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Abstract. We present the first systematic study of potential energy curves and prolate-oblate shape 
transitions of sodium clusters with 8 < N< 40 atoms. The Kohn-Sham equations are solved in the local 
density approximation for the jellium model with spheroidal deformations. The ionic background den- 
sity is taken to have a diffuse surface of Woods-Saxon type. The quadrupole and hexadecupole 
moments of the electron and jellium densities are investigated, revealing a strong hexadecupole 
dependence for selected clusters. Collective dipole resonances are described in the simple surface 
plasmon model. Shape transitions are found to occur at particle numbers 12- 14 (prolate-oblate), 
18 -20-22 (oblate-spherical-prolate) and 30-32 (prolate-oblate), which are in good agreement with 
experimental results; triaxiality is predicted for Na-36. Comparing our results with those of molecular 
dynamics calculations, we confirm the scheme of Kohn-Sham levels and the gross behaviour of poten- 
tials and densities. 
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1 Introduction 

The selfconsistent spherical jellium model for finite clusters, introduced in the Thomas- 
Fermi approximation by Cini [l] and in the microscopic form independently by Hinter- 
mann and Manninen [2], Ekardt [3] and by Beck [4], has been quite successful for a 
semi-quantitative description of many experimental properties of alkali metal clusters. 
The most prominent of them is the existence of peaks in the mass abundances obtained 
from cluster beams, which is explained in terms of the 'magic numbers' 8, 20, 40, 58, 
92, . . . , corresponding to filled spherical (main) shells. But also the average trends and 
general size dependence of ionization potentials and electron affinities, dipole polariz- 
abilities, and the energies of resonance peaks in photoabsorption spectra are well de- 
scribed in the jellium model. (For recent reviews, see e.g. de Heer [ 5 ]  and Brack [6].) 

In alkali and some other simple metals, such as Cu and Ag, the strong delocalization 
of the valence electrons - in particular if they have s-wave character - allows one to 
ignore in a first approach the ionic structure of the clusters and to treat the valence elec- 
trons in a selfconsistent mean-field approach in which the ionic charges enter only in 
the form of a homogeneous background charge density: the so-called jellium density. 
The quantization of single-particle states in a finite volume, together with the Pauli 
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principle, then leads directly to the existence of electronic shell structure in most cluster 
observables and to the formulation of simple phenomenological shell models for 
clusters [7 - 91. 

This simple approach is most likely justified in large systems where the valence elec- 
trons form a quasi-free gas confined by the cluster surface, their Fermi wave length 
being much larger than the average ionic bond lengths. It is, indeed, strongly supported 
by the quantitative explanation of the so-called ‘supershell’ structure 191, which has 
been experimentally observed [I0 - 121 and well reproduced in the selfconsistent jellium 
model [13], in terms of closed classical orbits of the electrons in a spherical cavity [I41 
or a Woods-Saxon-like potential with steep walls [9]. 

Surprisingly, however, the jellium model reproduces the above-mentioned cluster 
properties quite well also in small systems with even less than 20 atoms, where quan- 
tum-chemical methods (see e.g. [15] for a recent review) and molecuIar dynamics 
calculations (see e.g. [I61 or [17]) show that the ionic structure is not negligible and its 
inclusion leads to a more quantitative description of the observed data. In spite of its 
shortcomings and limitations and by virtue of its computational simplicity, the jellium 
model can therefore be used aiso for smaller clusters - at least to gain a first classifica- 
tion of cluster data and their size dependence. 

This article is devoted to the deformation properties of sodium clusters with 
8 c N c 4 0  atoms. It was, indeed, realized early in the interpretation of the sodium 
cluster mass spectra of Knight et al. [18], that the fine structure between the main peaks 
corresponding to spherical closed shells is due to the static deformation of these clusters 
in their ground states. Clemenger [7J successfully adapted the well-known Nilsson 
model [19] from nuclear physics to the cluster data and could explain the minor peaks 
by the filling of deformed sub-shells. The appearance of static deformation is a conse- 
quence of the Jahn-Teller effect [20]: when a spherical shell with its 2(21+ 1)-fold 
degeneracy (including spin) is only partially filled, the ground state of the cluster is 
degenerate; the system lifts this degeneracy by allowing the mean field to be deformed, 
thus spontaneously breaking its spherical symmetry, which results in a gain in total 
binding energy. This is aIso observed in the selfconsistent jellium model, as shown by 
Ekardt and Penzar [21], who solved the Kohn-Sham equations for axially deformed 
sodium clusters in spheroidal coordinates and confirmed the existence of deformed 
equilibrium shapes in the size regions 8<N<20 and 20CNC40. 

More recently, Lauritsch et al. [22] performed similar calculations for clusters with 
N c 2 0  without axial symmetry and found Na-12 and Na-16 to be triaxial, in agreement 
with phenomenological shell model predictions [23]. 

The main assumption of the ‘deformed jellium model’ is that the shape of the 
positive background density adapts itself to that of the electronic density distribution, 
which suggests itself from the large ductility of alkali metals. Practically, one obtains 
the ground state of a cluster by minimizing the total binding energy with respect to the 
deformation (or the overall shape) of the jellium density. This is very much in line with 
the Born-Oppenheimer approximation used both in quantum chemistry and molecular 
dynamics: The ionic distribution is determined adiabatically by the energy minimiza- 
tion principle, assuming that the electrons adjust themselves instantaneously to the ex- 
ternal ionic potential. 

The results of the static deformed jellium model calculations [21, 22, 241 are on the 
average well supported by those of quantum-chemical ab initio [15] and molecular dy- 
namics (MD) calculations [I71 where the ionic structure is fully taken into account. One 
can say that the jellium model is able to reproduce the averaged spatial distribution of 
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the ions in terms of ellipsoidal shapes or, more generally, of the lowest-order multipole 
moments of the ionic density. In view of the huge numerical efforts required by those 
structural models, in particular if larger atomic numbers than -20 are concerned, it 
seems worthwhile to pursue the jellium approach, especially in the direction of in- 
vestigating the role of more refined cluster shapes and of more detailed comparisons 
of its predictions with those of ab initio and MD calculations. 

The present work constitutes an extension of the spheroidal model by Ekardt and 
Penzar [21]. Whereas our way of solving the Kohn-Sham equations for spheroidally 
deformed clusters in a deformed basis of single-particle wave functions is very similar 
to theirs, we shall present more detailed results of cluster deformation properties. More 
than just giving their ground state deformations in terms of one parameter 6, we shall 
present deformation energy curves and multipole moments of both electron and jellium 
densities and discuss the systematics of shape isomerism. Some preliminary results of 
our program have been included in the work by Lauritsch et al. [22], where they were 
tested against the results of triaxial calculations using an altogether different numerical 
code, and some have been published in a conference contribution [25]. A3 a first step 
towards collective dynamics, we discuss the peak energies of the resonances in photoab- 
sorption spectra, which now have been measured systematically in the considered mass 
range for sodium clusters, and interpret them in terms of the simple surface plasmon 
model based on RPA sum rules. As we shall show, the jellium model prediction for 
the shape transitions spherical-prolate-oblate-spherical in both mass regions 8 s Ns 20 
and 2 0 s N s 4 0  is well supported by the experiment. Finally, we shall compare our 
Kohn-Sham single-particle energies and the spherically-averaged electronic densities 
and mean fields with recent MD results. 

2 The jellium model for deformed metal clusters 

2.1 Total energy and Kohn-Sham equations 

Using density functional theory, the total energy of a metal cluster in the spherical 
jeliium model [3] is expressed as a functional of the local electronic single-particle den- 
sity p(r ) :  

where 

T S b ]  is the kinetic energy for non-interacting particles with density p(r) ,  EH is the 
direct (Hartree) Coulomb energy of the electrons, and Eej the attractive electron- 
jellium energy in terms of the external ionic potential VJ discussed in the section 
below. Exc [p] is the exchange-correlation energy in the local density approximation 
which we take from Gunnarsson and Lundqvist [26]. Ej is the self energy of the 
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positive ionic charge which does not depend on p .  Note that the sum of the repulsive 
electron-electron and ion-ion forces are almost cancelled by the electron-ion attraction. 
The binding of the valence electrons is therefore due to exchange and correlation ef- 
fects, as is well-known for the binding in bulk metals. 

