Modulation der Immunantwort in der mikrobiellen Sepsis durch lösliche Toll-like Rezeptoren

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der naturwissenschaftlichen Fakultät IV - Chemie und Pharmazie der Universität Regensburg

vorgelegt von
Philipp Groß
aus Regensburg
2009
Promotionsgesuch eingereicht am 22.01.2009

Die Arbeit wurde angeleitet von:
Prof. Dr. rer. nat. Jörg Heilmann, Institut für Pharmazie, Lehrstuhl für Pharmazeutische Biologie
Prof. Dr. rer. nat. Werner Falk, Klinik und Poliklinik für Innere Medizin I

Prüfungsausschuss:
Vorsitzender: Prof. Dr. rer. nat. S. Elz
1. Gutachter (1. Prüfer): Prof. Dr. rer. nat. J. Heilmann
2. Gutachter (2. Prüfer): Prof. Dr. rer. nat. W. Falk
3. Prüfer: Prof. Dr. med. R. Warth

Dissertation

durchgeführt von Dezember 2005 bis Oktober 2008
an der Klinik und Poliklinik für Innere Medizin I der Universität Regensburg
unter Anleitung von

Prof. Dr. rer. nat. Jörg Heilmann
Institut für Pharmazie

und

Prof. Dr. rer. nat. Werner Falk
Klinik und Poliklinik für Innere Medizin I
Ich kann nicht sagen, die Existenz von Gott ist unmöglich, sie erscheint mir nur sehr unwahrscheinlich. Und das ist Naturwissenschaft. Sie stellen sich eine Frage und machen ein Experiment und schauen, was dabei herauskommt. Es macht mir keine Angst, wenn ich etwas nicht weiß.

Richard P. Feynman (1918-1988)
Inhaltsverzeichnis

1 EINLEITUNG .. 1

1.1 Das Immunsystem zur Infektionsabwehr .. 1
 1.1.1 Das angeborene Immunsystem .. 1
 1.1.2 Das adaptive Immunsystem ... 2

1.2 Die Rezeptoren des angeborenen Immunsystems 3

1.3 Toll-like Rezeptoren .. 5
 1.3.1 Drosophila Toll ... 5
 1.3.2 Toll Proteine der Wirbeltiere ... 6
 1.3.2.1 LPS-Erkennung über TLR4/MD-2 ... 8
 1.3.2.2 TLR2 .. 10

1.4 TLR Signaltransduktion .. 11
 1.4.1 MyD88-abhängige Signaltransduktion .. 11
 1.4.2 TRIF-abhängige Signaltransduktion .. 13
 1.4.3 Negativregulierung der TLR-Signaltransduktion 14

1.5 Bedeutung der TLRs für den Pathomechanismus von
Infektionskrankheiten ... 15

1.6 Möglichkeiten der Beeinflussung der TLR Signaltransduktion 17
 1.6.1 Neutralisierung von LPS .. 17
 1.6.2 Modulation der Signaltransduktion auf Rezeptorebene 18
 1.6.3 Lösliche Rezeptoren .. 18
 1.6.3.1 Natürlich vorkommende lösliche Rezeptoren 18
 1.6.3.2 Lösliche TLR-Fusionsproteine ... 19
 1.6.3.2.1 Die LPS-Trap ... 19
 1.6.3.2.2 Lösliche TLR2-Fc Fusionsproteine 20

1.7 Zielsetzung ... 21

2 MATERIAL ... 22

2.1 Geräte ... 22

2.2 Verbrauchsmaterial .. 22
2.3 Chemikalien und Reagenzien .. 23
2.4 Enzyme und Kits .. 24
2.5 Bakterien und Zelllinien .. 24
 2.5.1 E. coli Stämme ... 24
 2.5.2 Sonstige Bakterienstämme ... 25
 2.5.3 Eukaryontische Zellen ... 25
2.6 Zellkulturmedien und -zusätze ... 25
 2.6.1 Bakterienkultur .. 25
 2.6.2 Eukaryontische Zellkultur ... 26
2.7 Vektoren, Plasmide und Viren .. 26
2.8 Oligonukleotidsequenzen ... 26
 2.8.1 Kontrollprimer für cDNA ... 27
 2.8.2 Sequenzierprimer .. 27
 2.8.3 Primer .. 27
 2.8.4 Synthetische Oligonukleotide ... 28
2.9 Größenstandards ... 29
2.10 Antikörper und Kopplungsreagenzien .. 29
2.11 Puffer und Lösungen .. 30
 2.11.1 Lösungen und Zubehör für die Agarose-Gelelektrophorese 30
 2.11.2 Lösungen und Zubehör für die SDS-Polyacrylamid-Gelelektrophorese (PAGE) 30
 2.11.3 Sonstige Puffer und Lösungen .. 31

3 METHODEN .. 32
3.1 Molekularbiologische Methoden .. 32
 3.1.1 Isolierung von RNA aus Zellen ... 32
 3.1.2 Gewinnung von cDNA durch Reverse Transkriptase - PCR 32
 3.1.3 Klonierung von DNA-Fragmenten .. 33
 3.1.3.1 Polymerase Ketten Reaktion (PCR) ... 33
 3.1.3.2 Restriktionsverdau ... 33
 3.1.3.3 Gelelektrophorese .. 34
 3.1.3.4 Isolierung von DNA-Fragmenten aus Agarosegelen 34
 3.1.3.5 Enzymatische Manipulation der DNA .. 34
 3.1.3.5.1 Dephosphorylierung mit SAP ... 34
3.4 Immunologische Methoden ... 45
 3.4.1 Enzyme-linked Immunosorbent Assay (ELISA) .. 45
 3.4.2 Multi-Zytokinbestimmungen im Luminex® 100 .. 46
 3.4.3 LPS-Trap-Bindungsassays ... 47
 3.4.3.1 LPS Pull-down Assay .. 47
 3.4.3.2 Bindungs-Assay mit 14C-Fettsäuren .. 48
 3.4.3.3 LPS-Bindungs-ELISA ... 48
 3.4.3.4 Fusionsprotein-Bindungs-ELISAs .. 48
 3.4.3.5 Bakterien-Bindungs-Assays ... 49
 3.4.4 Phagozytoseassay .. 50
 3.4.5 Komplementaktivierungsassay ... 50
 3.4.6 Durchflusszytometrie .. 50
3.5 Tierexperimente .. 51
 3.5.1 Adenovirale Infektion ... 51
 3.5.2 Gewinnung von Serum aus Vollblut .. 51
 3.5.3 Überprüfung der LPS-Trap-Fc(Ad)-Serumspiegel ... 52
 3.5.4 LPS Stimulation von Mäusen ... 52

3.6 Statistik .. 52

4 ERGEBNISSE .. 53

4.1 Modulation der TLR4-Signaltransduktion durch die LPS-Trap-Fc 53
 4.1.1 Produktion der LPS-Trap-Fc in verschiedenen Zellsystemen ... 53
 4.1.1.1 Schneider S2-Zellen ... 54
 4.1.1.2 Expression der LPS-Trap-Fc .. 55
 4.1.1.3 Reinigung der LPS-Trap-Fc .. 56
 4.1.1.4 Escherichia coli ... 56
 4.1.1.2.1 Klonierung der LPS-Trap-Fc in pET-22b(+). ... 57
 4.1.1.2.2 Expression der LPS-Trap-Fc in BL21(DE3) pLysS .. 57
 4.1.1.3.1 Klonierung der LPS-Trap-Fc in pIRESneo3 ... 59
 4.1.1.3.2 Expression der LPS-Trap-Fc in QBI293A .. 60
 4.1.1.4 Baculovirusystem ... 60
 4.1.1.4.1 Klonierung der LPS-Trap-Fc in pFastBac1 ... 61
 4.1.1.4.2 Expression der LPS-Trap-Fc in Sf-21 und High Five™ Zellen 61
 4.1.1.4.3 Reinigung der LPS-Trap-Fc .. 63
 4.1.2 Charakterisierung der LPS-Trap-Fc ... 64
 4.1.2.1 Unterschiede in der Glykosylierung in Abhängigkeit vom Expressionssystem 64
 4.1.2.2 Untersuchung der LPS-Bindungsfähigkeit ... 65
 4.1.2.3 Inhibitorische Aktivität der LPS-Trap-Fc in vitro ... 66
 4.1.2.4 Untersuchung alternativer Reinigungsmethoden für die LPS-Trap-Fc 67
 4.1.2.4.1 Oligomerisierung der LPS-Trap-Fc während der Reinigung 68
 4.1.2.4.2 Konstruktion und Expression der His-LPS-Trap-Fc ... 69
 4.1.2.4.3 Einfluss unterschiedlicher Reinigungsmethoden auf die LPS-Bindungsfähigkeit . 70

4.2 Untersuchung weiterer Liganden für die LPS-Trap ... 71
 4.2.1 Bindung und Hemmung von Paclitaxel durch die LPS-Trap-Fc ... 72
 4.2.2 Untersuchung zur Bindung der LPS-Trap an Adenoviren .. 73
 4.2.3 Interaktion der LPS-Trap mit High-mobility group box 1 protein 74
 4.2.4 Untersuchungen über Bindung von Fettsäuren an TLR4/MD-2 ... 75
 4.2.4.1 Keine direkte Assoziation von 14C-Öl- und Stearinsäure an der LPS-Trap-His 75
4.3 LPS-Trap-Fc als Opsonin .. 78
 4.3.1 Klonierung der LPS-Trap-IgG-Varianten .. 79
 4.3.1.1 LPS-Trap-Fc1 .. 79
 4.3.1.2 LPS-Trap-Fc2 .. 79
 4.3.1.3 LPS-Trap-Fc3 und -Fc4 .. 80
 4.3.2 Expression der LPS-Traps-Fc1-4 .. 80
 4.3.3 Nachweis der LPS-Bindung an den LPS-Traps-Fc1-4 ... 81
 4.3.4 Überprüfung der biologischen Aktivität der LPS-Traps-Fc1-4 .. 82
 4.3.5 Bindung der LPS-Trap an Bakterien .. 83
 4.3.5.1 Assoziation der LPS-Trap-His an E. coli ... 83
 4.3.5.2 Spezifische Bindung der LPS-Trap-Fc an Gram-negative Bakterien ... 84
 4.3.5.3 Die LPS-Trap-Fc besitzt keinen bakteriziden Effekt auf Gram-negative Bakterien 87
 4.3.6 Modulierung der Phagozytoseaktivität .. 88
 4.3.6.1 Einfluss der LPS-Trap-Fc1 auf die Phagozytoseaktivität .. 88
 4.3.6.2 Unterschiedliche Beeinflussung der Phagozytoseaktivität durch den IgG-Isotyp der LPS-Trap-Fc .. 89
 4.3.7 Einfluss auf die Komplementaktivierung ... 91

4.4 Modifizierung der LPS-Trap-Fc .. 92
 4.4.1 Modifikation an der extrazellulären Domäne von TLR4 ... 93
 4.4.1.1 Klonierung und Expression der LPS-Trap-FcM und LPS-Trap-FcS ... 93
 4.4.1.2 Charakterisierung der verkürzten Fusionsproteine LPS-Trap-FcM und –FcS 94
 4.4.1.2.1 LPS-Bindung durch LPS-Trap-FcM und –FcS ... 95
 4.4.1.2.2 Fehlende hemmende Wirkung der verkürzten Fusionsproteine in vitro 95
 4.4.1.2.3 Verminderte LPS-Bindungsstärke im Vergleich zur LPS-Trap-Fc .. 96
 4.4.2 Variationen am flexiblen Linker ... 97
 4.4.2.1 Klonierung der Linkermutanten LPS-Trap-L-Fc, LPS-Trap-Fc(30AS) und LPS-Trap-L-
 Fc(30AS) 98
 4.4.2.2 Expression und LPS-Bindungsfähigkeit der Linkermutanten ... 99
 4.4.2.3 Schwache Erhöhung der LPS-Affinität zu den 30AS-Linkermutanten 99

4.5 Untersuchung und Charakterisierung von adenoviral-produzierter LPS-Trap-Fc im Tiermodell 100
 4.5.1 Charakterisierung der LPS-Trap-Fc(Ad) in vitro ... 101
 4.5.1.1 LPS-Trap-Fc(Ad) bildet den TLR4/MD-2 Komplex und bindet LPS ... 101
 4.5.1.2 Biologische Aktivität im in vitro-Modell ... 102
 4.5.2 Test der Ad-Trap-Fc in vivo ... 103
 4.5.2.1 Verlauf der LPS-Trap-Fc(Ad) Serumspiegel im Mausmodell ... 103
 4.5.2.2 Rapide Bildung von Antikörpern gegen die LPS-Trap-Fc(Ad) .. 105
4.5.2.3 Einfluss auf die LPS-induzierte Zytokinantwort .. 106

4.6 TLR2-Fusionsproteine ... 107
 4.6.1 Klonierung von TLR2/1-Fc und TLR2/6-Fc Fusionsproteinen ... 107
 4.6.2 Expression von T2/1- und T2/6-Fc ... 108
 4.6.3 Bindung der T2/1- und T2/6-Fc an Lipoteichonsäure ... 109
 4.6.4 T2/1- und T2/6-Fc hemmen die Lipopeptid stimulierte Zellaktivierung 110

5 DISKUSSION ... 111
 5.1 Modulation der TLR-Signaltransduktion auf Receptorebene ... 111
 5.2 Beeinflussung der TLR4-Signaltransduktion durch die LPS-Trap-Fc............................. 112
 5.3 Untersuchung weiterer Liganden für die LPS-Trap .. 113
 5.4 TLR4/MD-2-hIgG-Fc als Opsonine für Gram-negative Bakterien .. 116
 5.5 Modifizierung der LPS-Trap-Fc .. 120
 5.6 Charakterisierung und Einsatz der LPS-Trap-Fc(Ad) .. 122
 5.7 Modulation der TLR2-Signaltransduktion .. 124

6 ZUSAMMENFASSUNG ... 128

7 AUSBlick .. 130

8 ABKÜRZUNGSVERZEICHNIS ... 131

9 LITERATURVERZEICHNIS .. 134

10 ANHANG ... 146
 10.1 Publikationsliste .. 146
 10.2 Danksagung ... 148
 10.3 Eidesstattliche Erklärung ... 150
1 Einleitung

1.1 Das Immunsystem zur Infektionsabwehr

1.1.1 Das angeborene Immunsystem

Das angeborene Immunsystem ist ein evolutionär altes und hoch konserviertes System. Pflanzen und Tiere verfügen über ähnliche molekulare Module, was auf eine Entstehung vor der getrennten Entwicklung dieser Reiche hinweist [1].

<table>
<thead>
<tr>
<th>Modul des angeborenen Immunsystems</th>
<th>Sensor</th>
<th>Immunantwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleimhautepithel</td>
<td>TLRs und NOD-Proteine</td>
<td>Antimikrobielle Peptide, Produktion von Muzinen</td>
</tr>
<tr>
<td>Phagozyten</td>
<td>TLRs, Dectin und NOD-Proteine</td>
<td>Antimikrobielle Peptide, Zytokine: TNF, IL-1β und IL-6</td>
</tr>
<tr>
<td>Akute-Phase-Proteine und Komplementsystem</td>
<td>Collectin, Pentraxin und Ficolin</td>
<td>Lyse und Opsonisierung von Pathogenen, Chemotaktische Anlockung von Lymphozyten</td>
</tr>
<tr>
<td>Inflammazom</td>
<td>NALPs und NAIPs</td>
<td>Produktion von Mitgliedern der IL-1-Familie, Apoptose von infizierten Zellen</td>
</tr>
<tr>
<td>NK-Zellen</td>
<td>---</td>
<td>Apoptose von infizierten Zellen, IFN-γ Produktion</td>
</tr>
<tr>
<td>Typ-I-IFN induzierte Proteine</td>
<td>RIG-I, MDA5, DAI und TLRs</td>
<td>Induktion der antiviralen Immunabwehr, Apoptose von infizierten Zellen</td>
</tr>
<tr>
<td>Eosinophile und Basophile Granulozyten, Mastzellen</td>
<td>---</td>
<td>Kontraktion der glatten Muskulatur, Produktion von Muzinen, biogenen Aminen, Anregung der Peristaltik, Zytokine: IL-4, IL-5, IL-9, IL-13 und TNF</td>
</tr>
</tbody>
</table>

Abb. 1.1: Systeme des angeborenen Immunsystems

Dieses System besitzt eine duale Funktion [3]: Einerseits dient es der ersten Abwehr gegen Pathogene, andererseits ist es an verschiedenen physiologischen Prozessen, wie der Gewebsregeneration und der Beseitigung apoptotischer Zellen,
beteiligt. Die Einteilung in Untersysteme spiegelt die einzelnen Stufen der evolutionären Entwicklung wider (Abb. 1.1) [2]. Das Abwehrsystem basiert zum einen auf mechanischen und physiologischen Barrieren wie Epithelien, zum anderen auf keimbahnkodierten Molekülerkennungsrezeptoren (pattern-recognition receptors, PRRs). Diese spielen eine Schlüsselrolle als Sensoren für Pathogene und Gefahrsignale (siehe 1.2). Das angeborene Immunsystem besitzt folglich schnelle Effektormechanismen, die von körperfremden Molekülstrukturen und Gefahrsignalen ausgelöst werden. Ein Großteil der Pathogene kann dadurch vor Entstehung eines Infektionsherdes beseitigt werden. Durchbricht ein infektiöser Organismus diese ersten Abwehrlinien, wird nach 4 bis 5 Tagen eine adaptive Immunantwort ausgelöst. Diese kooperiert mit dem angeborenen Immunsystem; es findet eine gegenseitige Koordination und Kontrolle statt [2].

1.1.2 Das adaptive Immunsystem

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Angeborenes Immunsystem</th>
<th>Adaptives Immunsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezeptoren</td>
<td>Im Genom fixiert</td>
<td>In Genesegmenten kodiert, Genezuordnung nötig</td>
</tr>
<tr>
<td>Mannigfaltigkeit</td>
<td>Zellen einer Klasse sind identisch</td>
<td>Alle Zellen einer Klasse sind verschieden</td>
</tr>
<tr>
<td>Erkennung</td>
<td>evolutionär konservierte Molekularstrukturen</td>
<td>Ausschnitte aus Molekularstrukturen (Peptide, Kohlenhydrate)</td>
</tr>
<tr>
<td>Gedächtnis</td>
<td>nein</td>
<td>ja</td>
</tr>
<tr>
<td>Reaktionszeit</td>
<td>sofortige Aktivierung von Effekten</td>
<td>verzögerte Aktivierung von Effektkernen</td>
</tr>
<tr>
<td>Physikalische und chemische Barrieren</td>
<td>Haut, Epithelien, antimikrobielle Agentien</td>
<td>Lymphozyten in Epithelschicht sezernierte Antikörper auf Epitheloberfläche</td>
</tr>
<tr>
<td>Humorale Abwehr</td>
<td>Komplement, Akute-Phase-Proteine Lysozym, Zytokine</td>
<td>B-Lymphozyten (Antikörper)</td>
</tr>
<tr>
<td>Zelluläre Abwehr</td>
<td>Monozyten, Dendritische Zellen, Granulozyten, Mastzellen</td>
<td>T-Lymphozyten</td>
</tr>
</tbody>
</table>

Abb. 1.2: Gegenüberstellung des angeborenen und adaptiven Immunsystems

Modifiziert nach [4]
Darüber hinaus bilden sich während der adaptiven Immunantwort Gedächtniszellen, die bei einer Reinfektion mit demselben Antigen zu einer deutlich schnelleren und effektiveren Immunantwort führen. Die wesentlichen Unterschiede zwischen angeborenem und adaptivem Immunsystem sind in Abb. 1.2 zusammengefasst.

1.2 Die Rezeptoren des angeborenen Immunsystems

Die PPRs können grob in drei funktionelle Klassen eingeteilt werden: Sezernierte, phagozytierende und signaltransferierende PPRs [4]. Die sezernierten PPRs wirken als Opsonine. Durch die Bindung an mikrobielle Oberflächen werden Pathogene für die Erkennung durch Komplementsystem, NK-Zellen und Phagozyten markiert. Typische Beispiele sind das Mannose-bindende Lektin (MBL), Serum Amyloid Protein (SAP) oder das C-reaktive Protein (CRP), die zu frühen Zeitpunkten einer Infektion im Rahmen der Akuten-Phasen-Reaktion in der Leber produziert werden.

Die letzte Gruppe der PRRs besitzt die Fähigkeit, nach ihrer Interaktion mit körperfremden oder –eigenen Liganden Informationen über Signalkaskaden in die
Zelle weiterzuleiten und daraufhin durch die Expression verschiedener Gene eine Immunantwort zu koordinieren.

Abb. 1.3: Erkennung von Gefahr durch signaltransduzierende PRRs

Signaltransduzierende PRRs wie Toll-like, NOD-like, RIG-like und C-Typ Lektin Rezeptoren sind auf der Oberfläche und innerhalb einer Vielzahl von Zellen zu finden. Im Zusammenspiel erkennen sie eine große Vielfalt von mikrobiellen Signaturen, wie mikrobielle Zellwandbestandteile oder Flagellin, aber auch von Stress- oder Gefahr-induzierten Molekülen. Über die Aktivierung von Transkriptionsfaktoren (AP-1, NF-κB, diverse IRFs) wird die körpereigene Abwehr durch die Induktion von Genen, die proinflammatorische Enzyme oder Typ-I Interferone exprimieren, koordiniert. Modifiziert nach [9]

Dieser Gruppe gehören vier verschiedene Receptorfamilien an: Die *Toll-like receptors* (TLRs), *nucleotide-binding and oligomerization domain (NOD)-like receptors* (NLRs), *retinoic acid-inducible gene I (RIG-I)-like receptors* (RLRs) und einige C-Typ Lektin Rezeptoren (CLRs) (Abb. 1.3) [9]. Die TLRs befinden sich auf der Plasmamembran und können bakterielle Zellwandkomponenten, virale Proteine und körpereigene Gefahrensignale erkennen (siehe 1.3). Virale und bakterielle Nukleinsäuren werden durch endosomale TLRs erfasst. RLRs und NLRs dienen durch ihre Lokalisation im Cytoplasma als Sensoren für eine intrazelluläre Invasion durch Mikroorganismen. Virale RNA kann durch die RLRs RIG-1, MDA5 und LGP2 [9; 10], virale DNA durch DAI [11] erkannt werden. Mitglieder der NLR-Familie
registrieren intrazellulär bakterielle Zellwandbestandteile (NOD1, NOD2, NALP1, NALP3), Flagellin (IPAF, NAIP5), DNA (viral NALP3, bakteriell ASC) oder RNA (NALP3) [9]. Der Multienzymkomplex NALP3-Inflammasom erkennt darüber hinaus auch nichtpathogene Strukturen wie Natriumurat-Kristalle [12], Aluminium-Adjuvans [13] und körpereigene DNA [14]. Das C-Typ Lektin Dectin 1 ist nicht nur ein endozytierender PRR, sondern kann auch direkt Signale an die Zelle weiterleiten und wird als Korezeptor für TLR2 diskutiert [15; 16].

1.3 Toll-like Rezeptoren

Die Toll-like Rezeptoren sind die bekannteste und am besten beschriebene Gruppe der PRRs. TLRs sind evolutionär hochkonserviert angefangen vom Fadenwurm Caenorhabditis elegans bis zu den Säugetieren.

1.3.1 Drosophila Toll

Abb. 1.4: Toll- und IMS-Signalwege in Drosophila

durch Gram-negative Bakterien [21]. Bis zum heutigen Tag sind 13 TLRs (10 im Menschen, 12 in der Maus) identifiziert. Im Gegensatz zu Drosophila Toll können TLRs direkt durch Fremdmoleküle aktiviert werden. TLRs werden zusammen mit IL-1R, IL-18R und IL-33R aufgrund ihrer homologen cytoplasmatischen Domänen zur Interleukin-1-Receptor/Toll-like-Receptor Superfamilie gezählt. Diese charakteristische Toll/Interleukin-1 (TIR) Domäne ist essentiell für die Signalübertragung [22]. Während der extrazelluläre Teil des IL-1R aus drei Immunglobulindomänen besteht, sind für TLRs 16-28 LRR (leucine rich repeats)-Motive mit jeweils 24-29 Aminosäuren charakteristisch [23]. Auf der Basis von Sequenzhomologien können die TLRs in weitere Subgruppen eingeteilt werden. So dienen die eng verwandten TLR1, TLR2 und TLR6 als Sensor für Lipoproteine, während TLR7, TLR8 und TLR9 Nukleinsäuren zu ihren Liganden zählen.

Abb. 1.5: TLRs und ihre Liganden

Tlr5 werden hauptsächlich in Monozyten, Makrophagen und Dendritischen Zellen exprimiert. Aber auch in B-Zellen, bestimmten T-Zellen, Fibroblasten und Epithelzellen konnten TLRs identifiziert werden [25]. Abhängig von ihren Liganden sind sie auf der Zelloberfläche (TLRs 1, 2, 4, 5, 6) oder in intrazellulären Kompartimenten (Endosom, TLRs 3, 7, 8, 9) (Abb. 1.5) lokализiert.

1.3.2.1 LPS-Erkennung über TLR4/MD-2

Die Identität des LPS-Receptors blieb lange Zeit ungeklärt und war aufgrund seiner Schlüsselrolle in Gram-negativen Infektionen das Ziel intensiver Forschung. Die Entdeckung des Lipopolysaccharide-binding protein (LBP) lieferte erste Hinweise auf den Mechanismus [26]. Es wird vermutet, dass dieses Akute-Phase-Protein über seine kationischen Aminosäurenreste LPS-Aggregate aufbricht und als erster Bindungspartner von LPS im Organismus agiert (Abb. 1.6, A) [27]. Das Glykoprotein CD14, welches sowohl in löslicher Form als auch als membranständiger Glykosyolphosphatidylinositol (GPI)-verankerter Rezeptor im Organismus auftritt, bindet den LBP/LPS-Komplex und bekommt das Endotoxin auf diese Weise übertragen (Abb. 1.6, B) [28]. Einige Zeit wurde CD14 als der Säuger-LPS-Rezeptor bezeichnet, eine Signaltransduktion ist aber aufgrund der fehlenden Cytoplasma-Domäne nicht möglich [29].

Abb. 1.6: Mechanismus der LPS-Erkennung durch TLR4/MD-2

Alternativ wird raues LPS, das über keine O-Polysaccharidkette oder Kernoligosaccharide verfügt, CD14 unabhängig erkannt und löst ausschließlich den MyD88-abhängigen Signalweg (siehe 1.4.1) aus [38].
1.3.2.2 TLR2

Für TLR2 ist eine breite Palette an Liganden aus Bakterien, Pilzen und Protozoen beschrieben. Als gesichert gilt heute nur die Funktion als Sensor für Lipoproteine und Lipopopptide unterschiedlicher Herkunft [39]. Die artfiziel len Lipopptide Pam\textsubscript{2}CSK\textsubscript{4}, FSL-1 und Pam\textsubscript{2}CSK\textsubscript{4} werden als Standardstimulantien für TLR2 verwendet, MALP-2 (*macrophage activating lipopeptid 2*) aus *Mycoplasma salivarium* ist der einzige fundierte natürliche Ligand für TLR2. Die beschriebene Aktivierung durch bakterielle Peptidoglykane [40; 41], lässt sich auf die Verunreinigung mit Lipoproteinen zurückführen [42]. Auch Lipoteichonsäure (LTA) ist als Ligand von TLR2 [40] in die Diskussion geraten. So zeigten LTA-Fraktionen aus Lipopéptide-defizienten *S. aureus* eine 100-fache schwächere Potenz TLR2 zu aktivieren, als Fraktionen aus WT-Stämmen [43]. Des Weiteren wird noch die Aktivierung durch Lipoglykane aus Mykobacterien [44; 45] und Zymosan [46], ein Bestandteil der Zellwand von Hefepilzen, beschrieben.

Das große Spektrum an Liganden für TLR2 lässt sich über zwei Mechanismen erklären. TLR2 bildet mit den strukturell eng verwandten TLR1 und TLR6 Heterodimere. Über diese Heterodimere scheint TLR2 zwischen di- und triacylierten Liganden zu unterscheiden. So erfuhr Makrophagen TLR6-defizienter Mäuse nur einen schwachen Stimulus durch diacylierte, wohl aber einen starken auf triacylierte Lipopptide [47]. TLR1-defiziente Makrophagen verhalten sich *vice versa* [48]. Diese Komplexe liegen bereits auf der Zelloberfläche vor und werden nicht erst durch die Bindung eines Liganden induziert [49]. Die Darstellung der Kristallstruktur des humanen TLR1/TLR2-Komplexes lieferte weitere Hinweise auf die Modi der Ligandenbindung [50]. In diesem Modell bewirkt die Bindung von Lipopéptide an die konvexe Außenseite eine Umlagerung dieser losen, vorgeformten Komplexen zu stabileren Di- oder Multimeren. Durch die räumliche Annäherung der TIR-Domänen kommt es schließlich zur Signalauflösung (Abb. 1.7) [50]. Da TLR2 bestimmte Lipopptide auch unabhängig von TLR1 und TLR6 erkennt, wird darüber hinaus die Bildung von TLR2-Heterodimeren diskutiert [51].

Ein weiterer Grund für das unterschiedliche Ligandenspektrum ist die Rolle von diversen Akzessorproteinen. CD14 scheint für die Übertragung von Lipopéptide-Liganden auf TLR2 bedeutsam zu sein [52]. CD14-defiziente Makrophagen reagieren im Gegensatz zu ihren WT-Äquivalenten nur schwach auf Zymosan [46]. Der Scavenger-Rezeptor CD36 ist wichtig für die effiziente Signalübertragung von R-
MALP-2 und LTA-Stimuli, aber nicht für S-MALP-2, Pam$_2$CSK$_4$, Pam$_3$CSK$_4$ und Zymosan [53]. Für die effiziente Immunantwort gegen den Pilz Coccidioides posadasii ist eine Kooperation von TLR2 mit dem C-Typ Lektin Dectin-1 notwendig [54]. Die genaue Rolle dieser Akzessorproteine und die Art der Interaktion mit TLR2 sind aber weiterhin unklar.

Abb. 1.7: Modell der Ligand-induzierten Heterodimerisierung von TLR2 und TLR1
Modifiziert nach [50]

1.4 TLR Signaltransduktion

1.4.1 MyD88-abhängige Signaltransduktion

TLR4 ist noch ein weiteres Adaptomolekül, das TIR domain-containing adaptor molecule (TIRAP, auch MyD88 adaptor-like, Mal) beteiligt, welches als Verbindung zwischen den TIR-Domänen des Receptors und MyD88 dient [56; 57]. Über eine N-terminale death domain (DD) bindet MyD88 wiederum an die DD von Proteinkinasen der IL-1 receptor-associated kinase-Familie (IRAK1, IRAK2, IRAK4 und IRAK-M) [58]. IRAK4 wird initial aktiviert und phosphoryliert wiederum IRAK1. Nach ihrer Phosphorylierung dissoziiieren IRAK4 und -1 von MyD88 und interagieren mit der Ubiquitin-Ligase TRAF6 (TNF receptor-associated factor 6). Zusammen mit weiteren Proteinen führt dies zur Polyubiquitinylierung verschiedener Zielproteine, wie TRAF6 selbst und des NF-κB-Modulators NEMO (NF-κB essential modifier, IKKγ) [59; 60]. Diese wiederum rekruitieren einen Proteinkinasekomplex bestehend aus TAK1 (transforming growth factor-β-activated kinase 1) und TABs (TAK1 binding proteins, TAB1, TAB2, TAB3) [59]. Dieser Komplex aktiviert daraufhin zwei weitere Signalwege: Zum einen den IKK (IkB Kinase)-Komplex, was letztlich zur Aktivierung von NF-κB p50/RelA führt. Dieser Transkriptionsfaktor reguliert die Expression vieler für das Entzündungsgeschehen und die Immunantwort bedeutender Gene. So tragen z.B die Gene für die Zytokine IL-1β, IL-6 und IL-8 wie auch für die kostimulatorischen Moleküle CD80 und CD86 κB-Erkennungssequenzen in ihren Promotoren [61]. Zum anderen werden mitogen-activated protein kinases (MAPK) aktiviert. Diese Familie umfasst die c-Jun NH2-terminal kinase (JNK), die extracellular signal regulated kinase (ERK) und die p38-MAPK und aktiviert den Transkriptionsfaktor activator protein 1 (AP-1), welcher die Expression zahlreicher Gene reguliert. Darüber hinaus wird über TRAF6 die Aktivierung von IFN regulatory factors (IRF5, IRF7) durch den MyD88-abhängigen Weg induziert [62]
Abb. 1.8: Signaltransduktion über TLRs

Modifiziert nach [63]

1.4.2 TRIF-abhängige Signaltransduktion

werden [66; 67]. Aufgrund der schlechten Interaktion von TRIF mit der TIR-Domäne von TLR4 vermittelt der Adaptor TRIF related adaptor molecule (TRAM, auch TIR domain containing adaptor molecule-1, TICAM-2) die Bindung der beiden Moleküle [68; 69].

