The problems of low face selectivity and difficulty in removal of the chiral auxiliary are solved with Oppolzer's bornane-10,2-sultam system. Thus, oxidation of dienoate 8 diol 4a prepared from enantiomerically enriched dienoate resulted in 91% of the epimeric diastereomers, from which the major diastereomer could be readily isolated by flash chromatography in 38% yield. Treatment of this THF diol with CH3OMeBr then gave a sample of nonracemic THF diol 4a (55%), shown to possess the 2R absolute configuration by correlation with the Mosher ester (4b) from authentic dienolate 9 proceeded similarly to that of dienoate 6a,18 and 13,6a19 as shown in Scheme II. Cyclization of the diastereomers in oxidation of the bornane-10,2-sultam derived dienoate 8 results from attack on the Re face of the conjugated double bond. As expected, this is the same facial bias observed by Oppolzer in the osmylation of sultam-functionalized enoates.15 It must be pointed out, however, that the mechanism of the oxidative cyclization reaction is not known, the mass balance is never quantitative, and α-ketol byproducts are always produced, most likely from the same intermediate that leads to THF diol. Thus, the ratio of THF diol diastereomers is not necessarily a reflection of the face selectivity in the attack of permanganate on the unsaturated system. Nevertheless, diastereofacial bias in initial attack of permanganate on the conjugated double bond to give a Mn(V) diester, followed by oxidative cyclization by the Sharpless-type mechanism previously suggested by us in the literature is certainly an attractive explanation of the observed results.

In order to further explore the scope of the asymmetric oxidative cyclization, we have studied the cyclization of dienolates 9,17,11,16,18 and 13,6a,19 as shown in Scheme II. Cyclization of the diene 9 proceeded similarly to that of dienoate 8, to give the expected 9:1 ratio of diastereomeric THF diols. The major diastereomer, assigned the structure resulting from Re-face attack of

by analogy with the results presented above, was easily purified by flash chromatography and isolated in 40% yield.4b Treatment of this material with CH3OMeBr then gave enantiomerically pure THF diol 10 in good yield.6a,19 Compound 10 has the substitution pattern of the C ring of monensin, but of opposite absolute configuration.

Interestingly, oxidation of diene 11 with permanganate under our standard conditions gave no trace of THF diol. Apparently, the substitution at the allylic carbon remote from the dienoate carbonyl effectively shuts down oxidative cyclization in favor of other pathways (the only products isolated from this reaction, in 79% combined yield, were identified as diastereomeric mixtures of the two regioisomeric α-ketols resulting from attack of permanganate at the conjugated double bond). A product possessing the substitution pattern present in THF diol 12, however, could easily be obtained by diastereoselective oxidative cyclization of diene 13, followed by straightforward elaboration as shown in Scheme II to give THF diol derivative 14.6a,19

Photoluminescence of [PtII(4,7-diphenyl-1,10-phenanthroline)(CN)2] in Solution

Horst Kunckely and Arnd Vogler*

Institut für Anorganische Chemie der Universität Regensburg
Universitätsstraße 31, D-8400 Regensburg, FRG
Received December 22, 1989

Aromatic molecules are well-known to undergo excited-state dimerization in solution. Under suitable conditions the formation of excited dimers (excimers) can be monitored by the simultaneous appearance of the monomer and excimer luminescence. With regard to coordination compounds, PtII complexes are promising candidates for the observation of emissive monomers and excimers. Unfortunately, the majority of mononuclear PtII complexes are not luminescent in fluid solution. This seems to be associated with the presence of low-energy dd states. The few mononuclear PtII complexes that are indeed luminescent in solution emit from intraligand (IL) ππ* or metal to ligand charge transfer (MLCT) states. In addition to these mononuclear complexes, the excimer emission

(3) An excimer of [Pt(o-phen)2]+ in the solid state has been reported recently.

