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Schrodinger versus Dirac equation for a massless quark
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Starting from the Dirac equation for a massless particle in a scalar one-body potential,
we investigate the limits within which the single-particle energy levels and the
corresponding rms radii and magnetic moments may be reproduced by a Schrédinger

equation with constant effective mass.

It is well known that an impressive body of ha-
dronic spectroscopic data may be reproduced by
the nonrelativistic quark model.! The rich spec-
trum of the nucleon and the other baryons are
described well by the nonrelativistic model of Isgur
and Karl? and even the spectra of the lighter me-
sons, generated by solving the Schriédinger equa-
tion for the g7 system in an effective potential,® are
in good agreement with experiment. In these naive
quark models, one generally fixes the quark masses
m,(=my) around 330 MeV to reproduce the nu-
cleon magnetic moments, and furthermore the ef-
fective potential is chosen to roughly yield the pro-
ton charge radius. On the whole, one also obtains
semiquantitative agreement with the observed tran-
sition strengths in various channels. Despite these
successes of the naive quark model, it is disturbing
to note that the motion of a quark of mass 330
MeV in the chosen effective potential is quite rela-
tivistic, and its kinetic energy is comparable to its
mass, often exceeding it in excited states.*> One is
therefore faced with the old question: How valid
is the nonrelativistic quark model, and in what
light should its success be viewed?

In a relativistic theory, the near conservation of
chiral symmetry requires the masses of m, and my,
to be close to zero.*” In order to see the connec-
tion between the nonrelativistic quark model and a
relativistic one, we start from the one-body Dirac
equation for simplicity. In this “relativistic shell
model,” a nucleon may be regarded as three nonin-
teracting zero-mass quarks moving in a confine-
ment potential. The one-gluon-exchange attraction
and the hyperfine interaction may, somewhat ques-
tionably, be included perturbatively. Such a model,
for fitting the baryonic data, was investigated by
Ferreira et al,® and is reminiscent of the precursor
to the bag model.’

Our objective in this paper is not in fitting the
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baryonic data. We use the one-body model only to
generate relativistically determined quantities such
as the ground-state magnetic moment, the radius,
and the excitation spectrum of a zero-mass quark
in a linear confinement potential. We then find
these “data” may be fairly well reproduced by solv-
ing the Schrodinger equation with a constant effec-
tive mass, in a confinement potential of the same
form but of weaker strength. The kinetic energy
of the quark is again of the same order as the ef-
fective mass. This is very encouraging in the fol-
lowing sense: By solving the Schrodinger equation
one is reproducing the “data” generated by the
Dirac equation of a zero-mass particle. That the
motion in the Schrodinger equation is relativistic is
not surprising: One is actually solving a very rela-
tivistic problem through the Schrodinger equation.
Of course, in this one-body problem there was no
practical need to take this crooked route, because
solving the Dirac equation is equally easy. Our
calculation is only to demonstrate that for this
simple case, the Schrodinger equation with a con-
stant effective mass is able, within limits, to repro-
duce the relativistic results. It is conceivable that
such an equivalence may persist even in the
Bethe-Salpeter equations for two- and three-body
systems.'® Solving the corresponding Schrédinger
equations with an effective potential to simulate
the relativistic data, as is done in the quark model,
may then make some sense.

Consider a Dirac particle of mass mp moving in
a scalar and potential ¥ and a vector potential
(fourth component) W. The stationary Dirac equa-
tion is

[c@ B+Bimpc*+V)+WIY=Ep . (1)

The four-component spinor is written as ¢=($),
and a coupled set of two equations results. Elim-
inating the small component X gives a single
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second-order differential equation:

7P

=(E—mpcH¢, (2)
where o is the usual Pauli matrix, and
Uy=V+W. (3)
If we now use the identity
(&-VIF(FNGV)
=V-f(OIV—i(V)(FXV),
the Dirac equation may be written as

e
[—V 2MV—1

- #
V2M

VX3 |¢

=(E—mpc®—U,)$, (4)
where M is both E and T dependent:
2Mc*=mpc*+E+U_(T) . (5)

It is amusing to note that Eq. (4) is identical in
form to the nonrelativistic Hartree-Fock equation
with a Skyrme-type effective interaction!! which is
extensively used in nuclear physics, with M there
being only T dependent. The form (4) of the Dirac
equation exhibits the well known energy depen-
dence of the effective mass, and the apparent hope-
lessness of trying to generate the same spectrum
through a Schrodinger equation with constant
mass. The energy and coordinate dependence of M
comes about through the elimination of the lower
component spinor X. It not only affects the energy
spectrum, but the lower component contributes sig-
nificantly to the magnetic moment and the radius
of the orbit, making the latter larger. However,
one may fit approximately the Dirac energy spec-
trum and accommodate the increased radius by
solving the Schrddinger equation in a shallower po-
tential. The constant effective mass may be chosen
to yield the ground-state magnetic moment.

The magnetic moment of a Dirac particle with
charge e, may be calculated easily using the elec-
tric current density j =eqcl,lxT dy, and is given by

1 — g 3
p:igf(rXJ),dr. (6)
In standard notation, writing ¢ =[G (r)/r] Y]TA’,

and X =i[F(r)/r] Y;,";, it can be shown'>"* that
for a scalar potential Eq. (6) reduces (taking m, =)

to
efic  2xj 2 © 5
-— F
P=5F (2k+1) 1+2K—1f0 dr| ()
with

Li=G37), =(t73).

In the above expressions we have assumed the nor-
malization

[+ Far=1.

