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§1. Introduction: The Strong Topology 

We fix once and for all a real closed base field R. By a variety X over R we 
mean a separated algebraic scheme X over R. For all problems attacked here we 
could equally well assume that X is also reduced, since we are only interested in 
the set X(R) of rational points of X. Notice that for every closed point x of X 
the residue class field K(x) = OJmx either coincides with R, i.e. x is rational, or is 
isomorphic to R(>/--T). We call the points x of X with K(X) = R the real points of 
X and the other closed points the complex points of X. 

R is a topological field, a basis of open sets being given by the open intervals 

]a, b[ = {xeR\a<x<b} 

of R. (Recall that R has a unique ordering compatible with addition and 
multiplication.) Unfortunately the topological space R is totally disconnected 
except in the single case that R is isomorphic to the field R of real numbers. 

For any variety X over R the topology of R induces in a natural way a 
topology on the set X(R) of real points of X , which intrinsically can be 
described as follows: A subbasis of open sets is given by the sets 

f-l(]a,b[) = {peU(R)\f(p)e^bU 
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with U running through the affine open subsets of X and / through the affine 
Ring R[(7]=r(l/, ®x\ W e c a l 1 t h i s topology the strong topology on X(R). If X 
is embedded as a locally closed subscheme into some affine standard space AN 

=A£, then X(R) is a subset of AN(R) = RN, and the strong topology on X(R) is 
just the topology as a subspace of the cartesian product RN. Again, if R4=R the 
space X(R) is clearly totally disconnected. 

If Y is a second variety over R then we denote the algebraic variety X x SptcRY 
simply by XxY. The space (X x Y)(R) = X(R) x Y(R) - with the strong 
topology as always - is the cartesian product of the topological spaces X(R) and 
Y(R). Since the diagonal A of X x X is Zariski closed in X x X, the set A(R) is 
closed in X(R) x X(R). But A(R) is just the diagonal of X(R) x X(R). Thus, X(R) 
is a Hausdorff space. 

By a morphism q>:X^>Y between varieties X and 7 over R we mean of 
course a morphism in the category of schemes over R. Clearly, any such 
morphism induces a continuous map from X(R) to Y(R) which we denote by 

It is desirable to establish for the spaces X(R) a theory of homology groups 
Hr{X(R\ A) with coefficients in some abelian group A, cohomology groups 
Hr(X(R\ F) with suitable sheaves F , homotopy groups nk(X(R\ x 0)(fc^ 1) resp. 
homotopy sets (fc = 0), which in the case R=R coincides with the classical 
theory. More generally one would like to do this for any semialgebraic subset M 
of X(R) instead of X(R) itself. We mean by such a set a subset of X(R) which 
Zariski-locally is a finite union of sets defined by finitely many inequalities 
/ ( x ) > 0 , / ( x ) ^ 0 with algebraic functions / , cf. §6 in Part II. 

In the present paper this program will be carried through to some extent for 
the functors n0 and H 0 . In the first part we consider the spaces X(R) and in the 
second part more generally "semialgebraic spaces". The main difference between 
the parts lies in the methods used. In Part I we remain in the cadre of general 
algebraic geometry, while our study in Part II will have the typical "semi­
algebraic" flavour. We introduce in Part I "paths" in X(R) and prove that X(R) 
consists of only finitely many path components. These are open and closed in 
the strong topology. A striking application of this result is the theorem, proved 
in §5, that for an algebraic scheme 5 over any field every signature a: W(S)^>Z 
(i.e. Z-valued ring homomorphism on the Witt ring W(S)) factors through a 
closed point of S. 

In the second part of the paper we shall generalize the theory of paths and 
components to semialgebraic spaces. We shall also obtain refinements of some 
results in Part I. In particular we shall prove that the path components of X(R) 
are semialgebraic subsets of X(R). 

G.W. Brumfiel starts in his book [2] a program containing a subprogram 
similar to the one outlined above. His methods are less naive and more 
algebraic than ours. His main objective is to understand and to describe the 
geometry of a semialgebraic set in terms of the ring of algebraic functions on M 
equipped with partial orderings induced by M . His methods are in some sense 
similar to the use of commutative algebra in the geometry of affine varieties over 
an algebraically closed base field. 



We believe that it pays well to divide the semialgebraic geometry over a real 
closed field into a "topological part", where only a substitute of the continuous 
mappings in the classical theory is used, and a "function theoretic part". The 
substitute of the continuous mappings will be our semialgebraic mappings 
defined in §6 and §7. This leads to the category of "semialgebraic spaces" over 
R introduced in §7. The "good" functions are to our opinion the "Nash 
functions" - properly defined. Thus one has to proceed in the function theoretic 
part to the category of "Nash spaces" over R. This category is more narrow 
than the category of semialgebraic spaces but still much coarser and hence more 
flexible than the category of varieties over R. Nash spaces will not occur in the 
present paper except perhaps in the very last sections. 

We also mention the work of M . F . Coste-Roy and M . Coste on real 
algebraic geometry, cf. e.g. [5]. Again their program is much more ambitious 
than ours. They develop a general theory of "real spectra" of arbitrary com­
mutative rings. Semialgebraic sets over real closed fields are only a rather special 
example in their theory. 

We hope that at the end of Part II of our paper the reader will be amply 
convinced that the varieties and their semialgebraic subsets over a real closed 
field deserve well to be treated in an autonomous theory with a beauty of its 
own which probably cannot survive in a "general" real algebraic geometry. 

§ 2. Smooth Curves 

We now recall the main results of [10, § l - § 8 ] with slight refinements from 
Geyer's paper [8]. In the case R=1R these results are essentially due to Witt 
[17]. They yield the base of our theory of paths. 

Assume that I is a smooth connected curve over P , i.e. an irreducible 
regular variety of dimension 1 over R. Assume further that the set X(R) of real 
points is not empty, hence infinite. We denote the field R(X) of rational 
functions on X by F. Every f in F will be identified with the induced continuous 
map 

/: X(R)^JP1(R) = Ruoo. 

A function feF* is called definite at a point PeX(R) if o rd p ( / ) is even. Here 
o rd p ( / ) means the order of / at P, positive integral if / (P )=0 , negative integral 
if /(i>)= oo, and zero if /(P)=l=0, oo. If / is definite at P, then / has a well defined 
sign xp(f) = ± 1 at P. Indeed, we have a decomposition f=n2rg with some local 
uniformizing parameter n of X at P and some geF with g(P) =j=0, oo, and we 
define zp(f) as the sign of g(P), rp{f)= +1 if g(p)>0, and T P ( / ) = - 1 if g(p)<0. 
If o rd p ( / ) is odd we put r p ( / ) = 0. We call / definite (positive definite, negative 
definite) on some subset A of X(R) if tp(/)={=0 for all P in A (resp. zp(f) = +1, 
resp. r p ( / ) = - 1 for all P in A). 

Definition 1. Two points P and Q of X{R) are called equivalent in X if xP(f) 
= rQ(f) for all feF* which are definite on X(R). The equivalence classes are 
called the components of X(R). 



A s has been proved in [10], X(R) consists of finitely many components 
J ] , F r . They are closed and open in X(R) (in the strong topology, as always). 
Moreover for any component rt there exists a function feF* without poles and 
zeros on X(R) which is negative definite on J] and positive definite on X{R)\Fi 

[10, p. 56]. 
According to [10] and [8] there exist rational differential forms coeQ^F/R) 

which have neither poles nor zeros on X(R). For any two such forms co l 5 co2 we 
have an equation a)2=fcol with some function feF* which has neither a zero 
nor a pole on X(R). 

