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Pionic self-energy contributions to the nucleon and A are calculated perturbatively in the nonrela-
tivistic constituent-quark model. The intermediate states are not restricted to the ground states of N
and A. The difference in the self-energies of nucleon and A ground states converges satisfactorily,
and may give rise to appreciable splitting if the hyperfine splitting from gluon exchange is less than
200 MeV. The results are very sensitive to the assumed axial size of the nucleon. For an axial ra-
dius of about 0.6 fm, the pionic self-energy contribution to the N-A splitting is approximately the
same as found from the one-pion-exchange potential model. The difference in the pionic self-
energies of the odd-parity excited states and the ground state is found to converge too slowly to

make any definite statements.

I. INTRODUCTION

The aim of this paper is to examine the pionic self-
energies of nucleon and A states in a nonrelativistic
constituent-quark model, and their effect on spectroscopy.
In the MIT bag model,' as well as most nonrelativistic
quark models,*? the baryon spectrum is generated from a
phenomenological confinement of the quarks, and a
quark-gluon interaction. In particular, the A-N mass
difference in the ground state arises from the one-gluon-
exchange mechanism.* Considerations of chiral symme-
try prompted the introduction of pions as elementary
fields coupled to quarks.’ In the cloudy-bag model,%” the
pion-quark interaction is linearized, and the difference in
self-energy in the ground states of N and A is calculated
by restricting the intermediate states to the ground states
of N and A. Pions have also been introduced in nonrela-
tivistic constituent-quark models.®~!° The spectroscopy
has been studied in Ref. 10. In Refs. 9 and 10, however,
the pionic effects are calculated from the one-pion-
exchange potential between the nonstrange quarks. The
aim here is to calculate such effects consistently from the
pionic contribution to the baryon self-energies, in the
ground and low-lying odd-parity excited state.

Complications in the self-energy problem due to pions
arise when the intermediate states of the nucleon (or A)
are allowed to take all possible configurations. It was
shown that with a sharp bag surface (such as the MIT
bag) the contribution of the pion self-energy to the nu-
cleon diverges,“ even if a pionic form factor is intro-
duced. Various remedies to this problem have been pro-
posed, including a smeared bag surface.'> The self-energy
of a nucleon (or A) due to pion coupling has also been cal-
culated in the nonrelativistic constituent-quark model.® It
has been shown'? recently that in the oscillator model the
self-energy of the nucleon does not diverge if a pionic
form factor is introduced. It is also claimed!® that the
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pionic contribution to the N-A mass difference, calculated
perturbatively, is negligible once the spin dependence of
the quark-gluon interaction is taken properly into ac-
count. This is disturbing, since all models where pionic
effects contribute substantially!® to N-A mass splittings
would then be suspect. Much of the effort in the present
paper goes into a detailed study of the N-A ground-state
splitting due to pionic self-energy. We show that the re-
sults are extremely sensitive to the assumed radius of the
nucleon. This is not the electromagnetic radius, but is for
the axial charge. With an appropriate pionic form factor,
we find that an appreciable part of the N-A mass differ-
ence may arise from pionic self-energy effects. Neverthe-
less, it is partly true that the use of just the one-pion-
exchange potential overestimates such effects.!> We also
find that it is misleading, in the self-energy calculations,
to exclude all but the ground-state configurations of the N
and A.

In this paper the self-energy calculations are performed
in second-order perturbation theory using properly sym-
metrized harmonic-oscillator wave functions, and includ-
ing all intermediate states from oscillator quantum num-
ber N=0 to N=3. Two simple, but different patterns of
the excitation spectrum are taken to show that the final
result is not sensitive to the details of the spectrum. With
a simple harmonic spectrum, we show analytically that
the difference between the nucleon and A self-energies is
convergent even without a pionic form factor, although
the individual contributions diverge. We also calculate
the self-energies of the odd parity N =1 states of N and
A. However, in this case, the convergence is found to be
very poor, and we are unable to give any definite results.

In Sec. II we describe the model and the assumption
made in the calculation. The results are presented and
discussed in Sec. III. Appendixes A and B contain, in ad-
dition to the general formula for the matrix element of the
pion-quark interaction between appropriate states, a list of
properly symmetrized oscillator states of N and A up to
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the oscillator shell N =3. The latter are listed mainly for
convenience and the completeness of notation.

II. THE MODEL

The self-energy of the nucleon due to the pionic interac-
tion is calculated in second-order perturbation theory. We
write the total Hamiltonian as

H=Hy+H,+hy,, (1)

where the part H consists of the three constituent quarks
moving in an appropriate confinement potential, and in-
teracting with each other by gluon exchange. The next
term is the free pion Hamiltonian. Following the philoso-
phy of Ref. 13, we assume that the energy spectrum gen-
erated by H is known, and its eigenstates can be well ap-
proximated by harmonic-oscillator wave functions. Using
Jacobi coordinates, the center-of-mass variable is eliminat-
ed easily. Note that H already yields a mass difference
between the T=3 and T=+ ground states, and we
denote this difference by 8,. Soon we shall describe the
assumed spectrum of H, in two separate scenarios. The

interaction Hamiltonian A, is taken to be

3
hqqffz g:;ﬂ 2 Efa(i)o(i)-Van(ri) ’ 2
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where the nonrelativistic limit of pseudoscalar coupling
has been taken. The pseudovector coupling yields the
same form, with the factor g../2m, replaced by
\/47rqu,,/m7,. Here m, is the mass of the constituent
quark, and m, that of the pion. The sum i goes over the
three quarks, and o denotes the isospin index. The pseu-
doscalar field ¢, as usual creates or destroys a pion:

1 ik-r t —ikr

dq % V2or (agqe'™ " +agqe ). (3)
We use the formalism of old-fashioned perturbation
theory, where even virtual pions are on the mass shell, i.e.,
g =(k*+m_?)"2, but the energy is not conserved at each
vertex. Furthermore, for virtual pions, a pion-nucleon ax-
ial form factor is inserted at each vertex. Guided by the
vector-dominance model, we take the form

1
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where A,=1275 MeV corresponding to the mass of the
meson a,; (1275). Note that the axial radius of the nu-
cleon is known from neutrino scattering experiments:'*

(ra?)12=0.68+0.02 . (5)

To write down the expression for the self-energy contri-
bution X, we assume that the spectrum of H, in Eq. (1)
is known, and is given by

Hy|Yp)=Ep|¢p), (6)

where B stands for N, A, or the excited states of these,
properly symmetrized and with the appropriate quantum
numbers. The gluonic hyperfine splitting is denoted by

Sg:EA_EN > (7)

and is only a certain fraction of the experimental mass
difference (M, —My). In this perturbative scheme, the
self-energy of the A, for example, due to the pionic in-
teraction is

<7J}B’k|hqq1r| 1/’A> |2
EA_(EB+wk)

L [axs (®)

2 (A)=
(27T)3 B

where the sum B goes over all states of Eq. (6). This cor-
responds to Fig. 1. Note that in the above sum when
B =N, the nucleon ground state, there is a pole in the in-
tegral, and 2, is complex. The width of the A due to real
pion decay is proportional to the imaginary part'® of this
2, In such a calculation, since only real pions are emit-
ted, F,=1, and moreover (Ep, —Ey) in the denominator
of Eq. (8) should be replaced by the actual mass difference
(Ma—My). If recoil of the nucleon is neglected, one gets
the simple expression in the oscillator model:

Anr  —k2/3ay?
T 2¢ :
mq

I (A—>Nm)=%k3 9)

Here ag=1v"m,Q, Q being the oscillator spacing, and
G =8gq /4m. Note that the coefficient a,/m,? is also
written as 4qu,,2/m,,2. The pion momentum k is deter-

mined by energy (and momentum) conservation k =227
MeV/c. Inclusion of recoil effects alters Eq. (9) to'®

Ay Ey k2342
e b
m,> My

I (A—>Nm)=4%k? (10)

with Ey=(k?>4+My?)'/2. We shall come back to this
problem presently.

When calculating the real part of = (A) from Eq. (8),
one should multiply the integrand on the right by F,%(k),
since only virtual pions are involved. Consider the self-
energy of a baryon i due to the process (i —Bw—i). The
angular momentum algebra simplifies after one averages
over the spin states of i/ and sums over all spin-isospin
states of B. Writing

[(Un Kk Thggr [0 =5 T
zg get, taking the principal value of the integral in Eq.
w k2| M g | 2F A k)dk
ooy —(Eg—E;)] ’
| A i |

1
2h)=——=5>P (11)
! 452 ZB" fo

where the quantity
harmonic-oscillator wave functions.

may be calculated using
When the state i

FIG. 1. Pionic self-energy contribution to the A mass, due to
intermediate state B.
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stands for the ground state N or A, we get

2
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Care should be exercised in taking the principal value of
the last integral in the second line of Eq. (13). These are
standard equations which have been used before.” In this
paper we also derive 1p; for all the excited states up to os-
cillator quantum number N =3, and present the numeri-
cal results in the next section. These excited-state wave
functions are tabulated for completeness in Appendix A.
From Egq. (13), we note that the N =0 contribution to
the mass difference X, (A)—Z2_(N) arises entirely from
N—A+m or A—N +7 type of processes. It is common
practice to fix the pion-quark coupling constant in the
nonrelativistic models through the relation'®

2
Ay

7 =
q9

1 gNN‘n'Z
My? Am

3
5

’ (14)

m

where from =N scattering we know gyy,2/47=14.4.
This yields a,=0.64 for m,=330 MeV. Alternatively,
the same constraint fixed the pseudovector pion-quark
coupling constant

fagr® =5 fnng" with fyy, =0.08 . (15)

It is well known that this causes problems in the width of
the A, I (A—N7). From Eq. (9) if we take the oscillator
spacing =550 MeV, m, =330 MeV, and a,=0.64, we
get I' (A—Nm)=83 MeV, compared to the experimental
value of 115 MeV. It is possible that higher-order dia-
grams in the calculation of T', may resolve this discrepan-
cy.!” But in a calculation such as ours which is of first or-
der in a,, we prefer to choose an effective value that fits
the width I' ,(A—N + ) with the naive formula (9), giv-
ing a,=0.88. This is equivalent to the choice!® of

Frnanr=0.32~4fyN," , (16)

rather than f NA,}:% Fauna2=0.23. We choose the value
(16) in the calculation of the self-energy difference
3. (A)—3_(N), because, as seen from Eq. (13), it is only
the NAm coupling that is relevant here. Moreover, the
same value of the coupling constant a, yields a better fit'®
to pionic widths of N*—N 4+, etc., rather than the
smaller value a,=0.64. We shall therefore use a,=0.88
for all transitions from the ground to excited states B.