On solving Eq. (4) in a given partial wave, G is ob-
tained, and the lower component F is then given by

Fz_ic_

2Mc? ' ®

¢'+%¢6
r

Using the above relations, the energy spectrum,
magnetic moment, and the mean square radius

(ry= [ "(G*+Fridr

may easily be computed.
In our numerical computation, we set the vector
potential W =0, and take the scalar potential

V=Ar. (10)

We solve the Dirac equation for a zero-mass
(mp=0) particle in the above potential. The
strength A of the Dirac potential is adjusted to fit
the rms radius of the ground state to 0.9 fm, a rea-
sonable value in keeping with the charge radius of
the proton. We then find

A=400MeV fm~! withmp=0, (11)

and the resulting Dirac spectrum is shown in Table
I. The ground-state magnetic moment, using Eq.
(7), is found to be 1, =1.875¢,/e in units of the
proton magneton efi/2M,c. We then proceed to
solve the Schrodinger equation for a particle of
mass mg in the corresponding potential

Veff=k’r . (12)

The mass m g is chosen such that the Dirac mag-
netic moment 1, is reproduced by the effective
nonrelativistic expression e,#/2m.gc, which fixes
megpe? =M,c*/p1;~500 MeV. This effective mass
is then kept unchanged in calculating all the
excited-state properties. The strenght A’ of Vg is
adjusted to yield the same rms radius of 0.90 fm
for the ground state, and results in a shallower po-
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TABLE 1. Comparison of the Dirac and Schrédinger spectra for a scalar linear confining
potential (see text for the parameters). The energies are in MeV, the radii in fm, and the
magnetic moments in units of the proton magneton. The numbers in parentheses in the
second column are the weighted means of the spin-orbit doublets.

Dirac equation Schrodinger equation

1445

State Energy (r2)122 n Energy (r2)12 u

1512 455 0.90 1.88 455 0.90 1.88
2512 731 1.32 1.14 703 1.57 1.25
3512 925 1.65 0.90 906 2.11 0.99
451/, 1083 1.92 0.76 1085 2.60 0.83
1p3p 603 1.14 2.94 2.90
1pin 645 617 1.10 0.66 600 1.24 0.49
1ds) 722 1.34 3.74 3.65
1ds ), 760 (737) 1.30 1.65 726 155 1.46
oy 824 1.51 4.41 424
1fs, 859 (839) 1.48 2.50 839 1.82 2.27
1852 915 1.67 5.00 474
1872 947 (929) 1.63 3.23 945 2.08 2.95

tential. This strength A’ is also kept fixed in calcu-
lating the excited states. We thus find, for the
Schrodinger case,

A'=270MeV fm !,
mgc?=500MeV .

(13)

The Schrodinger spectrum obtained in this way is
also shown in Table I for comparison. Whereas
the Dirac energy eigenvalues are absolute, the
Schrodinger energies are all shifted by a constant
amount to adjust the 1s,,, eigenvalues to be identi-
cal. (The absolute Schrodinger eigenvalue for the
ground state was mgc>+E ;=831 MeV.) Since
we do not add any spin-orbit potential in the
Schrodinger potential, the weighted mean of the
doublets for the Dirac case is also shown in Table
I. Note that the absolute energies in the Dirac
spectrum have changed by more than a factor of 2,
yet the Schrodinger equation with fixed parameters
(13) is able to reproduce the energies fairly. The
agreement will get poorer for more highly excited
states. The weakness of the equivalence shows up
more in the radii. Whereas the ground-state radius
was constrained to be the same, the radii of the ex-
cited states in the Schrodinger case tend to increase
much more rapidly. Similarly, it is not possible to
get agreement in the excited-state magnetic mo-
ments. In the naive Schrodinger picture, the mag-
netic moment (using g, =2) is simply given by

eqﬁc ZKZ'
= , (14)
2meffC (2K+1)

where m gc?=500 MeV is fixed. This formula
yields, for example, the same p for all the nodal
excited states with fixed «j, whereas the Dirac
magnetic moments decrease rapidly due to the in-
creasing excitation energies [see Eq. (7)]. One can,
however, simulate this effect by modifying Eq. (14)

to
P 2] (15)
2mege’+AE) (2k+1) "’

where AE =(E,;—Ej;) is the excitation energy of a
given state with respect to the ground state, as cal-
culated through the Schrodinger equation. The
magnetic moments calculated by this prescription
for the potential specified by Eqgs. (12) and (13) are
shown in the last column of Table I to be com-
pared with the corresponding Dirac moments given
in column 4.

We have also performed similar numerical calcu-
lations with other power-law scalar potentials, and
with half-and-half scalar-vector type of potentials
as used in Ref. 8. The agreement in the spectra
improves if the power is less than one, and
deteriorates with steeper potentials, but the general
trend is the same. For example, with a harmonic
potential ¥'=300r2 MeV in the Dirac case, again
with mp =0, we got (72)!/2=0.90 fm and
pn=2.1e,/e. With the above procedure, we find
the Schrodinger mass m g ~440 MeV, and
#iw =162 MeV for the harmonic potential. The
spectra comes out fairly in the energy range 386
MeV (1s,,) to 1037 MeV (3sy,,), in which lie all
Dirac states up to / =4. The maximum error of
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47 MeV between the two spectra is again for the
2S1 2 state.

We were motivated in this investigation by the
success of the Schrddinger equation in simple
quark-model calculations.* For the lighter ha-
drons, the term “nonrelativistic” is misleading, be-
cause the kinetic energy of a quark is an appreci-
able fraction of its effective rest mass. A zero-
mass fermion moving in a field has obviously no
nonrelativistic limit. Within the one-body context,
however, an effective mass and an effective poten-
tial in the Schrédinger dynamics may be chosen to
reproduce the ground-state moments and the

excited-state moments. However, the Dirac mag-
netic moments may be reasonably well reproduced
by taking into account the excitation energy as ob-
tained from the Schrédinger spectrum.
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