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The random-phase approximation (RPA) in Q-P representation is introduced. It is shown that
the RPA equations can be regained from varying the ratio of energy-weighted moments
m3(Q)/m (Q) with respect to the particle-hole operator Q. In particular, a restricted set of local
operators Q(r) is discussed, leading to a hydrodynamic approximation to the RPA. The practical
solution of the collective eigenvalue problem for a given multipolarity proceeds via a power expan-
sion of Q(r) and the solution of a secular equation for coupled modes. As an application of our
method, we discuss collective dipole vibrations (plasmons) in small spherical metal clusters.

I. INTRODUCTION

The random-phase approximation (RPA) has been,
since long ago,! the most widely used method for a mi-
croscopic treatment of small-amplitude excitations in all
sorts of many-body systems. There are many different
ways to derive the RPA: diagrammatic techniques,
time-dependent Hartree-Fock, and Green’s-function
methods, etc. The reader may refer to almost any stan-
dard textbook in many-body quantum mechanics for one
or various representations of the RPA and its applica-
tion. The RPA has helped very much in understanding
microscopically the occurrence of collective modes in
many-body systems, such as the plasmons in the electron
gas or the phonons in liquid *He and in nuclei. Just re-
cently, there has been a growing interest in a new area of
research where collective modes appear in a finite fer-
mion system: electronic excitations in small metallic clus-
ters.2~* Collective modes, on the other hand, often have
a very simple structure that allows one to compute them
in simpler approximations to the full RPA, such as, e.g.,
the sum-rule® and the hydrodynamical (or “fluid dynami-
cal”) approaches.®’

It is the aim of this paper to show how approximations
to the RPA can be constructed systematically by varia-
tion in restricted spaces of excitation operators. To that
end, we introduce a representation of the RPA in terms
of coordinatelike operators Q and momentumlike opera-
tors P that is more adapted for intuitive guesses of collec-
tive approximations. Since it is usually easier to make
good guesses for the Q operators, we derive a variational
principle for mere Q variation. We then discuss in partic-
ular a “local RPA” where the coordinatelike operators Q
are restricted to being local one-body operators. This
leads to a differential equation for collective flow quite
similar to the hydrodynamical equations. As a more
practicable alternative, we introduce a momentum expan-
sion of the local collective Q operator. The technique is
exemplified for the case of collective dipole excitations
(plasmons) of the electrons in small metallic clusters.

The paper is outlined as follows. In Sec. II we briefly
review the RPA in terms of the equations-of-motion tech-
nique which is most appropriate for our purposes of vari-
ation in restricted spaces of excitation operators. In Sec.
I1I we derive the variational principle for Q variation and
introduce the local RPA. In Sec. IV we present the mod-
el and calculations for plasmons in metallic clusters.

II. SHORT REVIEW OF RPA ALGEBRA

A. The equations-of-motion technique

Out of the many possible derivations of the RPA, we
use here the equations-of-motion technique which formu-
lates the many-body dynamics in terms of an algebra of
excitation operators.® Let a many-particle system be
given in a state |W), usually the ground state. The exci-
tations about the state |W) are to be described by a
chosen set of elementary operators

(A, a=1,...,M} . §)

The op$rator which creates an excited state
W,)=C,|¥) is superposed from these elementary
operators

Cl=co4! , 2)

where we use Einstein’s sum convention that any pair of
upper and lower indices is to be summed over. The
superposition coefficients ¢, are determined such that the
operator equation [H, C: =%, C: is fulfilled “on the
average,” i.e.,
(WI[SC,[H,C,11IW) =#iw, (WIIBC, ), (3)
where the 8C runs over all operators of the algebra
6Cef{Ad,a=1,... M} . 4)

There are as many equations as there are coefficients and
this usually suffices to determine uniquely the ¢,’. There
may be exceptions for spurious modes, but these can easi-
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ly be pinned down in most cases.

Note that the equation of motion (3) can be derived
from the Ritz variational principle of minimal (or station-
ary) energy

fio, =(¥|[C,,[H,C]1]|¥) (5)
under the constraint of proper orthonormalization
(v|[C,.,.chlw)=s,,, (¥|[C,.C,1l¥)=0. (6)

Using the orthonormalization (6) and the fact that the §C
may run equally well over all C,,, one can rewrite Eq. (3)
in the form

(¥|[C,,,[H,CI1¥)=8,, fio,, 7

which means that the CJ diagonalize H in the algebra (1).

All expressions above are already written in terms of
commutators and double commutators. This implies that
the ground state |¥) is a vacuum for the C, excitations,
ie.,

C,l¥)=0 (8)

for all n. Thus excitations and the structure of the
ground state are related to each other. Possible conse-
quences are exemplified for the RPA in Sec. I B. The en-
ergy in the form (5) casts all dynamical information onto
the evaluation of the double commutator with H. This is
most appropriate for an algebraic approach, because it
brings the emerging dynamical equations for CI into the
typical quantum-mechanical form of commutator equa-
tions for the operators. As a further bonus, the double
commutators make the remaining expectation value
much less sensitive to the structure of |¥), allowing for
drastic approximation in that place.

B. RPA in equations-of-motion formulation

The RPA is easily derived within the framework of the
equations-of-motion technique by selecting as a basis the
algebra of one-particle—one-hole (1p-1h) operators:

ALEAJhE{aJah,aZaP} , 9)

where p represents particle states and /4 represents hole
states. The label a accounts for two indices p and A, the
a’ are fermion creation operators, and the a are fermion
annihilation operators. The expansion coefficients for
particle-hole states and those for hole-particle states are
often distinguished. A standard form for the excitation
operator is then

Cr=73 (xftaja,—yl'aja,) (10)
p.h
and the RPA equations become coupled equations for the
coefficients x and y which are easily derived from the
variational equation (3) whereby 8C runs over all elemen-
tary excitations (9), namely, a;a,, and a,a,.

Note that the hole-particle operator a,a, is inactive if
it acts on a Hartree-Fock state, because there is no parti-
cle state to annihilate. But we have seen already above
that |W) is, in principle, a correlated ground state defined
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as the vacuum of excitations, see Eq. (8). With the choice
of the algebra (9) we obtain thus the RPA-correlated
ground state. It can be built with 2p-2h and higher corre-
lations on top of the basic Hartree-Fock state ®, i.e.,

it
)= 1+ 3 yp"hha;ap,a,,ahw'
pp'sh k'

<] lDy) . (1

The expansion coefficients ¥ can be computed from the
RPA coefficients x?" and y?". (For details and for an ex-
tensive discussion of possible pitfalls, see Ref. 9.)

One usually assumes that the correlations are small,
i.e., |y| <<1. The double commutators in the RPA equa-
tions of motion, e.g., Eq. (3), are particularly insensitive
to the correlations. In fact, they are of order 72. Thus
one neglects the correlations in evaluating the expecta-
tion values of double commutators, e.g., for the energy

fiw, =(W|[C,,[H,C1]1W) = &,|[C,,[H,C} 11| ®,) .
(12)

This is called the quasiboson approximation.! We will
employ it throughout in the following considerations.