Definition 2. We call co{ and co2 equivalent if f(P)>0 for all PeX(R). A n 
equivalence class of differentials co without poles and zeros on X(R) is called an 
orientation of X(R). In the same way we define an orientation of a component rt 

of X(R) focussing on differentials without poles and zeros on / ] . 

Every component /] has precisely two different orientations and X(R) has 
precisely 2 r different orientations. 

We choose once and for all an orientation [co0] of X(R). We define for any 
function / in F* and any point PeX(R) a number ö p ( / ) e { l , - 1 , 0 } by 

(df/a)0) if o r d p / odd 
if o r d p / even. 

Here the differential quotient df/co0 means the function geF* with df=gco0. 
Notice that if o rd p ( / ) is even but not zero then again the equality 

8p(f) = Tp(df/(O0) 

holds true. 
For a given function / in F* we have dp(/)=t=0 only for finitely many points 

P of X(R). Intuitively dp(f)= +1 if f "changes sign from - 1 to +1" and dp(f) 
= — 1 if y "changes sign from +1 to - 1 " at P. 

We shall use the following rules which are easily verified: Let / and g be 
functions in F*. If Tp(g) + 0 then 

dp(fg) = dp(f)xp(g). 

If t p (g)=0then 
Sp(fg) = Tp(f)dp(g). 

Assume now that X is also complete. Then we have for every / in F* and 
every component T of X(R) 

Z dp(f) = 0, 
Per 

cf. [10, §5] . Moreover given on each component an even number of points there 
exists a function / in F* which has simple zeros precisely at these points and no 
other zeros and poles on X(R) [ 10, p. 61], [8]. 

Let now Px and P 2 be different points of a component r of X(R). There 
clearly exists a function feF* which has a simple zero at Px with 5 P l ( / ) = - 1 



and a simple zero at P2 with dp2(f) = +1 and no other zeros and poles on X(R) 
and which is positive definite on X(R)\T. 

Definition 3. The open interval ]Pl9P2l i s t h e s e t o f a 1 1 points P in X(R) with 
f(P)<0. 

We call / an interval function for ]P 1 ? P 2 [ . Clearly the set ]P l 9 P 2 [ is contained 
in r and does not depend on the choice of the interval function. It moreover 
depends only on the given orientation of F9 not on the orientation of the other 
components. We define the closed interval [ P ^ i y as the union 
] ^ 2 [ W i } u { P 2 } , i.e. 

LPl9P2l = {PeX(R)\f(P)^0}9 

and define similarly the "half-open" intervals [ P l 5 P 2 [ and ] P 1 ? / y . Notice that 
] P 1 ? P 2 [ is indeed open and [P 1 ? PJ is closed in the strong topology. Since - / i s 
an interval function for Pj [, up to a factor which is positive definite on P, we 
see that T is the disjoint union of the four sets ] P 1 ? P 2 [ , ]P 2 , P x [ , {PJ , {P2}. 

Omitting an arbitrary point P0 from the component F we have a total 
ordering of P \ {P0}9 defined as follows (cf. [10, §6]): 

P£QolPo,Pl<=lPo,Ql 

With respect to this ordering we have for points Px <P2 in P \ {/?>}: 

P2l = {Per^ {P0} IP, <P<P 2 } . 

In particular, we have a total ordering on any closed interval [P, Q] in F with 
smallest element P and largest element Q. Of course, this ordering does not 
depend on the choice of the point P0 in P \ [P, Q] but only on the orientation of 
P. Altogether we are thus justified to argue with the intervals defined here as 
with the usual intervals on an oriented circle line S 1 , as long as we consider only 
finitely many intervals. 

The open intervals are a basis of the strong topology, cf. [10, §7] . More 
precisely, every set f~1Qa,b[) in X(R) with a<b in R and feF is a disjoint 
union of finitely many "generalized open intervals" [loc.cit., Th. 7.2.1].1 The 
same holds true more generally for any set f~1(]a9 b[) with a, b different points 
in IP^P) wiht standard orientation. Here we mean by a generalized open 
interval an open interval or a whole component r or a set P \ { P } obtained 
from r by omission of one point P. 

If Y is a Zariski open subset of X , i.e. Y=X\S with 5 a finite set of closed 
points of X, then the components of Y(R) are subsets of the components J] of 
X(R) described as follows [10, 6.10]: 

a) If / ] n S contains at most one point, then / J \ S is a component of Y(R). 
b) If ^nS consists of f+1 points P0,Pl9 f ^ l , and if Pl<P2<...<Pt in 

/ ^ \ { P 0 } , then the intervals ] P 0 , P i [ , ] P l 5 P 2 [ , . . . , ] ^ _ 1 ? ^ [ , ] ^ , P 0 [ are the 
components of Y(R) contained in r;. 

1 In [10, Theorem 7.2] the word "finite" had inadvertently been omitted 



Notice that every smooth connected curve Y may be regarded as a Zariski 
open subscheme of a complete smooth connected curve X uniquely determined 
by Y up to isomorphism. We call X the completion of Y If P and Q are different 
points of an oriented component B of Y(R\ then the orientation of B "extends" 
uniquely in the obvious sense to an orientation of the component r of X(R) 
containing B, and we can speak of the closed interval [P, Q] in X(R). If B = T 
then of course [P ,ß ]<=Y(P) . But if B=NP then B is totally ordered by the 
orientation and [P, Q] is contained in Y(R) if and only if P < Q . We call the 
intervals [ P , ß ] as far as they are contained in Y(R) the closed intervals of 
Y(R). In the same way we define the open intervals of Y(R) and the two kinds 
of half open intervals. 

Let now cp: X^Y be a non constant - hence finite - morphism between 
complete smooth connected curves X and Y over R. Assume that X(R) and 
Y(R) are oriented. We fix a component r of X(R) and look at the restriction 
(pR\T: r->Y(R) of <pR: X(R)->Y(R). This map has been studied in [10, §8] in 
the special case Y = I P 1 , the projective line over R, and then along the same lines 
by Fehlner [7] in general. We recall Fehlner's results here including proofs, 
since his paper is not published. We make strong use of [10, §8] without further 
comment. 

We choose differentials a>x, coY in the orientation classes of X and Y and 
define a function A = A((p)eR(X)* by 

A: = (p*(a>Y)/o)x. 

This function A has no poles on X(R). The real zeros of A are precisely the 
points of X(R) where the finite map q>: X - > Y is ramified. 

Lemma 2.1. Let P be a point of X(P) , Q = q>(P\ and f a function in R(Y)*. 
i) / / t Q ( / ) * 0 , then ip ( /°<p) = T ö ( A hence 3p(/o<p)=0. 

ii) / / T P ( J ) * 0 , then dP(foq>) = dQ(f)xP(A). 

Proof i) Let n be a uniformizing element of R(Y) at Q and II a uniformizing 
element of R(X) at P. We write f=nnh with /i(0=1=0, oo and no(p = n e k with 
/c(P)*0, oo. 

