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1.1 G protein coupled receptors 

 

G protein coupled receptors (GPCRs) represent the largest and most versatile family 

of cell-surface receptors. The GPCR superfamily makes up nearly 2% of the human genome. 

About eighthundred genes have seven transmembrane characteristics, as assessed by 

hydrophobicity plots of amino acid sequences (Vassilatis et al., 2003). Approximately half of 

these are odorant receptors and for the remaining 360, the natural ligand has been identified 

for about 210, leaving 150 so-called “orphan GPCRs” with no known ligand or function. 

 As a superfamily of integral membrane proteins, GPCRs have a very high impact 

from a therapeutic point of view. Drugs binding to these receptors are beneficial across a 

wide range of human diseases, including pain, asthma, inflammation, obesity, cancer, as well 

as cardiovascular, metabolic, gastrointestinal and various CNS diseases. Approximately 50% 

of all modern drugs are targeted to GPCRs. Interestingly, however, the majority of these 

drugs exert their effects on about only 40 GPCRs (Wise et al., 2004; Jacoby et al., 2006; 

Lagerström and Schioth, 2008). Thus, the remaining potential for drug discovery within this 

field is enormous. 

 Two major requirements define a protein to be classified as GPCR. The first is the 

existence of seven α-helical transmembrane (TM) domains and the second is the ability to 

interact with a G protein. The GPCR is able to bind a ligand from the extracellular side and 

transduce the signal via a G protein into the cell (Fredriksson et al., 2003). However, many 

GPCRs can modulate G protein-independent pathways. Therefore, the term seven 

transmembrane (7 TM) receptors would be more appropriate. Both terms are used by the 

International Union of Pharmacology Committee on Receptor Nomenclature and Drug 

Classification (NC-IUPHAR) (Foord et al., 2005). All 7 TM receptors share a common 

architecture: an extracellular amino terminus (N-term), seven α-helical TM domains that are 

connected by three extracellular (e1, e2 and e3) and three intracellular (i1, i2 and i3) loops, 

and an intracellular carboxyl terminus (C-term). Phylogenetically, GPCRs can be divided into 

six classes. 

Family I (also referred to as family A or the rhodopsin-like family) represents by far the 

largest subgroup. Family I contains receptors for odorants, small molecules such as biogenic 

amines, peptides and glycoprotein hormones. The most important structural features of 

family I GPCRs are about 20 highly conserved amino acids and a disulphide bridge between 

the first and second extracellular loop (e1 and e2). Most of the conserved residues, including 

several proline residues and a conserved DRY (aspartate, arginine and tyrosine) motif 

adjacent to TM III, are located in the cytoplasmic half of the protein. The seven α-helices 
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span the cell membrane in a counter-clockwise manner when viewed from the extracellular 

side. 

Family II or family B GPCRs are characterized by a relatively long N-terminus, 

containing several cysteine residues, which presumably form a network of disulphide 

bridges. Their morphology is similar to family I receptors, although they share only low 

sequence homology. Little is known about the exact threedimensional arrangement of the 

TM domains, but given the divergence in amino acid sequence, it is likely quite dissimilar 

from that of family I receptors. Ligands for family II GPCRs include hormones, such as 

glucagon, gonadotropin-releasing hormone and parathyroid hormone. 

Family III contains the metabotropic glutamate, the Ca2+ sensing and the γ-

aminobutyric acid (GABA) B receptors. These GPCRs possess a long N- and C-terminus. 

The ligand binding domain is located in the amino terminus, which is often described as 

being like a “venus fly trap”. Except for two cysteines in e1 and e2 that form a putative 

disulphide bridge, family III receptors do not have any of the key features that characterize 

family I and II receptors. Unique among family III GPCRs is a short and highly conserved 

third intracellular loop (i3). Although the structure of the N-terminus is well characterized, 

similar to family II receptors, little is known about the exact threedimensional arrangement of 

the TM domains. 

The smaller, less characterized GPCR families comprise family IV pheromone 

receptors, while family V includes the “frizzled” and the smoothend receptors involved in 

embryonic development and in particular cell polarity and segmentation. Finally, the cAMP 

receptors have only been found in D. discoideum, but possible expression in vertebrates has 

not yet been reported (Bockaert and Pin, 1999). 

 A breakthrough in GPCR research was the determination of a high-resolution crystal 

structure of bovine rhodopsin by Palczewski in 2000, providing the first insight into the three-

dimensional architecture of a mammalian family I receptor (Palczewski et al., 2000). More 

recently, the first crystal structure of a human GPCR, the β2-adrenoceptor (hβ2AR), was 

solved by Kobilka and co-workers (Rasmussen et al., 2007). This was possible due to 

truncation of the receptor and generation of an antibody as stabilizing element. More protein-

engineering yielded an alternative high-resolution structure of hβ2AR via construction of a 

receptor/T4-lysozyme fusion protein (Rosenbaum et al., 2007). These milestones in GPCR 

research provided the basis for other investigators to move on in the field of structural 

receptor biology. Another catecholamine receptor structure was determined for an 

engineered turkey β1AR (Warne et al., 2008) and Jaakola et al. (Jaakola et al., 2008) 

provided structural information about the human adenosine 2A receptor (hA2AR). However, 

all these GPCR structures represent the receptors in an inactive state. Thus, the next major 

challenge in GPCR crystallography will be the determination of high-resolution active-state 
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receptor structures. Currently, much progress is being made towards this goal. Recent 

structures of opsin provide insight into active receptor states without G protein or bound to a 

G protein fragment (Park et al., 2008; Scheerer et al., 2008). The information provided by the 

new GPCR crystal structures and the lessons learned were very recently discussed and 

summarized in several articles (Kobilka and Schertler, 2008; Weis and Kobilka, 2008; Mustafi 

and Palczewski, 2009). 

Nevertheless, GPCRs are dynamic in nature and crystal structures represent only 

snapshots of specific states, so in the future, X-ray crystallography will have to be 

complemented by sophisticated biophysical studies like NMR, to learn more about the 

activation process of GPCRs on an atomic level (Ratnala, 2006; Kofuku et al., 2009). In the 

meantime, it will still be necessary to combine several different classic experimental 

approaches and molecular modelling techniques to understand the processes of ligand 

binding, receptor activation and G protein/effector coupling for a given GPCR. 

 

 

1.2 GPCR signal transduction 

 

Based on our current knowledge, binding of an agonist from the extracellular side to a 

GPCR embedded in the cell membrane is followed by a conformational change. The 

resulting active state of the receptor protein then specifically interacts with a precoupled or 

free heterotrimeric G protein, consisting of a Gα-subunit and a Gβγ-heterodimer, located at 

the cytosolic side of the membrane (Fig. 1.1). The interaction of the G protein with a receptor 

in the active state leads to the release of GDP bound to inactive G protein. Subsequently, a 

ternary complex between the agonist-bound active receptor and nucleotide-free G protein is 

formed, which is however unstable and dissociates or rearranges again (Bünemann et al., 

2003). The nucleotide-free G protein can then bind GTP and a further conformational change 

occurs. In the GTP-bound state G proteins are activated. The heterotrimeric activated G 

protein complex then dissociates into GTP-bound Gα-subunit and Gβγ-dimer, which can 

influence effector proteins. 

Heterotrimeric G proteins are typically divided into four main classes: Gi/o, Gs, Gq/11 

and G12/13 based on sequence homology of their Gα-subunits (Birnbaumer, 2007). Different 

subtypes of activated Gα-subunits can selectively inhibit (Gαi/o) or stimulate (Gαs) adenylate 

cyclase (AC), activate phospholipase Cβ (Gαq/11), or interact with guanine nucleotide 

exchange factors (Gα12/13). As a consequence, the production of second messangers such as 

cyclic 3´,5´-adenosine monophosphate (cAMP), 1,2-diacylglycerol (DAG), and inositol-1,4,5-

trisphosphate (IP3) is modulated. The second messengers can induce a fast cellular 

response, such as change in intracellular ion concentrations or the regulation of enzyme 
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activity, or cause long-term effects by modulating transcription factors, thereby regulating 

gene expression. Moreover, activated Gβγ-dimers can also trigger cellular effects 

(Birnbaumer, 2007). For example, they can directly interact with phospholipase Cβ, AC or 

certain ion channels. 

 
Fig. 1.1: Gα protein activation/deactivation 

cycle after GPCR stimulation by an 
agonist. Adapted from Seifert, 2005. 
 

After modulation of effector 

proteins, the intrinsic GTPase activity of 

the Gα-subunit terminates the signal by 

cleavage of bound GTP into GDP and 

inorganic phosphate (Pi). The GDP-bound 

Gα-subunit can then re-associate with the 

Gβγ-dimer again. The inactive GDP-bound 

heterotrimeric G protein complex is 

available for another round of activation. 

Importantly, Vmax-values of 

GTPases in reconstitution systems in vitro 

are often orders of magnitude higher than 

in tissue preparations. The reason for 

these differences is the existence of GTPase-accelerating proteins. The so-called regulators 

of G protein signalling (RGS proteins) are guanine-nucleotide exchange factors (GEFs), 

which enhance the GTPase activity of Gα-subunits (Neitzel and Hepler, 2006; Willars, 2006; 

Wieland et al., 2007). This family of proteins consists of at least 20 members that can be 

divided into 3 subfamilies. All RGS proteins share a common RGS domain, which stabilizes 

the transition state of the GTP hydrolysis at the Gα-subunit. Thus, RGS proteins function as 

negative regulators of G proteins signalling in vivo. 

Continuous or repeated stimulation of a GPCR by agonist leads to a loss of cellular 

sensitivity. This desensitation process includes phosphorylation of the GPCR by G protein 

coupled receptor kinases (GRKs), followed by β-arrestin binding and uncoupling of the G 

protein. Subsequent internalization of the receptor via clathrin-coated vesicles leads to 

sorting of the receptor either back to the plasma membrane (receptor recycling) or to 

lysosomes for degradation (Hanyaloglu and von Zastrow, 2008). 
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1.3 Constitutive activity, models of GPCR activation and ligand 

classification 

 

 During the last decades, different models based on the law of mass action have been 

developed to mathematically describe the interaction of ligand (agonist), receptor and G 

protein. In the ternary complex model, binding of the agonist to the receptor is prerequisite to 

activate the G protein. However, GPCRs can be spontaneously active, a phenomenon which 

is referred to as constitutive activity (Seifert and Wenzel-Seifert, 2002). The existence of 

constitutive receptor activity resulted in the extended ternary complex (or two-state) model, 

which assumes that GPCRs isomerize from an inactive state (R) to an active state (R*), even 

in the absence of agonist (Fig. 1.2). A receptor in the R* state binds and activates G proteins, 

resulting in a cellular response. 

According to the two-state model, ligands can be classified as agonists, neutral 

antagonists and inverse agonists (Fig. 1.3). Agonists stabilize the active R* state, inverse 

agonists the inactive R state of a GPCR. Neutral antagonists do not posess intrinsic activity 

but competitively antagonize the effects of agonists and inverse agonists. Partial agonists or 

inverse agonists possess a lower efficacy towards G protein activation or inhibition, relative 

to the endogenous (full) agonist. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2: The two state model of GPCR activation. GPCRs are able to isomerize from an 
inactive state (R) to an active state (R*). Ligands are classified according to their capability of 
shifting the equilibrium to either side of both states. Adapted from Seifert, 2005. 
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A thermodynamically more complete model is the cubic ternary complex model, 

including the formation of non-signalling complexes (RG and ARG). Based on evidence that 

multiple (most likely infinite) receptor states do exist and the increasing number of novel 

GPCR-interacting proteins (GIPs) identified, those models are continuously improved 

(Kenakin, 2004). 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3: Differential responses in an effector system upon binding of full agonists (■), partial 
agonists (▲), antagonists (●), partial inverse agonists (♦), and full inverse agonists (▼). 
Adapted from Seifert, 2005. 
 

Moreover, the existence of allosteric GPCR modulators and the possibility of homo- 

and hetero-oligomerization further complicate the situation. Nonetheless, the models still can 

describe most scenarios based on the simple law of mass action. The application of the 

models goes far beyond their descriptive nature. They can be used in drug discovery to 

develop ligands with clearly defined cellular effects. 

 

 

1.4 Histamine and the histamine receptor family 

 

1.4.1 Historical perspective 

 The first report of histamine (HA, 2-(1H-imidazol-4-yl)ethanamine) was its synthesis 

by Windaus and Vogt in 1908 (Windaus and Vogt, 1908). Sir Henry Dale and colleagues 

were able to isolate this amine from ergot in 1910 (Barger and Dale, 1910). In the following 

years, HA was pharmacologically characterized (Dale and Laidlaw, 1910; Dale and Laidlaw, 

1911; Dale and Laidlaw, 1919). These early studies elaborated the fundamental effects of 
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HA, such as stimulation of smooth muscles from the gut and respiratory tract, stimulation of 

cardiac contractility and induction of shock-like syndrome when injected into animals. The 

isolation from liver and lung was the first verification of HA as an endogenous substance 

(Best et al., 1927). The first compounds that blocked the action of HA in an anaphylactic 

response were identified in the 1930s (Fourneau and Bovet, 1933; Bovet and Staub, 1937). 

Some chemicals with similar activities (e. g. mepyramine or diphenhydramine) were 

introduced into the clinic for the treatment of allergic conditions. However, these prototypical 

“antihistamines” were not able to block certain HA-effects such as the stimulation of gastric 

acid secretion. Therefore, the existence of two distinct HA receptor subtypes was predicted 

(Ash and Schild, 1966). This was confirmed, when Black and co-workers developed 

burimamide, a compound that competitively antagonized HA-induced gastric acid secretion 

(Black et al., 1972). For the treatment of gastric and duodenal ulcer more potent derivatives 

were developed (Black et al., 1973; Brimblecombe et al., 1975) and have been used as 

blockbuster drugs for decades. In the early 1980s, the groups of Schwartz and Schunack 

showed that HA inhibits its own release from depolarized slices of rat cerebral cortex, an 

action that could not be blocked by known antihistaminergics (Arrang et al., 1983). A third HA 

receptor subtype was predicted and confirmed with a potent and selective agonist ((R)-α-

methylhistamine) and antagonist (thioperamide) (Arrang et al., 1988). In the 1990s, progress 

in the field of molecular biology enabled cloning of the H1R (Yamashita et al., 1991), the H2R 

(Gantz et al., 1991) and, with substantial delay, of the H3R (Lovenberg et al., 1999). At the 

turn of the millennium, Oda et al. identified and cloned the sequence of an additional HA 

receptor and termed it H4R (Oda et al., 2000). The existence of a fourth HA receptor was 

confirmed independently by other groups (Nakamura et al., 2000; Liu et al., 2001; Morse et 

al., 2001; Nguyen et al., 2001; Zhu et al., 2001; O'Reilly et al., 2002). A detailed account on 

the history of HA and its receptors is given by Parsons and Ganellin (Parsons and Ganellin, 

2006). 

 

 

1.4.2 Histamine 

HA is one of the most important local mediators and neurotransmitters. High 

concentrations of HA are found in the skin, lung, and the gastrointestinal tract. In the 

hematopoietic system, mast cells and basophils store HA in specific granules, closely 

associated with anionic proteoglycans and chondroitin-4-sulfate. In this form, it can be 

released in large amounts during degranulation in response to various immunological or non-

immunological stimuli. Alternatively, HA is liberated upon destruction of these cells or by 

chemical substances (HA liberators). In the stomach, HA is produced in enterochromaffin-like 

cells (ECL) and regulates gastric acid secretion. In the central nervous system (CNS), HA is 
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stored in vesicles of histaminergic neurons, located exclusively in the tuberomamillary 

nucleus of the posterior hypothalamus (Haas and Panula, 2003). They are involved in the 

regulation of fundamental brain functions such as sleep/wakefulness, cognition and energy 

homeostasis (Haas and Panula, 2003). However, also other cellular sources of HA have 

been discovered, in which HA is immediately released without prior storage (Dy and 

Schneider, 2004). The production of the so-called “neo-synthesized HA” is modulated by 

cytokines and was identified in hematopoietic cells, macrophages, platelets, dendritic cells, 

and T cells. 

The key enzyme for HA synthesis is L-histidine decarboxylase (HDC) (Fig. 1.4). This 

enzyme is located in the cytosol and decarboxylates the amino acid L-histidine. HDC 

requires binding of the cofactor pyridoxal-5-phosphate. The vesicular monoamine transporter 

VMAT2 is responsible for the transport of HA from the cytosol into the secretory granules 

(Kazumori et al., 2004). HA is inactivated by oxidative deamination or methylation to form 

imidazole-4-acetaldehyde and Nτ-methylhistamine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4: Biosynthesis and metabolism of histamine. 
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These reactions are catalyzed by diamine oxidase (DAO) and histamine N-

methyltransferase (HNMT), respectively. HNMT transfers a methyl group from S-adenosyl-L-

methionine to the Nτ-nitrogen of the imidazole ring. Imidazole-4-acetaldehyde is oxidized to 

form imidazole-4-acetic acid. Imidazole-4-acetic acid and Nτ-methylhistamine are further 

metabolized to 1-ribosylimidazole-4-acetic acid and 1-methylimidazole-4-acetic acid, 

respectively. At present, it is not clear if HNMT is translocated to the plasma membrane to 

metabolize HA or if reuptake of HA occurs by means of organic cation transporters (OCT)-2 

or -3 (Ogasawara et al., 2006). The inactive metabolites are excreted into the urine. 

 

 

 

 

 

Fig. 1.5: Tautomerism of histamine in the monocationic form. 

 

HA has two basic centres and fully protonated HA is a dication: the side chain amino 

group is a strong base (pKa2 = 9.40); the imidazole ring is a weak base (pKa1 = 5.80) (Fig. 

1.5). Under physiological conditions (pH = 7.4) the monocation predominates and is the form 

most likely to be acting at histamine receptors. The imidazole ring of HA can exist in two 

tautomeric forms, with the proton on the N proximal (Nπ-H tautomer) or distal (Nτ- H 

tautomer). In aqueous solution about 80% of HA monocation is in the Nτ-H tautomeric form 

(Ganellin, 1973). 

 

 

1.4.3 Histamine receptors 

 Histamine receptors belong to family I and are classified in four subtypes: H1R, H2R, 

H3R and H4R. The average sequence homology between the subtypes is relatively low 

(~20%). H3R and H4R share the highest overall sequence homology of about 40% (~58% 

homology in the TM regions). An overview of the most important properties of histamine 

receptors is given in Table 1.1. 
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Table 1.1: Overview on histamine receptors. 

 

H1R 

Gene locus 
 
Amino acids 
 
Expression pattern 
 
 
 
Signal transduction 
(main pathways) 
 
(Patho)physiological function 
 
 
 
Agonists 
 
 
Antagonists/inverse agonists 
 

 

 
 
3p25 
 
487 
 
airway and vascular smooth muscle cells, neurons, 
hepatocytes, endothelial and epithelial cells, hematopoietic 
cells 
 
Gαq/11 → PLC↑, DAG↑ and IP3↑; [Ca2+]↑; PKC↑ 

 
 
rhinitis, conjunctivitis, urticaria, asthma, anaphylaxis, 
bronchoconstriction and vascular permeability in the lung↑, 
immune response↑ 
 
2-methylhistamine, 2-(3-trifluoromethylphenyl)histamine, 
histaprodifen(s) 
 
1st generarion: chlorpromazine, chlorpheniramine, 
mepyramine, diphenhydramine, clemastine 
 
2nd generation: cetirizine, loratadine, astemizole, 
terfenadine, tripolidine 
 

 

H2R 

Gene locus 
 
Amino acids 
 
Expression pattern 
 
 
 
Signal transduction 
(main pathways) 
 
(Patho)physiological function 
 
 
 
Agonists 
 
 
Antagonists/inverse agonists 
 

 

 
 
5q35.2 
 
359 
 
gastric parietal, right atrial and ventricular muscle cells, 
airway and vascular smooth muscle cells, neurons, 
promyelocytic leukemic cells, hematopoietic cells 
 
Gαs → AC↑, [cAMP]↑; protein kinases↑; [Ca2+]↑ 

 
 
gastric acid secretion↑, positive chronotropic and inotropic 
activity, cell differentiation↑ 
 
 
dimaprit, amthamine, impromidine, arpromidine 
 
 
cimetidine, raniditine, tiotidine, famotidine, aminopotentidine 
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H3R 

Gene locus 
 
Amino acids 
 
Expression pattern 
 
 
 
Signal transduction 
(main pathways) 
 
(Patho)physiological function 
 
 
 
Agonists 
 
 
Antagonists/inverse agonists 
 
 
 
 
 

 

 
 
20q13.33 
 
445 
 
histaminergic neurons, low concentrations in peripheral 
tissues 
 
 
Gαi/o → AC↓, [cAMP]↓; [Ca2+]↓ 

 
 
presynaptic autoreceptor (controlling HA release and 
synthesis↓) and heteroreceptor (controlling release of other 
neurotransmitters↓) 
 
(R)-α-methylhistamine, imetit, immepip 

 
 
thioperamide, ciproxyfan, clobenpropit, JNJ-5207852 

 

H4R 

Gene locus 
 
Amino acids 
 
Expression pattern 
 
 
 
Signal transduction 
(main pathways) 
 
(Patho)physiological function 
 
 
 
Agonists 
 
 
Antagonists/inverse agonists 
 

 

 
 
18q11.2 
 
390 
 
hematopoietic and immunocompetent cells; low expression 
in brain, liver, and lung; neurons in the periphery  
 
 
Gαi/o → AC↓, [cAMP]↓; PLC↑; [Ca2+]↑ 
 
 
chemotaxis in mast cells and eosinophiles↑; HA-induced 
itching↑ 
 
 
OUP-16, 4(5)-methylhistamine, UR-PI376 
 
 
JNJ-7777120, thioperamide 
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1.4.4 The histamine H3 receptor 

 

1.4.4.1 Molecular and biochemical pharmacology 

 

 In 1983, Arrang et al. pharmacologically identified the H3R as presynaptic 

autoreceptor inhibiting histamine release from histaminergic neurons in rat brain (Fig. 1.6). 

Histaminergic neurons are located exclusively in the tuberomammilary nucleus of the 

posterior hypothalamus, project to all major brain areas and are involved in fundamental 

brain functions such as sleep/wakefulness, energy homeostasis and cognition. Histaminergic 

neurotransmission was recently described in reviews by Panula and Haas (Haas and Panula, 

2003; Haas et al., 2008). Although H3Rs can also be found in the periphery, the great 

majority of H3Rs are expressed in the brain, e. g. in cerebral cortex, hippocampus, amygdala, 

nucleus accumbens, globus pallidus, striatum and hypothalamus. H3R expression is not 

restricted to histaminergic neurons. The H3R is also known to function as a heteroreceptor, 

modulating the release of other important neurotransmitters, like norepinephrine, 

acetylcholine, dopamine, serotonin and GABA. 

The H3R was cloned in 1999 by Lovenberg and co-workers, almost 20 years after its 

pharmacological characterization (Lovenberg et al., 1999). The reason for this delay was an 

unexpectedly low sequence homology to H1R and H2R. In a search for orphan GPCRs, a 

potential GPCR-related expressed sequence tag (EST) with homology to α2-adrenergic 

receptors was identified in silico and used to clone a full-length cDNA from a human 

thalamus library. The cDNA contained an open reading frame of 445 amino acids with all 

features characteristic of a family I GPCR for a biogenic amine. The overall sequence 

homology of the H3R to H1R and H2R is only 22% and 20%, respectively. 

