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Spectrum of three anyons in a harmonic-oscillator potential
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The Hamiltonian of three anyons in a harmonic-oscillator potential is diagonalized using a set of
harmonic-oscillator states, by treating these as bosons or fermions with an appropriate statistical interac-
tion. The interpolation between the bosonic and fermionic limits is established, and the spectrum of the

low-lying states is displayed.

I. INTRODUCTION

It is now well established that in two space dimensions,
particles may obey fractional statistics and have mul-
tivalued wave functions.! ”* The statistics of these parti-
cles, called anyons, is expected to continuously interpo-
late between normal Bose and Fermi limits. Recently it
has also been suggested that anyons may be responsible
for the occurrence of the fractional quantum Hall effect’
and high-temperature superconductivity.® The quantum
mechanics of anyons is complicated by the fact that their
wave functions are multivalued. One manages to avoid
this problem by treating anyons as bosons or fermions
having single-valued wave functions but interacting via a
long-range Aharonov-Bohm-type vector potential. While
the many-anyon problem has been studied both in mean-
field” as well as hydrodynamical® approaches, not much
attention has been paid until recently to the exact solu-
tion of the few-anyon problem. The quantum spectrum
of two anyons in a harmonic-oscillator potential*® and on
a circle'® was solved early and used to calculate the
second virial coefficient of a gas of anyons.!®!! The two-
anyon problem in an external magnetic field has also been
studied in detail.!'~!3 In a different approach, numerical
lattice studies of few-anyon systems have been made on a
square'* and on a spherical surface.!”> Note, however,
that the latter studies do not allow the bosons to overlap
with one another (“hard-core bosons”), and are distinct
in spirit from the ideal bosons confined in a harmonic
oscillator that we consider here. Such a harmonic-
oscillator three-anyon problem has been considered by
Wu.?

It is particularly convenient to study few-anyon sys-
tems in a harmonic-oscillator potential because the
analytical answers for the energies and the wave func-
tions at the Bose and Fermi limits are exactly known.
The three-anyon problem is especially interesting because
of the following.

(a) Some of the states interpolate nonlinearly as the
strength of the statistical interaction is varied, in contrast
to the linear interpolation discovered analytically by
Wu.’

(b) There is a crossing of levels not observed in the
two-body harmonic-oscillator case. Let the strength of
the statistical interaction be noted by a, with the conven-
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tion that for a =0 the particles are ideal bosons. With in-
creasing strength of a, the lowest energy state of the in-
teraction bosonic system changes its structure completely
at a=0.7.

The latter behavior of the ground state has also recent-
ly been obtained perturbatively by Khare and McCabe.'¢
In an earlier letter,!” we had numerically studied the
low-lying eigenenergies ( <6#w) and their interpolation
between the Bose and Fermi limits. Similar results were
also presented by Sporre, Verbaarschot, and Zahed!® em-
ploying a different method of calculation. In this paper,
we present our formalism and calculations in more detail.
In particular, we include in the basis a whole class of
odd-parity states starting at 8#w (that were not included
in Ref. 17), and establish the convergence of the anyonic
ground-state energy.

This paper is organized as follows. In Sec. II, we dis-
cuss the Hamiltonian of three anyons in a harmonic-
oscillator potential. We express the Hamiltonian in a re-
duced form entirely in terms of relative coordinates so
that there are no center-of-mass excitations to contend
with. In Sec. III, we introduce a very general method of
constructing the symmetrized or antisymmetrized basis
of states in terms of these relative coordinates. Our
method is not specific to anyons and may be used else-
where. In Sec. IV, we present the results of our numeri-
cal analysis with special emphasis on the structure of
states and the interpolation patterns. Finally, in the Ap-
pendix, we briefly discuss an alternative method of con-
structing the polynomials of definite symmetry for three
particles.

II. HAMILTONIAN

The Lagrangian for the three-anyon problem is given
by
2 3
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where r; denotes the position of the ith particle. The

second term is the statistical interaction whose strength is
givenby a (0<a=1) and
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The third term in Eq. (1) denotes the one-body
confinement potential which is chosen to be a harmonic
oscillator. One may as well have chosen this to be a rela-
tive two-body confinement potential; the harmonic-
oscillator parameter is then scaled by a factor V'3. The
Hamiltonian corresponding to Eq. (1) is given by

ma? 3 3]

13 a ij
H=—3 p’+ Sri-— 3 —
2m = 2 4 m jsi=1 "5’
2 [ (r,+r13)?
z —L—l3—+"'(symm.) , (3)

2m rhrds
where
li=(r;—1;)X(p; —p;).