TRIF bindet über N-terminale TRAF6-Bindungsmotive direkt an TRAF6 [70], während C-terminale Bindungsmotive für die Interaktion mit RIP1 (receptor-interacting protein-1) verantwortlich sind [71]. Polyubiquitinlieretes RIP1 bildet einen Komplex mit TRAF6 und TAK1 und führt so zu der beobachteten Spät-Aktivierung von NF-κB [64; 72].

Darüber hinaus wird über den MyD88-unabhängigen Signalweg die Aktivierung des Transkriptionsfaktors IRF3 kontrolliert, welcher die Expression IFN-β abhängiger Gene induziert. Dies geschieht über die Rekrutierung von TBK1 (TRAF family member-associated NF-κB activator binding kinase-1). Bisher ist nicht vollständig geklärt, ob die Interaktion zwischen TRIF und TBK1 indirekt oder direkt erfolgt, es konnte aber gezeigt werden, dass TRAF3 beide Moleküle binden kann und als Verbindungselement dient [73]. Darüber hinaus interagiert TRAF3 noch mit IKKi. Der Komplex aus TBK1/IKKi wiederum phosphoryliert IRF3 und führt nach Dimerisierung zu dessen Translokation in den Nukleus.

Neueste Daten zeigen, dass die zwei möglichen Signalwege von TLR4 sequentiell aktiviert werden [74]: Zunächst induziert TLR4 auf der Plasmamembran den TIRAP/MyD88-Signalweg. Erst nach der Endozytose des Receptors wird anschließend der TRAM/TRIF-Signalweg aus dem frühen Endosom heraus aktiviert.

1.4.3 Negativregulierung der TLR-Signaltransduktion

Da die Aktivierung von TLRs eine starke Immunantwort hervorruft, sind hemmende Signalwege essentiell, um den Organismus vor generalisierter Entzündung wie der Sepsis zu schützen. Diese Hemmung erfolgt auf verschiedenen Ebenen. So konkurrieren die Transmembranproteine ST2L und SIGIRR (single immunoglobulin IL-1R-related molecule) mit TLRs um MyD88 [75; 76], während TRAILR (TNF-related apoptosis-inducing ligand receptor) IκBα stabilisiert und so die Kerntranslokation von NF-κB hemmt [77] (Abb. 1.9, linkes Bild). Die Splice-Varianten MyD88s, IRAK2c und IRAK2d hemmen aufgrund ihrer fehlenden funktionalen Domänen MyD88 und IRAK [78; 79]. IRAK-M verhindert die Dissoziation der IRAKs von MyD88 [80]. SOCS1 (suppressor of cytokine signalling 1) hemmt wahrscheinlich
über IRAK1 die TLR-Signalkaskade [81; 82]. TRIAD3A ubiquitinliert TLRs und führt so zu deren Abbau [83]. PI3K (phosphatidylinositol 3-kinase) moduliert die TLR ausgelöste Zytokinproduktion unter anderem über die Regulierung von GSK3 (glycogen synthase kinase 3) [84; 85]. A20 kann als deubiquitinierendes Enzym Ubiquitin von TRAF6 entfernen und so die Signalweiterleitung verhindern [86]. Über die hemmende Rolle von NOD2 auf NF-κB existieren hingegen widersprüchliche Daten [87; 88] (Abb. 1.9, rechtes Bild).

Abb. 1.9: Hemmung der TLR4-Signaltransduktion

Modifiziert nach [89]

Die TLR-Signaltransduktion kann aber auch durch direkte Hemmung auf Rezeptorebene erreicht werden. So interagiert der *Radioprotective 105* (RP105)/MD-1-Komplex mit TLR4/MD-2 und verhindert so die Bindung an LPS [90]. Außerdem konnten natürlich vorkommende lösliche TLR2 und TLR4 identifiziert werden, die als Kompetitoren für membranständige Rezeptoren wirken könnten (siehe 1.6.3.1).

1.5 Bedeutung der TLRs für den Pathomechanismus von Infektionskrankheiten

Die Bedeutung von LPS für Infektionskrankheiten wurde bereits in den 1960er Jahren erkannt [91]. Aber erst mit der Entdeckung der TLRs als Rezeptoren für
bakterielle Bestandteile konnten die molekularen Mechanismen von infektiösen Krankheiten erklärt werden [21; 41]. PAMPs stimulieren die Immunzellen des Wirtes über TLRs und folglich wird eine Entzündungsreaktion ausgelöst. Diese lebensnotwendige, lokale Reaktion gerät bei einer Überflutung des Organismus mit Pathogenen außer Kontrolle und wandelt sich zu einem generalisierten Entzündungssyndrom, der Sepsis. Als Sepsis wird ein *systemic inflammatory response syndrom* (SIRS) mit nachgewiesener Infektion bezeichnet [92].

![Diagramm Pathomechanismen des septischen Schocks](image)

a Abb. 1.10: Pathomechanismen des septischen Schocks

LPS und andere mikrobielle Bestandteile aktivieren parallel mehrere Kaskaden, die letztlich zum septischen Schock führen. Die Kombination aus unzureichendem peripheren Gefäßdruck und Mikrozirkulationsstörungen führen zu Hypoperfusion, unzureichender Sauerstoffversorgung und folglich zum Multiorganversagen.

Modifiziert nach [93]

TLR2 und TLR4/MD-2 spielen abhängig vom Erreger aufgrund ihres Ligandenprofils (siehe 1.3.2) eine Schlüsselrolle in der Auslösung einer bakteriellen Sepsis. Die überschießende Aktivierung der TLRs führt zu einem „Zytokinstorm“.

Diese unkontrollierten Entzündungsvorgänge münden in Hypoperfusion, Hypoxie und Gewebsschäden. In den schlimmsten Fällen führt dies zu Multiorgandisfunktion (MODS) und –versagen (MOF), die abhängig von dem Schweregrad in 20% bis 70% der Fälle zum Tod führen [95].

Die Rolle der TLRs bleibt aber nicht auf Infektionskrankheiten beschränkt, sondern erstreckt sich auf eine Vielfalt von Erkrankungen, die mit einer Entzündung assoziiert sind. So konnte der Einfluss von TLRs auf den Pathomechanismus der Diabetes [96], der chronisch-entzündlichen Darmerkrankungen, der Artheriosklerose und verschiedenen Leber-, Nieren und Lungenkrankheiten nachgewiesen werden [97].

1.6 Möglichkeiten der Beeinflussung der TLR Signaltransduktion

1.6.1 Neutralisierung von LPS

1.6.2 Modulation der Signaltransduktion auf Rezeptorebene

1.6.3 Lösliche Rezeptoren

1.6.3.1 Natürlich vorkommende lösliche Rezeptoren

Lösliche Rezeptoren spielen eine wichtige Rolle als Regulator in bestimmten Krankheitszuständen. Bis zum heutigen Tag konnte eine große Anzahl an löslichen Zytokinrezeptoren - z.B. sIL-1RI und −II [110], sIFN-γR [111], sTNFRI und II [112] - aber auch an anderen Rezeptoren, wie z.B. sGM-CSFR [113] oder sLDLR [114], identifiziert werden. Diese entstehen entweder durch alternatives Spleißen der RNA oder durch proteolytische Spaltung eines Receptors von der Zellmembran [115].
Lösliche Rezeptoren bestehen üblicherweise aus der Extrazellulardomäne des Membran-gebundenen Receptors und behalten dadurch dessen Fähigkeit, Liganden zu binden. Sie können sowohl positiv als auch negativ modulierend auf eine Immunreaktion wirken. Während sIL-1RI und sIL-1RII über die Bindung von IL-1 hemmend in das IL-1 Rezeptorsystem eingreifen [115], kann löslicher IL-6R in Verbindung mit Glykoprotein 130 in Zellen eine Signaltransduktion induzieren, obwohl diese keinen IL-6R tragen [116].

Auch funktionelle, lösliche TLRs konnten in verschiedenen Systemen nachgewiesen werden. In der Mauskrophagen-artigen Zelllinie RAW264.7 wurde eine alternative Spleißform der TLR4-mRNA identifiziert und kloniert [117] Das resultierende 20 kDa Protein war in der Lage, die LPS-induzierte NF-κB-Aktivierung und TNF-Sekretion in Mauskrophagen hemmen. Darüber hinaus konnte über eine LPS-Stimulation die Menge an alternativ gespleißter TLR4-mRNA erhöht werden, was auf einen negativen Rückkopplungsmechanismus schließen lässt. Lösliches TLR2 konnte in humanem Plasma, Muttermilch [118] und Parotisspeichel [119] nachgewiesen werden. Die Sekretion von sTLR2 ließ sich durch die Stimulation von Monozyten steigern und rekombinantes sTLR2 hemmte den Stimulus von bakteriellen Lipopeptiden auf MM6-Zellen [118]. Die natürlich vorkommenden löslichen TLRs besitzen demnach eine negativregulierende Wirkung.

1.6.3.2 Lösliche TLR-Fusionsproteine

Das Ziel des Projekts „Untersuchungen zur pharmakologischen Beeinflussung der Toll-like Rezeptoren in der Sepsis“ bestand darin, mit löslichen TLRs die überschießende Immunantwort zu kontrollieren [120]. Da TLR2 in der Gram-positiven und TLR4 in Gram-negativen Sepsis herausragende Rollen in der Auslösung dieser Reaktion besitzen, lag der Fokus auf der Herstellung dieser löslichen Rezeptoren.

1.6.3.2.1 Die LPS-Trap

Untersuchungen mit löslichen murinen TLR4-Fc-Chimären (T4-Fc) zeigten keinen Einfluss auf die LPS-induzierte IL-6 Sekretion von RAW264.7-Zellen [120]. Erst durch Zugabe von rekombinantem MD-2 konnte ein Hemmeffekt erzielt werden. Da sMD-2 inaktive Oligomere bildet [121] und so nur schwerlich ein optimales stöchiometrisches Verhältnis zwischen sTLR4-Fc und seinem Akzessorprotein erreicht werden kann, wurden Fusionsproteine aus dem extrazellulären Teil von
Maus-TLR4 und Maus-MD-2 konstruiert [120]. Diese verfügen entweder über einen C-terminales His-Markerpeptid (LPS-Trap-His) oder ein humanes IgG-Fc-Fragment (LPS-Trap-Fc) (Abb. 1.11).

Die LPS-Trap-His bildete den TLR4/MD-2 Komplex, konnte LPS direkt binden und hemmte die LPS-induzierte TNF-Sekretion in RAW264.7 [120]. Weiterhin konnte in einem Pilotexperiment die LPS-hemmende Wirkung der LPS-Trap-His in vivo gezeigt werden [120]. Das Konzept der TLR4/MD-2-Fusionsproteine ist demnach ein viel versprechender Ansatzpunkt zur Kontrolle einer überschießenden Immunreaktion.

Abb. 1.11: Die LPS-Trap-Fc und LPS-Trap-His

Die Konstrukte bestehen aus dem Extrazellularteil von Maus-TLR4 verbunden über einen flexiblen Linker mit Maus-MD-2. Der C-Terminus der LPS-Trap-Fc besteht aus einem humanen IgG-Fc-Fragment, während die LPS-Trap-His ein 6xHis-Markerpeptid trägt

Nach [120]

1.6.3.2.2 Lösliche TLR2-Fc Fusionsproteine

Lösliche Maus-TLR2-Fc Fusionsproteine (T2-Fc) führten bei der Stimulierung von RAW264.7 sowohl mit LTA als auch mit dem triacylierten Lipopeptid Pam3CSK4 zu einer dosisabhängigen Verstärkung der IL-6 Sekretion [120]. Dies wurde mit der Möglichkeit erklärt, dass T2-Fc mit TLRs auf der Zelloberfläche Aggregate bildete und so zu einer Verstärkung der Signaltransduktion führt.
1.7 Zielsetzung

Im Fokus dieser Dissertation steht das zweite, bisher nur oberflächlich untersuchte TLR4/MD-2 Fusionsprotein, die LPS-Trap-Fc. Mit dem Fernziel eine außer Kontrolle geratene Immunreaktion über diese Fusionsproteine modulieren zu können, soll zunächst ein optimales Expressionssystem gefunden und die Designerproteine in vitro biochemisch charakterisiert werden. Das gewonnene Protein kann anschließend auf seine biologische Aktivität gegen LPS und andere postulierte Liganden getestet werden. Da bisher noch nicht genau bekannt ist, welche Domänen der LPS-Trap für die LPS-Bindung essentiell sind, besteht ein weiteres Ziel in der Reduktion der LPS-Trap-Fc auf ihre pharmakologisch aktiven Bestandteile. Die Modifikation des flexiblen Linkers zwischen TLR4 und MD-2 stellt einen weiteren Ansatzpunkt für die Optimierung dar. Ferner könnte die LPS-Trap-Fc durch die Aggregation an Oberflächen über ihr humanes IgG-Fc Fragment Antikörper-ähnliche Eigenschaften entwickeln. Durch den Austausch des biologisch aktiven IgG1-Fragments mit inaktiven IgG2- oder IgG4-Fragmenten kann die potentielle Aktivität der Fc-Region bestimmt werden.

Zudem soll die T2-Fc durch den Einbau einer TLR1- bzw. TLR6-Ektodomäne modifiziert werden. Die resultierenden TLR2/1-Fc und TLR2/6-Fc Fusionsproteine könnten anschließend in vitro auf ihre Hemmwirkung gegenüber di- und triacylierten Lipopeptiden getestet werden.
2 Material

2.1 Geräte

<table>
<thead>
<tr>
<th>Gerät / Material</th>
<th>Hersteller / Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600R liquid scintillation analyzer</td>
<td>Canberra-Packard, Schwadorf, Österreich</td>
</tr>
<tr>
<td>Absorptionsspektrometer (für 96-well Platten, ELISA-Reader)</td>
<td>MWG Biotech, Denkendorf</td>
</tr>
<tr>
<td>Analysenwaage Sartorius analytic A120S</td>
<td>Sartorius, Göttingen</td>
</tr>
<tr>
<td>Autoklav</td>
<td>Technomara, Fernwald</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>Heraeus, Hanau</td>
</tr>
<tr>
<td>Econo-Pumpe</td>
<td>Bio-Rad, München</td>
</tr>
<tr>
<td>Econo-Säule</td>
<td>Bio-Rad, München</td>
</tr>
<tr>
<td>Durchflusszytometer Coulter® EPICS® X - MCL®</td>
<td>Beckman Coulter, Krefeld</td>
</tr>
<tr>
<td>Durchlichtmikroskop</td>
<td>E. Leitz, Wetzlar</td>
</tr>
<tr>
<td>Elektrophoreseapparaturen</td>
<td>Biometra, Göttingen; Bio-Rad, München</td>
</tr>
<tr>
<td>GENE PULSER® II</td>
<td>Biorad, München</td>
</tr>
<tr>
<td>Kühl-Brutschrank</td>
<td>Binder, Tuttingen</td>
</tr>
<tr>
<td>Luminex® 100</td>
<td>Upstate, Charloottesville, VA, USA</td>
</tr>
<tr>
<td>Megafuge 1.0R Zentrifuge</td>
<td>Heraeus, Hanau</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Olympus, Hamburg</td>
</tr>
<tr>
<td>Millipore Wasser-Filtrationsanlage</td>
<td>Millipore, Eschhorn</td>
</tr>
<tr>
<td>NanoDrop® 1000</td>
<td>Pqlab, Erlangen</td>
</tr>
<tr>
<td>Neubauer-Zählkammer</td>
<td>Brand, Wertheim</td>
</tr>
<tr>
<td>Optima™ L-70 Ultrazentrifuge (UZ)</td>
<td>Beckman-Coulter, Palo Alto, CA, USA</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>Wiss. Tech. Werkst., Weilheim</td>
</tr>
<tr>
<td>Laserimager Typhoon 8200</td>
<td>Amersham, Braunschweig</td>
</tr>
<tr>
<td>Sterilbank</td>
<td>Heraeus, Hanau</td>
</tr>
<tr>
<td>TE 77XP Semi-Dry Unit</td>
<td>Hoefer, Holliston, MA, USA</td>
</tr>
<tr>
<td>Thermocycler TRISTAR</td>
<td>Biometra, Göttingen</td>
</tr>
<tr>
<td>Thermomixer</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Tischzentrifuge E5415 C</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Waage Sartorius excellence E1200S</td>
<td>Sartorius, Göttingen</td>
</tr>
<tr>
<td>X-Cell SureLock™ mini-Cell</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
</tbody>
</table>

2.2 Verbrauchsmaterial

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller / Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECL-Film</td>
<td>Amersham, Braunschweig; Thermo Scientific, Rockford, IL, USA</td>
</tr>
<tr>
<td>Einmalpipetten</td>
<td>Corning, Corning, NY, USA</td>
</tr>
<tr>
<td>Elektroporationsküvetten 2 mm</td>
<td>Peqlab, Erlangen</td>
</tr>
<tr>
<td>ELISA-Platten (MaxiSorp™)</td>
<td>Nunc, Roskilde, Dänemark</td>
</tr>
<tr>
<td>ELISA-Platten (Immunolon 2HB)</td>
<td>Thermo, Milford, MA, USA</td>
</tr>
</tbody>
</table>
Material

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller/Produzent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kryoröhrchen</td>
<td>Nunc, Roskilde, Dänemark</td>
</tr>
<tr>
<td>Nitrocellulosemembran Optitran BA-S 83</td>
<td>Whatman, Dassel</td>
</tr>
<tr>
<td>PCR-Reaktionsgefäße</td>
<td>Peqlab, Erlangen</td>
</tr>
<tr>
<td>Pierce Strong Anion Exchange Spin Columns</td>
<td>Thermo Scientific, Rockford, IL, USA</td>
</tr>
<tr>
<td>Petrischalen</td>
<td>Falcon, Heidelberg</td>
</tr>
<tr>
<td>Polypropylenröhrchen für Durchflusszytometer</td>
<td>Sarstedt, Nürnberg</td>
</tr>
<tr>
<td>Reaktionsgefäße (1,5 ml, 2 ml)</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Sterilfilter (0,22 μm, 0,45 μm)</td>
<td>Millipore, Hamburg</td>
</tr>
<tr>
<td>Szintillationsröhrchen</td>
<td>Packard Instrument, Meriden, CT, USA</td>
</tr>
<tr>
<td>Transwells 24-well Millicell® Hanging Cell Culture Insert</td>
<td>Millipore, Eschborn</td>
</tr>
<tr>
<td>Ultrafiltrationssäulen Vivaspin 20 (30.000 oder 100.000 MWCO)</td>
<td>Sartorius, Göttingen</td>
</tr>
<tr>
<td>Vakuuum-Filtrationssystem (250 ml, 500 ml)</td>
<td>TPP, Trasadingen, Schweiz</td>
</tr>
<tr>
<td>Whatman Filterpapier</td>
<td>Biometra, Göttingen</td>
</tr>
<tr>
<td>Zellkulturschalen</td>
<td>Corning, Corning, NY, USA</td>
</tr>
<tr>
<td>Zellkulturplatten (6- und 24-well)</td>
<td>Falcon, Heidelberg</td>
</tr>
<tr>
<td>Zellkulturplatten (96-well)</td>
<td>Falcon, Heidelberg</td>
</tr>
<tr>
<td>Zentrifugengläser (15 ml, 50 ml)</td>
<td>Falcon, Heidelberg</td>
</tr>
<tr>
<td>Zentrifugengläser (für ZU, 13 x 51 mm)</td>
<td>Beckman, Palo Alto, CA, USA</td>
</tr>
</tbody>
</table>

2.3 Chemikalien und Reagenzie

Nicht aufgeführte Feststoffe wurden von Sigma-Aldrich (Steinheim), nicht aufgeführte Flüssigkeiten von der Firma Merck (Darmstadt) bezogen.

<table>
<thead>
<tr>
<th>Chemikalien</th>
<th>Hersteller/Produzent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,9 % NaCl</td>
<td>Braun, Melsungen</td>
</tr>
<tr>
<td>Anti-Flag M2 Agarose Affinity Gel</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Aqua ad iniectabilia</td>
<td>Braun, Melsungen</td>
</tr>
<tr>
<td>Biotin-LPS</td>
<td>Invitrogen, Toulouse, Frankreich</td>
</tr>
<tr>
<td>BSA Fraktion V</td>
<td>Biomol. Hamburg</td>
</tr>
<tr>
<td>¹⁴C-gekoppelte Fettsäuren (Öl- und Stearinsäure)</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Chelatierende Sepharose</td>
<td>Amersham, Uppsala, Schweden</td>
</tr>
<tr>
<td>Escherichia coli BioParticles® (BODIPY FL-Konjugat)</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>HMG-1</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>HSA</td>
<td>DRK, Baden-Baden</td>
</tr>
<tr>
<td>Humanes Immunglobulin G</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Humanes Komplementserum</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>LPS aus Escherichia coli 0111:B4</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>LPS aus Salmonella abortus equi S-Form</td>
<td>Alexis, Grünberg</td>
</tr>
<tr>
<td>LTA aus Staphylococcus aureus</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>NBT/BCIP Tablettin</td>
<td>Roche, Mannheim</td>
</tr>
<tr>
<td>Ni-NTA-Agarose</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Pam2CSK₄</td>
<td>Invitrogen, Toulouse, Frankreich</td>
</tr>
</tbody>
</table>
Material

<table>
<thead>
<tr>
<th>Item</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pam$_3$CSK$_4$</td>
<td>Invivogen, Toulouse, Frankreich</td>
</tr>
<tr>
<td>Protein G Sepharose</td>
<td>Gerbu, Gaiberg</td>
</tr>
<tr>
<td>Reverse Transcription System</td>
<td>Promega, Mannheim</td>
</tr>
<tr>
<td>Trägerflüssigkeit Isoton$^\text{®}$ für Durchflusszytometrie</td>
<td>Coulter, Immunotech, Krefeld</td>
</tr>
<tr>
<td>Transfektionsreagenz FuGENE$^\text{®}$ 6</td>
<td>Roche, Mannheim</td>
</tr>
<tr>
<td>Transfektionsreagenz FuGENE$^\text{®}$ HD</td>
<td>Roche, Mannheim</td>
</tr>
<tr>
<td>Transfektionsreagenz jetPEI$^\text{TM}$</td>
<td>Blomol, Hamburg</td>
</tr>
<tr>
<td>sCD14 (Maus)</td>
<td>Alexis, Grünberg</td>
</tr>
<tr>
<td>Streptavidin Sepharose</td>
<td>Amersham, Uppsala, Schweden</td>
</tr>
<tr>
<td>SYPRO$^\text{®}$ Red Protein Gel Stain</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Szintillationscocktail</td>
<td>Lumac, Groningen, Niederlande</td>
</tr>
<tr>
<td>TMB</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Trypanblau</td>
<td>Biochrom, Berlin</td>
</tr>
</tbody>
</table>

2.4 Enzyme und Kits

<table>
<thead>
<tr>
<th>Item</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adeno-X$^\text{™}$ Virus Purification Kit</td>
<td>Becton Dickinson, Heidelberg</td>
</tr>
<tr>
<td>Beadlyte$^\text{®}$ Mouse Multi-Cytokine Flex Kit</td>
<td>Blomol, Hamburg</td>
</tr>
<tr>
<td>CloneJET$^\text{™}$ PCR cloning kit</td>
<td>Fermentas, St. Leon-Rot</td>
</tr>
<tr>
<td>Desoxynukleotidmischung</td>
<td>Roche, Mannheim</td>
</tr>
<tr>
<td>ECL-Westernblot-Detektionskits</td>
<td>Amersham, Braunschweig</td>
</tr>
<tr>
<td>ELISA Human-IL-6</td>
<td>Becton Dickinson, Heidelberg</td>
</tr>
<tr>
<td>ELISA Maus-IL-6</td>
<td>Becton Dickinson, Heidelberg</td>
</tr>
<tr>
<td>ELISA Maus-TNF</td>
<td>Biozol, Eching</td>
</tr>
<tr>
<td>Fast-Link$^\text{TM}$ DNA Ligation Kit</td>
<td>Epicentre, Madison, WI, USA</td>
</tr>
<tr>
<td>Gelextraktions Kits</td>
<td>Hiss, Freiburg, Peqlab, Erlangen</td>
</tr>
<tr>
<td>Glykosidasen</td>
<td>NEB, Frankfurt am Main</td>
</tr>
<tr>
<td>Klenow-Fragment</td>
<td>Fermentas, St. Leon-Rot</td>
</tr>
<tr>
<td>Micro BCA$^\text{™}$ Protein Assay Kit</td>
<td>Pierce, Rockford, IL, USA</td>
</tr>
<tr>
<td>PCR-Master-Mix Y</td>
<td>Peqlab, Erlangen</td>
</tr>
<tr>
<td>PCR Aufreinigungs Kits</td>
<td>Hiss, Freiburg; Peqlab, Erlangen</td>
</tr>
<tr>
<td>Phusion$^\text{™}$ High-Fidelity DNA Polymerase</td>
<td>Finnzymes, NEB, Frankfurt am Main</td>
</tr>
<tr>
<td>Plasmid miniprep Kit</td>
<td>Peqlab, Erlangen</td>
</tr>
<tr>
<td>QIAfilter Plasmid Maxi Kit</td>
<td>Qiagen, Hilden</td>
</tr>
<tr>
<td>QuantiPro$^\text{™}$ BCA Assay Kit</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>Restriktionenzyme</td>
<td>NEB, Frankfurt am Main; Roche Mannheim</td>
</tr>
<tr>
<td>RNeasy mini-Kit</td>
<td>Qiagen, Hilden</td>
</tr>
<tr>
<td>Shrimp Alkaline Phosphatase (SAP)</td>
<td>Fermentas, St. Leon-Rot</td>
</tr>
<tr>
<td>Zero Blunt$^\text{®}$ TOPO$^\text{®}$ PCR Cloning Kit</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
</tbody>
</table>

2.5 Bakterien und Zelllinien

2.5.1 E. coli Stämme
2.5.2 Sonstige Bakterienstämme

<table>
<thead>
<tr>
<th>Organism</th>
<th>Supplier/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis ATCC 6633</td>
<td>Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg</td>
</tr>
<tr>
<td>Staphylococcus aureus ATCC 6538</td>
<td>Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg</td>
</tr>
</tbody>
</table>

2.5.3 Eukaryontische Zellen

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEK293T</td>
<td>Humane immortalisierte embryonale Nierenzellen</td>
</tr>
<tr>
<td>Mono Mac 6</td>
<td>Humane monozytische Leukämiezelllinie</td>
</tr>
<tr>
<td>QBI293A</td>
<td>Subklon einer HEK293-Zelllinie; Q-BIOgene, Carlsbad, CA, USA</td>
</tr>
<tr>
<td>RAW264.7</td>
<td>Murine monozytische, makrophagenähnliche Leukämiezelllinie</td>
</tr>
<tr>
<td>Schneider S2</td>
<td>Zelllinie aus Drosophila melanogaster Embryonen</td>
</tr>
<tr>
<td>Sf-21</td>
<td>Zelllinie aus dem Ovargewebe von Spodoptera frugiperda</td>
</tr>
<tr>
<td>Tn-5 (High Five™)</td>
<td>Zelllinie aus dem Ovargewebe von Trichoplusia ni</td>
</tr>
</tbody>
</table>

2.6 Zellkulturmedien und -zusätze

2.6.1 Bakterienkultur

<table>
<thead>
<tr>
<th>Medien</th>
<th>Supplier/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>Ratiopharm, Ulm</td>
</tr>
<tr>
<td>IPTG</td>
<td>Biomol, Hamburg</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>PAA, Pasching, Österreich</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>PAA, Pasching, Österreich</td>
</tr>
<tr>
<td>LB₃ (Lysogeny Broth) nach Miller</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>LB₃-Agar (Lysogeny Broth) nach Miller</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>SOC Medium</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Tetracyclin</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>X-Gal</td>
<td>Biomol, Hamburg</td>
</tr>
<tr>
<td>Zeocin</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
</tbody>
</table>
2.6.2 Eukaryontische Zellkultur

<table>
<thead>
<tr>
<th>Material</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dulbecco’s Modified Eagle Medium</td>
<td>PAN, Aidenbach; PAA, Pasching,</td>
</tr>
<tr>
<td>(DMEM)</td>
<td>Österreich</td>
</tr>
<tr>
<td>Dulbecco's PBS</td>
<td>PAA, Pasching, Österreich</td>
</tr>
<tr>
<td>FCS</td>
<td>PAN, Aidenbach</td>
</tr>
<tr>
<td>G418</td>
<td>PAA, Pasching, Österreich</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>PAA, Pasching, Österreich</td>
</tr>
<tr>
<td>Glutamin</td>
<td>PAA, Pasching, Österreich</td>
</tr>
<tr>
<td>Hank’s Balanced Salt Solution</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>(HBSS) mit Calcium, Magnesium</td>
<td></td>
</tr>
<tr>
<td>Hygromycin</td>
<td>Invivogen, Toulouse, Frankreich</td>
</tr>
<tr>
<td>Insect Xpress medium</td>
<td>BioWhittaker, Lonza, Verviers,</td>
</tr>
<tr>
<td></td>
<td>Belgien</td>
</tr>
<tr>
<td>Natriumpyruvat</td>
<td>PAA, Pasching, Österreich</td>
</tr>
<tr>
<td>nicht-essentielle Aminosäuren</td>
<td>PAA, Pasching, Österreich</td>
</tr>
<tr>
<td>(NEAs)</td>
<td></td>
</tr>
<tr>
<td>OPI Media Supplement</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>OptiMEM</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>RPMI 1640 VLE</td>
<td>Biochrom, Berlin</td>
</tr>
<tr>
<td>Trypsin/EDTA</td>
<td>PAA, Pasching, Österreich</td>
</tr>
<tr>
<td>Zeocin</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
</tbody>
</table>

2.7 Vektoren, Plasmide und Viren

<table>
<thead>
<tr>
<th>Vektor</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad-β-Gal</td>
<td>Innere Medizin I, Klinikum der Universität Regensburg</td>
</tr>
<tr>
<td>Ad-LPS-Trap-Fc</td>
<td>Bernd Schnabl, Regensburg</td>
</tr>
<tr>
<td>Flag T2Fc in pMT/BiP/V5-His C</td>
<td>Katharina Brandl, Regensburg</td>
</tr>
<tr>
<td>LPS-Trap in p3xFlag-CMV-8</td>
<td>Katharina Brandl, Regensburg</td>
</tr>
<tr>
<td>LPS-Trap-Fc in p3xFlag-CMV-8</td>
<td>Katharina Brandl, Regensburg</td>
</tr>
<tr>
<td>LPS-Trap in pMT/BiP/V5-His C</td>
<td>Katharina Brandl, Regensburg</td>
</tr>
<tr>
<td>LPS-Trap-Fc in pMT/BiP/V5-His C</td>
<td>Katharina Brandl, Regensburg</td>
</tr>
<tr>
<td>p3xFlag-CMV-8</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>p3xFlag-CMV-9</td>
<td>Sigma-Aldrich, Deisenhofen</td>
</tr>
<tr>
<td>pCoHygro</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>pET-22b(+)</td>
<td>Novagen, Darmstadt</td>
</tr>
<tr>
<td>pFastBac 1</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>pFUSE-hlgG3-Fc2</td>
<td>Invivogen, Toulouse, Frankreich</td>
</tr>
<tr>
<td>pFUSE-hlgG4-Fc2</td>
<td>Invivogen, Toulouse, Frankreich</td>
</tr>
<tr>
<td>pIRESneo3</td>
<td>Clontech, Mountain View, CA, USA</td>
</tr>
<tr>
<td>pMT/BiP/V5-His A</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
</tbody>
</table>