The use of the local density approximation (LDA) for the exchange-correlation func- 
tional ExcIp] might be questioned for metallic clusters since their density drops vary 
rapidly in the surface region. One well-known shortcoming of the LDA is that the mean 
field (i.e., the Kohn-Sham potential) falls off faster than like l / r  at large distances r 
from the cluster. To remedy this defect, two extensions of the LDA are currently in 
use: i) a self-interaction correction (SIC), proposed by Perdew and Zunger [27], and 
ii) a weighted-density approximation (WDA) [28, 291 (we refer to the book by Dreizler 
and Gross [30] for a detailed discussion of these methods and to Gross and Kohn [31] 
for the extension of the SIC to the time-dependent LDA). Both methods have been ap- 
plied to metal clusters with some success [32 - 361 (see the discussion in Sec. 1II.C of 
Ref. [6] for details). On the other hand, both i) Hartree-Fock calculations in which the 
exchange is treated exactly [37] and ii) the explicit evaluation of long-range correlations 
in fhe random phase approximation (RPA) [37, 381 have demonstrated that - at least 
within the spherical jellium model - the LDA works surprisingly well, even in small 
clusters, for the evaluation of bulk properties such as energies, polarizabilities and the 
positions of the collective dipole excitations. We therefore have chosen here to use the 
LDA in our study of deformation effects. The correct use of the SIC and WDA makes 
sense only in a spin density formalism which would give rise to further numerical com- 
plications due to the lack of time reversal invariance and to the necessity of solving two 
coupled Kohn-Sham equations. 

The electron density p(r) has to be normalized to the number of valence electrons 
which for neutral clusters of monovalent metals is equal to the number N of atoms: 

Writing the density in terms of single-particle wavefunctions &(r) 

p(r>= C l#i(r)12 9 

i 
(4) 

the variation of the energy.E[p] with respect to #?(r) leads to the Kohn-Sham equa- 
tions [39]: 

The kinetic and the direct Coulomb part of the total energy are unique and exactly 
known functionals for all particle numbers. The only approximations lie in the external 
potential V’(r) derived from the ionic density and the exchange-correlation functional 
Excbl .  

2.2 Jellium potential 

The external potential V, felt by the valence electrons is in general given by 
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in terms of the ionic density pJ. Different approaches are currently being investigated 
to take into account the ionic structure in the density distribution pJ. 

The molecular dynamics method (MD) by Car and Parrinello [40] is a prominent way 
to include the ionic structure by solving Newton's equations of motion for the core 
atoms. The valence electron system and its interaction with the ions are determined by 
solving the Kohn-Sham equations at each time step. This is, of course, a very time con- 
suming procedure. Furthermore, in alkali systems the delocalization of the s-electrons 
'leads to a highly pronounced isomerism of almost degenerate minima, such that find- 
ing the ground state is numerically very involved, in particular for larger systems [17]. 

In the jellium model, the ionic structure is ignored altogether and the ionic density 
assumed to be constant inside the cluster and zero outside. For spherical clusters, 
pJ(r)  is simply a step function 

with po and RI chosen such that it is normalized to N and reproduces the correct 
Wigner-Seitz radius r, of the bulk metal: 

From this, it is a trivial matter to calculate the potential Eq. (6).  For nonspherical 
clusters, the density pJ  can be taken to be a step function along a spheroidal [21] or 
any deformed surface; the potential VJ must be obtained numerically in that case. 

Although the jellium model is extremely crude with respect to the ionic charge distri- 
bution, several arguments are in favour of this simple approximation. First, the elec- 
trons at the Fermi surface, which are most important in determining the shell structure 
of finite clusters, have a de Broglie wave length which is typically three times larger 
than the average interionic distance. Second, the ionic potential - which in MD 
calculations is taken to be a more or less sophisticated pseudopotential - contributes 
only a relatively small perturbation to the delocalized s-electrons in alkali clusters. 
Finally, a finite temperature leads to a statistically averaged motion of the ions. 
Therefore the electrons only feel an averaged ionic potential inside the cluster. Even 
for zero temperature this holds because of the zero-point motion of the ions (which 
is not included in MD calculations due to the classical treatment of the ionic motion). 

Due to all these arguments, the neglect of ionic structure in the interior of a cluster 
is a rather good lowest-order approximation. Nevertheless, there exist mainly two ways 
to include ionic effects in a simple way by means of averaging procedures: 

i) Take into account the electrostatic energy difference of an ionic system with point- 
like charges and a jellium system with a homogeneous charge distribution. Utreras- 
Diaz and Shore have shown that an additional inclusion of the electron-ion interaction 
within second-order perturbation theory reveals that the surface properties of the in- 
finite metal only weakly depend on the position of the ions [41], and thus were able 
to repair the failure of the simple jellium model to reproduce the correct sign of the 
surface energy in the higher-density metals like aluminum [42]. The further develop- 
ment of these ideas led to the so-called 'stabilized jellium model' [43, 441 and more 
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recently to a ‘structure-averaged jellium model’ [45]. These models make use of a varia- 
tional principle for the Ashcroft empty-core radius r, within the framework of a li- 
quid-drop expansion of the energy functional and allow for a better reproduction of 
the empirical surface energies of all metals. Moreover, it has been shown in these 
models [43, 451 that the central jellium density pJ in finite clusters is different from 
the bulk value. 

ii) Spherical averaging of the ionic pseudopotentials (SAPS) reduces the numerical 
effort to relax the ionic configuration by reducing the spatial dimension to one. The 
so-called ‘SAPS model’ 1461 has been used by many groups; for a recent summary of 
its results we refer to Borstel et al. [47]. 

Obviously, the SAPS model does not lend itself to the study of deformation effects, 
whereas an extension of the structure-averaged jellium model to deformed clusters is 
in preparation [48]. 

We presently use, as a simple phenomenological lowest-order inclusion of ionic 
structure effects, the jellium model with a diffuse ionic density distribution [22, 25,49, 
501. Indeed, the first place where one wants to improve the jellium model - without 
sacrificing its computational simplicity - is the cluster\ surface. This is where the 
valence electrons are reflected and their motion is quantized, leading to the electronic 
shell effects. Reinhard et al. [50] proposed to fold the step-like jellium density with a 
simple Ashcroft type pseudopotential [51] in order to include in a schematic way the 
influence of the ionic potentials on the cluster surface. This leads to a diffusivity of 
the ionic density distribution of the order of the pseudopotential core radius r, [51]. 
Its effect on the results of spherical jellium calculations are beneficial [50]: it increases 
the static dipole polarizabilities and decreases the energies of collective dipole oscilla- 
tions approximately to their correct experimental average values. Furthermore it also 
improves the ‘magicity’ of the N= 40 alkali clusters, as will be further discussed in 
Sect. 3, and decreases the average ionization potentials. Thus, the surface diffusivity 
of p J  corrects several of the well-known deficiencies of the standard sharp-edged 
jellium model (see also Ref. [6]). We also point out that, although the sharp-edged 
jellium model has become quite standard and popular, we can think of no reason why, 
a priori, a smooth ionic density surface should be less physical than a step function. 

The beneficial effects of a smooth jellium surface had already been observed by 
Rubio et al. [49], who used a parametrized density profile function for p J ( r )  and 
minimized the total energy of the cluster with respect to the diffusivity parameter, and 
by Lauritsch et al. [22] who used a simple Fermi function 

Po 
1 +exp [(r-RJ)/a] 

pJ(r) = (9) 

with a fixed value a = 1 a.u. (which is close to the values found by energy minimization 
[49, 501) and RJ adjusted to conserve the number of ions. 

In the present work we shall be using a diffuse jellium density distribution which for 
spherical clusters is given by Eq. (9) and generalized to deformed cluster shapes in the 
following. We should emphasize, however, that the diffuse jellium profile is not essential 
for most of the deformation properties discussed in this article, which are mainly deter- 
mined by the overall shape of the spheroidal cluster as expressed by its axis ratio or its 
multipole moments. If we adhere to the diffuse jellium model here, it is mainly because 
of the above-mentioned improvements of experimental observables and of its numerical 
advantages in performing the Coulomb integrals over the deformed jellium density. 
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The deformation of a sharp-edged spheroid can easily be expressed by the ratio q 
of its semi-axes. Clemenger introduced a different parameter 6, to describe axial 
deformations [7], which is related to q by 

and is only useful for 6 1 4 2 .  Another definition (see, e.g., [52]) is 

(1 1) 
6 q = e  . 