Assume T q(/)4=0, i.e. n even. Then 

/ o ( p = /7n e(/io (p)fe" 

has even order at P and 

*p(f° <P) = s i g n (fc ° <f>) ( p ) = s i S n A (6) = T Q ( / ) . 

ii) If / has even order at Q then / o <p has even order at P and both sides of 
the stated equality are zero. Assume now that o rd Q ( / ) is odd. We introduce the 
function g:=df/a)Y which has even order at Q. We have 

dP(f°(p) = rp(d(f°(p)/a>x) 
= Xp((p*(df)/<ox) = TP(Aq>*(g)). 

Now we assume that TP(J)=}=0. Then 

dP(f°q>) = Tp(A)Tp(go<p). 



By part i) of the lemma we obtain 

and the stated equality follows, q.e.d. 

If a function feR(Y)* is definite on Y(R) then by the trivial part i) of the 
lemma the function fo q> is definite on X(R). Thus clearly q>(T) is contained in a 
component B of Y(R). 

Assume now that [Pj,P 2 ] is a closed interval in P with (p([Pu P2~])*B and 
study the map 

between the totally ordered sets [P l 5 P 2] and B \ {Q 0}. 

Theorem 2.2 (Intermediate value theorem). (pdP^PJ) contains every point Q 
between ^ ( P J and q>{P2). In other words, if (p(Pl)<<p(P2) then [^(PJ, <p(P2)] 

P2l and if ^(P1)>^>(P2) rfcen |>(P2), ^ P i f l c ^ K , ^])-

Proo/ Eventually reversing the orientation of £ we assume <p(Pl)<<p{P2) without 
loss of generality. Let ß be a given point in ^ ( P ^ , <p(P2)[. We choose an interval 
function / for ] ß 0 , ß [ . Then (/o(p)(P 1)<0 since ^(Pj) lies in ] ß 0 , ß [ , but 
(/<><p)(P2)>0 since <p(P2) does not lie in this interval. According to [10, §8] the 
function foq> has a zero P (of odd order) in ] P l 5 P 2 [ . Since / has only two real 
zeros Q0 and ß , either q>(P) = Q0 or cp(P) = Q. By our assumption on Q0 the first 
case is impossible. Thus <p(P) = ß . q.e.d. 

Theorem 23. / / t F ( d ) = + l (resp. */ T F ( J ) = - 1 ) for all P in ] P i , P 2 [ , then 
<Pl[Pi,P 2] i s strictly monotonely increasing (resp. decreasing) and thus maps 
[P„ P 2] bijectively to [cp^), <p(P2)] (resp. [<p(P2), ( j^)]) . 

Proof Reversing the orientation of B we alter TP(A) into — xP(A). Thus we may 
assume that xP(A)= + l for all P e ] i ? , J £ [ . We choose some non constant 
function feR(Y) without poles on B. Let P / < . . . <Pt

,_1 be the zeros of odd order 
of the differential d(foq>) in ] P l 5 P 2 [ . (If there are no such zeros r = l , otherwise 
t>l . ) Put Po = P l 5 J? = P 2 . According to [10, §8] the function foq> is on each 
subinterval [P{_19 Pt''] strictly monotone and in particular injective. Thus also q> 
is injective on every subinterval [P(_^P[]. Let ß : : = <p(/>). Assume for the 
moment that for some fixed i we have Q\_l <Q\. Then <p([i?_i, *!'])=> [ ß L i > ß ' J 
by the preceding theorem. Suppose </>([/•_!, J?]) contains a point Q<Q'i_u Q 
= <p(P) with ^ , _ 1 < P < ^ ' . Then P ] ) 3 [ ß , Q L J and also 
<P([P>I?])=>lQ>Qi-il T h i s contradicts the injectivity of <p| Thus no 
such point ß exists. By the same reasoning we see that <p([Pl_l9P(~\) does not 
contain any point Q>P(. Thus we have q>([P!_l9 i^ ,]) = [ ß ; _ 1 , QJ]. In the same 
way we conclude in the case ß ; < ß j _ j that q>([P(_ l 9 ^ ] ) = [ß i , ß j _ J . 

We now introduce the differential quotients 

: = d/ycü y, g'-=d(fo (p)/ü)x. 

Clearly g = 4 • (/i <>(/>). The function g has for P in the interval i ? [ constant 
sign Tp(g) = 6 i 5 since the points P( with 1 ^ i ^ t - 1 are all the points of odd order 



of g in ] P l 9 P 2 [ . We know from [10, §8] that foq> is increasing on [P?_XJ i ? ] if e, 
= +1 and decreasing if e.= - 1. Since g = J o ( / i 0 ( p ) we see from Lemma 2.1 that 
h has in ^([P^ P2]) odd order precisely at the points ß | , and that TQ(/2) = £i. for all 
points ß of <p(]P{_u P{[. Thus /<>(p i s increasing (resp. decreasing) on the 
interval if and only if / is increasing (resp. decreasing) on the interval 
q>(\_P{_l, P{~\). We conclude that cp is strictly increasing on each interval 

P/], hence on the whole interval [P l 9 P 2 ] . q.e.d. 

Example. If <p is etale at every point of ] P l 9 P 2 [ then J has no zeros on ] P l 5 P 2 [ , 
hence has constant sign on this interval, and Theorem 2.3 applies. 

If A has on the interval ] P i , P 2 [ zeros of odd order P / < . . . <if__1 then by 
Theorem 2.3 cp is strictly monotone on each subinterval [P/_l9 P-'] of [P x, P;] {i 
= 1, put P0' = P 1 , ^ = P 2}. In particular pOT?.! , /?] ) is a closed interval 
adjacent to the interval (p&P{, Thus ^([Pj, P2]) is again a closed interval. 

More precisely cp is increasing in i*] if T P ( J ) = +1 for P in the interior 
of this interval and decreasing otherwise. Since A has opposite sign in adjacent 
intervals i ? [ and we see that <p has its local minima in ]P 1 ? P 2 [ 
precisely at the points P{ with dp>.(A) = + 1 and its local maxima precisely at the 
other points P( (1 £i£t). Thus we have a picture of the behaviour of (p\[Pl9 P 2] 
as explicit as in the special case Y=JP1 in [10, §8] . In particular we have the 
following converse of Theorem 2.3: 

Corollary 2.4. / / cp is injective on ~}Pl9P2[, then A has no zeros of odd order in 
]Pj , P 2 [ and thus q> is strictly monotone on [P 1 ? P2~\. 

We now abandon the hypothesis that q>(\_Pl9 P2])=J=ß. 

Theorem 2.5. There exists a subdivision 

pl=r0<rl<...<i»=p2 

of the given interval \_Pl9 such that cp maps every subinterval t , ] (i 
= 1, . . . , 0 strictly monotone onto a closed interval in B. The image (p([P\,Pi\) is 
either a closed interval or the whole of B. If A has no zeros of odd order in 
] P l 5 P 2 [ , hence constant sign e on this interval, then cp is increasing on every 
interval [P{_l9 /?] if e= +1 and decreasing on every [P{_l9 /?] if e= -1. 

Proof We have seen this above in the case q>(lPl9 P2])=!=£. Assume now that 
<p([P\> Pi\)=R- We choose a subset 5 of B consisting of three points and 
containing ^ ( P J and <p(P2\ Let 

Pl=R0<Rl<...<R5 = P2 

be the finitely many points P in [ P ^ P J with cp(P)eS. Then each set 
P f [ ) does not meet 5 (i = l , ...,s). Thus <p([P,_i, RJ) misses at least 

one point of S, hence is different from B. Now we can divide each interval 
[ R j _ i , K J into finitely many closed subintervals such that <p is strictly mo­
notone on each of them. The last assertion in the theorem is evident from 
Theorem 2.3. q.e.d. 