It is obvious that ph operators play a central role in
RPA. Not all the operators are immediately pure ph
operators, and one needs to pick the ph part of it. This
may be done by

O =3 (a)a,(®l[a]a,, 01 ®,)
p.h

—a;ap(¢0|[a;ah,(9]|<1>>) , (13)
or by using the recoupled basis

O =3 (CHYI[C,,01¥)—C,(¥|[C],01l¥)) (4)

n

for any operator (. In practical evaluations, one often
has simpler accesses to the ph part; the above expressions
are most useful for formal purposes. For example, one
can rewrite the RPA equation (7) as an operator equation
projected into ph space:

[H,C1,, =#aC . (15)
n lph n

C. RPA moments and sum rules

Excitation spectra of many-body systems are often ana-
lyzed® in terms of the moments m, (Q) of the strength
function Sy (E) for a given external excitation operator

Q:

m(Q)= fOxE"’SQ(E)dE= S (Fw, KW, QW) 2.

n(#0)
(16)

The moment m _ |, for example, is half the static polari-
zability [see Eq. (23) below], and the moment m, de-
scribes the energy-weighted sum rule which plays a key
role in photoabsorption cross sections.

The odd moments (with k& >0) can be expressed by
multiple commutators of Q with H, and their expectation
values in the RPA state |¥) are rather insensitive to
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ground-state correlations, which allows us to evaluate
them in the quasiboson approximation. In particular, the
so-called equivalence theorems

mPPAQ)= 3 (fiw,)(¥,|Q1¥)?

n(#0)

=1 ®,|[Q,[H,0]1ID,) , (17)

m{PA Q)= 3 (fiw, (¥, |Q|W)|?
n(#0)

were shown by Thouless!® to hold exactly if the interac-
tion in H is density independent. For interactions which
depend on the density, they hold® within the quasiboson
approximation, i.e., neglecting terms of second order in
the amplitude y of the ground-state correlations [see Eq.
(11)]:

mYPA(Q)=1(¥|[Q,[H,Q]1l¥)
=1{(D|[Q,[H,Q11I®y) +O(y?), (19)

and analogously for m §FA(Q).

In our development further below, we will encounter
multiple commutators of the form appearing in Egs. (17)
and (18), but containing a pair of different operators
0,95 They can be derived from the moments
m; (Q,,Qp) of a mixed strength function by

m(Qa0p)= 3 (Fiw, (WIQLIW, ) (W,105W) .

n(#0)
(20)

Indeed, it has been shown’ that the above equivalence
theorems [(17) and (18)] can be generalized, within the
quasiboson approximation, to the corresponding expres-
sions including the mixed moments:

m Q4. Q) =1 @ol[ Q0 [H, Q111 ®0) » 1)
RPA Qa’Q/j =1 ((DO![[H’Q(:])[H’[QB’H]]]I(DO> .
(22)

The inverse energy-weighted RPA sum m _,(Q) is re-
lated!! to the static polarizability a(Q) and given by

mRPA(Q)=1a(Q)

Ay
an o

(23)

(MQIM =

A=0

0 | =

=14
2d

where |A) is the solution of the static constrained
Hartree-Fock variational calculation

8(A|H —AQIL)=0. (24)

Note that no analogous equivalence theorems exist for
the moments m, with even k because these are very sensi-
tive to ground-state correlations. The odd moments
m; —we shall henceforth omit the superscript
“RPA” —therefore play a key role in the so-called sum-
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rule approach to the RPA. There one guesses some col-
lective excitation operator Q and evaluates average spec-
tral properties from the associated moments m _;, m,

and m;. To this purpose, it is useful to define the follow-
ing energies:
E(Q)=[m(Q)/m; ,(Q)]'*. (25)

It can be shown® that for the centroid (i.e., mean energy)
E and the variance o of the strength distribution Sy (E),
defined by

E=m1/m0, 02=m2/m0~(m1/m0)2, (26)
the following inequalities hold:
E\SE<E,, c<NE}—E}'?. 27

This allows us to estimate the mean energy and width of
a RPA spectrum in terms of the simple ground-state ex-
pectation values in Egs. (17) and (18), instead of their
much more elaborate calculation in terms of the exact
and even RPA moments.

The operator Q is usually chosen to be local:
Q= Q ; in most cases simply as the multipole operator
Q~rt Y,_M (8,¢) for L>1, or as Q ~r? (for L =0). The
above sum-rule estimates give a rather simple and reliable
picture of the collective excitations of a many-body sys-
tem, e.g., the giant resonances in nuclei,'? if most of the
collective strength is concentrated in a more or less nar-
row energy region. Nevertheless, it is possible to improve
on the description by not just guessing one operator Q,
but by coupling several different operators (see, e.g., Refs.
13 and 14). To this end, it is advantageous to rewrite the
RPA equations in terms of Hermitian and conjugate
operators Q and P; this will be done in the next subsec-
tion.

For local operators Q(r), the RPA moments m, and
m 3 have a simple physical interpretation in terms of the
so-called scaling concept: the scaling deformation opera-
tor e “PUHQl generates a collective path with deformation
label 8. The moment m; can then be related to a stiffness
parameter (spring constant) /% and the moment m, to an
inertial parameter B for a deformation dynamics in terms
of B. B is, in fact, the hydrodynamical collective mass
corresponding to a displacement field u~VQ. The ener-
gy E; discussed above is in that notion nothing else than
a harmonic oscillator energy

Ey=(my/m)*=tw ,=VH/B . (28)

(See Appendix A for the details of this scaling concept.)

D. RPA in Q, P description

The sum-rule approach puts emphasis on an operator
Q which is a local and Hermitian operator, i.e., Q =Q(r)
More generally, Q is considered to be a time-even and
Hermitian operator; it serves, so to speak, as a general-
ized RPA coordinate and is to be complemented by its
momentum conjugate P which is a time-odd Hermitian
operator. One can easily formulate the RPA in terms of
Q and P operators rather than C and C,. This provides



41 RANDOM-PHASE APPROXIMATION IN A LOCAL REPRESENTATION

a flexible starting point for extended sum-rule approaches
and local approximations to the RPA. Good time parity
for Q and P is guaranteed for ground states |¥) which
themselves have good time parity and which, in particu-
lar, are time even. This will always be assumed in the fol-
lowing.

In order to rewrite the RPA in Q, P form, we recouple
the usual quasiboson operators C L and C, to

1 i ¥
— P,=—=(C,—C,), 29
V3 "5 (C, ) (29)
where Q, is a Hermitian and time-even 1p-1h operator
and P, is a Hermitian and time-odd 1p-1h operator. The
index n labels the RPA spectrum. A microscopic expan-
sion in terms of single-particle operators a, and a,, is

0,= 3 q¢Mala,+aja,),
ph

0,=—=(Cl+cC,),

P, = Ep,‘,’hi(a;ah —a,:rap) ,
ph

where p is a particle state and h a hole state. The
coefficients g and p?" are related to the RPA coefficients
xP" and yP* from Eq. (10) by equations similar to (29).
The transformation (29) is orthogonal in the sense that
the orthonormalization (6) leads to the conjugation rela-
tion

(QOI[Qn,Pm]]q)O):isnm . (31)

(Note that (®,/[Q,,0,,1/1®,) and (®,l[P,,P,, 1P,
vanish for time-parity reasons.)

The variation of Q, spans the complete set of time-even
1p-1h operators

60 e {(a;ah +a;ap) for all p,h} , (32)

whereas variation of P spans the complete set of time-odd
1p-1h operators

8PE {ilaja,—aja,) for all p,h} . (33)

The expansion (30) is complete in the sense that the Q,
and P, also span a complete set of 1p-1h operators. Thus
one may consider alternatively 8Q€{Q,Vn} and
SPe{P,Vn}.