The last term in Eq. (3) is identical to the more compact
form given in Ref. 17. It is a simple exercise to eliminate
the center-of-mass-dependent part of the Hamiltonian.
Notice that the statistical interaction depends entirely on
the relative coordinates. We choose the internal coordi-
nates to be the Jacobi coordinates defined by

_nTn
p \/5 ’
_ r+r,—2r;
V6

Before expressing H entirely in terms of relative coor-
dinates, we note that H is manifestly symmetric under the
permutation of particle indices. As long as one is in-
terested in diagonalizing the Hamiltonian in a symmetric
or antisymmetric basis, it is sufficient to consider only
one of the three terms involving the statistical interac-
tion, multiplied by 3. Thus the reduced Hamiltonian,
after eliminating the center of mass, is given by

4)

(5)

_ 1 5o met
Hrel_?r—n_(pp+pk)+T(p +A%)

2 2 2
+ 32 —ozlp+3i(‘/3 t“z _ (6)
mp 4 (p+Vv'30)

The last term in H introduces the three-body interac-
tions. In principle we could diagonalize the Hamiltonian
with any complete set of states. Here for simplicity we
diagonalize H  in a harmonic-oscillator basis (which are
eigenstates of H  at a=0). But first we outline the
method of constructing the basis.

III. THE BASIS

As mentioned already, it is natural to construct a basis
(symmetric for bosons, antisymmetric for fermions) from
the harmonic-oscillator eigenstates in the p,A coordi-
nates. Here we modify the method somewhat—instead
of choosing the orthogonal eigenstates of the harmonic
oscillator, an equivalent nonorthogonal basis is chosen.
The reason for this is that it is much simpler to construct
homogeneous polynomials of a given degree and symme-
try than to construct the orthogonal three-anyon
harmonic-oscillator eigenstates of a given symmetry
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(which are inhomogeneous polynomials). In our prob-
lem, a harmonic-oscillator eigenstate with (relative) ener-
gy Ey=(N +2)fio has the highest power N [i.e,
(p)N'(MNZ,Nl + N,=N] in one of its terms. The set of
all homogeneous polynomials of a given symmetry up to
power N has a one-to-one correspondence to the set of
the orthogonal eigenstates. In what follows, we outline
this method.
Consider the four quantities

Px,Py,)‘-x,)\y ’

where p and A are defined in Eqgs. (4) and (5). First we
construct all homogeneous polynomials of Nth degree in
terms of these quantities that have definite permutation
symmetry and definite angular momentum. That is, we
classify these polynomials into irreducible subspaces un-
der the rotation group in two dimensions, R, and permu-
tation group of three particles S;. Under S;, there are
the following four irreducible representations: (i) sym-
metric (denoted by S); (ii) mixed-symmetry p type (denot-
ed by M p), which is antisymmetric under exchange of
(say) particles 1 and 2, and has no particular symmetry
with respect to particle 3; (iii) mixed-symmetry A type
(denoted by M, ), which is symmetric under the exchange
of particles 1 and 2, and has again no particular symme-
try with respect to particle 3; (iv) antisymmetric (denoted
by A).

The labels for mixed symmetry representations are a
matter of choice and our convention follows from the
definition of the relative coordinates in Egs. (4) and (5).
The method we follow is familiar from the quark mod-
els,!” adapted to two space dimensions. The set of all po-
lynomials of degree N have, in general, the form
(PP AEAL Jem» N =i +j +k +1, where “perm” denotes
permutations of the monomials. In Table I, we show a
decomposition of these polynomials up to N =4 under
R, and S;. Note that the number of polynomials in-
creases rather rapidly with N.

The N =0 polynomial is trivial and is simply 1. We
shall denote the N =1 polynomials according to their
transformation properties under R, and S,

¢£V=]'L:i1§pxi_ipy=pi ’ @)

GYTIETEIZA 4id =A., (8)

TABLE 1. Decomposition of polynomials of Nth degree un-
der R, and §;.
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which are obviously of the mixed-symmetry type. If
P(i,j) denotes the permutation of any two particles i and
J» then it is easy to see that

P(1,2)¢};L=—¢};L ,

~ 9)
P(2,3)p t=1[gpt+V3} ], L=%1,
P(1,2)¢}E=¢}",
(10)

P(2,3)p)t=1[—¢}t+V3¢LL], L==1.

