zur Durchführung der Arbeit an seinem Institut am Helmholtz-Zentrum München.

Herrn PD Dr. Matthias Wjst danke ich für die Bereitstellung der Asthma-Familienstudie und seine wertvollen Tipps bei der Anfertigung meiner Erstautoren-Publikation.

Herrn PD Dr. Thomas Illig danke ich für die Betreuung der Arbeit, seine fachliche Unterstützung bei der Bearbeitung des Themas sowie seine stets vorhandene Diskussionsbereitschaft.

Herrn Prof. Dr. Stephan Schneuwly danke ich für die Übernahme der Betreuung der Arbeit seitens der Universität Regensburg.

Herrn Guido Fischer danke ich für die Hilfe bei der computergestützten Administration unzähliger Studien- sowie Genotypisierungsdaten.

Frau Diplom-Statistikerin Sabine Loesgen danke ich für die Durchführung der statistischen Berechnungen für die Einzelanalysen (RC-TDT und QTDT) sowie die geduldige Beantwortung unzähliger Fragen bezüglich der Interpretation der Ergebnisse.

Herrn Dr. Klaus Rohde danke ich für die Durchführung der Haplotypenanalysen sowie der Hilfe bei der Interpretation der Ergebnisse.

Frau Prof. Dr. Heike Bickeböller danke ich für die Einführung in die genetische Epidemiologie sowie ihre ständige Diskussionsbereitschaft und Unterstützung.

Herrn Utz Linzner danke ich für die Synthese unzähliger Oligonukleotide.

Frau Bettina Wunderlich danke ich für ihre Unterstützung bei der täglichen Laborarbeit.

Allen ehemaligen Mitgliedern der damaligen Arbeitsgruppe danke ich für das angenehme und teilweise lustige Arbeitsklima.

Mein besonderer Dank geht an Frau Dr. Caren Vollmert und Herrn Dr. Henning Gohlke für das Korrekturlesen der Arbeit, ihre Anregungen hinsichtlich der Interpretation der Ergebnisse, ihre ständige Diskussionsbereitschaft, unzählige Biergartenbesuche und ihre freundschaftliche und ermutigende Unterstützung in der bisher schwersten Zeit meines Lebens.

Danken möchte ich auch allen Freunden und Vierbeinern, die mich in den letzten Jahren begleitet haben, insbesondere meiner Lilly, für ihre täglichen Schmuseeinheiten und beruhigenden Schnurrtraden, sowie Jessica Gohlke, Jana Lang, Irina Werth-Beck mit Mecki und Frau Dr. Nicole Barth.

Mein ganz persönlicher Dank geht an meinen Verlobten Herrn Dr. Christian Johannes Gloeckner für seine fachliche Unterstützung, seine ständige Diskussionsbereitschaft, die Hilfe bei Computerfragen und seine Bereitschaft in allen Lebenslagen zu mir zu stehen und mich mit Rat und Tat zu unterstützen.
9. Erklärung

Die im Methodenteil und in der Danksagung aufgeführten Personen haben mir in der jeweils beschriebenen Weise unentgeltlich geholfen.

Diese Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Gabriele Dütsch

München, 09. Februar 2009
10. Anhang

10.1 NOS1-Primer

10.1.1 PCR-Primer

<table>
<thead>
<tr>
<th>SNP</th>
<th>PCR-Primer</th>
<th>Richtung</th>
<th>Annealing-Temperatur in °C</th>
<th>Länge des PCR-Produkts in bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOS1 Ex18SNP1</td>
<td>5'-GTTTCAGTTTTTGGCCTCG-3'</td>
<td>forward</td>
<td>53°C</td>
<td>179 bp</td>
</tr>
<tr>
<td></td>
<td>5'-TTACCTTGAAGACCTTCTTGCC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOS1 Ex29SNP1</td>
<td>5'-GGGTTTACTCCTTGAGTTTTTCC-3'</td>
<td>forward</td>
<td>53°C</td>
<td>196 bp</td>
</tr>
<tr>
<td></td>
<td>5'-TGTGCCTAGTTCTGCAGC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.1.2 Sequenzierprimer

<table>
<thead>
<tr>
<th>SNP</th>
<th>Sequenzierprimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOS1 Ex18SNP1</td>
<td>5'-TTACCTTGAAGACCTTCTTGCC-3'</td>
</tr>
<tr>
<td>NOS1 Ex29SNP1</td>
<td>5'-GGGTTTACTCCTTGAGTTTTTCC-3'</td>
</tr>
</tbody>
</table>
10.2 STAT6-Primer