A possible form of the RPA equations in Q, P represen-
tation is obtained by transforming Eq. (7), using
(®yl[C,,,[H,C,111®) =0. The result resembles very
much an oscillator algebra

<¢0|[Qm![H’Qn]]lq)0>=8ntn ’

(34)
(q:)o’[Pm’[H’Pn]]!(DO):&nm@n ’

from which the diagonal quantities B, @, can be readily
computed. In fact, this is an algebra “on the average,”
and the expectation values over |¥) have been replaced
by expectation values over |®,), exploiting again the
quasiboson approximation (12). The RPA excitation en-
ergy of the mode n is then

fiw, =(C,B,)"? . (35)
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Equations (34) suggest the interpretation of €, as a
spring constant of the mode n and of B,,, here, as the ac-
cording inverse inertial parameter. Note that this assign-
ment is different from the one given in the sum-rule ap-
proach at the end of Sec. IIC; it corresponds to a g-
deformation path that is generated by the operator e ~ 4"
with the deformation label q. The equivalence of both
pictures is discussed in more detail in Appendix A.

The ph projection (14) can also be reformulated in
terms of the Q and P operators

0,,= 3 (iQ,(¥|[P,,0]|¥)—iP,(¥|[Q,,0]|¥)) .

n

(36)

Thus one can derive from Egs. (34) an alternative form of
the RPA equations:

[H’Qn]phzuignpn ’
[H,P,),,=iC,0, .

(37)

We finally rewrite these equations as one single equation
of second order in H for Q, alone:

[H’[H!Qn ]ph ]ph:(ﬁwn )ZQn . (38)

This form will play a key role in the following considera-
tions of a restricted RPA with pure Q variation.

III. RPA IN RESTRICTED Q SPACES

A. Regaining RPA from variation of Q

It is our aim to derive approximations to the RPA by
variation of Q in restricted spaces, in particular using lo-
cal operators Q =Q(r). As a first step, we are going to
show in this subsection that a free variation of Q alone
can regenerate the full RPA equations.

First, we have to compute the RPA energy for given Q.
(We omit in the present section the index n of the RPA
mode, wherever we believe this not to cause confusion.)
This proceeds in the following way: (i) compute the aver-
age inverse mass B={P,|[Q,[H,Q]]|®,); (ii) construct
the conjugate momentum operator P =i[H,Q],, /B;
(iii)  compute the average spring  constant
C=(®,|[P,[H,P]]|®,). Thus the RPA energy, accord-
ing to Eq. (35), becomes

#iw(Q)=V CB
=({ ®,|[P,[H,P]1|®,){ ®,|[Q,[H,0]]|P))"">

_ (£ @lllQ Y, [H,[H, Q1,111 D) |
<(I)0|[Q$[HvQ]]|q)0)

=[m;(Q)/m,(Q)]'"*=E;(Q) . (40)

(39)

Now in a second step, we optimize the “prejudice” Q
by making E;(Q) stationary, i.e., setting its first-order
variation equal to zero:

8E,(Q)=56%w(Q)=%iw(Q +80)—#w(Q)=0. (41)

From this condition and the expression (39) for the ener-
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gy follows
(Do|[[8Q, H] n, [H,[H, Q1,111 @) B
—(®|[8Q,[H,Q]1l®) =0 . (42)

We employ

(¢0‘[8Q’[H’Q]ph @)= <¢0|[[8Q)H]ph’Q]|q)0>
and collect to
<(D0|[[8Q’H]ph’ {([H,[H,Ql ]phz-l—Q@} l®e)=0.
Now we use the fact that

([8QH 1y} =8PE Ay — Ay} ,

i.e., 8P is from a complete set of time-odd 1p-1Ah opera-
tors, and obtain

[H,[H,Q]ph ]ph=($@)Q N (43)

which is exactly the RPA equation in the form (38).
Strictly speaking, the unrestricted variation of Q leads to
the RPA state with the lowest excitation energy. Using
an orthogonalization procedure, one can then successive-
ly obtain the full RPA spectrum of operators Q, with en-
ergies fiw,, .

We conclude that the full RPA equations are regained
by free variation (and orthogonalization) of the 1p-1h
operator Q in the energy E,(Q)=[m;(Q)/m (Q)]'%
This, in turn, means that optimal approximations for re-
stricted choices of Q are to be found by restricted varia-
tion of E;(Q). This is the variational principle which will
be used in the following.

One may be surprised that the conjugate operator P
has been completely eliminated in the above considera-
tions. It is to be remarked that the variational principle
(41) implies a particular model for P, namely,
P=i[H,Q]p,, /B. This, of course, is an obvious model
and is well motivated within the RPA algebra.

B. Local RPA from Q =Q(r)

We now derive the equation of motion for a local RPA
where the operator Q is restricted to be a local function
Q=0Q(r). Variation of m;/m,; with respect to Q(r)
yields

(Dl[[6Q,H],[H,[H,Q]11ID)
—(#0)(®,|[6Q,[H,Q]1|®,) =0, (44)

where 8Q runs over all possible spatial variations of Q (r).
One may take, for example, 8Q =8%(r—r,), where r, runs
over all positions in coordinate space. The Hamiltonian

J

[ d*r su;-

2
m

— |w (V;V, u)p+(V,u, )(Vku)p-!-(V,-p)%pﬂzuk(Vkp)

H is assumed to consist of kinetic energy and a density-
dependent, direct two-body force such that the total ener-
gy functional becomes

6= [ d* , (45)

ﬁZ
3 T+ Up)

where p is the local density and 7= ¥, chz-V(ph is the
kinetic energy density (expressed here explicitly in terms
of the occupied single-particle states ¢, ).

The local Q commutes with the potential and we can
easily evaluate (see also Appendix A)

2
[H,0],=[T.01=5=~T(vo,.v}. 6

The ph projection is unproblematic here because the ki-
netic energy is a one-body operator and the commutator
of two one-body operators is again a one-body operator.
It would remain to separate the ph part of [H,Q] from
the pp and hh part. But the latter cancel anyway' in
evaluating the expectation value of the double commuta-
tor [S[H,S]] in the ground state |®,). Therefore the
above expression suffices, and we obtain

[5Q,H]=—SS=£{V8Q,-V} . (47)

Furthermore, we can rewrite the second term in Eq. (44)
as

2
([80,[H,011)=—2—([50,(v0,¥]]) 48)

_ _
=——(V6Q-VQ) .

Thus the task of variation with respect to Q (r) can be re-
placed completely by the task of varying the associated
displacement field

2
u=——ﬁ—VQ , (49)
m

according to the variational equation
([4{8u,V},[H, L {u,-V}]]) —0X(u-u)=0, (50)

where

su=— 1
u——;VﬁQ . (51)

We now give a short sketch of the structure of the
differential equation for u(r) derived from Eq. (50). We
consider an energy functional of the form (45). Evaluat-
ing the double commutator in Eq. (50), we obtain the
variational equation in the form

A [(V,-Vjuk )?kj+Vk(Vjuk )7J,+VJ(VI\lk )?ki +Vij(ViVjuk )p]

2

=) [ d*r pbu;-u,

where we have introduced the kinetic-energy density tensor 7, by
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7, =43 (Vg ) (V,0,)=V,Vp ,
a

and the mean field v is given by
LU
dp
The most general variation of u is

8u=eq8(r—r'),

5573

where e, is a unit vector in arbitrary direction ¢g. This cancels the integration and the sums over vector indices. We

thus obtain

h2

m

2
— (ug(V; Vv )p+(V,u, )(Vkv)p+(V,-p)%—p(&2£uk(Vkp)

Thus we see that in a restricted local RPA, a fairly
overseeable set of fourth-order differential equations for
u,(r) can be derived. The equations resemble very much
the hydrodynamical equations of da Providéncia and
Holzwarth® or Krivine et al.” However, it turns out that
such a differential equation is not the most efficient for-
mulation for collective modes in a local RPA. A more
stable approach is presented in Sec. III C.