Both definitions Eq. (10) and Eq. (1 1) have the same lowest-order term, i.e. q - 1 + 6, 
in their Taylor expansion for small 6. The diffuse spherical jellium density Eq. (9) can 
be generalized for spheroidal systems, such that in cylindrical coordinates (e, s) 

The factors containing powers of q ensure that the volume within the underlying sharp 
spheroid is conserved. The parameter R j  in Eq. (12) is fixed by particle number con- 
servation and replaces R, of Eq. (8). 

As an alternative, one could define the jellium density in polar coordinates by 

following [53]. Different to Eq. (12), Eq. (13) describes a surface diffusivity which is 
independent of 0 and 4. Assuming that the ionic mean field is weaker at the top of 
the spheroidal shape, the zero point motion will have a maximum amplitude in this 
region, which should be reflected in a smoother radial density profile as chosen in the 
parametrization Eq. (12). 

Since in this work the electronic system is calculated without any constraints except 
those which arise from the symmetries of the Hamiltonian, it is not surprising that the 
shape of the electron cloud differs from that of the ionic background. Thus the elec- 
tronic system cannot be sufficiently well parametrized by just one parameter such as 
q or 6, but should rather be expanded in a series of even-numbered multipole mo- 
ments Q,,, Q2, Q4, . . . . A multipole decomposition of the electronic density of Na-14 
for 0 I 1 I 6 confirms that contributions with 1 > 4 are small compared to the leading 
quadrupole and hexadecupole components (see Fig. 1 below). Thus we can expect that 
merely quadrupole and hexadecupole contributions are involved in the ground state as 
long as we restrict ourselves to spheroidal shapes of the jellium density. 

The quadrupole and hexadecupole moments of a sharp-edged spheroid can be 
calculated by formulas derived from Eq. (31) in the appendix: 
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Multipole Decomposition 

1*222 * 

Fig. 1 Na-14: Multipole 
decomposition of the electronic 
particle density for I = 0, 2, 4, 
6 in units of [a.u. -3]. Due to 
the spheroidal constraint of the 
jellium, the expansion of the 
electronic density is well-con- 
verged for 1 1 6 .  

9 
70 

Qy, = - p , : Z 7 ’ 3 q - 4 ’ 3 ( q 2 -  . 

0 4.84 9.69 14.53 19.38 
r [a. u.1 

We also get analytical expressions for the expansion coefficients p2 and p4 Eq. (37): 

q 2 + 2  3-- arccosh (4 - l )  if q< 1 

3-- q2+2 arccos (4-l) if q> 1 

m 
m 

and 
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py) = - 3 G* (3 (3 q 4  + 24q2 + 8) 9- 10(11 q + 10)) 
64 (1 -q*)' 

with 

arccosh ( q - ' )  q< 1 

F= 

Due to the fact that we use the diffuse density distribution Eq. (12), it is impossible to 
give simple relations for Qi=  2.4. In the appendix we show that, given particle number 
Z and diffusivity a, the quadrupole moment QiJ) of the diffuse and the rectangular 
jellium only differs by a constant factor. This factor can be taken from Fig. 2 in the 
particle range from 2 = 10, . . . ,70 with a = 0.8, 1 .O, 1.2 a.u. 

2.3 Solution of the Kohn-Sham equations in a deformed basis 

We solve the Kohn-Sham equations by expansion of the wave functions in a set of basis 
wave functions 

10 20 30 40 50 60 70 z 

Fig. 2 Ratio of quadrupole moments of a 
sharp-edged spheroid and a spheroid with a 
diffuse Fermi-like surface. Solid line: 
a = 1.0 a.u. (used in all calculations except 
otherwise mentioned). Dashed line: a = 1.2 
a.u. Dashed-dotted line: a = 0.8 a.u. Note 
that the ratio of the quadrupole moments is 
independent of the deformation strength 6 
for fixed particle number and a. 
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of an axially deformed harmonic oscillator potential 

with the spectrum of eigenvalues 

with n,,nz = 0,1,2, . . . and A = 0, A 1 ,  f 2, . . . . Defining the principal quantum 
number 

one can rewrite Eq. (22) following the notation of [7]: 

With I A1 = 0, one has a maximum degeneracy of 2, whereas [ A  I >O leads to a 
degeneracy of 4 (including spin degrees of freedom). The standard procedure to op- 
timize the basis system is to increase the number of basis functions in the expansion 
Eq. (20) until the difference in the total energy becomes negligible. For a detailed 
discussion of the optimization procedure we refer to the appendix. 

Since the calculation of the matrix elements in coordinate space is a very time-con- 
suming procedure, one has to use symmetry properties to spare calculation time. Ac- 
cording to [54] and [24], we stay within lefthight symmetry, axiality and time reversal 
invariance. 

In case of axial symmetry, the @-dependent part of the Schradinger equation can be 
separated because the z-projection A of the total angular momentum onto the z-axis 
remains a good quantum number. The total Hamiltonian is block diagonal, each block 
being indexed by one value of the quantum number A. 

As a further consequence of axiality, one has time reversal invariance only for j z .  
The operator j z  acting on the @-dependent part of the one-particle wave function with 
quantum number Ai gives the same result as the time-reversed operator -jz  to the 
state -Ai [54]. Therefore the corresponding eigenvalues to the quantum numbers A 
and - A for pairs of particles with antiparallel spin are degenerate. Consequently, it 
is only necessary to sum over positive values of A in Eq. (20), multiplying the result 
by 2 [54]. One has to keep in mind that this argument remains exact only for spin- 
saturated systems. 

If we demand left/right symmetry for the electronic density, the corresponding wave 
functions have either positive or negative parity. Consequently, each block of the total 
Hamiltonian separates into two subblocks, sandwiched between wave functions with 
either even or odd parity. 
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3 Static ground-state properties 

We have performed calculations for neutral sodium clusters ( Z = N )  in the range 
8 sN140.  Fig. 3 shows the total energy per electron of each cluster (with even Z), plot- 
ted versus the number Z of valence electrons. The ground-state deformations are ob- 
tained with our present diffuse jellium model using different restrictions on their shape. 
For reference, the short-dashed h e  indicates the results with imposed spherical shape. 
It exhibits the familiar minima at the “spherically-magic” numbers 8, 20 and 40. The 
solid line gives the results of the present calculations with spheroidal shapes, whereas 
the dashed-dotted line gives results obtained in the triaxial quadrupole-deformed code 
1221 in the range 8 < Z< 20. The long-dashed line finally shows the results obtained in 
semiclassical density variational calculations [55] with spherical symmetry. 

Clearly, the shell effects become less pronounced if deformed shapes are allowed in 
the model. The largest gain in binding energy is obtained in going from spherical to 
spheroidal shapes in the regions between the spherically magic clusters, as already ob- 
served by Penzar and Ekardt [21 , 241. Only very little extra energy is gained in the triax- 
ial configurations of the clusters with 2 = 12 and 16. The curve corresponding to the 
lowest symmetry is rather closely fitted on the average by the semiclassical result which, 
by construction, does not include any shell effects. 

The dips at Z = 14 and 26 can be taken as weak “deformed-magic” shell closures, 
exhibiting a locally increased binding energy of deformed clusters. Similar deformed- 
magic shells have recently been found for large clusters with N up to -800 in a 
spheroidally deformed Nilsson model [52]. Most of the corresponding dips in the total 
energy have actually been found to agree with similar structures in experimental mass 
yields [56] after a careful re-examination of the data [52]. 