0002-7863/90/1512-5625$02.00/0 © 1990 American Chemical Society
plexes, several binuclear PtII compounds such as [Pt2(P2O7H2)4]9-10 and [Pt2(bis(diphenylphosphino)methane)2(CN)4]11 and the oligomeric anion [Pt(CN)4]2-12,13 are known to be intensely luminescent in solution. In these cases the emission originates from excited states which are characterized by strong metal–metal bonding. This metal–metal bond which is essentially absent in the ground state may thus promote a dimerization of excited mononuclear PtII complexes in solution. We explored this possibility and selected the compound [Pt(bathophen)(CN)2] with bathophen = batophenanthroline (4,7-diphenyl-1,10-phenanthroline) for the present study. The ligand field (LF) states of this compound occur certainly at very high energies and should thus not interfere with an emitting IL state of the coordinated bathophen. It is also important that the complex is neutral since excimer formation of charged complexes should be hindered by electrostatic repulsion. Finally, excimer formation requires a relatively high concentration of the monomer. While some [PtII(diamine)(CN)2] complexes have been recently reported to emit in the solid state,14 their investigation in solution is hampered by their very low solubility in all common solvents. Interestingly, the complex [Pt(5,5'-Me2bpy)(CN)2] is indeed soluble in acetonitrile and shows a luminescence in solution,5 but its solubility may be too low to observe an excimer emission. For the complex [Pt(bathophen)(CN)2], an enhanced solubility in nonaqueous solvents was expected in analogy to the compound [Re(bathophen)(CO)3Cl].15

The compound [Pt(bathophen)(CN)2]·H2O was prepared and obtained analytically pure in analogy to the synthesis of [Pt(2,2'-bipyrimidine)(CN)2].16 In CH2Cl2, the complex [Pt(bathophen)(CN)2] was soluble up to concentrations of about 6 × 10-4 M. In PEG (polyethylene glycol), higher concentrations up to 9 × 10-3 M were obtained. This was facilitated by heating. It is possible that these solutions were oversaturated, but they remained homogeneous.

The absorption spectra of [Pt(bathophen)(CN)2] in CH2Cl2 and PEG are very similar. In PEG absorption maxima appear at λ = 375 (ε = 5900), 357 (7500), ~336 (shoulder, 12400), ~304 (shoulder, 36100), and 293 nm (41300). The absorption spectrum was not concentration dependent. When saturated CH2Cl2 or PEG solutions were diluted, the Lambert–Beer law was obeyed.

In solutions of CH2Cl2 and PEG, the complex showed an emission that varied with the concentration. The excitation spectrum matched the absorption spectrum, indicating a genuine emission of the complex. In CH2Cl2 at low complex concentrations (~10-3 M), only a green luminescence at λmax = 520 nm appeared. An increase of the concentration to its upper limit (6 × 10-4 M) was associated with the appearance of a red emission at λmax = 615 nm which grew at the expense of the green emission. Due to limited solubility of [Pt(bathophen)(CN)2] in CH2Cl2, a complete conversion of the green to the red luminescence was not achieved. However, in PEG the green emission (λmax = 530 nm, τ = 0.1 μs) could be completely replaced by the red luminescence (λmax = 630 nm, τ = 1 μs) since higher concentrations than those in CH2Cl2 were obtained. At intermediate concentrations in PEG, both emissions were present. When the light absorption was complete (A > 2), the variation of the concentration led to the occurrence of an isosbestic point at λ = 586 nm (Figure 1).

The bathophen and cyanide ligands of Pt(bathophen)(CN)2 should cause a large LF splitting of the d orbitals due to strong σ bonding as well as π back-bonding in the complex. LF and metal to ligand charge transfer (MLCT) transitions are then not expected to occur at low energies. The absorption spectrum of the complex indeed does not contain the solvatochromic MLCT bands which are characteristic for complexes of the type [Pt(diamine)X2] with X- = halide.17 In analogy to the complexes [Pt(5,5'-Me2bpy)(CN)2] and [Pt(o-phen)2]2+, we assign the absorption bands of [Pt(bathophen)(CN)2] to IL ππ* transitions of the coordinated bathophen. This IL assignment of the lowest excited state is also supported by the emission properties of [Pt(bathophen)(CN)2] in dilute solution. The observation of a solution luminescence indicates the absence of low-energy LF states.3,8 The IL luminescence of [Pt(bathophen)(CN)2] appears at a wavelength (λmax = 530 nm) that is very close to that of the low-temperature IL emission of [Pt(o-phen)]2+ and the phosphorescence of o-phen complexes of Zn++.18

While the absorption spectrum of [Pt(bathophen)(CN)2] in solution obeys the Lambert–Beer law, the emission spectrum undergoes a considerable change in the same concentration range (Figure 1). We suggest that this concentration dependence is due to the formation of an excimer.