Note that there is a choice in handling the variation
Su. The formally simpler procedure is to omit the con-
straint (51) and vary u freely. In this way we have pro-
duced something more general than planned, namely an
approximation which concentrates rather on a restriction
to a “local” S of the form

S=1{u,-V]

in terms of an arbitrary local vector function u(r). This
also leads to Eq. (50). But one is, then, free of the restric-
tions (49) and (51), which means that one allows for rota-
tional flow with VXu#0. One may come back to the
“local-Q RPA” by requiring the condition of irrotational
flow

VXu=0, (53)

i.e., that u(r) can be integrated to Q (r) such that Eq. (49)
holds. Thus we gain from the same variational equation
(50) two versions of a local RPA, namely, (i) a “local-Q
RPA” for which Q=Q(r), or (ii) a “local-S RPA” for
which S =1{u(r),-V}, which both fulfill the same equa-
tion for u. It is only the additional condition (53) for the
“local-Q RPA” which can be carried as an additional
Langrangian multiplier in Eq. (50). In the present paper,
we restrict ourselves to the first version and call it hence-
forth just the “local RPA.”

C. Momentum expansion

The local RPA looks simple as it gives a differential
equation. However, this equation is of fourth order in
the derivatives of Q. Such high-order equations can be-
come quite critical numerically, and unwanted high-

[(V,Vjuk )?k]-i-Vk(V]uk )T'j,-f-V](Vjuk )'7",(,+VkVJ(V,V]uk )p]

=(#w)pu; . (52)

f

Fourier components require special measures to ensure
stability of the solution scheme. The results will, on the
other hand, still not produce the exact RPA spectrum.
Therefore we shall rather pursue here a global descrip-
tion which is particularly useful if most of a multipole
strength is concentrated in one collective resonance. In
that case, the simple sum-rule approach with the local
operator

Q(r)=rL¥,6) (54)

gives already a very good first estimate. We improve it
systematically here by an expansion in a few other mo-
ments of the same multipolarity. Thus we consider a
basis of operators of the form

QL =,"2y, (6) . (55)

The upper index (L) is to indicate the multipolarity —it
will be omitted in the following—and p, is a real positive
number. The optimal Q, is then superposed as

Qn :a:Qa >

and the variation is to be taken, of course, from the same
subspace

(56)

60e(Q,, a=1,...,M} . (57)
The variational equation (44) leads then to a secular equa-
tion that determines a set of eigenenergies #iw, and super-
position coefficients a?:

[H apg— (Fiw, ) Byglaf =0 . (58)
Hereby

Bop={ ol Q0 [H,Qp111®,) , (59)

H ap= (@0l [[Qar H), [ H, [H,Qp1111®) (60)

are the generalizations of the moments m; and mj, re-
spectively, so that the secular equation (58) is the general-
ization of the expression (28) for the energy E; to the
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case of several coupled modes. In the notion of S scaling
(see Appendix A), ¥ is the stiffness tensor and B the
mass tensor of the coupled modes. Since a,” need not be a
unitary matrix, Eq. (58) leaves some freedom for them.
We can choose as additional condition that they also di-
agonalize the mass tensor B, such that the eigenmodes
have orthogonal displacement fields @, and masses B,,
ie.,

(@[10,,[H, 0, 11®0) =25 [ 0, Upp(r)d =35, B, .
(61)

Altogether, there remains the standard task of simul-
taneous diagonalization of the mass matrix B given in
Eq. (59) and the stiffness matrix # in Eq. (60) by an ap-
propriate choice of the coefficient matrix a,.

Note that the RPA in restricted spaces of local Q al-
ways produces collective modes with irrotational flow,
since VXu=0 due to Eq. (49). However, one may also
treat rotational hydrodynamics in the present formalism.
To this end, a more general ansatz must be made at the
level of the associated displacement fields:

S.=3{u, V4, ua:rLAl+pTLL+AM’ a={p,A} (62)

where A==1 and T, ,, are the vector spherical harmon-
ics, see, e.g., Ref. 16. This, however, yields a consider-
ably more complicated task; it should be attacked only if
good reasons for the occurrence of rotational collective
flow are found.

IV. EXAMPLE: DIPOLE PLASMONS
IN METAL CLUSTERS

In order to illustrate the local RPA, sketched above,
we present here scme results for collective dipole excita-
tions of the valence electrons in small metal clusters.>”*
Some earlier results, using this method and employing
semiclassical approximations, have been recently pub-
lished by one of us.'> These calculations are extended
here to the purely microscopic level in the Kohn-Sham
formalism.!’

A. Energy functional and ground-state density

We employ the so-called jellium model'®?° in which

the charges of the ions (i.e., the atoms minus the valence
electrons) are uniformly spread out over the volume of a
sphere of radius R;=r.Z!/?, where Z is the number of
atoms, r,=[(47/3)p,;]17/* is the Wigner-Seitz radius
characterizing the metal, and p; its density. Within the
Kohn-Sham approximation'” to the energy density for-
malism, we express the total energy of the cluster in
terms of the local density p(r) and the kinetic-energy den-
sity 7(r) of the valence electrons,
N N
pr)= 3 lp,(n)}, )= |Ve,(r)|*, (63)

i=1 i=1

as
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Elpl= [ |5 )+ 6. p(r)]
1 2 E(r,) 3
+3p(1) |e f =] dr
+V(r)p(r) |dr+E; . (64)

Hereby &, [p] is the exchange and correlation energy
density, and the third term is the Hartree Coulomb ener-
gy of the electrons; V; and E; are the potential and the
total electrostatic energy, respectively, of the ionic jelli-
um background. The density p(r) is normalized to the

number N of valence electrons:
[prd’r=nN . (65)

Varying the energy (64) with respect to the single-
particle wave functions @;(r) leads to the usual Kohn-
Sham (KS) equation

[T+V,(0)]g(r)=¢¢(r) . (66)

T is the kinetic energy operator, and the local potential
Vot 1s a sum of three terms:

Vi (1) =V [p(r)]
=V, [p(n) ]+ Vylp(t)]+V, (1), (67)

whereof the first is due to the exchange and correlation
contributions:

Velp(n]= 5 0—6.0p] (68)

p(r

Vylp] is the Hartree potential of the electrons, given in
the large parentheses in Eq. (64) above, and ¥V is the jelli-
um potential already mentioned.

We have solved Eq. (66) iteratively for spherical clus-
ters on a finite mesh in r space using a standard code.
For &, [p] we have used the local-density approximation
(LDA) functional of Gunnarsson and Lundqvist.?!