2.8 Oligonukleotidsequenzen

Die folgende Oligonukleotide wurden von den Firmen TIB MOLBIOL (Berlin) (2.8.1) und Operon (Köln) synthetisiert.
2.8.1 Kontrollprimer für cDNA

Mit den folgenden Primern wurde die Qualität von gewonnener cDNA überprüft.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH for</td>
<td>5' TTA GCA CCC CTG GCC AAG G 3'</td>
</tr>
<tr>
<td>GAPDH rev</td>
<td>5' CTT ACT CCT TGG AGG CCA TG 3'</td>
</tr>
<tr>
<td>5'B Actin for</td>
<td>5' GCT CAC CAT GGA TGA TGA TAT CGC 3'</td>
</tr>
<tr>
<td>5'B Actin rev</td>
<td>5' GGA GGA GCA ATG ATC TTG ATC TTC 3'</td>
</tr>
<tr>
<td>3'B Actin for</td>
<td>5' GAA GATCAA GAT CAT TGC TCC TTC 3'</td>
</tr>
<tr>
<td>3'B Actin rev</td>
<td>5' CTG GTC TCA AGT CAG TGT ACA GG 3'</td>
</tr>
<tr>
<td>6K Clathrin for</td>
<td>5' GAC AGT GCC ATC ATG AAT CC 3'</td>
</tr>
<tr>
<td>6K Clathrin rev</td>
<td>5' TTT GTG CTT CTT GAG GAA AGA A 3'</td>
</tr>
<tr>
<td>2K Clathrin for</td>
<td>5' GCT CAC ATG GGA ATG TTC AC 3'</td>
</tr>
<tr>
<td>2K Clathrin rev</td>
<td>5' ATG TTG TCA AAG TTG TCA TAA G 3'</td>
</tr>
</tbody>
</table>

2.8.2 Sequenzierprimer

Folgende Primer wurden für die Sequenzierung der konstruierten Plasmide verwendet.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG1rev</td>
<td>5' CCC GCG GCT TTG TCT TGG CAT TA 3'</td>
</tr>
<tr>
<td>IgG2cont.hingeleft</td>
<td>5' GAC CGC AAA TGT TGT GTC GAG TGC 3'</td>
</tr>
<tr>
<td>M13 (-20) forward</td>
<td>5' TGG TAA AAC GAC GGC CAG 3'</td>
</tr>
<tr>
<td>M13 reverse</td>
<td>5' GGA AAC AGC TAT GAC CAT GAT 3'</td>
</tr>
<tr>
<td>pJET1 Fwd</td>
<td>5' GCC TGA ACA CCA TAT CCA TCC 3'</td>
</tr>
<tr>
<td>pJET1 Rev</td>
<td>5' GCA GCT GAG AAT ATT GTA GGA GAT C 3'</td>
</tr>
<tr>
<td>pM13 forward</td>
<td>5' CAT CTC AGT GCA ACT AAA 3'</td>
</tr>
<tr>
<td>pM13 reverse</td>
<td>5' TAG AAG CAG TCG AGG 3'</td>
</tr>
<tr>
<td>T1.1s</td>
<td>5' CTG AGG GTC CTG ATG TCC 3'</td>
</tr>
<tr>
<td>T1.2s</td>
<td>5' GCC AAT ATG AAC ATC CAA AAC T 3'</td>
</tr>
<tr>
<td>T2.1s</td>
<td>5' AGA TTT TGG TGG GCT 3'</td>
</tr>
<tr>
<td>T2.2s</td>
<td>5' ACC TGA CCT CCC TTG ACA TC 3'</td>
</tr>
<tr>
<td>T6.1s</td>
<td>5' CCA CAA CAG GAT ACG 3'</td>
</tr>
<tr>
<td>T6.2s</td>
<td>5' TCG GTG TTT GCT GAG ATG AA 3'</td>
</tr>
<tr>
<td>TLR4-s1</td>
<td>5' AAT TGA AGA CAA GGC ATG GCA T 3'</td>
</tr>
<tr>
<td>TLR4-s2</td>
<td>5' ACC TGG CTG GTT TAC ACG TCC 3'</td>
</tr>
<tr>
<td>TLR4-s3</td>
<td>5' AGG GTC ACA GAA TCC TCA GCG TT 3'</td>
</tr>
<tr>
<td>TLR4-s4</td>
<td>5' TGG GTC AAG GAA CAG AAG CAG T 3'</td>
</tr>
</tbody>
</table>

2.8.3 Primer

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP-IgGFc-BamHI (1)</td>
<td>5' ACT GGG ATC CTC ATT TAC CCG GAG A 3'</td>
</tr>
<tr>
<td>ASP-IgGFc-KpnI (2)</td>
<td>5' ACT GGG TAC CTC ATT TAC CCG GAG A 3'</td>
</tr>
<tr>
<td>ASP-IgGFc-Xbal (3)</td>
<td>5' ACT GTC TAG ATC ATT TAC CCG GAG A 3'</td>
</tr>
<tr>
<td>BamHIFlagbeginl (4)</td>
<td>5' ACT GGG ATC CGG ACT ACA AAG ACG ATG ACG ACA AGC T 3'</td>
</tr>
</tbody>
</table>
2.8.4 Synthetische Oligonukleotide

<table>
<thead>
<tr>
<th>Name (number)</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgeI-Slinker (1)</td>
<td>5’ CCG GTG CAT CCG CCA CCG CCA GAG CCA CCT CCG CTC GAA CG CCT CCA CCA CCA 3’</td>
</tr>
<tr>
<td>AgeI-Slinker (2)</td>
<td>5’ CCG GTG GTG GAG GCG GGT CAT CCA GAG GCG GAG GTG CTG CCG GTG GAT CAG 3’</td>
</tr>
<tr>
<td>BsiWILinkerNewR (3)</td>
<td>5’ CCC GAT CCG CCA CCG CCA GAG CCA CCT CCG CTC GAA CGG CCT CCA CCA CCA 3’</td>
</tr>
<tr>
<td>flexLi.BsiWIFsel (4)</td>
<td>5’ GTA CGG GTG GAG GCG GGT CAT CCA GAG GCG GAG GTG CTG CCG GTG GAT CAG GCG GCC GCG 3’</td>
</tr>
<tr>
<td>SfiI-BIP-6xHis (5)</td>
<td>5’ TGG CCT TTT GTG GCC TCT GCG GGA CAT CTC ATC ACC ATC ACC ATC 3’</td>
</tr>
<tr>
<td>SfiI-BIP-6xHis-rc (6)</td>
<td>5’ ATG GTG ATG GTG ATG ATG TGA TCT CCC GAG CGA GAG GCC AAC AAA GGC CAC GA 3’</td>
</tr>
</tbody>
</table>
2.9 Größenstandards

Die Größen der Nukleinsäurefragmente in Agarosegelen wurden standardmäßig mit den Größenstandards GeneRuler™ 100 bp DNA Ladder Plus und GeneRuler™ 1 kb DNA Ladder (Fermentas, St. Leon-Rot) bestimmt.

Die Molekulargewichte der Proteine in SDS-Gelen bzw. im Western Blot wurden mit den Proteinleitern SeeBlue® Plus2 (Invitrogen, Karlsruhe) oder PageRuler™ Plus (Fermentas, St. Leon-Rot) definiert.

2.10 Antikörper und Kopplungsreagenzien

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Konjugat</th>
<th>Spender</th>
<th>Klon</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Flag</td>
<td>ohne</td>
<td>Maus-IgG1</td>
<td>M2</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Anti-Flag</td>
<td>FITC</td>
<td>Maus-IgG1</td>
<td>M2</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Anti-Flag</td>
<td>HRP</td>
<td>Maus-IgG1</td>
<td>M2</td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Anti-His</td>
<td>HRP</td>
<td>Maus-IgG2b</td>
<td></td>
<td>Miltenyi, Bergisch Gladbach</td>
</tr>
<tr>
<td>Anti-His</td>
<td>ohne</td>
<td>Maus-IgG1</td>
<td></td>
<td>Qiagen, Hilden</td>
</tr>
<tr>
<td>Anti-human-HMG-1</td>
<td>ohne</td>
<td>Maus-IgG2b</td>
<td>115603</td>
<td>R&D Systems, minneapolis, MN, USA</td>
</tr>
<tr>
<td>Anti-Maus-IgG</td>
<td>HRP</td>
<td>Ziege</td>
<td></td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Anti-Maus-Immunglobulin</td>
<td>AP</td>
<td>Kaninchen</td>
<td></td>
<td>Dako, Glostrup, Dänemark</td>
</tr>
<tr>
<td>Anti-human-IgG-Fc</td>
<td>HRP</td>
<td>Ziege</td>
<td></td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Anti-Kaninchen-IgG</td>
<td>HRP</td>
<td>Ziege</td>
<td></td>
<td>Sigma-Aldrich, Steinheim</td>
</tr>
<tr>
<td>Anti-Maus-TLR4/MD-2</td>
<td>ohne</td>
<td>Ratte-IgG2a</td>
<td>MTS510</td>
<td>Hycult, Uden, Niederlande</td>
</tr>
<tr>
<td>Streptavidin</td>
<td>HRP</td>
<td></td>
<td></td>
<td>Hycult, Uden, Niederlande</td>
</tr>
</tbody>
</table>
2.11 Puffer und Lösungen

2.11.1 Lösungen und Zubehör für die Agarose-Gelelektrophorese

<table>
<thead>
<tr>
<th>Lösung/Drahtfilter</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA-Agarosegel</td>
<td>1-2% Agarose (w/v) in TAE (1x)</td>
</tr>
<tr>
<td>E-Gel® 1,2%, 2,0%</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Ethidiumbromidlösung</td>
<td>0,04% Ethidiumbromid in VE-Wasser</td>
</tr>
<tr>
<td>TAE (50x)</td>
<td>2 M TRIS 250 mM Na-Acetat/Essigsäure pH 7,8 50 mM EDTA in VE-Wasser</td>
</tr>
<tr>
<td>Ladepuffer (10x)</td>
<td>200 mM TRIS/HCl pH 7,8 100 mM EDTA pH 8,0 1% SDS (w/v) 60% Glycerol (v/v) 0,1% Bromphenolblau 0,1% Xylenecyanol in aqua bidest.</td>
</tr>
</tbody>
</table>

2.11.2 Lösungen und Zubehör für die SDS-Polyacrylamid-Gelelektrophorese (PAGE)

<table>
<thead>
<tr>
<th>Lösung/Drahtfilter</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laemmli-Probenpuffer (6x)</td>
<td>375 mM TRIS/HCl pH 6,8 12 mM EDTA 7,5% SDS (w/v) 60 % Glycerol (v/v) 0,2% Bromphenolblau (w/v) in aqua bidest.</td>
</tr>
<tr>
<td>NuPAGE® 4-12% Bis-TRIS Gel 1mm x 12 well</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>NuPAGE® 3-8% TRIS-Acetat Gel 1mm x 12 well</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>NuPAGE® MOPS SDS Running Buffer (20x)</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>NuPAGE® TRIS-Acetat SDS Running Buffer (20x)</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>TRIS-Glycin Laufpuffer (10x)</td>
<td>250 mM TRIS 2,5 M Glycin 1% SDS (w/v) in aqua bidest.</td>
</tr>
<tr>
<td>ServaGel® TRIS-Glycin Gel 4-12% 1mm x 12 well</td>
<td>Serva, Heidelberg</td>
</tr>
<tr>
<td>Western Blot Anodenpuffer A</td>
<td>0,3 M TRIS pH 10,4 20 % Ethanol in VE-Wasser</td>
</tr>
</tbody>
</table>
2.11.3 Sonstige Puffer und Lösungen

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus-Lagerungs-Puffer</td>
<td>10 mM TRIS pH 8,0</td>
</tr>
<tr>
<td></td>
<td>2 mM MgCl₂</td>
</tr>
<tr>
<td></td>
<td>5% Sucrose</td>
</tr>
<tr>
<td>Agarose-Elutionspuffer für Szintillationsmessung</td>
<td>2% SDS (w/v)</td>
</tr>
<tr>
<td></td>
<td>5 mM EDTA</td>
</tr>
<tr>
<td></td>
<td>in PBS</td>
</tr>
<tr>
<td>Caesiumchlorid-Lösung p = 1,2 kg/m³ (CsCl 1,2)</td>
<td>26,8 g CsCl</td>
</tr>
<tr>
<td></td>
<td>92 ml 10 mM TRIS pH 7,9</td>
</tr>
<tr>
<td>Caesiumchlorid-Lösung p = 1,4 kg/m³ (CsCl 1,4)</td>
<td>53 g CsCl</td>
</tr>
<tr>
<td></td>
<td>87 ml 10 mM TRIS pH 7,9</td>
</tr>
<tr>
<td>ELISA Beschichtungspuffer</td>
<td>50 mM NaHCO₃ pH 9,6</td>
</tr>
<tr>
<td></td>
<td>in aqua bidest</td>
</tr>
<tr>
<td>ELISA Blockierlösung</td>
<td>5% BSA</td>
</tr>
<tr>
<td></td>
<td>in Waschpuffer</td>
</tr>
<tr>
<td>ELISA Waschpuffer</td>
<td>0,05% Tween 20</td>
</tr>
<tr>
<td></td>
<td>in PBS</td>
</tr>
<tr>
<td>ELISA Stopplösung</td>
<td>1 M H₂SO₄</td>
</tr>
<tr>
<td>Elutionspuffer Chelatierende Sepharose</td>
<td>10mM – 500mM Imidazol</td>
</tr>
<tr>
<td></td>
<td>in 50 mM TRIS/HCl pH 8,0</td>
</tr>
<tr>
<td>Elutionspuffer Protein G Chromatographie</td>
<td>0,1 M Glycin/HCl pH 2,8 – 4,0</td>
</tr>
<tr>
<td>PBS</td>
<td>137 mM NaCl</td>
</tr>
<tr>
<td></td>
<td>2,68 mM KCl</td>
</tr>
<tr>
<td></td>
<td>10 mM NaH₂PO₄</td>
</tr>
<tr>
<td></td>
<td>1,76 mM K₂HPO₄</td>
</tr>
<tr>
<td></td>
<td>in aqua bidest</td>
</tr>
<tr>
<td>TBS (10x)</td>
<td>1,5 M NaCl</td>
</tr>
<tr>
<td></td>
<td>100 mM TRIS</td>
</tr>
<tr>
<td></td>
<td>in aqua bidest</td>
</tr>
<tr>
<td></td>
<td>pH 7,6 mit HCl einstellen</td>
</tr>
</tbody>
</table>
3 Methoden

3.1 Molekularbiologische Methoden

3.1.1 Isolierung von RNA aus Zellen

Die Isolierung von Gesamt-RNA aus Zellen wurde nach Anleitung des RNeasy mini Kits durchgeführt.

3.1.2 Gewinnung von cDNA durch Reverse Transkriptase-PCR

Über eine Reverse Transkriptase konnte die in der isolierten Gesamt-RNA enthaltene mRNA in cDNA umgeschrieben werden. Die RT-PCR wurde sowohl mit Oligo(dT)$_{15}$ als auch mit zufällig generierten (Random) Primern durchgeführt. Für die Umschreibung wurde das Reverse Transcription System genutzt.

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Programm</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA</td>
<td>1 µg</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>4 µl</td>
</tr>
<tr>
<td>dNTPs, je 10mM</td>
<td>2 µl</td>
</tr>
<tr>
<td>Puffer (10x)</td>
<td>2 µl</td>
</tr>
<tr>
<td>RNase Inhibitor</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>Reverse Transkriptase</td>
<td>15 µl</td>
</tr>
<tr>
<td>Oligo(dT)$_{15}$/Random</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer (500 ng/µl)</td>
<td>ad 20 µl</td>
</tr>
<tr>
<td></td>
<td>22°C (bei Random Pr.) 10 min</td>
</tr>
<tr>
<td></td>
<td>42°C 15 min</td>
</tr>
<tr>
<td></td>
<td>95°C 5 min</td>
</tr>
<tr>
<td></td>
<td>4°C 5 min</td>
</tr>
</tbody>
</table>
Die Integrität der gewonnenen cDNA wurde anschließend mit den Primern aus 2.8.1 auf die jeweiligen Haushaltsgene untersucht.

3.1.3 Klonierung von DNA-Fragmenten

3.1.3.1 Polymerase Ketten Reaktion (PCR)

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Programm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Templat DNA</td>
<td>1 ng-5 ng</td>
</tr>
<tr>
<td>dNTPs, je 10mM</td>
<td>1 µl</td>
</tr>
<tr>
<td>Puffer (5x)</td>
<td>10 µl</td>
</tr>
<tr>
<td>S Primer 10µM</td>
<td>2 µl</td>
</tr>
<tr>
<td>AS Primer 10µM</td>
<td>2 µl</td>
</tr>
<tr>
<td>Polymerase (2 u/µl)</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 50 µl</td>
</tr>
<tr>
<td>98°C 30 s</td>
<td></td>
</tr>
<tr>
<td>98°C 10 s</td>
<td></td>
</tr>
<tr>
<td>54°C - 64°C 20 s</td>
<td></td>
</tr>
<tr>
<td>72°C 20 s/1kb</td>
<td></td>
</tr>
<tr>
<td>72°C 5-10 min</td>
<td></td>
</tr>
<tr>
<td>4°C ∞</td>
<td></td>
</tr>
</tbody>
</table>

Anschließend wurden die PCR-Fragmente auf einem Agarosegel analysiert und aus dem PCR-Ansatz mit Hilfe der PCR Aufreinigungs Kits nach Anleitung der Hersteller gereinigt.

3.1.3.2 Restriktionsverdau

Für das Schneiden von DNA-Fragmenten und Plasmiden wurden die Enzym- und Pufferkombinationen der Firmen New England Biolabs bzw. Roche verwendet. Grundsätzlich wurden Ansätze in folgendermaßen durchgeführt:
<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Programm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>0,1 µg – 10 µg</td>
</tr>
<tr>
<td>Puffer (10x)</td>
<td>2 µl</td>
</tr>
<tr>
<td>Enzym(e)</td>
<td>0,5 u -1u</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 20 µl</td>
</tr>
<tr>
<td></td>
<td>37°C bzw. 50°C, 55°C 1 h – 3 h</td>
</tr>
</tbody>
</table>

Die verwendeten Puffer und Temperaturen wurden aus den Tabellen der jeweiligen Hersteller der Restriktionsenzyme (NEB, Roche) entnommen.

3.1.3.3 Gelelektrophorese

PCR- oder Restriktionsverdau-Produkte konnten über Gelelektrophorese analysiert werden. Hierfür wurde Agarose mit niedrigem Schmelzpunkt (1% - 2% w/v) in TAE-Puffer aufgekocht, nach dem Abkühlen auf ca. 60°C mit Ethidiumbromidlösung (2 µl pro 100 ml Gel) versetzt und in vorbereitete Formen gegossen. Nach der Festigung des Gels wurden die mit dem Ladepuffer versetzten DNA-Proben bei 100V in Gelelektrophoresekammern aufgetrennt. Als Laufpuffer diente TAE. Für analytische Zwecke wurden die DNA-Fragmente auf einem UV-Schirm bei einer Wellenlänge von 254 nm sichtbar gemacht und photographiert.

3.1.3.4 Isolierung von DNA-Fragmenten aus Agarosegelen

Um die Schädigung der DNA bei einer präparativen Gelelektrophorese zu verhindern, wurden die gewünschten DNA-Fragmente bei einer Wellenlänge von 366 nm sichtbar gemacht und mit einem Skalpell ausgeschnitten. Die Isolierung der DNA aus dem Agarosegel wurde nach der Anleitung der Hersteller durchgeführt (siehe 2.4)

3.1.3.5 Enzymatische Manipulation der DNA

3.1.3.5.1 Dephosphorylierung mit SAP

Um eine Religation von geschnittenen Plasmiden über kompatible überhängende oder glatte Enden zu verhindern, wurden die 5'-Termini der DNA mit SAP dephosphoryliert. Hierfür wurde der Restrikionsverdauansatz zunächst nach
folgendem Schema zusammen mit SAP verdaut und anschließend die Phosphatase deaktiviert.

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Programm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriktionsverdau</td>
<td>20 µl</td>
</tr>
<tr>
<td>Puffer (10x)</td>
<td>2 µl</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 49 µl</td>
</tr>
<tr>
<td>SAP</td>
<td>1 µl</td>
</tr>
<tr>
<td></td>
<td>37°C</td>
</tr>
<tr>
<td></td>
<td>30 min</td>
</tr>
<tr>
<td></td>
<td>65°C</td>
</tr>
<tr>
<td></td>
<td>15 min</td>
</tr>
<tr>
<td></td>
<td>4°C</td>
</tr>
<tr>
<td></td>
<td>∞</td>
</tr>
</tbody>
</table>

Anschließend wurden die dephosphorylierten Plasmide über PCR-Aufreinigungs-Kits aus dem Ansatz isoliert.

3.1.3.5.2 Behandlung mit Klenow-Fragment

Für die Umwandlung von überhängenden in glatte Enden wurde das Klenow-Fragment verwendet. Dieses Enzym stellt ein Fragment der DNA-Polymerase I dar und besitzt eine 5′-3′-Polymerase- und 3′-5′-Exonnukleaseaktivität. So konnten 5′-Überhänge unter Zugabe von dNTPs aufgefüllt werden, während ohne Zugabe von dNTPs 3′-Überhänge abgebaut wurden. Folgende Ansätze wurden für die Generierung von glatten Enden verwendet:

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Programm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verdaute DNA</td>
<td>0,1 µg – 4 µg</td>
</tr>
<tr>
<td>Puffer (10x)</td>
<td>2 µl</td>
</tr>
<tr>
<td>dNTPs (10mM)</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>Klenow-Fragment</td>
<td>1 u -5 u</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 20 µl</td>
</tr>
<tr>
<td></td>
<td>37°C</td>
</tr>
<tr>
<td></td>
<td>30 min</td>
</tr>
<tr>
<td></td>
<td>75°C</td>
</tr>
<tr>
<td></td>
<td>10 min</td>
</tr>
</tbody>
</table>

Anschließend wurden die Ansätze mit PCR Reinigungs-Kits gereinigt.

3.1.3.6 Ligation von DNA-Fragmenten

Die modifizierten und isolierten DNA-Fragmente wurden über die Restriktionsschnittstellen in entsprechend geschnitzten und dephosphorylierten Plasmide mit Hilfe des Fast-Link™ DNA Ligation Kits kloniert. Durch die Analyse der zu ligierenden DNA-Fragmente im Agarosegel wurde die ungefähre Menge an DNA
abgeschätzt und ein molares Verhältnis von Insert- zu Vektor-DNA von 2:1 eingesetzt.

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Programm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer (10x)</td>
<td>0,1 µg – 4 µg</td>
</tr>
<tr>
<td>ATP (10 mM)</td>
<td>2 µl</td>
</tr>
<tr>
<td>Vektor DNA</td>
<td>x</td>
</tr>
<tr>
<td>Insert DNA</td>
<td>x</td>
</tr>
<tr>
<td>H₂O</td>
<td>ad 14 µl</td>
</tr>
<tr>
<td>DNA Ligase</td>
<td>1 µl</td>
</tr>
</tbody>
</table>

Spannung	2,5 kV
Widerstand	200 Ω
Kapazität	25 µF
Dauer	4,7 – 5,2 ms

3.1.4 Vermehrung und Gewinnung von Plasmidvektoren

3.1.4.1 Transformation und Kultivierung von E. coli

Für die Transformation von elektrokompetenten Bakterien (XL1-Blue, DH5alpha, DH10bac) wurden 2 µl des Ligationsansatzes direkt mit 50 µl Bakteriensuspension auf Eis vermischt. Die Transformation erfolgte in gekühlten Elektroporationsküvetten (Elektrodenabstand 2 mm) mit Hilfe eines Elektroporators unter folgenden Bedingungen:

Chemischkompetente Bakterien (TOP10) wurden mit dem kompletten Ligationsansatz gemischt und für 30 min auf Eis gestellt. Daraufhin wurden die Bakterien für 45 Sekunden bei 42°C im Thermoblock erhitzt und anschließend sofort für 2 min auf Eis gestellt.

Nach der Transformation wurden die Bakterien mit 250 µl SOC-Medium versetzt und 1 h bei 37°C geschüttelt. Anschließend erfolgte die Ausplattierung auf mit entsprechenden Antibiotika versetzten LB-Agar-Platten und die Kultivierung bei 37°C über Nacht. Positive Bakterienklove wurden mit Hilfe spezifischer Primer für das Plasmid über eine PCR nach folgendem Ansatz ermittelt:
3.1.4.2 Mini-/Maxipräparation von Plasmiden

3.1.4.3 Sequenzierung von Plasmid-DNA

Die Sequenzierung von klonierten Plasmiden wurde bei der Firma Geneart in Regensburg durchgeführt. Die erhaltenen Sequenzen konnten mit Hilfe der Vector NTI 10 Software (Invitrogen, Carlsbad, CA, USA) zusammengesetzt und mit den entsprechenden Mustersequenzen verglichen werden.

3.2 Zellkultur

3.2.1 Kulturbedingungen

HEK293T und QBI293A-Zellen wurden in DMEM mit 10% FCS bei 37°C, 5% (DMEM, PAN) bzw. 10% (DMEM, PAA) Kohlendioxidgehalt und 95% relativer
Luftfeuchte kultiviert. Bei serumfreier Haltung wurde das Medium Panserin ohne weitere Zusätze bei sonst identischen Bedingungen (5% CO₂) verwendet. Zur Selektionierung von pIRESneo3-transfizierten Zellen wurde 1,0 mg/ml G418 zugesetzt.

Die Kultivierung monozytischer Zelllinien (MM6, RAW 264.7) erfolgte mit VLE RPMI ergänzt mit 10% endotoxinarmen FCS bei 37°C und 5% CO₂. Den MM6-Zellen wurde OPI Media Supplement, den RAW264.7 β-Mercaptoethanol zugesetzt.

Schneider S2-Zellen wurden bei 21°C ohne zusätzliche CO₂-Begasung in Insect Xpress-Medium plus 10% FCS kultiviert. Die Selektion fand unter Anwesenheit von 300 µg/ml Hygromycin statt. Sollten produzierte Fusionsproteine über Affinitätschromatographie gereinigt werden, wurde kein FCS zugesetzt.

Die für die Baculovirus-Produktion genutzten Sf-21- und High Five™-Zellen wurden bei 28°C ohne CO₂ in Insect Xpress-Medium ohne weitere Zusätze kultiviert.

Als Einfriermedium wurde das entsprechende Kulturmedium unter Zusatz von 20% FCS und 10% DMSO verwendet.

3.2.2 Zellzahl- und Vitalitätsbestimmung

Die Zellzahl und die Vitalität der kultivierten Zellen wurden mit Hilfe einer Neubauer-Zählkammer im Trypanblau-Ausschluss-Test bestimmt. Hierfür wurden 20 µl Zellsuspension entnommen und diese mit dem gleichen Volumen an 0,05% Trypanblaulösung versetzt. Die Anzahl der ungefärbten lebenden und blau gefärbten toten Zellen konnte anschließend über die Auszählung einer oder mehrerer Großquadrate im Phasenkontrastmikroskop nach folgender Formel bestimmt werden:

\[
n (\text{Zellen/ml}) = \frac{Z}{Q} \times V \times 10^4
\]

\[Z = \text{Zahl der Zellen im Großquadrat}
\]
\[Q = \text{Anzahl der ausgezählten Großquadrate}
\]
\[V = \text{Verdünnungsfaktor}
\]

3.2.3 Transfektionen

Die Transfektionsreagenzien jetPEI™ und FuGene® 6 wurden für die Transfektion von Plasmiden in Säuger- und Insektenzellen, FuGene® HD für die Transfektion der Baculoviren-Bacmid-DNA in Sf-21-Zellen nach Anleitung der Hersteller verwendet. Üblicherweise erfolgte die Transfektion von Zellen bei einer Konfluenz von 50% (Säugerzellen) oder 80% (Insektenzellen). Die Verhältnisse von Transfektionsreagenz (µl) zu DNA (µg) betrugen 2:1 (jetPEI), 3:1-2 (FuGENE 6) oder 4-6:2 (FuGENE HD). Die Bildung der Komplexe erfolgte in OptiMEM (Säugerzellen) oder aqua ad injectabilia (Insektenzellen) für 20 min bei RT. Die Komplexe wurden anschließend gleichmäßig über die adhärenten Zellen verteilt und die Zellen für 8 bis 16 h in serumfreien, Gentamycin-haltigen Medium kultiviert. Danach wurde das Medium gewechselt, FCS und nach Bedarf Selektionsantibiotika (siehe 3.2.1) zugesetzt.

3.2.4 Transwell-Assay

Zur Überprüfung der biologischen Aktivität der Fusionsproteine in ihrer nativen Form wurde ein Transwell-Assay etabliert. 2x10⁵ HEK293T wurden 8 h nach ihrer Transfektion mit der entsprechenden Fusionsprotein-DNA-Sequenz in p3xFlag-CMV-8 in 24-well Platten ausgesät und Transwells mit 2,5x10⁴ MM6 bzw. RAW264.7 eingesetzt. Die Zellen wurden 48 h in dem Medium der jeweiligen monozytischen Zelllinie (1,25 ml 24-well, 200 µl Transwell) kultiviert. Die Stimulation mit den angegebenen Reagenzien erfolgte bei einer Messung von TNF für 4 h und bei der Messung von IL-6 über Nacht.

3.2.5 Zellkultur adenoviral infizierter QB1293A

3.2.5.1 Vermehrung von Adenoviren

Die adenoviralen Stocks (Ad-LPS-Trap-Fc) wurden freundlicherweise von
Bernd Schnabl, Regensburg, zur Verfügung gestellt. Für den Einsatz im Tiermodell
musste dieser Stock auf ca. 10^{11} PFU/ml amplifiziert werden. Hierfür wurden 5x10^6
QBI293A-Zellen in einer 75 cm² Zellkulturflasche ausgesät und mit 25x10^6 Ad-LPS-
Trap-Fc-Partikeln (MOI 5) infiziert. Um eine optimale Infektion der Zellen durch hohe
Virenkonzentration zu erreichen, betrug das Volumen des Inokulums lediglich 1 ml.
Nach 90 min bei 37°C wurde das Mediumvolumen durch DMEM plus 5% FCS auf 10
ml ergänzt. Die Vermehrung der Adenoviren äußerte sich durch eine Abrundung der
Zellen, worauf ihre Lösung aus dem Zellverband und Lyse folgte (Cytopathischer
Effekt, CPE). Nach 72 h wurden die Zellen zusammen mit dem Überstand drei Frier-
Tauzyklen (N₂-fl - 37°C) unterzogen und Zellreste durch Zentrifugation entfernt. Mit 3
ml dieses Zelllysats wurden anschließend 3x10^7 QBI293A infiziert (MOI ~25) und
nach 72 h wiederum die Zelllysate gewonnen. Im dritten Vermehrungzyklus wurden
analog 3x10^8 Zellen mit 35 ml Zelllysat aus Zyklus 2 infiziert. Hier erfolgte die Ernte
der Zellen bereits vor ihrer Lyse nach 48 h. Die Zellen wurden pelletiert, vereinigt, in
10 ml DMEM plus 5% FCS aufgenommen und durch drei Frier-Tauzyklen lysiert.

