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We derive virial theorems for relativistic particles which obey the Dirac or the Klein-Gordon
equation and are bound in scalar- and/or vector-type potentials.

I. INTRODUCTION

The quantum-mechanical virial theorem for a non-
relativistic particle, bound in a local potential V' ( ),

[T+V(P)]e(T)=Ee(T) , 1)

says that for all states @; the following relation
holds':

(i|Tliy=5GlT- T Vi) . ®)

If the potential follows a power law V(T) =ar”", one
has the familiar forms

(i|f"|i)=2£(i|V|i) ) (3a)
E=+(n+2)(ilV]i) . (3b)

Since over the last few years there has been a
growing interest in the spectra of relativistic quarks
bound in various types of confinement potentials,?™
it might be useful for the modeling of such confine-
ment potentials to have the corresponding relativistic
virial theorem at hand. Strangely enough, we were
not able to find it in the current literature on rela-
tivisitc quantum mechanics. In this Brief Report, we
shall derive the virial theorems for both Dirac and
Klein-Gordon particles. We shall hereby use the
principle of scale invariance, which is often used to
derive the classical nonrelativistic virial theorem,’ and
briefly illustrate it first for deriving Eq. (2) which is
usually obtained by requiring that the time derivative
of (T -P) vanishes for a bound state.!

The Schrédinger equation (1) can be viewed as a
result of a variational calculation in which the expec-
tation value (@;| T+ V| ;) is minimized with respect
to variations of the wave function ¢;( T) which con-
serve its norm and do not change its symmetries and
additional quantum numbers (angular momentum,
number of radial nodes, parity, etc.). One particular
variation which has these properties is the scale
transformation

() —eMN(T) =A"g,(AT) . (4)

After this transformation, the expectation value of

27

T + ¥ becomes, with a simple substitution of vari-
ables,

E(N) = 2@ T@)) + (@ V(F/N) e

where @; are again the unscaled wave functions. Re-
quiring E;(\) to be stationary at A =1, we write
oOF;
oA

=[2A(i]f"]i)—%(i| -, V(F/M)i)
A =1 A=1
=0 ,

from which the virial theorem Eq. (2) immediately
follows. The condition for E; to have a minimum at
A =1 becomes, for potentials V(T) = Kr",

9%E;
ar?

or, with Eq. (3.a),
n(n+2) (il V]i) >0 .

=20l Tli)y +n(n+1) (il V]i) >0 ,
A =1

For potentials ¥V (r) <0 this inequality requires
0 > n > —2 which recalls the well-known fact that,
for n < —2, a bound state with finite energy cannot
exist.® [For n=-2, we find E;=0 from Eq. (3b).]
The present derivation of the virial theorem makes
it very easy to study the influence of a weak constant
external magnetic field §g. Starting from the Pauli
equation with the vector potential A = -;—(_B'o X ) and
neglecting the terms in K”, one obtains the familiar
form for the energy

E;= (il Tliy + (il v1iy — (il @ -Boli) .
Now, since the magnetic-moment operator

F=[=i(Fx 9) + 7] (5)
does not change under the scale transformation Eq.
(4), the Zeeman term does not contribute to 9E;/dx
and thus the Eqgs. (2) and (3a) for the nonrelativistic
virig_l theorem remain unaltered (up to some neglect-
ed A? terms). In Eq. (3b), of course, the magnetic
interaction energy —(i| i - Bo|i) has to be added on
the right-hand side.
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II. DIRAC PARTICLES

Consider now a spin—% particle obeying the Dirac
equation. In the relativistic theory, we must differen-
tiate between two types of potentials which behave
like scalars or four-vectors, respectively, under
Lorentz transformations. The vector type is repre-
sented by the electromagnetic four-vector potential
Ar=(W,K). A scalar-type potential is, e.g., used in
relativisitic phenomenological quark models?™ as a
confinement potential; a vector potential cannot con-
fine simultaneously quarks and antiquarks.’