In dilute solution the IL ππ* state of the mononuclear complex is deactivated by emission and nonradiative deactivation. With increasing concentration, an association to an excimer takes place. The excimer emits at lower energies. It may also undergo a radiationless deactivation or dissociate into an excited-state and a ground-state monomer. In the ground state the dimer is not stable but dissociates to its monomeric components.

It is assumed that the excimer is characterized by a metal–metal bond which promotes the dimerization.19 The formation of a strong metal–metal bond in the excited state also has been observed for Pt0 complexes which are already binuclear in the ground state due to the presence of bridging ligands.5,11 Compared to the IL emission of the monomeric [Pt(bathophen)(CN)2], the luminescence of the excimer is shifted to a longer wavelength since the dimerization generates a new low-energy excited state which

(19) The existence of an excimer of [Pt(o-phen)]2+ in the solid state has been attributed to ligand–ligand interaction in the excited state.4 While this is also possible for [Pt(bathophen)(CN)2], we consider the formation of a metal–metal bond as a more probable alternative.
is associated with the metal–metal interaction. The excimer formation is certainly facilitated by the relatively long lifetime of the monomer (~10^{-6} s). With increasing concentration, the excimer formation competes successfully with the emission and radiationless deactivation of the monomer. The isoemissive point is calculated from the half-concentration Ch.Iq2 at an estimated radiationless deactivation of the monomer. The isoemissive point calculated from the half-concentration Ch.Iq2 at an estimated radiationless deactivation of the monomer. The isoemissive point calculated from the half-concentration Ch.Iq2 at an estimated radiationless deactivation of the monomer. The isoemissive point calculated from the half-concentration Ch.Iq2 at an estimated radiationless deactivation of the monomer.

If the excimer is indeed rather stable, its dissociation may not be important. This assumption is supported by a simple calculation. Provided the excimer dissociation can be neglected, the second-order rate constant k_{2} for the excimer formation can be calculated from the half-concentration Ch.Iq2 at an estimated radiationless deactivation of the monomer. The isoemissive point calculated from the half-concentration Ch.Iq2 at an estimated radiationless deactivation of the monomer. The isoemissive point calculated from the half-concentration Ch.Iq2 at an estimated radiationless deactivation of the monomer.

Acknowledgment. Support of this research by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Catalytic Asymmetric Induction in the Homo Diels–Alder Reaction

Mark Lautens, a,b Julia Craig Lautens, and A. Catherine Smithb

Department of Chemistry, University of Toronto

Toronto, Ontario, Canada M5S 1A1

Received December 18, 1989

Enantioselective carbon–carbon bond-forming reactions can proceed in >99% ee for reactions such as the aldol condensation, the Diels–Alder reaction, and others through careful choice of one of a number of readily available chiral auxiliaries. Despite the progress made in the last ten years in this area of stoichiometric asymmetric synthesis, there remains a continuing need for the development of new reactions where high levels of catalytic asymmetric induction occur. There is great interest in developing cycloadditions where control is achieved through the presence of catalytic amounts of an external ligand.

We have recently begun a program to develop the homo Diels–Alder reaction into a viable approach to polymeric natural product synthesis. We have reported that cobalt acetylacetonate, Co(acac)$_2$, upon reduction in the presence of 1,2-bis(diphenylphosphino)ethane, is extremely effective in promoting a cycloaddition between norbornadiene and a variety of monosubstituted acetylenes to yield diacyclopentanes (eq 1). Importantly, a total of six new stereocenters (represented by an asterisk) are created in this transformation. In this communication, we address the question of enantioselectivity in the cycloaddition through the use of chiral phosphines. We are aware of no previous studies in this area.