3.2.5.2 Isolierung von Adenoviren

Die Isolierung der Adenoviren erfolgte über einen Caesiumchlorid-Gradienten.
Das Zelllysat aus Vermehrungsschritt 3 wurde zunächst durch Zentrifugation von
Zellresten befreit. In einem Zentrifugenröhrenchen (13 x 51 mm) wurden 4 ml CsCl 1,4
mit 3 ml CsCl 1,2 und 4,5 ml Zelllysat überschichtet. Die infektiösen Viruspartikel
konnten über den Gradienten nach 18-stündiger Zentrifugation in einer
Ultrazentrifuge bei 100.000xg von den restlichen Bestandteilen getrennt werden. Die
weiß-bläulich schimmernde Bande aus infektiösen Virenpartikeln wurde mit einer
Spritze über eine 23 Gauge Kanüle abgesaugt. Anschließend wurde das CsCl durch
Dialyse gegen Adenovirus-Lagerungs-Puffer entfernt und die Partikel bei -20°C
gelagert.

3.2.5.3 Bestimmung des adenoviralen Titers

Der adenovirale Titer wurde über die Tissue Culture Infectious Dose 50
(TCID₅₀) Methode bestimmt. Als biologische Nachweismethode basiert sie auf der
Entwicklung des CPE in QBI293A-Zellen durch eine vorangegangene Vireninfektion.
10^4 QBI293A pro Vertiefung in 100 µl DMEM plus 2% FCS wurden in 96-well Platten ausgesät. Von den jeweiligen Virenstocks wurden Verdünnungsreihen bis 10^{-12} in DMEM plus 2% FCS erstellt. 100 µl der acht höchsten Verdünnungen wurden jeweils in die senkrechten Reihen 1-10 der 96-well Platte gefüllt. Die Reihen 11 und 12 wurden mit virusfreiem DMEM plus 2% FCS aufgefüllt und dienten als Negativkontrolle. Nach 10-tägiger Kultivierung bei 37°C im CO₂-Inkubator wurden die CPE-positiven Vertiefungen im Mikroskop gezählt und der Titer nach folgender Formel berechnet:

\[
T (\text{TCID}_{50}/\text{ml}) = 10^{1+1x(S-0.5)} \times 10
\]

Validierungen der Firma Quantum Biotechnologies ergaben, dass die nach TCID_{50}-Methode bestimmten Titer um 0,7xlog höher sind als im Standard Plaque Assay.

\[
T (\text{PFU}/\text{ml}) = 10^{1+1x(S-1.2)} \times 10
\]

\[
S = \text{Summe der CPE-positiven Vertiefungen der Verdünnungsschritte ab } 10^{-1}\text{/10}
\]

Die adenviralen Titer wurden jeweils in zwei voneinander unabhängigen Titrationen ermittelt.

3.3 Proteinbiochemische Methoden

3.3.1 Analyse von Proteinen durch SDS-PAGE

Die Natriumdodecylsulfat-Polyacrylamidgelelektrophorese (sodium dodecyl sulfate polyacrylamid gel electrophoresis, SDS-PAGE) dient zur analytischen Trennung von Proteinen über ein Polyacrylamid-Gel. Die Proteine werden zunächst durch die Behandlung mit Probenpuffer denaturiert. Das darin enthaltene SDS überdeckt die Eigenladung, was eine Auftrennung ausschließlich nach der Größe der zu untersuchenden Proteine ermöglicht. Durch die Zugabe von DTT kann zusätzlich die Reduktion von Disulfidbrücken erreicht werden.

Die Proben wurden standardmäßig bei 92°C 5 min in 2x Laemmli-Puffer gekocht. Für die elektrophoretische Auftrennung wurden je nach Größe des zu analysierenden Proteins verschiedene Gradientengele und Puffersysteme benutzt (siehe 2.11.2).
3.3.2 Western Blotting

Für die Übertragung der in der SDS-Page aufgetrennten Proteine auf eine Nitrocellulosemembran wurde das *Semi-dry*-Verfahren nach [124] benutzt. Hierfür wurden je ein Filterpapier (Whatman) in Anodenpuffer A, zwei in Anodenpuffer B und drei in Kathodenpuffer C getränkt. Das Gel und die Nitrocellulosemembran wurden ebenfalls in Kathodenpuffer C equilibriert und die Blotapparatur nach Abb. 3.1 aufgebaut. Die Übertragung der Proteine in die Membran erfolgte mit dem TE 77XP Semi-dry Blotter für 1 h bei einer konstanten Stromstärke von 1,5 mA pro cm² Gel.

![Diagram of Western Blotting](image)

Abb. 3.1: Schematischer Aufbau der Blotapparatur im Semi-dry-Verfahren

3.3.3 Nachweis von Proteinen

3.3.3.1 Direkte Färbung von Proteinen in Gelen

3.3.3.2 Immunofärbung von Proteinblots

Wurde ein AP-gekoppelter Antikörper eingesetzt, konnte das geblottete Protein über BCIP (5-Bromo-4-Chloro-3'-Indolylphosphat) und NBT (Nitroblau Tetrazoliumchlorid) direkt auf der Nitrocellulosemembran visualisiert werden.

3.3.4 Bestimmung der Proteinkonzentration

Proteinkonzentrationen wurden mit Hilfe des BCA Protein Assay Kit bestimmt. Dieser basiert auf der BCA-Methode zur photometrischen Messung von Proteinkonzentrationen. In wässriger alkalischer Lösung wird Cu$^{2+}$ durch Protein zu Cu$^{1+}$ reduziert. Dieses bildet mit zwei Molekülen BCA einen farbigen Komplex mit einem Absorptionsmaximum bei 562 nm.

3.3.5 Isolierung der LPS-Trap aus Zellüberständen

3.3.5.1 Protein G Affinitätschromatographie

Für die Reinigung von Fusionsproteinen mit einem hlgG-Fc-Teil wurde Protein G Sepharose verwendet. Bei der Isolierung über eine Econo-Säule wurde diese mit 2 ml einer 50% Suspension von Protein G Sepharose beladen und mit 20 ml PBS gewaschen. Anschließend wurden 200 bis 800 ml Zellkulturüberstand mit Hilfe einer Pumpe bei 4°C mehrmals über die Säule geschleust. Die Säule wurde mit 50 ml PBS gewaschen und die Fusionsproteine mit 1 ml 0,1 M Glycin/HCl-Puffer (pH 2,8 oder 4,0) in 4 Fraktionen eluiert. Die Eluate wurden sofort mit 20 µl 1,5 M TRIS pH 8,8 neutralisiert und anschließend gegen PBS dialysiert.

Bei einer Reinigung durch Immunpräzipitation wurde der Zellüberstand auf 50 ml Zentrifugenröhren aufgeteilt und mit 200 µl der 50% Protein G Suspension pro 50 ml 2 h im Rotator inkubiert. Zur Vermeidung von Blasenbildung wurden die Röhrchen vollständig mit PBS aufgefüllt. Die Sepharose wurde anschließend bei 850xg pelletiert, in 5 ml PBS resuspendiert und in eine Säule geladen. In der Säule erfolgte ein weiterer Waschschritt mit 10 ml PBS. Die weiteren Schritte deckten sich mit der Isolierung über die Econo-Säule.

3.3.5.2 Affinitätschromatographie über Metallchelat-bindende Säulen

Fusionsproteine mit einem 6xHis Epitop (LPS-Trap-His, His-LPS-Trap-Fc) wurden über Metallchelatchromatographie gereinigt. Da dem Medium von S2-Zellen für die Induktion des Methallothionin-Promotors CuSO₄ zugesetzt wurde, wurde eine modifizierte Metallchelat-Affinitätschromatographie verwendet [125]. Die Cu²⁺-Ionen bilden bevorzugt Komplexe mit dem Imidazolrest der Aminosäure Histidin. Diese Komplexe wiederum binden mit höherer Affinität an die Imidodiessigsäuremoleküle der chelatierenden Sepharose als freie Kupferionen. Die Isolierung wurde wie in 3.3.5.1 entweder über eine Säule oder als Präzipitation durchgeführt. Die Elution erfolgte in drei Schritten mit je 1 ml 10 mM, 50 mM und 500 mM Imidazol in 10 mM TRIS pH 8,0. Die Fraktionen wurden ebenfalls gegen PBS dialysiert.
3.3.5.3 Isolierung über Ionenaustauschersäule

Die His-LPS-Trap-Fc wurde alternativ zu den bereits genannten Methoden auch über Anionenaustauschersäulen gereinigt. Der isoelektrische Punkt der His-LPS-Trap-Fc befindet sich bei pH 6,04. Folglich lag das Protein in neutralen oder leicht basischen Lösungen als Anion vor und konnte so über eine mit quartären Ammonium-Ionen beladene Anionenaustauschersäule (Pierce Strong Anion Exchange Spin Columns) isoliert werden. Dafür wurden 10 ml His-LPS-Trap-Fc-haltiger Überstand mit 100 µl 1,5 M TRIS pH 8,8 alkalisert und zusätzlich mit 10 ml Wasser verdünnt, um die Ionenkonzentration zu vermindern. Eine Anionenaustauschersäule wurde mit 5 ml 25 mM TRIS pH 8,8 equilibriert und der behandelte Überstand zweimal durch die Säule zentrifugiert. Das Protein konnte anschließend mit 2 ml 1,5 M TRIS pH 8,8 (2 Wiederholungen) aus der Säule eluiert werden. Das Eluat wurde sofort gegen PBS dialysiert.

3.3.6 Größenausschlusschromatographie

Für die Konzentrierung von Zellüberständen wurden Ultrafiltrationssäulen mit einem Größenausschluss von 30.000 MWCO (LPS-Trap-His) oder 100.000 MWCO (LPS-Trap-Fc) verwendet. Es wurde jeweils 20 ml Überstand transfizierter QBI293A-Zellen durch Zentrifugation auf 2 ml eingeengt. Dies entsprach demnach einer Konzentrierung um den Faktor 10. Die Konzentrate wurden anschließend gegen PBS dialysiert.

3.4 Immunologische Methoden

3.4.1 Enzyme-linked Immunosorbent Assay (ELISA)

Die Quantifizierung von Zytokinen in Zellüberständen erfolgte mit Zytokin-ELISAs. Hierfür wurden MaxiSorp™ 96-well ELISA-Platten mit einem Fang-Antikörper (2-10 µg/ml in ELISA Beschichtungspuffer) über Nacht bei 4°C beschichtet. Um unspezifische Bindungen zu vermeiden, wurde die Platte mit PBST plus 5% BSA 1 h bei RT blockiert. Anschließend wurden die verdünnten Proben (100 µl) in Duplikaten 2 h bei RT inkubiert. Nach dreimaligem Waschen mit PBST wurde 50 µl einer Mischung aus biotinyliertem Detektionsantikörper (1 µg/ml) und Streptavidin-HRP zugegeben und eine weitere Stunde bei RT inkubiert.
Anschließend wurde die Platte fünfmal mit PBST gewaschen und 100 µl TMB-Substrat-Lösung pro Vertiefung zugegeben. Nach 30 min wurde die Reaktion mit 1 M H₂SO₄ gestoppt und die entstandenen Farbkomplexe im Absorptionsspektrometer bei den Wellenlängen 450 nm minus 540 nm vermessen. Sämtliche Auswertungen wurden mit der Software SOFTmax for Windows 2.35 durchgeführt.

3.4.2 Multi-Zytokinbestimmungen im Luminex® 100

![Diagramm](Abb. 3.2: Zytokindetektion im Luminex® 100)

Alle nachfolgenden Reagenzien stammten aus einem Beadlyte® Mouse Multi-Cytokine Flex Kit, der für die Quantifizierung der Zytokine IL-1α, IL-1β, IL-12(p70), MCP-1 und TNF kombiniert wurde. Alle Inkubationsschritte wurden im Dunkeln bei RT durchgeführt.

Für die Untersuchungen wurden Mikrotiter-Filterplatten mit Assay.Puffer (Cytokine Assay Buffer) equilibriert und die Vertiefungen mit 50 µl Zytokinstandard

3.4.3 LPS-Trap-Bindungsassays

3.4.3.1 LPS Pull-down Assay

Für den Nachweis der Bindung von LPS an die Fusionsproteine wurde 1,8 ml Zellüberstand mit 200 µl FCS versetzt und mit 0,5 µg/ml biotinyliertem LPS 1 h bei RT inkubierte. Daraufhin wurden die LPS-Fusionsprotein-Komplexe für 30 min mit 20 µl Streptavidin Sepharose gefällt. Die Präzipitate wurden dreimal mit PBST gewaschen, in 40 µl 2x Laemmli resuspendiert und 5 min bei 92°C aufgekocht. Nach der Pelletierung der Sepharose konnten die Überstände über ein Polyacrylamidgel aufgetrennt und im Anti-Flag Western Blot detektiert werden.

Bei der Überprüfung von gereinigten Fusionsproteinen wurde der Assay in PBS plus 20% FCS durchgeführt. In einigen Versuchen wurde noch zusätzlich mit rekombinantem Maus-CD14 (0,5 µg/ml) inkubierte.

Sollte die Konformation der LPS-Trap überprüft werden, wurden die Überstände 1 h mit 10 µg/ml TLR4/MD-2 Antikörper vorinkubierte. Sollte die kompetitive Hemmung der LPS-Bindung getestet werden, wurden die Testsubstanzen in einem 100-fachen (unmarkiertes LPS) oder 1000-fachen (Fettsäuren) molaren Überschuss zugegeben und parallel mit Biotin-LPS inkubierte.
3.4.3.2 Bindungs-Assay mit 14C-Fettsäuren

Die spezifische Bindung in Prozent wurde folgendermaßen berechnet:

\[
\text{Spezifische Bindung (\%)} = \frac{\text{cpm gebundene }^{14}\text{C} - \text{cpm gebundene }^{14}\text{C mit Überschuss an unmarkierter Fettsäure}}{\text{Total eingesetzte cpm}}
\]

3.4.3.3 LPS-Bindungs-ELISA

Für die relative Quantifizierung der LPS-Bindung der Fusionsproteine wurde ein LPS-Bindungs-ELISA etabliert. Die Inkubationen erfolgten bei RT und zwischen den einzelnen Inkubationsschritten wurde jeweils dreimal mit PBST gewaschen. Zunächst wurden MaxiSorp™ 96-well ELISA-Platten über Nacht mit Anti-Flag M2 mAb (1 μg/ml) beschichtet. Nach einer 1-stündigen Blockierung mit PBS plus 5% BSA wurden die Platten mit den Fusionsprotein-haltigen Lösungen 2 h inkubiert. Darauf folgte eine Inkubation mit 100 μl Biotin-LPS in PBS plus 20% FCS pro Vertiefung für 1 h. Anschließend konnte das gebundene LPS mit Streptavidin-HRP (0,25 μg/ml, 30 min) detektiert werden. Nach der Zugabe der TMB-Substrat-Lösung (100 μl/Vertiefung) wurde nach 30 min die Farbreaktion mit 1 M H$_2$SO$_4$ gestoppt und die Farbkomplexe im Absorptionsspektrometer bei 450 nm minus 540 nm vermessen.

3.4.3.4 Fusionsprotein-Bindungs-ELISAs

Um die Menge an Fusionsprotein in Zellüberständen bestimmen zu können, wurde der LPS-Bindungs-ELISA (siehe 3.4.3.3) modifiziert. Die Platten wurden nach ihrer Anti-Flag-Beschichtung für 2 h mit titrierten Überständen inkubiert. Daraufhin
erfolgte eine 1-stündige Inkubation mit einem HRP-gekoppelten Anti-hlgG-Fc mAb (1:5000) in PBS plus BSA 1%. Die Detektion verlief identisch zum LPS-Bindungs-ELISA (siehe 3.4.3.3).

Zur Überprüfung der Bindung an Paclitaxel wurden Immunolon 2HB ELISA-Platten über Nacht bei RT mit 10 μM Paclitaxel bzw. 10 μg/ml LPS in ELISA-Beschichtungspuffer beschichtet. Die Platten wurden einmal mit PBST gewaschen und mit PBS plus 5% BSA und 5% Sucrose für 1 h blockiert. Anschließend wurde mit 100 μl LPS-Trap-Fc- oder T2/6-Fc-haltigen (Kontrolle) Überständen 2 h bei Raumtemperatur inkubierte. Nach einem weiteren Waschschritt mit PBST wurde 1 h HRP-gekoppelter Anti-hlgG-Fc mAb inkubierte. Nach dreimaligem Waschen erfolgte die Detektion analog zum LPS-Bindungs-ELISA (siehe 3.4.3.3).

Der Bindungsassay von T2/1-Fc und T2/6-Fc an LTA erfolgte identisch zu obiger Arbeitsanweisung. Die Platten wurden mit 10 μg/ml LTA beschichtet.

3.4.3.5 Bakterien-Bindungs-Assays

Zur Untersuchung der Bindung von LPS-Trap an bakterielle Oberflächen wurden 1 ml Fusionsprotein-haltige Überstände oder gereinigte LPS-Trap-His in PBS mit 10 % FCS versetzt und mit hitzeinaktivierten 5x10^7 E. coli K12 oder Kontrollbakterien (B. subtilis, S. aureus) 1 h bei 37°C inkubiert. Die Bakterien wurden pelletiert und zweimal mit PBS plus 10% FCS (PBS 10%) gewaschen. Anschließend wurden die Pellets mit PBS 10% resuspendiert und 1 h mit einem FITC gekoppelten Anti-Flag M2 mAb (1 μg/ml) inkubierte. Nach dreimaligem Waschen mit PBS 10% konnte gebundene LPS-Trap im Durchflusszytometer detektiert werden.

Ein weiterer LPS-Bindungsassay basierte auf einem ELISA. Hierfür wurden 100 μl lebende Bakterien in PBS (5x10^8 CFU/ml) pro Vertiefung auf eine Immunolon 2HB ELISA-Platte beschichtet. Nach dem 1-stündigen Blockieren mit PBS plus 5% BSA wurden die Bakterien mit LPS-Trap-His oder –Fc-haltigen Zellüberständen 2 h bei RT inkubierte. Anschließend wurden die Vertiefungen dreimal mit PBST gewaschen und die gebundenen Fusionsproteine mit einem HRP-gekoppelten Anti-Flag mAb (1μg/ml, 1 h) detektiert. Nach drei Waschschritten mit PBST erfolgte die weitere Detektion analog zu 3.4.3.3.
3.4.4 Phagozytoseassay

Für die Überprüfung der Opsonisierungseigenschaften der LPS-Trap-Fcs1-4 wurde ein Phagozytoseassay etabliert. 5x10⁶ BODIPY-markierte *E. coli* Partikel wurden mit 2 ml Fusionprotein-haltigen, serumfreien QBI293A-Überständen bzw. 10 oder 100 µg/ml humanem IgG als Kontrolle 1 h bei RT inkubiert (Opsonisierungsphase). Anschließend wurden die Partikel dreimal mit PBS gewaschen. Die Phagozytose wurde bei 37°C mit 5x10⁵ MM6-Zellen in HBSS (Ca²⁺- und Mg²⁺-haltig) plus 0,5% HSA über die angegebenen Zeitspannen durchgeführt. Um besseren Kontakt zwischen Phagozyten und *E. coli*-Partikeln zu schaffen, wurden diese vor der Phagozytose bei 500xg 5 min bei 4°C zentrifugiert. Die Phagozytose wurde durch die Zugabe von 0,02% NaN₃ und Kühlung auf Eis gestoppt. Die Zellen wurden anschließend einmal mit PBS gewaschen und mit 0,05% Trypanblau versetzt, um die Fluoreszenz anheftender, nicht phagozytierter Partikel zu quench. Die Intensität der Phagozytose wurde im Durchflusszytometer bestimmt.

3.4.5 Komplementaktivierungsassay

Die Komplementaktivierung wurde indirekt über die Lyse von *E. coli* Bakterien bestimmt. Mit einem GFP-Expressionsvektor transformierte *E. coli* wurden in einer Übernachtkultur expandiert. Die Bakterien wurden nach ihrer Pelletierung in PBS auf eine OD₆₀₀ von 0,4 (~ 5x10⁸ CFU/ml) resuspendiert. 5x10⁶ Bakterien wurden zu 10-fach konzentrierten, gegen PBS dialysierten, LPS-Trap-His oder –Fc-haltigen Überständen gegeben und 1 h bei 37°C inkubiert. Nach zweimaligem Waschen mit PBS wurde die Komplementreaktion mit 1 µl/ml humanem Komplementserum in HBSS plus 0,5% HSA für 90 min bei 37°C durchgeführt. Die Reaktion wurde durch die Kühlung auf Eis gestoppt. Anschließend konnte die Prozentzahl an noch lebenden Bakterien im Durchflusszytometer bestimmt werden.

3.4.6 Durchflusszytometrie

Die durchflusszytometrischen Messungen wurden auf einem Coulter® EPICS® XL-MCL™ durchgeführt. Die Auswertung der Daten erfolgte mit dem Programm EXPO™ 32 ADC Software (Beckman Coulter, Miami, FL, USA). Als Fluoreszenzfarbstoffe dienten FITC, BODIPY und GFP. Für die Messung wurden folgende drei Parameter herangezogen:
1. Forward Scatter (FS): Zellform und -größe
2. Sideward Scatter (SS): Zellgranularität
3. Fluoreszenzkanal 1 (FL 1): Emittierte Fluoreszenz im Wellenlängenbereich von 535 nm (grün)
 Die Parameter wurden für die Auswertung logarithmisch aufgetragen.

Pro Ansatz wurden 15.000 bis 25.000 Zellen vermessen. Für die Überprüfung der LPS-Trap-Bindung an bakterielle Oberflächen (siehe 3.4.3.5) konnten die Bakterien aufgrund ihrer Größe im FS identifiziert werden. Gebundene LPS-Trap wurde über einen FITC-gekoppelten Anti-Flag-M2 mAb im Fluoreszenzkanal 1 quantifiziert.
Die MM6-Zellen im Phagozytoseassay konnten aufgrund ihrer FS- und SS-Charakteristika bestimmt werden. Die Phagozytoserate konnte über fluoreszente MM6 im FL 1 bestimmt werden.
Die GFP-exprimierenden Bakterien wurden durch ihre Größe im FS und Fluoreszenz im FL 1 identifiziert. Nicht mehr fluoreszente Bakterien wurden als tot betrachtet. In Vorversuchen konnte festgestellt werden, dass bereits nach 30 min die Fluoreszenz abgetöteter Bakterien erlischt.

3.5 Tierexperimente

3.5.1 Adenovirale Infektion

Um die LPS-Trap-Fc in vivo zu produzieren, wurden weibliche CD-1 Mäuse (Gewicht 18-20 g) mit 10⁹ PFU/ml Ad-LPS-Trap-Fc oder Ad-β-Gal als Kontrolle infiziert. Die Viren wurden hierfür in 0,9% NaCl verdünnt und nach der Anästhesierung der Mäuse in das Venengeflecht hinter dem Augapfel gespritzt (retrobulbär).

3.5.2 Gewinnung von Serum aus Vollblut

Die Blutabnahme erfolgte retrobulbär nach Anästhesierung der Mäuse. Das gewonnene Vollblut wurde zum Gerinnen 16 h bei 4°C gelagert. Der Blutpropf wurde vorsichtig von Reaktionsgefäßwand abgelöst und bei 500xg abzentrifugiert. Das Serum wurde anschließend sofort verarbeitet oder bei -20°C tiefgefahren.
3.5.3 Überprüfung der LPS-Trap-Fc(Ad)-Serumspiegel

Die Anwesenheit von LPS-Trap-Fc(Ad) im Serum wurde über eine Immunpräzipitation überprüft. 10 µl Serum wurde auf 1000 ml mit TBS verdünnt und 1 h bei RT oder über Nacht bei 4°C mit 20 µl Anti-Flag-Agarose immunpräzipitiert. Die Agarose wurde dreimal mit TBS gewaschen und anschließend in 40 µl 2x Laemmlipuffer 5 min bei 92°C gekocht, um die Proteine aus dem Gel abzulösen. Der Präzipitatüberstand wurde anschließend über ein SDS-Gel aufgetrennt und die LPS-Trap-Fc(Ad) im Anti-Flag Western Blot detektiert.

Um eine quantitative Aussage über die LPS-Trap-Fc(Ad)-Serumspiegel zu gewinnen, wurde ein LPS-Trap-Fc-Bindungs-ELISA (siehe 3.4.3.4) mit Mausserum anstelle von Zellüberständen durchgeführt. Pro Vertiefung wurde 10 µl Serum mit 90 µl PBS verdünnt. Die Messung erfolgte in Duplikaten.

3.5.4 LPS Stimulation von Mäusen

Um die in vivo-Aktivität der LPS-Trap-Fc(Ad) zu testen, wurden je 6 Ad-LPS-Trap-Fc- und Ad-β-Gal-infiizierte CD-1 Mäuse am Tag 4 p.i. 1 µg hochreines LPS in 0,9% NaCl i.v. (retrobulbär) injiziert. Nach 60 min wurden die Mäuse geblutet und das Serum gewonnen (siehe 3.5.2). Die TNF und MCP-1-Spiegel im Serum wurden mittels Luminex gemessen (siehe 3.4.2).

3.6 Statistik

4 Ergebnisse

4.1 Modulation der TLR4-Signaltransduktion durch die LPS-Trap-Fc

4.1.1 Produktion der LPS-Trap-Fc in verschiedenen Zellsystemen

Durch die Kopplung der LPS-Trap an ein humanes IgG-Fc-Fragment erhoffte man sich in erster Linie eine problemlose Reinigung aus Zellüberständen und aufgrund der verlängerten Bluthalbwertszeit eine erhöhte Effektivität im Sepsis-Tiermodell (Abb. 4.1). Zunächst wurden verschiedene Expressionssysteme für die LPS-Trap-Fc untersucht, um ausreichende Proteinmengen für in vivo Versuche zu gewinnen.

Abb. 4.1: LPS-Trap-Fc

4.1.1.1 Schneider S2-Zellen

Die Expression in der Drosophila-Zelllinie Schneider S2 stellt eine effektive und logistisch unkomplizierte Form der Proteingewinnung dar. Die Vorteile liegen in der anspruchlosen Kultivierung, die ohne zusätzliche Befeuchtung und CO$_2$-Begasung bei Temperaturen zwischen 21 und 28°C erfolgt. Darüber hinaus wird spontan eine überdurchschnittlich hohe Anzahl von Genkopian in eine einzelne S2-Zelle eingebaut, was zu hohen Ausbeuten in der Proteinproduktion führen kann.

4.1.1.1.1 Klonierung der LPS-Trap-Fc in pMT/Hygro

Abb. 4.2: LPS-Trap-Fc in kombiniertem Selektions/Expressionsvektor pMT/BiP/V5-HisA/Hygro (pMT/Hygro)

4.1.1.1.2 Expression der LPS-Trap-Fc

Für einen Expressionstest der LPS-Trap-Fc wurden S2-Zellen transient entweder mit pMT/Hygro alleine als Negativkontrolle oder mit pMT/Hygro/LPS-Trap-Fc transfi ziert. 24 h nach der Transfektion wurde die Proteinproduktion mit Kupfersulfat induziert. Nach weiteren 48 h wurden je 10 µl Zellüberstand über eine SDS-Page aufgetrennt. Im Anti-Flag-Western-Blot zeigte sich die Bande des Fusionsproteins bei ca. 130 kDa (Abb. 4.3), während in der Spur der kontrolltransfizierten Überstände erwartungsgemäß keine Bande sichtbar war.

Abb. 4.3: Expression der LPS-Trap-Fc in S2-Zellen

Überstände von Kontroll- (Spur 1) und pMT/Hygro/LPS-Trap-Fc transfizierten S2-Zellen (Spur 2) wurden 48 h nach Induktion der Proteinproduktion mittels SDS-Page analysiert. Das Fusionsprotein mit einer Masse von ca. 130 kDa konnte im Anti-Flag Western Blot nachgewiesen werden.
4.1.1.1.3 Reinigung der LPS-Trap-Fc

Abb. 4.4: gereinigte LPS-Trap-Fc nach Immunpräzipitation über Protein G Sepharose

4.1.1.2 Escherichia coli

Die Proteinproduktion in speziellen E. coli Stämmen kann eine effektive Alternative zu Zellsystemen sein. Die Kultivierung und Vermehrung der Transformanten ist im Vergleich zu Säuger- oder Insektenzelllinien mit einem äußerst geringen Aufwand verbunden und dementsprechend optimal für die Großproduktion

4.1.1.2.1 Klonierung der LPS-Trap-Fc in pET-22b(+)

Abb. 4.5: LPS-Trap-Fc in pET-22b(+)

Die LPS-Trap-Fc Sequenz wurde in das Leseraster der *pelB* Signalsequenz kloniert. Die Expression steht unter Kontrolle eines T7 RNA Promoters und kann in den entsprechenden Bakterienstämmen mit IPTG induziert werden.

4.1.1.2.2 Expression der LPS-Trap-Fc in BL21(DE3) pLysS

Die Produktion der LPS-Trap-Fc erfolgte in dem *E. coli* Derivat BL21(DE3) pLysS. Dieser Stamm besitzt das T7 Promotor Expressionssystem und ist defizient
für bestimmte Proteasen und Restriktionsenzyme. Das pLysS-Plasmid verhindert eine konstitutive Produktion des Proteins, die Genexpression wird erst durch IPTG Zugabe stimuliert.

Abb. 4.6: Expression der LPS-Trap-Fc in E. coli
Mit pET-22b(+)/LPS-Trap-Fc transformierte BL21(DE3) pLysS wurden bis zu einer OD von 1,0 bei 600 nm kultiviert. Darauf folgte eine 6- (Medium Spur 5, Zellysat Spur 9) bzw. 12-stündige (Medium 2, Zellysat 7) Stimulation mit IPTG. Die Spuren 4, 6 zeigten Kulturtmedium und die Spuren 8, 10 Zellysate von transformierten, nicht stimulierten Bakterien. Als Kontrolle diente gereinigte LPS-Trap-His (Spur 1).

BL21 Bakterien wurden mit pET-22b(+)/LPS-Trap-Fc mittels Elektroporation transformiert und bis zu einer optischen Dichte von 1,0 bei 600 nm kultiviert. Die Stimulation mit IPTG erfolgte 6 bzw. 12 h bei 37°C. Darauf wurden Kulturmedien und Zellysate im Anti-Flag Western Blot analysiert. Erwartungsgemäß war in den Überständen stimulierter Bakterien keine LPS-Trap-Fc nachweisbar (Abb. 4.6, Spur 2 und 5). In den Zellysaten stimulierter Bakterien hingegen konnte die Hauptbande des Fusionsproteins bei ca. 120 kDa detektiert werden (Abb. 4.6, Spur 7 und 9). Ferner waren noch etliche Banden von Abbauprodukten der LPS-Trap-Fc nachweisbar, was auf eine starke Proteaseaktivität der Bakterien hinweist. Die verringerte Größe der LPS-Trap-Fc um ca. 10 kDa gegenüber dem in Insektengewebe produzierten Fusionsprotein erklärt sich durch die fehlende Verzuckerung des Proteins in Bakterien. Als Kontrolle diente gereinigte LPS-Trap-His (12,5 µg/ml) bzw. Medien und Zellysate unstimulierter BL21 (Abb. 4.6, Spur 1 bzw. 4, 6, 8, 10) Trotz der zu erwartenden hohen Ausbeuten wurde von einer weiteren Verwendung eines bakteriellen Expressionssystems abgesehen, da die Aufarbeitung der LPS-Trap-Fc aus Zellysaten bis zum biologisch aktiven Protein aufgrund der fehlenden Verzuckerung sich vermutlich sehr aufwendig gestaltet hätte. Des Weiteren ist eine
unverhältnismäßig hohe Endotoxinkontamination bei der Reinigung aus bakteriellen Zelllysaten zu erwarten.

4.1.1.3 QBI293A-Zellen

Säugerzelllinien werden in der Industrie häufig für die Produktion rekombinanter Proteine genutzt. Die Proteine werden häufig in richtiger Faltung und natürlichen Glykosylierungsmustern produziert. Für die Produktion wurden daher QBI293A-Zellen, ein Ableger der HEK293 Zelllinie, getestet werden.

4.1.1.3.1 Klonierung der LPS-Trap-Fc in pIRESneo3

Um das Protein in größeren Mengen zu produzieren, sollte auf das pIRESneo3-Expressionsystem zurückgegriffen werden. Der Vektor pIRESneo3 verfügt über einen CMV-Promotor und eine interne ribosomale Eintrittsstelle (IRES), welche die Translation von zwei offenen Leserastern aus einer mRNA ermöglicht. Das zweite Leseraster des Vektors enthält das Gen *NPT-II*, welches Resistenz gegen Antibiotika der Aminoglycosid-Klasse vermittelt. So kann auf die Überprüfung einzelner Zellklone verzichtet und ein Selektionsdruck ausgeübt werden, der zu einer optimierten Proteinproduktion führen sollte.