10.2.1 PCR-Primer für die Suche nach Polymorphismen

<table>
<thead>
<tr>
<th>Genregion</th>
<th>PCR-Primer</th>
<th>Richtung</th>
<th>Annealing-Temperatur in °C</th>
<th>Länge des PCR-Produkts in bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT6 Promotorregion Teil 1</td>
<td>5'-GTAGAGACGGGGCTTACC-3'</td>
<td>forward</td>
<td>64°C</td>
<td>529 bp</td>
</tr>
<tr>
<td></td>
<td>5'-GTATGCAAGTCAGTCTCAGGTTTC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 2</td>
<td>5'-CTAATGCAATATGACTGATCTCCT-3'</td>
<td>forward</td>
<td>61°C</td>
<td>510 bp</td>
</tr>
<tr>
<td></td>
<td>5'-CAGGAGGCTGAGCAGGG-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 3</td>
<td>5'-GGAGTGCAGTGCCTGATCTC-3'</td>
<td>forward</td>
<td>60°C</td>
<td>660 bp</td>
</tr>
<tr>
<td></td>
<td>5'-GTGATCTGCTGACTTCCGCTC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 4</td>
<td>5'-GCCAGATTGCGCTCTAAATTG-3'</td>
<td>forward</td>
<td>58°C</td>
<td>600 bp</td>
</tr>
<tr>
<td></td>
<td>5'-CTGAGGCTCTAGAAATATG-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 5</td>
<td>5'-CTATGAGCTGAGAGACCTTCCGCTC-3'</td>
<td>forward</td>
<td>64°C</td>
<td>548 bp</td>
</tr>
<tr>
<td></td>
<td>5'-GAGGAGGCCTTACCTCCGGAC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 6</td>
<td>5'-CAGACACACCTTCTCCACACAC-3'</td>
<td>forward</td>
<td>64°C</td>
<td>568 bp</td>
</tr>
<tr>
<td></td>
<td>5'-CGTGACCAGCTACGGGAGG-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 7</td>
<td>5'-CCAGAATTCCTGAGCTGAGGTTCC-3'</td>
<td>forward</td>
<td>64°C</td>
<td>564 bp</td>
</tr>
<tr>
<td></td>
<td>5'-CAGTGAAGCAGTGGCTGCC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 1</td>
<td>5'-GTCAAGAGCTCAGAAAGGGAC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>347 bp</td>
</tr>
<tr>
<td></td>
<td>5'-GAATCCACCCCCATGCACTC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 2</td>
<td>5'-CAGAGGCCTGTCACTGCTC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>220 bp</td>
</tr>
<tr>
<td></td>
<td>5'-GAGAGGTCCCTTCTGAGGAG-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 3</td>
<td>5'-CAGGAGATTAGCCAGGGTTTC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>314 bp</td>
</tr>
<tr>
<td></td>
<td>5'-CACATGAGATAAAGGTCTCAG-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 4</td>
<td>5'-GAAATGCTGACTTTTGGCTGTC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>286 bp</td>
</tr>
<tr>
<td></td>
<td>5'-CCAATGCTCAGCCAGGTTCC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 5</td>
<td>5'-GATTGAGAGGACATGGGTAAGAG-3'</td>
<td>forward</td>
<td>56°C</td>
<td>210 bp</td>
</tr>
<tr>
<td></td>
<td>5'-CTAGTTTGTGATCTGCTAAG-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 6</td>
<td>5'-CAGAGGAGCAGAGTGAGGGGC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>280 bp</td>
</tr>
<tr>
<td></td>
<td>5'-GAATAGGAGGAGATCCAAGAGG-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 7</td>
<td>5'-GCCTCTGTGATGTCACCTTATC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>193 bp</td>
</tr>
<tr>
<td></td>
<td>5'-CTGAGGTCTAGCTCTCATCCC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 8</td>
<td>5'-GACCCTATCCAGGAGCTGG-3'</td>
<td>forward</td>
<td>56°C</td>
<td>290 bp</td>
</tr>
<tr>
<td></td>
<td>5'-CCTGAGGGCCTTCCAGGAGG-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genregion</td>
<td>PCR-Primer</td>
<td>Richtung</td>
<td>Annealing-Temperatur in °C</td>
<td>Länge des PCR-Produkts in bp</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>----------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>STAT6 Exon 9</td>
<td>5'-GAGCAAGCAGCCTTTAATCCTG-3' 5'-CGAGGCTTGTTCTTACGAGCAGAC-3'</td>
<td>forward</td>
<td>60°C</td>
<td>223 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 10</td>
<td>5'-CTTAGAGCTGTTGAGGGGAGG-3' 5'-CCAGGGTCTGCTCCATCAC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>318 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 11</td>
<td>5'-CATGCACTGCGACACCCG-3' 5'-CGAGGGTGTTCTAGGAGCCAGAC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>219 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 12</td>
<td>5'-GGGCTCTGCTCTCACGACC-3' 5'-GACTCGGGGTGAGCCAT-3'</td>
<td>forward</td>
<td>56°C</td>
<td>218 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 13</td>
<td>5'-GAAGAAGAAGAAAGAAGAAAGAAAC-3' 5'-CAGTGGCCGATGTTAG-3'</td>
<td>forward</td>
<td>56°C</td>
<td>200 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 14</td>
<td>5'-ACTGAGAGGATCCAGTGGAG-3' 5'-GATTGTTGTGAGAGATCCAG-3'</td>
<td>forward</td>
<td>58°C</td>
<td>441 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 15</td>
<td>5'-CAGTGGGCTCCCAAAGAGC-3' 5'-GGCATGGGAGGTGAGTATG-3'</td>
<td>forward</td>
<td>60°C</td>
<td>232 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 16</td>
<td>5'-GAGCAGCCACTACACAGTCAC-3' 5'-GCTTGGGAGCTGTCAC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>283 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 17</td>
<td>5'-CGTGTGATGGGGTTGGAAGG-3' 5'-GACCAAGGTGAGGATGATT-3'</td>
<td>forward</td>
<td>56°C</td>
<td>591 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 18</td>
<td>5'-CGTATGGTAGGGGTTGGAAGG-3' 5'-GAGCAGGGTTGAGGACC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>591 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 19</td>
<td>5'-GAGCAGCCATAACACCAGTC-3' 5'-GCTTGGTATGAGTAC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>247 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 20</td>
<td>5'-CACTGTGTCCTAAAAGCGATTGTG-3' 5'-GTCCTTTTCACAGGAGCCTCTG-3'</td>
<td>forward</td>
<td>56°C</td>
<td>255 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 21</td>
<td>5'-CTTGGACACCTCTGAGTGTG-3' 5'-CCAGCAATGGTNAAGAGAAG-3'</td>
<td>forward</td>
<td>56°C</td>
<td>208 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 22</td>
<td>5'-CTTGGCTTTCTGAGAAGCAGC-3' 5'-CGAGCTATGTCATGATGAC-3'</td>
<td>forward</td>
<td>57°C</td>
<td>379 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 23 Teil 1</td>
<td>5'-CTGACCTGGACCTTGTGAG-3' 5'-GCTTGGGAGGACATGAG-3'</td>
<td>forward</td>
<td>54°C</td>
<td>378 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 23 Teil 2</td>
<td>5'-CCACTATGGGCAACTTGTGAG-3' 5'-GGATTTGGGCTTGGGAGG-3'</td>
<td>forward</td>
<td>61°C</td>
<td>658 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT6 Exon 23 Teil 3</td>
<td>5'-GGAGATATTGGTCTCAGCACCCT-3' 5'-CAGAGAGCCAGCACATTG-3'</td>
<td>forward</td>
<td>60°C</td>
<td>379 bp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.2.2 Sequenzierprimer