To perform a calculation in which the excited-state

Here np; are dimensionless coefficients given in Eq.
(B16) and Tables III and IV. The generalization of this
formula for the excited states is also given in Appendix B.
Restricting the sum over B to ground state only (which is
not a good approximation in our model), we get

2 2
—k</3ay

—k2/3ay?

transitions are included, the spectrum of the energies Ep
appearing in Eq. (6) is to be specified. We choose two
such models. In model A

Hy= ﬁ(p,,%pﬁw 3m QX p*+A%) +hy (17)
where h; is the hyperfine interaction between quarks due
to the one-gluon-exchange potential. For simplicity, it is
taken to be a zero-range two-body potential.’> It is to be
regarded as an effective interaction whose diagonal ele-
ments yield the appropriate hyperfine splitting for each
state. The ground-state splitting, Eq. (7), then becomes

8 =2V2 a0y’ /(3VTm,?) , (18)

with a; the effective quark-gluon coupling constant, and
ap=1v"my{). In summing over the intermediate states B
in Fig. 1, all excitations to shells N >4 are ignored. For
simplifying the calculation, A, is dropped in the N=3
shell.

Model A has the disadvantage that the excited states
with N =2 and 3 are too high in energy compared to ex-
periment. Following the prescription of Ref. 3, one may
assume that the N =2 states are brought down near the
N =1 states by a pattern shown in Fig. 2, which reflects
the anharmonic components of the interaction. Such a
spectrum (model B) of Ep’s is shown in Fig. 2. Some of
the N =3 odd-parity states are known experimentally at
about 2 GeV, but most of them are not identified. Rather
arbitrarily, the {56} L=1"N and A states are placed
around this energy, while all the other N =3 states are put
300 MeV higher. The hyperfine splittings due to the
gluonic part A for all states are the same as in model A.

III. RESULTS AND DISCUSSION

A. Ground-state N-A splitting
We first concentrate on the pionic contributions to the
ground-state N-A splitting:
8,=2(A)—Z=_(N) . (19)

6,19

Let us discuss first the often-used approximation®"” of re-
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FIG. 2. Schematic harmonic-oscillator baryon spectrum with
spacing #iw, (= in the text), modified by gluonic hyperfine
splitting (parameter 8,) and, for N =2, anharmonic splittings
(parameter A;). Choice of parameters for “model B”: Q=550
MeV, A,=600 MeV.

stricting the intermediate states to the ground states N
and A. From Eq. (13) we then obtain (N'=0 denoting the
contribution of this shell only)

k*F_ 2(k)e —k2/3a?

qu 127 Jo o

a, 1 ©
8, (N'=0)=

28
a)k+8g wk—Bg ’

(20)
where the principal value of the last integral is taken. For
the special case of 8, =0, this becomes

K4F Z(k)e—k2/3a2
2

O arr_y Fm 2
8O(N'=0)= [, dk 1)

qu T Wy
The superscript (0) in 8\’ is to remind the reader that
8; =0 here. This expression is of some interest for com-
parison with the potential model.!° In the latter, one sim-
ply takes the one-pion-exchange potential (OPEP) (includ-
ing the &-function part) between quarks, and calculates
the splitting (¥ | Vopep | ¥a) —{¥w | Vopep | ¥y ). One
can evaluate these expectation values directly in momen-
tum space:

(Y | VOPEPI¢N>:I<¢N | k) (k| Vopep | k')
X (k' | Yyrd’kdk’, (22)
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where, in the static approximation,?’

Ay (01-9)(0,q)

(K| Vopep | k') = — —2 AT ) 2 TVATTYAT (33,
4m,* (21) W,

with q=k’'—k. By taking the harmonic-oscillator

ground-state wave functions in momentum space in Eq.
(22), it is straightforward to show that

4r 2 —q/2a%
[o 2 © F . “(qle 1
2 fo dqq T \q

8,(OPEP)=—" = ;
mg T Wy

(24)

Note the difference with Eq. (21)—the exponent is
exp( —g2/2a?) rather than exp(—gq?2/3a?), but otherwise
the expressions are identical. This shows that the most
naive self-energy calculation for the splitting 8\”, using
Eq. (21), overestimates the result compared to the poten-
tial model approach of Eq. (24), if the same parameters
are used. This is in contrast with Ref. 13, where the two
were identical because of a spurious center-of-mass contri-
bution in the self-energy part.

It was pointed out in Ref. 13 that for §, >0, one gets
5,<8Y as is clear from Egs. (20) and (21). It is also
correct'® that if 8 is taken close to the N-A experimental
splitting, then §, is small. The actual numbers depend
rather sensitively on the parameters of the model, in par-
ticular on the axial radius (r,2)!/? that is determined by
the choice of A,. (This will be demonstrated in Fig. 3.)