Fig. 3 Total energy per particle obtained from four different calculations with the same diffuse 
jellium model. Spherical K S  Kohn-Sham resuits with imposed spherical symmetry. Spheroidal KS: 
Kohn-Sham results of the present spheroidal jellium model. Triaxial quadrupole KS: Kohn-Sham 
results for triaxially quadrupole-deformed shapes after 1221. Semiclassical: Semiclassical density 
variational results using the extended Thomas-Fermi model [55]. Triangles indicate the calculated 
clusters; the various lines are interpolations. 
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Fig. 4 Deformation dependence of E,,,. All curves are scaled by a factor [2-4's] to fit into one 
plot. The deformation parameter is defined as = log q. The upper isolated crosses on the left part 
are taken from analogous spherical Kohn-Sham calculations for Na-10 and Na-12. Dashed lines lead 
to the corresponding spherical Kohn-Sham values. As the values obtained from spherical calculations 
fit very well into the plot, the results can be regarded as well-converged. 

3. I Potential energy curves 

In Fig. 4 the tota1 energy Etor/ZY5 is plotted versus the deformation parameter 6 
defined in Eq. (11). The dashed lines interpolate to the energies which were obtained 
with the spherical code of Ref. [I31 and represented by the points at 6 = 0. (The 
isolated sphericai points in the upper left correspond to Na-lO and Na-12.) 

Our calculations have been performed with a total number of main shells No = 12 
for Na-8 to Na-20 on a 32 x 32 mesh, No = 14 for Na-22 to Na-34 with 64 x 64 mesh 
points, and up to Na-40 for No = 16 on the same mesh. 

Na-8, Na-20 and Na-40 each reveal spherical shell closures, in accordance with [17], 
[24], 1521 and [7]. The electronic shell closure is confirmed by MD calculations [I71 for 
Na-8 and Na-20. However, the ionic structure was found asymmetrical, which suggests 
that the electronic behaviour is not very sensitive to the position of the ions. For Na-8, 
a prolate isomer can be seen in Fig. 4. Oblate-to-prolate transitions occur between 
Na-12/Na-14 and Na-30/Na-32, respectively. The smaI1 difference in energy, however, 
makes it difficult to determine the exact particle number at which the transitions exact- 
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ly take place, since the energy difference of prolate and oblate isomers slightly depends 
on assumptions concerning the details of the potential, e.g. the choice of the diffusivity 
in the definition of V,(z,e), which implies an angular dependence d ( Q )  in our 
calculations different to, e.g., the definition in [22]. Nevertheless, comparing the 
results with those of [24] and [52], prolate-to-oblate transitions are kept at about the 
same particle number in all three models. The absolute value of the deformation 
strength 6 increases from Na-10 to Na-14. When the d-level is about half-filled at 
2 = 14, the deformation is maximum. After Na-14, the distance to the next spherical 
configuration is decreasing and the minima are moving closer to the spherical point at 
6 = 0. The scheme is repeated from Na-22 until the second deformed shell closure ap- 
pears at Na-26 (also see Fig. 3). Continuing with Na-26, there is also a tendency to de- 
crease the deformation strength until the second prolate-to-oblate transition takes place 
at Na-30/Na-32, when the electronic configuration changes to the oblate side. 

Na-36 slightly favours a prolate deformation with two oblate neighbours. From the 
near-degeneracy we conclude that Na-36 is triaxially deformed. The situation is similar 
to the case of Na-16, which also immediately follows a spheroidal shell closure. Na-16 
has already been calculated by [57] and found triaxial, having a negative quadruple 
moment. 

It is interesting to note that for Na-I8 s-d hybridization was also seen in MD calcula- 
tions [17]. As already illustrated by the corresponding level scheme, orbital mixing (s-d 
hybridization) is responsible for the non-sphericity of Na-18, and, of course, for Na-34 
(f-p hybridization). 

3.2 Role of higher rnultipolarities 

We have constructed the jellium density as a spheroid with a diffuse surface. Hereby, 
its multipole moments Qf) and Q f )  have a pre-fixed relation. On the other hand, we 
did not impose any constraints upon the electronic density except those which are built 
into the basis (i.e., left-right, time reversal and axial symmetry). Thus, the electrons 
are free to choose the even multipolarity moments Qf) ,  QP), etc. which minimize 
their energy. The influence of higher multipolarities on the total energy can be studied 
qualitatively by comparing the different multipolarities of the jellium and electronic 
density. 

The effect of the multipole moments Q#, Q@ and Qg on the total energy was 
investigated in Ref. [58] in a phenomenological model where a Woods-Saxon potential, 
fitted to selfconsistent spherical Kohn-Sham potentials, was adapted to deformed 
shapes. In this model, octupole deformations become prominent in the vicinity of 
spherical shell closures, e.g. for 2>40. From these results one could argue that, for- 
mally speaking, the total energetic minimum should be determined by variation of 
energy within a multidimensional deformation space. Solving this problem selfcon- 
sistently, however, would require a tremendous numerical effort. Nevertheless, the 
deviation of some electronic multipolarities Qf), Q f )  from those of the jellium 
background allows one to judge whether the true deformed minimum has been ob- 
tained or not - if the electronic system does.not prefer further asymmetries. 

Fig. 3 shows the dependence of the total energy per particle on the symmetries in- 
volved. Obviously, the spherical Kohn-Sham calculation [SO] is worst when the clusters 
have triaxial shape, such as, e.g., Na-12 and Na-16 which have been found to be triaxial 
(in [22] and [57]). On the other hand, triaxial corrections to the total energy appear 
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to be small in magnitude compared with the energy gain obtained with spheroidal 
deformations, as long as only quadrupole deformations QZ, (m = 0, k2)  with con- 
served lefthight symmetry are concerned. The small cusp between Na-34 and Na-38 
gives an idea of the magnitude of the triaxial corrections for larger clusters. 

3.2.1 Q2 Systematics for 8 5 2 ~ 4 0  

Table 1 shows the systematics of equilibrium deformations 6 of axial clusters in the 
region 8 5 2s 40, obtained in the present work (column “diffuse je11.”) and in calcula- 
tions with related models (columns b, c, d). Column a) indicates the shapes deduced 
from a recent analysis of collective resonances observed in photoabsorption ex- 
periments [59]. 

Different jellium shapes can lead to different quadrupole moments for equally 
chosen 6. In particular, the quadrupole moment of a volume-conserved spheroid with 
a diffuse surface is smaller than that of the corresponding sharp-edged spheroid. This 
should be taken into consideration when comparing the values of 6 from different 
models. Therefore their precise values should not be taken too literally. The general 
systematics, however, are found to agree well between the different models. Also, com- 
paring to the analysis of Ref. [59], we see that the predicted shape transitions in Tab. 1 
are in good accordance with the experimental ones. It is quite astonishing that already 
the simple ellipsoidal model [23] seems to predict correctly the triaxiality of Na-36. 

Table 1 Systematics of equilibrium deformations 6 and shape transitions (Values of 6 in brackets 
refer to the energetically higher isomer.) 

z a) diffuse jell. shape b) c) d) 

- 8 
10 
12 
14 
16 0 
18 0 

20 S 

22 P 
24 P 
26 P 
28 C 

30 C 

32 0 

34 0 
36 0 
38 0 

40 S 

- 
- 
- 

0 
(-0.29), 0.46 
(-0.42), 0.45 
-0.54, (0.44) 
-0.35. (0.26) 
- 0.22 
0 

(-0.14). 0.23 
(-0.23). 0.32 
(-0.31), 0.39 
(-0.35). 0.35 
(-0.35). 0.32 
-0.30, (0.46) 
-0.26, (0.05) 
(-0.15), 0.10 
-0.11, (0.05) 
0 

0 
0.44 
t 

- 0.50 
t 

- 0.24 
0 
0.25 
t 
0.39 
t 
t 
t 

- 0.3 1 
t 

-0.13 
0 

0 
0.48 

-0.56 
- 
- 0.17 
0 
0.22 

0.37 
- 

- 
- 
-0.18 
- 
- 0.09 
0 

- 
(-0.30). 0.35 
- 0.45, (0.40) 
-0.30, (0.35) 
-0.35, (0.65) 
-0.20, (0.50) 
0 

(-0.15). 0.20 
(-0.25), 0.30 
(-0.60), 0.35 
(-0.40), 0.35 
(-0.33, 0.30 

(-0.30), 0.20 
-0.30, (0.30) 