<table>
<thead>
<tr>
<th>Genregion</th>
<th>Sequenzierprimer</th>
<th>Richtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT6 Promotorregion Teil 1</td>
<td>5'-GTATGCAAGTCTCCAGTCCAGTTC-3'</td>
<td>reverse</td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 2</td>
<td>5'-CTAATGGAATATATGACTGGAATTCCTTTGATCCG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 3</td>
<td>5'-GGATGTCCAGTGGCGTCTTC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 4</td>
<td>5'-GCCAGATTGCTCTAAATTTCTG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 5</td>
<td>5'-CTATGTAGGATGGAGACCTTCTCC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 6</td>
<td>5'-CAGACACGACCTCTCTTCCACACAC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Promotorregion Teil 7</td>
<td>5'-CAGTGTAAGGAGACGCTCC-3'</td>
<td>reverse</td>
</tr>
<tr>
<td>STAT6 Exon 1</td>
<td>5'-GTCAGAGCTCCAAGGAGGAC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 2</td>
<td>5'-CAGAGGCTCTGCTACTTCTGC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 3</td>
<td>5'-GCAAGTTTCTTTGCGGAC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 4</td>
<td>5'-GAAATGCTGACTTTTTGGCTTG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 5</td>
<td>5'-GATTTGACAGCATGGGTAAGG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 6</td>
<td>5'-CAGAGGAGAGGTGAGGCC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 7</td>
<td>5'-GTCTCTCTGATCTCAGACTC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 8</td>
<td>5'-GACCGATCCAGAGGAGCTGG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>Genregion</td>
<td>Sequenzierprimer</td>
<td>Richtung</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>STAT6 Exon 9</td>
<td>5'-GAGCAAGCAGCCTTAATCCTG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 10</td>
<td>5'-CTAGAGCTGTGGGGAGGGC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 11</td>
<td>5'-CATGCACTCGCCACACCTG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 12</td>
<td>5'-GCGGTCTCTGTCTCATGACC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 13</td>
<td>5'-CACTGCCCATGTTAGAACC-3'</td>
<td>reverse</td>
</tr>
<tr>
<td>STAT6 Exon 14</td>
<td>5'-ACTGTTGGAGAATCCAGTGGAAG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 15</td>
<td>5'-CACTGCTTGCCCTAAACAGG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 16</td>
<td>5'-GAGCAGCCATACACCAGTCAC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 17</td>
<td>5'-CTTATGTAGGGGTGGGGAAG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 18</td>
<td>5'-GCAATCCATGGGAGTCTTTTC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 19</td>
<td>5'-GCTTATCTGCAGGAGGAAGGG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 20</td>
<td>5'-CACCTGTTCAAAGCAGGGGTG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 21</td>
<td>5'-CCAGCAATGGAAATAAGGAGAG-3'</td>
<td>reverse</td>
</tr>
<tr>
<td>STAT6 Exon 22</td>
<td>5'-GACCAGCCCTACCCACCCAG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 23 Teil 1</td>
<td>5'-CCTCAGGCACTTGTGTAG-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 23 Teil 2</td>
<td>5'-CCAATCTGGGGAATCTGGGATC-3'</td>
<td>forward</td>
</tr>
<tr>
<td>STAT6 Exon 23 Teil 3</td>
<td>5'-CAGAGGGCCAGACACTTAG-3'</td>
<td>reverse</td>
</tr>
<tr>
<td>STAT6 Exon 23 Teil 4</td>
<td>5'-TGACAGAAGACACAGCAGATGTG-3'</td>
<td>forward</td>
</tr>
</tbody>
</table>
10.2.3 Primer für die Analyse des GT-Repeats