Abb. 4.7: LPS-Trap-Fc in p3xFlag-CMV-8 und pIRES/neos

Für die Klonierung von pIRESneo3/LPS-Trap-Fc wurde der Vektor CMV-8/LPS-Trap-Fc mit dem Restriktionsenzym Asel verdaut und die entstandenen 5'-Überhänge mit Hilfe des Klenow-Fragment-Enzyms aufgefüllt. Anschließend wurde das Fragment mit BamHI geschnitten. Dadurch konnte die LPS-Trap-Fc zusammen mit der Preprotrypsin-Signalsequenz in den mit EcoRV und BamHI verdauten Vektor pIRESneo3 kloniert werden (Abb. 4.7).

4.1.1.3.2 Expression der LPS-Trap-Fc in QB293A

Die Expression der LPS-Trap-Fc wurde nach der Transfektion der Zellen und 14-tägiger Selektion mit G418 im Anti-Flag Western Blot überprüft. In den Zellkulturüberständen konnte die LPS-Trap-Fc bei ca. 140 kDa nachgewiesen werden. Ferner konnte eine Abhängigkeit der Proteinproduktion von der Antibiotikakonzentration festgestellt werden (Abb. 4.8, Spur 2: 500µg/ml, 3: 1 mg/ml, 4: 2 mg/ml). Die erhoffte Steigerung der Ausbeute im pIRES Expressionssystem konnte im vergrößerten Maßstab unter serumfreien Bedingungen nicht erreicht werden. Es wurden lediglich 0,5 µg/ml Protein im Überstand festgestellt (Daten nicht gezeigt). Die erfolgreiche Expression in Säugetierzellen stellte allerdings die Grundlage für die Untersuchungen über die Opsonisierungseigenschaften der LPS-Traps-Fc1-4 (siehe 4.3), da mit diesem System über lange Zeit konstante Proteinmengen produziert werden konnten.

![Abb. 4.8: Expression der LPS-Trap-Fc in QB293A](image_url)

Überstände von pIRESneo3/LPS-Trap-Fc (Spur 2-4) oder Kontrollvektor (Spur 1) transfizierten QB293A wurden auf die LPS-Trap-Fc Produktion im Anti-Flag Western Blot analysiert.

4.1.1.4 Baculovirusssystem

Das Baculovirus Expressionssystem ist durch unkomplizierte Zellkultivierung, hohe Transfektionsraten und Proteinausbeuten hervorragend für die Großproduktion
von rekombinanten Proteinen geeignet. Da das Baculovirus *Autographa california Nuclear Polyhedrosis Virus* (AcNPV) ausschließlich für Insekten infektiös ist, müssen keine besonderen Schutzmaßnahmen getroffen werden.

4.1.1.4.1 **Klonierung der LPS-Trap-Fc in pFastBac1**

Die rekombinanten Baculoviren wurden mit Hilfe des Bac to Bac® Baculovirus Expressionsystems generiert. Hierfür wurde die LPS-Trap-Fc DNA einschließlich der BiP-Signalsequenz aus dem Vektor pMT/Hygro/LPS-Trap-Fc über die Restriktionsschnittstellen *BamH*I und *Pmel* ausgeschnitten und in den Transfervektor pFastBac1 kloniert (Abb. 4.9). Das pFastBac1/LPS-Trap-Fc Donorplasmid wurde in DH10Bac *E. coli* transformiert. Dieser Bakterienstamm enthält sowohl ein Bacmid, das die virale DNA enthält und als Shuttlevektor dient, als auch ein Helfer-Plasmid, das für eine Transposase kodiert. In den Bakterien findet mit Hilfe der Transposase eine gerichtete Rekombination zwischen dem Shuttle- und Transfervektor statt. Die rekombinante Bacmid DNA konnte anschließend vermehrt und isoliert werden.

![Abb. 4.9: LPS-Trap-Fc in pFastBac1](image)

Die LPS-Trap-Fc DNA wurde zusammen mit der BiP-Signalsequenz aus pMT/Hygro ausgeschnitten und in den Transfervektor pFastBac1 kloniert. Über die Tn7 Sequenzen kann eine Transposase die LPS-Trap-Fc Sequenz gerichtet in das Baculovirus-Bacmid transferieren.

4.1.1.4.2 **Expression der LPS-Trap-Fc in Sf-21 und High Five™ Zellen**

Die gewonnene Bacmid DNA wurde in Sf-21 Insektenzellen transfiziert. Bereits nach 24 h konnte eine erfolgreiche Transfektion über die veränderte
Morphologie der Zellen festgestellt werden. Nach weiteren drei Tagen waren die Insektenzellen durch das Virus vollständig lysiert. Die Zellüberstände wurden auf die Produktion des rekombinanten Proteins im Anti-Flag Western Blot überprüft. Die Baculovirus produzierte LPS-Trap-Fc zeigte wie das in S2-Zellen produzierte Fusionsprotein eine Masse von ca. 130 kDa (Abb. 4.10, A).

Abb. 4.10: Produktion der LPS-Trap-Fc im Baculovirus Expressionssystem
(A) Sf-21-Zellen wurden mit rekombinanter Bacmid-DNA in unterschiedlichen Verhältnissen transfiziert. Nach 4 Tagen wurden die Überstände auf die Expression der LPS-Trap-Fc im Western Blot untersucht. Für die Detektion wurde ein Anti-Flag Antikörper verwendet. (B) High Five™-Zellen wurden mit rekombinanten Baculoviren in steigenden MOIs infiziert. Nach 48 h, 72 h und 96 h wurden Zellüberstände auf die LPS-Trap-Fc Produktion im Anti-Flag-Western Blot getestet.

die Produktion der LPS-Trap-Fc zu verschiedenen Zeitpunkten nach der Infektion (p.i.) überprüft. Im Anti-Flag Western Blot zeigte sich deutlich, dass bei MOIs zwischen drei und zehn bereits nach 48 h eine hohe Konzentration an Fusionsprotein im Überstand vorhanden ist (Abb. 4.10, B). Nach 72 bzw. 96 h sank die Menge an LPS-Trap-Fc kontinuierlich und stark ab (Abb. 4.10, B). Erste Abbauprodukte waren schon nach 48 h deutlich im Western Blot zu erkennen. Die bei hohen MOIs vollständig lysierten Zellen haben demnach eine hohe Konzentration an Proteasen im Überstand zur Folge, die zu einem rapiden Abbau der Fusionsproteine führen.

4.1.1.4.3 Reinigung der LPS-Trap-Fc

Um die Ausbeute an Fusionsprotein im Baculovirus System zu überprüfen, wurden High Five™ Zellen in einem größeren Ansatz mit einer MOI von zehn infiziert. Die LPS-Trap-Fc wurde 48 h p.i. über eine Protein G Säule direkt aus den Überständen isoliert. Die Elution erfolgte wiederum mit 0,1 M Glycin/HCl-Puffer pH 2,8. Die einzelnen Fraktionen wurden mittels einer SDS-Page aufgetrennt und das Gel direkt mit Sypro-Red angefärbt. Die LPS-Trap-Fc Banden bei 130 kDa ließen auf eine Ausbeute von insgesamt 1 bis 1,5 mg schließen. Dies entspräche 5 bis 7,5 µg/ml Fusionsprotein im Überstand. Weiterhin konnten nur sehr schwache Banden verschmutzender Proteine in den Eluaten festgestellt werden.

 Abb. 4.11: LPS-Trap-Fc nach Reinigung über eine Protein G Säule

Das Baculovirus-Expressionssytem kristallisierte sich als das am besten geeignete System für die Großproduktion heraus. Für kleinere Ansätze sollte das einfachere Drosophila-Expressionssystem genutzt werden.
4.1.2 Charakterisierung der LPS-Trap-Fc

In den folgenden Untersuchungen sollten die biochemischen Eigenschaften und die biologischen Aktivität der LPS-Trap-Fc genauer charakterisiert werden.

4.1.2.1 Unterschiede in der Glykosylierung in Abhängigkeit vom Expressionssystem

Die LPS-Trap-Fc wies abhängig vom gewählten Expressionssystem auffällige Größenunterschiede auf (siehe 4.1.1.1.2 und 4.1.1.2.2). Die unterschiedlichen Glykosylierungsmuster von Insekten- und Säugerzellen könnten die Ursache für dieses Phänomen sein. Um dies zu überprüfen, wurden Überstände von S2- und QBI293A-Transfektanden mit Glykosidasen versetzt, anschließend im SDS-Gel aufgetrennt und mit einem Anti-Flag-Antikörper detektiert. Der Verdau mit Endoglykosidase H (Endo H) reduzierte die Masse der LPS-Trap-Fc aus S2-Transfektanden von 130 kDa (Abb. 4.12, Spur 1) auf ca. 120 kDa (Spur 2), während die LPS-Trap-Fc aus QBI293A-Transfektanden (Spur 4) nur partiell verdaut und der Masseverlust geringer ausfiel (Spur 5). Dies entsprach den Erwartungen, da Endo H den Chitobiosekerne nur spaltet, wenn große Mannosereste im Zucker vorliegen [126]. Die Glykosylierungen in Insektenzellen weisen überdurchschnittlich viele Mannosereste auf [127].

Abb. 4.12: Größenmuster der LPS-Trap-Fc nach Glykosidasenverdau

Überstände von LPS-Trap-Fc S2- (linke Hälfte) und QBI293A-Transfektanden (rechte Hälfte) wurden mit Endo H (Spur 2, 4) oder PNGase F (Spur 3, 6) verdaut. Nach der Auf trennung im SDS-Gel, konnten die Proben im Anti-Flag Western Blot identifiziert werden. Unbehandelte Überstände dienten als Kontrollen (Spur 1, 4).

Durch Behandlung mit Peptid N-Glykosidase F (PNGase F) wurden die Zucker der LPS-Trap-Fc sowohl aus S2- als auch aus QBI293A-Transfektanden vollständig verdaut, was im Western Blot durch die Reduktion auf das berechnete
Ergbnisse

Molekulargewicht von 115 kDa bzw. 117 kDa sichtbar wurde (Abb. 4.12, Spur 3 und 6). Die Größenunterschiede waren also ausschließlich auf die unterschiedlichen Verzuckerungen in den jeweiligen Wirtszenellen zurückzuführen.

4.1.2.2 Untersuchung der LPS-Bindungsfähigkeit

Um die tatsächliche Interaktion der LPS-Trap-Fc mit LPS zu untersuchen wurde ein LPS Pull-down-Assay durchgeführt [33].

Über das gleiche Verfahren sollte die LPS-Bindung an gereinigter LPS-Trap-Fc nachgewiesen werden. Die Versuchsansätze enthielten 2 µg/ml LPS-Trap-Fc. Für die Vermittlung der LPS-Bindung wurde noch 20% FCS zugesetzt. Überraschenderweise konnte aber keine Interaktion der LPS-Trap-Fc mit LPS festgestellt werden (Abb. 4.13, B). Zugabe von rekombinantem LBP und CD14 führte ebenfalls nicht zu einer Bindung von LPS (Daten nicht gezeigt). Demzufolge wurde die Konformation der LPS-Trap-Fc während des Reinigungsvorgangs so verändert, dass sie zum vollständigen Verlust ihrer in nativer Form vorhandenen LPS-Bindungsfähigkeit führte.
4.1.2.3 Inhibitorische Aktivität der LPS-Trap-Fc in vitro

Trotz des fehlenden Nachweises der LPS-Bindung im „LPS Pull-down“-Assay, sollte auch die biologische Aktivität der gereinigten LPS-Trap-Fc im Zellmodell überprüft werden. Hierfür wurden monozytische Mono Mac 6 (MM6)-Zellen in eine 48-well Platte ausgesät und mit steigenden Konzentration (1 µg/ml, 10 µg/ml und 20 µg/ml) an LPS-Trap-Fc oder PBS als Kontrolle versetzt. Die Stimulation erfolgte mit 100 ng/ml LPS über Nacht. Der durch ELISA bestimmte IL-6-Spiegel im Überstand konnte durch die gereinigte LPS-Trap-Fc in keinem Fall vermindert werden (Abb.
4.14, B). Es war im Gegenteil ein leichter konzentrationsabhängiger Anstieg der Stimulierung sichtbar, der aber nicht signifikant war. Bei der Testung der biologischen Aktivität bestätigte sich daher die Vermutung, dass nur native LPS-Trap-Fc aktiv ist, während das gereinigte Fusionsprotein seine inhibitorische Aktivität verlor.

Abb. 4.14: Biologische Aktivität von nativer und gereinigter LPS-Trap-Fc

(A) HEK293T-Zellen, transfiert mit LPS-Trap-Fc oder Kontrollvektor, wurden in einer 24-well Platte ausgesät und 48h mit RAW 284.7-Zellen in Transwells kokultiviert. Die Zellen wurden mit 5 ng/ml (linke Abbildung) bzw. 50 ng/ml (rechte Abbildung) LPS stimuliert. Nach 4h wurde TNF im Überstand mittels ELISA vermessen. p=0,001 bzw. p=0,017 (Mann-Whitney-U-Test), n=6

(B) Mono Mac 6-Zellen wurden mit steigenden Konzentrationen an gereinigter LPS-Trap-Fc inkubiert. Die Stimulation erfolgte mit 100 ng/ml LPS über Nacht. Die IL-6 Konzentration im Zellüberstand wurde per ELISA bestimmt.

4.1.2.4 Untersuchung alternativer Reinigungsmethoden für die LPS-Trap-Fc

Aufgrund des Aktivitätsverlustes nach der Isolierung der LPS-Trap-Fc aus Zellüberständen sollte das Fusionsprotein vor und nach der Reinigung genauer charakterisiert und gegebenenfalls alternative Reinigungsverfahren getestet werden.
4.1.2.4.1 Oligomerisierung der LPS-Trap-Fc während der Reinigung

Sowohl die LPS-Trap-His als auch die LPS-Trap-Fc neigen zu Oligomerenbildung [120]. Die LPS-Trap-Fc sollte nun unter nicht-reduzierenden Bedingungen untersucht werden. Hierfür wurde Zellüberstand LPS-Trap-Fc produzierender S2 Zellen mit über Protein G gereinigter LPS-Trap-Fc im Anti-Flag Western Blot verglichen. Unter reduzierenden Bedingungen (plus DTT) konnte die LPS-Trap-Fc-Bande in beiden Fällen wie erwartet bei 130 kDa detektiert werden (Abb. 4.15). Beim Verzicht auf DTT hingegen zeigte sich ein unterschiedliches Bild: Während die LPS-Trap-Fc im Überstand als IgG-Fc-Dimer vorlag, setzte sich das gereinigte Fusionsprotein überwiegend aus Oligomeren zusammen (Abb. 4.15), die teilweise aufgrund ihrer Größe nicht das Trenngel erreichten und im Sammelgel verblieben.

Abb. 4.15: Vergleich von gereinigter mit nativer LPS-Trap-Fc
Überstände von LPS-Trap-Fc transfizierten Zellen (ÜS-Trap-Fc) und gereinigte LPS-Trap-Fc (Trap-Fc) wurden unter reduzierenden (+ DTT) bzw. nicht-reduzierenden Bedingungen über ein SDS-Gel aufgetrennt. Die Detektion erfolgte durch einen Anti-Flag Antikörper.

Da nur die monomere Form des Fusionsproteins LPS bindet [120], konnte der Aktivitätsverlust auf die Oligomerisierung während der Reinigung zurückgeführt werden. Der für die Stabilität und Struktur des Proteins kritischste Schritt der Reinigung stellt die Elution bei einem pH von 2,8 dar. Wurde die LPS-Trap-Fc unter schonenderen Bedingungen bei pH 4,0 oder in Gegenwart von BSA als Schutzprotein eluiert, zeigte sich aber ein identisches Bild im Western Blot (Daten nicht gezeigt).
4.1.2.4.2 Konstruktion und Expression der His-LPS-Trap-Fc

Für die Überprüfung alternativer Reinigungsmethoden sollte ein 6xHis-Peptid N-terminal in die LPS-Trap-Fc eingebracht werden. Über diesen Marker wäre eine weit schonendere Isolierung im leicht basischen Milieu analog zur Reinigung der LPS-Trap-His möglich.

Der Vektor pMT/Hygro/LPS-Trap-Fc wurde mit den Restriktionenzymen Stil in der Mitte der BiP-Signalsequenz und mit EcoRV kurz vor der Flag-Sequenz der LPS-Trap-Fc geschnitten. Der fehlende Teil der BiP-Signalsequenz und die 6xHis-Sequenz konnten anschließend über die Oligonukleotide (5) und (6) eingefügt werden (Abb. 4.16, A).

Abb. 4.16: Konstruktion der His-LPS-Trap-Fc
(A) Über ein Oligonukleotid wurde in den Vektor pMT/Hygro/LPS-Trap-Fc ein 6xHis-Tag an den N-Terminus der LPS-Trap-Fc eingefügt.
(B) Die His-LPS-Trap-Fc wurde aus Überständen von transfizierten S2-Zellen entweder mit Protein G (PG) oder chelatierender Sepharose (CS) immunpräzipitiert. Der Nachweis erfolgte im Western Blot mit einem Anti-Flag oder Anti-6xHis Antikörper.

Im nächsten Schritt sollte die Expression und Funktion des 6xHis-Tags überprüft werden. Hierfür wurde die His-LPS-Trap-Fc entweder über das Fc-Fragment (Protein G) oder das His-Peptid (chelatierende Sepharose) aus Überständen isoliert. Im Anti-Flag und im Anti-His Western Blot konnte die His-LPS-Trap-Fc bei ca. 130 kDa detektiert werden (Abb. 4.16, B). Dies bedeutete, dass sowohl der N- als auch der C-terminale Tag der His-LPS-Trap-Fc funktionsfähig waren.
4.1.2.4.3 Einfluss unterschiedlicher Reinigungsmethoden auf die LPS-Bindungsfähigkeit

Die His-LPS-Trap-Fc ermöglichte einen genaueren Vergleich der verschiedenen Reinigungsmethoden für das Fusionsprotein. Die His-LPS-Trap-Fc wurde aus den Überständen produzierender S2-Zellen entweder mit chelatierender Sepharose (CS) oder Protein G (PG) gefällt und entsprechend mit 300 mM Imidazol pH 8,0 oder 0,1 M Glycin/HCl pH 4,0 eluiert. Alternativ wurde das Fusionsprotein (IEP 6,04) über eine Anionenaustauscher-Säule aus dem Überstand isoliert und anschließend mit 1,0 M TRIS-HCl pH 8,8 aus der Säule eluiert. Anschließend wurden alle Eluate gegen PBS dialysiert und ein „LPS Pull-down“-Assay in Anwesenheit von 20% FCS durchgeführt (vgl. 4.1.2.2). Im Anti-Flag Western Blot wurde deutlich, dass die His-LPS-Trap-Fc nach der Isolierung über chelatierende Sepharose (CS) und Anionenaustauscher (AA) wie im nativen Zustand (ÜS) ihre LPS-Bindungsfähigkeit erhalten konnte (Abb. 4.17, A). Nach der Reinigung über Protein G (PG) hingegen war die Bande der His-LPS-Trap-Fc nur sehr schwach zu erkennen, was auf eine insgesamt geringe Interaktion mit LPS hinwies (Abb. 4.17, B).

Da im Western Blot nur qualitative Aussagen über die LPS-Bindungsfähigkeit getroffen werden konnten, sollte ein LPS-Bindungstest auf der Basis eines ELISAs etabliert werden. Zunächst sollten die Mengen an Fusionsprotein in den einzelnen Eluaten gegen den Überstand abgeglichen werden. Eine ELISA-Platte wurde mit einem Anti-Flag-Antikörper beschichtet und die Eluate bzw. der Überstand auf die Platte titriert. Die Menge an enthaltener His-LPS-Trap-Fc konnte anschließend mittels eines Anti-IgG-Fc Antikörpers bestimmt werden.

Das Fusionsprotein konnte nun in exakt gleichen Mengen auf eine Anti-Flag Antikörper beschichtete ELISA-Platte aufgetragen werden. Sodann wurde das gebundene Fusionsprotein mit LPS-Biotin (0,5 µg/ml) in PBS plus 20% FCS inkubiert. Die Detektion erfolgte mit HRP-gekoppeltem Streptavidin. Im LPS-Bindungs-ELISA konnte deutlich gezeigt werden, dass natives Fusionsprotein (ÜS) die höchste Affinität zu LPS besitzt (Abb. 4.17, B). Die Bindung an unter basischen Bedingungen gereinigtem Protein (AA, CS) war nur unwesentlich geringer (Abb. 4.17, B). Die über Protein G isolierte His-LPS-Trap-Fc zeigte hingegen nur eine schwach über Kontrollniveau liegende Bindung von LPS. Durch eine Isolierung des Fusionsproteins im leicht basischen Milieu konnte somit die LPS-Bindungsaktivität erhalten werden.
Abb. 4.17: His-LPS-Trap-Fc behält seine LPS-Bindungsfähigkeit nach Reinigung im basischen Milieu

(A) Über chelatierende Sepharose (CS), Anionenaustauscher (AA) oder Protein G (PG) isolierte His-LPS-Trap-Fc bzw. Fusionsprotein enthaltende Überstände (ÜS) wurden mit Biotin-LPS inkubiert und anschließend mit Streptavidin immunpräzipitiert. Die Präzipitate wurden im Anti-Flag Western Blot analysiert.
(B) Anti-Flag beschichtete ELISA-Platten wurden mit identischen Mengen an Fusionsprotein inkubiert. Die Bindung von biotiniertem LPS an die einzelnen Fraktionen (siehe A) wurde über Streptavidin-HRP bestimmt.

4.2 Untersuchung weiterer Liganden für die LPS-Trap

Die postulierte Überlegenheit der LPS-Trap gegenüber anderen Anti-Endotoxin-Strategien begründet sich mit der Eigenschaft, nicht nur die Wirkung von LPS zu hemmen, sondern auch Effekte weiterer Mediatoren zu antagonisieren. Für TLR4 ist eine Reihe bakterieller, viraler, aber auch körpereigener Liganden beschrieben [107-109]. In den folgenden Experimenten sollte geklärt werden, ob auch die LPS-Trap die Fähigkeit besitzt weitere Strukturen über LPS hinaus zu binden.
4.2.1 Bindung und Hemmung von Paclitaxel durch die LPS-Trap-Fc

Der mitosehemmende und antiangiogene Naturstoff Paclitaxel (Taxol®) gehört neben LPS zu den am besten beschriebenen Liganden für TLR4. Während die Bindung und Signaltransduktion an Maus-TLR4/MD-2 als gesichert gilt, bleiben die über humanem TLR4 vermittelten Effekte umstritten [119; 128]. Die Bindung von Paclitaxel erfolgt analog zu LPS ebenfalls an MD-2, wobei sowohl murines als auch humanes MD-2 mit Paclitaxel interagieren [129].

Abb. 4.18: Bindung und Hemmung von Paclitaxel durch die LPS-Trap-Fc

(A) Paclitaxel bzw. LPS beschichtete ELISA-Platten wurden mit Überständen von LPS-Trap-Fc (rot) bzw. T2/6-Fc (grau) transfizierten QBI293A inkubiert. Die Bindung der Fusionsproteine wurde über einen HRP-gekoppelten Anti-hlgG-Fc, darauffolgender chromogener Reaktion im ELISA-Reader bei einer Wellenlänge von 450-540 nm quantifiziert. ***p<0,001, Mann-Whitney-U-Test, n=8

(B) Mit LPS-Trap-Fc (rot) bzw. T2/6-Fc (grau) produzierende QBI293A wurden mit RAW 264.7-Zellen 48 h kokultiviert. Die Zellen wurden mit 1 µM (linke Abb.) und 10 µM Paclitaxel (rechte Abb.) über Nacht stimuliert und IL-6 im Überstand per ELISA vermessen.* p=0,028, **p=0,005, Mann-Whitney-U-Test, n=8

Die Assoziation von Paclitaxel zur LPS-Trap sollte zunächst in einem Bindungsassay überprüft werden. Hierfür wurden 10 µM Paclitaxel bzw. 10 µg/ml LPS über Nacht auf eine ELISA-Platte beschichtet und anschließend mit LPS-Trap-Fc bzw. T2/6-Fc (siehe 4.6.1) -haltigen QBI293A-Überständen inkubiert. Die Detektion der gebundenen Fusionsproteine erfolgte mit einem Anti-hlgG-Fc
Antikörper. Die LPS-Trap-Fc interagiere im Gegensatz zur T2/6-Fc sowohl mit fixiertem LPS als auch mit Paclitaxel (Abb. 4.18, A)

Über die reine Bindung von Paclitaxel hinaus sollte die Aktivität der LPS-Trap-Fc zusätzlich noch in einem Stimulationsmodell gestestet werden, um die kompetitive Wirkung gegenüber den zellständigen Rezeptoren zu belegen. Im Transwell-Modell wurden stabil mit LPS-Trap-Fc oder T2/6-Fc transfizierte QBI293A mit RAW 264.7 in Transwells 48 h kokultiviert, anschließend über Nacht mit 1 μM bzw. 10 μM Paclitaxel stimuliert und die IL-6 Konzentration im Überstand mittels ELISA gemessen. In LPS-Trap-Fc-haltige Überstände konnte eine signifikant geringere IL-6 Ausschüttung als in Kontrollüberstände festgestellt werden (Abb. 4.18, B). Das Fusionsprotein ist folglich nicht nur in der Lage Paclitaxel zu binden, sondern kann auch eine Paclitaxel-induzierte proinflammatorische Reaktion in vitro kompetitiv hemmen.

4.2.2 Untersuchung zur Bindung der LPS-Trap an Adenoviren

![Abbildung 4.19: Immunpräzipitation von adenviralen Zellüberständen](image)

Ad-β-Gal-haltige Überstände wurden mit 0,1, 0,5 und 1,0 μg/ml LPS-Trap-His (Spur 1, 2, 3) inkubiert. Das Fusionsprotein wurde mit Anti-Flag Agarose immunpräzipitiert und im SDS-Gel aufgetrennt. Die Detektion erfolgte durch einen Anti-Adenovirus Antikörper. Zum Vergleich wurden Kontrollpräzipitate unbehandelter Überstände (Spur 4-6) und direkt aufgetragener Überstand (Spur 7) verwendet.

4.2.3 Interaktion der LPS-Trap mit High-mobility group box 1 protein

Die Funktion des High-mobility group box 1 protein (HMGB1) wurde ursprünglich auf die Rolle als transkriptionsregulierender Faktor begrenzt. Inzwischen ist aber bekannt, dass das Protein darüber hinaus Zytokin-ähnliche Eigenschaften besitzt. So wurde HMGB1 als Spätmediator von entzündlichen Reaktionen identifiziert [133] und spielt daher eine wichtige Rolle in der Pathogenese der Sepsis und chronischer Krankheiten [134]. Neben dem receptor for advanced glycation end-products (RAGE) werden auch TLR4 und TLR2 als verantwortliche Rezeptoren für die Signaltransduktion diskutiert [135; 136]. In Koinmunpräzipitationsexperimenten sollte nun herausgefunden werden, ob HMGB1 an die LPS-Trap bindet.

Gereinigte LPS-Trap-His (1µg/ml) wurde 1 h zusammen mit rekombinanntem HMGB1 (1 µg/ml) in PBS plus FCS 10% inkubiert. Nach der Fällung der LPS-Trap-His über Anti-Flag Agarose wurde das Präzipitat durch eine SDS-PAGE aufgetrennt. Die Bande von HMGB1 mit etwas über 30 kDa konnte im Anti-HMGB1 Western Blot identifiziert werden (Abb. 4.20, Spur 4). Die Interaktion mit der LPS-Trap-His ließ sich durch eine Koinkubation mit LPS (1µg/ml) vollständig aufheben (Abb. 4.20, Spur 5). Da die Verdrängung von HMGB1 durch einen vergleichsweise geringen molaren Überschuss an LPS (2:1) gelang, ist davon auszugehen, dass die Affinität der LPS-Trap zu LPS deutlich größer als zu HMGB1 ist. Die gleichermaßen in der Negativkontrolle (Abb. 4.20, Spur 6) zu erkennenden Banden bei 55 kDa und 25 kDa rührten von der schweren und leichten Kette des Anti-Flag-M2 Antikörpers her.
4.2.4 Untersuchungen über Bindung von Fettsäuren an TLR4/MD-2

Die Verbindung zwischen Entzündung und Diabetes gilt inzwischen als unumstritten. So wird Adipositas als ein Zustand chronischer, geringgradiger Entzündung betrachtet [137; 138]. Die Art und Weise der Zusammenhänge ist noch nicht vollständig geklärt, TLR4 scheint aber eine Schlüsselrolle zu spielen [139].

4.2.4.1 Keine direkte Assoziation von 14C-Öl- und Stearinsäure an der LPS-Trap-His

Stearin- und Ölsäure beeinflussen die Resistin- und MCP-1 Sekretion in differenzierten 3T3-L1 Adipozyten. Diese Effekte sind über den TLR4 Signalweg vermittelt [140]. Ob eine direkte Bindung der Fettsäuren an TLR4/MD-2 für diese Effekte verantwortlich ist, sollte über Fettsäure-Bindungsassays geklärt werden.

Die LPS-Trap-His wurde mit Anti-Flag Agarose aus S2-Überständen gefällt und mit 14C-markierter Öl- bzw. Stearinsäure 2 h in PBS/FCS 20% inkubiert. Für die Verdrängungsreaktion wurde die Hälfte der Proben mit einem 100-fachen molaren Überschuss der entsprechenden kalten Fettsäure versetzt. Über Szintillationsmessungen konnte anschließend die Menge gebundener Fettsäure...
bestimmt werden. Weder Stearin- noch Ölsäure zeigten in Konzentrationen von 1 µM
und 10 µM eine spezifische Bindung an die LPS-Trap-His (Abb. 4.21, unten).

Parallel wurde ein Fettsäure-LPS-Verdrängungs-Assay durchgeführt. Überstände von LPS-Trap-His S2-Transfektkanden wurden mit 0,5 µg/ml Biotin-LPS in Gegenwart eines 100-fachen molaren Überschusses der angegebenen Fettsäuren in PBS plus FCS 20% 1 h inkubiert. Nach der Fällung mit Streptavidin Sepharose wurden die Präzipitate über ein SDS-Gel aufgetrennt und im Anti-Flag Western Blot analysiert. Auch hier waren sowohl Stearin- (Spur 3) als auch Ölsäure (Spur 4) nicht in der Lage, das biotinylierte LPS aus seiner Bindung zu verdrängen, da die LPS-Trap-His weiterhin durch das biotinylierte LPS koimmunpräzipitiert wurde (Abb. 4.21).

Abb. 4.21: Fettsäure-Verdrängungs-Assays mit der LPS-Trap-His

Western Blot: LPS-Trap-His-haltige S2-Überstände wurden mit biotinyliertem LPS alleine (Spur 1) oder in Gegenwart eines 100-fachen molaren Überschusses an Stearin- (Spur 3) bzw. Ölsäure (Spur 4) inkubiert. Die LPS/Fusionsprotein-Komplexe wurden über Streptavidin immunpräzipitiert und die Präzipitate im Anti-Flag Western Blot analysiert. Präzipitate aus unbehandelten Überständen dienten als Negativkontrolle (Spur 2)

14C-Fettsäure-Bindungs-Assay: Anti-Flag Agarose Präzipitate der LPS-Trap-His wurden mit 14C-markierter Stearin- (Spur 3, unten) bzw. Ölsäure (Spur 4, unten) alleine oder in Gegenwart eines 100-fachen molaren Überschusses an kalter Fettsäure in PBS plus FCS 20% inkubiert. Die Menge an gebundener Fettsäure wurde im Szintillationsmessgerät bestimmt. Als spezifische Bindung wurde definiert: (gebundene 14C (cpm) – gebundene 14C mit Überschuss kalter Fettsäure (cpm)) x 100 % / total eingesetzte 14C (cpm).