B. Pure electric multipole excitations

To discuss the collective excitations of the electrons in
a cluster, such as the dipole vibrations seen experimental-
ly by photoabsorption,”? we shall now use the methods
outlined in Sec. IT and III above. In order to describe vi-
brations of multipolarity L, we shall first use the electric
multipole operators in the long-wavelength limit (written
in polar coordinates)

0=0,(r,0)=rly,(8) (L=1). (69)

These operators lead to divergence-free velocity fields,
since AQ; =0, thus describing pure surface oscillations
during which the electron density is translated (L =1) or
deformed (L > 1), but not compressed. For the operators
(69), the moments m; and m are relatively easy to evalu-
at%and lead, for the Hamiltonian described by Eq. (64),
to
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2
ml(QL)Z%% fr"‘_zp(r)d3r , (70)
my(QL)=ms" +m§ +m ! (71)
with
2
n_ # | #
Min— = 12| L(L—1
3 2m | m ( )
x [ Lan+ £ lar, a2
2r
# | L1
Coul — __ [ 7°_ LA\ L1 2
™3 m | L1 e
® 2L -3 IRV ' ' 73
Xfo r p(r)dr fo(r yp(r')dr', (73)
2
ml = # | __ L
3 m | 2(2L +1)

X [ Vi(nrt =4 " ()4 2rLp'()]d r (74)

where p'(r),p"”(r) are radial derivatives. Note that the
exchange-correlation energy in the local-density approxi-
mation, like any part of the total energy which is only a
Sfunction of p(r), does not contribute to m;(Q; ) (see also
Ref. 5). In the kinetic energy term (72), A(r) is an angular
momentum density defined in terms of the single-particle
wave functions ¢, by
N
Mo)=3 lg; (DL +1), (75)

1=1

where /; is the angular momentum quantum number of
the state i.

As shown in Ref. 13, the RPA energy E,(Q;), Eq.
(28), tends in the limit of a large spherical cluster to the
classical Mie energy?? of the surface plasmon:

Jim Ey(0,)=fio)*=vL/QL+ 1wy (L21), (76)

where w,, is the bulk plasma frequency:

12 172

3e? 4me 2PI

3
mrg

pl

(77)

0]

m

Similarly, one finds'® that for an arbitrary but local
operator Q,(r) with multipolarity L =0, the energy E,
goes to the bulk plasmon energy in the classical limit:

C. Momentum expansion

In finite clusters we have to expect a coupling of sur-
face and volume plasmons for all multipolarities L > 0, as
pointed out by Ekardt® in the dipole case. In order to
study such a coupling in our present approach, we intro-
duce a set of trial operators

QB =r"2y, ,(0), (79)

5575

with p, being a positive real number. For p,#L, we
have AQ!"'#0 and this operator will describe modes
which involve local compression of the electrons. We
therefore shall solve the secular equation (58), coupling
the modes obtained with (79) using different values of p,,.
This is just the momentum expansion of the local RPA
which was discussed extensively in Sec. III C and which
leads us to a spectrum of eigenmodes with energies fiw,
and orthonormalized velocity fields @, according to Eq.
(61). The algebraic evaluation of the matrices Egs. (59)
and (60) with our trial operators (79) is rather cumber-
some, in particular for the kinetic-energy contributions.
We give the explicit formulas in Appendix B.

For a given (external) excitation operator Q., we then

calculate sum rules m, by'>!*
M
m(Qy)= 3 (fio, ¥(n1Q,.[0)]?, (80)

n=1
where the transition probabilities are given by

2 #
[{(n]Qe 10} 20,3,

2
[ Qo (0)8p,d’r| ;81

B, is the mass of the nth normal mode appearing in Eq.
(61), and 8p,, is the transition density from the ground
state to the one-phonon state with energy #w,,:

2
Sp,,—_——V-(pﬁ,,)Z%V'(pVQ,,) . (82)

Practically, this amounts to expanding the operator
Q. in terms of the eigenmodes ©,. Thus, by construc-
tion, Eq. (80) gives the correct RPA sum rules m,(Q,,)
and m;(Q.,) for local operators Q,,(r) whose gradients
lie in the space spanned by the @, ; meaning that the one-
phonon eigenstates of Eq. (58) exhaust these two sum
rules exactly.l4 This is, in particular, true for the electric
multipole operators Q, , Eq. (69), for which the moments
m, and m; are directly given by Egs. (70) and (71) in
terms of the ground-state densities p, 7, and A. [The
equality of these values with the ones obtained on the
right-hand side of Eq. (80) can therefore be used as a test
of the numerical precision of the calculations.]

Evaluating furthermore the moments m, and m, from
Eq. (80), we obtain our local RPA estimates for the cen-
troid E and the variance o, defined in Eq. (26), of the
strength function. From the moment m _; we get finally
the static polarizability a via Eq. (23).

D. Surface and volume plasmons in the classical limit

Before giving numerical results for microscopic clus-
ters, we shall briefly summarize the results obtained'’ in
the classical limit of macroscopic metal spheres. For a
very large cluster, the diffuseness of the electron density
can be ignored, so that we can take p to be a step func-
tion: p(r)=py;O(R; —r). Furthermore, the kinetic and
exchange-correlation energies vanish as N 2/} with
respect to the leading Coulomb contributions. The ma-
trices (59) and (60) can then be evaluated analytically.'?
Solving the secular equations (58) for a given set of M
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different trial operators (79) for a fixed multipolarity
L >0 leads to the following result: there are always
M —1 degenerate eigenvalues w=w,,, independently of
Qf, and one nondegenerate eigenvalue w =w; which is
close to or, if one of the p; equals L, identical to the clas-
sical Mie frequency®? of the surface plasmon: w; =},
Eq. (76).

Thus in classical metal spheres there exist for each
multipolarity L >0 a surface plasmon with the Mie fre-
quency and a (infinitely degenerate) volume plasmon with
the bulk plasma frequency. It should be noted that in
this classical limit, the surface plasmon takes up all of the
strength of the multipole operator Q;, and the volume
plasmons are decoupled. The fact that all volume
plasmons are degenerate in this limit means that the ener-
gies E, of these solutions do not depend on the radial
form of the operator Q. This in itself is not surprising
since this limit is defined as the one where the electron
density is constant over the whole volume of the cluster.

In the case of multipolarity L =0, there are always M
degenerate eigenvalues with the bulk plasma frequency
wpy (77), which follows immediately from (78).

In real finite clusters, quantum and size effects will
change these results. In fact, the kinetic energy of the
electrons, their exchange and correlation effects, and the
finite diffusivity of their density p(r) will lift the degenera-
cy of the volume plasmons and give them a finite mul-
tipole strength. This leads to a fragmentation (Landau
damping) of the surface plasmon, as observed in the cal-
culations of Ekardt®® and also in some recent RPA calcu-
lations.?*

E. Results for finite spherical clusters

In our numerical calculations we have solved the KS
equations (66), then evaluated the mass and stiffness ten-
sors (59) and (60) using the microscopic ground-state den-
sities p(r), 7(r), and A(r) (see Appendix B for the detailed
formulas), and finally solved the secular equation (58) for
finite spherical clusters. We restrict ourselves here to di-
pole oscillations (L =1), as they have recently been ob-
served experimentally by photoabsorption on small alkali
clusters.>® For most of the examples shown here we
chose sodium clusters, using r, =3.96 a.u.

We first discuss the convergence of our expansion
method with respect to the number M of coupled modes
and the powers p, of the trial operators (79) used to ob-
tain the eigenmode spectrum. Figure 1 shows the conver-
gence of the lowest eigenvalues fiw,, the centroid E, and
the polarizability a of the Nag cluster as functions of the
number M of coupled dipole modes (L =1). The various
symbols correspond to different selections of powers p,
(see the figure caption). We see that the convergence as a
function of M is excellent. Also, the results are quite in-
dependent of the particular choice of the p,, as long as
powers in the range 8 <p, <12 are involved. For too
close values of the powers (Ap, =1), the basis becomes
overcomplete and no good plateau can be found. As a
“rule of thumb,” a basis of five expansion operators (79)
with p,=(1,4,7,10,13) gives unique and stable results up
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to three digits for all the quantities discussed here, in-
cluding the variances o, for all cluster sizes. Similar re-
sults are obtained for the two or three next higher eigen-
values fiw,, as long as their contribution to the m; sum
rule is significant ( > 1% -2%).