10.2.3.1 PCR-Primer

<table>
<thead>
<tr>
<th>PCR-Primer</th>
<th>Richtung</th>
<th>Annealing-Temperatur in °C</th>
<th>Länge des PCR-Produkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'-Fam6-GAGGGACCTGGGTAGAAGGA-3'</td>
<td>forward</td>
<td>58°C</td>
<td>326 bp - 334 bp</td>
</tr>
<tr>
<td>5'-CACCCCCATGCACTCATAG-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.2.3.2 Sequenzierprimer

<table>
<thead>
<tr>
<th>Sequenzierprimer</th>
<th>Richtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'-GAGGGACCTGGGTAGAAGGA-3'</td>
<td>forward</td>
</tr>
</tbody>
</table>
10.3 MALDI-TOF-Primer

10.3.1 PCR-Primer für die PROBE™-Reaktion

<table>
<thead>
<tr>
<th>SNP</th>
<th>MALDI-TOF PCR-Primer</th>
<th>Richtung</th>
<th>Ansteckungs- Temperatur in °C</th>
<th>Länge des PCR- Produkts in bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF1 In3SNP1</td>
<td>5'-ATTGGTACCCCTTAGACTGC-3'
5'-bio-AAGCTTTCCCACAGCTAGT-3'</td>
<td>forward</td>
<td>54°C</td>
<td>85 bp</td>
</tr>
<tr>
<td>IGF1 In3SNP2</td>
<td>5'-bio-TCTTAATCCTACCATACCTC-3'
5'-TTTCAGGAGTGGGAGAGTTTC-3'</td>
<td>forward</td>
<td>54°C</td>
<td>105 bp</td>
</tr>
<tr>
<td>IGF1 In3SNP3</td>
<td>5'-bio-TTAGAGCAATGAGCGGTG-3'
5'-CTTGGTTTGGCACCACCCCAAC-3'</td>
<td>forward</td>
<td>54°C</td>
<td>86 bp</td>
</tr>
<tr>
<td>IGF1 In3SNP4</td>
<td>5'-bio-GCTTCAGCCCTAGTGTTG-3'
5'-CTCTTAGGCTCCTATCTGGC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>84 bp</td>
</tr>
<tr>
<td>IGF1 In5SNP1</td>
<td>5'-bio-AGAAGAAAGAGCAGAGAGG-3'
5'-CCTCCTGTCCCTTTCCATTTCC-3'</td>
<td>reverse</td>
<td>56°C</td>
<td>79 bp</td>
</tr>
<tr>
<td>IGF1 In5SNP2</td>
<td>5'-bio-AAAGGAACCTCCCTTCTGCC-3'
5'-TCCTGGGTTTTCAGTGAACC-3'</td>
<td>reverse</td>
<td>54°C</td>
<td>92 bp</td>
</tr>
<tr>
<td>IGF1 In5SNP3</td>
<td>5'-GCAGCCACATAAAACAAGGAG-3'
5'-bio-ACTCAGCAGTTGGGATGT-3'</td>
<td>forward</td>
<td>54°C</td>
<td>84 bp</td>
</tr>
<tr>
<td>IGF1 In5SNP4</td>
<td>5'-AGGAGGATTGTGTAAGGCTG-3'
5'-bio-GACAGGCTCCTACTCTGTGTG-3'</td>
<td>reverse</td>
<td>56°C</td>
<td>92 bp</td>
</tr>
<tr>
<td>IGF1 In5SNP5</td>
<td>5'-bio-CTCAGGCCCAGTATGTCTATG-3'
5'-AGAGCAGAGGAGATTTCAG-3'</td>
<td>reverse</td>
<td>54°C</td>
<td>87 bp</td>
</tr>
<tr>
<td>IGF1 In5SNP6</td>
<td>5'-bio-GCCTGTGCTCTAGAGGAAC-3'
5'-TCTGGATTCATCCTCTGTTG-3'</td>
<td>reverse</td>
<td>56°C</td>
<td>107 bp</td>
</tr>
<tr>
<td>IGF1 In5SNP7</td>
<td>5'-GGGTACATAAGATGCGCTG-3'
5'-bio-TTGCTTCTTCTGAGAAGGCC-3'</td>
<td>reverse</td>
<td>56°C</td>
<td>84 bp</td>
</tr>
<tr>
<td>LTA4H In3SNP1</td>
<td>5'-bio-CCAAAGTTGGCAAGAAATG-3'
5'-CCACCATTGCTGCAATAAG-3'</td>
<td>forward</td>
<td>56°C</td>
<td>89 bp</td>
</tr>
<tr>
<td>LTA4H In6SNP1</td>
<td>5'-bio-CATCTGACAGGATTTCCTTC-3'
5'-ATTACAGGAGATGACAGAC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>140 bp</td>
</tr>
<tr>
<td>LTA4H Ex19SNP1</td>
<td>5'-bio-ATGATCAAGCTGTCGAAACC-3'
5'-TTAAGTCTTCTCCTCACCAGC-3'</td>
<td>reverse</td>
<td>56°C</td>
<td>81 bp</td>
</tr>
<tr>
<td>LTA4H Ex19SNP2</td>
<td>5'-TAAAGACCCTGCGATTGTAG-3'
5'-bio-AGCCAAAATCAAAAGACAG-3'</td>
<td>reverse</td>
<td>56°C</td>
<td>108 bp</td>
</tr>
<tr>
<td>SNP</td>
<td>MALDI-TOF PCR-Primer</td>
<td>Richtung</td>
<td>Annealing-Temperatur in °C</td>
<td>Länge des PCR-Produkts in bp</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>NAB2 In2SNP1</td>
<td>5'-TTTCTAGGCTTGTCTGACACACG-3' 5'-bio-TTTCTGAGGTGGGAGGACACG-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>98 bp</td>
</tr>
<tr>
<td>NAB2 Ex3SNP1</td>
<td>5'-AGAGCCACTTTGCTCTGCTG-3' 5'-bio-AGAGGAGAGGCTCTCCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>113 bp</td>
</tr>
<tr>
<td>NAB2 In3SNP1</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-TTTCTGAGGTGGGAGGACACG-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>98 bp</td>
</tr>
<tr>
<td>NAB2 In6SNP1</td>
<td>5'-TTTCTGAGGTGGGAGGAGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>120 bp</td>
</tr>
<tr>
<td>STAT6</td>
<td>5'-CCACGGTCCGCTTTTAC-3' 5'-bio-CCACGGTCCGCTTTTAC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>121 bp</td>
</tr>
<tr>
<td>STAT6 In2SNP1</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>136 bp</td>
</tr>
<tr>
<td>STAT6 In2SNP2</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>134 bp</td>
</tr>
<tr>
<td>STAT6 In2SNP3</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>128 bp</td>
</tr>
<tr>
<td>STAT6 In8SNP1</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>145 bp</td>
</tr>
<tr>
<td>STAT6 In8SNP2</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>134 bp</td>
</tr>
<tr>
<td>STAT6 In12SNP1</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>154 bp</td>
</tr>
<tr>
<td>STAT6 In16SNP1</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>283 bp</td>
</tr>
<tr>
<td>STAT6 In17SNP1</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>100 bp</td>
</tr>
<tr>
<td>STAT6 In18SNP1</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>150 bp</td>
</tr>
<tr>
<td>STAT6 3'UTR1SNP1</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>147 bp</td>
</tr>
<tr>
<td>STAT6 3'UTR1SNP2</td>
<td>5'-TTTCTAGGCTTGTCTGACACG-3' 5'-bio-AGAGCCACTTTGCTCTCCTC-3'</td>
<td>forward reverse</td>
<td>56°C</td>
<td>177 bp</td>
</tr>
</tbody>
</table>
10.3.2 Extensions-Primer