( - 0.10). 0.10 
-0.40, (0.60) 
0 

a) Experimental shapes obtained from collective resonances 1591 
b) Triaxial harmonic oscillator model [23]. 
c) Selfconsistent spheroidal model [24]. 
d) Schematic model with potential according to Eq. (9) (unpublished). 
(s = spherical, o = oblate, p = prolate, t = triaxial, d = nearly degenerate isomers, c = coexisting 
shapes). 
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Q, moments 

particle number 2 
Fig. 5 Quadrupole moments of electrons Qf) (crosses, dashed line) and ions QY) (plus-signs, con- 
tinuous line) (in units of +r:ZS”, which is the size-dependent part of the corresponding quadrupole 
moment of the spheroid Eq.(16)), versus particle number Z. Shape transitions take place at 
Z = 12 - 14 (prolate-oblate), Z = 18 - 20 - 22 (oblate-spherical-prolate), and Z = 30 - 32 (prolate- 
oblate). 
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Fig. 6 Quadrupole deformations of the jellium and the electronic system for Na-10, Na-14 and 
Na-18, plotted in the dimensionless units of Fig. 5 .  Continuous line: Na-14. Dashed line: Na-10. 
Dashed-dotted line: Na-18. 
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Fig. 7 Electronic hexadecupole moment Qr) versus the ionic quadrupole moment Qy) for Na-10, 
Na-14 and Na-18 (we refer to the analogous Q4 value of the heroid Eq. (16) for the definition of 
the dimensionless units [const. r:Z7’3], with const. = 9/(706. Continuous line: Na-14. Dashed 
line: Na-10. Dashed-dotted line: Na-18. Note that Na-14 tries to  conserve an intrinsic electronic hex- 
adecupole moment in the ground state. 

3.2.2 QY) versus QY) 
Fig. 5 shows the electronic and ionic quadrupole moments Q f )  and Qy), respectively, 
of sodium clusters with 8 5 Z I  40 at their prolate and oblate (or spherical) equilibrium 
deformations. The overlap of the two curves indicates that the clusters at the equilib- 
rium deformations have almost equal shapes of electrons and ions, as long as no other 
ionic multipolarities are considered. For small deviations from the equilibrium defor- 
mations, the dependence of Qf) on QY)  is found to be linear, as shown in Fig. 6 for 
the three clusters Na-10, Na-14 and Na-18. For the strongly deformed Na-10, we see 
that there is an over-proportional increase of IQf’I in the vicinity of the spherical 
point: the electronic system tries to conserve the deformed shape as Q f )  vanishes. 

Although one observes only small differences between Q f )  and Qf), it becomes ob- 
vious (see Fig. 7 below) that these differences become stronger when finite hex- 
adecupole moments evolve. 

3.2.3 Q f )  versus Qf)  

For some particular clusters, the hexadecupole degree of freedom has been found to 
play a major role. In Fig. 7 we present the electronic hexadecupole moment Q f )  as a 
function of Qy) for the same three clusters as in Fig. 6 .  The relation is far from being 
linear here: we learn from Fig. 7 that the prolate isomer of Na-10 tries to conserve a 
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Fig. 8 Total energy of Na-14 and 
Na-12. Continuous line: triaxial 
calculation with QY) only (see 
Ref. [22] for details). Dushed line: 
axial calculation with Qy) # 0. Dif- 
ferences in the total energy are 
related to the influence of an elec- 
tronic hexadecupole moment. 

finite Q!/) moment, whereas Na-14 conserves a Q f )  moment on the oblate side. We 
can also see that for the deformed minima of Na-10 and Na-14, where the differences 
between the quadrupole moments of electrons and ions are largest (see Fig. S), the elec- 
trons have developed a considerable nonzero hexadecupole moment. 

The role of the electronic hexadecupole moment of Na-14 also explains the 
discrepancy of some earlier results obtained by Lauritsch et al. [22] in two slightly dif- 
ferent models. In Fig. 8, we show their deformation energies for Na-12 and Na-14, 
plotted against the jellium deformation parameter The curves labeled 2D were an- 
ticipated from our present calculations with the two-dimensional axial code, whereas 
the three-dimensional (3 D) results were obtained in triaxial calculations for quadrupole 
shapes in the Hill-Wheeler parametrization @, 7). In these 3 D calculations, which con- 
firm that Na-14 stays axial at both minima (in contrast to Na-12, whose ground state 
has a triaxial shape), the jellium density profile was defined similarly to Eq. (12) with 

For the definition of /3Y), see Eq. (37). 
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particle number 2 
Fig. 9 Hexadecupole moments for 8 $2540 (in dimensionless units according to Fig. 7 ) .  Dashed 
lines, crosses: QV). Conrinuous lines, pius-signs: Qf). Different hexadecupole moments reveal a 
strong Q,-dependence of the ground state. 

the same a = 1.0 a.u. However, the expansion coefficients in Eq. (14) were adapted 
such that Qy) = 0. As a consequence, the missing Qf)  moment for the oblate isomer 
of Na-14 in the triaxial calculation implies a bad overlap of the electronic and the 
jellium density. The prolate isomer, on the other hand, prefers a quadrupole deforma- 
tion with a small Q f )  (see Fig. 7), which worsens the overlap in the 2D result because 
of the nonvanishing ,Qf) of the parametrization Eq. (12). 

The systematics of hexadecupole moments are shown in Fig. 9. Electronic and ionic 
hexadecupole moments are substantially different at the particle numbers 2 = 12, 14, 
22, 26,28, 30 and 36. The strongly differing hexadecupole moments of Na-36 for both 
isomers suggest that this cluster has a triaxial shape. 



354 Ann. Physik 3 (1994) 

-2.02 

! 
! 

* ! 

Na14 

n 

2 
u -2.05 
0 w- 

-2.07 

u.4 u.0 u.8 1.0 1.7 1.4 1.6 1.8 2.0 
Q 

Fig. 10 Na-14: PES curves for three different values of a.  Thin continuous line, circles: a = 0.70 
a.u. Thick continuous line, rhombi: a = 0.80 a.u. Dashed-dotted line, squares: a = 1.00 a.u. Ab- 
solute values of q are stable within parts of percentages. Vertical positions of the total energy are only 
shifted by varying a. 

We conclude that, as a consequence of these variations in the hexadecupole 
moments, an explicit variation of the shape of the jellium density in the two-dimen- 
sional deformation space (pZ,p4) of the expansion Eq. (13) should be performed in 
order to improve the shape systematics. Work along these lines is in progress [48]. 

3.3 Influence of surface diffusivity a 

In order to investigate to which extent the surface diffusivity a of the jeflium density 
affects the equilibrium deformations and their relative energies, we have calculated 
some PES curves for various values of a.  In Fig. 10 we present the results for the well- 
deformed cluster Na-14 for the values a = 0.60, 0.80 and 1.0 a.u. We observe that the 
only effect of this variation is a constant shift in total energy, whereas the deformations 
of the oblate and prolate isomers are unaffected within the numerical precision of the 
results. It situation was confirmed in other cases with either well-developed static 
deformations or a pronounced spherically-magic configuration. It means that 
whenever the electronic single-particle level density has a pronounced minimum at the 
Fermi energy, leading to a local minimum of the total energy and thus an enhanced 
stability of the cluster, the solutions are also stable with respect to small changes of 
the ionic potential such as those caused by the variation of a. 
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Fig. 11 Deformation dependence of selfconsistent Kohn-Sham levels for Na-34. The 1 f-shell is 
closed. Note that ld/ls and lf/2p levels are close enough to mix. Levels are classified following the 
convention of Clemenger using Nilsson's asymptotic quantum numbers. 

In intermediate situations, e.g. for Na-34 where there is a strong interaction between 
the highest occupied (HOMO) and the lowest unoccupied (LUMO) level, the variation 
of a can have larger effects, as will be discussed in the next paragraph. 