We now compare the converged results to those of re-
cent full RPA calculations by Yannouleas et al.** using
the same energy functional (64). [Strictly speaking, the
calculations in Ref. 24 were not done with the exact
Kohn-Sham potentials, but with their averages obtained
in semiclassical extended Thomas-Fermi (ETF) density
variational calculations.”> However, the single-particle
wave functions and spectra obtained from those average
ETF potentials are so close to those of the microscopical-
ly iterated KS potentials, that the differences in all the
quantities compared below are well below 1%.] In the
upper part of Fig. 2, we show the full RPA dipole spec-
trum fiw, of Nag; in the lower part, the spectrum ob-
tained in our present local RPA approximation is
displayed. In both cases, the height of the vertical lines
gives the percentage contribution of each state to the di-
pole sum rule, m,(Q,)=(#*/2m)e*N. Shown are all

2.90
S 280t {
v
3 270+ .
o«
2.604: 1
3.00 | .
— 295 - Lv-—w‘ o a 4
>
[V}
w290 1
285} 1
150 f ’ ;
—~ 145} §
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= 1.40 + 1
1 351; j;
2 4 8 10 12

FIG. 1. Collective dipole properties of the Nay cluster, ob-
tained in the present local RPA approach. Top: lowest
eigenenergy %w,; middle: centroid E; bottom: static polarizabil-
ity a. The results are plotted vs the number M of coupled
modes. The powers p, were chosen as follows. Boxes:
Pa=(1,2,3,...,M); crosses: p,=(1,3,5,...,2M —1); circles:
Po.=(1,4,7,...,3M —2).
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FIG. 2. Collective dipole spectrum of Nag. Above: full RPA
results (Ref. 24); below: present local RPA results. The height
of the vertical lines gives the percentage of the corresponding
states to the dipole sum rule.

states that contribute 1% or more to this sum rule. The
same is presented in Fig. 3 for Na,,. In the case of Nay,
the agreement is almost quantitative for the most collec-
tive (i.e., the lowest) state. For the neutral Na,,, the full
RPA dipole strength shows a splitting into mainly two
collective peaks, as already discussed in Ref. 24. Our lo-
cal RPA does not reproduce this splitting; we get mainly
one peak (with 78% of m ). We mention in passing that

1000/0 T

T T T T T T T T T 7T
Na,q 1
I full RPA |
50% 7
00/0 X T T T T T T T ll T T lv IJ T L
100% F .
I local RPA ]
50% .
L 4

00/° T S B R I TUR S S T | I L
Z 3w b (ev) 5

FIG. 3. Same as Fig. 2, but for Na,,.
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the amount of splitting found in the full RPA calcula-
tion’* is extremely sensitive to the details of the
exchange-correlation energy functional 6, [p] employed.
The experimental verification of such structures would
therefore be a challenge for further tests and improve-
ments of this energy density functional.

The states above 3.0-3.5 eV seen in the above RPA
spectra should not be given too much quantitative
significance. Physically, they represent the (fragmented)
volume plasmon, which is only weakly coupled to the
surface plasmon. However, since they lie in the continu-
um, their position is rather crucially dependent on the
particular way in which the high-lying particle states
have been treated numerically in the RPA calculation.
They were obtained in Ref. 24 by discretizing the contin-
uum in a harmonic-oscillator basis. In the local RPA cal-
culation, this problem does not exist, because here one
only needs to know the occupied ground-state single-
particle wave functions for evaluating all the ingredients
to the secular equation {(58). It is therefore gratifying that
the average properties derived from the various moments
of the spectra obtained in the two approaches agree very
well. We show in Table I the energies E;,E;, Eq. (25),
the centroids E and variances o, Eq. (26), and the static
polarizabilities a, Eq. (23), of Nag and Na,,, obtained in
the two calculations. The differences are slightly larger
in the case of Na,,, where the local RPA does not repro-
duce the splitting of the collective peak, but the overall
degree of agreement is very satisfactory.

It might be interesting also to compare our polarizabil-
ities a to those of the time-dependent LDA (TDLDA)
calculations by Beck and Ekardt.?®?* The latter are indi-
cated in Fig. 4 by the square boxes, whereas our present
results are interpolated by the solid line. The agreement
is quantitative, although our way of calculating « is quite
different from that of Refs. 20 and 23. There, an explicit
linear-response calculation with an external electric di-

2.4-Tf"'l""|""r""|-'r'rT_
221 § .
2.03 ¥ Expt ]
—18F o TDLDA ]
< 6L % 35 — local RPA ]
3 L i
'I.L: ]
12+ .
10 J TN ST U SN S ST TS MU SN0 O S SN N S ST A S 2 W G S 'Y

5 10 15 20 25 30

R, (a.u)

FIG. 4. Static dipole polarizabilities a (in classical units R})
of spherical Na clusters, obtained with a=2m _, from the sum
rule m _; with the help of our local RPA spectrum, vs cluster
(jellium) radius R;. The boxes represent the TDLDA results of
Refs. 20 and 23 (which agree with each other within the size of
the boxes). The dots with error bars show the experimental re-
sults of Knight et al. (Ref. 25).
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TABLE L. Energies E;, E,, centroids E, and variances o of the collective dipole spectrum, and static
electric dipole polarizabilities a, for the neutral clusters Nag and Na,,, obtained both in full RPA calcu-

lations (Ref. 24) and in the present approach. (Here the value 7, =4.0 a.u. was used).

Na, Na,,
Full Local Full Local
RPA RPA RPA RPA
E; (eV) 3.08 3.08 3.14 3.15
E (V) 2.91 2.91 2.98 3.00
E, (V) 2.87 2.88 2.93 2.97
o (V) 0.54 0.52 0.55 0.51
a (R}) 1.40 1.39 1.35 1.31

pole field was used. The connection between the two
ways of calculation is given by the “dielectric theorem,”
Eq. (23). To the extent that the calculations of Refs. 20
and 23 represent a Kohn-Sham-LDA approximation to
the constrained Hartree-Fock (HF) problem, Eq. (24),
their polarizabilities can be identified with 2m _, ob-
tained from a RPA spectrum. The excellent numerical
agreement of our values of a with theirs confirms this
indeed. Note that, once the formalism of the present pa-
per and the expressions in Appendix B are at our dispo-
sal, our way of calculating the static polarizabilities is
much easier and faster than that of Refs. 20 and 23, be-
cause only the knowledge of the ground-state wave func-
tions is required.

We finally compare our results to the experimental
ones. The peak of the resonance curve seen® in Nag lies
at about 2.5 eV. Our result for the most collective eigen-
state (82% of m,, see Fig. 2) is 2.75 eV, thus not
sufficiently red shifted with respect to the classical Mie
dipole plasmon which lies at 3.45 eV. This lack of red
shift has the same origin as the deficiency of the static po-
larizabilities'*?%2%2% (see Fig. 4) and will, hopefully, be
removed in a better treatment of the Coulomb ex-
change.26 Note, however, that the relative variation of the
experimental @ with R, is quite well reproduced by our
calculations shown in Fig. 4, particularly also the drop
for the lightest cluster with Z =2 (R;=4.99 a.u.).

The situation for the dipole peak is very similar in the
Na,, cluster.>?* In ionized clusters, the electrons are
deeper bound and the dominant dipole peaks become
even more collective (see also Ref. 24). To illustrate this,
we show in Table II the results obtained in our present

TABLE II. Dipole plasmons in the charged potassium clus-
ters Ko+ and K, *. The first column gives the experimental
peak energies (in eV) measured by Bréchignac et al. (Ref. 3).
The second column gives the lowest eigenmode energy #iw, (in
eV) of the collective dipole spectrum obtained in the local RPA
and, in parentheses, its contribution to the dipole sum rule. The
value r, =4.86 a.u. was used for potassium.