<table>
<thead>
<tr>
<th>SNP</th>
<th>MALDI-TOF Extensions-Primer</th>
<th>Richtung</th>
<th>Stop-Mix</th>
<th>mögliche Extensions-Produkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF1 In3SNP1</td>
<td>5'-GTGTGACAGCTGGTCAAA-3'</td>
<td>forward</td>
<td>ddACT</td>
<td>5'-GTGTGACAGCTGGTCAAT-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-GTGTGACAGCTGGTCAAGT-3'</td>
</tr>
<tr>
<td>IGF1 In3SNP2</td>
<td>5'-TGGGAGAGTTCCCTATAG-3'</td>
<td>reverse</td>
<td>ddCGT</td>
<td>5'-TGGGAGAGTTCCCTATAGG-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-TGGGAGAGTTCCCTATAGAG-3'</td>
</tr>
<tr>
<td>IGF1 In3SNP3</td>
<td>5'-AAAGGGAAGTGAGGATAAAAA-3'</td>
<td>reverse</td>
<td>ddACT</td>
<td>5'-AAAGGGAAGTGAGGATAAAA-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-AAAGGGAAGTGAGGATAAAAGA-3'</td>
</tr>
<tr>
<td>IGF1 In3SNP4</td>
<td>5'-GCCTGAACCTTCTGCATTTC-3'</td>
<td>reverse</td>
<td>ddACG</td>
<td>5'-GCCTGAACCTTCTGCATTTC-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-GCCTGAACCTTCTGCATTTCCT-3'</td>
</tr>
<tr>
<td>IGF1 In5SNP1</td>
<td>5'-CTTTTTGGCTCTGCATTCA-3'</td>
<td>reverse</td>
<td>ddACT</td>
<td>5'-CTTTTTGGCTCTGCATTCA-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-CTTTTTGGCTCTGCATTCCAC-3'</td>
</tr>
<tr>
<td>IGF1 In5SNP2</td>
<td>5'-TGGAGTAAAAACATGAGCA-3'</td>
<td>reverse</td>
<td>ddACT</td>
<td>5'-TGGAGTAAAAACATGAGCAC-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-TGGAGTAAAAACATGAGCAAGA-3'</td>
</tr>
<tr>
<td>IGF1 In5SNP3</td>
<td>5'-GGAGTACAGGTTTCTCAA-3'</td>
<td>forward</td>
<td>ddCGT</td>
<td>5'-GGAGTACAGGTTTCTCAAAG-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-GGAGTACAGGTTTCTCAAAT-3'</td>
</tr>
<tr>
<td>IGF1 In5SNP4</td>
<td>5'-AGTGACCTGAGATGGCAC-3'</td>
<td>forward</td>
<td>ddACG</td>
<td>5'-AGTGACCTGAGATGGCACC-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-AGTGACCTGAGATGGCACA-3'</td>
</tr>
<tr>
<td>IGF1 In5SNP5</td>
<td>5'-AGTTTGAGAATGTTTGCAAGAATTAG-3'</td>
<td>reverse</td>
<td>ddCGT</td>
<td>5'-AGTTTGAGAATGTTTGCAAGAATTAG-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-AGTTTGAGAATGTTTGCAAGAATTAG-3'</td>
</tr>
<tr>
<td>IGF1 In5SNP6</td>
<td>5'-AAAAGGAGACATTATTATTATTATTTTTCATT-3'</td>
<td>reverse</td>
<td>ddACT</td>
<td>5'-AAAAGGAGACATTATTATTATTATTTTTCATT-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-AAAAGGAGACATTATTATTATTATTTTTCATT-3'</td>
</tr>
<tr>
<td>IGF1 In5SNP7</td>
<td>5'-TGCCCTGAGTTGTGGTGG-3'</td>
<td>forward</td>
<td>ddACT</td>
<td>5'-TGCCCTGAGTTGTGGTGG-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-TGCCCTGAGTTGTGGTGGG-3'</td>
</tr>
<tr>
<td>LTA4H In3SNP1</td>
<td>5'-AAATTAACATTTTCATGACTCA-3'</td>
<td>reverse</td>
<td>ddAGT</td>