P(1,3) can always be obtained from the above transfor-
mations. Now suppose ¢2" and ¢'%, for all N (polyno-
mial degree) and L (angular momentum), transform like

L and ¢;%, then the following properties hold under

S3:

g,L=¢:)V1vL1¢;Vz’L2+¢1V1'L1¢1V2’L2 , (11)
iV,L___¢;V1'L1¢;Vva2_¢iV1vL1¢iV2'L2 , (12)
;V,L=¢51’L1¢ivz’l‘2+¢iv|’L1¢;Vva2 , (13)
¢IX,L=¢:)V]’L1¢1V2'Lz_¢iv1”‘1¢:2'1‘2 , (14)

where
N=N,+N,, L=L,+L,.

Equations (11)-(14) provide a recursive algorithm for
constructing all possible states of a given N and L start-
ing from the elementary polynomials, ¢;* and ¢}'* given
in Eqs. (7) and (8). In Table II we give the list of all poly-
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nomials up to N =4. Note, however, that even though
Eqgs. (11)-(14) provide a global algorithm to construct po-
lynomials of all possible symmetries under the permuta-
tion of three particles, not all such polynomials for a
given N and L are distinct. The method therefore gets
cumbersome for large N when the number of polynomials
increases quickly. An alternative method is indicated in
the Appendix.

For the L =0 polynomials, however, there exists a sim-
ple method of constructing all symmetric polynomials.'®
Note that given two vectors p and A, there are four two-
dimensional scalars: p% A% p-A, and pXA. The last one
is a special case in two dimensions and is completely an-
tisymmetric. All L =0 symmetric polynomials are then
combinations of the first three scalars. The square of
p XA, which is symmetric, may be written entirely in
terms of the first three. It is sufficient to construct three
independent symmetric polynomials from which all other
L =0 polynomials may be obtained. These are

S2 =p2+k2 N
S,=(2p-A)2+(p?—A?)?,
Se=(p*—A)[(p*—A?)2—=3(2p-1)*],

(15)
(16)
17
and

NO=gisiSk, N=2i+4j+6k . (18)

¢§”° completely exhaust all L =0 symmetric polynomials.
The set of symmetric states involving S, alone (i.e.,

TABLE I1. The set of all polynomials up to N =4, classified according to their permutation symmetries arranged in different
columns. The energy of the harmonic-oscillator state containing the polynomial with the highest power N is (N +2)fiw. The ‘-’

signifies state of that symmetry not present.

N L s M, M, 4
0 01 - - -
1 1 - P+ }\,+ -
2 2 pA+AL 204 Ay pr—A% -

0 S,=pyp_+AiA_ p+A_+tp_Ay P+P——ALA_ pP+A_—p_Ay
33 A4(3p3—2%) p+(pA+2A3%) Ai(pi +A%) p+(pi —31%)

1 p_(2p A )+A_(ph —A%)
1 -

A_(2ps Ay ) +p_(ph—A2)
p-(ph+2A%)

(p% +A%)?
4 _

2P+l+(P?+ +1%)
4P+)~+(P2+ —A%)

2 (pip—F+AANPE +AL)  (pid+Aip )ph +A%)

2 - (2p+k+ )(p+p_—'l+k—)
HlprA_+A,p_)pi—A%)
2 - (204As ) pap-+AiA)

—(p+A_—A,p_ )(Pi —A%)

0 S;=(piA_+p_Ay)

+(p+p_ _)\.+}»_ )2
0 Si=(pip_+A,A_)
0 -

20 A4 (pt +A2)
2p_A_(p%+A%)

2(p+A,_ +p_)\,+ )(p+P- _A.+A._.)

p-(2p Ay )—A_(ph—A%) —A_(2p4 A ) +p_(ph —A%)
A_(ph+A%) -

(P3AL)—(p% —A%) -
(2p4 Ay 2—(p% —A2) -

(p+p-—AiA_ )P4 +A%) (p+A_—A p_)p%+2A%)

(204 A ) pA_+Aip_) -
—(prp——AiA_)ph—2A%)

(2p+k+ )(p+}»_—7\.+p-) -
+(prp—F+AA_)ph —A%)

(p+A—_+p-Ay)
—(p4p-—AiA_)