Expt. Local RPA (% m,)
Ko* 1.93 2.31 (94.9)
K, " 1.98 2.33 (96.9)

method for two singly ionized potassium clusters, whose
dipole plasmons have recently been observed experimen-
tally.® We see that the lowest collective dipole state 7w,
here exhausts more than 90% of the dipole sum rule.
The lack of red shift is similar to that obtained for the Na
clusters.

We mentioned in Sec. IV D that in the classical limit of
a large metallic sphere, the RPA dipole response just
yields the classical Mie surface plasmon and the bulk
plasmon, the vanishing coupling of surface to volume
plasmon reflecting itself in a vanishing variance o of the
spectrum. This is illustrated in Fig. 5 where we show our
results obtained for the energy centroid E, the lowest
eigenenergy #iw;, and the variance o of Na clusters, plot-
ted versus the cluster radius R;. The classical (Mie)
surface-plasmon energy #o}1¢ is shown as the horizontal
line. In the earlier semiclassical calculations of Ref. 13, it
was seen that this limit is reached by E and 7w, within
one part per thousand for Na clusters with radii larger
than 80 a.u. corresponding to N >8000. It was also
shown in Ref. 13 that the variance o asymptotically van-
ishes like Z ~!/%, i.e., like 1/(R;)'"% this slow decrease
can be observed in Fig. §.

In both Figs. 4 and 5, we see that the shell effects play
a relatively small role and tend to disappear with increas-
ing cluster radius. Thus, for large clusters in the meso-
scopic domain N > 1000, all the collective properties dis-
cussed here can be well described in semiclassical density
variational calculations'® where one does not iterate mi-
croscopic single-particle wave functions via the Kohn-
Sham equations, but varies only the electronic densities
p(r) employing the ETF gradient-expanded functional
7[p] for the kinetic-energy density, and afterwards evalu-
ates collective mass and stiffness tensors in terms of the
semiclassical ground-state densities. Such calculations
yield,"? indeed, the average parts of the results shown in
Figs. 4 and 5 above, the eigenmode spectra of the
coupled-modes problem being very close to those depict-
ed in Figs. 2 and 3. But ETF variational calculations are
much faster than the microscopic KS calculations and
provide thus a very efficient tool for investigating large
clusters (up to N =10° or more), where microscopic
methods become numerically too time consuming. Even
for smaller clusters they provide a very useful starting
point for the KS procedure.
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FIG. 5. Centroid E (top solid line), lowest eigenenergy #w,
(middle solid line), and variance o (bottom solid line) of the col-
lective dipole spectrum obtained in local RPA for Na clusters
(ry=3.96 a.u.), vs cluster (jellium) radius R,. The horizontal
dashed line indicates the classical (Mie) surface-plasmon energy.

V. SUMMARY AND OUTLOOK

In order to obtain a flexible starting point for collective
approaches, we have reformulated the RPA algebra in a
so-called Q-P description in terms of coordinatelike
operators Q and momentumlike operators P. We have
shown that one can recover the full RPA equations by
varying the RPA energy #iw(Q) with respect to the opera-
tor Q. This, in turn, gives us a variational principle at
hand for approximations to RPA in restricted spaces for
the choice of Q. We want to point out that we take as the
starting point a RPA which is built self-consistently on
top of a full microscopic Hartree-Fock (or Kohn-Sham)
calculation using the same Hamiltonian. Unlike in most
earlier approaches, this feature is retained for all choices
of Q (or P). Approximations are done only at the RPA
level.

As a most obvious application, we have investigated a
local RPA where Q is taken from the space of local one-
body operators, Q =Q(r). From varying #«(Q), one can
derive a differential equation for Q(r) which resembles
very much the differential equations of the hydrodynami-
cal (or fluid dynamical) approaches to collective motion
in quantum many-body systems. However, this is a
differential equation of fifth order and thus numerically
quite inconvenient to handle. We therefore prefer an in-
tegral approach where we expand the radial part of Q (r)
in powers of r and determine the expansion coefficients by
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a secular equation which results from variation with
respect to the expansion coefficients. This treatment is
numerically simpler and more stable; it automatically
yields a (restricted) spectrum of eigenmodes and thus
does not require the orthogonalization procedure neces-
sary in solving the differential equation for Q(r). Our
method is also more realistic than earlier fluid dynamical
approaches (see, e.g., Refs. 6 and 27), in that it makes use
of fully self-consistent and microscopic densities.

We have tested and exemplified the local RPA for the
collective electronic dynamics of metallic clusters. We
find, indeed, that the method is numerically very efficient
and stable. Comparison with a full RPA calculation
shows that the local approach works very well in our ex-
ample. The average features of the resonances are always
well reproduced. The full RPA shows sometimes a split-
ting of the strength in the resonance region. It remains
to be seen whether this feature can be described in an ex-
tended collective picture or whether this is a typical
particle-hole property.

The local RPA from varying Q (r) represents a hydro-
dynamics with irrotational collective flow. We have
shown that one can extend the approach easily to cover
also rotational flow. One knows that level splitting leads
to curls in the flow pattern. It is interesting to see wheth-
er one can conclude the reverse way, namely, that the
freedom to have rotational flow leads to the observed lev-
el splitting already on this purely collective picture. This
will be the next step in the future development of our
model.

Finally we want to note that the collective dynamics of
metallic clusters has many similarities with the collective
dynamics of nuclei. Thus the methods explained in this
paper apply also to that case. Investigations of nuclear
giant resonances have, indeed, been performed in local
RPA using two coupled modes.?®?*1* More refined ex-
tensions are presently under way.*°
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APPENDIX A: SCALING TRANSFORMATION
AND SCALES FOR THE COLLECTIVE VARIABLE

The RPA equations (34) and (35) suggest an interpreta-
tion of (®y|[Q,[H,Q]]1|®,) as the inverse mass B and
(®,|[P,[H,P]]|®,) as the spring constant € of the RPA
mode. On the other hand, one finds in some publications,
e.g., Ref. 5, a different interpretation where B is directly
the mass and the spring constant 1is rather
(D,|[[Q,H],[H,[H,Q11]|®,) =F. Both points of view
are right. There is indeed some freedom of scale in as-
signing a collective coordinate to a mode. We will ex-
plain in this appendix the implications of the two choices.
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First we discuss the Q scaling which is connected to the
RPA equations (34) and (35). For the interpretation, we
recur to the generator coordinate method®' and construct
a static deformation path by

@, )=e""lD,) , (A1)

where P is the momentum conjugate to Q. In particular
in the local RPA, we choose

P=i[H,Q]/B, (A2)

where the division with B=(®,|[Q,[H,Q]]I®,) serves
to adjust the conjugation relation (®,|[Q,P]|®,)=i.
The q is the collective variable which labels the deforma-
tion. It is scaled such that in first order of ¢

(D, lQl®,)=¢ . (A3)

It, so to speak, “measures” the Q operator. However, the
RPA is a theory of dynamics and we need to extend the
path (A1) to a dynamic path’!

|, ) =e?% ~F|d,) , (A4)

from which we can construct a classical Hamiltonian

H={®,|H|D (A5)

‘1P>’

which in the small-amplitude limit becomes an oscillator
Hamiltonian

H=1Bp*+1€q?