As a first application of our theory on smooth curves we prove 



Theorem 2.6. Let X and Y be varieties over R of dimension g 1 and let <p be a 
finite morphism from X to Y. Then the continuous map q>R: X(R)->Y(R) maps any 
closed subset A of X(R) onto a closed subset q>(A) of Y(R). 

Proof It suffices to prove this for the restrictions q>~1(Z)->Z of cp over the 
reduced irreducible components Z of Y Thus we may assume from the be­
ginning that the variety Y is reduced and irreducible. If Y is a point the assertion is 
trivial. Thus assume that Y is an integral curve. We then also may restrict cp to 
the reduced irreducible components of X and thus assume that X is an integral 
curve. Let n: X-» X denote the normalization map of X. With <p: = q> o n we have 
<pR{A) = <p(nR

1(A)\ and nR

l(A) is closed in X(R). Thus it suffices to prove the 
theorem for q> instead of q>, and we may assume from the beginning that X is 
smooth and connected. 

Let Y be a projective completion of Y and l e t X be the smooth completion of 
X. Then <p extends uniquely to a morphism (p\X-*»Y which is again finite. We 
have a commutative diagram 

with i// the restriction of <p over Y and i the inclusion map, which is an open 
immersion. Since cp and ^ are finite also i is finite. This implies X = <p~l(Y). Let 
A denote the closure of A in X(R) in the strong topology. Then 

cp(A) = (p(Ä)nY(R). 

Thus it suffices to prove that cp(A) is closed in Y(R). We learn that we may 
assume without loss of generality in addition that the curves X and Y are 
projective. 

Let ß be a given point of Y(P)\<p(/l). We have to find a neighbourhood W 
of ß in Y(R) which does not meet <p(A). Now Y is a closed reduced subvariety of 
some projective space IP" over R. We choose a projective system of coordinates 
x 0 , x „ of IP" such that ß = ( l : 0: 0), and we introduce on Y the rational 
function 

g = (x2

l + ...+x2

n)/(x2

0 + ...+x2

n). 

g is defined in a Zariski neighbourhood U of Y(P), and has on Y(R) the only 
zero ß . We consider the regular function h-.=go(p on the Zariski open set 
(p-l(U)=>X{R) in X. The real algebraic function hR\ X(R)-*R has as set of zeros 
the finite fibre 

which is disjoint from A. We choose open intervals J x , J r in X(R) containing 
P j , P r respectively and all disjoint from A. Then 

JV: = X ( P ) \ ( J 1 u . . . u . / r ) 



is a disjoint union of closed intervals and whole components, and N contains A. 
According to [10, §8] - or the more general Theorem 2.5 - the function 
h\ N: N-+R attains on N a minimum e>0. Thus g ( ß ' ) ^ e for all Q' in (p(N). The 
neighbourhood {Q'eY(R)\g(Q')<s} of ß does not meet cp(N), hence does not 
meet the subset q>(A) of cp(N). q.e.d. 

§ 3 . Combinatorial Paths 

Let now X be an arbitrary variety over the real closed field R. 

Definition 1. A n elementary path in X(R) is a totally ordered subset y of X(R) 
which either consists only of one point ("degenerate" elementary path) or has 
the following two properties: 

a) The Zariski closure of y in X is an irreducible curve DczX (with the 
reduced subscheme structure of course). 

b) Let n: D-»D denote the normalization map of D. Then after choice of a 
suitable orientation on D(R) there exists a closed interval [P, ß ] in D{R) which 
under n is mapped bijectively and order preserving onto y. 

Notice that [P, ß ] , is uniquely determined by y, namely if Sc=D(P) is the 
finite set of points PeD(R) with n^l(P) containing more than one point then 
[P, ß ] is clearly the closure of n^^y^S) in D(R). We call the ordered set [P, ß ] 
the normalization y of the elementary path y. 

Notice also that the ordered set y has a first element P : = 7c(P), called the 
starting point of y, and a last element ß : = n(Q), called the end point of y. If y = {P} 
then we of course call P both the starting and end point of y. 

Applying Theorem 2.6 to n: / 5 - » D we see that every elementary path y is a 
closed subset of X(R). 

If P and ß are points of a nondegenerate elementary path y with P < ß , then 
we denote by [P, ß ] the set of all points P ' of y with P ^ P ' ^ ß , equipped with 
the total ordering from y. Clearly [P, ß ] is again an elementary path, called a 
closed interval of y or an elementary subpath of y. 

Definition!. A combinatorial path y in X(R) is a finite sequence (yi9...,yt) of 
elementary paths y, in X ( P ) such that the end point of y f coincides with the 
starting point of y i + 1 ( l ^ z ^ t — 1 ) . 

Of course we define the starting point P of y as the starting point of yj and 
the end point ß of y as the end point of y„ and we often call P and ß "the end 
points" of y. We also say that y is a path connecting P with Q. 

The composition y*8 of a path y = ( y n y t) ending at ß with a path 
< 5 = ( ( * ! , £ r ) starting at ß is defined by 

y*(5 = (y 1 , . . . , y „ ^ ...,(5 r). 

If y is an elementary path, then let y - 1 denote the set y equipped with the 
opposite total ordering. Clearly y " 1 is again an elementary path. For a com­
binatorial path y = ( y t , y f ) the inverse path y " 1 is defined as ( y " 1 , y f 1 ) . If y 
starts at P and ends at ß then y " 1 starts at ß and ends at P. 



Definition 3. We call two points P and Q of X(R) path connectable if there exists 
a combinatorial path y in X(R) starting at P and ending at Q. Since we have the 
possibility to compose and to invert paths, "connectable" is an equivalence 
relation on the set X(R). We call the equivalence classes the path components of 
X(R) and we denote the set of all path components of X(R) by n0(X(R)). 

It is clear from §2 that in the case that X is a smooth curve the path 
components of X(R) are just the components r i 9 T r of X(R) introduced there. 

In Part II of the paper we shall define beside combinatorial paths also 
"semialgebraic paths". But up to then we are free to use the shorter word 
"path" instead of "combinatorial path". 

We now explain that in some sense the image of a path in X(R) under any 
morphisiii cp: X-> Y is again a path. 

Theorem 3.1. Let cp: X-^Y be a morphism between varieties over R and y be an 
elementary path in X(R) starting at P and ending at Q. 

i) / / the restriction <p\y is injective then cp maps y order preserving onto an 
elementary path S of Y(R). 

ii) / / (p(y) contains more than one point then there exists a subdivision 

P0 = P<P1<P2<...<Pt=Q, 

of y such that cp is injective on every subpath y.: = [P._l9 PJ and thus maps y. order 
preserving onto an elementary path d( starting at cp(Pi_l) and ending at <p(fy. 

Proof We may restrict cp to the Zariski closure D of y and thus assume from the 
beginning that X is an irreducible reduced curve. Let n: X-»X be the normali­
zation of X and y the normalization of y. It suffices to prove both statements for 
y and <p o n instead of y and cp. Thus we assume since now that X is a smooth 
connected curve. We assume further that cp(y) is not a point, i.e. that cp(X) is not 
a point. Then the Zariski closure of cp(X) in 7 - with reduced subscheme 
structure, as always - is an irreducible curve. We may replace Y by this curve. 
Thus we assume since now that Y is an irreducible reduced curve. We further 
replace Y by a projective completion of^Y, hence assume that Y is projective. 
Then cp can be extended to a morphism X->Y with X the smooth completion of 
X. Thus we also assume without loss of generality that X is complete. 