(p% — A% )(p2 +A%) -

(P2 —A2 )% +A%) -

(P+A-—p_ A Npip_+AiA)
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j =k =0) are special since they have additional SO (4) in-
variance. As we show later, the eigenenergies of these
states interpolate linearly between Bose and Fermi limits.
The antisymmetric polynomials are then written as

NFPO=[pXA]SLSISE . (19)

Unlike ¢5°, the above form does not exhaust all the an-
tisymmetric polynomials. A new class of antisymmetric
polynomials starts at N =6 (with energy 8%w), and has
the structure

6 50=2(p-M)[3(p*—A2)*—4(p-A)*] . (20)
Higher-degree polynomials may then be generated by

multiplying ¢ %° with the symmetric form ¢° given by
Eq. (18), i.e.,

N TO0=4%63° . 1)

The harmonic-oscillator eigenstates may now be con-
structed from these homogeneous polynomials. The gen-
eral form of such an eigenstate is given by

N,L al L mo
Ysa= 2 C,réssexp|— Y (P*+Ah |, (22
n=Nmin

where C, ; are expansion coefficients and N, is the
lowest polynomial degree for each L. Obviously when
N =N_,,, the polynomial ¢g 4, completely defines the
structure of the state. For example, the harmonic-
oscillator fermionic eigenstate at 67w is given by

0.7454

maw
0.6667—7—52 -

Ph0= (pXAdexp| ——— (p2+A2)

’

(23)

with similar expressions for the other eigenstates. How-
ever, for computational convenience, we choose to diago-
nalize H, in a nonorthogonal basis provided by the set
of all symmetric (or antisymmetric) polynomials of a
given L. However, a problem arises with the bosonic
wave functions since these do not necessarily vanish at
the origin; as a result, the centrifugal terms in the Hamil-
tonian cause the energy to diverge when a70. Following
Wu,” we therefore introduce Jastrow-type correlations
and define a nonorthogonal basis for the purpose of diag-
onalization,

x¥E=N(a) [T Ir;—1;|%¢5 Gexp

i<j

’

maw 2 2
- 22 (p2+
2 (p™+A%)

(24)

where a is the strength of the anyonic interaction and
N (a) is the normalization factor. The correlation factor
as well as the Gaussian are symmetric and do not alter
the symmetry of the state. The correlation factor, for
a##0, introduces the zeros in the wave function necessary
for avoiding the divergences.
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IV. RESULTS AND DISCUSSION

We now turn to the results of diagonalizing the anyon-
ic Hamiltonian given in Eq. (6). Since the Hamiltonian is
rotationally invariant, we can diagonalize the Hamiltoni-
an in a basis with well-defined angular momentum. As in
any diagonalization, the finiteness of the basis poses a
problem for the convergence of the eigenvalues, especial-
ly at =1 and when the interpolation is nonlinear. We
avoid this problem by diagonalizing H , both from the
bosonic and fermionic limits and matching the results for
interpolating states at a=1. When the variation is
linear, however, this is unnecessary, though it provides a
check. The eigenvalues merge at = only between in-
terpolating states that differ by three units of angular
momentum. To see this consider the wave function of
the anyon

=TI et 25)
i<j

when one starts with @ =0 from the bosonic limit. Obvi-
ously the anyonic wave function is completely antisym-
metric at @=1 (since 6;;=6; +) and carries an angular
momentum (L +3a). Alternatively, we could also start
from the fermionic end in which case a—(1—a) or,
equivalently, a— —a and ¢y L —y™L; the change in an-
gular momentum is then given by L —3a, where

0<aZ=l.
The results for the L =0 bosonic ground state and its
radial excitations up to 8%w are shown in Fig. 1 along
with the L =0 fermionic ground state and its radial exci-
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FIG. 1. The L =0 bosonic and fermionic states are displayed
with outgoing arrows as a function of a. The value a =0 corre-
sponds to noninteracting bosons in an oscillator while a=1 cor-
responds to noninteracting fermions. The beginning of each
line as indicated by the arrow corresponds to the energy of the
L =0 Bose or Fermi states. While the low-lying bosonic states
are linear, the corresponding fermionic states are nonlinear, and
are quadratic for small (1—a). Only two of the three L =0
states at 87w at either end are shown.
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tations. The structure of the bosonic L =0 states is
defined by the polynomials S,,S,,S¢ [see Eq. (18)] and
their degeneracies are given by the number of ways in
which they may be combined to obtain an Nth-degree po-
lynomial. The symmetric ground state at 2#iw ends up at
5%w missing the antisymmetric ground state at 4fiw; the
level crossing occurs at a=0.7.