 Due to the complex gene structure, a large number of H3R isoforms exists (Hancock 

et al., 2003). This is possible through alternative splicing of H3R mRNA. The H3R gene 

consists of three exons and two introns. So far, at least 20 isoforms of the human H3R have 

been identified on the basis of detection of varying mRNAs, but their regional expression and 

function remains largely unknown. The full-length H3R (445 amino acids) is currently the best 

characterized isoform. Of interest, most splice variants have deletions in the e3 loop, an 

important region involved in G protein coupling (Bongers et al., 2007). In recombinant 

systems, it was already shown that these isoforms have altered signalling properties 

compared to the full-length receptor. 
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Fig. 1.6: H3R auto- and heteroreceptor function in the nervous system. 

 

 In addition to H3R splice variants, there is some evidence for genetic polymorphism 

within the H3R gene. The amino acid at position 19 is reported to be either glutamic acid or 

aspartic acid (Lovenberg et al., 1999; Lovenberg et al., 2000a; Yao et al., 2003a). A second 

polymorphism, resulting from an alanine to valine substitution at amino acid 280 has been 

found in a patient with Shy-Drager syndrome (neurological orthostatic hypotension), a 

disease that is characterized by neuronal degeneration and autonomic failure (Wiedemann et 

al., 2002; Hancock et al., 2003). A third H3R polymorphism, resulting from a tyrosine to a 

cysteine substitution at position 197, has also been identified (Hancock et al., 2003). 

However, at present there is no information available on the potential functional differences 

between polymorphic H3R variants. 

 The H3R was also cloned from various other species, including monkey (Yao et al., 

2003b), guinea pig (Cassar, 2000; Tardivel-Lacombe et al., 2000), rat (Lovenberg et al., 

2000b; Drutel et al., 2001) and mouse (Rouleau et al., 2004). The cDNA of these H3R 

species homologs is very similar (>90%), but there are considerable pharmacological 

species differences. Most importantly, many antagonists have a higher affinity at rodent vs. 

human H3Rs (Ireland-Denny et al., 2001; Stark et al., 2001) (Fig. 1.7). In addition, H3R splice 

variants are not only limited to human H3Rs, but also exist in other species (Hancock et al., 
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2003). Moreover, the expression pattern of these isoforms also differs between species, 

adding another layer of complexity. The species-specificity of H3R splicing events renders 

data translation to humans very difficult. 

 

 

 

Fig. 1.7: Snake representation of the human H3R. 

 

 After the cloning of H3R, knock-out mice (H3R
-/-) were generated by independent 

laboratories (Takahashi et al., 2002; Toyota et al., 2002). Collectively, the derived results 

confirmed data from previous pharmacological studies with H3R ligands. However, the 

phenotype of H3R
-/- mice was different from wild type mice treated with H3R antagonists with 

respect to arousal and food intake. Since conditional H3R
-/- mice are not yet available, 

compensatory mechanisms have been put forward to explain the apparent anomalies. 

 H3Rs couple to Gαi/o-proteins (Fig. 1.8). This was originally shown by the pertussis 

toxin-sensitivity of H3R agonist-dependent [35S]GTPγS binding in rat brain homogenate (Clark 

and Hill, 1996). 
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Fig. 1.8: H3R-mediated signal transduction – HA synthesis and release. H3R, histamine H3-
receptor; Gαi/o, inhibitory G protein α-subunits of the Gαi/o-family; β, G protein β-subunits; γ, G 
protein γ-subunits; AC, adenylate cyclase; PKA, protein kinase A; HDC, histidine 

decarboxylase; VACC, voltage-activated calcium channels; CaMKII, calmodulin kinase II. 
 

 

It has been confirmed by heterologous expression of the H3R in various mammalian cell 

lines, where H3R-activation results in AC-inhibition (Lovenberg et al., 1999). AC catalyzes the 

formation of the second messenger cyclic AMP (cAMP). It was also shown, that a reduction 

of cAMP-levels leads to an inhibition of HDC and thus, to a decrease in HA synthesis in pre-

synaptic histaminergic neurons (Gomez-Ramirez et al., 2002). However, an inhibition of HA 

release into the synaptic cleft is mainly triggered due to a decrease in intracellular Ca2+-

concentration (Moreno-Delgado et al., 2009). Here, an inhibition of voltage-gated ion 

channels plays a role. This differentiation was possible in studies with rat cortical miniprisms, 

leaving the natural environment of H3Rs intact. For this purpose, cortical lobes of rat brains 

were dissected and sliced into small miniprisms (0.3 mm/side) using a special tissue 

chopper. Other signal transduction pathways modulated by the H3R are for example 

activation of PLA2, MAPK and the PI3K-PKB-GSK3β axis (Leurs et al., 2005; Bongers et al., 

2007). An activation of MAPK and PI3K results in a phosphorylation of extracellular signal-

regulated kinases (ERKs) and protein kinase B (PKB or Akt), respectively. Active PKB 

phosphorylates and thereby inhibits glycogen synthase kinase 3β (GSK3β) activity, a major 

tau kinase in the brain. Activation of MAPK and PI3K are involved in memory consolidation, 

whereas the role of PKB/GSK3β, modulated by the H3R in the brain is less clear. However, 
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dysregulation of GSK3β is associated with diabetes and/or insulin resistance and 

Alzheimer´s disease. 

H3Rs are also constitutively active (Arrang et al., 2007). They can signal in the 

absence of an agonist, which was even shown in vivo. Using rat cortical miniprisms, it could 

be shown that HA-synthesis and -release are controlled by the constitutive activity of H3R, 

although to a different extent (Gomez-Ramirez et al., 2002; Moreno-Delgado et al., 2009). 

Due to the high constitutive activity of H3R, almost all H3R antagonists had to be re-classified 

as inverse agonists. 

Interestingly, there is also some evidence that H3Rs can exist as homo- or hetero-

dimers and/or –oligomers (Shenton et al., 2005). Functional interactions between the 

dopamine receptors (D1R and D2R) and H3R have already been described in the literature 

(Sanchez-Lemus and Arias-Montano, 2004; Humbert-Claude et al., 2007; Ferrada et al., 

2008). In recombinant systems, activation of MAPKs by H3Rs did not occur until D1Rs were 

co-expressed (Ferrada et al., 2009). Moreover, D1Rs, usually coupled to Gαs, coupled to Gαi/o 

in co-transfected cells. Additionally, signalling via each receptor was not only blocked by a 

selective antagonist, but also by an antagonist of the partner receptor. 

 

1.4.4.2 H3R ligands 

 

 As above mentioned, the H3R is an auto- and heteroreceptor. Thus, their activation 

reduces, whereas blockade increases, not only the release of HA but also several other 

neurotransmitters. Almost all H3R agonists are small molecule derivatives of HA (De Esch 

and Belzar, 2004) (Fig. 1.9). So far, efforts to replace the imidazole-moiety in agonists have 

been unsuccessful. Methylation of the basic amine group yields Nα-methylhistamine, a H3R 

agonist that is frequently used as radioligand in its tritiated form. Methylation of the imidazole 

side chain results in (R)-α-methylhistamine, which is the archetypal H3R agonist, used for the 

first pharmacological characterization of the H3R. Relatively small structural changes lead to 

very potent and selective H3R agonists like imetit or immepip. Methylation of the piperidine 

nitrogen of immepip gives methimepip, currently the most potent and selective H3R agonist. 

Impentamine, a higher homolog of histamine, proxyfan and GT-2331 (cipralisant) were 

originally characterized to be H3R antagonists. However, subsequent studies revealed the 

agonistic nature of the compounds. The first potent and selective H3R antagonist was 

thioperamide (Stark et al., 2004). This compound and many other imidazole-containing H3R 

antagonists, like ciproxyfan or clobenpropit, had to be re-classified as inverse agonists due to 

the constitutive activity of the H3R. Thioperamide was the reference H3R antagonist for 

almost two decades. Today, it is known that thioperamide, as well as many other imidazole-

containing H3R ligands, shows high antagonistic potency at the structurally related H4R, 5-
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HT3R, α2AAR and α2BAR. These off-target effects, the low bioavailability and blood-brain 

barrier penetration, and CYP450-inhibition due to the imidazole-moiety of many H3R ligands, 

lead to the development of more drug-like molecules as H3R antagonists/inverse agonists 

(Fig. 1.10). The replacement of the imidazole-moiety was crucial towards more selective and 

drug-like H3R antagonists. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.9: Imidazole-containing H3R-ligands. 

 

Nonetheless, there are still problems in the preclinical development of these ligands, e. g. 

inappropriate pharmacokinetics or toxic effects like phospholipidiosis. In recent years, a very 

large variety of non-imidazole H3R antagonists have been introduced and many of them are 

already in clinical trials. An interesting approach to fine tune the effects of H3R ligands is also 

a combination of H3R antagonism and selective inhibition of enzymes (Petroianu et al., 

2006), like acetylcholine esterase (Bembenek et al., 2008), or parallel transporter blockade, 

for example serotinin reuptake (Barbier et al., 2007). 
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Fig. 1.10: Non-imidazole H3R-antagonists/inverse agonists. 

 

The preclinical development of non-imidazole H3R antagonists/inverse agonists 

(Bonaventure et al., 2007; Esbenshade et al., 2008; Stocking and Letavic, 2008) and first 

reports on clinical trials are subjects of some excellent reviews (Wijtmans et al., 2007; 

Sander et al., 2008; Gemkow et al., 2009). 
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1.5 The baculovirus/Sf9 cell system 

 

 There are numerous methods to study ligand binding, receptor activation and G 

protein/effector coupling. Each methodological approach has its specific applications, 

advantages and disadvantages, and provides distinct information. Optimally, several different 

approaches should be used to obtain as much information as possible on a given GPCR. 

With a baculovirus/Sf9 cell expression system, various basic steps in GPCR signal 

transduction can be investigated (Seifert and Wieland, 2005). 

 Sf9 insect cells, derived from Spodoptera frugiperda pupal ovarian tissue, are very 

suitable for protein expression, especially GPCRs (Aloia et al., 2009). As expression vectors, 

recombinant baculoviruses have to be generated (Preuss et al., 2007a; Schneider et al., 

2009). Baculoviruses are double-strained, filamentous DNA-viruses, which infect only non-

vertebrate hosts. Autographa californica nuclear polyhedrosis virus (AcNPV) is the best 

characterized baculovirus and routinely used for protein expression. AcNPV infects the clonal 

tissue culture line Sf9 and can be genetically modified. Wild-type AcNPV-DNA possesses a 

strong polyhedrin promoter, facilitating the production of polyhedrin, a matrix protein in which 

virus particles are embedded. The polyhedrin gene, 3´ to the promoter sequence, can be 

replaced by cDNA of interest, leading to a high expression level of the encoded protein. The 

BD BaculoGold™ linearized baculovirus DNA from BD Biosciences provides a tool for high 

recombination efficiencies. In principle, this modified type of baculovirus DNA contains a 

lethal deletion. The DNA does not code for viable virus. Only co-transfection of insect cells 

with the viral DNA and a complementing transfer vector construct reconstitutes viable virus. 

The foreign cDNA to be expressed has to be cloned into the transfer vector (Fig. 1.11). 

If the engineered baculovirus encodes for a GPCR or G protein, high expression 

levels can be achieved (Seifert et al., 1998; Ratnala et al., 2004; Schneider et al., 2009). 

Baculovirus expression provides correct folding of recombinant protein as well as disulfide 

bond formation and other important post-translational modifications. Most mammalian family 

I receptors and G proteins expressed in Sf9 cells are properly integrated into the 

membranous lipid bilayer and thus, reconstitution of receptor/G protein-coupling is feasible. 

Sf9 cells do not express any constitutively active GPCRs or relevant amounts of other 

receptors. Another advantage of Sf9 cells as GPCR expression system is the limited 

endogenous G-protein signalling, which leads to excellent signal to noise ratios 

(Quehenberger et al., 1992; Wenzel-Seifert et al., 1998; Brys et al., 2000; Seifert and 

Wenzel-Seifert, 2003). 
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Fig. 1.11: Generation of recombinant H3R-baculoviruses, protein expression and membrane 
preparation. 
 

 In this work, studies were only performed with broken-cell preparations (membranes) 

and not whole cells. Studies with membranes have many advantages, particularly when 

constitutive GPCR signalling is investigated. Contaminating agonists that may cause an 

apparent GPCR activation can be eliminated through multiple rounds of membrane 

centrifugation and resuspension. When working with whole cells or native brain tissue, an 

elimination of endogenous HA can be very difficult if not impossible. To ensure an absolute 

absence of endogenous HA one would have to study tissue derived from HDC-/- mice, keep 

the animals under sterile conditions and provide HA-free food. In the case of Sf9 cell 

membranes, also a precise control of the concentrations of GTP, ions and pH, all of which 

have an effect on constitutive GPCR activity, is possible (Seifert et al., 1999, 2001; Ghanouni 

et al., 2000; Seifert and Wenzel-Seifert, 2001). This might be artificial, but given the unknown 

composition of the precise chemical microenvironment of GPCRs and G proteins near the 

plasma membrane, the importance of data derived from these experiments cannot be 

dismissed. 

 Studies with membranes are also crucial for study of the impact of G proteins on 

signalling properties of GPCRs. Experiments with membranes allow analysis of GPCR 

activity not only at the level of ligand binding, but also directly at the G protein level (i. e., 
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GDP/GTP exchange and steady-state GTP hydrolysis). Moreover, using a baculovirus/Sf9 

cell expression system the G protein coupling profile of a given GPCR can easily be 

elucidated (Wenzel-Seifert et al., 1999, 2001; Brys et al., 2000; Wenzel-Seifert and Seifert, 

2000; Gazi et al., 2003). Again, studies with native tissue require the availability of several G 

protein knock-out mice (Albarran-Juarez et al., 2009). As an alternative, photoaffinity 

labelling using [α-32P]AA-GTP can be performed, if potent and selective GPCR ligands and 

selective antibodies are available (Klemke et al., 2000; Woo et al., 2009). Nevertheless, 

these methods are much more laborative than the reconstitution approach. 

 

 

1.6 Scope and Objectives 

 

The identification of the histamine H3-receptor (H3R) opened attractive perspectives 

for an exploitation of this new drug target. Since the initial cloning, a lot of knowledge about 

the molecular and biochemical pharmacology of this GPCR was accumulated. Numerous 

potent and selective H3R-ligands were identified and serve as pharmacological tools or 

potential therapeutics. There are, however, still some ligand effects that cannot be easily 

explained, based on the currently available data. 

The first aim of this thesis was to establish a sensitive, robust and uniform assay 

system to analyze all histamine receptors and their ligands under identical experimental 

conditions. So far, test systems to study these GPCRs are very heterogeneous and use 

many different pharmacological read-outs. Therefore, already existing baculovirus/Sf9 cell 

systems for the analysis of H1R, H2R and H4R (Kelley et al., 2001; Houston et al., 2002; 

Schneider et al., 2009) were complemented by a new system to study H3R. This system 

provides the basis for further molecular studies. 

As a second aim, the G protein coupling-profile of the H3R should be investigated. It is 

known, that H3R couples to pertussis toxin-sensitive G proteins of the Gi/Go-family, but 

detailed information about the interaction with specific G protein-subunits is not available. 

There are some ligands which show pleiotropic effects (Fox et al., 2002; Gbahou et al., 2003; 

Krueger et al., 2005; Ito et al., 2006). Therefore, the role of certain G protein α-subunits had 

to be investigated with respect to this matter. 

Additionally, a system to study rat H3R, a common laboratory animal to study H3R-

ligand effects, was generated. Deeper insights into the multiple functional species-

differences of all histamine receptors in general, and H3Rs in particular, will facilitate the 

development of more potent and selective ligands and increase our understanding of ligand-

receptor interactions (Preuss et al., 2007b, c; Strasser et al., 2008b, 2009; Deml et al., 2009; 

Igel et al., 2009; Kraus et al., 2009; Wittmann et al., 2009). Moreover, for the design of a 
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suitable pharmacological tool, it is absolutely necessary to know its functional properties on 

every relevant GPCR species homolog in an unbiased manner (Pertz et al., 2006; Xie et al., 

2006, 2007; Preuss et al., 2007a; Strasser et al., 2008a). The experimental studies should be 

complemented by molecular modelling approaches. 

Finally, it is generally poorly understood how the ionic environment changes the 

pharmacological properties of a GPCR (Costa et al., 1990; Seifert, 2001; Schneider et al., 

2009). Therefore, by using H3R as a model system, the influence of different monovalent ions 

on receptor-to-G protein coupling were investigated. In particular, a potential interaction-site 

for Na+-ions, highly conserved among GPCRs, was mutated and studied (Horstman et al., 

1990; Ceresa and Limbird, 1994). 

In summary, this thesis further characterizes the structure and function of H3R 

species homologs as well as the ligand-receptor interactions by an interdisciplinary approach 

comprising pharmacological assays, site-directed mutagenesis and molecular modelling. 
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2.1 Abstract 

 

Numerous structurally diverse ligands were developed to target the human histamine 

H3-receptor (hH3R), a presynaptic Gi/Go-coupled auto- and heteroreceptor. Proxyfan was 

identified to be functionally selective, with different efficacies towards Gi/Go-dependent hH3R 

signalling pathways. However, the underlying molecular mechanism of functional selectivity 

of proxyfan is still unclear. In the current study, we investigated the role of different Gαi/o 

proteins in hH3R signalling, using a baculovirus/Sf9 cell expression system. We tested the 

hypothesis that ligand-specific coupling differences to defined Gi/Go-heterotrimers are 

responsible for functional selectivity of proxyfan at hH3R. In Sf9 membranes, full-length hH3R 

(445 amino acids) was expressed in combination with an excess of different mammalian G 

proteins (Gαi1, Gαi2, Gαi3 or Gαo1, and β1γ2 dimers, respectively). Additionally, we constructed 

the fusion proteins hH3R-Gαi2 and hH3R-Gαo1 to ensure clearly defined receptor/G protein 

stoichiometries. Steady-state GTPase experiments were performed to directly measure the 

impact of each G protein on hH3R signal transduction. The hH3R coupled similarly to all G 

proteins. We also observed similar ligand-independent or constitutive activity. Proxyfan and 

various other imidazole-containing ligands, including full agonists, partial agonists and 

inverse agonists showed very similar pharmacological profiles, not influenced by the type of 

G protein co-expressed. Selected ligands, examined in membranes expressing the fusion 

proteins hH3R-Gαi2 and hH3R-Gαo1 (plus β1γ2 dimers), yielded very similar results. 

Collectively, our data indicate that hH3R couples similarly to different Gαi/o subunits and that 

ligand-specific active receptor conformations, resulting in G-protein coupling preferences, do 

not exist for proxyfan or other imidazole compounds investigated. 

 

 

2.2 Introduction 

 

The histamine H3-receptor (H3R) is currently one of the most targeted biogenic amine 

receptors because it participates in important physiological processes like the sleep-wake 

cycle, eating behavior and cognition (Leurs et al., 2005). Discovered pharmacologically in the 

early 1980s and cloned almost 20 years later (Lovenberg et al., 2000), the H3R was shown to 

be a presynaptic auto- and heteroreceptor, regulating the release of neurotransmitters 

including histamine, dopamine, norepinephrine, serotonin and acetylcholine via negative 

feedback mechanisms (Haas et al., 2008). Thus, the H3R is a promising drug target for many 

diseases including obesity, sleep disorders such as narcolepsy and cognitive problems 
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associated with Alzheimer’s disease, attention deficit-hyperactivity disorder and 

schizophrenia (Bonaventure et al., 2007; Esbenshade et al., 2008). 

According to the two-state model of receptor activation, G protein-coupled receptors 

(GPCRs) isomerize from an inactive (R) state to an active (R*) state (Kenakin, 2001; Seifert 

and Wenzel-Seifert, 2002). In the R* state, GPCRs activate G proteins. Agonist-independent 

R to R* isomerization is referred to as constitutive activity and results in an increase in basal 

G protein activity. Agonists stabilize the R* state and further increase, whereas inverse 

agonists stabilize the R state and decrease, basal G protein activity. The H3R is constitutively 

active (Leurs et al., 2005) and couples to Gi/Go-proteins in native tissues (Clark and Hill, 

1996). 

Many GPCRs are able to signal through various intracellular pathways. Depending on 

the specific G proteins to which the GPCR is coupled functional ligand selectivity has been 

frequently observed (Kenakin, 2001, 2007). In this case, the ligand preferentially activates 

specific signaling pathways mediated by a single GPCR in a manner that challenges the 

above introduced two-state model. Based on such findings, a multiple-state model, implying 

the existence of ligand-specific conformational states, has been developed (Kenakin, 2001, 

2007; Kobilka and Deupi, 2007). Interestingly, even stereoisomers of one and the same 

compound can show different functional selectivities, providing an additional opportunity to 

control receptor-mediated effects (Seifert and Dove, 2009). 

Protean agonism is considered a special case of functional selectivity. A protean 

agonist presumably stabilizes a receptor conformation with a lower efficacy towards the G 

protein than the agonist-free constitutively active or agonist-stabilized GPCR state. The 

ligand then acts as an inverse agonist. In a quiescent system with low constitutive activity, 

the protean ligand can act as an agonist (Gbahou et al., 2003; Kenakin, 2007). 

Numerous structurally diverse H3R ligands have been synthesized as potential drug 

candidates or as pharmacological tools. Almost all H3R agonists are imidazole-containing 

small molecules, derived from the endogenous agonist histamine (Leurs et al., 2005). H3R 

antagonists/inverse agonists can be differentiated into imidazole-containing antagonists and 

non-imidazole antagonists (Cowart et al., 2004; Leurs et al., 2005). Proxyfan is a 

prototypical, imidazole-containing H3R ligand that was initially characterized as an antagonist 

(Hüls et al., 1996) (Fig. 2.1). Subsequent studies revealed a more complex pharmacological 

profile and proxyfan was re-classified as a protean agonist (Gbahou et al., 2003). However, 

the systems examined were all very different, rendering data interpretation difficult. In brief, 

proxyfan was examined in different species and measuring various parameters. Additionally, 

the parameters were often quite distal and the G protein constructs used to transfect 

recombinant cell lines do not represent the physiological coupling partners or were chimeric 

to redirect the signaling cascade (Krueger et al., 2005). Collectively, due to the large 
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differences between the systems examined it is very difficult to precisely define the molecular 

mechanism for the pleiotropic effects of proxyfan. 