4.2.4.2 Untersuchungen mit weiteren Fettsäuren

Neben der Stearin- und Ölsäure sollten noch weitere Fettsäuren auf die direkte Interaktion mit TLR4/MD-2 überprüft werden. Da die Verwendung von radioaktiven Fettsäuren zwar sensitiver wäre, aber hohen Aufwand und Kosten verursacht hätte, sollte bei diesen Experimenten die Verdrängung von LPS durch die Fettsäuren untersucht werden. Die Verdrängungsexperimente wurden analog zu 4.2.4.1 durchgeführt. Auch hier zeigte sich bei keiner der untersuchten Fettsäuren
ergebnisse

Eine erkennbare Verdrängung des Biotin-LPS aus seiner Bindungstasche (Abb. 4.22 A).

Abb. 4.22: Bindungs assay der LPS-Trap-His mit Fettsäuren

(A) Überstände LPS-Trap-His produzierender QBI293A-Zellen wurden mit Biotin-LPS alleine (Spur 1) oder in Gegenwart eines 100-fachen molaren Überschusses an unmarkiertem LPS (Spur 2) bzw. eines 1000-fachen molaren Überschusses der angegebenen Fettsäuren (Spur 3-11) inkubiert. Das LPS wurde durch Streptavidin Sepharose immunpräzipitiert, die Präzipitate durch SDS-PAGE aufgetrennt und gebundenes LPS-Trap-His im Anti-Flag Western Blot detektiert.

(B) LPS-Trap-His wurde in Anti-Flag Antikörper beschichteten Platten fixiert und mit Biotin-LPS alleine (Nr.1) oder in Gegenwart eines 100-fachen molaren Überschusses an unmarkiertem LPS (Nr.2) bzw. eines 1000-fachen molaren Überschusses an den angegebenen Fettsäuren (Nr.3-11) inkubiert. Gebundenes LPS wurde über Streptavidin-HRP detektiert und nach chromogener Reaktion im ELISA-Reader bei einer Wellenlänge von 450-540 nm quantifiziert. * p<0,05 im Vergleich zu Nr.1, Varianzanalyse: Kruskal-Wallis-Test, Post-Hoc Analyse: Tukey-Test, n=8

4.3 LPS-Trap-Fc als Opsonin

Durch die Dimerisierung über ein humanes IgG1-Fc Fragment besitzt die LPS-Trap-Fc theoretisch die Fähigkeit als Adapter zwischen Pathogen und Phagozyt im Sinne eines Antikörpers zu wirken. Im Folgenden soll daher die Fähigkeit der LPS-Trap-Fc, Gram-negative Bakterien zu opsonisieren, beschrieben werden.
4.3.1 Klonierung der LPS-Trap-IgG-Varianten

Humanes IgG wird abhängig von der natürlichen Konzentration im humanen Serum in vier Isotypen (IgG1-4) eingeteilt [141]. Diese Subklassen sind zu 95% in ihrer Aminosäuresequenz identisch und unterscheiden sich hauptsächlich in der Gelenkregion des Fc-Fragments [142]. Dies führt zu unterschiedlich starken biologischen Aktivitäten. So nimmt die Oponisierungs-Aktivität in Abhängigkeit von der Affinität zu den Fcy-Rezeptoren in folgender Reihenfolge ab: IgG1 > IgG3 > > IgG4 > IgG2. Die Aktivität der CDC verhält sich ähnlich: IgG3 > IgG1 >> IgG2 >> IgG4 [143]. Um den tatsächlichen Einfluss der LPS-Trap-Fc auf die Phagozytose und Komplementaktivierung möglichst exakt darzustellen, wurden zunächst Konstrukte der verschiedenen Isotypen von IgG kloniert.

4.3.1.1 LPS-Trap-Fc1

Die Klonierung der LPS-Trap-Fc1 in pIRESneo3 wurde bereits im Abschnitt 4.1.1.3.1 dargestellt.

4.3.1.2 LPS-Trap-Fc2

Um die Expression in Säugerzellen zu ermöglichen, wurde die LPS-Trap-Fc2 Sequenz aus pMT/Hygro durch die Restriktionensymbole NotI und Pmel herausgeschnitten und in den Expressionsvektor p3xFlag-CMV-8 kloniert.

Für die stabile Transfektion von Säugerzellen wurde die LPS-Trap-Fc2 zusätzlich in den Vektor pIRES/neo3 kloniert. Hierbei wurde analog zur Klonierung der LPS-Trap-Fc1 in pIRES/neo3 vorgegangen (siehe 4.1.1.3.1).
4.3.1.3 LPS-Trap-Fc3 und -Fc4

Für die Klonierung der LPS-Trap-Fc3 und –Fc4 wurde der TLR4/MD-2-Teil der LPS-Trap über eine PCR mit den Primern (5) und (6) aus dem Templat LPS-Trap-Fc in p3xFlag-CMV-8 amplifiziert und zusätzlich eine 5’- und 3’-BamHI-Schnittstellensequenz eingefügt. Das PCR-Produkt wurde anschließend mit dem Enzym BamHI, die Vektoren pFUSE-hlgG3-Fc2 bzw. pFUSE-hlgG4-Fc2 mit BglII verdaut und dephosphoryliert. Da BamHI und BglII identische Überhänge aber unterschiedliche Erkennungssequenzen besitzen, konnte das PCR-Produkt unter Verlust der Schnittstellen in die Zielvektoren eingefügt werden.

Weil für die Versuche mit Säugerzellen ein einheitliches Protokoll angestrebt wurde, wurden die Fusionsproteine in den Vektor p3xFlag-CMV-8 umkloniert. Hierfür wurden pFUSE/LPS-Trap-Fc3 und –Fc4 mit Nhel und p3xFlag-CMV-8 mit XbaI verdaut und anschließend die 5’-Überhänge mittels Klenow-Fragment durch die entsprechenden Nukleotide aufgefüllt. Der zweite Verdau erfolgte mit NotI. Die LPS-Trap-Fc3 bzw. -Fc4 konnte dadurch gerichtet in p3xFlag-CMV-8-8-umkloniert werden.

Die Klonierung in den Vektor pIRES.neo3 erfolgte wiederum analog zu 4.1.1.3.1.

4.3.2 Expression der LPS-Traps-Fc1-4

Für die Produktion der LPS-Traps-Fc1-4 wurde zunächst die Zelllinie HEK293T gewählt. Die Zellen wurden mit den jeweiligen Konstrukten in p3xFlag-CMV-8 transient transfiziert und nach 60 h die Zellüberstände auf die Anwesenheit der Fusionsproteine untersucht.

![Expression der LPS-Trap in HEK293T-Zellen](image)

Abb. 4.23: Expression der LPS-Trap in HEK293T-Zellen

Überstände von transient mit der LPS-Trap-Fc1, -Fc2, -Fc3 oder –Fc4 transfizierten HEK293T-Zellen wurden unter reduzierenden Bedingungen durch eine SDS-PAGE analysiert. Die löslichen Proteine wurden im Anti-hlgG-Fc und im Anti-Flag Western Blot überprüft.
Nach der Auftrennung im Polyacrylamidgel konnten sowohl im Anti-hIgG-Fc als auch im Anti-Flag Western Blot die Fusionsproteine bei ca. 140 kDa identifiziert werden (Abb. 4.23).

4.3.3 Nachweis der LPS-Bindung an den LPS-Traps-Fc1-4

Um die Bindung von LPS an den jeweiligen neuen Fc-Konstrukten zu überprüfen, wurde ein „LPS-Pull-down“ Assay durchgeführt. Jeweils 2 ml Überstand wurden mit 0,5 µg/ml biotinyliertem LPS versetzt. Anschließend erfolgte die Immunpräzipitation des biotinylierten LPS durch Streptavidin Sepharose. Im Anti-Flag Western Blot konnten die Konstrukte bei ca. 140 kDa detektiert werden Abb. 4.24, Spuren 1, 5, 9, 13). Die Kontrolle ohne biotinyliertes LPS zeigte diese Bande nicht (Abb. 4.24, Spuren 3, 7, 11, 14).

![Diagramm](image)

Abb. 4.24: Nachweis der Bindung von LPS an die LPS-Traps-Fc1-4

Wurde der Überstand mit einem Anti-TLR4/MD-2 Antikörper vorbehandelt, konnte die Bindung von LPS an die LPS-Trap-Fc verhindert werden. (Abb. 4.24, Spuren 2, 6, 8, 10). Da der Antikörper spezifisch mit dem TLR4/MD-2 Komplex interagiert, erfolgte die Bindung des LPS* durch die Fusionsproteine tatsächlich durch den gesamten TLR4/MD-2 Komplex. Wurden die Überstände vor dem „LPS-Pull-down“ mit 50 µg/ml unmarkiertem LPS versetzt, war ebenfalls keine LPS-Trap nachweisbar (Abb. 4.24, Spuren 4, 8, 12, 16). Diese Verdrängungsreaktionen belegten, dass das biotinylierte LPS tatsächlich an die LPS-Bindungstasche aller LPS-Trap-Fc-Varianten bindet.

4.3.4 Überprüfung der biologischen Aktivität der LPS-Traps-Fc1-4

Im nächsten Schritt sollten die neutralisierenden Eigenschaften der LPS-Traps-Fc1-4 in vitro getestet werden. Hierfür wurde wiederum auf das Transwell-Modell zurückgegriffen, um die Fusionsproteine in einer möglichst nativen Form einzusetzen (siehe 4.1.2.3).

Abb. 4.25: LPS-Traps-Fc1-4 hemmen die LPS induzierte IL-6 Produktion in vitro

HEK293T-Zellen, transfiziert mit LPS-Trap-Fc1-4 oder Kontrollvektor (CMV-8), wurden in 24-well Platten ausgesät und mit in Transwells befindlichen MM6 Zellen koinzubiert. Nach 48 h wurden die Zellen mit 10 ng/ml (links) bzw. 100ng/ml (rechts) LPS über Nacht stimuliert. Die IL-6-Konzentration im Überstand wurde anschließend per ELISA vermessen. * p<0,001 (Mann-Whitney-U-Test), n=8

HEK293T-Zellen wurden mit den jeweiligen Konstrukten in p3XFlag-CMV-8 Expressionsvektoren transfiziert und 8 h später in 24-well Platten ausgesät. Mit
MM6-Zellen beladene Transwells wurden eingesetzt und die beiden Zelllinien 48 h kokultiviert. Daraufhin erfolgte die Stimulierung mit 10 ng/ml bzw. 100 ng/ml LPS über Nacht und die Messung der IL-6-Konzentration im Überstand mittels ELISA. LPS-stimulierte MM6, die mit LPS-Trap-Fc transfizierten HEK293T kokultiviert wurden, zeigten eine signifikant geringere IL-6 Sekretion verglichen mit jenen, die mit kontrolltransfizierten HEK293T koinkubiert wurden (Abb. 4.25). Alle Varianten der LPS-Trap-Fc hemnten somit eine durch LPS hervorgerufene proinflammatorische Reaktion in vitro.

4.3.5 Binding der LPS-Trap an Bakterien

Nachdem die Eigenschaften der neu konstruierten LPS-Traps-Fc1-4 in Bezug auf LPS-Bindungsfähigkeit und biologische Aktivität überprüft worden waren, sollte in weiteren Schritten festgestellt werden, ob die Fusionsproteine an Gram-negative Bakterien binden.

4.3.5.1 Assoziation der LPS-Trap-His an E. coli

Für die Bindungsstudien der LPS-Trap wurde zunächst die LPS-Trap-His verwendet, da diese auch in gereinigter, konzentrierter Form aktiv ist. Hierfür wurde das Fusionsprotein in einer Konzentration von 25 µg/ml mit 5x10⁶ CFU/ml E. coli K12 1 h bei RT inkubiert. Als Kontrolle fungierte das 6xHis- und Flag-Peptid markierte lösliche IL-1 Rezeptor akzessorische Protein (soluble IL-1 receptor accessory protein, Flag-sAcP) in einer Konzentration von 100 µg/ml. Dem Bindepuffer wurde noch 10% FCS zugesetzt, um einerseits eine unspezifische Bindung zu verhindern, andererseits durch enthaltene Lipotransferasen eine mögliche Bindung der LPS-Trap an LPS zu vermitteln. Nach der Färbung der Bakterien mit einem Anti-Flag-FITC-Antikörper konnte in durchflusszytometrischen Messungen eine robuste Bindung der LPS-Trap an Bakterien festgestellt werden (Abb. 4.26, A). Wurde die LPS-Trap-His zuvor mit einem Überschuss an LPS (100 µg/ml) geblockt, war nur noch eine schwache Erhöhung der Fluoreszenz im Vergleich zur Kontrolle messbar (Abb. 4.26, A). Die Bindung an Bakterien erfolgte also über die LPS-Bindungstasche. Die Inkubation der Bakterien mit steigenden Konzentrationen (5 µg/ml, 20µg/ml, 50µg/ml) an LPS-Trap führte zu einer dosisabhängigen Erhöhung der Fluoreszenz (Abb. 4.26, B). Folglich besitzt die LPS-Trap zumindest in relativ hohen Konzentrationen die Fähigkeit, an die Oberfläche Gram-negativer Bakterien zu binden.
Abb. 4.26: LPS-Trap bindet an Escherichia coli

E. coli K12 Bakterien (5x10⁶ CFU/ml) wurden 1 h mit 25 µg/ml (A) oder mit 5 µg/ml, 20 µg/ml oder 50 µg/ml LPS-Trap-His (B) (durchgezogene Linie) oder 100µg/ml sAcP (grau gefüllt) in PBS plus FCS 10% bei RT inkubiert. In (A) wurde die LPS-Trap noch zusätzlich mit 100 µg/ml LPS (gepunktete Linie) vorbehandelt. Die LPS-Trap-Bindung wurde mit Hilfe eines Anti-Flag-FITC-Antikörpers detektiert. Die Quantifizierung der Bindung erfolgte mittels Durchflusszytometrie im Fluoreszenzkanal 1 (FL1, grün).

4.3.5.2 Spezifische Bindung der LPS-Trap-Fc an Gram-negative Bakterien

In den folgenden Experimenten sollte geklärt werden, ob neben der LPS-Trap-His auch ihre IgG-Fc-Chimären an die Bakterienoberfläche binden. Hierfür konnten auf Grund des Aktivitätsverlustes der LPS-Trap-Fc nach der Reinigung (siehe 4.1.2.2) ausschließlich Zellüberstände verwendet werden.

Für die Überprüfung der Bindung wurde 1 ml LPS-Trap-Fc1-haltige Überstände von stabil transfizierten QBI293A mit 5x10⁶ CFU hitzeinaktivierten *E. coli* K12 oder den Gram-positiven Stämmen *S. aureus* (ATCC 6538) bzw. *B. subtilis* (ATCC 6638) 1 h bei RT inkubiert. Als Negativ-Kontrollen wurde FCS-haltiges Medium (DMEM) entweder alleine oder zusätzlich mit 100 µg/ml Flag-sAcP verwendet. Nach der Färbung mit einem Anti-Flag-FITC mAb wurden die Ansätze wiederum mittels Durchflusszytometrie vermessen. Analog zur LPS-Trap-His ließ sich eine Bindung an der Oberfläche von *E. coli* nachweisen (Abb. 4.27, linkes Histogramm). Die vergleichsweise geringe Zunahme der Fluoreszenzaktivität gegenüber 4.3.5.1 ist mit den deutlich geringeren Konzentrationen der LPS-Trap-Fc in Zellüberständen zu erklären.

Die Assoziation der LPS-Trap-Fc mit der bakteriellen Oberfläche sollte noch in einem weiteren System überprüft werden. Hierfür wurde ein „bakterieller ELISA“ etabliert. Lebendige Bakterien wurden über Nacht bei Raumtemperatur in eine hochbindende ELISA-Platte (5x10^7 CFU/well) ausplattiert und fungierten somit als „Fang-Antikörper“ für die eingesetzten LPS-Trap-Fc1-haltigen Zellüberstände. Ein Teil dieser Überstände wurde über Nacht bei 4°C mit 10 µg/ml LPS versetzt, um die LPS-spezifische Bindung an der Bakterienoberfläche zu bestätigen. Als Kontrolle für die Bakterienspezifität dienten B. subtilis bzw. für die Proteinspezifität mit Flag-sAcP
(10 µg/ml) versetztes Medium (DMEM 10%). Für die Detektion der LPS-Trap-Fc1 wurde ein Anti-Flag-HRP-gekoppelter Antikörper verwendet. Hier zeigte sich deutlicher als bei den durchflusszytometrischen Messungen, dass die LPS-Trap-Fc1 spezifisch an die Oberfläche Gram-negativer Bakterien bindet und sich diese Bindung durch Vorinkubation mit LPS fast vollständig verhindern lässt (Abb. 4.28, A).

In einer weiteren Versuchsreihe wurden ELISA-Platten mit steigenden Konzentrationen an E. coli beschickt. Durch die Titration der Bakterien konnte dargestellt werden, dass die Menge an gebundener LPS-Trap-Fc1 allein von der Anzahl der adsorbierten Bakterien abhängt (Abb. 4.28, B). Flag-sAcP zeigte bei einer Bakterienkonzentration von 2x10⁶ CFU/ml keine Bindung (Daten nicht gezeigt). Die Assoziation der LPS-Trap mit bakteriellen Oberflächen beruht somit ausschließlich auf der äußeren Struktur der Gram-negativen Zellwand bzw. auf der Anwesenheit von LPS, während unspezifische Bindung der Fusionsproteine an Gram-positive Bakterien oder an die hochbindende Oberfläche der ELISA-Platten ausgeschlossen werden konnte.

Abb. 4.28: LPS-Trap-Fc1 bindet spezifisch und dosisabhängig an Gram-negative Bakterien

(A) Lebendige E. coli bzw. B. subtilis wurden in einer Konzentration von 5x10⁸ CFU/ml auf ELISA-Platten präpariert. Die beschichteten Platten wurden 2 h mit LPS-Trap-Fc1 (Trap-Fc), mit LPS (10 µg/ml) vorgeblockter LPS-Trap-Fc1 (Trap-Fc+LPS) oder mit Flag-sAcP-haltigen (Kontrolle) Zellüberständen inkubiert. An adsorbierte Bakterien gebundene LPS-Trap-Fc1 wurde mittels ELISA über einen Anti-Flag-HRP-Antikörper detektiert. * p<0.001, Mann-Whitney-U-Test, n=8

(B) Eine ELISA Platte wurde mit lebendigen E. coli in 2-fach Verdünnungen beschichtet und mit LPS-Trap-Fc1-haltigen Überständen inkubiert. Die Menge gebundener LPS-Trap-Fc1 wurde mittels ELISA über einen Anti-Flag-HRP-Antikörper bestimmt. Gezeigt sind Mittelwerte plus bzw. minus SD von Quadratikaten einer Extinktionsmessung bei den Wellenlängen 450-540 nm
4.3.5.3 Die LPS-Trap-Fc besitzt keinen bakteriziden Effekt auf Gram-negative Bakterien

Über den Mechanismus der Bindung der LPS-Trap-Fc an die Zellwand Gram-negative Bakterien konnten mit den vorhandenen Mitteln nur Vermutungen angestellt werden. Es stellte sich die Frage, ob durch das Fusionsprotein die Membranintegrität beschädigt oder zerstört wird. Das polykationische, amphiphile Antibiotikum Polymyxin B besitzt durch seine Interaktion mit sauren Phospholipiden der äußeren Membran eine bakterizide Wirkung auf viele Gram-negative Stämme [144]. Um einen potentiellen direkten bakteriziden Effekt auf Gram-negative Bakterien zu überprüfen, wurden *E. coli* K12 in einer Konzentration von 2,5x10^7 CFU/ml 1 h bei 37°C mit LPS-Trap-Fc1 oder T2/6-Fc-haltigen konzentrierten Zellüberständen inkubiert und die Bakterien anschließend abzentrifugiert. Das Pellet wurde in LB-Medium aufgenommen und das Wachstum anhand der Trübung des Mediums zu den angegebenen Zeitpunkten bestimmt. Hierbei konnte kein Unterschied in der Wachstumsrate der LPS-Trap-Fc1 behandelten Bakterien gegenüber den Kontrollen festgestellt werden (Abb. 4.29). Das Fusionsprotein besitzt demnach keinen direkten bakteriziden Eigenschaften gegen Gram-negative Bakterien.

Abb. 4.29: LPS-Trap-Fc besitzt keinen direkten Einfluss auf das Wachstum von *E. coli*

E. coli K12 wurden 1 h bei 37°C mit LPS-Trap-Fc1 (durchgezogene Linie) oder T2/6-Fc-haltigen (gepunktete Linie) Zellüberständen opsonisiert und anschließend in LB-Medium bei 37°C kultiviert. Das Bakterienwachstum wurde zu den angegebenen Zeitpunkten über die Extinktion des Kulturmediums bei einer Wellenlänge von 600 nm bestimmt. Die Datenpunkte stellen Mittelwerte von Quadruplikaten plus bzw. minus SD dar.
4.3.6 Modulierung der Phagozytoseaktivität

4.3.6.1 Einfluss der LPS-Trap-Fc1 auf die Phagozytoseaktivität

Zunächst sollte der Einfluss der LPS-Trap-Fc im zeitlichen Verlauf der Phagozytose untersucht werden. Als Phagozyten wurde die monozytische Zelllinie MM6 gewählt, um von Primärzellen unabhängig zu sein und besser reproduzierbare Ergebnisse zu erreichen. MM6 besitzen gegenüber anderen monozytischen Zelllinien den Vorteil, über viele Charakteristika von reifen Monozyten zu verfügen und sowohl Fcγ-RI als auch Fcγ-RII in zu Primärmonozyten vergleichbarer Konzentration auf der Oberfläche zu tragen [146; 147].

5x10^6 fluoreszierende *E. coli* Partikel wurden 1 h bei 37°C mit LPS-Trap-Fc1-haltigen Überständen inkubiert. Als Kontrolle wurde Zellkulturmedium mit 10 µg/ml humanem IgG versetzt. Die Partikel wurden nach mehrmaligem Waschen mit 5x10^5 MM6-Zellen in HBSS plus 0,5% HSA versetzt, so dass ein Verhältnis von Partikeln zu Phagozyt von 10 zu 1 vorlag. Die Ansätze wurden über die angegebenen Zeitspannen bei 37°C inkubiert und die Reaktion durch Zugabe von NaN_3 und Kühlung auf Eis gestoppt. Um die Menge der an der Zelloberfläche haftenden Bakterien zu erfassen, wurden mit NaN_3 inaktivierte MM6 mit nicht opsonisierten Partikeln auf Eis inkubiert und jeweils als Negativkontrolle miterfasst. Die LPS-Trap-Fc1 vorbehandelten Partikel führten in einem Zeitrahmen von 60 min zu einer höheren Phagozytoserate als die mit hIgG inkubierte Bakterien (Abb. 4.30, A). Der Effekt der Fusionsproteine zeigte sich zwischen 10 und 20 min besonders deutlich. So erreichte die Phagozytose von LPS-Trap-Fc1 opsonisierten Partikeln nach 20 min bereits ihren Höhepunkt, während das Maximum für die Kontrollpartikel zumindest
E r g e b n i s s e

zwischen 30 und 60 min noch nicht feststellbar war. Der Phagozytose Index Fusionsprotein-opsonisierter Partikel war selbst nach 60 min demjenigen von Kontrollpartikeln deutlich überlegen (Abb. 4.30, B).

Abb. 4.30: LPS-Trap-Fc1 erhöht die Phagozytoseaktivität von MM6-Zellen

(A) 5×10^6 fluoreszente E. coli-Partikel wurden mit LPS-Trap-Fc1-haltigen Überständen (rot gefüllt) oder mit 10 µg/ml humanem IgG (durchgezogene Linie) 1 h bei 37°C opsonisiert. Anschließend wurden die gewaschenen Partikel für die angegebenen Zeitspannen mit 5×10^6 MM6-Zellen in HBSS plus 0,5% HSA bei 37°C inkubiert und die Menge der phagozytierten Partikel mittels Durchflusszytometrie bestimmt (Fluoreszenzkanal 1, FL1, grün). MM6, die mit nicht-opsonisierten Partikeln auf Eis inkubiert wurden, dienten als Negativ-Kontrolle (gepunkte Linie).

(B) Der zeitliche Verlauf der Phagozytose wurde in einem Phagozytose Index nach folgender Definition dargestellt: Geometrisches Mittel der Fluoreszenz der als positiv definierten Zellen x Anzahl der positiven Zellen / 100. Die Datenpunkte stellen Mittelwerte von Triplikaten plus/minus SD dar.

4.3.6.2 Unterschiedliche Beeinflussung der Phagozytoseaktivität durch den IgG-Isotyp der LPS-Trap-Fc

Nachdem gezeigt werden konnte, dass die LPS-Trap-Fc1 biologische Aktivität über ihre Fc-Region entwickelt, sollte in den folgenden Versuchen festgestellt
werden, ob für die Modulierung der Phagozytoseaktivität das IgG-Fc-Fragment oder andere Domänen des Fusionsproteins verantwortlich sind. Hierfür wurden LPS-Trap-Fc1, -Fc2, -Fc3, -Fc4 oder -His-haltige Zellüberstände mit fluoreszenten *E. coli*-Partikeln versetzt und die opsonisierten Partikel mit MM6-Zellen 10 min bei 37°C inkubierte (vgl. 4.3.6.1). Als Kontrolle wurden wiederum unbehandelte Partikel oder Medium, das mit humanem IgG versetzt wurde, verwendet. In dieser Versuchsreihe zeigte sich deutlich, dass die Phagozytoseaktivität der MM6 von den Isotypen der zur Opsonisierung verwendeten LPS-Trap-Varianten abhängt. Die Behandlung mit LPS-Trap-Fc1 Zellüberständen führte im Vergleich zu 10 bzw. 100 µg/ml humanen IgG zu einer ausgeprägten Erhöhung der Phagozytoseaktivität (Abb. 4.31). Bei der Behandlung mit LPS-Trap-Fc3 Zellüberständen fiel der Effekt auf die Phagozytose zwar schwächer aus, dieser war aber immer noch dem der hIgG opsonisierten Partikel überlegen (Abb. 4.31). LPS-Trap-Fc2 und –Fc4 behandelte Partikel konnten die Phagozytose nur schwach modulieren (Abb. 4.31).

Abb. 4.31: Die Modulierung der Phagozytose durch die LPS-Trap-Fc ist IgG-Isotyp-abhängig

5×10^6 fluoreszente *E. coli*-Partikel wurden mit LPS-Traps-Fc1-4, LPS-Trap-His oder humanem IgG 1 h bei 37°C opsonisiert. Die gewaschenen Partikel wurden bei 37°C für 10 min mit 5×10^5 MM6-Zellen als Phagozyten inkubierte und das Ausmaß der phagozytierten Partikel per Durchflusszytometrie bestimmt (Fluoreszenzkanal 1, FL1, grün). MM6, die mit nicht-opsonisierten Partikeln auf Eis inkubierte wurden, dienten als Kontrolle.

Diese Ergebnisse entsprachen den erwarteten Effekten, die sich aus den Bindungsaffinitäten der einzelnen IgG-Isotypen für Fc-Rezeptoren ableiten. Die LPS-
Trap-His zeigte erwartungsgemäß keinen Einfluss auf die Phagozytose (Abb. 4.31). Daraus lässt sich das Fazit ziehen, dass die Fusionsproteine über ihre Fc-Region Bakterien opsonisieren und sich diese Effekte über den jeweiligen Isotyp kontrollieren lassen.

4.3.7 Einfluss auf die Komplementaktivierung

Hierfür wurden mit einem GFP-Plasmid transformierte *E. coli* verwendet. In Vorversuchen konnte gezeigt werden, dass die Fluoreszenz nach Abtötung durch Lyse der Bakterien innerhalb einer Stunde erlischt. Die Bakterien wurden mit konzentrierten, eingestellten Zellüberständen der LPS-Traps-Fc1-4 oder –His 1h bei 37°C opsonisiert, gewaschen und mit humanem Komplementserum in HBSS plus 0,5% HSA 90 min lang bei 37°C inkubiert. Die Komplementreaktion wurde durch Kühlung auf Eis gestoppt und der Anteil der noch fluoreszierenden Bakterien im Durchflusszytometer bestimmt. Die Opsonisierung von *E. coli* mit LPS-Trap-Fc1 oder –Fc3 führte zu einer signifikant höheren Empfindlichkeit gegenüber humanem Komplement als die Opsonisierung mit LPS-Trap-Fc2, -Fc4 oder –His (Abb. 4.32).
Zusammenfassend ist festzuhalten, dass die Fc1 und Fc3 Varianten der LPS-Trap spezifisch Gram-negative Bakterien opsonisieren und zu einer Erhöhung der komplementabhängigen Lyse führen. Neben der LPS-Bindung entfalten diese Fusionsproteine zumindest in vitro weitere biologische Aktivitäten durch Phagozytose- und Komplementaktivierung.

4.4 Modifizierung der LPS-Trap-Fc

Der folgende Teil der Arbeit befasst sich mit Modifikationen an der LPS-Trap-Fc. Wie bereits in 4.1.1 aufgezeigt, sind die Ausbeuten der LPS-Trap-Fc relativ gering und für den Einsatz in Tierexperimenten nicht ausreichend. Durch die Reduktion des ungewöhnlich großen Fusionsproteins (260 kDa) auf seine pharmakologisch wichtigen Bestandteile könnten sowohl störende Oligomerisierungsphänomene beseitigt (vgl. 4.1.2.4.1) als auch höhere Produktionsausbeuten erreicht werden.
4.4.1 Modifikation an der extrazellulären Domäne von TLR4

Basierend auf diesen Erkenntnissen sollten zwei LPS-Trap-Fc Mutanten generiert und ihre biologische Aktivität getestet werden. Die TLR4-Domäne der LPS-Trap-Fc wurde um 218 AS (Δ410-627, LPS-Trap-FcM) oder um 278 AS (Δ350-627, LPS-Trap-FcS) verkürzt (Abb. 4.33).

Abb. 4.33: LPS-Trap-Fc im Vergleich mit LPS-Trap-FcM und –FcS

Die LPS-Trap-FcM und Fc-S wurden am C-terminalen Ende der extrazellulären Domäne von TLR4 um 218 bzw. 278 Aminosäuren gegenüber der LPS-Trap-Fc verkürzt.

4.4.1.1 Klonierung und Expression der LPS-Trap-FcM und LPS-Trap-FcS

Die verkürzten TLR4-Mutanten wurden mit den Primern (7) und (21) (LPS-Trap-FcM) bzw. (7) und (20) (LPS-Trap-FcS) aus dem Vektor pMT/Hygro/LPS-Trap-
Fc inklusive dem Flag-Tag amplifiziert. Durch die Primer wurden N- und C-terminal \textit{SpeI} Restriktionsschnittstellen in die verkürzte TLR4-Sequenz eingefügt. Die Flag-TLR4-DNA konnte anschließend mit \textit{SpeI} komplett bis zum Anfang des flexiblen Linkers aus pMT/Hygro/LPS-Trap-Fc ausgeschnitten und die verkürnten TLR4-Sequenzen eingefügt werden.

S2-Zellen wurden anschließend stabil mit den LPS-Trap-FcM und –FcS Expressionsvektoren transfiziert. Die verkürzten Fusionsproteine konnten mit Protein G aus den Überständen isoliert und mit der LPS-Trap-Fc als Vergleich über ein SDS-Gel aufgetrennt werden. Die einzelnen Fraktionen zeigten Banden von ca. 105 kDa (LPS-Trap-FcM) und 100 kDa (LPS-Trap-FcS) (Abb. 4.34). Wie erhofft waren auch die Ausbeuten gegenüber den LPS-Trap-Fc Fraktionen deutlich erhöht (Abb. 4.34).

\begin{center}
\textbf{Abb. 4.34: Gereinigte LPS-Trap-FcM und –FcS im SDS-Gel}

\end{center}

Überstände von LPS-Trap-Fc-, FcM und –FcS transfizierten S2-Zellen wurden über eine Protein G Säule gereinigt. Die einzelnen Fraktionen wurden im SDS-Gel analysiert. Die Proteinfärbung erfolgte mit SYPRO Red Protein Gel Stain.