§3=a—227{=(<l>ol[Q,[H,Q]]|<l>o) , (A6)

@—Fﬂ (®,|[P,[H,P]]®,)
The last equation makes the interpretation of B as in-
verse collective inertia and of @ as spring constant obvi-
ous. Note that this interpretation is related to the choice
of the Q scaling (A3).
An alternative viewpoint is taken in the S scaling.
There one starts from the scaling operator

S=[H,Q] (A7)
and generates the static deformation path by
[@g) = P|@,) . (A8)

The S-scaling path as a whole, { l&>ﬂ) }, is identical to the
QO-scaling path { |<I>q )}. But the static deformation is la-
beled differently. The relation between the two labelings
is

|®g)=|®,) where g=—BB . (A9)
The first step has been taken simpler in the S scaling.
The work comes now in constructing the momentum
conjugate. The momentum label ¥, conjugate to 3, is re-
lated to the momentum label p by ¥ =8Bp. Thus we con-
struct the according dynamic path by

|Dp, ) =e 72 B “FS|@y) (A10)
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from which we can construct the classical Hamiltonian
H=(Dg, |H|Dp,) , (A11)

which becomes in the small-amplitude limit an oscillator
Hamiltonian:

1 2 igm
FH 557 +3HB,
2 —1
B= an—zy";] = (@|[Q,[H,Q111®) =2m,(Q) ,

(A12)

7{—3377{ (@|[[Q, H],[H,[H,011]|®e) =2m;(Q) .
Thus in the S scaling we find that B is directly the collec-
tive inertia, but this goes in connection with an accord-
ingly rescaled spring constant %.

For local operators Q (r) which commute with the po-
tential energy V in the total Hamiltonian H =T +V, the
S-scaling transformation (A8) and the moments m,,m;,
have a transparent physical meaning. That 2m;=%is a
spring constant, obtained from the scaled ground-state
energy #, is directly seen from Eq. (A12) above. That B
is a hydrodynamical mass parameter, can be seen in the
following way. We write

S =[H,Q1=[T,Q]1=1{u,-V}=1(V-u)+u'V, (A13)

where u is a displacement field corresponding to the ve-
locity potential Qf(r

u(r)= ——VQ (A14)

Indeed, taking B(t) as a collective variable and defining
the velocity field

v(r,t)=B(t)u(r) , (A15)

it is easy to see,>'* using the obvious operator identity
_0 5. (A16)
B

that v and the scaled ground-state density pg(r) fulfill the
continuity equation

2 g+ V(pgv) =0 (A17)

and that

=% [ wirp(r)d’r

(A18)

APPENDIX B: EVALUATION OF THE MASS
AND STIFFNESS TENSORS
FOR THE TRIAL OPERATORS OF SEC.1VC

We evaluate here the commutators in Egs. (59) and
(60). To simplify the notation, let us redefine the trial
operators (79) as
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Qf =rPY,(6) (L=0) (B1)

and replace the pairs of indices (a,B) in Sec. IIIC by
(p,p'). Generalizing Egs. (A13)-(A18) of the S scaling
concept discussed in Appendix A above to the multidi-
mensional case, we define the scaling operator Sf by
Sf=[H,Qf |=[T,Qf |=5(V-u)+ui -V, (B2)

where uf is the displacement field corresponding to the
operator Qf:

‘ﬁ2
W (r)=—"-VQf(r) . (B3)

The mass tensor defined in Eq. (59) is easily shown, by
partial integration, to be

By = i:; [ wi(r)uZ(r)p(r)dr (B4)

and thus, indeed, is a classical hydrodynamical mass ten-
sor. For spherical densities p(r) we find after the angular
integrations

_|# |pp'+L(L+1) © ptp
By= o | ar ey 4m [T P etndr . 85)

The stiffness tensor defined in Eq. (60) can be rewritten
as
H oy = Dol [SE,[SE, H1]I D)
dZ
~ dpdp
d2
~ dpdp’

[< <l>0|eBS£He _35£’|¢o) lp=p=0

[({BIHIB ) 1p=p =0 > (B6)

a,,=+pp'+2)[4pp’—p*—(p'¥—p—p'],

where

BY=e *L|a,) (B7)

is the scaled ground state. The latter equality on the
right-hand side of Eq. (B6) facilitates the calculations ap-
preciably. The results can be given in the following way.
We write

— aqski X Coul VI
ﬂpp’*ﬁp?—"?{p;"}'ﬁpﬁ +7{pp" (B8)

Note that even though S and Sf do not commute in
general, #,, in Eq. (B6) would be symmetric if |®;)
were an eigenstate of H. This is, however, not exactly
true in the KS approximation. It is therefore reasonable
to symmetrize the single terms in (B8).

The kinetic-energy contribution 7{‘;;,'3 for p,p'7L with
L >1 involves complicated angular momentum algebra
and is very cumbersome to evaluate in general. Since we
are concerned with the dipole case (L =1) in this paper,
we have only calculated this case analytically here. The
results for L =1 reads, for spherical densities, after sym-
metrization,

3

Fekin= f r? P g, r2r(r)+b, A(r)

ﬁZ
m

+c, p(r)]d’r (B9)

where

b, =—+{pp'[4pp'—p*—(p'?—6]—2[p>+(p" 2]+ 12(p +p')— 16} ,

¢ p="%{lp(p+1)—2][p"(p'+1)—2][pp’ —2(p +p') +6]
+L[(p'—1)(p"+2)(p —1)(p'—3)pp'—2p +6)+ (p>p’)]
—1p(p = 1p +2)(p —3)pp’' —4p'+2)+(pp")]} .

The remaining contributions to Eq. (B8) have already been given in Ref. 13; we repeat them here for completeness,
correcting a misprint in Eq. (A10) of Ref. 13 [note the minus sign in front of the first term in the brackets of Eq. (B12)
below]. The exchange-correlation contribution has been evaluated in the local-density approximation. It is obtained
using the following formula which holds for any part of the energy that is just a spatial integral over a function f of the

density p(r). Let E, be given by

E=E/[pl= [ flp(rd’r . (B10)
Then the symmetrized contribution of E, to (B6) is found to be
L2 ] 4
f;:'—— A ______L_ * p+p' —2 " ’ ’ 2 ’ _f2

Hoy=5 o | GL AT fo r (p+p'—Diplp'(p'+1)—L*+p'[p(p +1)— L2}

2
X f(p)—p-—&df;)) +2[p(p+1)—L2][p’(p’+1)—L2]P2“_‘B“ddf(z M

p

Hereby we use the notation

L?=L(L+1).

(B11)
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2
?{C(’,“lz ﬁ_z (41T€)2
PP m | (2L +1)
* _ 2 ' r__ +p'—3 T n ’ ’
Xfo p(r) | =(p +p" ) L2 +pp'(p +p'—6)]rP TP fo r'2p(r')dr
L Ly 7
[ . — ! p'—L—1 'L+p ’ ’
LT [(L P)p+L+1)r Pt et
(L —p)p'+L +1)rP L1 fo’r’“ﬂ'p(r')dr' ] ]dr : (B12)
The contribution from any external spherical potential V;(r), finally, is
2
v,_ 1| # 417 @ i ~
7_{ ’,=-— RN ptp —2 ' ’ ' ' 2
=5 m | 2L+ 1) fo Vi(r)r {(p+p'—D[(p+p'+2)pp'—(p +p')L*]p(r)
+[(3p+3p'—2)pp'—(p +p’)f2]ré%+2r2pp’Ap(r)}dr . (B13)

In the case p =p’=L we recover from the above equations the results given in Egs. (70), (73), and (74).
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