For the sake of generality, we assume both types of
potentials to be present; however, we shall keep only
the zeroth component W( T) of the vector potential,
in order not to make the presentation too clumsy,
and discuss the effect of a magnetic potential A at
the end of this section. Denoting the scalar potential®
by V(T), the Dirac equation then is

lca-P+W(T)+B8[V(T) +mP} ¥ =E¥ 6)

in the usual notation. (We omit henceforth the in-
dices for the quantum numbers of the bound states.)
We write the Dirac spinor ¥ in the usual way,

(U7 ‘
\P=[¢B], f\lf Ydir=1,

and define the norms of the two components:

o
Jwhwadir=Na, [uhvsd'r=No, Ni+No=1.

The scaling method described above can be applied
in a straightforward way. We scale the entire spinor

¥( 1), ie., all four components simultaneously, as
in Eq. (4):

V(F) =P\ T) .

Although the components ¢4 and {3 are not in-
dependent, the variational principle still requires E to
be minimal at A =1, if one starts from the exact solu-
tion of Eq. (6). Proceeding as in the nonrelativistic
case, we find now the virial theorem for Dirac parti-
cles:

(c@ Py=(T)=@BT-IV)y+(FT-IW) . D

In contrast to the nonrelativistic case Eq. (2), the fac-

tor 2 is missing due to the linear dependence of the

Dirac kinetic energy operator on p=—ih V.
Assuming the potentials to follow power laws

V(T)=Kr", W(F)=0r", €]
we have
(TY=n(BV) +p(W) . 9)

Note that in Egs. (7) and (9) and below, the simple

angular brackets are always expectation values
between the full spinors ¥'and v. Eliminating the
kinetic energy from Eq. (9) and the expression for
the total energy

E=(T)+(W)+(BV)+mc*(N,—Ng) , (10)
we obtain
E=(p+1){(W)+(n+1){(BV) +mc*(N,—N3g) .
a1

The quantity (N, — Ng) depends in general on the

quantum numbers of the state and cannot be ex-

pressed simply in terms of E, n, and p [except for

n=p=-1and for V(F)=W(T), see below].
For the stability condition,

BE

YO R

A=1

we find
p(p+1)(W)+n(n+1)(BV) >0 . (12)

In general cases with a scalar potential ¥ #0, we
cannot draw any conclusions from this inequality,
since the sign of

B8V) = [ v(E) Whva—vhvs)

is not known in general. In purely vector-type attrac-
tive potentials (¥ =0) with p <0, we find 0 > p

> —1 from Eq. (12). Thus, the Coulomb potential
(p =—1) plays a similar role here as a 1/r? potential
in the Schrdédinger case, although finite binding ener-
gies do exist here, as we all know from the hydro-
gen atom. If we put n =p =—1 in Eq. (11), we find
the interesting relation

E=mc*(Ns—Np) , 13)

i.e., the kinetic and potential energies cancel in Eq.
(10) and the binding energies live from the difference
in the norms of ¢4 and Y alone.® The Coulomb po-
tential is peculiar also in that E is completely in-
dependent of the above scale transformation or any
variations which leave the norms of ¢4 and ¢ un-
changed. We also learn immediately from Eq. (13)
that massless Dirac particles cannot be bound by a 1/r
potential of either vector or scalar type.

We may also write down ‘‘partial virial theorems”’
for the expectation values of the potential with
respect to either {4 or yp alone. We shall briefly
demonstrate this for a pure scalar potential ¥V = Kr"

(W =0). Decomposing the Dirac equation into two
coupled equations for ¢4 and 5 and eliminating the
latter with

¢ (&5
VBT Ty O P 14
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we get the equation

2
R c U
[(o- p)E+mc2+V(U P)

+V(T)+mc|ys=Eyp, . (15)

Introducing the symbol ( )4 for normalized expec-
tation values with respect to ¢4, i.e.,

1 T
Va=m Juivuaar (16)

etc., we can find the energy as a solution of the im-
plicit equation

E=(T)4+ (V) i+me?, an

where f”+ is the first operator in the square brackets
of Eq. (15) which contains E in the denominator.
We now apply the scale transformation Eq. (4) to y,
and require Ein Eq. (17) to be stationary at A=1
again. After some algebraic manipulations and using
Eq. (14) we find

(n+2)(Ty4=n(V)4—n(E +mc?)(Ng/N4) .