By studying nine imidazole-containing H3R ligands (Fig. 2.1), we wished to obtain 

more direct evidence for the existence of different ligand-specific H3R conformations. Most 

importantly, we aimed at probing the hypothesis that the type of Gi/Go-protein α-subunit to 

which H3R couples is responsible for the differential effects of proxyfan. Therefore, we 

established a baculovirus/Sf9 cell expression system for the full-length hH3R (445 aa), in 

which the receptor can be expressed either alone or co-expressed with different Gi/Go-

protein α-subunits (Gαi1, Gαi2, Gαi3 or Gαo1, and β1γ2 dimers, respectively). Sf9 cells have 

already been successfully used for reconstitution of several Gi/Go-coupled GPCRs (Wenzel-

Seifert et al., 1998; Kleemann et al., 2008). The hH3R-expressing membranes were then 

studied under identical experimental conditions, focusing on steady-state GTPase activity, a 

proximal parameter of GPCR/G-protein coupling. Moreover, we examined the fusion proteins 

hH3R-Gαi2 and hH3R-Gαo1. GPCR-Gα fusion proteins ensure close proximity and defined 1:1 

stoichiometry of the signalling partners (Seifert et al., 1999b), ruling out the possibility that 

differences in receptor-to-G protein ratio account for potential differences in pharmacological 

properties of ligands at hH3R. 

 

 

2.3 Materials and methods 

 

2.3.1 Materials 

The cDNA for the hH3R was kindly provided by Dr. T. Lovenberg (Johnson & Johnson 

Pharmaceutical R&D, San Diego, CA, USA). All restriction enzymes and T4 DNA ligase were 

from New England Biolabs (Frankfurt, Germany). M-MLV Reverse Transcriptase was from 

Invitrogen (Carlsbad, CA, USA). Cloned Pfu polymerase was obtained from Stratagene (La 

Jolla, CA, USA). The DNA primers for PCR were synthesized by MWG Biotech (Ebersberg, 

Germany). Baculoviruses for Gαi1, Gαi2 and Gαi3 were donated by Dr. A. G. Gilman 

(Department of Pharmacology, University of Southwestern Medical Center, Dallas, TX, USA). 

Baculovirus for rat Gαo1 was donated by Dr. J. C. Garrison (University of Virginia, 

Charlottesville, VA, USA). Recombinant baculovirus encoding the unmodified version of 

Gβ1γ2 subunits was a kind gift of Dr. P. Gierschik (Dept. of Pharmacology and Toxicology, 

University of Ulm, Germany). Anti-hH3R Ig was from Bio-Trend (Cologne, Germany). The 

anti-FLAG Ig (M1 monoclonal antibody) and anti-His6 Ig were from Sigma (St. Louis, MO, 

USA). The antibodies recognizing Gαi/o-subunits (Gαcommon; AS 266) and Gβ-subunits 

(Gβcommon; AS 398/9), as well as purified Gαi2- and Gαo2-protein, were kindly provided by Dr. 

B. Nürnberg (Institute of Pharmacology, University of Tübingen, Germany). The Gαi1/2- and 
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Gαo-selective antibodies were from Calbiochem (San Diego, CA, USA). Histamine, (R)-α-

methylhistamine, Nα-methylhistamine, imetit, clobenpropit and thioperamide were from Tocris 

(Avonmouth, Bristol, UK). Impentamine, imoproxyfan and ciproxyfan were kind gifts from Dr. 

S. Elz (Dept. of Pharmaceutical/Medicinal Chemistry I, University of Regensburg, Germany). 

Proxyfan was synthesized by Dr. P. Igel (Department of Pharmaceutical/Medicinal Chemistry 

II, University of Regensburg, Germany). Ligand structures are depicted in Fig. 2.1. Stock 

solutions (10 mM) of all H3R ligands described in this paper were prepared in distilled water 

and stored at -20°C. [3H]JNJ-7753707 (= [3H]RWJ-422475) (30 Ci/mmol) was kindly donated 

by Dr. P. Bonaventure (Johnson & Johnson Pharmaceutical R&D, San Diego, CA, USA). 

[3H]Dihydroalprenolol (85-90 Ci/mmol) and [35S]GTPγS (1100 Ci/mmol) were obtained from 

Perkin Elmer (Boston, MA, USA). [γ-32P]GTP was prepared using GDP and [32P]Pi (8500-

9120 Ci/mmol orthophosphoric acid) (Perkin Elmer Life and Analytical Sciences, Boston, 

MA, USA) according to a previously described enzymatic labelling procedure (Walseth and 

Johnson, 1979). Unlabeled nucleotides were from Roche (Indianapolis, IN, USA) and all 

other reagents were of the highest purity available and from standard suppliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. Structures of imidazole-containing H3R ligands: full agonists 1-3, partial agonists 
4-6 and antagonists/inverse agonists 7-9. 
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2.3.2 Construction of FLAG epitope- and hexahistidine-tagged cDNA for hH3R 

The cDNA for the tagged receptor protein was generated by sequential overlap-

extension PCR. With pGEM-3Z-SF-hH4R-His6 as template (Schneider et al., 2009), PCR 1A 

was used to amplify a DNA fragment consisting of the cleavable signal peptide from 

influenza hemagglutinin (S), the FLAG epitope (F) recognized by the monoclonal antibody 

M1 and a start codon. The sense primer F1a (5´-GAC CAT GAT TAC GCC AAG C-3´) 

annealed with 19 bp of pGEM-3Z prior to the 5´-end of SF. The antisense primer C3 (5´-CAT 

GGC GTC ATC ATC GTC-3´) annealed with 15 bp of the 3´-end of SF and with ATG. In PCR 

1B, the cDNA encoding the hH3R, followed by a hexahistidine tag (His6) in 3´-position, was 

generated. The hexahistidine tag was included to allow future purification, to provide 

additional protection against proteolysis and to serve as a linker in fusion proteins between 

the hH3R and G-proteins (Seifert et al., 1998). The sense primer HUMAN HRH3-F- (5´-GAC 

GAT GAT GAC GCC ATG GAG CGC GCG CCG CC-3´) consisted of 15 bp of the 3’-end of 

SF and the first 17 bp of the 5’-end of the hH3R. The antisense primer HUMAN HRH3-RV 

(5´- GA TCC TCT AGA TTA GTG ATG GTG ATG ATG GTG CTT CCA GCA GTG CTC-3´) 

consisted of 15 bp of the C-terminus of the hH3R, the hexahistidine tag, the stop codon, and 

an Xba I site. As template, a plasmid (pCIneo) containing the sequence of hH3R was used. In 

PCR 2, the products of PCR 1A and PCR 1B annealed in the region encoding SF and ATG. 

Here, the sense primer of PCR 1a and the antisense primer of PCR 1b were used. In that 

way, a fragment encoding SF, the hH3R sequence, the hexahistidine tag, the stop codon, 

and an Xba I site was obtained. The fragment was digested with Sac I and Xba I and cloned 

into pGEM-3Z-SF-hH4R-His6, digested with the same restriction enzymes, to yield pGEM-3Z-

SF-hH3R-His6. After transformation of chemically competent bacteria (JM 109), amplification 

of the plasmids and analytical restriction digestion, the subcloned hH3R construct was fully 

sequenced. Finally, the construct was cloned into the baculovirus transfer vector pVL1392-

SF-hH4R-His6 (Schneider et al., 2009) via Sac I and Xba I restriction sites. Again, competent 

bacteria (Top 10) were transformed, the plasmid amplified and the accuracy of the resulting 

MaxiPrep-DNA checked by extensive restriction digestion analysis and sequencing. 

 

2.3.3 Construction of the cDNAs for hH3R-Gαi2 and hH3R-Gαo1 

The cDNAs for the tagged fusion proteins were also generated by sequential overlap-

extension PCR. With pGEM-3Z-SF-hH3R-His6 as template, a prolonged sense primer from 

PCR 1A F1b (5´- GAC CAT GAT TAC GCC AAG CTA TTT AGG TGA CAC TAT AGA ATA 

CTC AAG C-3´) and an antisense primer a6His_H3R (5´-GTG ATG GTG ATG ATG GTG 

CTT CCA GCA GTG C-3´), in PCR 3A a fragment encoding SF, the cDNA for the hH3R, and 

the hexahistidine tag was generated. In PCR 3B, a fragment encoding the hexahistidine tag, 

the cDNA for Gαi2 or Gαo1, the stop codon, and an Xba I site was generated. Here, the sense 
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primer annealed with the hexahistidine tag, the start codon and 5 N-terminal codons of Gαi2, 

s6HGia2 (5´- CAC CAT CAT CAC CAT CAC ATG GGC TGC ACC GTG AGC-3´), or Gαo1, 

s6HGaoA (5´- CAC CAT CAT CAC CAT CAC ATG GGA TGT ACG CTG AGC-3´). The 

antisense primer annealed with the cDNA encoding the 5 C-terminal amino acids of Gαi2 or 

Gαo1, the stop codon, and an Xba I site, aGia2XbaI (5´-GGT CGA CTC TAG AGG TCA GAA 

GAG GCC ACA GTC-3´) and aGaoAXbaI (5´-CGA CGG ATC CTC TAG AGG TCA GTA 

CAA GCC GCA GCC-3´). In PCR 4, the products of PCRs 3A and 3B annealed in the 

hexahistidine region, and the sense primer of PCR 1A and the antisense primers of PCR 3B 

were used. In that way, the complete cDNAs for the hH3R-Gαi2 and hH3R-Gαo1 fusion 

proteins, consisting of SF, the cDNA for the hH3R, the hexahistidine tag, and the cDNAs of 

Gαi2 or Gαo1 were amplified. These fragments were digested with Sac I and Xba I and cloned 

into pGEM-3Z-SF-hH4R-His6, digested with the same restriction enzymes, to yield pGEM-3Z-

SF-hH3R-Gαi2-His6 and pGEM-3Z-SF-hH3R-Gαo1-His6. After transformation of chemically 

competent bacteria (JM 109), amplification of the plasmids and analytical restriction 

digestion, the subcloned fusion constructs were fully sequenced. Finally, the constructs were 

cloned into the baculovirus transfer vector pVL1392-SF-hH4R-His6 via Sac I and Xba I 

restriction sites. Again, competent bacteria (Top 10) were transformed, the plasmids 

amplified and the accuracy of the resulting MaxiPrep-DNA checked by extensive restriction 

digestion analysis and sequencing. 

 

2.3.4 Generation of recombinant baculoviruses, cell culture and membrane 

preparation 

Baculoviruses encoding recombinant proteins were generated in Sf9 cells using the 

BaculoGOLD transfection kit (BD PharMingen, San Diego, CA, USA) according to the 

manufacturer’s instructions. Sf9 cells were cultured in 250- or 500-ml disposable Erlenmeyer 

flasks at 28 °C under rotation at 150 rpm in SF 900 II medium (Invitrogen, Carlsbad, CA, 

USA) supplemented with 5 % (v/v) fetal calf serum (Biochrom, Berlin, Germany) and 0.1 

mg/ml gentamicin (Cambrex Bio Science, Walkersville, MD, USA). Cells were maintained at 

a density of 0.5 – 6.0 x 106 cells/ml. After initial transfection, high-titer virus stocks were 

generated by two sequential virus amplifications. In the first amplification, cells were seeded 

at 2.0 x 106 cells/ml and infected with a 1:100 dilution of the supernatant from the initial 

transfection. Cells were cultured for 7 days, resulting in the death of virtually the entire cell 

population. The supernatant fluid of this infection was harvested and stored under light 

protection at 4 °C. In a second amplification, cells were seeded at 3.0 x 106 cells/ml and 

infected with a 1:20 dilution of the supernatant fluid from the first amplification. Cells were 

cultured for 48 h, and the supernatant fluid was harvested. After the 48 h culture period, the 

majority of cells showed signs of infections (e.g. altered morphology, viral inclusion bodies), 
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but most of the cells were still intact. The supernatant fluid from the second amplification was 

stored under light protection at 4 °C and used as routine virus stock for membrane 

preparations. To ensure the purity and identity of the viruses, the total RNA of infected Sf9 

cells was isolated (RNeasy Kit, Qiagen), the cDNA derived via reverse transcription, and 

fragments representative for the constructs PCR-amplified and analyzed by restriction 

digestion. For infection, cells were sedimented by centrifugation and suspended in fresh 

medium. Cells were seeded at 3.0 x 106 cells/ml and infected with a 1:100 dilution of high-

titer baculovirus stocks encoding hH3R constructs, Gαi/o-proteins and Gβ1γ2-dimers. Cells 

were cultured for 48 h before membrane preparation. Sf9 membranes were prepared as 

described previously, using 1 mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 10 µg/ml 

benzamidine, and 10 µg/ml leupeptine as protease inhibitors. Membranes were suspended in 

binding buffer (12.5 mM MgCl2, 1 mM EDTA, and 75 mM Tris/HCl, pH 7.4) and stored at -80 

°C until use. 

 

2.3.5 SDS-PAGE and immunoblot analysis 

Membrane proteins were diluted in Laemmli-buffer and separated on SDS 

polyacrylamide gels containing 12 % (w/v) acrylamide. The purified G protein standards were 

handled in dilution buffer (Tris-HCl 25 mM, pH 7.5, DTT 1mM, NaCl 100 mM, Lubrol PX 0.1% 

(m/v), MgCl2 25 mM, EDTA 1 mM). Proteins were transferred onto 0.45 µm nitrocellulose 

membranes (Bio-Rad, Hercules, CA, USA) and then reacted with anti-hH3R (1:1000), M1 

antibody (1:1000), anti-His6 (1:5000), anti-Gαi1/2 (1:1000), anti-Gαo (1:1000), anti-Gαcommon 

(1:500) and anti-Gβcommon (1:1200) Ig´s. Immunoreactive bands were visualized by enhanced 

chemoluminescence (Pierce, Rockford, IL, USA), using anti-mouse and anti-rabbit Igs 

coupled to peroxidase (GE Healthcare, Little Chalfont, Buckinghamshire, UK). 

Electrochemoluminescence-stained blots were exposed to X-ray films (Amersham). The 

expression level of proteins were roughly estimated by using appropriate dilutions of a 

reference membrane expressing defined levels of hβ2AR protein or purified G proteins. 

hβ2AR expression levels were determined by radioligand binding with [3H]dihydroalprenolol. 

Immunoblots were scanned with a GS-710 calibrated imaging densitometer (Bio-Rad). The 

intensity of the bands was analyzed with the Quantity One 4.0.3 software (Bio-Rad). 

 

2.3.6 [³H]JNJ-7753707 binding assay 

Before experiments, membranes were sedimented by a 10-min centrifugation at 4°C 

and 15,000g and resuspended in binding buffer (12.5 mM MgCl2, 1 mM EDTA, and 75 mM 

Tris-HCl, pH 7.4), to remove residual endogenous guanine nucleotides as much as possible. 

Each tube (total volume, 250 or 500 µl) contained 10 to 50 µg of protein. Non-specific binding 

was determined in the presence of [3H]JNJ-7753707 at various concentrations plus 10 µM 
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THIO and amounted to ~20 - 30% of total binding at saturating concentrations (10 nM). 

Incubations were conducted for 60 min at RT and shaking at 250 rpm. Saturation binding 

experiments were carried out using 0.3 to 10 nM [3H]JNJ-7753707. Bound [3H]JNJ-7753707 

was separated from free [3H]JNJ-7753707 by filtration through 0.3% (m/v) polyethyleneimine-

pretreated GF/C filters, followed by three washes with 2 ml of binding buffer (4°C). Filter-

bound radioactivity was determined by liquid scintillation counting. The experimental 

conditions chosen ensured that not more than 10 % of the total amount of radioactivity added 

to binding tubes was bound to filters. 

 

2.3.7 [35S]GTPγγγγS binding assay 

Membranes were thawed and sedimented by a 10-min centrifugation at 4°C and 

15,000g to remove residual endogenous guanine nucleotides as far as possible. Membranes 

were resuspended in binding buffer, supplemented with 0.05% (m/v) BSA. Each tube (total 

volume of 250 or 500 µl) contained 10 - 20 µg of membrane protein. In saturation binding 

experiments, tubes contained 0.2 – 2 nM [35S]GTPγS plus unlabeled GTPγS to give the 

desired final ligand concentrations (0.2 – 50 nM). Neither GDP nor H3R ligands were 

included in assays. Non-specific binding was determined in the presence of 100 µM 

unlabeled GTPγS and amounted to less than 1% of total binding. Incubations were 

conducted for 90 minutes at 25°C and shaking at 250 rpm. Bound [35S]GTPγS was separated 

from free [35S]GTPγS by filtration through GF/C filters, followed by three washes with 2 ml of 

binding buffer (4°C). Filter-bound radioactivity was determined by liquid scintillation counting. 

The experimental conditions chosen ensured that not more than 10 % of the total amount of 

radioactivity added to binding tubes was bound to filters. 

 

2.3.8 Steady-state GTPase activity assay 

Membranes were thawed, sedimented and resuspended in 10 mM Tris/HCl, pH 7.4. 

Assay tubes contained Sf9 membranes (10 – 20 µg of protein/tube), 5.0 mM MgCl2, 0.1 mM 

EDTA, 0.1 mM ATP, 100 nM GTP, 0.1 mM adenylyl imidodiphosphate, 1.2 mM creatine 

phosphate, 1 µg of creatine kinase, and 0.2% (w/v) bovine serum albumin in 50 mM Tris/HCl, 

pH 7.4, and H3R ligands at various concentrations. Reaction mixtures (80 µl) were incubated 

for 2 min at 25°C before the addition of 20 µl of [γ-32P]GTP (0.1 µCi/tube). All stock and work 

dilutions of [γ-32P]GTP were prepared in 20 mM Tris/HCl, pH 7.4. Reactions were conducted 

for 20 min at 25°C. Reactions were terminated by the addition of 900 µl of slurry consisting of 

5% (w/v) activated charcoal and 50 mM NaH2PO4, pH 2.0. Charcoal absorbs nucleotides but 

not Pi. Charcoal-quenched reaction mixtures were centrifuged for 7 min at room temperature 

at 15,000g. Six hundred microliters of the supernatant fluid of reaction mixtures were 

removed, and 32Pi was determined by liquid scintillation counting. Enzyme activities were 
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corrected for spontaneous degradation of [γ-32P]GTP. Spontaneous [γ-32P]GTP degradation 

was determined in tubes containing all of the above described components plus a very high 

concentration of unlabeled GTP (1 mM) that, by competition with [γ-32P]GTP, prevents [γ-

32P]GTP hydrolysis by enzymatic activities present in Sf9 membranes. Spontaneous [γ-

32P]GTP degradation was <1% of the total amount of radioactivity added using 20 mM 

Tris/HCl, pH 7.4, as solvent for [γ-32P]GTP. The experimental conditions chosen ensured that 

not more than 10% of the total amount of [γ-32P]GTP added was converted to 32Pi. 

 

2.3.9 Miscellaneous 

Molecular biology was planned with GCK 2.5 (Textco BioSoftware, West Lebanon, 

NH, USA). Ligand structures were illustrated using ChemDraw Ultra 8.0 (CambridgeSoft, 

Cambridge, MA, USA). Protein was determined using the DC protein assay kit (Bio-Rad, 

Hercules, CA, USA). [3H]Dihydroalprenolol saturation binding was performed as described 

previously (Seifert et al., 1998). All analyses of experimental data were performed with the 

Prism 5 program (GraphPad Software, San Diego, CA, USA). When expression levels of 

recombinant proteins were determined by western blot, the Bio-Rad GS-710 Calibrated 

Imaging Densitometer and the software tool Quantity One version 4.0.3 (Bio-Rad, Hercules, 

CA, USA) was used. 

 

 

2.4 Results 

 

2.4.1 Immunological detection of recombinant proteins expressed in Sf9 cell 

membranes 

Membranes from the same batch of Sf9 cells infected with recombinant N- and C-

terminally tagged hH3R-baculoviruses alone or in combination with baculoviruses encoding 

different mammalian G proteins (Gα i1, Gα i2, Gα i3 or Gα o1 and/or β1γ2 dimers, respectively) 

were prepared and subjected to immunological analysis. The predicted molecular mass of 

the hH3R is ~49 kDa. We used anti-hH3R Ig, recognizing an 18 aa peptide within the 

extracellular N-terminus of the hH3R to confirm expression (Fig. 2.2A). Indeed, hH3R 

migrated as the expected band for a monomeric GPCR. The results were confirmed by the 

use of anti-FLAG Ig (Fig. 2.2B), recognizing the N-terminal FLAG-epitope and anti-His6 Ig 

(Fig. 2.2C), recognizing the C-terminal hexahistidine-tag. The bands were doublets, probably 

representing differently glycosylated forms of hH3R. hH3R possesses one putative N-

glycosylation site (Asn11), located in the N-terminus. The receptor expression levels were 

similar in all membrane batches and estimated to be ~1-2 pmol/mg, using anti-FLAG Ig and 

hβ2AR as standard (Fig. 2.2B). The expression level of the hβ2AR was 7.5 pmol/mg, as 
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determined by [3H]dihydroalprenolol saturation binding. Thus, hH3R was properly expressed 

in Sf9 cells and not proteolytically degraded after membrane preparation. 

In order to visualize the co-expressed Gα-subunits, we used an antibody recognizing 

all Gαi/o-proteins (Fig. 2.2D). Gαi/o-subunits appeared at the expected molecular mass (~40 – 

41 kDa) as very intense bands, although the expression level of Gαi1 was lower compared to 

the other ones. This is an intrinsic property of mammalian Gαi1 heterologously expressed in 

Sf9 cells, as already shown in a previous study (Kleemann et al., 2008). Unfortunately, this 

problem could not be overcome by an optimization of the expression process. However, it 

was also shown that a low expression level of Gαi1 does not influence its ability to effectively 

interact with GPCRs (Kleemann et al., 2008). Probably, Gαi1 accumulates in GPCR-

expressing membrane domains. Gβ1-subunits were expressed at similar levels in all 

membranes studied (Fig. 2.2E). 
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Fig. 2.2. Immunological detection of recombinant proteins expressed in Sf9 cells. Each 
lane of the gels was loaded with 10 µg of membrane protein, unless otherwise indicated 
below the film. Numbers on the left designate masses of marker proteins in kDa. In A, a 
membrane expressing the hH3R alone was loaded onto the gels. In B1 and B2, 2, 4, 6, 8 and 
10 µg of protein of Sf9 membranes expressing hβ2AR at 7.5 pmol/mg (as determined by 
[³H]dihydroalprenolol saturation binding) were used as standard to assess the expression 
levels of the hH3R in different membrane preparations with anti-FLAG Ig. In C, the same 
membranes were reacted with anti-His6 Ig. In D, the membranes were reacted with anti-Gαi-

common Ig. In E, the membranes were reacted with anti-Gβ-common Ig. In F, 0.5, 1.0, 1.5 and 2.0 
µg of a membrane expressing the hH3R + Gαi2 + β1γ2 was analyzed in order to quantify the 
Gα-subunits, using 2, 4, 7.5, 15 and 30 pmol of purified Gαi2 as standard. In G, 0.5, 1.0, 1.5 
and 2.0 µg of a corresponding membrane of the same batch expressing hH3R + Gαo1 + β1γ2 
was analyzed to quantify the Gα-subunits, using 2, 4, 7.5, 15 and 30 pmol of purified Gαo2 an 
almost identical splice variant of Gαo1 as standard. 

 
 

The GPCR/G protein ratio can alter the pharmacological properties of ligands 

(Kenakin, 1997). Therefore, we quantified Gαi2 and Gαo1 using purified protein as reference. 

These semi-quantitatively determined expression levels for the Gα-subunits were in the 

range of 50-100 pmol/mg, resulting in receptor-to-G protein ratios of ~1:50 – 1:100 (Figs. 