Till now we have been discussing the approximation
where the intermediate states B in the self-energy diagram
(Fig. 1) can only be N and A, corresponding to the N =0
shell of the oscillator model. Actually the contribution of
the intermediate excited states is far from negligible. In
particular, the N =1 odd-parity excited states lower the A
relative to the N, and as much as one-half to one-third of
the ground-state contribution [Eq. (20)] is canceled by
this. This may be seen from Table I, where the contribu-
tions of the intermediate states B (with oscillator quantum
numbers N'=0,1,2, etc.) to the ground-state splitting 6,

TABLE I. Pionic contributions to the ground-state N-A
splitting §, (in MeV) from intermediate states with oscillator
quantum number N’. Parameters: (=550 MeV, m, =330
MeV, A,=1275 MeV, a,=0.88.

Model A Model B

N’ 8 =0 8 =140 MeV  §,=0  §,=140 MeV
0 445.1 286.7 445.1 286.8
1 —149.9 —165.3 —149.9 —165.4
2 56.0 40.0 73.4 51.3
3 —21.7 —29.9 —21.6 —339
4 8.6

5 —34

6 1.5

7 —0.6

8 0.26

9 —0.10

Sum 335.8 131.8 347.1 138.8
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FIG. 3. Total ground-state A-N splitting 6,+8, vs gluonic
hyperfine splitting 8,. The three solid lines correspond to the
axial radii r4 given on the figure. Spectrum of model B (see
Fig. 2). Parameters: m,=330 MeV, a,=0.88, A,=1.275 GeV
(1+42), A;=0.97 GeV (3); =550 MeV and A,=600 MeV
(2 + 3); =600 MeV and A,=680 MeV (1). Dashed line: same
parameters as solid line No. 2, but including recoil of the inter-
mediate baryon (see text); a,=1.13.

are shown explicitly.

We first discuss in Table I the more tractable model A
of equidistant excited states, and take the specially simple
case with 8§;=0. A pattern clearly emerges from the
numbers in column A: the contributions to &, from the
even shell (N'=0,2,4) are positive, while those from the
odd states are negative. From the tableaux of matrices
W in Table III and Egs. (B15) and (B16) it is clear that
the spatially symmetric intermediate states [corresponding
to the {56} representation in SU(6)] increase &, while the
{70} states reduce it. From the latter, for example, the A
gets exactly twice the contribution to its (negative) self-
energy than the nucleon, thus reducing §,. Note that this
effect, leading to contributions from successive shells with
alternating signs, is arising purely from the overall sym-
metrization of the states B, and the SU(6) spin-isospin
matrix elements through the coefficients Wp; which do
not depend on the other details of the model (e.g., this
would be the same as in the cloudy-bag model).

For the particularly simple case with 8, =0, the ap-
propriate coefficients 7 of Eq. (12) may be collected
from Eq. (B16) and Tables III and IV to yield

4p 2
o= 2r 2 =y KEAR) ey s
mq T 0 W
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with

1k
6 a’

, 1

(—1DV
' wr+N'Q

=3 =10 26)
&, N

Equation (25) is a generalization of Eq. (21). The numeri-
cal contribution of each shell to &, is tabulated in the
second column of Table I. These converge reasonably
fast, with successive terms alternating in sign and decreas-
ing in magnitude. For example, if the sum is truncated at
N'=3, about 6 MeV is missed in §,—a result good to
2%. The convergence can be seen analytically also, by
noticing that

I(k)— i (—)NIIN' 1
=0 N or+N'Q
= fowdx exp( —wyx —te ~ %) 27

with t=—+k?/ay?. Taking the limits 2—0 and Q— co,
we can find both an upper and a lower bound for I (k):
—t
¢ Itk <——.
Wk WOk

(The left-hand equality holds only for Q=0, the right-
hand one only for Q= «.) It then follows from Egs. (21),
(24), and (25) that, for finite €,

5,(OPEP) <8 < 8°(N'=0) . (28)

Since 8°(N'=0) Eq. (21) is finite, we have proved the
convergence of 8., even for F,%(k)=1. Note, however,
that if F,%(k)=1, but 80, then 8, diverges.

It does not seem possible to write a single series as in
Eq. (25) for the more realistic case of 8,50. From Table
I it will be seen that with §, =0.14 GeV, there is a sub-
stantial quenching of the positive contributions from the
even-parity states (N'=0,2) and an enhancement from the
odd states. The self-energy 8§, is therefore cut down sub-
stantially when 8, =140 MeV, but (8; +8,) is close to the
experimental mass difference (M, —My). Moreover, al-
though the spectrum of model B is very different from
that of model A, the self-energy difference 6, is about the
same in either mode.