(18)

Eliminating (7+) 4 from Eqgs. (17) and (18) we obtain
-1 2
(V)a PES) (n+2)(E —mc?)
N3

- n_=2 19)

n(E +me )N,q (
(n#=-1) .

[For n =—1 one gets Eq. (13) back again.] We re-
peat now the same procedure with exchanged roles of
¥4 and yp, parallel to Egs. (14)—(19), to find

-1 |- 2
(V)yg= Gn+2) (n +2)(E +mc?)
+n(E—mc2)—%] (20)
(n#=-1)

where (V) is defined analogously to Eq. (16) in
terms of yp. From Egs. (19) and (20) we can obtain
Eq. (11) back (with W =0), noticing that

(BV)=N(V)4—Np(V)s .

Although (V) 4 and (V) p individually have little
physical meaning, Egs. (19) and (20) contain more
information than Eq. (11). As an illustration for an
application, we calculate the mean-square radius of a
Dirac particle in a scalar potential with n =2:

V(r)=Kr* .

Writing
(r?) =N4(r*) 4 +Np(r) s ,

we can use the above results for (V) and (V)p to
find

(r?) =[E(N4—N) —mc’1/K .

We finally mention the particular combination of
identical scalar and vector potentials:

V(D) =W(F)=7U(T) . @1

Although this hardly corresponds to a physical situa-
tion, it has the nice feature® that the Dirac equation
(6) then reduces to the equation

c2

¢ - - (F— 2
E+mc2p +U(D)|Ya=(E—mcHy 22)

which can be solved analytically whenever this is pos-
sible for the Schrédinger equation with the same po-
tential. Assuming U(T) =Kr” we find in this case

(Uy4= 2+2 (E—mc®) (n#-2) 3)

n

which looks like the nonrelativistic virial theorem but
does not contradict Eq. (11). Moreover, we can in
this case express the difference (Ng— N,) in terms
of E,n, and the mass:

E +(n +1) mc?
—N.=LTin+l)mec
Na—Ns (n +1)E +mc?

If we add an external magnetic field B= ¥ x A, we
have to make the ‘‘minimal substitution” p—p
—(e/c)A in the Dirac equaton (6), which leads to
the interaction energy

where J =ecy'&@y is the Dirac current. This leads
to an additional term —(1/¢) (7 -(¥- V)A) on the
right-hand side of Eq. (7). For a homogeneous mag-
netic field By, A =3(Byx T) is linear in ¥ and then
the correction term is identical to the Zeeman term,

o - 1,=- = -
~ (T F DR ==L (TR = (7B
with the relativistic form of the magnetic moment
—_ 1 . T\ 3
- X . 24
p=a f(Fx D (24)

Thus, in contrast to the nonrelativistic case again, the
Zeeman energy —( iz - Bo) does appear in the rela-
tivistic virial theorem for (7T'), Eq. (7) and, with a
factor 2, in the corresponding Eq. (11) for the ener-
gy.
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III. KLEIN-GORDON PARTICLES

The case of spin-0 particles is quickly dealt with.
We start from the linearized form of the Klein-
Gordon equation,! including again a scalar and a vec-
tor potential:

[-;%(Tﬁm) +W(F)+7lV(T) +mc2]]<b=E<1> .

(25)

Here 7, and 73 are identical with the Pauli matrices,
and the wave function has two scalar components s 4
and ¢,

5 [ll’A
o= Us

’

and shall be normalized as ¥ above. Since the kinet-
ic energy operator in Eq. (25) is quadratic in 7, we
get the factors here as in the nonrelativistic virial

theorem:
-2 n
(Btmstim)= (D)

HEIW)+3(nsT-T V),
(26)

or, with the forms Eq (8) of the potentials,
E=2(p+2) (W) ++(n +2)(r3V)+mc*(Ns— Ng)

@n
The relation (13) arises here in the case n =p = —2.
The inclusion of a magnetic field is here also analo-
gous to the nonrelativistic case.

Note added in proof: An independent study of the
virial theorem for the Dirac H atom, following the
classical derivation,' was published a few months ago
by E. H. de Groot, Am. J. Phys. 50, 1141 (1982).

The author has benefited from enlightening discus-
sions with M. Schaden and from the stimulating in-
terest of R. Brockmann, R. Weiner, and W. Weise.
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