<td>5'-AAATTAACATTTTCATGACTCA-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-AAATTAACATTTTCATGACTCA-3'</td>
</tr>
<tr>
<td>LTA4H In3SNP2</td>
<td>5'-TGATGCTATTTTGCTGG-3'</td>
<td>forward</td>
<td>ddACT</td>
<td>5'-TGATGCTATTTTGCTGG-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-TGATGCTATTTTGCTGGG-3'</td>
</tr>
<tr>
<td>LTA4H In3SNP3</td>
<td>5'-CTCCCAAATAAGATTTCAAA-3'</td>
<td>reverse</td>
<td>ddACT</td>
<td>5'-CTCCCAAATAAGATTTCAAA-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-CTCCCAAATAAGATTTCAAA-3'</td>
</tr>
<tr>
<td>LTA4H In6SNP1</td>
<td>5'-AGCCACAGAGCCAGCCT-3'</td>
<td>reverse</td>
<td>ddCGT</td>
<td>5'-AGCCACAGAGCCAGCCTG-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-AGCCACAGAGCCAGCCTAT-3'</td>
</tr>
<tr>
<td>SNP</td>
<td>MALDI-TOF Extensions-Primer</td>
<td>Richtung</td>
<td>Stop-Mix</td>
<td>mögliche Extensions-Produkte</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>LTA4H In11SNP1</td>
<td>5'-CCTTACATAGAACAGTG A-3'</td>
<td>reverse</td>
<td>ddACT</td>
<td>5'-CCTTACATAGAACAGTG A-3' 5'-CCTTACATAGAACAGTG A-3'</td>
</tr>
<tr>
<td>LTA4H Ex19SNP1</td>
<td>5'-TTCCCACCAGATTGCA-3'</td>
<td>reverse</td>
<td>ddACT</td>
<td>5'-TTCCCACCAGATTGCA-3' 5'-TTCCCACCAGATTGCA-3'</td>
</tr>
<tr>
<td>LTA4H Ex19SNP2</td>
<td>5'-AGAAATATAAAAACCTCAGCTC-3'</td>
<td>forward</td>
<td>ddCT</td>
<td>5'-AGAAATATAAAAACCTCAGCTC-3' 5'-AGAAATATAAAAACCTCAGCTC-3'</td>
</tr>
<tr>
<td>NAB2 In1SNP1</td>
<td>5'-TGTGAGACTGTGAGTG-3'</td>
<td>forward</td>
<td>ddCT</td>
<td>5'-TGTGAGACTGTGAGTG-3' 5'-TGTGAGACTGTGAGTG-3'</td>
</tr>
<tr>
<td>NAB2 In2SNP1</td>
<td>5'-ACCCACAGGAGAGGAGG-3'</td>
<td>forward</td>
<td>ddCT</td>
<td>5'-ACCCACAGGAGAGGAGG-3' 5'-ACCCACAGGAGAGGAGG-3'</td>
</tr>
<tr>
<td>NAB2 Ex3SNP1</td>
<td>5'-CTGCACTAGGGAAACAC-3'</td>
<td>forward</td>
<td>ddCT</td>
<td>5'-CTGCACTAGGGAAACAC-3' 5'-CTGCACTAGGGAAACAC-3'</td>
</tr>
<tr>
<td>NAB2 In3SNP1</td>
<td>5'-TGGGTTCTGTGCTGTCC-3'</td>
<td>forward</td>
<td>ddCT</td>
<td>5'-TGGGTTCTGTGCTGTCC-3' 5'-TGGGTTCTGTGCTGTCC-3'</td>
</tr>
<tr>
<td>NAB2 In6SNP1</td>
<td>5'-CAGGCTAGAGTGTGGG-3'</td>
<td>forward</td>
<td>ddCT</td>
<td>5'-CAGGCTAGAGTGTGGG-3' 5'-CAGGCTAGAGTGTGGG-3'</td>
</tr>
<tr>
<td>NAB2 In6SNP2</td>
<td>5'-AGGGGAAGAGGAGGAGG-3'</td>
<td>forward</td>
<td>ddCT</td>
<td>5'-AGGGGAAGAGGAGGAGG-3' 5'-AGGGGAAGAGGAGGAGG-3' 5'-AGGGGAAGAGGAGGAGGAGG-3'</td>
</tr>
<tr>
<td>NAB2 In6SNP3</td>
<td>5'-CTGCTGTGCTGTCTGTCT-3'</td>
<td>reverse</td>
<td>ddTTP, ddGTP</td>
<td>5'-CTGCTGTGCTGTCTGTCT-3' 5'-CTGCTGTGCTGTCTGTCT-3'</td>
</tr>
<tr>
<td>NAB2 In6SNP4</td>
<td>5'-GGGAAGAAAGAGAAGAAGA-3'</td>
<td>forward</td>
<td>ddCT</td>
<td>5'-GGGAAGAAAGAGAAGAAGA-3' 5'-GGGAAGAAAGAGAAGAAGA-3'</td>
</tr>
<tr>
<td>STAT6 5'flankingSNP1</td>