We choose an orientation of X(R) such that y is an interval [P, Q]. We have 
a canonical commutative triangle 

X 

with n the normalization of Y. We now prove part i) of the theorem. Since cp is 
injective on y also cp is injective on y. Thus by the result of §2 (Cor. 2.4 and 
Th. 2.5) cp maps y onto the interval #: = [(p(P), <p(ö)] in a strictly monotonely 
increasing way after suitable choice of an orientation of Y(R). Moreover n is 
injective on S. Thus by the definition of elementary paths n maps S order 
preserving onto an elementary path S in Y(R). 



We now prove part ii) of the theorem. According to Theorem 2.5 we have a 
subdivision 

P0 = P<Pl<...<Pm = Q 

such that (p maps each interval order preserving onto an elementary 
path St in Y(R). Thus it suffices to prove the assertion ii) for the map n and the 
paths Si instead of q> and y, and we may assume since now that <p is the 
normalization map n: Y-+Y. We choose an orientation on Y(R) such that y is an 
interval [P, Q] in Y(R). Let P{ < P 2 < . . . <Pm_l be the finitely many points in 
]P , Q[ which lie over singular points of Y ( m ^ l ; m = l if there are no such 
points). Put P 0 : = P and Pm- = Q. Then n is injective on every open interval 
] ^ _ ! , ^ [ . If 7r(/?_,)*7i(^) then 7i is injective on [P^^PJ. Then we do not 
subdivide this interval further. If 7r(JFJ_1) = 7r(fJ) then we choose some point St in 
]/?_!, Now 7i is injective on both subintervals lPt_l9 S J and [5 f , PJ. We thus 
obtain a subdivision of y = [P, ß ] which fulfills the requirements of assertion 
ii). q.e.d. 

If (p\X-^Y is a morphism and y = ( y 1 , y t ) is a path in X(R) then by 
Theorem 3.1 there exists a "refinement" of y to a path y' = (y\,y,) by suitable 
subdivision of the y, such that cp maps every yj to an elementary path ö( in an 
order preserving way. Thus we can associate with y a path <p(y)=(Sl9 ...,<5S). 
This path <p(y) is determined by y uniquely up to refinements in the obvious 
sense. We shall usually speak of "the" image <p(y) of a path y under a morphism 
cp for short. 

As an immediate consequence of the existence of the image of a path we 
obtain 

Corollary 3.2. Let q>: X -+Y be a morphism between varieties over P . Then q> maps 
every path component T of X(R) into a path component B of Y(R). Thus q> induces 
a well defined map <p^ \ n0(X)-+n0(Y). 

We now turn to the problem to lift paths. In the following theorem it will be 
important for applications that we do not assume that the morphism q> is etale 
over the end point of the path y. 

Theorem 33. Let y be an elementary path in Y(R) with end point Qx and let 
(p: X Ybe a finite morphism. Let Q0 be some point of y different from Qx and let 
P0 be a point in X(R) with (p(P0) = Qo- Let B denote the path component of P0 in 
X(R). We assume that cp is etale at all points of the set Bnq>~l(y\{Ql}). Then 
there exists a unique elementary path ß in X(R) which contains P0 and is mapped 
by cp bijectively and order preserving onto y. 

Proof. The path y is nondegenerate. We may replace Y by the (reduced) Zariski 
closure D of y and X by the scheme <p~1 (D). We may then replace q>~1 (£>) by the 
reduced scheme cp~l(D)rcd since this does not change (p~l(D) on a Zariski 
neighbourhood of Bnq)~1(y\{Ql}). Thus we may assume from the beginning 
that X is reduced and Y is an irreducible reduced curve. 



Let n: Y-+Y denote the normalization of Y and let 

X'—-—> X 

Y ^ — Y 

be the scheme theoretic fibre product of Y and X over Y Let y denote the 
normalization of y and let ß 0 , ö i denote the preimages of ß 0 , Qx in y. Let PQ 
denote the point of X'(R) lying over P0 and Q 0 , a n d l e t finally B' denote the path 
component of P 0 ' in X'(R). The morphism rc' maps B' into £ . Thus cp' is etale on 
the set B'n(p'~l(y^{Ql}). In particular this set does not contain singular points. 
It is easy to see that any lifting ß of y through P 0 yields a unique lifting ß of y 
through PQ and vice versa. The irreducible components of X' yield a disjoint 
decomposition of F n ^ _ 1 ( f \ { Q x } ) into relatively Zariski-closed subsets. 
Therefore it is obvious that any lifting ß of y through P0' will run in the 
irreducible component X" of X' containing PQ. The set n'(X") is an irreducible 
component of X. We may replace X by this component, equipped with the 
reduced structure, and X' by the preimage of this component under n'. This 
preimage is irreducible (hence coincides with X"). Thus we assume without loss 
of generality that X and X' are already irreducible reduced curves. 

Let e: X^X' be the normalization of X'. We obtain a natural commutative 
diagram 

Y^— Y 

A l l maps are finite, and e is the normalization of X. The morphism e is an 
isomorphism over a Zariski neighbourhood of B / n ^ ' ~ l ( y \ { Q i } ) . In particular 
there is a unique point P 0 in X(R) over Pq . Let B denote the path component of 
P 0 in X(R). Clearly cp is etale on the set ß n ^ ' ^ y x { Q x } ) . We further see that 
the elementary paths ß through P 0 which lift y correspond uniquely with the 
elementary paths ß through P0 which lift y. Thus in the proof of our theorem we 
may replace q>, y, P 0 by <p, y, P 0 , and we assume since now that X and Y are 
smooth connected curves. We may extend q> to a finite morphism 
between the smooth completions X, Y of X and Y. Notice that q> maps X \ X 
onto Y \ Y since <p is finite. Thus we assume in addition that X and Y are 
complete. 

After a suitable orientation of Y(P) the path y is an interval [S, Q J . We 
choose some orientation on the component B of A'(P), and we know from §2 
that <p_ 1([S, o j ] ) n P = M is either a disjoint union of finitely many closed 
intervals M l 9 M r or the whole of P. 



We now apply the results of §2 to the map cp\ M: M->[S, Q J . There exists 
some point V of M where cp attains its minimum on M . Certainly (p(T,) + Ql, 
thus cp is etale at V. In particular the function A (cp), introduced in §2, does not 
vanish at V. Thus V cannot be an interior point of M . In particular M=}=P. Let 
Mx be the closed interval among the M , which contains P 0 , and let now T 
denote a point of Mx where cp attains its minimum on M r Then as above T is 
one of the end points of Mx. Eventually reversing the orientation of B we 
assume that T is the initial point of Mx. Thus Ml = [T,Pl] with some other 
point Px of B. The value Qx is certainly not a local minimum of 
cp: [T, PJ->[S, Q J , since cp is nowhere locally constant on [T, P J (cf. §2). We 
see as above that cp attains nowhere a local minimum on ~\T, Px[ and according 
to §2 we have to consider two cases: 

Case 1. cp is strictly increasing on [T, P J . 

Case 2. There exists some point A in ]T, Px\_ such that cp is strictly increasing on 
[T, A~\ and strictly decreasing on [A, P J . 