3.4 Kohn-Sham levels 

The influence of deformation on the selfconsistent single-particle levels is illustrated in 
Fig. 11. The steepness of a considered level E, can be taken4 as a measure of the 
quadrupole expectation value of the corresponding single-particle wavefunction [60] : 

In first order of the deformation 6. 
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1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1  
-0.12 (a) Molecular Dynamics 

(b) Spheroidal Model 

1 1 1 ~ 1 ~ 1 ~ 1 1 1 1 1  

-0.12 (c )  Triaxial Model 

Fig. 12 Kohn-Sham levels for 2 = 8 
to 20. (a) MD calculations by [17], 
(b) spheroidal model by [24]; (c) dif- 
fuse jellium model. 

From this we see that prolate deformations give a positive quadrupole moment, 
whereas'oblate deformations are connected with a negative value of Q2. Levels which 
are going down with deformation (considered from oblate to prolate shapes) have a 
positive (prolate-like) Q2 value, uprising levefs have a negative (oblate-like) Q2 vaIue. 

It is interesting to compare the selfconsistent Kohn-Sham levels with the correspond- 
ing level schemes which have been derived from modified Nilsson Hamiltonians. 

Clemenger [7] proposed a simplified Nilsson-model for alkali clusters without spin- 
orbit coupling. Reimann et al. [52] fitted the Nilsson Hamiltonian to the selfconsistent 
spherical spectrum, thus keeping some selfconsistency to the results. Although the 
schematic results are in quite good qualitative agreement, they certainly cannot re- 
produce the effects of selfconsistency, e.g. the fact that i32&a/i3/32 changes its sign for 
some levels in the selfconsistent calculation. 

The deformation-dependent interaction of the different levels with the jellium can 
be illustrated, e.g., with the behaviour of the 1d-levels. 
- Levels with small angular quantum numbers I A I are closer to the z-axis [60]. These 

levels are favouring the prolate deformation of the jellium, since they have a posi- 



Th. Hirschmann et al., Spheroidally deformed sodium clusters 3 57 

tive Q2 moment. On the other hand, levels with high angular momentum prefer 
oblate shapes, and they are shifted upwards with increasing prolate deformation. 

- Levels with quantum numbers (2,0,0), (2,2,0), (2,0,2) and (2,1,1) emerge from the 
spherical 1 d-level which is five-fold degenerate (without spin). In the case of Na-18, 
when each 1 d-level is populated, this degeneracy is split into three branches, with 
doubly degenerate levels for 1 A I > 0. 

- The (2,0,0) level interacts with the level from the 2s level which has the same sym- 
metry. The interaction shifts this level downwards, being responsible for the non- 
sphericity of Na-18. 

The same situation appears in the 1 f/2p region around Na-34 which has a closed 
f-shell. The deformed levels (3,2,1) and (3,1,0) interact with levels of the same sym- 
metry in the 2p-shell. This hybridization leads to a static oblate deformation of Na-34, 
in spite of its filled f-shell. The effect becomes even more pronounced in the diffuse 
jellium model, because the diffuseness smoothes the potential, shifting levels with 
higher I ,  upwards and levels with lower 1, downwards. As a result, the interaction be- 
tween these levels increases, and the resulting deformation is also increased by an 
amount that depends on the value of the diffuseness parameter a. 

Note that Na-34 is a notorious case in the standard spherical jellium model with 
sharp edge: it has a stronger “magic” single-particle (HOMO-LUMO) gap than Na-40, 
contrary to what is known from the experimental mass abundances (see also Refs. [5 ,  
61). The introduction of a smooth jellium surface, shifting the 1 f and 2p levels closer 
together, improves this situation, as was observed already by Rubio et al. [49], making 
Na-34 less magic and Na-40 more magic. 

The Kohn-Sham spectrum of sodium clusters with particle number 8, 10, 11, 13, 18 
and 20 obtained by MD calculations of [I71 has been compared with the spectrum of 
the sharp-edged jellium model [24] in [17]. Comparing our results in Fig. 12 with triax- 
ial results calculated by Lauritsch et al. [22] for Na-12 and Na-14, we find an 
astonishing agreement with the results of the MD calculations: 1 s, 1 p and I d levels 
are almost equally aligned with respect to each other. I d and I p levels exhibit a near- 
degeneracy at the spherical shell closure at Z = 20, whereas the 1 p level is slightly split- 
ted at Z =  8 in the MD calc~lation.~ Extrapolating the data of Na-13 of [17] to the 
first axial subshell closure at Z = 14, one observes that the 1 p and 1 d levels are in good 
quantitative agreement with the MD results. 

At 2 = 14, I p levels show a significant level-bunching in the immediate vicinity of 
a deformed subshell closure. In this model, where lefthight symmetry forbids non- 
vanishing matrix elements between states of different parity, the interaction of these 
levels is excluded (Fig. 11). 

However, a small gap between I d and 1 p levels can lead to a mixing of these levels, 
if one allows for a static octupole plus quadrupole deformation, which can occur if one 
introduces a (Q3 + Q2)-adapted jellium density. It has been shown by Hamamoto et 
al. [61] that octupole instabilities in typically quadrupole-deformed regions are a rather 
general feature of finite fermion systems. It leads to shell effects of comparable impor- 
tance to those induced by nonaxial quadrupole deformations. Further investigations 
which break lefthight symmetries are the subject of current work. 

One has to keep in mind, however, that this small cluster is almost beyond description in the simple 
jeilium model. 
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3.5 Densities and Kohn-Sham potentials 

MD Kohn-Sham and jellium 
Kohn-Sham potential. Con- 
tinuous line: spheroidally 
deformed jellium model. 
Dashed line: MD calculation 
by [17]. The gross structure 
of the potential is well con- 
served in the jellium calcula- 

A crucial question which affects the applicability of the jellium is still at stake: Do the 
different selfconsistent KS potentials of the jellium model and the KS potentials ob- 
tained by MD calculations lead to comparable electronic densities? In Fig. 13 we com- 
pare the spherically averaged total KS potentials of Na-10 and Na-20 obtained by Rath- 
lisberger and Andreoni [17] with the results of the diffuse jellium model. In both cal- 
culations, exchange and correlation effects have been taken into account by the same 
functional of [26] in LDA. The mean radial position of the ions is well resolved in MD 
calculations because of the microscopic treatment of the ionic influence by pseudo- 
potentials. However, the average trend of the potential is fairly well reproduced by the 
jellium model. For larger clusters like Na-20 (which still is a small cluster in the jellium 
model) the oscillations of the ions decrease relatively to the depth of the potential. 

The corresponding spherically averaged electronic densities of the MD results, ob- 
tained at different temperatures, are given on the left-hand side of Fig. 14, whereas the 
right-hand side exhibits the present jellium model results. Since here the structure of 
the ions is completely neglected, it is not surprising that the MD densities at the higher 
temperatures, where the ionic structure is smeared out, resemble the density distribu- 
tions of the jellium model more than at zero temperature. 

4 Collective excitations 

Photo-absorption cross-sections of charged sodium clusters reveal resonances similar 
to the giant isovector El resonances of nuclei [62,631 which are excited by y-radiation 
and consist of collective dipole oscillations of neutrons against protons. In metal 
clusters, these resonances can be understood as collective dipole oscillations of the elec- 
trons with respect to the ions. If the diameter of the cluster is much smaller than the 
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Fig. 14 Spherically averaged densities obtained from (a) MD calculations and (b) the deformed 
jellium modef. The nodal structures of the density distributions of both methods are very similar. 

wavelength of the incident light, the electrons are shifted from their equilibrium posi- 
tion along the symmetry axes by the momentum transfer of the dipole component of 
an incident light beam, and a collective resonance is excited. As the charged ionic 
background has a much higher mass than the electronic system, it does not respond 
to the electronic translation within the time scale of the electrons. 

To lowest order, the restoring force of such a dipole oscillation is coming from the 
electron-ion interaction which leads to a purely translational mode with conserved elec- 
tron density. (This corresponds to the Goldhaber-Teller mode proposed for nuclei 
[63].) Classically, this mode leads to the so-called “surface plasmon” or “Mie plas- 
mon” of a metal sphere; in fact, the classical theory of its dynamic polarizability 
predicts a single dipole resonance at the so-called Mie frequency: 

The kinetic and Coulomb energies of the electrons (including exchange and correla- 
tions) contribute to the dipole restoring forces only if the electronic density is allowed 
to be locally compressed or decompressed. This leads to “volume plasmon” modes 
whose macroscopic limit is the bulk plasma frequency o&,fk. Although an external 
dipole field does not couple directly to these volume oscillations, their coupling to the 
surface modes affects the main dipole resonance by giving it an extra red-shift and 
reducing its collectivity [6, 551. 