2.2F and 2.2G). This is in good agreement with ratios determined for other Gi/o-coupled 

receptors in Sf9 cell membranes, for example the hH4R (Schneider et al., 2009), human 

cannabinoid receptors CB1 and CB2 (Nickl et al., 2008) and the human formyl peptide 

receptor (Wenzel-Seifert et al., 1998). 

 

2.4.2 [³H]JNJ-7753707 and [35S]GTPγS binding. Quantitative analysis of receptor-to-G 

protein stoichiometry 

Due to the fact that the determination of expression levels by immunoblotting does 

not discriminate between functional and non-functional proteins, we also quantified the hH3R 

and Gα proteins by a combination of antagonist [³H]JNJ-7753707- and [35S]GTPγS-saturation 

binding and calculated the functional GPCR/Gα protein ratios (Table 2.1). The membranes 
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were from the same batch as those studied by immunoblot to ensure maximal comparability 

and data accuracy. 

 

Table 2.1: Quantification of hH3R-to-G protein ratios via [³H]JNJ-7753707- and 

[35S]GTPγS-saturation binding. 

 

 Bmax ± S. E. M. (pmol × mg-1) 

hH3R + β1γ2 

membrane 

+ Gαi1 + Gαi2 + Gαi3 + Gαo1 

[³H]JNJ-7753707 0.6 ± 0.04 1.02 ± 0.07 1.2 ± 0.06 0.7 ± 0.03 

[35S]GTPγS 1.40 ± 0.57 5.78 ± 0.67 4.02 ± 0.80 7.83 ± 0.77 

R : G ratio  ~1 : 2 ~1 : 6 ~1 : 3 ~1 : 11 

 

 

[³H]JNJ-7753707 saturation bindings were performed as described under Materials and 
Methods. [35S]GTPγS saturation bindings were performed, using Sf9 cell membranes from 

the same batch of preparation. Reaction mixtures contained membranes (10 - 20 µg of 
protein), 0.2 - 2 nM of [35S]GTPγS, and unlabeled GTPγS to give the desired final ligand 

concentrations for saturation (0.2 – 50 nM). GDP or additional H3R ligands were not present 
in the reaction mixtures. Data were analyzed by nonlinear regression and were best fitted to 
hyperbolic one-site saturation isotherms. The maximal number of GTPγS binding sites in 
membranes expressing hH3R plus Gαi2 plus β1γ2 was corrected by the binding determined in 
hH3R plus β1γ2. By this way, the number of functionally intact and heterologously expressed 
G protein α-subunits was quantified. Data shown are the means ± S. E. M. of 3 independent 

experiments performed in triplicate. Receptor-to-G protein ratios were calculated, using the 
Bmax values determined for the different membrane preparations. 
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In [35S]GTPγS-saturation binding experiments neither GDP nor H3R ligands were 

present. The maximum number of Gαi/o-related GTPγS binding sites in membranes 

expressing hH3R plus Gα-subunits plus β1γ2 was corrected by the binding determined in 

parallel in membranes expressing hH3R plus β1γ2 alone. To ensure the same viral load in the 

reference membrane, Sf9 cells were infected with baculoviruses encoding hH3R, β1γ2 and 

virus encoding no recombinant protein at all. In this manner, only the number of functionally 

intact and heterologously expressed mammalian Gαi/o-subunits was quantified. 

The experiments revealed that the number of [³H]JNJ-7753707 binding sites was very 

similar to the hH3R protein expression levels determined via immunoblot. Thus, most hH3R 

molecules were correctly folded in Sf9 cell membranes. However, the number of specific 

[35S]GTPγS binding sites for mammalian Gα-proteins was much smaller when compared with 

the Gα-protein expression levels determined via immunoblot. Nevertheless, there were still 

more functionally intact mammalian G proteins than receptors in the membranes and the 

functional receptor-to-G protein ratios ranged between 1 : 2 and 1 : 11. Similar ratios were 

also found by other investigators, using the same methodology (Gazi et al., 2003). These 

data also fit to the linear and non-catalytic signal transfer observed for several GPCR/G-

protein pairs in Sf9 cell membranes (Wenzel-Seifert et al., 1998, 1999; Wenzel-Seifert and 

Seifert, 2000). 

 

2.4.3 Steady-state GTPase assay. hH3R coupling to different Gα-subunits 

To investigate the G protein coupling profile of the hH3R, we measured the receptor-

dependent [γ-32P]GTP hydrolysis of different Gα-subunits. The experiments were performed 

under steady-state conditions. Thus, multiple G protein activation/deactivation cycles were 

assessed, eliminating the inherent bias of kinetic [35S]GTPγS binding studies. GTP hydrolysis 

was determined in parallel under basal conditions, maximal stimulation with the physiological 

(and full) agonist histamine (10 µM) and a saturating concentration of the inverse agonist 

thioperamide (10 µM) in Sf9 cell membranes expressing the hH3R alone or co-expressing the 

hH3R and different G proteins. 
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Table 2.2: GTPase activities in Sf9 membranes expressing hH3R and different Gαi/o-

proteins. 

 

hH3R + β1γ2 
GTPase activity 

± S. E. M. 
- + Gαi1 + Gαi2 + Gαi3 + Gαo1 

basal 

(pmol × mg-1 × min-1) 
1.21 ± 0.04 1.98 ± 0.05 2.92 ± 0.13 2.08 ± 0.16 4.43 ± 0.40 

+ ago. 

(pmol × mg-1 × min-1) 
1.36 ± 0.03 2.56 ± 0.03 4.24 ± 0.22 3.10 ± 0.30 5.65 ± 0.47 

∆ ago. 

(pmol × mg-1 × min-1) 
0.15 ± 0.03 0.57 ± 0.07 1.31 ± 0.12 1.02 ± 0.20 1.21 ± 0.09 

Agonist stimulation 

(% of basal) 

12.63 ± 

3.10 

29.01 ± 

3.98 

44.82 ± 

3.51 

49.28 ± 

9.01 

27.50 ± 

1.40 

+ inv. ago. 

(pmol × mg-1 × min-1) 
1.07 ± 0.02 1.45 ± 0.17 1.64 ± 0.15 1.40 ± 0.22 3.34 ± 0.38 

∆ inv. ago. 

(pmol × mg-1 × min-1) 
0.14 ± 0.05 0.53 ± 0.13 1.29 ± 0.17 0.68 ± 0.10 1.09 ± 0.10 

Inverse agonist 

inhibition 

(% of basal) 

11.70 ± 

4.25 

27.20 ± 

6.85 

44.13 ± 

3.57 

33.45 ± 

5.83 

24.88 ± 

2.59 

 

Steady-state GTPase experiments were performed as described in Materials and Methods. 
Reaction mixtures contained 0.1 µCi [γ-32P]GTP and 100 nM unlabeled GTP in the presence 

of solvent (basal), 10 µM HA (+ ago.) or 10 µM THIO (+ inv. ago.). Data shown are the 
means ± S. E. M. of three to four independent experiments for each membrane preparation 
performed in duplicates. The absolute agonist-stimulation (∆ ago.) and inverse agonist-
inhibition (∆ inv. ago.) of GTP hydrolysis, as well as the relative agonist-stimulation and 
inverse agonist-inhibition of GTP hydrolysis (% of basal), were calculated. 
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In membranes expressing the hH3R alone, basal GTPase activity was low, and the 

stimulatory and inhibitory effects of histamine and thioperamide, respectively, were small 

(Table 2.2). This reflects only very weak coupling of the hH3R to insect cell G proteins. The 

structurally related hH4R also couples only weakly to insect cell G proteins (Schneider et al., 

2009). hH3R coupled efficiently to all co-expressed mammalian Gαi/o-subunits (Gαi1, Gαi2, Gαi3 

or Gαo1, and β1γ2 dimers, respectively) as was evident by the higher basal GTPase activity 

and the larger absolute stimulatory and inhibitory effects of histamine and thioperamide, 

respectively. The relative stimulatory effects of histamine and the relative inhibitory effects of 

thioperamide based on total ligand-regulated GTPase activity were similar for each of the five 

systems studied, indicating that the constitutive activity of hH3R was comparable and not 

substantially influenced by the type of G protein (Seifert and Wenzel-Seifert, 2002). In 

contrast to hH3R, the short and long splice variants of Gαs had a large impact on the 

constitutive activity of the hβ2AR (Seifert et al., 1998; Seifert, 2001). The constitutive activity 

of hH3R coupled to cognate Gi/Go-proteins was rather high and comparable to the 

constitutive activity of hH4R (Schneider et al., 2009) and the human formyl peptide receptor 

(Wenzel-Seifert et al., 1998, 1999). However, some Gi/Go-coupled GPCRs expressed in Sf9 

cells exhibit only low or no constitutive activity, indicating that the expression system per se 

does not give rise to high constitutive activity (Seifert and Wenzel-Seifert, 2002; Kleemann et 

al., 2008). 

 

2.4.4 Ligand potencies and efficacies in the steady-state GTPase assay at hH3R co-

expressed with different Gα-subunits 

Next, we examined a variety of imidazole-based ligands, including the functionally 

selective proxyfan, in Sf9 cell membranes expressing the hH3R and different Gαi/o-proteins in 

the steady-state GTPase assay (Fig. 2.1, Table 2.3). 
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The endogenous agonist histamine (1) and the standard H3R ligands Nα-

methylhistamine (2) and (R)-α-methylhistamine (3) were full agonists and equally potent in all 

membranes. The highly potent standard H3R agonist imetit (4) was almost a full partial 

agonist in this assay. Most interestingly, the protean agonist proxyfan (5) was a strong partial 

agonist in all systems, independent of the G protein subtype co-expressed (Fig. 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3. Comparison of the effects of histamine, proxyfan and thioperamide in 
membranes expressing the hH3R, different Gαi/o subunits and β1γ2 dimers. Steady-state 
GTPase activity in Sf9 membranes was determined as described under Materials and 
Methods. Reaction mixtures contained histamine (HA), proxyfan (PRO) or thioperamide 
(THIO) at the concentrations indicated on the abscissa to achieve saturation. Data were 
analyzed by nonlinear regression and were best fit to sigmoidal concentration/response 
curves. Data points shown are the means ± S. E. M. of 3 - 4 independent experiments 
performed in duplicate. A summary of all results is shown in Table 2.3. 
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Impentamine (6) was a moderate partial agonist in all experimental settings. The 

inverse agonists ciproxyfan (7), clobenpropit (8) and thioperamide (9) each were also equally 

potent in the various systems, although they significantly differed in efficacy with the various 

Gαi/o-proteins. However, the rank orders of potency and efficacy of compounds 7 - 9 did not 

change under the various conditions. Thus, the pharmacological profile of the hH3R is very 

similar under the various experimental conditions. Additionally, there is a strong linear 

correlation between potencies and efficacies of H3R ligands at membranes expressing 

different Gαi/o-subunits (Fig. 2.4). An increase in constitutive activity of hH3R coupled to one 

G protein relative to another G-protein would have been reflected in increased agonist 

potency and efficacy (Seifert and Wenzel-Seifert, 2002), but such an observation was not 

made. Moreover, differences in constitutive activity of hH3R under the various conditions 

would have resulted in systematic changes of inverse agonist potency, i.e. an increase in 

constitutive activity would have resulted in decreased inverse agonist potency (Seifert and 

Wenzel-Seifert, 2002). Again, no such data were obtained. Collectively, these results 

corroborate the findings regarding the relative stimulatory and inhibitory effects of histamine 

and thioperamide, respectively (Table 2.2) based on total ligand-regulated GTPase activity 

and are indicative for similar constitutive activity of hH3R under all experimental conditions 

(Seifert and Wenzel-Seifert, 2002). 
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Fig. 2.4. Correlation of potency and efficacy of ligands at the hH3R in the presence of 
different co-expressed Gαi/o-proteins. Data shown in Table 2.3 were analyzed by linear 
regression. In A, C and E, the potencies of ligands at membranes co-expressing the hH3R, 
Gαi1, Gαi3 or Gαo1, and β1γ2 dimers, respectively, were correlated with values determined at 
the reference membrane expressing Gαi2. A, r2 = 0.97; slope = 0.93 ± 0.06. C, r2 = 0.93; 
slope = 1.02 ± 0.10. E, r2 = 0.92; slope = 0.96 ± 0.11. In B, D and F, the efficacies of ligands 
at membranes co-expressing the hH3R, Gαi1, Gαi3 or Gαo1, and β1γ2 dimers, respectively, 
were correlated with values determined at the reference membrane expressing Gαi2. B, r2 = 
0.99; slope = 0.87 ± 0.03. D, r2 = 0.99; slope = 0.78 ± 0.03. F, r2 = 0.99; slope = 0.85 ± 0.03. 
The dotted lines indicate the 95% confidence intervals of the regression lines. The diagonal 
dashed line has a slope of 1 and represents a theoretical curve for identical values. 
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2.4.5 Studies with hH3R-Gαi2 and hH3R-Gαo1 fusion proteins 

The use of co-expression systems is often hampered by the fact that it is difficult, if 

not impossible, to control the expression levels of different signalling partners exactly (Fig. 

2.2, Table 2.1) (Gille and Seifert, 2003; Kleemann et al., 2008). Table 2.1 shows that also for 

hH3R, identical GPCR/Gα ratios could not be achieved. The efficiency of interactions 

between GPCRs and heterotrimeric G proteins can be influenced by the absolute and 

relative densities of these proteins in the plasma membrane (Kenakin, 1997; Gille and 

Seifert, 2003). Fortunately, the analysis of these interactions is greatly facilitated by the use 

of GPCR-Gα fusion proteins (Seifert et al., 1999b). Fusion proteins ensure a defined 1:1 

stoichiometry of GPCR to Gα and ensure physical proximity of the signalling partners. 

Nonetheless, fusion proteins are not physiologically occurring and therefore, the 

academically best procedure is to compare co-expression systems directly with fusion 

proteins (Wenzel-Seifert et al., 1998, 1999; Wenzel-Seifert and Seifert, 2000). 

Pertussis toxin-sensitive G proteins consist of different Gαi/o-family members and βγ-

complexes (Birnbaumer, 2007). The three Gαi-subunits are all very similar in structure, 

whereas the two Gαo-splice variants are less conserved. The largest structural differences in 

this G protein family exist between Gαi2 and Gαo1 (Birnbaumer, 2007). Thus, we constructed 

hH3R-Gαi2 and hH3R-Gαo1 fusion proteins as representative pair to study hH3R/G protein 

coupling in more detail. We hypothesized that, if there were any hH3R/G protein coupling 

differences, then potencies and efficacies of ligands should diverge most prominently at this 

fusion protein pair. The assessment of GTPase activity at different GPCR-GαX fusion 

proteins is the most accurate measure of the pharmacological profile of a given receptor 

because GTPase activities are determined under steady-state conditions, rendering potency 

and efficacy values of agonists and inverse agonists expression level-independent (Seifert et 

al., 1999a,b; Wenzel-Seifert et al., 1999; Wenzel-Seifert and Seifert, 2000). The 

pharmacological profiles of histamine, imetit, proxyfan, clobenpropit and thioperamide in the 

GTPase assay were very similar at the hH3R-Gαi2 and hH3R-Gαo1 fusion proteins both in 

terms of potency and efficacy (Table 2.4). 
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Table 2.4: Potencies and efficacies of selected ligands in the GTPase assay at fusion 

proteins. 

 

 hH3R-Gαi2 + β1γ2 hH3R-Gαo1 + β1γ2 

 
pEC50 

± S. E. M. 
Emax ± S. E. M. 

pEC50 

± S. E. M. 
Emax ± S. E. M. 

HA 7.40 ± 0.10 1.00 7.46 ± 0.11 1.00 

IME 9.55 ± 0.19 0.96 ± 0.08 9.62 ± 0.09 0.95 ± 0.04 

PRO 7.65 ± 0.23 0.81 ± 0.08 7.76 ± 0.13 0.74 ± 0.05 

CLOB 8.72 ± 0.25 -0.60 ± 0.07 8.45 ± 0.25 -0.86 ± 0.09 

THIO 7.00 ± 0.18 -0.76 ± 0.07 7.05 ± 0.15 -0.74 ± 0.05 

 

 

Steady-state GTPase activity in Sf9 membranes expressing hH3R-Gαi2 or hH3R-Gαo1 plus 
β1γ2 was determined as described under Materials and Methods. Reaction mixtures 

contained ligands at concentrations from 0.1 nM to 10 µM as appropriate to generate 
saturated concentration/response curves. Data were analyzed by nonlinear regression and 
were best fit to sigmoid concentration/response curves. Typical basal GTPase activities 
ranged between 1.0 and 1.5 pmol × mg-1 × min-1, and the maximal stimulatory effect of HA 
(10 µM) amounted to ~50 to ~80% above basal. The efficacy (Emax) of HA was determined by 
nonlinear regression and was set to 1.00. The Emax values of other agonists and inverse 
agonists were referred to this value. Data shown are the means ± S. E. M. of three to four 
experiments performed in duplicates each. Statistical analysis was performed using the t-test 
(p < 0.05). Significant differences were not found for the data analyzed. 
 

Moreover, there was no evidence for differences in constitutive activity of the two 

fusion proteins. These results fit very well to the data obtained with the corresponding co-

expression systems (Table 2.3) and render it unlikely that the non-identical GPCR/Gα 

stoichiometries in the co-expression studies documented in Table 2.1 had a major impact on 

the pharmacological profile of hH3R. Actually, the stoichiometry issue would have been of 

greater concern if the pharmacological profiles of the hH3R had been different with the 

various co-expressed Gαi/o proteins. This was, however, not the case (Table 2.3). 

 

 

2.5 Discussion 

 

The imidazole-containing H3R ligand proxyfan exhibits pleiotropic effects, ranging 

from inverse agonism to agonism, depending on the system studied (Gbahou et al., 2003; 

Krueger et al., 2005). An explanation for these findings could be that the proxyfan-bound H3R 

exhibits different affinities and efficacies for coupling to various G-proteins (Kenakin, 2001, 
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2007; Kobilka and Deupi, 2007). Thus, the observed proxyfan effects could be due to 

functional selectivity. We tested this hypothesis by studying coupling of the hH3R to four 

different Gαi/o-proteins under clearly defined experimental conditions, measuring one and the 

same parameter of GPCR/G-protein coupling, i.e. steady-state GTPase activity. However, 

we did not obtain evidence for functional selectivity of proxyfan. In our hands, proxyfan was a 

strong partial agonist at the full-length hH3R (445 aa) in all experimental settings. For eight 

other hH3R ligands, we did not obtain evidence for functional selectivity either. Moreover, we 

could not find differences in constitutive activity of hH3R coupled to Gi/Go-proteins which 

would have been important for detecting protean agonism (Gbahou et al., 2003). Those 

“negative” data were obtained in a co-expression system and a fusion protein system. Thus, 

the crucial question is of how the discrepancies between our present study and the studies of 

Gbahou et al. (2003) and Krueger et al. (2005) could be explained. 

Defined ligands stabilize distinct conformations in the human dopamine D2-receptor 

that result in the activation of only one specific Gαi/o-subunit when expressed in Sf9 cells 

(Gazi et al., 2003). Additionally, endogenous catecholamines and synthetic ligands stabilize 

distinct ligand-specific active states in human β-adrenergic receptors (Seifert et al., 1999a; 

Wenzel-Seifert and Seifert, 2000; Weitl and Seifert, 2008). Moreover, ligand-specific 

conformations were readily unmasked for histamine H1- and H2-receptors expressed in Sf9 

cells (Preuss et al., 2007; Wittmann et al., 2009). These data show that the baculovirus/Sf9 

cell system is sufficiently sensitive at detecting ligand-specific GPCR conformations so that 

we should have been able to detect functional selectivity of proxfan. However, it should also 

be emphasized that for some GPCRs expressed in Sf9 cells, e.g. the human formyl peptide 

receptor, no evidence for ligand-specific receptor conformations could be obtained despite 

intense efforts (Wenzel-Seifert et al., 1999). These data indicate that not all GPCRs exhibit 

ligand-specific conformations. Noteworthy, like hH3R, the formyl peptide receptor couples to 

Gi/Go-proteins (Wenzel-Seifert et al., 1999). 

In the study of Gbahou et al. (2003), proxyfan was a partial agonist in [35S]GTPγS 

binding, cAMP accumulation and mitogen-activated protein kinase assays, but an inverse 

agonist in phospholipase A2 assays, all parameters representing distal consequences of 

Gαi/o-protein activation. It is possible that different combinations of Gαi/o-proteins are involved 

in the responses, that the G-protein/effector stoichiometry is different in the pathways 

(Ostrom and Insel, 2004) and that there is cross-talk between the mitogen-activated protein 

kinase and phospholipase A2. In contrast, we studied clearly defined G-protein heterotrimers 

(although at somewhat different GPCR/G-protein ratios) and a proximal parameter of 

GPCR/G-protein coupling, avoiding complications of G-protein/effector stoichiometry and 

cross-talk of signalling pathways. 
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In the study of Krueger et al. (2005), proxyfan exhibited little activity in 

neurotransmitter release assays, full agonism in cAMP accumulation assays and partial 

agonism in [35S]GTPγS binding assays. Additionally, in transfected HEK cells proxyfan 

displayed differential activity in cAMP accumulation- and calcium mobilization assays 

dependent on the type of G protein co-expressed (Gα16 or Gαqi5). The authors concluded that 

the type of G protein determines the pharmacological properties of proxyfan. While it is 

known that Gα16 has an impact on the pharmacological properties of GPCRs (Wenzel-Seifert 

and Seifert, 2000), Gα16 is certainly not a cognate G-protein of hH3R, but rather a G-protein 

expressed in hematopoietic cells and not in neuronal cells (Birnbaumer, 2007). Moreover, 

Gαqi5 is not a physiological G protein, but a chimeric G protein used to direct Gi-coupled 

GPCRs towards Gq- and phospholipase C coupling (Coward et al., 1999). We studied only 

cognate G proteins of hH3R, i.e. Gαi/o-proteins, and did not obtain evidence for ligand-specific 

hH3R conformations. 

Gbahou et al. (2003) expressed H3R in CHO cells. These cells express some of the 

cognate Gαi/o-proteins of H3R, but the specific expression pattern of Gαi/o-subunits was not 

defined in the previous study. Moreover, it is unknown whether the proxyfan-bound H3R 

interacted differentially with various Gαi/o-proteins in CHO cells. Such an interaction can be 

studied by photoaffinity labelling with [α-32P]GTP azidoanilide (Woo et al., 2009). However, 

such data are not available. Moreover, various βxγy-complexes impact on GPCR/G-protein 

coupling (Birnbaumer, 2007). However, in the previous studies on proxyfan βxγy-complexes 

were not defined. We studied a single βγ-complex that is broadly expressed, i.e. β1γ2 

(Birnbaumer, 2007), but we did not examine other βxγy-complexes. It is possible that distinct 

βxγy-complexes account for the protean agonism of proxyfan observed in the previous 

studies, but those βxγy-complexes remain to be identified. It is also possible that differential 

compartmentation of G-protein heterotrimers into specific membrane domains, resulting in 

different GPCR/G-protein stoichiometries (Ostrom and Insel, 2004) contributed to protean 

agonism of proxyfan observed in previous studies. In our co-expression system, we cannot 

exclude different compartmentation of signalling partners either, but the GPCR-Gα fusion 

protein approach circumvented this problem (Seifert et al., 1999b). With hH3R-Gαi/o fusion 

proteins, like with the corresponding co-expression systems, there was no evidence for 

ligand-specific GPCR conformations.  