We first surveyed the enantioselectivity in the reaction of phenylacetylene and norbornadiene as a function of chiral phosphine. The ligands were examined under the standard cycloaddition conditions (2 mol % arene and catalytic amount of phosphine) in benzene at 25 °C. The ee of the diene was determined by HPLC.6 A representative catalytic cycle6 is depicted in Figure 1. The diene olefinic C–H bond resonance6 at X = 13.9 (S) is observed by NMR, with the dominant olefinic proton at X = 13.9 (S). Satisfactory NMR, IR, optical rotations, and mass spectral data were obtained for all new compounds.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Adduct</th>
<th>Ligand</th>
<th>Temp (°C)</th>
<th>Yield (%)</th>
<th>Rotation (°)</th>
<th>[a]_D (°)</th>
<th>Alcohol</th>
<th>Ether</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>A</td>
<td>80</td>
<td>34</td>
<td>2a</td>
<td>41 (R)</td>
<td>2b</td>
<td>69 (R)</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>B</td>
<td>25-27</td>
<td>37+77</td>
<td>2a</td>
<td>69 (R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>B</td>
<td>25-32</td>
<td>39-34</td>
<td>2a</td>
<td>48 (S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>A</td>
<td>25-27</td>
<td>88</td>
<td>2b</td>
<td>78 (R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>A</td>
<td>25-26</td>
<td>83-0.8</td>
<td>2b</td>
<td>91 (R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>B</td>
<td>25-27</td>
<td>87</td>
<td>2b</td>
<td>78 (S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>A</td>
<td>25-28</td>
<td>64</td>
<td>2b</td>
<td>80 (R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>B</td>
<td>25-27</td>
<td>75</td>
<td>2b</td>
<td>36 (R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>C</td>
<td>30-40</td>
<td>33</td>
<td>2b</td>
<td>55 (S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>B</td>
<td>28-32</td>
<td>85</td>
<td>2e</td>
<td>85 (R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>A</td>
<td>28-39</td>
<td>26</td>
<td>2e</td>
<td>18 (S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>A</td>
<td>28-30</td>
<td>90</td>
<td>2e</td>
<td>60 (R)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) = S,S-chiraphos, B = R-prophos. 7% Co(acac)$_2$, 2% ligand, 4 equiv Et$_2$AlCl in benzene, reaction times of 3-20 h followed by purification by flash chromatography or bulb-to-bulb distillation. 7 Measured in CH$_2$Cl$_2$ at 25 °C. 8 Ester of diene ee, see text. 9% catalyst used. 10 Reaction run in THF/vitriol (3:1). 11 [a]_D = +99.4° (c = 1.0). 12 [a]_D = +56.4° (c = 1.1). 13 [a]_D = +56.4° (c = 0.5) as TBDMS derivative. 14 R or S refers to the stereochemistry of the carbon bearing the hydroxyl group in alcohols 2a–e.

We first surveyed the enantioselectivity in the reaction of phenylacetylene and norbornadiene as a function of chiral phosphine. The ligands were examined under the standard cycloaddition conditions (2 mol % arene and catalytic amount of phosphine) in benzene at 25 °C. The ee of the diene was determined by HPLC.6 A representative catalytic cycle6 is depicted in Figure 1. The diene olefinic C–H bond resonance6 at X = 13.9 (S) is observed by NMR, with the dominant olefinic proton at X = 13.9 (S). Satisfactory NMR, IR, optical rotations, and mass spectral data were obtained for all new compounds.

(12) Abbreviations: S,S-chiraphos, (2S,3S)-bis[diphenylphosphino]butane; R-prophos, (R)-(+)-1,2-bis(diphenylphosphino)propane; Satisfactory NMR, IR, optical rotations, and mass spectral data were obtained for all new compounds.

(13) From a detailed study of phosphine ligands, it is clear that the maximum number of atoms from P to P must not exceed 4 (unpublished work of C. M. Cründen).

(14) The hydroboration–oxidation reaction was used to reduce the diene to alcohol 2a, which was converted to the Mosher esters 3a–14. For adduct 1de