We found numerically that 8, decreases linearly with
increasing 8, up to 8,~250 MeV. In Fig. 4 we show &,
as a function of §,, obtained with the spectrum of Model
B for a set of parameters corresponding to {r,2)!/>=0.61
fm as in Table I (2 =550 MeV, m, =330 MeV, A, =1275
MeV). It is seen that for 6;~230 MeV, &, becomes zero
and, for larger §;, even negative. This can only happen
when the intermediate states with N’>0 are included.
The dashed curve in Fig. 4 shows the approximation
8, (N'=0) which is easily seen also from Eq. (20) to stay
positive and to vanish like 8, 7' for large §,. With a
choice of 86,~100 MeV, the pionic contribution §, is
about 200 MeV, so that the sum of §; and J, gives the ex-
perimental N-A splitting.

However, these results are particularly sensitive to the
axial radius of the nucleon. This is demonstrated in Fig.
3, where we show the total N-A splitting, i.e., the sum
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FIG. 4. Pionic contribution §, to the ground-state N-A split-
ting 8;. Dashed line: using intermediate states with N'=0 (i.e.,
N and A) only. Solid line: including intermediate states up to
N'=3. Parameters as in Fig. 2 and Table 1.

(84 +6,), plotted versus 8, for model B. Different param-
eter sets have been used corresponding to the axial radii
r4={r,2)!"? indicated on the figure. With the choice of
Q=550 MeV, m, =330 MeV, one needs A,=970 MeV to
reproduce the experimental axial radius (r,2)'>=0.68
fm. Even when a, is taken to be 0.88, (6, +96,) is found
to be short of the experimental value, though not by
much. For A,=1275 MeV, (r,?)!/?=0.61 fm, as we
have seen above, about two-thirds of the N-A splitting
arises from the pions. With an even smaller radius of
(ry2)12=0.58 fm, the self-consistent solution yields
about half the splitting coming from the pions. We em-
phasize that these results should not be taken too literally,
since the model is so crude. But it is clear from these dis-
cussions that if the gluonic hyperfine splitting 8, is as-
sumed not to exceed 200 MeV, the pionic contribution to
the N-A mass difference may be substantial. For §; > 200
MeV, we are not able to find a self-consistent solution
with 8,+08,~300 MeV for any reasonable radius r,.
This is at variance with the results of the cloudy-bag
model,”»?! where the intermediate states with N’ >0 were
ignored.

In the calculations so far, we have neglected the effect
of recoil of the baryon as the virtual pion is emitted. This
can be taken into account by replacing (Ez —E;) in the
denominator of Eq. (11) by [(Eg*+k?)'">—E;]. To be
consistent, however, one should then choose «, by fitting
the width I' (A—N) from Eq. (10), rather than Eq. (11).
Such a procedure requires a,=1.13 rather than 0.88, the
latter value being for the static approximation. In Fig. 3
we also show the result of such a calculation in which
recoil has been taken into account with a,=1.13. If the
radius 74 is not changed, the result differs little from the
static calculation.

We have remarked before that in some earlier calcula-
tions,!? the one-pion-exchange potential has been used, to-
gether with the form factor squared F,? to estimate pion-
ic effects in the spectrum. The explicit form of the form-
factor modified potential is given in Ref. 10, and is ir-
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relevant here. Its contribution to &, is given simply by
Eq. (24). Tt is of interest to make .some numerical com-
parison of this with the more difficult self-energy ap-
proach. For such a comparison, we evaluate Eq. (24) with
F (k) given by Eq. (4). Taking the same parameters as in
the self-energy calculation, i.e., i)=550 MeV, A,=1275
MeV, and m, =330 MeV, we find that

8,(OPEP)=312a, MeV (A,=1275MeV).  (29)

When one is using the OPEP, it may be more reason-
able to use Eq. (14) to fix «,, which yields a,=0.64.
Equation (24) then gives 5, (OPEP)=200 MeV, so the
other 100 MeV must come from gluonic hyperfine split-
ting 8,. Note that in the potential approach, the quantity
8,(OPEP) is independent of &,, unlike the self-energy
problem. Nonetheless, a glance at Fig. 4 will show that
the self-energy calculation with the same parameters (but
with a,=0.88) yields the same result 8§,~200 MeV,
8, =~ 100 MeV. This agreement may be fortuitous, since
both results depend sensitively on the choice of A,. If,
however, we restrict A, in the range 1000—1300 MeV, the
OPEP model results with a@,=0.64 are not too different
from the self-energy calculation (including excited inter-
mediate states, and with a,=0.88).

B. Self-energy of the odd-parity excited states

For spectroscopy, it is important to find out about the
state dependence of the pionic self-energy. When using
the OPEP model for the pionic effect, the potential con-
sists of a 8-function piece and the usual Yukawa form,!°
if F,=1. The dominant contribution to the matrix ele-
ments arises from the 8-function part. From this, a little
consideration shows that the pionic matrix element is
nearly halved in the odd-parity N =1 shell compared to
the N =0 ground state in the OPEP model. For example,
we know that in the ground state, the nucleon is depressed
five times more than the A by the OPEP. If the A is
depressed by x, then the spin-isospin-weighted shift in the
N =0 state is 57(4X5x +16xx)=1.8x. From Eq. (28),
it then follows that the weighted shift in the N =0 state
due to OPEP is — 140a,, (in MeV) for A,=1275 MeV. A
similar consideration in the odd-parity N =1 shell gives a
mean shift of 0.9x. It follows that, for the mean,