Microscopically, the dipole resonances can be decomposed into 1 p-1 h excitations, 
whose coherent superposition may lead to one excited state which exhausts a large part 
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of the dipole sum rule and thus contains most of the collectivity. Indeed, the quantum- 
mechanical dipole absorption cross sections of spherical alkali clusters, obtained by 
jellium calculations in linear response theory (in TDLDA [64] or RPA [37, 65, 66]), 
exhibit a dominant peak which exhausts some 75 - 90% of the dipole sum rule, and 
is red-shifted by 10-20% with respect to the Mie formula (Eq. (26)). Since the centroid 
of the RPA strength distribution goes towards the Mie result in the limit of a 
macroscopic metal sphere [55 ] ,  the red-shift in finite clusters can be related to the 
“spill-out” of the electronic wave functions over the jellium edge: screening effects and 
the absence of positive charge lead to a decrease of the restoring forces for the electrons 
at the surface of the cluster, shifting the resonance peaks down to lower frequencies. 

It is evident that a detailed description of photoabsorption cross sections can only 
be made in a microscopic theory, such as the TDLDA or RPA methods just mentioned 
- in particular when a fragmentation of the collective strength into several states can 
be found, which results from interferences of specific particle-hole states with the col- 
lective “Mie plasmon”. However, the gross structure of the dipole resonances, in par- 
ticular their size and shape dependence, is well described by simple sum rule techniques 
(see, e.g., Ref. [6]) .  

A sum rule is defined as a sum of transition probabilities from the ground state 10) 
to the excited states I n), weighted with powers of the transition energy h w, = E,, - E,: 

where Q is the transition operator. Bohigas et al. I671 have shown that an upper limit 
of the mean energy of a collective state is given in terms of the moments mi and m3 
by the energy E3 defined as: 

For pure surface oscillations in the direction of the symmetry axis z and in the orthogo- 
nal direction @, the excitation operators are the z- and @-components of the dipole 
operator D, respectively. For these simple operators, the moments mi and m3 are par- 
ticularly easy to evaluate and become [S]: 

The above relations are the so-called simple “sum rule estimates” of the peak posi- 
tions of the dipole resonances. In the macroscopic limit, the energy E3 obtained from 
the RPA moments mi and m3 has been shown to go to the classical Mie frequency of 
the surface plasmon [ S S ] .  We are using these relations below to calculate the resonance 
energies in deformed clusters. In spherical clusters, we know that the excitation 
energies obtained in this approximation are too high by 10- 15% due to the neglect 
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Table2 Energies of collective dipole resonances in the E3 sum rule approximation (Values in 
brackets correspond to the isomers with higher energy) 

~ ~ 

2 oblate isomer prolate isomer 

h o ,  [RYl hw, [RYI Am, [Ryl h w ,  [RYl 

8 0.204 
10 (0.242) (0.203) 0.168 0.223 
12 (0.257) (0.205) 0.171 0.226 
14 0.254 0.186 (0.174) (0.228) 
16 0.242 0.197 (0.192) (0.224) 
18 0.234 0.205 - - 
20 0.216 
22 (0.229) (0.239) 0.194 0.224 
24 (0.238) (0.210) 0.190 0.239 
26 (0.246) (0.206) 0.184 0.238 
28 (0.250) (0.203) 0.191 0.239 
30 (0.251) (0.204) 0.192 0.231 
32 0.246 0.205 (0.180) (0.240) 
34 0.247 0.208 (0.2 19) (0.225) 
36 (0.236) (0.216) (0.215) (0.228) 
38 0.233 0,241 (0.219) (0.223) 
40 0.224 

Left columns: dipole mode along the z-axis; 
Right columns: dipole mode in e direction (doubly degenerate). 

of the coupling to the volume modes [6,55,68]. A more refined extension of these sum- 
rule estimates, which allows to include the volume modes and their coupling to the sur- 
face modes, consists in the choice of a basis set of local excitation operators and solving 
the secular equation describing the coupled system of oscillators [SS ,  691. This method 
can be based on a variational principle for the energy E3, from which the RPA equa- 
tions can be gained in principle, and thus has been termed the “local RPA” method 
[6, 50, 681. The extension of the local RPA formalism to deformed clusters is in pro- 
gress and will be studied in a forthcoming publication [70]. 

In Table 2 we present the results for the pure surface excitations E3 for Na-8 to 
Na-40. In the triaxial case the dipole resonance splits into three equally weighted parts. 
If only axial deformations are involved, oscillations in the p direction (perpendicular 
to the symmetry axis) become degenerate, having double weight compared to the ex- 
citation in the z direction. Recent experimental evidence for a splitting of the main peak 
in Na-8 and Na-20 is beyond the simple local-RPA picture. In addition, although ex- 
perimental evidence suggests that the dipole sum rule is widely exhausted, it has to be 
proven for each cluster that the collective excitation does not coincide with regions 
where the collective strength is fragmented by many different 1 p-1 h transitions. 

The systematics of surface dipole plasmons is shown in Fig. 15. Following Selby et 
al. [23], the plasmon peaks are artificially broadened 
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Fig. 15 Surface plasmons for Na-8 to Na-40. Transitions take place at particle number 12/14, 
18/20/22 and 30/32. As higher peaks are a result of a two-fold degeneracy of the modes in the x/y 
plane, the oblate modes can easily be distinguished. Oblate clusters: haL <tto,. Prolate clusters: 
hw,>tiw,. 

The phenomenological width Tv = 0.15 Ao, illustrates the difficulty to resolve the 
plasmon peaks for clusters with small deformation. The third prolate-to-oblate transi- 
tion at Na-30 lies very close to the experimental results. Near Na-28, Pedersen et al. 
[59] see some co-existing shapes. A close look at the potential energy curves Fig. 4 
reveals that the differences in the ground state energies between oblate and prolate 
isomers have a minimum at Na-30 and Na-32. In these cases, the plasmon signals of 
oblate and prolate isomers have to be superposed. The plasmon plot of Na-36 was 
omitted because Na-36 does not follow the systematics within axial symmetliy due to 
the reasons mentioned further above. 

Although the cross sections shown in Fig. 15 are obtained in a highly schematic man- 
ner and their widths are put in by hand, they illustrate the close agreement between the 
deformation systematics obtained in our present static calculations and that found in 
the analysis of Pedersen et al. [59] of their experimental photoabsorption data. 

5 Conclusions 

Until now, the jellium model has remained the only tool for a systematic microscopic 
treatment of the valence electron system of metal clusters with Z> 20. The agreement 
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of its results with experimental data is encouraging, especially as far as the occurrence 
of peaks in cluster mass spectra and the deformation systematics extracted from the 
collective resonances in photoabsorption spectra is concerned. 

However, the description of the cluster shape by spheroids or ellipsoids is too restric- 
tive. As we have shown, higher than quadrupole multipolarities of the electronic densi- 
ty are important for the detailed balance between prolate and oblate shape isomers. 
Therefore, also in the description of the jellium density, these moments must be includ- 
ed in a more flexible way. This will be taken into consideration in future work. Giving 
up the leftlright symmetry, i.e. including odd-parity multipolarities, should also be 
seriously considered in a systematic study of cluster shapes. 

The neglect of the ionic structure is the most serious limitation of the simple jellium 
model. Ab-initio all-electron calculations by BonaZiOKoutecky et al. [71] have shown 
that the explicit treatment of the ionic structure leads to a much more quantitative 
description of the dipole response of small clusters with N s 2 0 .  