In both cases we must have cp(T) = S. Indeed, if cp(T)>S there would exist an 
interval [ 7 l 5 7 ] which by cp would be mapped into [5, ß J . This is impossible by 
the definition of Mx. By the same argument we see that in the first case cp(Px) 
= QX and in the second case cp(Pl) = S. In the first case we are through: The 
interval [7; P J is mapped strictly monotonely increasing onto [5, ß J and is the 
only such elementary path containing P 0 . 

Assume now that we are in the second case. Suppose that <p{A)<Qx. Then cp 
is etale at A and A(cp)(A)j=0. But this is impossible since cp attains at A the 
maximum. Thus (p(A) = Qx. We see that [T, Ä] is mapped strictly monotonely 
increasing onto [S, Q J and that [A, P J is mapped strictly monotonely decreas­
ing onto [ S , ß J . Clearly P 0 = M . If P 0 lies in [T,A[ then ß = [T,A'] is the only 
solution of our lifting problem. Otherwise P 0 lies in ]A , P J and the path ß 
inverse to [4, P J is the only solution of our lifting problem. Theorem 3.2 is 
proved. 

Remark. In the same way it is possible to prove the existence and uniqueness of 
a lifting of the elementary path y through P 0 if we only assume that cp is etale in 
Bncp~l(y) with y the set obtained from y by omission of both end points, as 
long as Q0 is different from the end points. Indeed, we only have to modify the 
end of the proof of Theorem 3.2 slightly. We meet a more complicated situation 
than the two cases there but we can use the same method of proof. 

We state a modest consequence of Theorem 3.2. 

Corollary 33. Let cp: X ->Y be a finite morphism between varieties over R. Let B 
be a path component of X(R) on which cp is everywhere etale. Then T- = cp(B) is a 
path component of Y(R) and all the fibres of the restriction B^T of cp contain the 
same number of points. 

§4. Path Components 

Theorem 4.1. For any variety X over R the set n0(X(R)) of path components is 
finite. 



Proof. We proceed by induction on the dimension n of X. The case n = 0 is 
trivial. Assume since now that H = 1. Since X is the union of finitely many affine 
open subsets, we may assume that X itself is affine. A l l the finitely many reduced 
irreducible components of X have at most dimension n. Thus we may assume in 
addition that X is reduced and irreducible, hence X = Spec4 with A an n-
dimensional affine algebra over R which has no zero divisors. By Noether's 
normalization Lemma A contains a polynomial algebra r j with inde-
terminates tl9...,tH such that A is finite over R[tl9 ...,t,J. The inclusion 
RLh* -•> r J ° ~ ^ corresponds with a finite surjective morphism (p: X-»An from 
X to the affine standard space A " over R. Let A denote the discriminant 
hypersurface of q> in A " . This is a closed proper subvariety of A " such that q> is 
etale over A " \ A Let Z denote the subscheme q>~l(A) of X. 

We consider first the case that Z(R) is empty. Then cp is etale on X(R). 
Clearly Rn is path connected, since any two points of Rn can be joined by an 
interval on a real line in Rn. According to Corollary 3.3 all fibres of the map 
cpR: X(R)-+Rn have the same finite cardinality d, and by the same corollary 
X{R) has at most d path components. 

We now consider the case that Z(R) is not empty. Z has at most dimension 
n — 1. Thus by induction hypothesis n0(Z(R)) has a finite cardinality N. Let now 
P0 be some point in X(R)^Z(R). We want to show that P0 can be connected to 
some point in Z(R) by an (elementary) path. Then we know that X(R) has at 
most N path components. We choose some straight line G in Rn through the 
point Q0

: = <p(Po) which meets the non empty set A(R). Then GnA(R) consists of 
finitely many points. Thus there exists an elementary path y in G with initial 
point Q0 and end point Qx in A(R\ such that no point of y different from Qx lies 
in A(R). By Theorem 3.2 y can be lifted (in a unique way) to an elementary path 
ß in X(R) which starts at P0. The end point Px of ß lies over Qx and hence in 
Z(R). This finishes the proof of the theorem. 

We now want to prove that the path components of X(R) are open in X(R). 
For this we need a generalization of Theorem 2.6 to arbitrary dimensions. 

Theorem 4.2. For any finite morphism n:X-+Y between varieties X, Y over R the 
map nR: X(R)-+Y(R) is closed. 

Proof We may assume without loss of generality that Y and hence also X is 
affine. U p to isomorphisms we meet the following situation: 
(1) Y = S p e c / l c A ' 1 , A = JR[Xl9 X J / J with some ideal J of polynomials in 
n variables X l 9 X n , 

(2) AT = S p e c v 4 [ T 1 , 7 m ] / / c = A ' , + m with further variables Tl9...,Tm, and n the 
restriction to X of the projection pr: A n + m - > A " to the first n coordinates. We 
denote the image of 7] in A[TX, T m ] / / by tt and introduce the varieties 

y, = S p e c > l [ r 1 , . . . , t J c : A J + 4 . 

(i = 0, . . . ,m, 7 0 = y, Ym = X). We have a factorization 



with 7T, denoting the canonical projection from Yt to Yi_l. A l l these morphisms 
7t(: Yi^Yi_l are again finite, and it suffices to prove that every map (7if)Ä is 
closed. Thus we may assume without loss of generality that m = l , hence 

X = S p e c A [ 7 ] / / c z A n + 1 

with one variable T. Since X is finite over Y there certainly exists a normed 
polynomial G(T)eA[T] lying in / . Then X is a closed subscheme of 

X 1 : = S p e c ^ [ T ] / ( G ( T ) ) c : A n + 1 

and the natural projection ij/: Xt -* Y extends n. Since X(R) is closed in Xl(R) it 
suffices to prove that il/R is closed. We further can lift G(T) to an element 
F ( X 1 , . . . , X n , T ) = 7 d + a a X 1 , . . . , X J T d - 1 + . . . + a d ( X 1 , . . . , X n ) of the poly­
nomial ring R [ X X n , 7 ] . Then Xx is a closed subscheme of the hyper-
surface 

Z ^ S p e c K C X , , . . . , * „ , T M F f X , T)) 

in A n + 1 , and the natural projection 

cp:Z->An 

to the first n coordinates extends i//. Since XX(R) is closed in Z(R) and y(P) is 
closed in Rn

9 it suffices to prove that cpR is closed. 
We proceed in a similar way as in the proof of Theorem 2.6. Let M be a 

closed subset of Z(R) and let b = ( b l 9 b „ ) be a point of P" not contained in 
cp(M). We choose some <r>0 in P . Then the preimage of the cube 

G = { ( y i , . . . , y l , ) e R - | | y l . - M ^ ( x , i = l , . . . « } 

under (pR is bounded, i.e. contained in a rectangle 

P = {(y, xH+l)eR"xR\yeQ9 | x n + 1 | = p } 

by a well known elementary estimate. Let (fc, a,), (ft, a 2 ) , . . . , (fc, a r) be the points 
in the fibre cp* 1 ^). We choose some <5>0 in R such that the open cubes 
0 = 1,. ...r) 

^ = { ( j ^ „ + i ) ^ n x Ä | | y l - f c I | < ^ f o r / = l , . . . , n | x n + 1 - a , . | < < 5 } 

around the points (ft, ö are all disjoint from the closed set M , and such that the 
closures Nj are contained in the interior P of P. 