Another issue is the fact that some of the previous assays were performed with intact 

cells and some assays with membranes. In experiments with intact cells, the precise ionic 

and nucleotide environments of G-proteins are unknown, but both ionic and nucleotide 

composition can largely affect GPCR/G-protein coupling, constitutive GPCR activity and 

pharmacological GPCR profile (Seifert et al., 1999a; Seifert, 2001; Gille et al., 2002). 

Moreover, in intact cells, specifically native tissues, relevant for neutrotransmitter release 
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studies, it cannot be excluded that endogenous histamine is present, thereby changing the 

apparent agonistic/inverse agonistic activities of ligands. We performed experiments with 

extensively washed membranes, excluding the presence of contaminating histamine and 

conducted experiments under clearly defined ionic conditions and nucleotide composition. 

We are aware of the fact that our experimental conditions do not represent physiological 

conditions, but our conditions are defined and allow direct comparison with data from our 

group for other GPCRs over a period of a decade (Seifert et al., 1999a; Seifert, 2001; Gille et 

al., 2002; Preuss et al., 2007; Schneider et al., 2009). Noteworthy, under our experimental 

conditions, different degrees of constitutive activity of a GPCR can be readily detected 

(Seifert, 2001; Wenzel-Seifert and Seifert, 2000; Preuss et al., 2007), supporting the principal 

suitability of our system for the hypothesis tested. 

It should be also noted that the study of Gbahou et al. (2003) was performed with 

rH3R. Species-specific pharmacology of the H3R has been mainly attributed to two aa 

differences in transmembrane domain 3, which are part of the ligand binding site, and this 

leads to changes in antagonist affinities (Yao et al., 2003). However, it is possible that the 

rH3R also shows a different G protein coupling profile compared to the hH3R. Here, we 

studied only the full-length hH3R (445 aa). Future studies will have to examine rH3R as well. 

Another point is the fact that Gbahou et al. (2003) used a truncated splice variant of 

the full-length rH3R (413 aa) in their experiments. This short splice variant lacks 32 amino 

acids in the 3rd intracellular loop of the receptor, which is an important interaction site for G 

proteins (Seifert et al., 1999b; Leurs et al., 2005). It is possible that the truncated rH3R 

possesses an altered G protein coupling profile compared to the full-length rH3R. The 

detailed coupling profiles of various H3R splice variants are not yet known, but should be 

addressed in future investigations. The pattern of H3R splice variant expression differs 

between species and brain regions (Bongers et al., 2007) and splice variants differentially 

regulate signal transduction pathways (Drutel et al., 2001). These data are indicative for 

differences in G protein coupling of H3R splice variants. We studied only the full-length hH3R 

(445 aa) without considering splice variants. 

In conclusion, we have shown that the full-length hH3R (445 aa) couples similarly to 

four defined Gi/Go-protein heterotrimers expressed in Sf9 cells. We did not obtain evidence in 

favor of the hypothesis that proxyfan or eight other H3R ligands are functionally selective in a 

co-expression and a fusion protein system. Moreover, we did not find differences in 

constitutive activity of hH3R under various experimental conditions. These “negative” results 

cannot be attributed to unsuitability of our expression system for exclusion of ligand 

functional selectivity. However, our system is not suitable to definitely exclude protean 

agonism at hH3R, since that would require a systematic and precise variation of receptor-to-

G protein stoichiometries (Kenakin 2001, 2007). Additionally, we discussed several 
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possibilities that could account, fully or partially, for the differences between the results of our 

study and the previous studies of Gbahou et al. (2003) and Krueger et al. (2005). Extensive 

systematic studies under clearly defined experimental conditions are required to reconcile 

the discrepancies. Thus, presently, a specific and generally applicable mechanistic 

explanation for the previously observed pleiotropic effects of proxyfan cannot yet be 

provided. 
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3.1 Abstract 

 

Ligand pharmacology at histamine H3-receptors is species-dependent. In previous 

studies, two amino acids in transmembrane domain 3 (TM III) were shown to play a 

significant role. In this study, we characterized human and rat histamine H3-receptors (hH3R 

and rH3R, respectively), co-expressed with mammalian G proteins in Sf9 insect cell 

membranes. We compared a series of imidazole-containing H3R ligands in radioligand 

binding and steady-state GTPase assays. H3Rs similarly coupled to Gαi/o-proteins. Affinities 

and potencies of the agonists histamine, Nα-methylhistamine and R-(α)-methylhistamine were 

in the same range. Imetit was only a partial agonist. The pharmacology of imetit and proxyfan 

was similar at both species. However, impentamine was more potent and efficacious at rH3R. 

The inverse agonists ciproxyfan and thioperamide showed higher potency but lower efficacy 

at rH3R. Clobenpropit was not species-selective. Strikingly, imoproxifan was almost full 

agonist at hH3R, but an inverse agonist at rH3R. Imoproxifan was docked into the binding 

pocket of inactive and active hH3R- and rH3R-models and molecular dynamic simulations 

were performed. Imoproxifan bound to hH3R and rH3R in E-configuration, which represents 

the trans-isomer of the oxime-moiety as determined in crystallization studies, and stabilized 

active hH3R-, but inactive rH3R-conformations. Large differences in electrostatic surfaces 

between TM III and TM V cause differential orientation of the oxime-moiety of imoproxifan, 

which then differently interacts with the rotamer toggle switch Trp6.48 in TM VI. Collectively, 

the substantial species differences at H3Rs are explained at a molecular level by the use of 

novel H3R active-state models. 

 

 

3.2 Introduction 

 

 Histamine (HA) exhibits its biological effects through the activation of four different G 

protein-coupled receptors (GPCRs). The histamine H1-receptor (H1R) is associated with 

inflammatory and allergic reactions, e. g. it increases vascular permeability and NO 

production (Hill et al., 1997). The histamine H2-receptor (H2R) regulates gastric acid 

production, but also shows a positive inotropic effect on the heart (Hill et al., 1997). The 

histamine H3-receptor (H3R) is a presynaptic auto- and heteroreceptor, regulating the release 

of HA and various other neurotransmitters in the nervous system, and is involved in 

important physiological processes like the sleep-wake cycle, eating behaviour and cognition 

(Leurs et al., 2005). The histamine H4-receptor (H4R) mediates inflammatory and 

immunological processes, e. g. chemotaxis of eosinophils, mast cells and dendritic cells, but 
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it is also present on neurons mediating HA-induced itching (Leurs et al., 2009; Zampeli and 

Tiligada, 2009). H1R and H2R antagonists have been used as therapeutics for decades, H3R 

and H4R are still explored and promising new drug targets (Tiligada et al., 2009). 

 The H3R was pharmacologically identified in the early 1980s, but cloned almost 20 

years later in 1999 as an orphan GPCR (Leurs et al., 2005). The reason for this delay was 

that it only shares ~20% homology to the H1R and H2R. The complex gene structure of the 

human H3R (hH3R) gives rise to many possible splice variants. To date about 20 hH3R splice 

variants are known (Bongers et al., 2007a), but their function still remains elusive. The H3R 

displays high constitutive, i. e. ligand-independent, activity in many experimental systems 

(Arrang et al., 2007). The H3R is one of the very few GPCRs for which constitutive activity 

has also been demonstrated in vivo (Morisset et al., 2000). 

 For the H3R it has also been shown that species-differences exist (Ireland-Denny et 

al., 2001; Wulff et al., 2002). Fig. 3.1 shows the amino acid sequences of hH3R and rH3R. 

Although the H3R sequence has a high degree of similarity among species, differences 

located in key regions of the receptor protein account for differences in antagonist affinity 

(Ligneau et al., 2000; Yao et al., 2003). Additionally, splice variants differ in composition and 

expression pattern between species, and there are potential differences in signal 

transduction processes between either tissues and/or species (Hancock et al., 2003). 

Nevertheless, there are still unresolved questions about species differences of the full-length 

and un-spliced H3Rs (445 amino acids), especially regarding the detailed molecular 

mechanisms involved in ligand-receptor interactions. 

 In the present study, we systematically compared the pharmacological properties of 

hH3R and rH3R. Fig. 3.2 shows the structures of the compounds studied, all of them being 

imidazole-containing ligands. We co-expressed hH3R and rH3R in Sf9 cells together with 

mammalian G proteins in a defined stoichiometry, determined the affinity of ligands in 

radioligand binding studies, and their potency and efficacy in steady-state GTPase assays. 

The baculovirus/Sf9 cell system is very suitable for the analysis of Gi/Go-coupled receptors 

and in particular constitutively active receptors, because in Sf9 cells no endogenous Gi/Go-

proteins or GPCRs with constitutive activity are present. The controlled expression of 

receptor and G proteins in Sf9 cell membranes represents more the physiological situation 

than, for example, the construction of GPCR-Gα fusion proteins, because fusion proteins do 

not exist physiologically and the mobility of the G proteins is not restricted in the co-

expression system. Moreover, the use of very proximal read-outs, like radioligand binding or 

steady-state GTPase assays prevent possible bias in later steps of the signal transduction 

cascade. 

 Many studies of ligand-receptor interactions come to a point where structural 

information on the atomic level is needed to explain experimental results. In the case of 
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GPCRs, this is a very challenging and time-consuming process, and at the end only 

snapshots of static ligand-receptor complexes are resolved (Kobilka and Schertler, 2008). 

However, more and more high-resolution crystal structures of inactive- and active-state 

GPCR-ligand complexes are becoming available and can be used to generate better 

homology models (Rasmussen et al., 2007; Jaakola et al., 2008; Park et al., 2008). Since 

active-state models for H3Rs do not yet exist, we generated and used those models to 

explain the pharmacological species differences at hH3R and rH3R on the basis of 

experimental data. These new models combine the information of previous studies on H3Rs 

(Schlegel et al., 2007), and were complemented with sophisticated studies on the activation 

process of H1Rs (Strasser and Wittmann, 2007; Strasser et al., 2009). 

 

 

3.3 Materials and Methods 

 

3.3.1 Materials 

The cDNAs of the hH3R and rH3R were kindly provided by Dr. T. Lovenberg (Johnson 

& Johnson Pharmaceutical R&D, San Diego, CA, USA). An alignment of the corresponding 

amino acid sequences is given in Fig. 3.1. Anti-hH3R Ig and anti-rH3R Ig were from Bio-Trend 

(Cologne, Germany). The antibody recognizing both species homologs was from GeneWay 

(San Diego, CA, USA). All other antibodies, purified G proteins, reagents for molecular 

biology, recombinant baculoviruses encoding mammalian G protein subunits, and the 

sources of test compounds were described before (Schnell et al., 2009). Chemical structures 

of H3R ligands are depicted in Fig. 3.2. Stock solutions (10 mM) of all H3R ligands described 

in this paper were prepared in distilled water and stored at -20°C. [3H]JNJ-7753707 (= 

[3H]RWJ-422475) (30 Ci/mmol) was kindly donated from Dr. P. Bonaventure (Johnson & 

Johnson Pharmaceutical R&D, San Diego, CA, USA). [3H]Nα-methylhistamine (74-85 

Ci/mmol) and [35S]GTPγS (1100 Ci/mmol) were obtained from Perkin Elmer (Boston, MA, 

USA). [γ-32P]GTP was synthesized as described (Schnell et al., 2009). Unlabeled nucleotides 

were from Roche (Indianapolis, IN, USA) and all other reagents were of the highest purity 

available and from standard suppliers. 

 

3.3.2 Construction of FLAG epitope- and hexahistidine-tagged cDNAs for hH3R and 

rH3R 

The cDNA for the tagged rH3R protein was generated by sequential overlap-extension 

PCR in analogy to the procedure described recently for hH3R (Schnell et al., 2009). In the 

case of rH3R, the sense primer RAT HRH3-F- (5´- GAC GAT GAT GAC GCC ATG GAG 

CGC GCG CCG CC-3´) consisted of 15 bp of the 3’-end of SF and the first 17 bp of the 5’-
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end of the rH3R. The antisense primer RAT HRH3-RV (5´- GA TCC TCT AGA TTA GTG 

ATG GTG ATG ATG GTG CTT CCA GCA CTG CTC -3´) consisted of 15 bp of the C-

terminus of the rH3R, and encoded a hexahistidine tag, the stop codon, and a Xba I site. As 

template, a plasmid (pCIneo) containing the sequence of rH3R was used. 

 

3.3.3 Generation of recombinant baculoviruses, cell culture and membrane 

preparation, SDS-PAGE and immunoblot analysis 

The protocols for virus amplification, protein expression and western blot analysis 

were described before (Schnell et al., 2009). Proteins transferred to nitrocellulose 

membranes were reacted with anti-hH3R (N-term) (1:1000), anti-rH3R (C-term) (1:1000) and 

anti-H3R (i3) (1:1000) Igs. 
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Fig. 3.1. Comparison of the amino acid sequences of hH3R (GeneBank Accession No. 
AF140538) and rH3R (GeneBank Accession No. AF237919). Putative transmembrane 
domains are stated above the sequences and indicated by a solid line. N-term, extracellular 
N-terminal domain of H3Rs; C-term, intracellular C-terminal domain of H3Rs; i1, i2, and i3, 
first, second, and third intracellular loops; e1, e2, e3, first, second, and third extracellular 
loops, respectively. Dots in the sequence of rH3R indicate identity with hH3R. Amino acids 
shown in regular fonts in the sequence of rH3R represent conservative differences, those 
shown in bold represent non-conservative differences. The most conserved residues in each 
TM domain are indicated in grey shading. Residues within TM domains are named according 
to the Ballesteros/Weinstein nomenclature. The most conserved residue in each TM is 
numbered as X.50, where X is the number of the respective TM domain (Ballesteros and 
Weinstein, 1995). Amino acids shown in white with black shading represent a putative 
glycosylation site of the H3R. Amino acids in frame represent putative interaction sites of HA 
with the H3R (Uveges et al., 2002; Yao et al., 2003). 
 
 

3.3.4 [35S]GTPγγγγS saturation binding assay 

Experiments were performed in analogy to the assay described in Schnell et al. 

(2009). Membranes were thawed and sedimented by a 10-min centrifugation at 4°C and 

15,000g to remove residual endogenous guanine nucleotides as far as possible. Membranes 

were resuspended in binding buffer (12.5 mM MgCl2, 1 mM EDTA, and 75 mM Tris-HCl, pH 

7.4), supplemented with 0.05% (m/v) BSA. Each tube (total volume of 250 or 500 µl) 

contained 10 - 20 µg of membrane protein. Tubes contained 0.2 – 2 nM [35S]GTPγS plus 

unlabeled GTPγS to give the desired final ligand concentrations (0.2 – 50 nM). Neither GDP 

nor H3R ligands were included in assays. Non-specific binding was determined in the 

presence of 100 µM unlabeled GTPγS and amounted to less than 1% of total binding. 

Incubations were conducted for 90 minutes at 25°C and shaking at 250 rpm. Bound 

[35S]GTPγS was separated from free [35S]GTPγS by filtration through GF/C filters, followed by 

three washes with 2 ml of binding buffer (4°C). Filter-bound radioactivity was determined by 

liquid scintillation counting. The experimental conditions chosen ensured that not more than 

10 % of the total amount of radioactivity added to binding tubes was bound to filters. The 

maximum number of Gαi/o-related GTPγS binding sites in membranes expressing H3Rs plus 

Gα-subunits plus β1γ2 was corrected by the binding determined in parallel in membranes 

expressing H3Rs plus β1γ2 alone. These reference membranes were always prepared under 

exactly the same conditions as the other ones. To ensure the same viral load in the 

reference membranes, Sf9 cells were infected with baculoviruses encoding H3Rs, β1γ2 and 

virus encoding no recombinant protein at all. In this manner, only the number of functionally 

intact and heterologously expressed mammalian Gαi/o-subunits was quantitated. 

 



Chapter 3: Species differences of hH3R and rH3R 

 

70 

 

 
Fig. 3.2. Structures of imidazole-containing H3R-ligands: full agonists 1-3, partial 
agonists 4-6, imoproxifan 7, and antagonists/inverse agonists 8-10. 
 
 
3.3.5 Steady-state GTPase activity assay 

Experiments were performed in analogy to the assay described in Schnell et al. 

(2009). Briefly, membranes were thawed, sedimented and resuspended in 10 mM Tris/HCl, 

pH 7.4. Assay tubes contained Sf9 membranes (10 – 20 µg of protein/tube), 5.0 mM MgCl2, 

0.1 mM EDTA, 0.1 mM ATP, 100 nM GTP, 0.1 mM adenylyl imidodiphosphate, 1.2 mM 

creatine phosphate, 1 µg of creatine kinase, and 0.2% (w/v) bovine serum albumin in 50 mM 

Tris/HCl, pH 7.4, and H3R ligands at various concentrations. Reaction mixtures (80 µl) were 

incubated for 2 min at 25°C before the addition of 20 µl of [γ-32P]GTP (0.1 µCi/tube). All stock 

and work dilutions of [γ-32P]GTP were prepared in 20 mM Tris/HCl, pH 7.4. Reactions were 

conducted for 20 min at 25°C. Reactions were terminated by the addition of 900 µl of slurry 

consisting of 5% (w/v) activated charcoal and 50 mM NaH2PO4, pH 2.0. Charcoal absorbs 

nucleotides but not Pi. Charcoal-quenched reaction mixtures were centrifuged for 7 min at 

room temperature at 15,000g. Six hundred microliters of the supernatant fluid of reaction 

mixtures were removed, and 32Pi was determined by liquid scintillation counting. Enzyme 

activities were corrected for spontaneous degradation of [γ-32P]GTP. Spontaneous [γ-

32P]GTP degradation was determined in tubes containing all of the above described 

components plus a very high concentration of unlabeled GTP (1 mM) that, by competition 
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with [γ-32P]GTP, prevents [γ-32P]GTP hydrolysis by enzymatic activities present in Sf9 

membranes. Spontaneous [γ-32P]GTP degradation was <1% of the total amount of 

radioactivity added using 20 mM Tris/HCl, pH 7.4, as solvent for [γ-32P]GTP. The 

experimental conditions chosen ensured that not more than 10% of the total amount of [γ-

32P]GTP added was converted to 32Pi. 

 

3.3.6 Radioligand binding assays 

Experiments were performed in analogy to the assay described in Schnell et al. 

(2009). Membranes were thawed and sedimented by a 10-min centrifugation at 4°C and 

15,000g and resuspended in binding buffer (12.5 mM MgCl2, 1 mM EDTA, and 75 mM Tris-

HCl, pH 7.4), to remove residual endogenous guanine nucleotides as much as possible. In 

[3H]NAMH binding assays, each tube (total volume, 250 or 500 µl) contained 10 to 50 µg of 

protein. Non-specific binding was determined in the presence of [3H]NAMH at various 

concentrations plus 10 µM THIO and amounted to ~10% of total binding at saturating 

concentrations (10 nM). Incubations were conducted for 60 min at RT and shaking at 250 

rpm. Saturation binding experiments were carried out using 0.3 to 10 nM [3H]NAMH in the 

presence or absence of 10 µM GTPγS. In competition binding experiments, tubes contained 

1 nM [3H]NAMH and unlabeled ligands at various concentrations. Bound [3H]NAMH was 

separated from free [3H]NAMH by filtration through GF/C filters pretreated with 0.3% (m/v) 

polyethyleneimine, followed by three washes with 2 ml of binding buffer (4°C). [3H]JNJ-

7753707 (= [3H]RWJ-422475) binding experiments were performed using the same 

procedure as described above for [3H]NAMH. With [3H]JNJ-7753707 as radioligand, non-

specific binding was about 20-30% of total binding at saturating concentrations (10 nM). 

Filter-bound radioactivity was determined by liquid scintillation counting. The experimental 

conditions chosen ensured that not more than 10 % of the total amount of radioactivity added 

to binding tubes was bound to filters. 

 

3.3.7 Construction of inactive and active models of hH3R and rH3R 

Based on the crystal structure of the human β2-adrenergic receptor (Cherezov et al., 

2007; Rasmussen et al., 2007), a homology model of the inactive rH3R was generated. 

Based on the active state model of guinea pig H1R (gpH1R) (Strasser and Wittmann, 2007; 

Strasser et al., 2008b), an active model of hH3R was constructed by homology modelling. All 

models were refined and energetically minimized with SYBYL 7.0 (Tripos, St. Louis, MO), as 

described (Igel et al., 2009). Imoproxifan was docked manually into the binding pocket of the 

active hH3R and the inactive rH3R. Thereby, previous results of similar compounds were 

taken into account (Schlegel et al., 2007). The resulting structures were embedded in a 

simulation box, including lipid bilayer, water, sodium and chlorine ions, as described 
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(Strasser et al., 2008a). Subsequently, molecular dynamic simulations with GROMACS 3.3.1 

(van der Spoel et al., 2004) were performed, using a simulation protocol, previously 

described (Strasser et al., 2008a). 

 

3.3.8 Miscellaneous 

Molecular biology was planned with GCK 2.5 (Textco BioSoftware, West Lebanon, 

NH, USA). Ligand structures were illustrated using ChemDraw Ultra 8.0 (CambridgeSoft, 

Cambridge, MA, USA). The sequence alignment was performed using ClustalX (2.0), which 

is a windows interface based on the Clustal W algorithm (Thompson et al., 1994). Protein 

was determined using the DC protein assay kit (Bio-Rad, Hercules, CA, USA). 

[3H]Dihydroalprenolol was obtained from Perkin Elmer (Boston, MA, USA) and protein 

quantification via western blot performed as described in Schnell et al. (2009). All analyses of 

experimental data were performed with the Prism 5 program (GraphPad Software, San 

Diego, CA, USA). 

 

 

3.4 Results 

 

3.4.1 Western blot analysis of hH3R and rH3R expressed in Sf9 insect cell membranes 

Membranes of Sf9 cells expressing hH3R or rH3R plus mammalian G proteins were 

prepared and analyzed via immunoblot. It has to be mentioned, that membranes co-

expressing rH3R plus different mammalian G proteins were prepared in parallel and under 

exactly the same conditions as the membranes expressing hH3R (Schnell et al., 2009). Thus, 

the comparison of hH3R and rH3R pharmacology in this system is not based on historical 

data but direct. Both hH3R and rH3R bands were doublets, probably representing differently 

glycosylated forms (Fig. 3.3). H3R species homologs presumably exhibit similar glycosylation 

patterns since the putative N-glycosylation site for the H3R (Asn11) is fully conserved within 

their sequences (Fig. 3.1). The H3R species homologs could be clearly discriminated by anti-

hH3R Ig, raised against an 18 amino acid peptide within the extracellular N-terminus of the 

hH3R, and anti-rH3R Ig, raised against an 18 amino acid peptide within the cytoplasmatic C-

terminus of the rH3R (Figs. 3.3A and 3.3B). 
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Fig. 3.3. Immunological detection of hH3R and rH3R expressed in Sf9 cells. Each lane of 
the gels was loaded with 10 µg of membrane protein, unless otherwise indicated below the 
film. Numbers on the left designate masses of marker proteins in kDa. In A and B, 
membranes expressing the hH3R and rH3R alone were loaded onto the gels. Proteins 
separated in A were reacted with anti-hH3R Ig and in B with anti-rH3R Ig. In C, membranes of 
A and B plus control were analyzed. Here, the proteins were reacted with the non-species-
selective anti-hH3R (i3) Ig. In D1 and D2, 2, 4, 6, 8 and 10 µg of protein of Sf9 membranes 
expressing hβ2AR at 7.5 pmol/mg (as determined by [³H]dihydroalprenolol saturation binding) 

were used as standard to assess the expression levels of the rH3R in different membrane 
preparations with anti-FLAG Ig. In E, the same membranes were reacted with anti-His6 Ig. In 
F, the membranes were reacted with anti-Gαi-common Ig. In G, the membranes were reacted 
with anti-Gβ-common Ig. In H, 0.5, 1.0, 1.5 and 2.0 µg of a membrane expressing the rH3R + 
Gαi2 + β1γ2 was analyzed in order to quantify the Gα-subunits, using 2, 4, 7.5, 15 and 30 pmol 
of purified Gαi2 as standard. In I, 0.5, 1.0, 1.5 and 2.0 µg of a corresponding membrane of the 
same batch expressing rH3R + Gαo1 + β1γ2 was analyzed to quantify the Gα-subunits, using 2, 
4, 7.5, 15 and 30 pmol of purified Gαo2 an almost identical splice variant of Gαo1 as standard. 
 