\subsection{4.4.1.2 Charakterisierung der verkürzten Fusionsproteine LPS-Trap-FcM und –FcS}

In den nächsten Schritten sollten die Eigenschaften der verkürzten Fusionsproteine genauer untersucht werden. Analog zur LPS-Trap-Fc zeigten auch die verkürzten Proteine Oligomerenbildung nach ihrer Reinigung (Daten nicht gezeigt, vgl. 4.1.2.4.1). Die Verkürzungen des C-Terminus von TLR4 brachten in dieser Hinsicht folglich keine Verbesserung. Die folgenden Untersuchungen wurden deshalb ausschließlich mit Zellüberständen durchgeführt.
4.4.1.2.1 LPS-Bindung durch LPS-Trap-FcM und –FcS

Zur Überprüfung der LPS-Bindungsfähigkeit der verkürzten Fusionsproteine wurde ein LPS Pull-down-Assay durchgeführt. Überstände LPS-Trap-Fc, -FcM und –FcS transfizierter S2 Zellen wurden in Anwesenheit von 10% FCS 1h mit Biotin-LPS inkubiert. Das LPS wurde anschließend mit Streptavidin immunpräzipitiert und die Präzipitate im Anti-Flag Western Blot analysiert.

Sowohl die LPS-Trap-FcM (Spur 4) als auch die LPS-Trap-FcS (Spur 7) konnten wie die LPS-Trap-Fc (Spur 1) das biotinylierte LPS binden (Abb. 4.35). Diese Bindung ließ sich aber im Gegensatz zur LPS-Trap-Fc (Spur 3) durch die Vorinkubation mit Anti-TLR4/MD-2-Antikörper nicht neutralisieren (Abb. 4.35, Spur 6 und 9). Diese Ergebnisse deuten darauf hin, dass der TLR4/MD-2 Komplex von den mutierten Fusionsproteinen nicht gebildet wurde und die LPS-Bindungsaffinität wahrscheinlich geringer als die der LPS-Trap-Fc ist.

![Western Blot Bild](image)

Abb. 4.35: Untersuchung der LPS-Bindung von LPS-Trap-FcM und -FcS

Überstände LPS-Trap-Fc (Spur 1-3), -FcM (Spur 4-6) und –FcS (Spur 7-9) transfizierter S2-Zellen wurden mit biotinylierten LPS inkubiert. Nach der Immunpräzipitation mit Streptavidin wurden die Präzipitate im Anti-Flag Western Blot analysiert. Mit Anti-TLR4/MD-2 vorinkubierte Überstände dienten als Konformationskontrolle für den TLR4/MD-2 Komplex (Spur 3, 6 und 9)

4.4.1.2.2 Fehlende hemmende Wirkung der verkürzten Fusionsproteine in vitro

Trotz der fehlenden TLR4/MD-2 Komplexbildung sollten die biologische Aktivität der LPS-Trap-FcM und –FcS im Zellkulturmodell überprüft werden. Da hierfür wieder das Transwell-Modell angewendet wurde, musste die LPS-Trap-FcM und –FcS zunächst in einen Expressionsvektor für Säugerzellen kloniert werden.

Die Sequenzen wurden über eine PCR mit den Primern (1) und (16) um die Restriktionsschnittstellen *Kpnl* und *BamHI* erweitert. Das PCR-Produkt wurde
Ergebnisse

Anschließend in den entsprechend verdauten Expressionsvektor p3xFlag-CMV-8 eingefügt.

HEK293T Zellen wurden mit den generierten LPS-Trap-FcM, –FcS oder leeren Expressionsvektoren transfiziert und 8 h später in 24-well Platten umgesetzt. In Transwells wurden MM-6-Zellen 48 h mit den transfizierten HEK293T kokultiviert. Die Stimulation erfolgte mit 1 ng/ml, 10 ng/ml und 100 ng/ml LPS über Nacht. Anschließend wurde die IL-6-Konzentration im Überstand mittels ELISA vermessen. Die verkürzten Fusionsproteine zeigten gegenüber den Kontrollen keine Hemmung der proinflammatorischen Reaktion (Abb. 4.36). Bei steigenden LPS-Konzentrationen war sogar eine leichte Erhöhung der IL-6-Konzentration im Überstand messbar. Das LPS hatte demnach eine höhere Affinität zu zellulärem TLR4/MD-2 als zu den Fusionsproteinen.

Abb. 4.36: Messung der biologischen Aktivität der verkürzten Fusionsproteine

Mit LPS-Trap-FcM oder –FcS transfizierte HEK293T wurden mit MM6-Zellen 48 h kokultiviert und anschließend über Nacht mit den angegebenen Konzentrationen an LPS stimuliert. Die Messung der IL-6-Spiegel im Zellüberstand wurde per ELISA durchgeführt. Mit learem p3xFlag-CMV-8 transfizierte HEK293T dienten als Kontrollen. n=8

4.4.1.2.3 Verminderte LPS-Bindungsstärke im Vergleich zur LPS-Trap-Fc

Um die Affinitäten der LPS-Trap-Fc, -FcM und –FcS direkt miteinander zu vergleichen, wurde auf den LPS-Bindungs-ELISA zurückgegriffen. Hierfür wurden zunächst Zellüberstände transfizierter S2-Zellen mit Hilfe eines LPS-Trap-Fc-ELISAs
auf die gleiche Menge an Fusionsprotein eingestellt (vgl. 4.1.2.4.3). Anschließend wurden Verdünnungsreihen der eingestellten Überstände in Anti-Flag-Antikörper beschichteten Platten inkubiert. Nach dem Entfernen der Überstände folgte die Inkubation mit Biotin-LPS und die anschließende Detektion des gebundenen Endotoxins mit Streptavidin-HRP.

Die LPS-Bindungsassays zeigten deutlich die verminderte Affinität von LPS zu den verkürzten Fusionsproteinen (Abb. 4.37). Die Bindung von LPS zur LPS-Trap-FcS war über die gesamte Verdünnungsreihe, ebenso wie bei der LPS-Trap-FcM bei stärkeren Verdünnungen, kaum nachweisbar. Trotz der grundsätzlichen Fähigkeit LPS zu binden, sind die verkürzten Fusionsproteine demnach nicht in der Lage den LPS/MD-2-Komplex zu stabilisieren und eine kompetitive Hemmung gegenüber zellständigen TLR4/MD2-Rezeptorkomplexen zu erreichen.

Abb. 4.37: Relative LPS-Bindungsstärken von LPS-Trap-Fc, -FcM und –FcS

Verdünnungen eingestellter LPS-Trap-Fc, -FcM und Fc-S-haltiger S2-Überstände wurden auf eine mit Anti-Flag-Antikörper beschichtete Platte gegeben und die gebundenen Fusionsproteine anschließend mit Biotin-LPS inkubiert. Das gebundene LPS konnte durch Streptavidin-HRP und anschließender chromogener Reaktion durch Absorptionsmessungen bei 450 nm und 540 nm quantifiziert werden. Die gezeigten Punkte stellen Mittelwerte von Quadruplikaten plus/minus SD dar.

4.4.2 Variationen am flexiblen Linker

Ein weiterer Ansatzpunkt für Veränderungen an der LPS-Trap-Fc ist der flexible Linker zwischen TLR4 und MD-2. Dieser wurde in Hinsicht auf Flexibilität und

Abb. 4.38: Die räumliche Anordnung des TLR4/MD-2 Komplexes

Die N-Termini der Proteine sind bläulich, die C-Termini rötlich gekennzeichnet. Die schwarze Linie kennzeichnet den Abstand zwischen TLR4 und MD-2. Modifiziert aus Protein Data Bank nach [37]

4.4.2.1 Klonierung der Linkermutanten LPS-Trap-L-Fc, LPS-Trap-Fc(30AS) und LPS-Trap-L-Fc(30AS)

Für den Einbau des flexiblen Linkers zwischen MD-2 und dem IgG-Fc-Fragment wurde der Vektor pRESneo3/LPS-Trap-Fc durch das Restriktionsenzym *Agel* direkt nach der MD-2-Sequenz aufgeschnitten und mit SAP dephosphoryliert. Ein künstliches, phosphoryliertes Oligonukleotid aus den Sequenzen (1) und (2) konnte durch die entsprechenden Nukleotidüberhänge in den Vektor ligiert werden (LPS-Trap-L-Fc).

Die Verlängerung des vorhandenen Linkers erfolgte durch einen Schnitt mit *Xhol* direkt vor der MD-2-Sequenz, anschließender Dephosphorylierung und Einbau eines Oligonukleotids aus den Sequenzen (7) und (8) (LPS-Trap-Fc(30AS)).
Zusätzlich wurden noch die LPS-Trap-L-Fc(30AS) durch den kombinierten Einbau beider Linker generiert.

4.4.2.2 Expression und LPS-Bindungsfähigkeit der Linkermutanten

Abb. 4.39: LPS Pull-down der Linkermutanten

4.4.2.3 Schwache Erhöhung der LPS-Affinität zu den 30AS-Linkermutanten

Im direkten Vergleich der LPS-Affinitäten der Linkermutanten mit der LPS-Trap-Fc sollte überprüft werden, ob eine Verbesserung der LPS-Bindung durch die neuen Linker erzielt wurde. Hierfür wurden Überstände der jeweiligen QBI293A-Transfektanten mit Hilfe des LPS-Trap-Fc-ELISAs auf die gleiche Menge an Fusionsprotein eingestellt. Mit den abgeglichenen Überständen konnte anschließend ein LPS-Bindungs-ELISA (siehe 4.1.2.4.3) durchgeführt werden. Die LPS-Trap-Fc(30AS) zeigte gegenüber der LPS-Trap-Fc eine schwache, aber signifikante
Verbesserung der LPS-Bindung (Abb. 4.40). Die LPS-Trap-L-Fc(30AS) war allen Varianten in ihrer LPS-Bindung signifikant überlegen (Abb. 4.40).

Abb. 4.40: LPS-Bindungs-ELISA der Linkermutanten im Vergleich mit der LPS-Trap-Fc
Abgeglichtene Überstände der Linkervarianten und der LPS-Trap-Fc wurden in Anti-Flag beschichtete ELISA-Platten gegeben. Die fixierten Proteine wurden mit biotinylierten LPS inkubiert und mit Streptavidin-HRP detektiert. Die Stärke der LPS-Bindung konnte über die Absorption bei den Wellenlängen 450-540nm bestimmt werden. * p=0,006, ** p<0,001. Varianzanalyse: ANOVA, Post-Hoc Analyse: Tukey-Test, n=8

4.5 Untersuchung und Charakterisierung von adenoviral-produzierter LPS-Trap-Fc im Tiermodell

Der Einsatz von rekombinanter LPS-Trap-Fc im Tiermodell erwies sich mit den untersuchten Methoden als unmöglich. Die Reinigung biologisch aktiver LPS-Trap-Fc über Protein G aus Zellüberständen erwies sich als unmöglich. Die Isolierung der His-LPS-Trap-Fc im basischem Milieu führte zwar zum Erhalt der biologischen Aktivität des Fusionsproteins, aber es konnte nicht die hohe Reinheit von Protein G-isolierter LPS-Trap-Fc erreicht werden (vgl. 4.1.2.4.3). Zwar konnten höhere Produktionsausbeuten mit verkürzten Varianten der LPS-Trap-Fc erzielt werden, diese zeigten aber ebenfalls Oligomerisierungsphänomene und waren biologisch inaktiv (vgl. 4.4.2). Ein weiteres Problem wäre die unvermeidliche Kontamination mit Endotoxinen während des Reinigungsvorgangs. Mit einem LPS-Trap-Fc exprimierenden Adenovirus (Ad-LPS-Trap-Fc) könnte das Fusionsprotein (LPS-Trap-
Ergebnisse

Fc(Ad)) direkt im Versuchstier produziert und die Problematik der Kontaminationen und der zu geringen Ausbeuten umgangen werden.

4.5.1 Charakterisierung der LPS-Trap-Fc(Ad) *in vitro*

4.5.1.1 LPS-Trap-Fc(Ad) bildet den TLR4/MD-2 Komplex und bindet LPS

![Graphik](image)

Abb. 4.41: Die Ad-LPS-Trap-Fc bindet LPS und bildet den TLR4/MD-2 Komplex

4.5.1.2 Biologische Aktivität im *in vitro*-Modell

Über die LPS-Bindung hinaus sollten die hemmenden Eigenschaften der LPS-Trap-Fc(Ad) auch noch im Zellmodell bestätigt werden. Hierfür wurden QBI293A-Zellen mit LPS-Trap-Fc exprimierenden Adenoviren infiziert und noch vor der Lyse der Zellen die Überstände abgenommen, um die Viruskonzentration möglichst gering zu halten. MM6-Zellen wurden in den konditionierten Überständen kultiviert und mit 1 ng/ml, 10 ng/ml und 100 ng/ml LPS über Nacht stimuliert. Überstände Adeno-β-Galaktosidase (Ad-β-Gal) infizierter Zellen dienten als Kontrolle. Das Maß der LPS-Stimulation wurde über die IL-6 Konzentration im Überstand bestimmt. Die Ad-LPS-Trap-Fc konditionierten MM-6 sezernierten unter allen Stimulationsbedingungen signifikant weniger IL-6, als ihre Ad-β-Gal Kontrollen (Abb. 4.42). Folglich war die LPS-Trap-Fc(Ad) in Hinsicht auf Konformation und biologischer Aktivität mit den nicht-viral produzierten Fusionsproteinen vergleichbar.

![Abb. 4.42: Die LPS-Trap-Fc(Ad) hemmt eine LPS-induzierte proinflammatorische Reaktion in vitro](image)

MM6 wurden mit Überständen Ad-LPS-Trap-Fc (rot) oder Ad-β-Gal infizierter QBI293A über Nacht in Anwesenheit unterschiedlicher Konzentrationen an LPS kultiviert. Die IL-6 Spiegel im Überstand erfolgte mittels ELISA. *p*<0,001, Mann-Whitney-U-Test, *n*=8
4.5.2 Test der Ad-Trap-Fc in vivo

Mit den gewonnenen hochtitrigen Stocks an Ad-LPS-Trap-Fc sollte nun ein erster Pilotversuch in vivo unternommen werden. Hierfür wurden je vier CD-1 Mäusen entweder 10^8 PFU Ad-LPS-Trap-Fc oder das entsprechende Volumen PBS retrobulbär injiziert. Vier Tage nach der Infektion erfolgte die Stimulation mit je 1 µg LPS i.v. und die Blutung der Mäuse nach einer weiteren Stunde. Anschließend wurde das Serum gewonnen und der TNF-Spiegel mittels ELISA untersucht.

Nur eine Ad-LPS-Trap-Fc behandelte Maus zeigte verminderte TNF-Serumspiegel gegenüber den kontrollbehandelten Tieren (Daten nicht gezeigt). Die Überprüfung der Sera auf die LPS-Trap-Fc(Ad) im Anti-Flag Western Blot nach vorausgegangener Immunpräzipitation durch Anti-Flag-M2 Agarose zeigte keine Banden des Fusionsproteins mit Ausnahme der oben erwähnten Maus (Daten nicht gezeigt). Die Zahl der verabreichten Viren schien zu gering für eine massive Produktion der LPS-Trap-Fc(Ad) gewesen zu sein.

4.5.2.1 Verlauf der LPS-Trap-Fc(Ad) Serumspiegel im Mausmodell

Aufgrund der im Pilotexperiment gewonnenen Erkenntnisse sollten die notwendigen Virentiter genauer bestimmt und der Verlauf der LPS-Trap-Fc(Ad) Serumspiegel beobachtet werden. Für diesen Zweck wurden je eine CD-1 Maus mit 10^8 bzw. 10^9 PFU Ad-ß-Gal und je zwei Tiere mit 10^8 und 10^9 PFU Ad-LPS-Trap-Fc infiziert. Die Tiere wurden ab den Tagen 1, 2, 3, 4, 7 und 10 p.i. geblutet und die Sera gewonnen.

Ein Teil der Sera wurde mit PBS verdünnt und die LPS-Trap-Fc(Ad) mit Anti-Flag Agarose immunpräzipitiert. Die Präzipitate wurden in Laemmli-Puffer gekocht, im SDS-Gel aufgetrennt und das Protein im Anti-Flag Western Blot detektiert. 10^6 Ad-LPS-Trap-Fc führten bei Maus 1 zu einer schwachen Bande an den Tagen 3 und 4 p.i., während im Serum von Maus 2 kein Fusionsprotein nachweisbar war (Abb. 4.43, A, Spur 1 und 2). Wurden die Mäuse mit 10^9 Viren infiziert, war ab Tag 1 p.i. LPS-Trap-Fc(Ad) im Serum vorhanden (Abb. 4.43, A, Spur 3 und 4). Nach Tag 4 p.i. reduzierten sich die Serumspiegel in Maus 2 aber rapide, so dass am Tag 10 p.i. kein Protein mehr detektierbar war (Abb. 4.43, A, Spur 4). Auch in Maus 1 nahmen die Serumspiegel nach Tag 7 p.i. ab. Das Serum kontrollinfizierter Mäuse zeigte erwartungsgemäß keine Bande.
Um die LPS-Trap-Fc Konzentrationen im Serum relativ zueinander besser abschätzen zu können, wurde ein LPS-Trap-Fc ELISA durchgeführt. Anti-Flag diente als Fang-Antikörper. Die gebundene LPS-Trap-Fc(Ad) konnte über einen Anti-hlgG-Fc Antikörper detektiert werden. Auch hier zeigte sich in den mit 10⁸ Adenoviren infizierten Mäusen, dass die Konzentration des Fusionsproteins um Tag 4 p.i. das Maximum erreicht und danach stetig abnimmt (Abb. 4.43, B, rote Linie). In den restlichen Sera war kein Fusionsprotein nachweisbar (Abb. 4.43, B, blaue und schwarze Linie).

Abb. 4.43: Verlauf der LPS-Trap-Fc(Ad) Konzentrationen im Serum infizierter Mäuse

CD-1 Mäuse wurden mit Ad-LPS-Trap-Fc oder Ad-β-Gal infiziert, zu den aufgeführten Tagen geblutet und die Sera gewonnen.

(A) Die LPS-Trap-Fc(Ad) wurde aus Sera von mit 10⁸ (Spur 1 und 2) oder 10⁹ (Spur 3 und 4) PFU Ad-LPS-Trap-Fc bzw. Ad-β-Gal (Spur 5 und 6) infizierten Mäusen mit Anti-Flag Agarose immunpräzipitiert und im Anti-Flag Western Blot detektiert.

4.5.2.2 **Rapide Bildung von Antikörpern gegen die LPS-Trap-Fc(Ad)**

Da die LPS-Trap-Fc(Ad) Serumspiegel infizierter Mäuse überraschend schnell abnahmen, sollte untersucht werden, ob Antikörper gegen das Fusionsprotein gebildet wurden. Zu diesem Zweck wurde Serum von Ad-LPS-Trap-Fc (Spur 1 und 2) oder Ad-β-Gal (Spur 3 und 4) infizierten Mäusen vom Tag 7 p.i. mit Überständen Ad-LPS-Trap-Fc (Spur 1 und 3) oder Ad-β-Gal (Spur 2 und 4) infizierter QBI293A-Zellen 1 h inkubiert. Die LPS-Trap-Fc(Ad) und gegen das Fusionsprotein gerichtete Antikörper konnten auf diese Weise mit Anti-Flag Agarose koimmunpräzipitiert werden. Die Präzipitate wurden im SDS-Gel unter nicht-reduzierenden Bedingungen aufgetrennt. Im Anti-mlG/IgM Western Blot konnte aus dem Präzipitat Ad-LPS-Trap-Fc/Serum und Ad-LPS-Trap-Fc/QBI293A eine Antikörper-Bande bei ca. 150 kDa nachgewiesen werden (Abb. 4.44, Spur 1). Ein Grund für den raschen Rückgang der LPS-Trap-Fc(Ad)-Serumspiegel lag also an der frühen Antikörperbildung gegen das Fusionsprotein.

Abb. 4.44: Antikörper gegen die LPS-Trap-Fc im Serum infizierter Mäuse

Um den Antikörper-induzierten Abbau der LPS-Trap-Fc(Ad) zu verhindern, wurden je zwei Fox Chase SCID-Mäuse mit Ad-LPS-Trap-Fc und Kontrollvirus infiziert und der Serumspiegelverlauf von LPS-Trap-Fc(Ad) über 7 Tage hinweg mittels ELISA kontrolliert (siehe 4.5.2.1). Diese Mäuse verfügen aufgrund eines Gendefekts weder über B- noch T-Lymphozyten. Erstaunlicherweise erreichten die LPS-Trap-Fc(Ad)-Serumkonzentrationen bereits am Tag 1 p.i. ihr Maximum und nahmen in den darauffolgenden Tagen kontinuierlich ab (Abb. 4.45). Demzufolge waren nicht nur Antikörper für den schnellen Abbau des Fusionsproteins
Ergebnisse

verantwortlich. Vielmehr scheint die vireninduzierte Proteinproduktion außерordentlich schnell zum Erliegen zu kommen.

Abb. 4.45: Verlauf der LPS-Trap-Fc(Ad) Serumspiegel in einer Fox Chase SCID Maus

Immuninkompetente SCID Mäuse wurden mit 10^9 PFU Ad-LPS-Trap-Fc oder Ad-β-Gal infiziert, zu den angegebenen Tagen geblutet und die Sera gewonnen. Die LPS-Trap-Fc(Ad)-Serumspiegel wurden wie in Abb. 4.43 (B) bestimmt.

4.5.2.3 Einfluss auf die LPS-induzierte Zytokinantwort

Nach der Charakterisierung der LPS-Trap-Fc(Ad) in vitro und in vivo sollten in der nächsten Versuchsreihe je sechs CD-1 Mäuse mit 10^8 PFU Ad-LPS-Trap-Fc oder Ad-β-Gal (Kontrolle) infiziert und die LPS-induzierte Immunreaktion untersucht werden. Durch die schnelle Bildung von Antikörpern gegen die LPS-Trap-Fc(Ad) und dem Versiegen der Proteinproduktion durch die Adenoviren musste die LPS-Stimulation bereits am Tag 4 p.i. erfolgen.

Die Adenoviren und das hochreine LPS (1 µg) wurden retrobulbär am jeweils anderen Auge verabreicht. Eine Stunde nach der LPS-Stimulation wurden die Tiere geblutet. Das gewonnene Serum wurde auf TNF, IL-1α, IL-1β, IL-12 und MCP-1 im Luminex Multiplex Bio-Assay Analyzer untersucht. Überraschenderweise zeigten die Ad-LPS-Trap-Fc behandelten Mäuse im Vergleich zu den Kontrolltieren signifikant höhere TNF- und MCP-1 Serumspiegel (Abb. 4.46). Diese Ergebnisse wurden auch durch das makroskopisch erkennbare Befinden der Mäuse unterstrichen. So zeigten Ad-LPS-Trap-Fc infizierte Tiere durch ihre aufgerichtete Körperbehaarung und den flüssigen Stuhl deutlich stärkere Anzeichen einer Fieberreaktion. Die übrigen untersuchten Zytokine waren zu diesem Zeitpunkt erwartungsgemäß noch nicht
detektierbar. In zwei weiteren Experimenten konnten diese überraschenden Daten, die im Gegensatz zum Pilotexperiment stehen, bestätigt werden.

Abb. 4.46: Die Ad-LPS-Trap-Fc verstärkt die LPS-induzierte proinflammatorische Reaktion in vivo

CD-1 Mäuse wurden mit 10^9 Ad-β-Gal (grau) oder Ad-LPS-Trap-Fc (rot) infiziert und am Tag 4 p.i. mit 1 µg LPS stimuliert. Die Serumkonzentrationen von TNF und MCP-1 wurden im Luminex Multiplex Bio-Assay Analyzer bestimmt. $p=0.028$ bzw. 0.002, Mann-Whitney-U-Test, n=6

4.6 TLR2-Fusionsproteine

Ein weiterer Teil der Arbeit beschäftigte sich mit der Konstruktion und Testung von TLR2-Fusionsproteinen. TLR2 spielt als Receptor für bakterielle Lipopeptide eine Schlüsselrolle bei Gram-positiven bzw. gemisch-bakteriellen Infektionen. Die Daten über die hemmende Wirkung von löslichen TLR2-Fc Fusionsproteinen sind widersprüchlich [118; 120]. Da TLR2 funktionelle Heterodimere mit TLR1 oder TLR6 bildet und so auch zwischen di- und triacylierten Lipopeptiden unterscheidet [47; 48], sollten Fusionsproteine aus den extrazellulären Teilen von TLR2 mit TLR1 bzw. TLR6 konstruiert werden.

4.6.1 Klonierung von TLR2/1-Fc und TLR2/6-Fc Fusionsproteinen

Eine PCR aus dem Templat Flag T2Fc in pMT/BiP/V5-His C mit dem Primer (23) die Restriktionsschnittstelle für BsiWI und N-terminal eine KpnI- (für T2/1-Fc) über den Primer (15) bzw. eine BglII Schnittstelle (für T2/6-Fc) über den Primer (14) eingefügt. Die Amplifikate wurden mit den jeweiligen Restriktionsenzymen verdaut und zusammen mit dem flexiblen Linkern (aus den Oligonukleotiden (3) und (4) in einem Schritt in den Vektor p3xFlag-CMV-8 eingefügt. Anschließend wurden die C-Termi von TLR1 bzw. TLR6 nach Schnitten mit XbaI (T2/1) bzw. KpnI (T2/6) um das IgG-Fc-Fragment, das mit den Primern (3) und (19) bzw. (2) und (18) aus LPS-Trap-Fc in pMT/BiP/V5-His C mittels PCR gewonnen wurde, erweitert (Abb. 4.47).

Abb. 4.47: Konstruktion der T2/1- und T2/6-Fc

Der extrazelluläre Teil von Maus (m) TLR2 wurde über einen flexiblen Linker (GGGGS-GGGGS-GGGGS) mit den extrazellulären Fragmenten von mTLR1 bzw. mTLR6 verknüpft. C-terminal wurde ein humanes (h) IgG-Fc-Fragment angefügt.

4.6.2 Expression von T2/1- und T2/6-Fc

HEK293T-Zellen wurden mit p3xFlag-CMV-8/T2/1-Fc bzw. -T2/6-Fc Expressionsvektoren transfiziert. 48 h später wurden Überstände abgenommen und unter reduzierenden Bedingungen über ein SDS-Gel aufgetrennt. Im Anti-Flag Western Blot konnten die Banden der Fusionsproteine bei ca. 180 kDa identifiziert werden (Abb. 4.48). Die T2/1- und T2/6-Fc ließen sich folglich in Säugerzellen exprimieren und wurden in löslicher Form in den Zellüberstand sezerniert.
Überstände von T2/1- und T2/6-Fc HEK293T-Transfektanden wurden 48 h nach ihrer Transfektion im Western Blot mit einem Anti-Flag Antikörper analysiert.

4.6.3 Bindung der T2/1- und T2/6-Fc an Lipoteichonsäure

Aufgrund des Mangels an markierten Liganden für den TLR2/TLR1 bzw. TLR2/TLR6-Komplex, wurde für die Überprüfung der Bindung an T2/1- und T2/6-Fc auf einen Bindungs-ELISA zurückgegriffen. Hierfür wurde LTA auf eine hochbindende ELISA-Platte fixiert und anschließend mit Überständen aus T2/1-, T2/6- oder LPS-Trap-Fc (Kontrolle) produzierenden HEK293T inkubiert. Gebundene Fusionsproteine wurden mit einem Anti-hlgG-Fc Antikörper detektiert. Nur die TLR2-Fusionsproteine zeigten eine robuste Bindung an LTA, während die LPS-Trap-Fc erwartungsgemäß nicht mit LTA interagierte (Abb. 4.49).
4.6.4 T2/1- und T2/6-Fc hemmen die Lipopeptid stimulierte Zellaktivierung

Im nächsten Schritt sollte die biologische Aktivität der TLR2-Fusionsproteine im Zellmodell untersucht werden. Hierfür wurden HEK293T-Zellen entweder mit p3xFlag-CMV-8 alleine oder mit TLR2-Fusionsprotein-haltigen Expressionsvektoren transfiziert und 48 h mit MM6-Zellen in Transwells kokultiviert. Die Stimulation erfolgte entweder mit dem diacylierten Lipopeptid Pam$_2$CSK$_4$ (1 und 10 ng/ml, TLR2/6-Ligand) oder dem triacylierten Lipopeptid Pam$_3$CSK$_4$ (0,1 und 1 µg/ml, TLR2/1-Ligand). Nach 16 h wurden die IL-6 Konzentrationen in den Überständen per ELISA gemessen.

In Anwesenheit von T2/1- und T2/6-Fc zeigte sich eine signifikant niedrigere Lipopeptid-induzierte IL6-Sekretion als in kontrolltransfizierten Überständen (Abb. 4.50). Die Stimulation mit 0,1 µg/ml Pam$_3$CSK$_4$ führte zu keinem messbaren IL-6 Anstieg im Überstand gegenüber der Kontrolle. Überraschenderweise konnten die TLR2-Fusionsproteine die Effekte der Lipopeptide unabhängig von ihrem Acylierungsgrad hemmen. Dies könnte bedeuten, dass der TLR2-Teil alleine für die Hemmung verantwortlich war und die jeweiligen nativen, biologisch aktiven TLR-Heterodimeren von dem Fusionsprotein nicht gebildet wurden. Die TLR2-Fusionsproteine besaßen aber trotzdem grundsätzlich das Potential, eine Lipopeptid-induzierte proinflammatorische Reaktion in vitro zu hemmen.

Abb. 4.50: Biologische Aktivität der T2/1- und T2/6-Fc im Transwell-Modell

T2/1- (rot), T2/6- (grün) oder kontrolltransfizierte (graum) HEK293T wurden mit MM6-Zellen in Transwells 48 h kokultiviert. Die Stimulation erfolgte mit 1 und 10 ng/ml Pam$_2$CSK$_4$ bzw. 0,1 und 1 µg/ml Pam$_3$CSK$_4$ über Nacht. Die IL-6 Konzentrationen im Überstand wurden anschließend mittels ELISA vermessen. * p<0,05, ** p<0,01, Mann-Whitney-U-Test, n=4 (Kontrolle), n=8 (T2/1- und T2/6-Fc)
5 Diskussion

5.1 Modulation der TLR-Signaltransduktion auf Rezeptorebene

5.2 Beeinflussung der TLR4-Signaltransduktion durch die LPS-Trap-Fc

Trotz unterschiedlicher Glykosylierungsmuster besaßen sowohl die in Insekten- als auch im Säugersystem produzierte native LPS-Trap-Fc die Fähigkeit, LPS zu binden und den TLR4/MD-2 Komplex zu formen. Die native LPS-Trap-Fc konnte die Effekte von LPS in einem Transwell-Modell in Analogie zur LPS-Trap-His [160] oder rekombinantem TLR4 und MD-2 [161] hemmen. gereinigte LPS-Trap-Fc hinengehen entwickelte aufgrund von Oligomerenbildung keine LPS-Bindungsfähigkeit und infolgedessen auch keine biologische Aktivität gegen LPS. Derartige Oligomerisierungsphasen traten auch bei der LPS-Trap-His auf und konnten durch Mutationen des cysteinreichen MD-2 nicht verhindert werden [120]. Damit handelte es sich bei der Oligomerisierung um Aufreinigungsartefakte, die allerdings im Gegensatz zur LPS-Trap-His bei der LPS-Trap-Fc nicht durch eine Isolierung über eine Säulenchromatographie verhindert werden konnten [120].
Im Gegensatz zu Chelatierender Sepharose werden die Fusionsproteine aus Protein G im sauren Milieu eluiert. Deshalb wurden alternative Reinigungsmethoden, die im neutralen oder leicht basischen Milieu durchgeführt werden können, getestet. Die Isolierung der mit einem zusätzlichen 6xHis-Peptid versehenen His-LPS-Trap-Fc über Chelatierende Sepharose oder einer Anionenaustauschersäule führte zum Erhalt der LPS-Bindungsfähigkeit. Diese alternativen Reinigungsmethoden bedeuteten aber einen gewaltigen Rückschritt in Bezug auf die Reinheit der Proteinfraktionen.