<td>5'-GTGCTGTGCTGTGCAGCC-3'</td>
<td>reverse</td>
<td>ddTTP, ddGTP</td>
<td>5'-GTGCTGTGCTGTGCAGCC-3' 5'-GTGCTGTGCTGTGCAGCC-3'</td>
</tr>
<tr>
<td>STAT6 5'flankingSNP2</td>
<td>5'-CACACAGTGCACACTG-3'</td>
<td>forward</td>
<td>ddCTP</td>
<td>5'-CACACAGTGCACACTG-3' 5'-CACACAGTGCACACTG-3'</td>
</tr>
<tr>
<td>STAT6 In2SNP1</td>
<td>5'-AGGTCTTGGAGAGCTAC-3'</td>
<td>forward</td>
<td>ddTTP, ddGTP</td>
<td>5'-AGGTCTTGGAGAGCTAC-3' 5'-AGGTCTTGGAGAGCTAC-3'</td>
</tr>
<tr>
<td>STAT6 In2SNP2</td>
<td>5'-CGACAGAGAGAGACTCGT-3'</td>
<td>reverse</td>
<td>ddTTP</td>
<td>5'-CGACAGAGAGAGACTCGT-3' 5'-CGACAGAGAGAGACTCGT-3'</td>
</tr>
<tr>
<td>STAT6 In2SNP3</td>
<td>5'-GATGACCTCCTAGGGAC-3'</td>
<td>reverse</td>
<td>ddTTP, ddGTP</td>
<td>5'-GATGACCTCCTAGGGAC-3' 5'-GATGACCTCCTAGGGAC-3'</td>
</tr>
<tr>
<td>SNP</td>
<td>MALDI-TOF Extensions-Primer</td>
<td>Richtung</td>
<td>Stop-Mix</td>
<td>mögliche Extensions-Produkte</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>STAT6 In8SNP1</td>
<td>5'-GTGCTTTGTGGCAAATTGG-3'</td>
<td>reverse</td>
<td>ddATP</td>
<td>5'-GTGCTTTGTGGCAAATTGG-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-GTGCTTTGTGGCAAATTGG-3'</td>
</tr>
<tr>
<td>STAT6 In8SNP2</td>
<td>5'-ATAATGAACCTCCCACCCA-3'</td>
<td>forward</td>
<td>ddATP, ddCTP</td>
<td>5'-ATAATGAACCTCCCACCCA-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-ATAATGAACCTCCCACCCA-3'</td>
</tr>
<tr>
<td>STAT6 In12SNP1</td>
<td>5'-ACTCAGGCTGGAGTGCA-3'</td>
<td>forward</td>
<td>ddGTP, ddTPP</td>
<td>5'-ACTCAGGCTGGAGTGCA-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-ACTCAGGCTGGAGTGCA-3'</td>
</tr>
<tr>
<td>STAT6 In16SNP1</td>
<td>5'-CCAGGATGTTGAGGCC-3'</td>
<td>forward</td>
<td>ddCTP</td>
<td>5'-CCAGGATGTTGAGGCC-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-CCAGGATGTTGAGGCC-3'</td>
</tr>
<tr>
<td>STAT6 In17SNP1</td>
<td>5'-GTGACATCGGATGACAC-3'</td>
<td>reverse</td>
<td>ddATP, ddCTP</td>
<td>5'-GTGACATCGGATGACAC-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-GTGACATCGGATGACAC-3'</td>
</tr>
<tr>
<td>STAT6 In18SNP1</td>
<td>5'-GGGCTTAGCTTATCTTG-3'</td>
<td>forward</td>
<td>ddATP, ddCTP</td>
<td>5'-GGGCTTAGCTTATCTTG-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-GGGCTTAGCTTATCTTG-3'</td>
</tr>
<tr>
<td>"STAT6 3'UTRSNP1"</td>
<td>5'-GTTCAGGCTCTGAGACAC-3'</td>
<td>forward</td>
<td>ddCTP, ddGTP</td>
<td>5'-GTTCAGGCTCTGAGACAC-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-GTTCAGGCTCTGAGACAC-3'</td>
</tr>
<tr>
<td>"STAT6 3'UTRSNP2"</td>
<td>5'-GTAAACCACATGTCCAGAC-3'</td>
<td>reverse</td>
<td>ddCTP</td>
<td>5'-GTAAACCACATGTCCAGAC-3'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5'-GTAAACCACATGTCCAGAC-3'</td>
</tr>
</tbody>
</table>