Now P \ ( N j U . . . u i V r ) is the union of finitely many closed rectangles 
T j , T s of Rn+1. The polynomial 

^ . . . ^ ^ H ^ x - f t , . ) 2 

j = i 

is nowhere zero on Z(R)n(Tlu...uTs). Using Tarski's principle (cf. e.g. [3]) we 
see that \h(x)\^e2 for every x in Z (R)n7 ; with some €,>0, since over R the 



polynomial £ Xf attains its minimum on the intersection of any given hyper-
i = 1 

surface in l R n + 1 with any closed rectangle of J R W + 1 . Thus \h(x)\^e2 for all x in 
M with e = Min(£ 1 , . . . ,e r, o). This means that the ball of radius e around b in 
Rn does not meet the set cp(M). q.e.d. 

Remark. In Part II of the paper we shall eliminate Tarki's principle in the proof 
of Theorem 4.2. Using a different method we shall also prove the following more 
general result: For any proper mapping cp: X -> Y between varieties over R any 
closed semialgebraic subset of X(R) is mapped by cpR onto a closed semi-
algebraic subset of Y(R). 

We now are able to prove for any variety X over R 

Theorem 43. Every path component of X(R) is open in X(R\ hence also closed. 

Proof. We proceed in a similar way as in the proof of Theorem 4.1 by induction 
on the dimension n of X. The case n = 0 is trivial, and we assume now n>0. As 
above we retreat to the case that X is affine and irreducible. As above we have a 
finite morphism (p:X-»A\ and again we denote by A the subvariety of A " 
consisting of the points, where q> is not etale in some point of the fibre, and by Z 
the preimage <p~l{A). Let B be a given path component of X(R) and Pt be a 
given point of B. We have to find a neighbourhood of Px in X(R) which is 
contained in B. Let Q0 denote the image <p(Px) and let Pl9 P 2 , P r be all the 
points in the real fibre q>R

 1 ( ß 0 ) . We choose for each P{ an open neighbourhood 
W{ so small that the following four properties hold true: 

a) WinWj=0 for 1*7. 
b) If Pj lies in Z(R) then WtnZ(R) is contained in the path component A of 

Px in Z(R). {Notice that by induction hypothesis A is open in Z(R).} 
c) If Pi does not lie in Z(R) then the intersection WtnZ(R) is empty 

0=1,. . . , r) . 
d) There exists a function / in the affine ring R [ X ] of X which is negative 

everywhere on Wl and positive everywhere on W2u...u Wr. 
It is easy to fulfill also the last requirement d) by use of the Chinese 

remainder theorem applied to the ring R[X~\ and the maximal ideals of this ring 
corresponding to P l 9 P r . 

Since the map <pR: X(R)^Rn is closed (Theorem 4.2) there exists an euc-
lidean open ball U around Q0 of some radius 8 such that <pR

l(U) is contained in 

Wlv...vWr. jchoose U in the complement of cp (x(R)\ (J w}j in P" . j Then 

j / . : = j^n<PÄ l s again an open neighbourhood of Pt and <pR

l(U) 
= VxKJ...KjVr. 

We now show that Vx a B, which will finish the proof. Let P be a given point 
of Vl9 different from Pl9 and Q- = (p(P). If P lies in Z(R) then by properties b) and 
c) PeA. Thus PeJB, since A is contained in B. 

Assume now that P does not lie in Z(R). We consider first the case that Q0 

does not lie in A(R). Then U does not meet the set A(R) by property c). Let y be 
the straight elementary path from Q to Q0. This path is contained in U. Let ß 
denote the unique lifting of y which starts at P. This elementary path ß runs in 
K j U . - . u ^ . The function / has no zeros in V1v...vVr and is negative at the 



starting point P of ß. Thus / is negative everywhere on ß. This means that ß runs 
in Vx. The end point of ß lies over Q0 and thus must be the point Px. Thus P lies 
in the path component B of Px. 

We finally consider the case that P does not lie in Z(R) but Q0 lies in A(R). 
Let again y be the straight elementary path from Q to Q0 in U. Let Q'0 be the 
first point of y contained in A (P), and let y' denote the subpath [Q, Q'0~] of y. By 
Theorem 3.3 there exists a unique elementary path ß' in X(R) which starts at P 
and lifts / . As above we see that ß' runs in Vx. The end point P[ of /?' lies in 
Vxr\Z{R\ hence in 4 by property a) above. Since / l c 5 w e see that P lies in B. 
Now Theorem 4.3 is completely proved. 

If R coincides with the field R of real numbers then every path component T 
of X(JR) as defined here is also path connected in the sense of topology, where a 
path is just a continuous map from [0, 1] to X(WL). Thus P is also connected in 
the topological sense, i.e. P is not the union of two non empty subsets which are 
open in P. It now follows from Theorem 4.3 that the topological components, 
the topological path components, and the path components of X(1R) as defined 
above are the same subsets of X(R). 

We return to an arbitrary real closed base field R. 

Corollary 4.4. Every point P of X(R) has a fundamental system of path connected 
open neighbourhoods. 

Proof. We may assume that X is a closed subvariety of some affine standard 
space AN, hence X(R)aRN, and that P is the point (0, .. . ,0) in RN. Let some 
p>0 in R be given. Consider the function 

N 
/ ( x 1 , . . . , x N ) = p 2 - £ x ? 

i s l 

on X(R). Let X' denote the Zariski open subset of X where / does not vanish, 
and let P denote the path component of P in X'(R). By Theorem 4.2 the set P is 
open in X'(R) hence also open in X(R). The algebraic function / h a s no zeros on 
X'(R) hence constant sign on P. Since f(P) = p2>0 the function / is positive 
everywhere on P. This means that P is contained in the open ball Bp(P) of radius 
p around P. Thus Bp(P)nX(R) contains the path connected open neigh­
bourhood P of P. q.e.d. 

In Part II of the paper we shall see that every path component of X(R) is 
also a semialgebraic subset of X(R). We then know by the proof of Corollary 4.4 
that every point P of X(R) has a fundamental system of path connected 
semialgebraic open neighbourhoods. 

§5. An Application to the Theory of Witt Rings 

We now assume that X is a divisorial scheme of finite type over a field k. This is 
a very general class of schemes containing all quasiprojective and all regular 
varieties over fe, cf. [9, 2.2] and [12, Chap. III § 1]. We are interested in the 
signatures of X, i.e. the ring homomorphisms from the Witt ring W(X) of 



bilinear spaces over X to the ring of integers TL. We refer the reader to the 
lectures [12] and the paper [11] for the general theory and the meaning of 
signatures. 

It is known that every signature a: W(X)^Z factors through some point x 
of X, i.e. there exists a commutative diagram 

W(X)—-—Z 

W(K(X)) 

with W(X)-+ W(K{X)) the natural map from W(X) to the Witt ring of the residue 
class field K(X) = (9JXX\X of the point x [12, V . l ] . Recall that the signatures of K(X) 
correspond uniquely with the total orderings of the field K(X). The main goal of 
this section is to prove the following refinement of this result. 

Theorem 5.1. Every signature a of X factors through a closed point x of X. 