5.3 Untersuchung weiterer Liganden für die LPS-Trap

Die Interaktion der LPS-Trap mit Entzündungsmediatoren der Sepsis sollte das postulierte Wirkprinzip des Fusionsproteins bestätigen. HMGB1 wurde ursprünglich als DNA-bindendes Protein, das zur Stabilität von Nukleosomen und zur Transkription beiträgt, beschrieben. Darüber hinaus wird es aber auch von Monozyten und Makrophagen nach der Stimulation mit LPS, TNF oder IL-1 sezerniert und von nekrotischen Zellen freigesetzt [133; 164]. Über fluorescence resonance energy transfer (FRET)-Analyse konnte lediglich die hohe räumliche Nähe von TLR4 mit und HMGB1 gezeigt werden [136]. Über die Immunprüzipitation von humanem HMGB1 durch gereinigte LPS-Trap-His war es möglich, die direkte Interaktion von Ligand und Receptor nachzuweisen. Die Immunprüzipitation von HMGB1 durch TLR4 aus Zelllysaten TLR4-transfizierter HeLa-Zellen bestätigt diese Ergebnisse [165]. Die Assoziation von HMGB1 mit TLR4/MD-2 scheint aber deutlich
geringer als die von LPS. So konnte LPS (~15,8 kDa) bereits in zweifachem molaren Überschuss HMGB1 (31 kDa) aus seiner Bindung vollständig verdrängen.

5.4 TLR4/MD-2-hIgG-Fc als Opsonin für Gram-negative Bakterien

Da die Effektorfunktionen des Fc-Teils isotypspezifisch sind, wurden zusätzlich Fusionsproteine mit C-terminalen humanen IgG2-, IgG3- und IgG4-Fc konstruiert. Diese konnten erwartungsgemäß wie die IgG1-Variante als lösliche Proteine von HEK293T-Zellen produziert werden und besaßen die Fähigkeit LPS zu binden und zu neutralisieren.

Eine Grundvoraussetzung für eine effektive Auslösung von Effektorfunktionen ist die Assoziation der LPS-Trap-Fc an Pathogene. Aufgrund der hohen LPS-Konzentration in der Umgebung Gram-negativer Bakterien wurde postuliert, dass die LPS-Trap an bakterielle Oberflächen binden könnte. Diese Hypothese bestätigte sich durch den Nachweis der Bindung von gereinigter LPS-Trap-His an *E. coli*. Diese Bindung zeigte eine Dosisabhängigkeit und konnte durch die Vorinkubation des Fusionsproteins mit LPS neutralisiert werden. Somit schien die Bindungstasche von MD-2 für die Interaktion mit der bakteriellen Oberfläche verantwortlich. Mit LPS-Trap-Fc1-haltigen Überständen konnte die Bindung sowohl über eine FACS-Analyse mit hitzeinaktivierten *E. coli* als auch an lebenden Bakterien in einem „bakteriellen

Der Nachweis einer tatsächlichen Opsonisierungsfunktion der LPS-Traps-Fc1-4 stellte den nächsten logischen Schritt der Untersuchungen dar. Phagozyten werden vor allem durch IgG1 und IgG3-Antikörper, die an spezifischen Fc-Rezeptoren (Fcy R) binden, aktiviert. Auf Makrophagen und Neutrophilen sind unter anderem der hochaffine Fcy RI (CD64) und der niedrigaffine Fcy RII (CD32) auf der Zelloberfläche präsent. Die Bindung an Fcy R löst vielfältige Effekte in Phagozyten zur Beseitigung von Pathogenen aus. Um unspezifische Entzündungsreaktionen und Gewebsschäden zu vermeiden, ist eine Differenzierung zwischen den Pathogengebundenen und unzähligen freien Antikörpern unerlässlich. Die Rezeptoren werden daher nur durch aggregierte oder multimerisierte Antikörper-Antigen-Komplexe aktiviert, die zu einer Vernetzung der Fcy R führen [145]. Mit der nachgewiesenen Bindung der LPS-Trap-Fc an Gram-negative Bakterien konnte daher nicht automatisch auf Vermittlung von biologischen Effekten durch die Fc-Region geschlossen werden.

Im Vergleich der LPS-Trap-Fc1-4 und der LPS-Trap-His bestätigte sich die Isotypspezifität der Phagozytosemodulation basierend auf der Affinität zu den Fcy R (IgG1>>IgG3>>IgG4> IgG2, [143]). Die LPS-Trap-Fc 1 gefolgt von der LPS-Trap-Fc3 erhöhten die Phagozytoserate am stärksten, während LPS-Trap-Fc4 und LPS-Trap-Fc2 opsonisierte Partikel vergleichbar zu den Kontrollen phagozytiert wurden. Die
LPS-Trap-His führte trotz einer effektiven Bindung an Bakterien wie erwartet zu keiner Modulation der Phagozytoseaktivität. Dies korreliert mit den Untersuchungen von Jain et al., die nachweisen konnten, dass die erhöhte Phagozytoseaktivität von MD-2 opsonisierten Bakterien auf der Aktivierung der TLR4-Signalkaskade beruht [172].

Der klassische Weg des Komplementsystems wird zum Schutz des gesunden Organismus ebenfalls nur durch Antigen-Antikörper-Komplexe ausgelöst. Die Aktivierung der ersten Komponente C1q erfolgt nur, wenn mindestens zwei IgG-Moleküle maximal 30 bis 40 nm voneinander entfernt sind [149]. In einem Komplementaktivierungsassay zeigte sich, dass LPS-Trap-Fc1 und -Fc3 opsonisierte Bakterien in einem höheren Maße von Komplement lysiert werden als LPS-Trap-Fc2, -Fc3 und -His behandelte Bakterien. Damit konnte auch die Wirkung der LPS-Trap-Fc Opsonisierung auf lebendige Bakterien gezeigt werden. Einen direkten Einfluss der Fusionsproteine auf das Wachstum von Gram-negativen Bakterien konnte zuvor bereits ausgeschlossen werden.

Neben den Oberflächen-gebundenen LPS-Trap-Fc Multimeren könnten eventuell auch gelöste LPS-Trap-Fc Aggregate eine zusätzliche Effektorfunktion über die Fc-Region auslösen. Ebenfalls nicht geklärt ist wie sich gelöste, singuläre LPS-beladene LPS-Trap-Fc Moleküle verhalten. So binden lösliche CD4-hlgG1-Fc Fusionsproteine mit ebenso hoher Affinität an FcY R wie humanes IgG1 [158]. Monomere IgGs werden durch FcY R zwar gebunden und internalisiert, aber nicht weiter prozessiert. Die Rezeptor-IgG Komplexe rezirkulieren anschließend relativ schnell wieder an die Zelloberfläche [174].

die eine weitere Intensivierung der Entzündungsreaktion bewirken könnten. In einem solchen Fall müssten die inaktiven LPS-Trap-Fc2 oder –Fc4 eingesetzt werden.

Die Fc-Fusionsproteine besitzen somit zumindest *in vitro* eine multimodale Funktion. So wird lösliches LPS aus lysierten Bakterien neutralisiert, Gram-negative Bakterien opsoniert und ihre Phagozytose vermittelt und durch die Komplementaktivierung die Bakterien direkt eliminiert (Abb. 5.1).

Abb. 5.1: Multimodale Funktion der LPS-Trap-Fc

5.5 Modifizierung der LPS-Trap-Fc

Durch die Modifizierung der LPS-Trap-Fc sollten sowohl die bescheidenen Proteinausbeuten erhöht, als auch die Wirkung des Fusionsproteins optimiert werden. Die LPS-Trap-Fc bot hierfür zwei Ansatzpunkte. Der erste Punkt umfasste die Reduzierung der LPS-Trap-Fc auf ihre pharmakologisch notwendigen Bestandteile. Die Möglichkeit der Verkleinerung von MD-2 wurde verworfen, da für die effektive Bindung von LPS entscheidende Aminosäuren über die gesamte

In einem zweiten Ansatz zur Modifikation wurde versucht, über die Verlängerung des Linkers einen verbesserten TLR4/MD-2 Komplex zu schaffen. Der Polypeptid-Linker der LPS-Trap wurde willkürlich gewählt und bereits für andere

5.6 Charakterisierung und Einsatz der LPS-Trap-Fc(Ad)

Die Isolierung der LPS-Trap-Fc über Protein G führte zu einem Aktivitätsverlust aufgrund von Oligomerenbildung. Durch alternative Reinigungsmethoden konnte zwar die LPS-Bindungsfähigkeit erhalten, aber nicht die notwendige Reinheit der Proteineluate erzielt werden. Daher wurde die Möglichkeit untersucht, die LPS-Trap-Fc durch ein rekombinantes Adenovirus (Ad-LPS-Trap-Fc) zu gewinnen. Durch die Produktion im eigentlichen Versuchstier konnte auf ein aufwendiges Reinigungsverfahren verzichtet werden und das Fusionsprotein in aktiver Form und ohne weitere Endotoxinkontaminationen eingesetzt werden. Die Eigenschaften der LPS-Trap-Fc(Ad) in Hinsicht auf LPS-Bindung und biologischer Aktivität deckten sich in vitro mit der konventionell hergestellten LPS-Trap-Fc. Um einen Einfluss der Virusinfektion auf das Versuchsmodell zu vermeiden, war zunächst beabsichtigt, die LPS-Stimulation der Versuchstiere frühestens am 7. Tag p.i. durchzuführen. Das Maximum der LPS-Trap-Fc Konzentration im Serum infizierter Mäuse wurde aber bereits am Tag 4 p.i. erreicht, danach sanken die Serumspiegel kontinuierlich. Dieser schnelle Rückgang kann auf zwei potentielle Ursachen zurückgeführt werden. Bereits am Tag 7 p.i. konnten im Serum LPS-Trap-

Als Kompromiss wurde die LPS-Stimulation am Tag 4 p.i. in CD-1 Mäusen vorgenommen. Erstaunlicherweise zeigten Ad-LPS-Trap-Fc-infizierte Mäuse höhere TNF und MCP-1 Spiegel als kontrollinfizierte Tiere. Dies steht im Gegensatz zum erfolgreichen Einsatz der LPS-Trap-His in einem analogen Entzündungsmodell [120] und von sTLR4 und sMD-2 in einem Lungenentzündungsmodell [182]. Die Wirksamkeit eines löslichen Receptors basiert im Prinzip auf dem Massenwirkungsgesetz und hängt von vier Parametern ab [180], die diese widersprüchlichen Erkenntnisse erklären könnten:

1. Konzentration des Liganden: Mit 1 µg LPS (ca. 50 µg/kg) wurde relativ wenig LPS appliziert. Es ist unwahrscheinlich aber nicht ausgeschlossen, dass höhere Mengen die Wirkung der LPS-Trap-Fc erst zum Tragen bringen.

Dementsprechend dürfte die LPS-Trap-Fc zwei Moleküle LPS binden. Sollte dies z.B. aus sterischen Gründen nicht möglich sein, ergäbe sich für die LPS-Trap-Fc gegenüber der LPS-Trap-His ein deutlich schlechters Masse/Wirkungsverhältnis. Dies hätte zur Folge, dass unverhältnismäßig große Mengen an LPS-Trap-Fc im Tierexperiment eingesetzt werden müssten.

Eine weitere Erklärung könnte die Erhöhung der Bioverfügbarkeit von LPS durch die LPS-Trap-Fc in vivo darstellen. Diese Effekte werden für die paradoxe Wirkung von rekombinantem löslichen IL4-R verantwortlich gemacht: Während sIL-4R die IgE-Antwort in in vitro-Modellen hemmt, wurde diese beim Einsatz von exogenem IL-4 im Tiermodell dosisabhängig gesteigert [184]. Darüber hinaus ist über die Bioaktivität der LPS-Trap-Fc im Serum am Tag 4 p.i. nichts bekannt. Im schlechtesten Fall ist das im Serum vorhandene Fusionsprotein mit endogenen Liganden - eventuell stimuliert durch die Vireninfektion – komplett beladen und kann somit kein LPS neutralisieren. Daher sind weitere Tierexperimente mit konventionell hergestelltem Fusionsprotein in unterschiedlichen Dosen an LPS-Trap und LPS für die Klärung der genannten Punkte unerlässlich.

5.7 Modulation der TLR2-Signaltransduktion

Die bisherige Datenlage über die Modulation der TLR2-Signaltransduktion durch lösliches TLR2 ist widersprüchlich. LeBouder et al konnten drei natürlich
vorkommende lösliche Varianten von TLR2 (66, 70 und 83 kDa) im menschlichen Plasma und der Muttermilch identifizieren [118]. Bei diesen Varianten handelte es sich vermutlich um die komplette extrazelluläre Domäne von TLR2, deren reine Proteinmasse von 64 auf 84 kDa mit N-Glykosylierungen anwächst [185]. Diese Polypeptide waren in der Lage die Pam$_3$CSK$_4$-induzierte TNF und IL-8 Sekretion von MM6-Zellen signifikant zu reduzieren. Ähnliche Ergebnisse konnten mit löslichen TLR2-Fc Chimären erzielt werden, die aus der Ektodomäne von AS 1 bis 586 bestanden. Ferner reagierten PBMCs mit erhöhter IL-8 Sekretion, wenn sie in löslichem TLR2-verarmten Serum kultiviert wurden [185]. Fc-Fusionsproteine aus der extrazellulären Domäne (AS 1-563) von Maus-TLR2 (T2-Fc) zeigten überraschenderweise eine konzentrationsabhängige Erhöhung der Ausschüttung von IL-6 in RAW264.7 [120]. Dies deckt sich mit der Beobachtung, dass lösliches TLR2-haltiger Parotisspeichel die IL-8 Produktion auf Stimulation von Pam$_3$CSK$_4$ verstärkt [186].

Da TLR2 unter anderem Heterodimere mit TLR1 und TLR6 bildet und so zwischen diacylierten und triacylierten Lipopeptiden differenzieren kann [47; 48], wurden Fusionsproteine aus den Ektodomänen von TLR2/TLR1 und TLR2/TLR6 konstruiert. Die Domänen der TLRs wurden über einen flexiblen 15 AS-Linker miteinander verbunden und über ein humanes IgG1-Fc dimerisiert (T2/1-Fc bzw. T2/6-Fc). In Säugerzellen konnten sowohl T2/1-Fc als auch T2/6-Fc als lösliche Proteine produziert und in den Überstand sezerniert werden. Beide Fusionsproteine besaßen die Fähigkeit, an LTA beschichtete ELISA-Platten zu binden, während die LPS-Trap-Fc als Kontrolle erwartungsgemäß nicht mit LTA interagierte. Demnach besitzt LTA die Fähigkeit an beide TLR2-Heterodimere zu binden, obwohl es nur über TLR2/TLR6 die Signalkaskade auslöst. Ferner könnte die Bindung beider Fusionsproteine durch Verunreinigungen mit Lipopeptiden erklärt werden, die wahrscheinlich für die Aktivität der LTA gegenüber TLR2 verantwortlich sind [39; 43].

MM6, die in T2/1- oder T2/6-Fc-haltigen Medium kultiviert wurden, zeigten nach der Stimulierung mit Lipopeptiden eine signifikant niedrigere IL-6 Sekretion als die Kontrollen. Dies korrelierte mit den Untersuchungen von LeBouder et al. Die widersprüchlichen Ergebnisse gegenüber sT2-Fc können folgendermaßen erklärt werden: (1) T2/1- und T2/6-Fc verfügen über ein anderes Glykosylierungsmuster als die in S2-Zellen produzierte T2-Fc. Es gibt zwar keine Untersuchungen über den Einfluss der Glykosylierung auf die Ligandenerkennung, zumindest ist aber ihre
Bedeutung für die Biosynthese und Sekretion von TLR2 bekannt [185]. (2) T2/1- und T2/6-Fc wurden in nativer Form in Überständen eingesetzt, T2-Fc hingegen über Protein A gereinigt. Die Reinigung könnte zu Oligomerbildung analog zur LPS-Trap-Fc oder anderen Störungen der natürlichen Konformation geführt haben. T2-Fc alleine stimulierte die IL-6 Sekretion zwar nur schwach [120], aber auch eine leichte Kontamination mit bakteriellen Bestandteilen könnte einen starken synergistischen Effekt zusammen mit den applizierten Lipopeptiden bewirken. (3) Für die Stimulationsversuche wurden bei LeBouder et al. und in diesen Untersuchungen die humane monozytische Zelllinie MM6 benutzt, während in [120] die Mausmakrophagen-artige Zelllinie RAW264.7 verwendet wurde. Da eine kompetitive Hemmung immer eine Funktion von Hemmer und Rezeptor darstellt, könnte eine unterschiedliche Oberflächendichte an TLRs im Maus- und menschlichen System [187] diese konträren Ergebnisse erklären. (4) Lösliches TLR2 könnte durch Aggregatbildung mit membranständigen TLRs die Signaltransduktion positiv beeinflussen. Diese Aggregatbildung ist für die T2/1- und T2/6-Fc Fusionsproteine aufgrund ihrer konstitutiven Heterodimerisierung nicht mehr möglich.

Überraschenderweise hemnten T2/1-Fc und T2/6-Fc die synthetischen Lipopeptide Pam₂CSK₄ und Pam₃CSK₄ unabhängig von ihrem Acylierungsgrad. Da TLR2 mit anderen TLRs vor der Ligandenbindung nur einen lösen Verband bildet [49; 50], gibt es im Gegensatz zu TLR4/MD-2 keine Antikörper gegen diesen Komplex, um dessen Bildung mit relativ einfachen Mitteln nachzuweisen. Sollten die Fusionsproteine diese lösen Dimere gebildet haben, ist davon auszugehen, dass der Acylierungsgrad der Lipopeptide keinen Einfluss auf die eigentliche Bindung, sondern nur auf die Induktion eines Signalkomplexes besitzt. Im Falle, dass diese lösen Dimere aufgrund sterischer Hinderung von vornherein nicht gebildet worden sind, deutet dies auf eine alleinige Hemmfunktion von TLR2 hin, das im Kristallstrukturmodell die zwei esterverknüpften Acylketten bindet [50]. Sollte dies zutreffen, müsste ein deutlicher Überfluss an Fusionsprotein gegenüber den membranständigen TLRs vorgelegen haben, da die Assoziationskonstante von TLR2/Lipopeptid vermutlich unter derjenigen des TLR2/1/Lipopeptid- und TLR2/TLR6/Lipopeptid-Komplexes liegen dürfte. Exakte Daten über die jeweiligen Bindungsstärken sind bisher nicht bekannt. Darüber hinaus kann die Selektivität von Pam₂CSK₄ für TLR2/TLR6 in Zweifel gezogen werden, da die Stimulation von B-Zellen aus TLR1-defizienten, TLR6-defizienten und WT-Mäusen mit dem diacylierten
Peptid über einen größeren Konzentrationsbereich vergleichbare Effekte hervorruft [188].

6 Zusammenfassung

Die bakterielle Sepsis ist trotz intensiver Forschung immer noch eine der Hauptsodesursachen auf Intensivstationen. Im Verlauf einer Sepsis kommt es durch eine Überflutung mit mikrobiellen Produkten zu einer generalisierten Entzündungsreaktion, die sich gegen den eigenen Organismus richtet. Die Toll-like Rezeptoren (TLR) 4 als Sensor für Lipopolysaccharide (LPS) und TLR2 als Rezeptor für Lipopeptide spielen eine Schlüsselrolle in der Auslösung dieser Überreaktion. Mit der Absicht die Antwort auf das gesamte Ligandenspektrum von TLR4 und TLR2 zu modulieren, wurden lösliche TLR-Fusionsproteine konstruiert.

In Vorarbeiten konnte gezeigt werden, dass sich eine LPS-induzierte Entzündungsreaktion sowohl in vitro als auch in vivo durch lösliche TLR4/myeloid differentiation-2 (MD-2)-Fusionsproteine (LPS-Trap-His) hemmen ließ. Um das Potential der LPS-Trap zu erweitern, wurde das C-terminale His-Peptid durch ein humanes IgG-Fc-Fragment (hIGG-Fc) ersetzt (LPS-Trap-Fc). Das Fc-Fragment sollte zu erleichterter Isolierung, zu längeren Serumhalbwertszeiten und zu biologischen Sekundäreffekten führen.

In Bindungsstudien konnte nachgewiesen werden, dass die LPS-Trap-Fc spezifisch über MD-2 an die Oberflächen Gram-negativer Bakterien bindet und somit antikörperähnliches Potential besitzt. Mit verschiedenen Isotypvarianten der LPS-Trap-Fc war es möglich, die Phagozytose von Escherichia coli–Partikeln und die Komplementaktivität gegen lebende E. coli zu modulieren. Das IgG-Fc Fragment entwickelte folglich biologische Aktivität und führte zu Sekundäreffekten.
Zusammenfassung

Da über Protein G gereinigte LPS-Trap-Fc aufgrund von Oligomerenbildung biologisch inaktiv war, wurde für den Einsatz im Tiermodell ein LPS-Trap-Fc produzierendes Adenovirus (Ad-LPS-Trap-Fc) verwendet. Die Fusionsproteinkonzentration im Mausserum verringerte sich innerhalb kürzester Zeit ungewöhnlich schnell, was sowohl auf einen schnellen Abbau als auch eine inadäquate Produktion des Fusionsproteins hinwies. Eine LPS-Stimulation von Ad-LPS-Trap-Fc infizierten CD-1 Mäusen führte überraschenderweise zu erhöhten Zytokinspiegeln gegenüber kontrollinfizierten Tieren. Weitere Untersuchungen mit konventionell hergestellten Fusionsproteinen sollen die widersprüchlichen in vivo-Daten der LPS-Trap-His und –Fc klären.

Um eine komplette Abdeckung von exogenen und endogenen Stimulatoren in Kombination mit der LPS-Trap zu erreichen, wurden TLR2/TLR1- (T2/1-Fc) und TLR2/TLR6- (T2/6-Fc) hIgG-Fc Fusionsproteine konstruiert. Durch diese sollte eine gezielte Hemmung von diacylierten (T2/6-Fc) und triacylierten (T2/1-Fc) Lipopeptiden Gram-positiver Bakterien erreicht werden. Beide Fusionsproteine waren in der Lage an LTA-beschichtete Platten zu binden. Die Hemmung einer Pam₃CSK₄ und einer Pam₃CSK₄ stimulierten Entzündungsreaktion konnte unabhängig vom verwendeten Fusionsprotein erzielt werden. Das Prinzip der Hemmung durch lösliche Rezeptoren ist demzufolge auch auf TLR2 übertragbar.

7 Ausblick

Im Rahmen dieser Arbeit konnte gezeigt werden, dass TLR-Fusionsproteine das Potential besitzen, entzündliche Reaktionen zu modulieren. Die LPS-Trap stellt somit prinzipiell einen Ansatzpunkt für die Therapie von Infektionskrankheiten dar.

Die untersuchten Modifikationen der LPS-Trap-Fc brachten keine wesentlichen Verbesserungen der LPS-Bindung. Durch weitere Varianten v.a. des Linker-Polypeptids im Rahmen eines Proteindesign und vergleichenden Experimente in Bindungsstudien könnte ein Fusionsprotein konstruiert werden, das im besten Fall eine deutlich höhere Ligandenaffinität als membranständige Rezeptoren besitzt.

Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AcP</td>
<td>Akzessorisches Protein, accessory protein</td>
</tr>
<tr>
<td>ADCC</td>
<td>antigen dependent cell cytotoxicity</td>
</tr>
<tr>
<td>Ak</td>
<td>Antikörper</td>
</tr>
<tr>
<td>AP-1</td>
<td>activator protein 1</td>
</tr>
<tr>
<td>aqua bidest</td>
<td>zweifach destilliertes Wasser</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosin-5'-triphosphat</td>
</tr>
<tr>
<td>AU</td>
<td>arbitrary units</td>
</tr>
<tr>
<td>BODIPY</td>
<td>DIPYrrmethen BOron Difluorid</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare, base pairs</td>
</tr>
<tr>
<td>BPI</td>
<td>bactericidal/permeability-increasing protein</td>
</tr>
<tr>
<td>BSA</td>
<td>Rinderserumalbumin, bovine serum albumin</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CDC</td>
<td>complement dependent cytotoxicity</td>
</tr>
<tr>
<td>cDNA</td>
<td>copy DNA</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-forming units</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalievirus</td>
</tr>
<tr>
<td>CPE</td>
<td>Cythopathischer Effekt</td>
</tr>
<tr>
<td>cpm</td>
<td>counts per minute</td>
</tr>
<tr>
<td>DAI</td>
<td>DNA-dependent activator of IFN-regulatory factors</td>
</tr>
<tr>
<td>DD</td>
<td>death domain</td>
</tr>
<tr>
<td>DIF</td>
<td>Dorsal-related immunity factor</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified eagle medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>ds</td>
<td>Doppelstrang-, double-strand</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamintetraacetat</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal regulated kinase</td>
</tr>
<tr>
<td>EIOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FCS</td>
<td>Fötales Kälberserum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoresceinisothiocyanat</td>
</tr>
<tr>
<td>FS</td>
<td>Vorwärtsstreulicht, forward scatter</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GSK3</td>
<td>glycogen synthase kinase 3</td>
</tr>
<tr>
<td>h</td>
<td>Stunde(n)</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank's balanced salt solution</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>HEK293T</td>
<td>human embryonic kidney cells</td>
</tr>
<tr>
<td>hlgG-Fc</td>
<td>humanes IgG-Fc Fragment</td>
</tr>
<tr>
<td>His</td>
<td>Histidin</td>
</tr>
<tr>
<td>HMG-1/HMGB1</td>
<td>High Mobility Group Box Protein 1</td>
</tr>
<tr>
<td>HRP</td>
<td>Merrettichperoxidase, horseradish peroxidase</td>
</tr>
<tr>
<td>HSA</td>
<td>humanes Serumalbumin</td>
</tr>
<tr>
<td>IEP</td>
<td>Isolelektrischer Punkt</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
</tbody>
</table>
IKK inhibitory κB kinase
IL Interleukin
IMD immune deficiency
IPTG Isopropyl-β-D-thiogalactopyranosid
IRAK IL-1R-associated kinase
IRES interne ribosomale Eintrittsstelle, internal ribosomal entry site
IRF interferon regulatory factor
IκB inhibitory κB
JNK c-Jun NH2-terminal kinase
kDa Kilodalton
LALF limulus anitlipopolysaccharid factor
LB lysogeny broth
LBP Lipopolysaccharide-binding protein
LDL low density lipoprotein
LGP2 Laboratory of Genetics and Physiology 2
LPS Lipopolysaccharid
LTA Lipoteichonsäure
M molar, mol/l
mAb Monoklonaler Antikörper
MAC Membranangriffskomplex, membrane attack complex
MAPK mitogen-activated protein kinase
MCP-1 monocyte chemoattractant protein-1, = CCL2
MD-2 myeloid differentiation-2
MDA5 melanoma-differentiation-associated gene 5
mg Milligramm
min Minute(n)
ml Milliliter
MM6 Mono Mac 6
MMTV Maus-Mammatumor-Virus
MOI multiplicity of infection
mRNA messenger Ribonucleinsäure
MyD88 myeloid differentiation protein 88
μl Mikroliter
NEMO NF-κB essential modifier
NF-κB nuclear factor 'kappa-light-chain-enhancer' of activated B-cells
NK-Zelle natürliche Killerzelle
nm Nanometer
OD optische Dichte
p statistischer P-Wert (Irrtumswahrscheinlichkeit)
p.i. post infectionem
PAGE Polyacrylamid-Gelelektrophorese
Abkürzungsverzeichnis

RNase
Ribonuklease

RP105
Radioprotective 105

RSV
Respiratory-Syncytial-Virus

RT
Raumtemperatur (21°C-25°C)

s
lösliches, *soluble*

SAP
Shrimp Alkaline Phosphatase

SCID
severe combined immunodeficiency disorder

SD
Standardabweichung

sec
Sekunde(n)

SIGIRR
single immunoglobulin IL-1R-related molecule

SIRS
systemic inflammatory response syndrome

SOCS1
suppressor of cytokine signalling 1

SS
Seitenstreulicht, *sideward scatter*

ss
Einzelstrang-, *single-strand*

T2/1-Fc
lösliches Maus-TLR2/TLR1-hlgG-Fc

T2/6-Fc
lösliches Maus-TLR2/TLR6-hlgG-Fc

TAB
TAK1 binding proteins

TAK1
transforming growth factor-β-activated kinase 1

TIR
Toll/IL-1R-Domäne

TIRAP
TIR domain-containing adaptor protein

TLR
Toll-like Rezeptor

TNF
Tumornekrosefaktor

TRAF
TNFR-associated factor

TRAILR
TNF-related apoptosis-inducing ligand receptor

TRAM
TRIF related adaptor molecule

TRIF
TIR domain-containing adaptor inducing IFN-β

TRIS
Tris(hydroxymethyl)-aminomethan

VSV
Vesicular-Stomatitis-Virus

WT
Wildtyp

X/Yz%
Stoff Y ist in Stoff X zu z Prozent (V/V) oder (m/V) enthalten

X-R
Xrezeptor
9 Literaturverzeichnis

10 Anhang

10.1 Publikationsliste

Teile der vorliegenden Arbeit wurden als Posterbeiträge auf Kongressen oder in wissenschaftlichen Zeitschriften vorgestellt. Die Titel der Publikationen sind im Folgenden aufgelistet.

Originalarbeiten

Groß P., Brandl K., Dierkes C., Schölmerich J., Salzberger B., Glück T., Falk W.: The LPS-Trap-Fc: A multifunctional agent to battle Gram-negative bacteria Manuskript eingereicht
Posterbeiträge

Groß P., Schnabl B., Falk W.: Die LPS-Trap, eine Januswaffe gegen die bakterielle Sepsis?

Groß P., Dierkes C., Salzberger B., Falk W.: TLR4/MD-2 fusion proteins as opsonins for Gram negative bacteria
Joint Annual Meeting of Immunology of Austrian and German Societies, Wien (09/2008)
10.2 Danksagung

An dieser Stelle möchte ich mich bei allen, die mir beim Anfertigen dieser Arbeit mit Rat und Tat zur Seite gestanden oder auf andere Weise erleichtert haben, bedanken.

Mein Dank gilt Herrn Prof. Dr. Jürgen Schölmerich für die Möglichkeit zur Erstellung dieser Arbeit und die großzügige Unterstützung der Forschung an der Klinik und Poliklinik für Innere Medizin I.

Zu großem Dank bin ich meinem Betreuer Prof. Dr. Werner Falk verpflichtet. Durch ihn wurde es mir ermöglicht, ein spannendes Thema in einem hochinteressanten Forschungsfeld in einer wünschenswerten Art und Weise zu bearbeiten. Er gewährte mir größtmögliche Freiheiten in meiner Forschungsarbeit, während gleichzeitig seine Tür für auch noch so triviale Fragen immer offen stand. Seine Ansichten halfen mir im undurchsichtigen Feld der Wissenschaft und Forschung einigermaßen klaren Blick zu behalten.

Herzlich bedanken möchte ich mich bei Herrn Prof. Dr. Jörg Heilmann für die unkomplizierte fakultätsinterne Betreuung dieser Dissertation und dem Interesse am Fortschritt meiner Arbeit.

Bei Dr. Bernd Echtenacher möchte ich mich für die große Hilfe bei der Durchführung der Tierexperimente bedanken. Herrn Dr. Bernd Schnabl danke ich für die Überlassung der LPS-Trap-Fc-Adenoviren.

Ganz besonders möchte ich mich noch bei meinen Eltern bedanken, ohne deren Unterstützung mein Studium und damit auch diese Arbeit möglich gewesen wären.

Zu guter Letzt möchte ich noch Christine, Elke, Karin, Kathrin, Stephan, Sven und meiner Hornhautverkrümmung danken, ohne die ich mein Studium mit bedeutend weniger Freude (oder gar nicht) durchgezogen hätte.

Vielen Dank!
10.3 Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Regensburg, 23.12.2008

(Philipp Groß)