(Vopep )~ =1—{Vopep )y —0=70ct, MeV , (30)

which is about 45 MeV for a,=0.64. In order to com-
pare this result with the corresponding self-energy calcu-
lation, we attempted to calculate =, for the nucleon and
A N =1 odd-parity excited states using the general Eq.
(11). Again only intermediate states up to N'=3 were
considered. In Table II the spin-isospin-weighted pionic
self-energy contribution to the N=0 and N =1 states are
shown, arising from the different shells. The quantity
corresponding to Eq. (30), denoted by

A, =[Z(N=1)—Z (N =0)] (31)

is also shown in Table II, where the bar on 2, denotes the
spin-isospin average. In computing 3 (N =1), since the
space is truncated at N’'=3, the maximum

AN=N'—N=2. It is therefore reasonable to compute
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TABLE II. Contributions (in MeV) to the spin-isospin-averaged pionic self-energies 2., of the ground
states (N =0) and the N =1 (odd-parity) states due to intermediate states N’. Parameters as in Table I;
Model B. See text for value of a,. The last two columns show A,=3 (N =1)—3_(N =0) and

AN =1)=3(A}) =2, (NT)). 8,=140 MeV.

AN=N'—N SN =0) SAN=1) A, 8n(N =1)

0 —594.9 3244 270.5 67.1
+1 —276.8 —238.8 323

P 353 —636.1 —359.3 303 ~2.0
+2 —325.1 —227.1 98.0 —36.7
Sum —1196.8 —1187.6 9.2 28.4

3 ,(N =0) also to the same approximation in Eq (31), tak-
ing only up to N'=2. In the calculation of these self-
energies, we took «a,=0.64 for transitions such as
N—-N +m7 or A— A+, but increased it to 0.88 for tran-
sitions A—N +m, N*—N +, etc., due to the reasons
discussed in Sec. II.

The quantity A, [Eq. (31)] will be seen from Table II to
be rather small, although the convergence of its contribu-
tions from the intermediate states is rather poor. With
some optimism, we may conclude that A, will probably be
below 100 MeV in magnitude, so that no drastic modifica-
tion of the main shell spacing ) may be needed in conven-
tional spectroscopy due to the pionic self-energy.

For completeness, we have also shown in the last
column of Table II the contribution to the quantity

Sﬂ(N: 1 ):Zﬂ-(ATj,)—zﬂ(Nr] )
=3(N3)—2,N7), (32)

which is the analog to &, Eq. (19), but in the odd-parity
N =1 shell. (Note that the states N3, and A; of the {70}
multiplet remain degenerate.) The convergence is again
too poor to make any definitive statements. But, clearly,
the splitting 8,(N =1) is substantially smaller than §, [Eq
(19)] in the ground state (see the last column of Table I,
evaluated with the same parameters), in qualitative agree-
ment with the OPEP result § (N =1)=38,.

IV. CONCLUSIONS

(a) The ground state N-A splitting due to pionic self-
energy contribution converges satisfactorily when a realis-
tic pion form factor is used. For the special case with no
gluon splitting, the convergence is demonstrated analyti-
cally even without a pion form factor.

(b) It is misleading to include only the ground states of
N and A as intermediate states in the pionic self-energy
calculation. Inclusion of excited states reduces 8, sub-
stantially.

(c) The final results depend very sensitively on the
chosen radius of the nucleon. It is reasonable to identify
this radius as the axial radius. If the gluonic hyperfine
splitting &, is taken to be less than 200 MeV in the ground
state, then the pionic self-energy gives rise to a substantial
splitting in the ground state, and the experimental mass
difference (M, — My ) can be repreduced.

(d) For gluonic hyperfine splitting 8, >250 MeV, the

pionic contribution &, is very small and, for axial neutron
radii r,>0.6 fm, even negative. If we insist on the
choice of a,=0.64 instead of 0.88 for the self-energy cal-
culation, then for reasonable values of the axial nucleon
radius no self-consistent solution is found. It may be then
necessary to calculate higher-order diagrams. Note that
this result comes about only if the intermediate states of
higher shells (N’ > 1) are included which bring a net nega-
tive contribution to §,,.

(e) Instead of performing the involved self-energy calcu-
lations, it seems permissible to use the one-pion-exchange
potential, including the 8-function part. The N-A split-
ting 8,(OPEP) is about the same (with a realistic form
factor) as in the self-energy calculation, provided
a,(OPEP)=0.64, in contrast with the somewhat larger
value of a, that is taken for the self-energy calculation. If
the same value for a, is taken in both approaches, then
the OPEP model yields larger N-A splitting.