We shall prove this first in the special case that k is a real closed field R. If a 
closed point x of X is complex then K(X) = R(]/ — 1) has no signatures, but if x is 
real then W(K(X)= W(R)^Z and K(X) has a unique signature. Thus every real 
point PeX(R) yields one signature 

ZXP:W(X)^W(K(P))-^Z 

of X. The claim of Theorem 5.1 is that the xx P are all the signatures of X. 
Every signature of X factors through some point of X and hence a fortiori 

factors through the reduced scheme XTcd. Since the signatures correspond 
uniquely with the minimal prime ideals of W(X) this implies that the kernel of 
the natural map from W(X) to W(XTed) consists of nilpotent elements. Thus 
every signature of X factors through Xred in a unique way, and we may replace 
X by XTed in the whole study. Thus we assume since now that X is a reduced 
divisorial variety over R. 

Lemma 5.2. / / P and Q are path connectable points of X(R) then xx p = xx Q . 

Proof. It suffices to prove this in the case that there exists an elementary non 
degenerate path y starting at P and ending at Q. Let D be the Zariski closure of 
y in X. Then xx P has the factorization 

xxp:W(X) >W(D)-—*Z 
t o , P 

with W(X)^W(D) the natural map. The same holds true for xx Q . Thus it 
suffices to prove xD P = xD Q . Replacing X by D we assume since now that X is 
an irreducible curve. 

Let n:X-»X denote the normalization of X and let P, Q denote the 
preimages of P and Q in the normalization y of y. We have the factorization 

tv »: W(X) • W(X) >Z 



of xx P and an analogous factorization of xx Q . It suffices to prove xx P = xx Q. 
Thus we may replace X by X and assume that X is a smooth connected curve. 
But then the assertion is evident from the explicit description of W(X) in [10, 
§9] . 

Definition. Two real points P and Q of the variety X over R are called Witt 
equivalent in X if the signatures xx P and xx Q are equal. The classes of this 
equivalence relation on X(R) are called the Witt components of X(R). 

By Lemma 5.2 above every Witt component is a union of path components. 
We know from §4 that there exist only finitely many path components in X(R). 
A fortiori X(R) consists of only finitely many Witt components B l 9 B s . Every 
Witt component P t corresponds uniquely with a signature x{ of X, defined by T, 
= xx p with P an arbitrary point of B(. 

The claim of Theorem 5.1 in the case k = R is that x l 9 T s are already all 
signatures of X. Suppose there exists a signature a of X different from x l 9 x s . 
We choose elements zl9 . . . , z s of W(X) such that a(zt)#T|.(Zi.) for i = l , . . . s. Our 
goal is now to find a point P in X ( P ) such that a(zt) = xx P(zt) for i = 1, .. . s. This 
will be the desired contradiction. 

There exists a point yeX, not necessarily closed, such that a factors through 
a signature a of /c(>>), 

W(K(y)) 

Let y = {y} denote the irreducible closed subvariety of X with generic point y 
and £ : = *()>) denote the function field of Y over P . We choose a non empty 
open affine subset Z of Y which contains only regular points. The affine ring A 
= P [ Z ] of Z is a finitely generated algebra over R without zero divisors and 
with the quotient field E. For an element z of W(X) we denote by z\A the 
natural image of z in W(Z)=W(A) ("restriction" of z to A) and by z\E the 
image of z in W(E). We represent z , | £ by a diagonal quadratic form 
</n> - ' /in,) w r i h coefficients/ 7 in A Then 

*(z4) = a ( z J E ) = 

Here we use the common abbreviation £ ( / ) : = < x ( < / » = ± 1 . According to Art in 
and Lang there exists a place A: £ - > K u o o over R with the following properties: 

a) A is finite on A. 
b) A C Q + O, sign Hf^aVtj). 
([1], [16, Theorem 8], [15, Prop. 6.4]; recall that a corresponds with an 

ordering of E.) The kernel of the homomorphism A | A from A to R is a maximal 
ideal m of A with 4 /m = P . Thus A| A is the evaluation homomorphism of A at a 
point PeZ(P) , A ( / )= / (P) for a l l / in A We obtain (i= 1,... s) 

(T(z,)=f;sign/ 7 (P). 
7= 1 



We claim that xx P has the same values on the z,. Notice that (9Y P is a regular 
local ring with quotient field E. The elements z{\(9YP and </•!, . . . , /•„.> of 
W(0Y P) have the same image in W(E). {Notice that the f(j are units in (9Y P , 
hence (fn, . . . , / i n j > may indeed be regarded as an element of W((9Y P).} By the 
specialization theorem [14, Cor. 2.3] the images of these elements of W(0Y P) in 
W(K(P))=Z are also the same. This means that 

n, 
**.p(*f)= X sign/ y (P). 

7=1 

Thus indeed xXP(zl) = o(z?) for z = l , . . . s. This contradiction finishes the proof of 
Theorem 5.1 in the case k = R. 

Remark. The proof was essentially the same as in [12, Chap. V ] for the special 
case R = WL. A t the end we have slightly simplified the argument avoiding here 
the theorem of Craven-Rosenberg-Ware cited in [12]. This simplification has 
been suggested to us by J.L. Colliot-Thelene. 

As in the special case R = JR [12, p. 249] we have the following natural 

Question. Is every Witt component of X{R) already a path component? 

It is clear from [10, I I§9] that the answer is "Yes" for X a smooth curve. 
G . Dietel has recently proved that the answer is also " Y e s " for singular curves 
[6]. In the case K = R the answer is known to be "Yes" if X is a complete 
smooth surface or an abelian variety [4]. 

We now prove Theorem 5.1 for an arbitrary base field k. We apply the 
rudiments of the theory of real closures of schemes with respect to signatures in 
[11] and [13] and use the terminology developed there. Let o0 denote the 
signature of Spec(/c) obtained from a by restriction with respect to the structure 
morphism cp: X-»Spec(/c). Let R denote the real closure of k with respect to o0 

in the classical sense and let <r0 be the unique signature of R. We have a 
cartesian square 

Spec(fl)< »' Y 

Spec(/c) ^r—X 

with Y=X®kR, 7T0 the profinite covering induced by the inclusion map from k 
to /?, and also n a profinite covering. 

Let ij/: (X, <r)->(Ar, o) be a real closure of the pair (X, a) {"strict real closure" 
in the language of [11]}. According to the theory of real closures there exists a 
morphism a from (X, d) to the pair (Spec(R), <r0) such that the following 
diagram commutes: 

(Spec(K), <70) 

(Spcc(fc), <x0) (X, a) (X, a). 



We then obtain from a a morphism ß: X -> Y such that the diagram 

Spec(/c) ^ - X t - ^ X 

commutes. We introduce the signature 

T : = ao)S*: W(Y)-+W(X)-+Z 
on K Then 

T o 71* = G o ß* o 7i* = <7 o {//* = a. 

Thus we have extended the given signature a on X to a signature T on y 
Now y is of finite type and divisorial over R. Thus - as proved above - there 

exists a closed point y of Y such that T factors through y. Let x denote the point 
n(y) of X . Since K(X) is a subfield of R the point x is closed in X. We have a 
commutative diagram 

y * — Spec (K(y)) = Spec (Ä) 

TT 

Spec(*(x)). 

Under the functor "Witt ring" this diagram turns into the horizontal and 
vertical part of the following diagram. 

W(Y)—Z—+W(R)=Z 

W(X) • W(Spec*(x)) 

The square and the upper triangle both commute. Thus also the lower triangle 
commutes. This is the desired factorization of a through the closed point x. 
Theorem 5.1 is proved. 
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