 

Additionally, anti-H3R (i3) Ig was used to confirm the above mentioned results (Fig. 

3.3C). This antibody was raised against a peptide sequence within the third intracellular loop 

(i3) of the hH3R, but turned out to be not species-selective. Again, all H3R bands occurred as 

doublets at ~49 kDa. However, there were some additional bands at lower molecular weight, 

which are presumably non-specific, since they also appeared at the control lane loaded with 

uninfected Sf9 cell membranes. Thus, our data indicate that hH3R and rH3R were equally 

well and properly expressed in Sf9 cells. In analogy to our recent publication (Schnell et al., 

2009), the rH3R was also co-expressed with different mammalian G proteins (Gαi1, Gαi2, Gαi3 

or Gαo1, and β1γ2 dimers, respectively) to analyze the coupling profile. All proteins were 

properly detected by different selective antibodies (Fig. 3.3). Moreover, we also quantified 

the expression levels of receptors and G proteins by immunoblot, using hβ2AR or purified G 

protein subunits as standards (Fig. 3.3D and 3.3H, I). The results of these studies are 

summarized in Table 3.1. 
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3.4.2 Quantitative analysis of receptor-to-G protein stoichiometries 

Protein quantification via western blot is semi-quantitative and does not discriminate 

between functional and non-functional proteins. Therefore, we directly used a recently 

described combination of antagonist [³H]JNJ-7753707- and [35S]GTPγS-saturation binding 

(Schnell et al., 2009) and calculated the functional GPCR/Gα protein ratios (Table 3.1). 

Similar to the membranes expressing hH3R, we detected an excess of mammalian G 

proteins in the case of rH3R, confirming the previously reported results (Schnell et al., 2009). 

Thus, G protein expression level is not limiting in this experimental system, too. 

 

3.4.3 hH3R and rH3R coupling to different Gα-subunits 

The G protein coupling profile of rH3R (Table 3.2) was also investigated as for the 

hH3R (Schnell et al., 2009). Briefly, receptor-dependent [γ-32P]GTP hydrolysis of different Gα-

subunits was measured under steady-state conditions. GTPase activities were determined in 

parallel under basal conditions, maximal stimulation with the physiological (and full) agonist 

histamine (10 µM) and a saturating concentration of the inverse agonist thioperamide (10 

µM) in Sf9 cell membranes co-expressing the rH3R and different G proteins. 
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Table 3.1: Quantification of rH3R-to-G protein ratios via western blot, [³H]JNJ-7753707- 

and [35S]GTPγS-saturation binding. 

 

 Bmax ± S. E. M. (pmol × mg-1) 

rH3R + β1γ2 

membrane 

+ Gαi1 + Gαi2 + Gαi3 + Gαo1 

immunoblot: 

anti-FLAG Ig 
~1.5 – 2.5 ~1.5 – 2.5 ~1.5 – 2.5 ~1.5 – 2.5 

anti-Gα Igs n. d. ~50 - 100 n. d. ~50 - 100 

[³H]JNJ-7753707 0.67 ± 0.03 0.77 ± 0.02 1.05 ± 0.04 1.25 ± 0.04 

[35S]GTPγS 3.40 ± 0.80 4.43 ± 0.53 2.52 ± 0.37 8.19 ± 1.27 

R : G ratio ~1 : 5 ~1 : 6 ~1 : 2 ~1 : 7 

 

The quantification of receptors and G proteins via immunoblot was performed as described in 
Schnell et al. (2009). [³H]JNJ-7753707 saturation bindings were performed as described 
under Methods. [35S]GTPγS saturation bindings were performed, using Sf9 cell membranes 
from the same batch of preparation. Reaction mixtures contained membranes (10 - 20 µg of 
protein), 0.2 - 2 nM of [35S]GTPγS, and unlabeled GTPγS to give the desired final ligand 

concentrations for saturation (0.2 – 50 nM). GDP or additional H3R ligands were not present 
in the reaction mixtures. Data were analyzed by nonlinear regression and were best fitted to 
hyperbolic one-site saturation isotherms. The maximal number of GTPγS binding sites in 
membranes expressing rH3R plus Gαi2 plus β1γ2 was corrected by the binding determined in 
rH3R plus β1γ2. By this way, the number of functionally intact and heterologously expressed G 

protein α-subunits was quantified. Data shown are the means ± S. E. M. of 3 independent 
experiments performed in triplicate. Receptor-to-G protein ratios were calculated, using the 
Bmax values determined for the different membrane preparations. 
 
 

Like hH3R, rH3R coupled efficiently to all co-expressed mammalian Gαi/o-subunits 

(Gαi1, Gαi2, Gαi3 or Gαo1, and β1γ2 dimers, respectively), as was evident by the high basal 

GTPase activities and the large absolute stimulatory and inhibitory effects of histamine and 

thioperamide, respectively (Table 3.2). Also, the relative stimulatory effects of histamine and 

the relative inhibitory effects of thioperamide based on total ligand-regulated GTPase activity 

were similar for each of the four systems studied, indicating that the constitutive activity of 

rH3R was comparable and not substantially influenced by the type of G protein (Table 3.2). 

The constitutive activity of rH3R coupled to cognate Gi/Go-proteins was rather high and 

comparable to the constitutive activity of hH3R, rendering the two systems suitable for an 
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analysis of species-specific ligand effects, without possible bias due to differences in basal 

activity between membranes. 

 

Table 3.2: Analysis of rH3R/G protein coupling - GTPase activities in Sf9 membranes 

expressing rH3R and different Gαi/o-proteins. 

 

rH3R + β1γ2 
GTPase activity 

± S. E. M. 
 + Gαi1 + Gαi2 + Gαi3 + Gαo1 

basal 

(pmol × mg-1 × min-1) 
 1.22 ± 0.21 1.75 ± 0.22 1.12 ± 0.04 4.29 ± 0.12 

+ ago. 

(pmol × mg-1 × min-1) 
 2.01 ± 0.26 3.17 ± 0.37 2.13 ± 0.14 5.95 ± 0.14 

∆ ago. 

(pmol × mg-1 × min-1) 
 0.79 ± 0.07 1.42 ± 0.15 1.01 ± 0.10 1.66 ± 0.09 

Agonist stimulation 

(% of basal) 
 67.44 ± 0.09 81.78 ± 2.32 89.38 ± 5.14 38.78 ± 2.38 

+ inv. ago. 

(pmol × mg-1 × min-1) 
 0.71 ± 0.10 0.85 ± 0.12 0.59 ± 0.03 2.86 ± 0.14 

∆ inv. ago. 

(pmol × mg-1 × min-1) 
 0.51 ± 0.13 0.90 ± 0.10 0.53 ± 0.02 1.43 ± 0.13 

Inverse agonist 

inhibition 

(% of basal) 

 40.32 ± 5.93 51.66 ± 0.96 47.4 ± 0.82 33.29 ± 2.88 

 

Steady-state GTPase experiments were performed as described in Methods. Reaction 
mixtures contained 0.1 µCi [γ-32P]GTP and 100 nM unlabeled GTP in the presence of solvent 

(basal), 10 µM HA (+ ago.) or 10 µM THIO (+ inv. ago.). Data shown are the means ± S. E. 
M. of three to four independent experiments for each membrane preparation performed in 
duplicates. The absolute agonist-stimulation (∆ ago.) and inverse agonist-inhibition (∆ inv. 
ago.) of GTP hydrolysis, as well as the relative agonist-stimulation and inverse agonist-
inhibition of GTP hydrolysis (% of basal), were calculated. 
 

 

 

 



Chapter 3: Species differences of hH3R and rH3R 

 

78 

3.4.4 Ligand potencies and efficacies in the steady-state GTPase assay at rH3R 

compared to hH3R co-expressed with different Gα-subunits 

Next, we examined a series of imidazole-based ligands in Sf9 cell membranes 

expressing rH3R and different Gαi/o-proteins in the steady-state GTPase assay. The data 

(Table 3.3) were then compared with the results for hH3R (Schnell et al., 2009). 
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Fig. 3.4. Comparison of the effects of histamine, imoproxifan and thioperamide in 
membranes co-expressing the hH3R or rH3R, Gαi2 subunits and β1γ2 dimers. Steady-
state GTPase activity in Sf9 membranes was determined as described under Methods. 
Reaction mixtures contained HA, IMO or THIO at the concentrations indicated on the 
abscissa to achieve saturation. Data are expressed as percentage change in GTPase 
activity induced by the ligands compared to the GTPase activity stimulated by HA (10 µM), 
which was defined to be 100%. Data were analyzed by nonlinear regression and were best fit 
to sigmoidal concentration/response curves. Data points shown are the means ± S. E. M. of 
3 - 4 independent experiments performed in duplicate. A summary of all results is shown in 
Table 3.3. 
 
 

The endogenous agonist histamine (1) and the standard H3R ligands Nα-

methylhistamine (2) and (R)-α-methylhistamine (3) were full agonists and equally potent in all 

membranes. There were essentially no species-differences. The highly potent standard H3R 

agonist imetit (4) was almost a full agonist at rH3R, too. Interestingly, proxyfan (5) was again 

a strong partial agonist in all systems, independent of the G protein subtype co-expressed, 

corroborating the notion that this ligand does not show functional selectivity at H3Rs (Schnell 

et al., 2009). In contrast to hH3R, impentamine (6) was a strong and more potent partial 

agonist at rH3R in all experimental settings. Strikingly, imoproxifan (7) was an inverse agonist 

at rH3R, but almost full agonist at hH3R (Fig. 3.4). The type of G protein subunit did not 

change the pharmacological profile of imoproxyfan (Table 3.3). The inverse agonists 

ciproxyfan (8) and thioperamide (10) were more potent but less efficacious at rH3R than at 

hH3R and again, the G protein subtype caused no changes in their profiles. Clobenpropit (9) 
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was neither species-specific nor did the G protein subtype change its pharmacology. 

Moreover, there is also a strong linear correlation between potencies and efficacies of 

imidazole-based ligands at membranes expressing rH3R and different Gαi/o-subunits, as was 

found for the hH3R (Fig. 3.5; Table 3.3). Thus, the pharmacological profile of the rH3R is also 

very similar under the various experimental conditions and, like at hH3R, ligand-specific 

receptor conformations leading to coupling differences do not exist for the compounds 

investigated (Schnell et al., 2009). 
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Fig. 3.5. Correlation of potency and efficacy of ligands at the rH3R in the presence of 
different co-expressed Gαi/o-proteins. Data shown in Table 3.3 were analyzed by linear 
regression. Numbers designate individual ligands decoded in Fig. 3.2. In A, C and E, the 
potencies of ligands at membranes co-expressing the rH3R, Gαi1, Gαi3 or Gαo1, and β1γ2-

dimers, respectively, were correlated with values determined at the reference membrane 
expressing Gαi2. A, r2 = 0.77; slope = 0.99 ± 0.19. C, r2 = 0.97; slope = 1.17 ± 0.07. E, r2 = 
0.96; slope = 1.05 ± 0.07. In B, D and F, the efficacies of ligands at membranes co-
expressing the rH3R, Gαi1, Gαi3 or Gαo1, and β1γ2 dimers, respectively, were correlated with 
values determined at the reference membrane expressing Gαi2. B, r2 = 0.99; slope = 0.97 ± 
0.04. D, r2 = 0.96; slope = 0.99 ± 0.07. F, r2 = 0.996; slope = 1.20 ± 0.03. The dotted lines 
indicate the 95% confidence intervals of the regression lines. The diagonal dashed line has a 
slope of 1 and represents a theoretical curve for identical values. 
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Collectively, these results confirm the findings regarding the relative stimulatory and 

inhibitory effects of histamine and thioperamide, respectively (Table 3.2), based on total 

ligand-regulated GTPase activity and are indicative for similar constitutive activity of hH3R 

and rH3R under all experimental conditions. If there had been differences in constitutive 

activity between hH3R and rH3R, then systematic changes in the potencies of full agonists as 

well as potencies and efficacies of partial agonists and inverse agonists would have 

occurred. This, however, was not the case. In contrast, the behaviour of ligands, e. g. 

impentamine or imoproxifan, at one H3R species homolog often opposed each other, against 

every expectation. Thus, these ligand effects are solely species-specific and not due to 

differences in constitutive activity of hH3R and rH3R. 

 

3.4.5 [3H]NAMH binding studies at hH3R and rH3R 

Since the type of G protein co-expressed did not change the pharmacology of ligands 

at both hH3R and rH3R in the steady-state GTPase assay, we performed radioligand binding 

experiments for a further characterization only at membranes expressing hH3R or rH3R plus 

Gαi2 plus β1γ2 dimers. 

At first, we addressed the formation of a high-affinity ternary complex between the 

agonist [3H]NAMH, the hH3R or rH3R and nucleotide-free G protein in saturation binding 

experiments (Fig. 3.6). The Kd of [3H]NAMH at hH3R was 0.62 ± 0.21 nM (n = 3). At rH3R, the 

Kd value was 1.37 ± 0.36 nM (n = 3). Interestingly, binding of [3H]NAMH was only partially 

GTPγS-sensitive in both cases. The Kd values of [3H]NAMH in the presence of GTPγS (10 

µM) were about 2-fold lower, but the Bmax values did not change significantly (Fig. 3.6). 

In competition binding experiments (Fig. 3.7), histamine (1), Nα-methylhistamine (2), 

(R)-α-methylhistamine (3), imetit (4) and proxyfan (5) had essentially the same affinities at 

hH3R and rH3R. Impentamine (6), imoproxifan (7), ciproxyfan (8) and thioperamide (10) 

bound with higher affinity to rH3R. Clobenpropit (9) also bound with similar affinity to both 

receptors. The pharmacological profiles, determined in [3H]NAMH competition binding (Table 

3.4) and steady-state GTPase assays (Table 3.3), compared with the literature, were very 

similar (Lim et al., 2005; Bongers et al., 2007b). 
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Fig. 3.6. [3H]NAMH saturation bindings in Sf9 cell membranes expressing hH3R or rH3R 
in combination with Gαi2 and β1γ2. Experiments were performed as described under 
Methods. Data were analyzed by nonlinear regression and were best fitted to hyperbolic one-
site saturation isotherms. The closed circles (●) show the data for the specific [3H]NAMH 
binding in the absence of GTPγS (10 µM), the open circles (○) in the presence of GTPγS (10 
µM). In A, hH3R was analyzed and in B, rH3R was analyzed. Data points shown are the 
means ± S. E. M. of 3 independent experiments performed in triplicate, using three different 
membrane preparations. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. Competition of [3H]NAMH binding by histamine, imoproxifan and 
thioperamide in Sf9 membranes expressing hH3R and rH3R in combination with Gαi2 
and β1γ2. [

3H]NAMH binding was determined as described under Methods. Reaction mixtures 
contained Sf9 membranes (10 - 50 µg of protein per tube) expressing the recombinant 
proteins, 1 nM [3H]NAMH, and ligands at the concentrations indicated on the abscissa. A, 
competition binding at hH3R and B, competition binding at rH3R. Data were analyzed for best 
fit to monophasic competition curves (F test). Data points shown are the means ± S. E. M. of 
3 - 5 independent experiments performed in duplicate. A summary of all results is shown in 
Table 3.7. 
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Table 3.4: [³H]NAMH competition bindings in Sf9 membranes expressing hH3R or rH3R 

in combination with Gαi2 and β1γ2. 

 

 pKi ± S. E. M. 

 hH3R + Gαi2 + β1γ2 rH3R + Gαi2 + β1γ2 

HA 8.20 ± 0.04 7.89 ± 0.07 

NAMH 9.22 ± 0.03 8.70 ± 0.09 

RAMH 8.91 ± 0.07 8.62 ± 0.07 

IME 9.20 ± 0.05 9.38 ± 0.08 

PRO 7.87 ± 0.07 8.08 ± 0.10 

IMP 8.84 ± 0.06 10.11 ± 0.05 

IMO 6.92 ± 0.06 8.47 ± 0.09 

CIP 7.03 ± 0.12 8.87 ± 0.08 

CLOB 9.34 ± 0.06 9.11 ± 0.06 

THIO 7.34 ± 0.04 7.94 ± 0.04 

 

r2 (pKi/pEC50) 0.83 0.50 

slope (pKi/pEC50) 0.94 ± 0.15 0.83 ± 0.29 

 

Experiments were performed as described under Methods. Reaction mixtures contained Sf9 
membranes (10 – 50 µg of protein), 1 nM [³H]NAMH, and unlabeled ligands at concentrations 
of 0.1 nM to 10 µM as appropriate to generate saturated competition curves. Data were 
analyzed by nonlinear regression and were best fit to one-site (monophasic) competition 
curves. Data shown are the means ± S. E. M. of three to five independent experiments 
performed in duplicate at 3 different membrane preparations. Additionally, data shown were 
correlated and analyzed by linear regression. The affinities and potencies of ligands at 
membranes co-expressing the hH3R or rH3R plus Gαi2 plus β1γ2 dimers, respectively, were 
correlated. The correlation coefficients (r2) and the slopes of all tested ligands are presented 
at the bottom of the table. 
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The pKi and pEC50 values determined at hH3R correlated well, suggesting a direct 

signal transfer in the Sf9 cell system (Fig. 3.8). However, at rH3R, the correlation coefficient 

was rather low, due to an extraordinary high affinity of impentamine (6). Interestingly, the pKi 

values of imoproxifan (7) were significantly lower than the corresponding pEC50 values 

determined in the GTPase assay (t test, p < 0.05). 
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Fig. 3.8. Correlation of affinity and potency of ligands at the hH3R and rH3R. Data 
shown were analyzed by linear regression. Numbers designate individual ligands decoded in 
Fig. 3.2. In A, the affinities and potencies of ligands at membranes co-expressing the hH3R, 
Gαi2 and β1γ2 dimers were correlated. A, r2 = 0.83; slope = 0.94 ± 0.15. In B, the affinities and 
potencies of ligands at membranes co-expressing the rH3R, Gαi2 and β1γ2 dimers were 
correlated. B, r2 = 0.50; slope = 0.83 ± 0.29. The dotted lines indicate the 95% confidence 
intervals of the regression lines. The diagonal dashed line has a slope of 1 and represents a 
theoretical curve for identical values. 
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3.4.6 Binding mode of imoproxifan at hH3R and rH3R 

To understand the molecular basis for the unique behaviour of imoproxifan, we 

performed molecular modelling studies with hH3R and rH3R. The binding modes of 

imoproxifan at active hH3R and inactive rH3R, representing the most favoured ligand-

receptor-complexes, are presented in Fig. 3.9. 

Imoproxifan is bound to hH3R and rH3R in E-configuration, representing the trans-

isomer of the oxime-moiety. The E-configuration was also determined to be the favoured one 

by crystallographic studies (Sasse et al., 2000). The electrostatic surface potential of the 

amino acids with the ligand in the binding pocket is shown (Fig. 3.9, A and B). At hH3R and 

rH3R, the positively charged terminal imidazole moiety of imoproxifan interacts with the highly 

conserved Asp3.32 (Fig. 3.9, A and B, black arrow). However, there are large differences in 

electrostatic surface between TM V and TM III (Fig. 3.9, A and B, yellow, dotted line). In this 

region, the electrostatic surface potential is rather neutral at hH3R, but negatively charged at 

rH3R. The consequence is a different orientation of the oxime moiety of imoproxifan. At 

hH3R, the methyl moiety points upward, whereas at rH3R, the methyl moiety points 

downward. 

The reason for the differences in electrostatic surface potential between hH3R and 

rH3R are explained by the amino acid difference at position 3.37 between hH3R and rH3R. At 

hH3R, Glu5.46 can electrostatically interact with Thr3.37 (Fig. 3.9, C, yellow, dotted line). Thus, 

Glu5.46 points towards Thr3.37 and away from the binding pocket. Consequently, the 

electrostatic potential surface in this region is neutral. In contrast, at rH3R, Thr3.37 is 

exchanged into Ala3.37. Thus, an electrostatic interaction between Glu5.46 and the amino acid 

side chain in position 3.37 is no longer possible. Instead, the modelling studies revealed an 

electrostatic interaction of Glu5.46 and Tyr3.33 at rH3R (Fig. 3.9, D, yellow, dotted line). 

Consequently, the negatively charged side chain of Glu5.46 points partially toward the binding 

pocket, resulting in a negative electrostatic potential surface in this region. 
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Fig. 3.9. Binding mode of imoproxifan at the active hH3R and inactive rH3R. 
A, electrostatic potential surface in the binding pocket of active hH3R with imoproxifan in its 
binding conformation. B, electrostatic potential surface in the binding pocket of the inactive 
rH3R with imoproxifan in its binding conformation. A and B, yellow dotted circle: the 
electrostatic potential is rather neutral at hH3R, but negatively charged at rH3R. The 
consequence is a different orientation of the ligands oxime moiety. C, conformation of amino 
acids in the imoproxifan bound state of active hH3R. D, conformation of amino acids in the 
imoproxifan bound state of inactive rH3R. C and D, yellow dotted circle: important differences 
in side chain conformation of Glu5.46 between hH3R and rH3R. At hH3R, Glu5.46 interacts with 
Thr3.37 and points away from the binding pocket. At rH3R, Thr3.37 is exchanged to Ala3.37. 
Thus, the interaction between Glu5.46 and the amino acid in position 3.37 is no longer 
possible and Glu5.46 interacts with Tyr3.33. Green dotted circle: in position 3.40, there is a 
small Ala at hH3R, but the more bulky Val at rH3R. It is suggested that this species difference 
is also be important for the different orientations of the oxime moiety between hH3R and 
rH3R. E, interaction between imoproxifan and hH3R; F, interaction between imoproxifan and 
rH3R. E and F, yellow dotted circle: at hH3R, the oxime moiety of imoproxifan points 
downwards and stabilizes the highly conserved Trp6.48 by a hydrogen bond; at rH3R, the 
oxime moiety of imoproxifan points upwards interacts electrostatically with a negatively 
charged surface established by Glu5.46 and Tyr3.33. 
 