(f) No definite statement about the difference of the
mean self-energies in the odd-parity excited states and the
ground state could be made due to poor convergence (in
both models A and B). For the excited-state calculation
of the self-energy, it is not sufficient to restrict the inter-
mediate states to the adjacent two shells. However, within
the uncertainty expected from the lack of convergence,
the results seem compatible with those of the OPEP
model. .
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APPENDIX A: BARYON WAVE FUNCTIONS

We restrict ourselves to baryons in the u,d sector (zero
strangeness). The 3-quark baryon wave function (leaving
out the overall color part) is a totally symmetric product
of a spin part X Fs , an isospin part ¢  and a spatial part
¥y Hp,A):

Py P
|B)= 3 X6 Ut pMfe e -
P,P,Pg

(A1)

The indices P,Pg, Py stand for the permutation symmetry,
which we denote, respectively, by S, p, A, and A4 for sym-
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metric, mixed symmetric (p or A type), and antisymmetric
states with respect to exchange of quark pair. In the spa-
tial wave functions ¥3“(p,A), given in detail below, p and
A are the usual intrinsic relative Jacobi coordinates

rz—rz), A= (r1+r2—2r3) N (A2)

_ L B
P=3 V6

in terms of the quark coordinates r; (we have assumed the
three quarks to have equal masses m,). The spm wave

functions X Fs , obtained by coupling three spm-— quarks
according to
s1+8,=815, Spp+8;=8, (A3)

are, as usual, denoted by
X = |[512=1,53:';‘]S:'§‘> >
X=|[Sp=lLs=71S=3), (A4)
XP=|[S;=0,53=71S=7

We use the following short notation for angular momen-

tum coupling:

[0 UM) = 3 (Tl [IMY [ Jap) | Jop') - (AS)

By

(The third component M is left out when not explicitly
used.) For the Clebsch-Gordan coefficients, as well as the
3j and 6j symbols below, we use the same notation and
phase convention as Edmonds.?

The isospin functions ¢°, ¢, and ¢* are completely iso-
morphic to the spin functions (A4), according to the cou-
plings

t1+t2=T12, T]2+t3=T . (A6)

We then obtain six types of baryon states:

|{56}N11>— Xp¢p+X}”¢)‘ ,

1{56}A33>=XS¢5¢ .

| {T0)NT) = TP+ X2+ (0P — XA Myt ]
1 (A7)
| {70} N5, >=7§X‘(¢P¢;¥»L+¢k¢g¢) ,
. 1,
} {70}A13>=“/‘—5¢ (Xpllif,v’l‘-y-x"lbfi) ,
[120]N1)) = o= (P> — Xy

Here the curly brackets indicate the degeneracies of the
spin/flavor SU(6) multiplets of which N,s ;.74 and
Ajg 41,27 +1 are the nonstrange members.

In the following we shall hst the spherical harmonic-
oscillator wave functions 1/Jp p>A) which we have expli-
citly used in this paper. They are decomposed into prod-
uct states

WFHp M= 3 [ (p
nony
N

Wy, MLt (AB)

where [ ]¢ indicates again the coupling of angular mo-
menta:

L+5L,=L. (A9)

L is the total intrinsic angular momentum quantum num-
ber, and N is the main oscillator quantum number

N=2n,+1,4+2n,+1,=N,+N, . (A10)

In Eq. (A8), ¢,(r) are the standard spherical harmonic-
oscillator wave functions, found in any textbook, in terms
of radial wave functions R,;(r) and spherical harmonics

Yim (6,6):

Sn(1)=Ry(r)Y}y, (0,0) (A1D)
with the normalization
[, r2dr Ryp (1R (1) =88y - (A12)
N=0 state. This has L™=0":
3%=doo(p)boo( A) (A13)
N=1 states. These have L™=17 (2 states):
Ui ' =doo(p)bor(X), Up'=doi(p)doo(A) (A14)

N=2 states. These have 7 states with L™=0, 1%, or
2+

Y=~ —[¢00(P)¢10(}»)+¢10(P)¢00(M] ,

—10(p)boo(A)]

1-=°,

’J’A = \/i —=[doo(p)P1o(A

20= —[dor(p)dor(A)
¥2 ' =[d01(p)por(A)]"=!

- %zwoz(p)qsmm

(A15)

+doo(plpoa(M)],

1
vit= 75 [#02(P)doo(X) — boo(p)goa( AT,

U =[do(p)doa( )] =2 .

N=3 states. There are altogether 12 states with
L™=17,27,0or 37. We need only list the symmetric and
the A-type mixed symmetric states:

g'3=ig¢m< )$o3(A) —V3[doar(p)doi (A
= \/—2 {2[oa(p)dor(A)]-=!
—V3[doolp)b1(M)]+V5d10(p)doi(A)]

U3 =3 {[602(p)dor (ME =2 +V 3ol p)dbos( M)
92 =[¢02(P)¢01 (M]-=2,

'f’lk = \/§ [‘/§¢00(P)¢11 M+‘/§¢1O(P )po1(A)]

)]L=3

(A16)

B = (4bu(p o (W]

+V3¢00(p)d11(A) =V 56 ,10(p)d1 (X))}
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The p-type mixed symmetric and the antisymmetric states
are obtained from those in Eq. (A16) by interchanging
simply the variables p, A according to the following rule:

p—hi,

3,L 3,L
ip ‘_’lpik ’
3,L 3,L
4 YT

(A17)

Note that there are two pairs of mixed-symmetric states
with L =1; we have denoted them by z//?i] and 1//?;,1 with
i=1,2. According to g (A17), we get, as an example,

1 _ —
=5 (20001(p)bea( W] 7=V 3411(p)doo( M)

+V'5¢01(p)b1o(A)] .