We find that the subset of L =0 symmetric states con-
structed with S, alone interpolate linearly in energy
E=(N +2+3a)iw. To see this, consider the overlap
function defined by

e xg“<a=1>> , (6

0§V;,N'=<XZ"L’(a=0)
i’j

where YN and x%'L" have been defined earlier in Eq.
(24). The quantity O, essentially defines the overlap of
an anyonic wave function at a=1 with pure oscillator
states at a=0. The phase factor then connects the sym-
metric states with the antisymmetric states. For sym-
metric states constructed with S, alone [i.e., N =2i,
j=k =0in Eq. (18)], we get for L =0,L'=3

oNN =— (i +i'"+4)
VI(2i +4)1(2i'+4)!

(L=0,L'=3;j=k=j'=k'=0), (27

where i’ corresponds to the power of S, multiplying the
lowest (5%w)L =3 fermionic state for the excited nodal
states, analogously to Eq. (19). Note that OYN'=—1
when i =i’. That the overlaps are nonzero when i7i’ is
not worrisome, since the Y’s are a nonorthogonal set. In
fact, after an orthogonalization of the states on both sides
in Eq. (26), the overlap matrix becomes diagonal with ei-
genvalues —1. [This is so because the overlap matrices
between the nonorthogonal states on either side happen
to be identical, up to a positive sign, with the matrix Eq.
(27).] Obviously, there is a one-to-one correspondence
between the bosonic L =0 state with the S, alone and a
subset of the L'=3 states at the fermionic limit. The in-
terpolation appears to be linear in such cases and these
are precisely some of the states singled out by the method
used by Wu.® This simplicity is destroyed once other
states involving S, and S¢ emerge—an example of this is
the second state at 6#iw shown in Fig. 1.

On the other hand, the overlaps of the L =0 fermionic
states with the L =3 bosonic states (or equivalently
L =—3 when 6,;— —0,;) are not so simple, even when
only the subset of radial excitations involving S,
[j=k=0 in Eq. (19)] are considered. The overlaps
defined as in Eq. (26) with these subsets of states (inter-
changing S and A).are given by

3V3(3 +i'+5)

oNN(1)=
O I E TR
(L=0,L'=3;j=k=j'=k'=0), (28)
0NN (2)— —_UFi'+6)

V'T(2i +6)(2i'+6)!
(L=0,L"=3;j'=1,j=k=k'=0), (29)
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where i,j,k,. .. are again the powers of S,, S,, and S,
according to Egs. (18) and (19). The first overlap
(0] f}”SN (1), Eq. (28), refers to the first series of L =3 boson-
ic states (j'=0) starting from 5%, and the second over-
lap 0%V (2), Eq. (29), refers to the second series of states
(j'=1) starting from 7#iw. These overlaps are not equal
to 1 even when i =i'. A summary of the overlap distribu-
tion for the lowest states is shown in Fig. 2. The percen-
tages shown in this figure may be taken to be probabili-
ties, since these have been calculated with orthogonalized
states. Note from this figure that the lowest L = —3 bo-
sonic state has only 73% overlap with the two L =0~
fermionic states; the rest are spread thinly over a large
number of states. The nonlinearity in the interpolation
primary arises from the spread in these overlaps. This
renders diagonalization all the more difficult in a finite-
size basis. Indeed, for the convergence of the lowest
spin-zero state (in the fermionic basis) at a=0.5, we had
to include states of the ¢ , type up to N =26.

In Fig. 3, we show the results of diagonalization for all
states with L <3 up to 67%iw. It will be seen from the spec-
trum that the time-reversed states L and —L are split in
energy by the anyonic interaction. As in the case of
L =0 states, the nonlinearly interpolating states suffer
large mixing of the basis states for nonzero a, while the
linear ones remain pure. The large number of level cross-
ings result in the bunching of quantum states at = and
Z and, we suspect, even at a =1 if we go high enough in
energy. Our calculation shows that the harmonic-
oscillator basis is not a very good one for diagonalizing
the long-range statistical interaction. For example, com-