As a minimal phenomenological correction to reflect the ionic structure at least in 
the cluster surface, we have used a diffuse surface of the jellium density which is al- 
ready well-known to improve the electronic dipole response [49, 501. As far as the static 
deformation properties are concerned which we have studied in the present work, we 
find that the diffuse jellium surface in most cases has little effect on the equilibrium 
deformations. As shown in Tab. 1, our ground-state deformations 6 obtained in the 
mass region 8 <N< 40 are practically identical, considering the overall uncertainties of 
the determination, with those of Ekardt and Penzar [24] who used the standard sharp- 
surface jellium model with spheroidal deformation. One exception is given by Na-34, 
where a diffuse jellium surface has already earlier been observed to reduce the HOMO- 
LUMO energy gap, thus shifting the situation in favour of the experimental situation, 
and where we find it here to lead to a somewhat larger oblate deformation than in the 
sharp-surface jellium model. 

In order to establish a relation to the experimentally observed collective resonances 
(‘plasmon peaks’) in photoabsorption spectra, we have here used the most simple RPA 
sum-rule approach. However, collective excitation mechanisms can only be studied in 
detail using the single-particle wave functions obtained by selfconsistent calculations. 
This is a strong limitation of all schematic approaches, regardless how successful these 
models are in the correct description of the static shell structure. It has already been 
shown in spherical jellium model calculations that a considerable improvement over the 
simple surface plasmon model can be obtained in the time-dependent LDA (TDLDA) 
[64] and the random phase (RPA) [65, 721 schemes. Hartree-Fock plus RPA calcula- 
tions by Guet et al. [73] within the jellium model confirm these results. 

The only microscopic dipole response calculation in the deformed jellium model so 
far has been done by Ekardt and Penzar [74]; due to its numerical complexity, it was 
only done for one small cluster (Na-10). An approximate RPA treatment using localiz- 
ed collective currents (‘local RPA’) has been shown [68] to reproduce the leading 
moments of the fully microscopic RPA strength function of spherical clusters. The 
‘local RPA’ scheme based on the selfconsistent deformed ground state densities ob- 
tained in the present model could therefore become an economic method for in- 
vestigating the collective excitations of deformed clusters more quantitatively. 
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A Spheroidal deformation parameters 

With the definition of the quadrupole and hexadecupole operators (n = (2,4]) 

O n  = rn yno 

and the volume-conserved deformation q = es of a spheroid 

4/3+-2/3 e2 = R~ = rSz1I3 z2 
4 

(rs being the Wigner-Seitz radius) the quadrupole and hexadecupole moments 

Q% = 5 d 3 r o n p J ( r )  (31) 

of the sharp-edged spheroid 

p ~ f q - ~ / ~ z ~ + q  213 @ 2 s R o  

0 vq -413z2 + q2I3e > Ro 
P J k ,  @) = 

can be calculated in cylindrical coordinates (y, e): 

Q $ $ = - G r , Z  1 4 7/3 q -4/3 (q 2 -  1)2 . 
70 

(33) 

The integration Eq. (31) cannot be performed analytically if the spheroid has a diffuse 
surface according to Eq. (13), but a simple substitution of the radial integration vari- 
able r reveals that the deformation dependence of the radial part of the integral Eq. (31) 
can be put into a constant factor, such that the whole integral becomes independent 
of q. Fig. 2 gives a survey of the ratios of quadrupole moments for selected values of 
a. The expansion coefficients of the radial harmonic expansion of the spheroid 

can be found inserting the exact angular dependency of the radius of the spheroid 

135) 
~ ~ q ~ / ~  

1/(i -q2)  c0s2 e+q2  
r (8)  = 

into the projection 
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bo, which is defined in [53], ensures that the volume is conserved. Again we obtain 
analytical expressions for the expansion coefficients p2 and p4 

and 

3 
64 (1-q2)2 

,8$? = - 1/;;z (3 (3 q4 + 24q2 + 8) 8- 10( 1 1 q2 + 10)) 

with 

L 
arccosh ( q - ’ )  qcl 

arccos(q-’) q > i  . 2 (39) 

Note that p2 is different from the definition in Ref. [22]. If one only considers the 
volume and quadrupole term in the expansion Eq. (13), the axis ratio is given by [60]: 

(4-1) if q > l  

(1-q) if q < l  

This partly explains the small discrepancy in the position of the equilibrium deforma- 
tions of Na-12 and Na-14 in [22]. 

B Technical remarks 

In order to calculate wave functions and matrix elements of a deformed cluster, we in- 
troduce oscillator constants 

and transform onto a mesh with dimensionless coordinates 
I 

4 = z/304-”3 and q = ~ ’ & q ‘ ’ ~  , with 

Note that the level spectrum of the axially deformed harmonic oscillator scales with 
the deformation parameter q b  defined by 
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Choosing this scaling procedure, volume conservation is approximately preserved by 
construction. For the deformation parameter of the basis system we chose q), = q, 
which allows an optimized selection of the basis levels within a deformation-dependent 
cut-off in the expansion Eq. (20), e.g., for prolate configurations levels with large n, 
and small n, and 1A1 have been selected, whereas the total number of levels was 
fixed. 

Selfconsistent calculations of deformed Coulomb systems still demand some effort 
with regard to numerical details. On the one hand, long range contributions of the non- 
local Hartree term can cause severe errors if the mesh size is chosen too small. As we 
already know from special calculations, there are large cancellations of the Coulomb 
contributions due to the spherical features of the jellium model, which demand rela- 
tively high numerical precision in the calculation of the Coulomb interaction. In fact, 
we had to extend the mesh size until the condition 

$ A,p(r)d3r = 0 (44) 

was approximately satisfied. Another criterion for the precision of the Coulomb in- 
tegration is given by 

Most of the binding is attributed to exchange and correlation effects which are small 
in magnitude compared with e.g. the electron-jellium interaction. Thus the Coulomb 
integrations have to be performed with care. On the other hand, computation time for 
the Hartree and jellium interaction parts increases rapidly if the mesh is enlarged. 
Calculations have been performed with a total number of main shells No= 12 for 
Na-8 to Na-20 on a 32 x 32 mesh, NO = 14 for Na-22 to Na-34 on an 64 x 64 mesh, and 
up to Na40 for No = 16 on the same mesh. 

As all integrals have been calculated using Gauss-Hermite and Gauss-Laguerre 
quadrature formulas according to [54], any extension of the mesh is inevitably linked 
with an increase of the number of mesh points. Thus the calculation of the Hartree con- 
tributions in coordinate space becomes inefficient as soon as it takes more time as the 
diagonalization. On a 64 x 64 mesh, as it was used for clusters Z> 20, one obtains a 
mean step width of 0.80 to 1.00 a.u. 

This seems to be a large value at first sight, but one has to consider that all first and 
second derivatives are given analytically due to the fact that all quantities are expanded 
into an analytically known basis. 

The inverse oscillator length Po had to be adjusted in order to enhance convergence 
and minimize the total energy. From Fig. 16 we learn that the total energy depends on 
the choice of Po, if Po is chosen inadequately. A good plateau condition for larger 
clusters with 2 2 3 4  was obtained with No = 16. As the parameter Po scales the basis 
function system used on the mesh, one would obtain an additional criterion for the 
choice of the mesh size. 

The basis truncation effect is visualized in Fig. 17. Na-36 is predicted triaxial because 
of the near-degeneracy of the total energy and the strong mixing of basis levels. This 
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Fig. 16 Na-36: Stationari- 
ty of the total energy with 
regard to the oscillator ’ 

parameter is required. For 
larger clusters like Na-36, 
this condition is satisfied 
for No = 16 and Do - 0.23. 

Fig. 17 Total energy of 
Na-36. Influence of No 
and the oscillator parame- 
ter Bo on E,,,. The number 
of principal shells No has 
been increased until the 
difference to spherical 
calculations became 
negligible at 6 = 0. Mesh 
size effects become impor- 
tant if the inverse 
oscillator length Do is ad- 
justed to small values. 

- .  
-5.540 Na-36 - - 

-5.550 1 - - 

w -5.570 - 
N0=16, - 

-5.575 : 80=0.23 - P - 

-0.2 -0.1 0 0.1 0.2 0.3 
DELTA 

cluster appears to be a good touchstone for the choice of parameters, because the 
results were very sensitive to truncation effects and the choice of parameters. 

We obtained a very sharp criterion for the convergence of our results by inserting 
the spherical Kohn-Sham results into the PES curves in Fig. 4. The results are obviously 
very well converged, as the curves fit smoothly through the spherical points. 
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