Note that the relative signs of the p-type and A-type wave
functions for given N and L are important. Otherwise,
the overall phases are arbitrary.

APPENDIX B: CALCULATION OF MATRIX
ELEMENTS

Since we work with symmetrized wave functions, we
can use the rule

TABLE III. Coefficients Wy of Eq. (B16), i € {70}.

(a) For B€E {56}

i B Ny Asz
Ny 25 32
As; 8 25

(b) For BE {70}

i B N N3 Al
Ni, 4 1 1
Aj 2 5 5
3 A A
(B] 2h(i)|B'>=3<B|h(3)|B') (B1)

i=1

to simplify the calculation; % (i) is specified by Egs. (2)
and (3) and acts on the ith quark.

The spin and isospin parts are formally identical, so we
only give as an illustration the spin matrix element which
after using the Wigner-Eckardt theorem?? becomes

1 ’
= S S
M 2 12
(IS0, 518'M; | 0(3)k | [Si2, 318,M, ) =5 5,12(—)512“’2 VEVRSHDRSFD | ¢ 1
’ 2
S : k (B2)
X , .
% Ms —Mg q|1
Here { ] denotes the usual 6j symbol?*? and k, (g =0,%1) are the spherical-tensor components of the momentum vector

k.

The spatial matrix elements of the pion wave factor exp[ik:(r;—R)]= exp(iV'2/3k-A) is obtained similarly after a

partial-wave expansion:

Cnpna (G M] | exp(iV2/3k-A) [ npny (I OLML ) =8, /18y B

’

il
x;: (214+1) I—ML

M,

[(2L + 1)L+ 1)(21, + 1)(215 +1)]'/?

N

L, I 1
0 0 0

L Iy L 1,

L I, 1}<”3~li|j1(K?u)|n;~lk)- (B3)

Here j; is a spherical Bessel function and k =Vv"2/3k. The radial matrix element {j; ) will be discussed below.
After squaring the matrix elements, summation over the initial states MgM; and averaging over the intermediate

states Mg, M, and T3, we get

2
[ M | 2=27 X470, 5~ 2T+ DRS'+ DL+ 1) 3, G2l +1) (B4)
mq i
2
1 1 '
5 IT" Ty S Si
_ ST ST \Tia+Sn : PP’ (B5)

G = > fefe (—) Tl S L& ;

LInS 15, Ty
a,a’,BB
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TABLE 1V. Factors bp appearing in Eq. (B16) for harmonic-oscillator states up to Nz =3.

Np=0 Np=1 Np=2
State B {56]0* {7041~ {56}0* {70}0°* {56}27F {70}2*
by 1 3 o 3 3 ¥
ZVB:3
State B {56}1~ {56}3~ {70},.1~ {70},1~ {70}2~ {7013~
1
by 080 T By om0 0 0
, I amr e L Iy 1|y L',
g = (= T IL A DL DN oo oL g, [k LA [nad) (B6)

The coefficients ff;T and ngL are those of Egs. (A1) and (A8), where B=(P,Pr,Ps) and a=(n,n,l,l;) are short nota-
tions for the quantum numbers of the initial state |i) and «' and B those of the intermediate
states |B)=|L',N',P’,...), respectively. Note that in the g/* only the combinations (PP')=(S,S), (S,A), (A,A),
(p,p), (p,A), or (A, A) are allowed.

The above expressions simplify considerably if the initial (or the intermediate) state is a pure S state, e.g.,
L =1,=1,=0 (with any ny,n,):
2

My (L —0,5,T L., T | 2=27.4ma, X 2T'+ 125"+ DL +1)

2
q9

. P . 2
XBsrst | 2 fo fe™ T n',L" | j(kd) | n,0) |7, (B7)
a,a’

PP’

where

T Ty||3 S Si

o]

|

Bsr s = 2 f‘ETff;fT' (B8)
ser T s e
B.B
f
The radial matrix element For the special case where the initial state is the ground
A o . state (N or A) with N =0, the averaged matrix elements
(n'l'|jaler) [nD) = [[7 r?dr Ryp(PRu(rljaler) (B9 (ke the simple form

can be expressed, with the standard spherical harmonic-
oscillator wave functions R,,(r), in terms of the integrals k2

2 2
- —agir? My P =npyar e " " (i=N,8), (BIS)
Fi(x)=al™*? fo rEt2dre " ji (kr) (B10) myg
with
2 2 where 77p; are dimensionless constants:
o) 3 |%
x=|—|==|——1; (B11)
K 2 |k 2Np
ay is the harmonic-oscillator constant i =Wpibp ; (B16)
ap=v'myQ . (B12)
We give the following useful formulas for the F%(x): here Ny is the main oscillator constant of the intermedi-
- ate state (Ny=N' above). The coefficients Wp; reflect
F%(x): AIZ x "M 2174 (B13) the spin-isospin structure and depend only on the symme-
2 try of the final state ({56} or {70}), independently of N’
+3 d and L’. They are given in Table III. The factors by de-
FETi(x)= ‘uz— F‘;f(x)—xd‘xF’;f(x) . (B14) pend on the individual intermediate states and are given in
Table IV.
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