 

A second species-difference between hH3R and rH3R near to the binding pocket is 

located at position 3.40. There is an alanine at hH3R, but a bulkier valine at rH3R (Fig. 3.9, C 

and D, green, dotted line). It is likely that this amino acid difference also directs the oxime 

moiety of imoproxifan into a distinct orientation. Since Ala3.40 is not as bulky as Val3.40, there 

is more space for the oxime moiety to point downward in direction to 3.40 at hH3R, than at 

rH3R. 

Additionally, Trp6.48 is shown in its active conformation at hH3R (Fig. 3.9, C, blue 

arrow) and in its inactive conformation at rH3R (Fig. 3.9, D, blue arrow). Trp6.48 is part of a 

highly conserved motif among GPCRs, thought to function as a toggle-switch during receptor 

activation, as is evident due to structural and biophysical studies (Ahuja and Smith, 2009). 

Trp6.48 horizontal to the membrane surface stabilizes the active state of a GPCR. Trp6.48 

vertical to the membrane surface stabilizes the inactive state of a GPCR. As consequence of 

the different amino acids at position 3.37 and 3.40 between hH3R and rH3R, the oxime 

moiety of imoproxifan can establish a hydrogen bond interaction to Trp6.48 in its active 

conformation, thus stabilizing the active conformation of hH3R (Fig. 3.9, E, yellow, dotted 

line). This interaction was not found at rH3R. Here, the hydrogen of the oxime moiety 

interacts electrostatically with a negatively charged surface established by Glu5.46 and Tyr3.33 

(Fig. 3.9, F, yellow, dotted line). At rH3R, the methyl group of imoproxifan is located in a small 

pocket established by Val3.40 and Trp6.48 in its inactive conformation. 

Collectively, the different binding modes of imoproxifan at hH3R and rH3R presumably 

lead to differences in efficacies due to a different orientation of the oxime moiety and thus, 

stabilization of Trp6.48 either horizontal or vertical to the membrane surface. 
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3.5 Discussion 

 

 Ligand pharmacology at hH3R and rH3R is species-dependent. Unexpectedly, the 

species-differences can even span from agonism to inverse agonism in the case of 

imoproxifan. In this study, we unraveled the underlying molecular mechanism of this reversal 

in efficacy. In steady-state GTPase assays, imoproxifan was an inverse agonist at rH3R, but 

almost full agonist at hH3R. Competition binding studies with [3H]NAMH confirmed that the 

effect was receptor-mediated. Both hH3R and rH3R were expressed at similar levels and 

defined receptor-to-G protein stoichiometries. The basal activity in the two systems was 

comparable, as indicated by the similar inhibitory effects of the standard inverse agonist 

thioperamide. Thus, the unexpected behaviour of imoproxifan can only be due to species-

specific differences in ligand recognition and receptor activation. Previous modelling studies 

described the binding mode of FUB181, a compound, similar to imoproxifan (Schlegel et al., 

2007). The orientation of imoproxifan in the binding pocket of H3R, determined in the present 

study, is similar to these previous findings. In another study, it was suggested, that the 

Ala3.40Val amino acid difference between hH3R and rH3R is responsible for the observed 

species-differences in antagonist pharmacology (Yao et al., 2003). It was pointed out that 

thioperamide or compound A-304121 are in closer contact to Val3.40 at rH3R, than to Ala3.40 at 

hH3R. We could reproduce this finding because the affinity and potency of thioperamide was 

higher at rH3R than hH3R in our experimental system, too. Our molecular modelling studies 

further revealed that both amino acid differences in TM III, at position 3.37 and 3.40, are 

responsible for the differences in pharmacology of imoproxifan between hH3R and rH3R. 

Because of the lacking negative surface potential between TM V and TM III, the oxime 

moiety points downward in direction of Ala3.40 at hH3R. Thus, the polar oxime moiety is able 

to establish a hydrogen bond interaction to Trp6.48 in its active conformation. In contrast, at 

rH3R, the negatively charged surface of the binding pocket between TM V and TM III allows 

the oxime moiety to point upward. Additionally, the methyl moiety of imoproxifan fits optimally 

into a small pocket between the bulky Val3.40 and Trp6.48 in its inactive conformation. The 

highly conserved Trp6.48 is suggested to act as a switch for receptor activation within biogenic 

amine receptors. Trp6.48 horizontal to the membrane surface is thought to stabilize the active 

state of a receptor, while Trp6.48 vertical to the membrane surface stabilizes the inactive state 

of a receptor. Since the hydrogen bond interaction between the oxime moiety and Trp6.48 

stabilizes Trp6.48 in its active conformation at hH3R, the partial agonism of imoproxifan is 

explained on a molecular level. This hydrogen bond-supported stabilization of Trp6.48 in its 

active conformation is not possible at rH3R. Here, in contrast to hH3R, the methyl group near 

Val3.40 and Trp6.48 stabilizes Trp6.48 in its inactive conformation due to a hydrophobic 
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interaction. Thus, the modelling studies provide an explanation for the inverse agonism of 

imoproxifan at rH3R on a molecular level, too. 

Interestingly, the pKi values imoproxifan (7) at hH3R and rH3R were significantly 

higher than their pEC50 values (t test, p < 0.05). These results suggest that hH3R and rH3R 

can exist in a state of low partial agonist/inverse agonist affinity that interacts efficiently with 

G proteins. Another study, analyzing the hH3R expressed in SK-N-MC cells by [3H]NAMH 

competition binding and CRE-β-galactosidase reporter gene assays, revealed similar 

disparities (Lim et al., 2005). Similar results were also obtained when the human formyl 

peptide receptor, coupled to various Gi-proteins, was studied in Sf9 cell membranes 

(Wenzel-Seifert et al., 1999). In this study, the Kd of the agonist radioligand [3H]fMLP is ~100-

fold lower than the EC50 determined in GTPase experiments. Interestingly, at hH3R 

expressed in Sf9 cells the low affinity state stabilized by imoproxifan (7) leads to an activation 

of G proteins, whereas at rH3R the low affinity state inhibits the activation of G proteins. 

The G protein coupling profile hH3R and rH3R was similar, too (Table 3.2; Schnell et 

al., 2009). An important fact is that like for hH3R (Schnell et al., 2009), at rH3R no evidence 

for functional selectivity was observed (Table 3.3). Both hH3R and rH3R coupled effectively 

with Gi/Go-proteins in Sf9 cell membranes, as was shown by GTPγS-sensitive ternary 

complex formation, using [3H]NAMH as radioligand, and steady-state [γ-32P]GTP hydrolysis. 

The similarly small shifts of the [3H]NAMH saturation binding curves at hH3R and rH3R by 

GTPγS indicate a similarly strong interaction of both receptors with the G protein and are in 

line with the high constitutive activity of the H3Rs. Thus, the results confirm the data of the 

GTPase experiments. Similar constitutive activity renders the system well suited for the 

analysis of species-specific ligand effects, since differences in constitutive activity between 

GPCRs can alter their pharmacological profiles and lead to a further complication of data 

interpretation (Preuss et al., 2007a, b). 

The pharmacology of all histamine receptors (HxRs) is species-dependent. This is 

especially true for HxR agonists. At the H1R, several classes of bulky ligands exhibit species 

differences (Seifert et al., 2003). Some of them show unique behaviours, like epimeric 

members of the ergoline family or chiral histaprodifens, switching from silent antagonism to 

partial agonism depending on the species studied (Pertz et al., 2006; Strasser et al., 2008a). 

Detailed molecular studies dissected some of the underlying mechanisms (Strasser et al., 

2008b; Strasser et al., 2009). At the H2R, bulky agonists like the long-chained impromidine- 

and arpromidine-derived guanidines or NG-acylated imidazolylpropylguanidines (AIPGs), are 

more potent and efficacious at the gpH2R than at the hH2R (Kelley et al., 2001; Preuss et al., 

2007b). Metiamide was identified to be an inverse agonist at the hH2R, gpH2R and rH2R, but 

a weak partial agonist at the cH2R (Preuss et al., 2007a). At the H4R, which has the lowest 

sequence similarity between species, studies focusing on ligand-receptor interactions of 
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agonists are beginning to emerge (Lim et al., 2008; Igel et al., 2009). However, the species-

differences of imoproxifan at hH3R and rH3R described in this study represent the most 

substantial differences in pharmacology among HXRs identified so far. This is particularly 

compelling in view of the fact that hH3R and rH3R sequences display a high degree of 

homology and only two amino acid residues cause the disparities. 

 In conclusion, we have shown that hH3R and rH3R expressed in Sf9 cells both 

similarly couple to defined Gi/Go-protein heterotrimers and display similar constitutive 

activities. We show species-differences in pharmacological properties of imoproxifan and 

offer an explanation on the molecular basis for these differences. Most importantly, we 

introduce novel active state models of hH3R and rH3R that are suitable to explain the efficacy 

of H3R ligands. 
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4.1 Abstract 

 

Monovalent ions differently affect ligand binding to G protein-coupled receptors 

(GPCRs) by as yet poorly defined mechanisms. In particular, NaCl often decreases the 

affinity of agonists but increases it for antagonists. We examined the effect of various 

monovalent ions on human histamine H3 receptor (hH3R), co-expressed with mammalian G 

proteins (Gαi1, Gαi2, Gαi3 or Gαo1, and β1γ2 dimers, respectively) in Sf9 insect cell membranes, 

with respect to agonist binding and G protein activation. NaCl (100 mM) had no effect on 

affinity of the agonist [3H]Nα-methylhistamine ([3H]NAMH). In steady-state GTPase assays, 

the endogenous agonist histamine had a lower potency and the inverse agonist thioperamide 

had a higher potency, when NaCl (100 mM) was present. Monovalent ions reduced H3R-

regulated signalling in the order of efficacy Li+ ~ Na+ ~ K+ < Cl- < Br- < I-. NaCl had a stronger 

effect on basal hH3R signalling when Gαi3 was co-expressed. Asp802.50, a putative interaction 

site for Na+, was mutated to Asn802.50 (D2.50N-hH3R). Strikingly, the mutation was unable to 

activate Gαi3 at all. The effects can be explained by a model, where (i) monovalent ions as 

well as a charge-neutralizing mutation of Asp802.50 generally reduce the interaction of hH3R 

with G proteins, (ii) monovalent anions increase the affinity of G proteins for GDP and thus, 

indirectly affect their interaction with hH3R and, (iii) Asp802.50 is a key residue for hH3R/Gαi3 

protein-activation. The latter result suggests that hH3R/G protein-coupling interfaces may 

differ even between closely related subunits. 

 

 

4.2 Introduction 

 

Histamine (HA) is an important local mediator and neurotransmitter (Haas et al., 

2008). All four histamine receptor subtypes (H1-4Rs) are expressed on neuronal cells. The 

histamine H3 receptor (H3R) is a Gi/Go-coupled presynaptic auto- and heteroreceptor, 

regulating the release of histamine and various other neurotransmitters via negative 

feedback mechanisms. The H3R is a promising drug target, because it participates in 

important physiological processes like the sleep-wake cycle, eating behaviour and cognition 

(Leurs et al., 2005). The H3R displays ligand-independent activity in many experimental 

systems (Arrang et al., 2007). It is also one of the few GPCRs for which constitutive activity 

has been demonstrated in vivo (Morisset et al., 2000). The concept of constitutive GPCR 

activity can be described by a two-state model, assuming that GPCRs isomerize between an 

inactive state (R) and an active state (R*), with agonists stabilizing the R* state and inverse 

agonists stabilizing the R state (Seifert and Wenzel-Seifert, 2002; 2003). 
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Fig. 4.1. The two state model of GPCR activation. GPCRs are able to isomerize from an 
inactive state (R) to an active state (R*). Ligands are classified according to their capability of 
shifting the equilibrium to either side of both states. Na+ - ions act as universal allosteric 
modulators at many GPCRs, stabilizing the inactive state (R). 
 

Na+ - ions act as allosteric stabilizers of the R state of many GPCRs (Seifert and 

Wenzel-Seifert, 2001; 2003) (Fig. 4.1). Recently, we have shown that the hH3R displays high 

constitutive activity when expressed in Sf9 insect cells (Schnell et al., 2009), like the 

structurally related hH4R (Schneider et al., 2009). This basal receptor activity can be 

suppressed by increasing NaCl concentrations. However, it is not clear if this effect is 

mediated by the cation or anion. Additionally, it is not clear if monovalent ions bind to the 

receptor or the coupling G protein. In this study, we investigated the effect of different 

monovalent ions on hH3R coupled to Gi/Go proteins. Moreover, we mutated Asp802.50, a 

highly conserved amino acid among GPCRs, thought to be a binding site for Na+ - ions 

(Horstman et al., 1990) (Fig. 4.2). 
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Fig. 4.2. Snake representation of the human H3R. The red arrow points towards the highly 
conserved Asp802.50, which was mutated to Asn802.50. Residues within TM domains are 
named according to the Ballesteros/Weinstein nomenclature. The most conserved residue in 
each TM is numbered as X.50, where X is the number of the respective TM domain 
(Ballesteros and Weinstein, 1995). 
 

4.3 Materials and Methods 

 

The cDNA of the hH3R was kindly provided by Dr. T. Lovenberg (Johnson & Johnson 

Pharmaceutical R&D, San Diego, CA, USA). Reagents for molecular biology, recombinant 

baculoviruses encoding mammalian G protein subunits, and the sources of ligands were 

described before (Schnell et al., 2009). Pfu Ultra II Fusion HS DNA polymerase was obtained 

from Stratagene (La Jolla, CA, USA). Stock solutions (10 mM) of all H3R ligands described in 

this paper were prepared in distilled water and stored at -20°C. [3H]NAMH (74-85 Ci/mmol) 

was obtained from Perkin Elmer (Boston, MA, USA). [γ-32P]GTP was synthesized as 

described (Schnell et al., 2009). Unlabeled nucleotides were from Roche (Indianapolis, IN, 

USA) and inorganic salts as well as all other reagents were of the highest purity available 

and from standard suppliers. 

The cDNA for the mutated construct was generated using the QuickChange Site-

Directed Mutagenesis Kit (Stratagene), with pVL1392-3Z-SF-hH3R-His6 as template (Schnell 

et al., 2009). As primers, D2.50N-fwd (5´-CTG CTC AAC CTC GCC ATC TCC AAC TTC 

CTC GTC GGA GCC TTC TGC-3´) and D2.50N-rev (5´-GCA GAA GGC TCC GAC GAG 

GAA GTT GGA GAT GGC GAG GTTG AGC AG-3´) were used, including a codon 

introducing the mutation and a silent mutation for a diagnostic restriction site (Mme I). The 
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product was verified by restriction digestion and sequencing. The procedures for the 

generation of recombinant baculoviruses, Sf9 insect cell culture and membrane preparation, 

SDS-PAGE and immunoblot analysis were described before (Schnell et al., 2009). 

Essentially, [³H]NAMH binding experiments were performed as described in (Schnell 

et al., 2009). Each reaction tube contained 40 µg of protein. Non-specific binding was 

determined in the presence of [3H]NAMH at various concentrations plus 10 µM thioperamide 

and amounted to <10% of total binding at saturating concentrations. Incubations were 

conducted for 60 min at RT and shaking at 250 rpm. Experiments were carried out using 0.3 

to 5 (10) nM final [3H]NAMH. Bound [3H]NAMH was separated from free [3H]NAMH by 

filtration through 0.3% (m/v) polyethyleneimine-pretreated GF/C filters, followed by three 

washes with 2 ml of binding buffer (4°C). Filter-bound radioactivity was determined by liquid 

scintillation counting. The experimental conditions chosen ensured that not more than 10 % 

of the total amount of radioactivity added to binding tubes was bound to filters. 

Steady-state GTPase activity experiments were also performed in analogy to the 

assays described in (Schnell et al., 2009). Briefly, assay tubes contained Sf9 membranes (20 

µg of protein/tube), 5.0 mM MgCl2, 0.1 mM EDTA, 0.1 mM ATP, 100 nM GTP, 0.1 mM 

adenylyl imidodiphosphate, 1.2 mM creatine phosphate, 1 µg of creatine kinase, and 0.2% 

(w/v) bovine serum albumin in 50 mM Tris/HCl, pH 7.4, and H3R ligands at various 

concentrations. Reaction mixtures (80 µl) were incubated for 2 min at 25°C before the 

addition of 20 µl of [γ-32P]GTP (0.1 µCi/tube). All stock and work dilutions of [γ-32P]GTP were 

prepared in 20 mM Tris/HCl, pH 7.4. Reactions were conducted for 20 min at 25°C. 

Reactions were terminated by the addition of 900 µl of slurry consisting of 5% (m/v) activated 

charcoal and 50 mM NaH2PO4, pH 2.0. Charcoal absorbs nucleotides but not Pi. Charcoal-

quenched reaction mixtures were centrifuged for 7 min at room temperature at 15,000g. Six 

hundred microliters of the supernatant fluid of reaction mixtures were removed, and 32Pi was 

determined by liquid scintillation counting. Enzyme activities were corrected for spontaneous 

degradation of [γ-32P]GTP. Spontaneous [γ-32P]GTP degradation was determined in tubes 

containing all of the above described components plus a very high concentration of 

unlabeled GTP (1 mM) that, by competition with [γ-32P]GTP, prevents [γ-32P]GTP hydrolysis 

by enzymatic activities present in Sf9 membranes. Spontaneous [γ-32P]GTP degradation was 

<1% of the total amount of radioactivity added using 20 mM Tris/HCl, pH 7.4, as solvent for 

[γ-32P]GTP. The experimental conditions chosen ensured that not more than 10% of the total 

amount of [γ-32P]GTP added was converted to 32Pi. 

 Molecular biology was planned with GCK 2.5 (Textco BioSoftware, West Lebanon, 

NH, USA), protein was determined using the DC protein assay kit (Bio-Rad, Hercules, CA, 

USA) and all analyses of experimental data were performed with the Prism 5 program 

(GraphPad Software, San Diego, CA, USA). 
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4.4 Results 

 

 We determined binding parameters of the agonist radioligand [3H]NAMH in Sf9 cell 

membranes co-expressing hH3R, Gαi2 and β1γ2 dimers in parallel in the absence and 

presence of NaCl (100 mM) (Fig. 4.3A). Unexpectedly, NaCl did not affect the affinity of 

[3H]NAMH at hH3R, but increased the number of binding sites. In the absence of NaCl, the 

Kd-value was 0.60 ± 0.07 nM (S. E. M., n = 3) and the Bmax-value was 0.62 ± 0.02 pmol/mg 

(S. E. M., n = 3). In the presence of NaCl (100 mM), [3H]NAMH bound to the hH3R with a Kd 

of 0.74 ± 0.06 nM (S. E. M., n = 3) and a Bmax of 0.85 ± 0.02 pmol/mg (S. E. M., n = 3). This 

is surprising, because classically NaCl decreases the affinity of agonists at GPCRs (Limbird 

et al., 1982; Neve et al., 1990). 

 

 

 

 

 

 

 

 

 

Fig. 4.3. The effect of NaCl on high-affinity agonist binding and steady-state GTP 
hydrolysis in Sf9 cell membranes expressing hH3R in combination with Gαi2 and β1γ2. 
Experiments were performed as described under Materials and Methods. In A, reaction 
tubes contained membranes and [3H]NAMH in concentrations indicated on the abscissa. 
Nonspecific binding was determined in the presence of THIO (10 µM). Data were analyzed 
by nonlinear regression and were best fitted to hyperbolic one-site saturation isotherms. The 
closed circles (●) show the data for specific [3H]NAMH binding in the absence of NaCl, the 
open circles (○) in the presence of NaCl (100 mM). Data points shown are the means ± S. E. 
M. of 3 independent experiments performed in duplicate. Data are expressed as percentage 
change of specific [3H]NAMH binding in the presence of NaCl (100 mM) compared to the 
binding in the absence of NaCl, which was defined to be 100%. In B, reaction mixtures 
contained HA or THIO at the concentrations indicated on the abscissa to achieve saturation. 
Data were analyzed by nonlinear regression and were best fitted to sigmoidal 
concentration/response curves. Data are expressed as percentage change in GTPase 
activity induced by the ligands compared to the GTPase activity stimulated by HA (10 µM) in 
the absence of NaCl, which was defined to be 100%. The closed symbols show data in the 
absence of NaCl, the open symbols data in the presence of NaCl (100 mM). Data points 
shown are the means ± S. E. M. of 3 independent experiments performed in duplicate. 
 

-11 -10 -9 -8 -7 -6 -5 -4

0

20

40

60

80

100

120

140 HA (∅ NaCl)

THIO

HA

THIO (NaCl, 100 mM)

B

ligand (log M)

G
T

P
 h

yd
ro

ly
s
is

(%
 o

f 
H

A
-s

tim
u
la

te
d
 G

T
P

a
s
e
)

0 1 2 3 4 5

0

20

40

60

80

100

120

140

A

∅ NaCl

NaCl (100 mM)

[³H]NAMH (nM)

[3
H

]N
A

M
H

(%
 o

f 
s
p
e
c
ifi

c
 b

in
d
in

g
)



Chapter 4: Modulation of H3R function by monovalent ions 

 

102 

 However, in steady-state GTPase assays the pEC50-value of the endogenous agonist 

histamine (HA) (8.01 ± 0.39, S. E. M., n = 3) was decreased to 7.53 ± 0.18 (S. E. M., n = 3) in 

the presence of NaCl (100 mM) (Fig. 4.3B). In contrast, the pEC50 of the inverse agonist 

thioperamide (THIO) (7.15 ± 0.31, S. E. M., n = 3) was increased to 7.43 ± 0.28 (S. E. M., n = 

3) in the presence of NaCl (100 mM) (Fig. 4.3B), indicating a reduced constitutive activity of 

the system. This result is in line with a lower basal hH3R-activity and efficacy of THIO in the 

presence of NaCl. Additionally, NaCl also enhanced the efficacy of HA at hH3R. Collectively, 

these functional data are in accordance with the two-state model of GPCR-activation (Seifert 

and Wenzel-Seifert, 2002; Seifert and Wenzel-Seifert, 2003). Thus, NaCl stabilizes the R-

state of hH3R. The NaCl-insensitivity of [3H]NAMH-binding could be due to the very high 

constitutive activity of hH3R. At the structurally related hH4R, which shows even higher 

constitutive activity, NaCl has no effect on basal activity at all (Schneider et al., 2009). 