10 10

9 —= —9

Energy/ hw

1+ -1

0 0

FIG. 2. The overlap function O™V for low-lying L =0
states. The beginning and the end of the arrow indicate the ini-
tial and final states in Eq. (26). The percentage figures indicated
along each line denote the probability of the overlap calculated
with orthogonalized states. A spread in the probability over
many states results in nonlinear interpolation. Note that the
lowest-lying L = —3 bosonic state has only 73% overlap with
the lowest two L =0 states at the other end. Its overlap with
the other three L =0 fermionic states at 8% totals only to
about 5% and is not shown.
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FIG. 3. The low-lying energy levels of the Hamiltonian Eq.
(6) are displayed as a function of a. The angular momentum of
the states is labeled at the ends. At the left end, =0 corre-
sponds to the noninteracting bosons in an oscillator while a=1
corresponds to noninteracting fermions. In the case of non-
linear interpolation, the curves correspond to the best fit to the
numerical eigenvalues for various values of a. In the figure, all
states up to 5%iw are shown. At 6fiw, there are only three states
at the fermionic end (all shown), and six at the bosonic end (only
one shown). The number of states increases rapidly from 7%iw.

pared to the results of Ref. 18 there is a consistent overes-
timation of the eigenvalue of the ground state of three
fermions as a function of a due to the basis being not
large enough (typically the size is about 11 states for each
L, except as noted above for L =0). On the other hand,
we have the advantage of knowing the unperturbed ener-
gies at both limits in this basis and of eliminating the
center-of-mass excitations everywhere. The interpolation
pattern of the low-lying states is clearly established from
Figs. 1 and 3. Recently Khare and McCabe!® have calcu-
lated the ground-state energy of three anyons in a
harmonic-oscillator potential near fermionic statistics in
perturbation theory. They show at the fermionic limit
that the second-order perturbation contribution from the
I, term [see Eq. (6)] mixes in the odd-parity states é 4
with the ground state and lowers the energy. We find a
similar result when the basis is enlarged to N =26 for
L =0. For example, for a=0.9, the L =0 ground-state
energy converges to 4.015%» compared to their perturba-
tive value of 4.013%w.

To summarize, we have outlined a very general method
of constructing three-particle harmonic-oscillator states
in terms of the internal coordinates with definite permu-
tation symmetry and angular momentum in two dimen-
sions. With this basis we have diagonalized the relative
anyonic Hamiltonian and obtained the interpolation pat-
tern?? of the low-lying anyonic states, including the fer-
mionic ground state that was missing in the calculation of
Ref. 9. For many states we have checked the interpola-
tion from bosonic as well as from the fermionic limits.
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For some of the states that interpolate nonlinearly, we
miss the correct energy at a=1; however, diagonalizing
from both limits and matching the energies around a=1
establishes the interpolation.
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APPENDIX

We illustrate an alternative method of constructing
symmetric and antisymmetric polynomials. This elegant

-method was used to subsequently check the states used in

the diagonalization of the anyonic Hamiltonian. The no-
tation and method are similar to that introduced by Kra-
mer and Moshinsky?® and Laughlin.?! To this end we in-
troduce the complex internal coordinates

Z,=A,+ip,, (A1)
Z,=A,—ipy . (A2)
Under permutations they have the property
Z, 0 1||Z:
P(1,2) z, =11 o z, |’ (A3)
zZ, 0 23] [z,
P(2,3) z, =le-wmin z, (A4)

Note that (Z,Z,) has a transformation property identical
to that of (Z3Z}). As a result we have the elementary
symmetric polynomials, when N =L (apart from the
trivial ¢%0),

§'=2,7,, (AS)
¢3°=2Z1+23 , (A6)
and elementary antisymmetric polynomials
W0=27.2Y-2,Z% , (A7)
¢P=Z1-23 (A8)

It is now a simple exercise to write down the polynomials
corresponding to the highest L for each N (see, for exam-
ple, Ref. 21),

Yi=12,Z,V(z}{*£Z3*), N=2j+3k (A9)
where the =+ refers to S or 4 polynomials.

One can generate the —N <L <N polynomials by us-
ing the step-down operator,
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L =

) (A10)

which does not alter the symmetry of the polynomials.
For example, using this operator, we have

BO=L $=2,21 42,23, (A1)
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V=L _¢¥=272Z2+272Z% , (A12)

etc. Note that unlike in three dimensions, the operator
L _ always reduces the angular momentum by two units.
It is easy to compare these examples with the ones given
in Table II.
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