10.3.3 PCR-Primer für die hME-Methode

<table>
<thead>
<tr>
<th>SNP</th>
<th>MALDI-TOF PCR-Primer</th>
<th>Richtung</th>
<th>Annealing-Temperatur in °C</th>
<th>Länge des PCR-Produkts in bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTA4H In3SNP2</td>
<td>5'-ACGTTGGATGTCTTACGGTTCTCTGTGATC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>107 bp</td>
</tr>
<tr>
<td></td>
<td>5'-ACGTTGGATGTCTTACGGTTCTCTGTGATC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTA4H In3SNP3</td>
<td>5'-ACGTTGGATGTCTTACGGTTCTCTGTGATC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>125 bp</td>
</tr>
<tr>
<td></td>
<td>5'-ACGTTGGATGTCTTACGGTTCTCTGTGATC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTA4H In6SNP1</td>
<td>5'-ACGTTGGATGTCTTACGGTTCTCTGTGATC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>160 bp</td>
</tr>
<tr>
<td></td>
<td>5'-ACGTTGGATGTCTTACGGTTCTCTGTGATC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTA4H In11SNP1</td>
<td>5'-ACGTTGGATGTCTTACGGTTCTCTGTGATC-3'</td>
<td>forward</td>
<td>56°C</td>
<td>99 bp</td>
</tr>
<tr>
<td></td>
<td>5'-ACGTTGGATGTCTTACGGTTCTCTGTGATC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAB2 In1SNP1</td>
<td>5'-ACGTTGGATGTCTTACGGTTCTCTGTGATC-3'</td>
<td>forward</td>
<td>54°C</td>
<td>94 bp</td>
</tr>
<tr>
<td></td>
<td>5'-ACGTTGGATGTCTTACGGTTCTCTGTGATC-3'</td>
<td>reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNP</td>
<td>MALDI-TOF PCR-Primer</td>
<td>Richtung</td>
<td>Annealing-Temperatur in °C</td>
<td>Länge des PCR-Produkts in bp</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>NAB2 In2SNP1</td>
<td>5'-ACGTTGGATGTTCTTGCTTGCACGTAC-3' forward 5'-ACGTTGGATGTTTCTGAGGTGGGAGACAG-3' reverse</td>
<td>56°C</td>
<td>118 bp</td>
<td></td>
</tr>
<tr>
<td>NAB2 Ex3SNP1</td>
<td>5'-ACGTTGGATGAATCTCTGACTCTGTGCTC-3' forward 5'-ACGTTGGATGGAAGAAGACTCCACTCTC-3' reverse</td>
<td>56°C</td>
<td>133 bp</td>
<td></td>
</tr>
<tr>
<td>NAB2 In3SNP1</td>
<td>5'-ACGTTGGATGATAACATGGCTCTGCTGCTG-3' forward 5'-ACGTTGGATGAAGAGAAGAGCTCCACTCTC-3' reverse</td>
<td>56°C</td>
<td>90 bp</td>
<td></td>
</tr>
<tr>
<td>NAB2 In6SNP1</td>
<td>5'-ACGTTGGATGATAACATGGCTCTGCTGCTG-3' forward 5'-ACGTTGGATGAAAGCATCACTGCCCTTGGGC-3' reverse</td>
<td>56°C</td>
<td>140 bp</td>
<td></td>
</tr>
<tr>
<td>NAB2 In6SNP2</td>
<td>5'-ACGTTGGATGCCAAGGGCCAGTCATGCTCTC-3' forward 5'-ACGTTGGATGTTGTCCTGGCTGCTC-3' reverse</td>
<td>56°C</td>
<td>116 bp</td>
<td></td>
</tr>
<tr>
<td>NAB2 In6SNP3</td>
<td>5'-ACGTTGGATGACCAGAAATTCAGCACCGAAC-3' forward 5'-ACGTTGGATGTTGTCCTCCATCCGTTGATG-3' reverse</td>
<td>56°C</td>
<td>133 bp</td>
<td></td>
</tr>
<tr>
<td>NAB2 In6SNP4</td>
<td>5'-ACGTTGGATGACCAGAAATTCAGCACCGAAC-3' forward 5'-ACGTTGGATGTTGTCCTCCATCCGTTGAG-3' reverse</td>
<td>54°C</td>
<td>131 bp</td>
<td></td>
</tr>
</tbody>
</table>