 Still, at the hH3R, it was not clear whether Na+ or Cl- caused the effect on constitutive 

activity. Therefore, we examined the effect of different salts of monovalent ions with varying 

radii on hH3R-activity in the steady-state GTPase assay (Fig. 4.4). Monovalent ions reduced 

hH3R-regulated signalling in the order of efficacy Li+ ~ Na+ ~ K+ < Cl- < Br- < I-. Especially, 

basal hH3R-signalling was more effectively reduced by salts of monovalent anions with 

greater radii. 
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Fig. 4.4. Regulation of HA-, basal and THIO-regulated GTPase activity by different salts 
of monovalent ions. GTPase experiments were performed as described under Materials 
and Methods. Reaction mixtures contained Sf9 cell membranes expressing hH3R plus Gαi2 
plus β1γ2, HA (10 µM), ddH2O (basal) or THIO (10 µM) and salts in concentrations indicated 

on the abscissa. Data points shown are the means ± S. E. M. of 3 – 4 independent 
experiments performed in duplicate. 
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To find out which protein is modulated, we also tested the effect of NaCl on hH3R 

coupled to different Gi/Go-proteins. Interestingly, NaCl had a stronger effect on basal hH3R-

signalling when Gαi3 was co-expressed (Fig. 4.5). 
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Fig. 4.5. Regulation of HA-, basal and THIO-regulated GTPase activity by NaCl in the 
presence of different Gi/Go-proteins. GTPase experiments were performed as described 
under Materials and Methods. Reaction mixtures contained Sf9 cell membranes expressing 
hH3R plus mammalian G proteins (Gαi1, Gαi2, Gαi3 or Gαo1, and β1γ2 dimers, respectively), HA 
(10 µM), ddH2O (basal) or THIO (10 µM) and NaCl in concentrations indicated on the 
abscissa. Data points shown are the means ± S. E. M. of 3 independent experiments 
performed in duplicate. 
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In addition, we mutated Asp802.50, a highly conserved amino acid residue among 

GPCRs thought to act as a binding site for Na+ [4] (Horstman et al., 1990), to Asn802.50 

(D2.50N-hH3R). This charge-neutralizing point-mutation decreased the affinity of [3H]NAMH 

at hH3R about 10-fold (Kd = 5.09 ± 1.11 nM, S. E. M., n = 3) (Fig. 4.6A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6. The effect of Asp802.50→Asn802.50 mutation (D2.50N-hH3R) on high-affinity 
agonist binding and steady-state GTP hydrolysis in Sf9 cell membranes expressing 
the mutant in combination with Gαi2 and β1γ2. Experiments were performed as described 
under Materials and Methods. In A, reaction tubes contained membranes and [3H]NAMH in 
concentrations indicated on the abscissa. Nonspecific binding was determined in the 
presence of THIO (10 µM). Data were analyzed by nonlinear regression and were best fitted 
to a hyperbolic one-site saturation isotherm. Data points shown are the means ± S. E. M. of 3 
independent experiments performed in duplicate. The dotted line indicates the Bmax value of 
[3H]NAMH binding at the wild-type hH3R, co-expressed with Gαi2 and β1γ2, which was defined 
to be 100%. In B, reaction mixtures contained membranes, HA (10 µM), ddH2O (basal) or 
THIO (10 µM) and NaCl at concentrations indicated on the abscissa. Data points shown are 
the means ± S. E. M. of 3 independent experiments performed in duplicate. 
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The experiments were performed in parallel with wild-type hH3R in the absence of 

NaCl (Fig. 4.3A). Compared to the wild-type hH3R (Bmax = 100 %, per definition), D2.50N-

hH3R displayed a substantially lower number of binding sites for [3H]NAMH (Bmax = 43.2 ± 4.6 

%) (Fig. 4.6A). In the steady-state GTPase assay, D2.50N-hH3R was not constitutively 

active, as indicated by the absent inhibitory effect of NaCl and the inverse agonist THIO (Fig. 

4.6B). 
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Fig. 4.7. The G-protein coupling profile of D2.50N-hH3R. Experiments were performed as 
described under Materials and Methods. Reaction mixtures contained membranes co-
expressing D2.50N-hH3R and mammalian G proteins (Gαi1, Gαi2, Gαi3 or Gαo1, and β1γ2 

dimers, respectively), HA (10 µM), ddH2O (basal) or THIO (10 µM). Data points shown are 
the means ± S. E. M. of 3 independent experiments performed in duplicate. 
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However, NaCl had a strong inhibitory effect on HA-regulated GTPase. At 

concentrations above 90 mM, D2.50N-hH3R was completely inactive. Most strikingly, the 

mutation was unable to activate Gαi3 at all (Fig. 4.7), suggesting a key role of Asp802.50 and 

Na+ in hH3R/Gαi3-interaction. 

 

 

4.5 Discussion 

 

 We systematically studied the effect of NaCl on hH3R coupled to various Gi/Go-

proteins. Surprisingly, NaCl preferentially abolished constitutive signalling through Gαi3. Most 

interestingly, a charge-neutralizing mutation of Asp802.50, thought to be an interaction site of 

Na+ - ions (Horstman et al., 1990), rendered hH3R unable to couple to Gαi3 at all. First of all, 

these findings indicate that Asp802.50 is crucial for Gαi3-coupling, but not for activation of other 

G-proteins. Although constitutive signalling of D2.50N-hH3R was abolished, the mutation was 

still able to activate the other G-proteins co-expressed. The data also point to a role of 

Asp802.50 as an interaction site for Na+ - ions, since the mutation partially mimicked the 

effects of high NaCl concentrations with respect to a suppression of constitutive signalling. 

However, the effects of high NaCl concentrations and mutation of Asp802.50 were not exactly 

the same and depended on the type of G-protein co-expressed. Additionally, high NaCl 

concentrations in combination with a charge-neutralizing mutation of Asp802.50 completely 

abolished the activity of hH3R in every case, indicating a more complex interaction of ions 

with hH3R and/or Gi/Go-proteins. If only an Asp802.50/Na+-interaction had played a role, the 

mutation would have been NaCl-insensitive. Thus, there is no definitive evidence of an 

Asp802.50/Na+-interaction. Nevertheless, the results indicate that the hH3R/Gαi3-protein 

coupling interface is unique and different compared to the other ones. 

It must be noticed that a mutation of Asp802.50 may also substantially influence the 

expression or proper folding of hH3R, since it causes a marked reduction of [3H]NAMH 

binding sites. This could have lead to a general reduction in G-protein interaction. Similar 

results were obtained, when the α2A-adrenoceptor (α2AAR), another prototypical Gi/Go-

coupled receptor, was mutated at Asp792.50. It was shown that the point-mutated α2AAR 

(Asp792.50→Asn792.50) could signal through adenylyl cyclase and Ca2+-channels, but not K+-

channels, suggesting a differential G-protein coupling profile of the mutant (Surprenant et al., 

1992). Transgenic mice carrying this mutation showed characteristics very similar to α2AAR 

knock-out mice, because the mutation markedly reduced the expression of the receptor 

(MacMillan et al., 1998). These mice could not be used to study biased K+-channel signalling 

of α2AAR in vivo. A following study using receptor-Gαi fusion proteins then clearly showed that 
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the mutation leads to a general reduction of GTP turnover and not to G protein selectivity 

(Ward and Milligan, 1999). 

 We also systematically tested the effect of different monovalent ions on hH3R activity. 

Here, interestingly halides of increasing radii showed more prominent effects on constitutive 

and agonist-mediated hH3R activity, suggesting that it is not the cation, but the anion, 

causing a decrease in hH3R signalling. Similar effects were shown when the hβ2AR fused to 

the long splice-variant of Gαs (GαsL) was studied (Seifert, 2001). The effects were explained 

by a model, where anions increase the affinity of GDP for the G-protein and thereby 

decrease the efficiency of the agonist-free and agonist-occupied hβ2AR at promoting GDP 

dissociation from GαsL. Similar effects were also observed when the human chemokine 

receptor CXCR4 was studied in Sf9 cell membranes (Kleemann et al., 2008). In accordance 

with the model, Cl- anions decrease GDP dissociation from purified Gαo (Higashijima et al., 

1987). By analogy, halides could increase the GDP-affinity of other Gi/Go-proteins, thereby 

rendering GDP/GTP-exchange less efficient. Moreover, halides could differentially alter the 

GDP-affinity of specific Gi/Go-proteins, which would be an alternative explanation for G-

protein specificity found for hH3R. Additionally, salts could interfere with the ligand binding 

process. 

Collectively, we have shown that salts differently modulate hH3R Gi/Go-protein 

interaction. However, the underlying mechanisms are complex. Regardless of the specific 

mechanisms involved, from a practical perspective, the substantial impact of monovalent 

ions on hH3R-mediated Gi/Go-protein activation should be considered in future experiments. 

It is unknown, if there is any in vivo-relevance of the regulation of hH3R Gi/Go-protein 

interaction by monovalent anions and cations, but it is possible that (patho)physiological 

changes in intracellular Na+, K+ or Cl- concentrations could affect hH3R-signalling. Li+, Br- and 

I- are of no physiological relevance and constitute only pharmacological tools. 

 



Chapter 4: Modulation of H3R function by monovalent ions 

 

109 

4.6 References 
 
Arrang JM, Morisset S and Gbahou F (2007) Constitutive activity of the histamine H3 

receptor. Trends Pharmacol Sci 28:350-357. 
 
Ballesteros JH and Weinstein H (1995) Integrated methods for the construction of three 

dimensional models and computational probing of structure-funtion relations in G-
protein coupled receptors. Methods Neurosci 25:366-428. 

 
Haas HL, Sergeeva OA and Selbach O (2008) Histamine in the nervous system. Physiol Rev 

88:1183-1241. 
 
Higashijima T, Ferguson KM and Sternweis PC (1987) Regulation of hormone-sensitive 

GTP-dependent regulatory proteins by chloride. J Biol Chem 262:3597-3602. 
 
Horstman DA, Brandon S, Wilson AL, Guyer CA, Cragoe EJ, Jr. and Limbird LE (1990) An 

aspartate conserved among G-protein receptors confers allosteric regulation of α2-
adrenergic receptors by sodium. J Biol Chem 265:21590-21595. 

 
Kleemann P, Papa D, Vigil-Cruz S and Seifert R (2008) Functional reconstitution of the 

human chemokine receptor CXCR4 with Gi/Go-proteins in Sf9 insect cells. Naunyn 
Schmiedebergs Arch Pharmacol 378:261-274. 

 
Leurs R, Bakker RA, Timmerman H and de Esch IJ (2005) The histamine H3 receptor: from 

gene cloning to H3 receptor drugs. Nat Rev Drug Discov 4:107-120. 
 
Limbird LE, Speck JL and Smith SK (1982) Sodium ion modulates agonist and antagonist 

interactions with the human platelet α2-adrenergic receptor in membrane and 
solubilized preparations. Mol Pharmacol 21:609-617. 

 
MacMillan LB, Lakhlani P, Lovinger D and Limbird LE (1998) α2-adrenergic receptor 

subtypes: subtle mutation of the α2-adrenergic receptor in vivo by gene targeting 

strategies reveals the role of this subtype in multiple physiological settings. Recent 
Prog Horm Res 53:25-42. 

 
Morisset S, Rouleau A, Ligneau X, Gbahou F, Tardivel-Lacombe J, Stark H, Schunack W, 

Ganellin CR, Schwartz JC and Arrang JM (2000) High constitutive activity of native H3 
receptors regulates histamine neurons in brain. Nature 408:860-864. 

 
Neve KA, Henningsen RA, Kinzie JM, De Paulis T, Schmidt DE, Kessler RM and Janowsky 

A (1990) Sodium-dependent isomerization of dopamine D2 receptors characterized 
using [125I]epidepride, a high-affinity substituted benzamide ligand. J Pharmacol Exp 
Ther 252:1108-1116. 

 
Schneider EH, Schnell D, Papa D and Seifert R (2009) High constitutive activity and a G-

protein-independent high-affinity state of the human histamine H4-receptor. 
Biochemistry 48:1424-1438. 

 
Schnell D, Burleigh K, Trick J and Seifert R (2009) No evidence for functional selectivity of 

proxyfan at the human histamine H3-receptor coupled to defined Gi/Go protein 
heterotrimers. J Pharmacol Exp Ther. (in press) 

 
Seifert R (2001) Monovalent anions differentially modulate coupling of the β2-adrenoceptor to 

Gs alpha splice variants. J Pharmacol Exp Ther 298:840-847. 
 



Chapter 4: Modulation of H3R function by monovalent ions 

 

110 

Seifert R and Wenzel-Seifert K (2001) Unmasking different constitutive activity of four 
chemoattractant receptors using Na+ as universal stabilizer of the inactive (R) state. 
Receptors Channels 7:357-369. 

 
Seifert R and Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: 

cause of disease and common property of wild-type receptors. Naunyn 
Schmiedebergs Arch Pharmacol 366:381-416. 

 
Seifert R and Wenzel-Seifert K (2003) The human formyl peptide receptor as model system 

for constitutively active G-protein-coupled receptors. Life Sci 73:2263-2280. 
 
Surprenant A, Horstman DA, Akbarali H and Limbird LE (1992) A point mutation of the α2-

adrenoceptor that blocks coupling to potassium but not calcium currents. Science 
257:977-980. 

 
Ward RJ and Milligan G (1999) An Asp79Asn mutation of the α2A-adrenoceptor interferes 

equally with agonist activation of individual Gαi-family G protein subtypes. FEBS Lett 
462:459-463. 

 
 



Chapter 5: Summary/Zusammenfassung 111 

 

 

 

Chapter 5 

 

Summary/Zusammenfassung 

 



Chapter 5: Summary/Zusammenfassung 112 

5.1 Summary 

 

The histamine H3 receptor (H3R) is a biogenic amine receptor that belongs to family I 

of G protein-coupled receptors (GPCRs). During the past two decades, the H3R has gained 

much interest in academia and industry. The H3Rs is predominantly localized in the brain and 

regulates the release of histamine as well as other neurotransmitters into the synaptic cleft 

via negative feedback mechanisms. Thus, H3Rs serve as presynaptic auto- or 

heteroreceptors. H3Rs play an important role in processes like cognition and the sleep-wake-

cycle. Numerous ligands targeting H3R have been developed as pharmacological tools or 

potential therapeutics. Some of them show unexpected and pleiotropic effects. The currently 

available data are not sufficient to explain this uncommon behaviour. 

 The aim of this thesis was to investigate the detailed molecular mechanisms of some 

yet unexplained H3R-ligand effects. Therefore, sensitive baculovirus/Sf9 cell-based assay 

systems to analyze human H3R (hH3R) and rat H3R (rH3R) on a molecular level, were 

established. 

It is known that certain imidazole-containing H3R-ligands like proxyfan are functionally 

selective, i. e. activate only specific pathways mediated by H3R. In this work, the detailed G 

protein coupling-profile of H3R was investigated and various imidazole-based ligands were 

examined. We did not obtain evidence for differences in the G protein coupling profile of the 

H3R or functional selectivity of any of the compounds assayed. Possible reasons for the 

discrepancies between the results and data obtained from the literature are discussed. 

These “negative” results cannot be attributed to unsuitability of our expression system for 

exclusion of ligand functional selectivity. However, our system is not suitable to definitely 

exclude protean agonism, a special case of functional selectivity, at H3R, since that would 

require a systematic and precise variation of receptor-to-G protein stoichiometries. Extensive 

systematic studies under clearly defined experimental conditions are required to reconcile 

the discrepancies. Thus, presently, a specific and generally applicable mechanistic 

explanation for the previously observed pleiotropic effects of proxyfan cannot yet be 

provided. 

Additionally, despite a very high sequence homology of hH3R and rH3R, there are 

substantial pharmacological species differences. Imoproxifan is an inverse agonist at rH3R, 

but almost full agonist at hH3R. We have shown that hH3R and rH3R expressed in Sf9 cells 

both couple similarly to defined Gi/Go-protein heterotrimers and display similar constitutive 

activities. We show species-differences in pharmacological properties of imoproxifan and 

offer an explanation on the molecular basis for these differences. Most importantly, we 

introduce novel active state models of hH3R and rH3R that are suitable to explain the efficacy 

of H3R ligands. Two amino acid residues between hH3R and rH3R cause the reversal in 
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efficacy of imoproxifan due to substantial differences in the electrostatic potential surfaces of 

the binding pockets. 

Monovalent ions differentially affect GPCR signalling by as yet poorly understood 

mechanisms. In particular, Na+ is known as universal allosteric GPCR modulator. However, it 

is unknown how Na+ - ions exert the effects and whether it is not the counter-ion, which is 

responsible for the salt effects. Therefore, the H3R was used as a model system to study the 

effect of various monovalent ions. Moreover, a highly conserved aspartate in TM II, thought 

to be an interaction site of Na+ - ions in GPCRs, was mutated to asparagine. It turned out that 

most probably both, cation and anion, exert a modulatory effect on GPCR/G protein-

coupling. Monovalent cations may stabilize an inactive H3R-state via interaction with the 

conserved aspartate in TM II, while anions may increase the affinity of G proteins for GDP 

and thus, indirectly affect their interaction with H3R. Interestingly, NaCl differentially affects 

the G protein coupling-profile of H3R. NaCl selectively abolished constitutive signalling of H3R 

only in the presence of Gαi3. Obviously, the conserved aspartate in TM II is a key residue for 

H3R/Gαi3 protein-activation. The latter result suggests that H3R/G protein-coupling interfaces 

may differ even between closely related subunits. 

 In conclusion, this thesis provides new insight into the molecular mechanisms of H3R 

function, G protein-coupling and species-differences. The availability of a sensitive H3R test 

system will improve the development of new histamine receptor ligands, especially with 

respect to selectivity over the structurally related H4R, and contribute to a better 

understanding of ligand effects. Most importantly, a gap was filled regarding the interaction of 

H3R with specific G protein α-subunits, an until now insufficiently investigated area. 

 

 

5.2 Zusammenfassung 

 

Der Histamin H3-Rezeptor (H3R) gehört zur Superfamilie der G-Protein-gekoppelten 

Rezeptoren (GPCRs). Die Klonierung des H3R hat bei Wissenschaftlern im akademischen 

Bereich und in der Industrie großes Interesse geweckt. Der H3Rs wird hauptsächlich im 

Gehirn exprimiert und reguliert die Ausschüttung von Histamin und anderen 

Neurotransmittern in den synaptischen Spalt über negative Rückkopplungsmechanismen. 

H3Rs werden deshalb als präsynaptische Auto- oder auch Heterorezeptoren bezeichnet. 

H3Rs spielen eine wichtige Rolle bei kognitiven Prozessen und der Regulation des Schlaf-

Wach-Rhythmus. Viele H3R-Liganden wurden bereits entwickelt, entweder als 

pharmakologische Werkzeuge oder mögliche Therapeutika. Einige von diesen Substanzen 

zeigen unerwartete Effekte in verschiedenen pharmakologischen Testsystemen. Anhand 
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bisheriger Daten kann die ungewöhnliche Pharmakologie dieser Verbindungen aber nicht 

eindeutig erklärt werden. 

 Ziel dieser Arbeit war es, den detaillierten molekularen Aktivierungsmechanismus des 

H3R näher zu beschreiben. Zu diesem Zweck wurde ein sensitives, auf Bakuloviren und Sf9-

Zellen basierendes, Testsystem zur Analyse des humanen H3R (hH3R) und Ratten H3R 

(rH3R) auf molekularer Ebene, etabliert. 

Es ist bekannt, dass bestimmte imidazol-haltige H3R-Liganden, wie Proxyfan, 

funktionell selektiv sind, d. h. nur bestimmte H3R-vermittelte Signalwege aktivieren. Deshalb 

wurde in dieser Arbeit die Kopplung des H3R an verschiedene G-Proteine untersucht und 

eine Reihe von imidazol-haltigen Liganden getestet. Keine der Verbindungen war funktionell 

selektiv. Mögliche Ursachen für die Diskrepanzen zwischen diesen Ergebnissen und Daten 

aus der Literatur werden diskutiert. Diese „negativen“ Daten, welche gegen eine funktionelle 

Selektivität der untersuchten Substanzen sprechen, sind nicht auf das von uns entwickelte 

Testsystem zurückzuführen. Jedoch kann auf Grundlage dieser Daten „protean agonism“, 

eine spezielle Form von funktioneller Selektivität, nicht ausgeschlossen werden. Dazu 

müsste die Rezeptor/G-Protein-Stöchiometrie gezielt und systematisch verändert werden. 

Aufwändige Studien unter klar definierten experimentellen Bedingungen werden dafür in 

Zukunft notwendig sein. Zum jetzigen Zeitpunkt gibt es also noch keine zufriedenstellende 

Erklärung für die ungewöhnliche Pharmakologie von Proxyfan. 

Trotz einer hohen Sequenzhomologie zwischen hH3R und rH3R gibt es erhebliche 

pharmakologische Speziesunterschiede. Imoproxifan, ein inverser Agonist am rH3R, ist fast 

ein voller Agonist am hH3R. Wir konnten zeigen, dass hH3R und rH3R in Sf9-Zellen ähnlich 

gut an heterotrimere Gi/Go-Proteine koppeln und eine ähnlich hohe konstitutive Aktivität 

besitzen. Die molekulare Ursache für das Spezies-spezifische Verhalten von Imoproxifan 

wurde aufgeklärt. Dafür wurden neue und bisher nicht verfügbare Computermodelle des 

aktiven Zustandes von hH3R und rH3R generiert. Unterschiede in nur zwei Aminosäuren 

zwischen hH3R und rH3R führen zu den pharmakologischen Unterschieden aufgrund 

unterschiedlicher elektrostatischer Oberflächenpotentiale der Bindetaschen. 

 Monovalente Ionen beeinflussen die GPCR-Signaltransduktion auf verschiedene Art 

und Weise. Die zugrunde liegenden Mechanismen werden aber nur wenig verstanden. 

Natriumionen sind universelle allosterische GPCR-Modulatoren. Wie Natriumionen aber 

diese Effekte verursachen, und ob nicht das Gegenion auch eine Rolle spielt, ist bisher 

allerdings nur unzureichend untersucht. Um sich dem Problem anzunähern, wurde der H3R 

als Modellsystem verwendet und die Effekte verschiedener Salze monovalenter Ionen 

studiert. Zusätzlich wurde ein hochkonserviertes Aspartat in TM II, welches eine potentielle 

Interaktionsstelle für Natriumionen in GPCRs darstellt, zu Asparagin mutiert. Aufgrund der 

vorliegenden Daten wird geschlussfolgert, dass wahrscheinlich sowohl Kationen als auch 
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Anionen die GPCR/G-Proteinkopplung modulieren. Monovalente Kationen stabilisieren einen 

inaktiven H3R-Zustand über eine Interaktion mit dem konservierten Aspartat in TM II, 

während Anionen die Affinität von G-Proteinen zu GDP erhöhen und daher indirekt deren 

Interaktion mit dem H3R beeinflussen. Interessanterweise beeinflusst NaCl die Kopplung des 

H3R an verschiedene G-Proteine auf unterschiedliche Art und Weise. NaCl unterdrückt 

selektiv die konstitutive Aktivität des H3R nur in Anwesenheit von Gαi3. Das konservierte 

Aspartat in TM II spielt bei der H3R/Gαi3-Interaktion eine Schlüsselrolle. Diese Daten 

suggerieren, dass die H3R/G-Proteininteraktionsflächen unterschiedlich sein müssen, sogar 

bei sehr nah verwandten Untereinheiten. 

 Zusammenfassend erbrachte diese Dissertation neue Einblicke in den molekularen 

Aktivierungsmechanismus des H3R und dessen G-Proteinkopplung. Außerdem wurden 

wichtige Speziesunterschiede auf molekularer Ebene geklärt. Die Verfügbarkeit eines 

sensitiven und robusten H3R-Testsystems ist eine wichtige Voraussetzung für die 

Entwicklung neuer selektiver Histamin-Rezeptorliganden, speziell gegenüber dem strukturell 

verwandten H4R, und zur Erlangung eines besseren Verständnisses von ungewöhnlichen 

Ligandeneffekten. 
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