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“Research is to see what everybody else has seen, and to think what    
  nobody else has thought” 
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1. Introduction 
 
1.1 Natural products as an important source of drugs 
 
Natural products are bioactive secondary metabolites that are isolated from all kingdoms of 

life and have proven to be a rich source of disease modulating drugs throughout the history of 

medicinal chemistry and pharmaceutical drug development.[1] For many centuries drugs were 

entirely of natural origin and composed of herbs, animal products, and inorganic materials. 

Early therapeutics has combined these ingredients with witchcraft, mysticism, astrology, or 

religion, and those treatments that were effective were subsequently recorded and documented 

leading to the early herbals. The science of pharmacognosy, i.e. the knowledge of drugs, grew 

from these records to provide a disciplined, scientific description of natural materials used in 

medicine.[2] Herbs formed the bulk of these remedies. As chemical techniques improved, the 

active constituents were isolated from plants, structurally characterized, and in due course 

many were synthesized in the laboratory. Sometimes more active or better tolerated drugs 

were produced by chemical modifications (semi-synthesis), or by total synthesis of analogues 

of the active principles. Gradually synthetic compounds superseded many of the old plant 

drugs, though certain plant derived agents were never surpassed and remain as valued 

medicines to this day. The shown below (Fig. 1) are some of the representative natural 

product derived medicinal compounds from past to present. 
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Figure. 1. Examples of natural product based drugs from past to present.  
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There is currently a renewed interest in pharmacologically active natural products, be they 

from plants, microorganisms, or animals, in the continued search for new drugs, particularly 

for disease states where our present range of drugs is less effective than we would wish. 

Natural products play a highly significant role in the drug discovery and development process. 

Especially this was apparent in the areas of cancer and infectious diseases. It was revealed 

that above 60% and 75% of these drugs were to be of natural origin. In a recent survey 

conducted by National Cancer Institute, among the new 877 small-molecule chemical entities 

introduced as drugs worldwide during 1981–2002, 61% were found to be inspired by natural 

products.[3] These include natural products (6%), natural product derivatives (27%), synthetic 

compounds with natural-product-derived pharmacophores (5%), and synthetic compounds 

designed on the basis of knowledge gained from a natural product (that is, a natural product 

mimic; 23%). The pronounced biological activity of natural products has been rationalized by 

the fact that during biosynthesis, and while participating in their biological role, they interact 

with multiple proteins as substrates and targets.[4] Natural products are evolved to perform a 

function that is achieved by binding to proteins or DNA. Therefore, they are capable to 

penetrate biological barriers and make their way into certain cells or organs in which they will 

exert the effect. Thus, most natural products already are biologically validated to reach and 

bind specific proteins. In the plant itself, natural products as secondary metabolites often serve 

to defend against or poison pathogens or insect predators. In humans, these compounds can be 

used to protect against, ameliorate, or cure some of our deadlier diseases often by acting as 

specific toxins against the causal organisms, aberrant cells, or a physiology out of whack.[5]

 

1.2 Total synthesis of natural products as a tool for drug discovery 
Every natural product type isolated from the seemingly limitless chemical diversity in nature 

provides a unique set of research opportunities deriving from its distinctive three-dimensional 

architecture and biological properties. For the past century, the total synthesis of natural 

products has served as the flagship of chemical synthesis and the principal driving force for 

discovering new chemical reactivity, evaluating physical organic theories, testing the power 

of existing synthetic methods, and enabling biology and medicine.[6a] A handful of past and 

current “miracle drugs” from plants can easily illustrate the importance of total synthesis of 

natural products in drug discovery — from quinine to Taxol, from aspirin to the birth control 

pill. Many if not most of these have been tremendous challenges to the medicinal chemist to 

make in the laboratory, much less scale up to factory-level production. The development of 

powerful and highly selective methodologies that have control of reactions in chemo-, regio-, 
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stereo-, and enantio-selectivity have extended the frontiers of total synthesis to near the 

conceivable limit. The thalidomide episode[6b] in 1960 (different isomers of thalidomide 

showing differing pharmacological activities, (R)-thalidomide has desired sedative properties, 

while (S) enantiomer is teratogenic and induces fetal malformations) perhaps serves as a sad 

reminder of the enormously difficult and often unpredictable problem of biological activity 

elicited by enantiomeric substances, and it highlights the utmost importance of access to 

enantiomerically pure compounds. With the advent of new techniques such as High 

Throughput Screening (HTS), Computer-aided drug design, Structure based drug design, and 

Quantitative structure activity relationship (QSAR) the screening of drug candidates can be 

done more efficiently leading to cost reduction and shortening of development time.  

 

1.3 Biologically active guaianolides and dimeric guaianolides 

1.3.1 Guaianolides: Structural features and bioactivity 
Guaianolides, consisting of tricyclic 5,7,5-ring system, represent one of the largest subgroup 

of naturally occurring sesquiterpene lactones exhibiting significant biological activity.[7, 8] 

Plants containing different guaianolides as the active principles have been used in traditional 

medicine throughout history for treating conditions ranging from rheumatic pains, increase of 

bile production to pulmonary disorders. As the name itself indicates, the core structure of the 

guaianolides is derived from Guaiane, a natural product with a cis-fused 5,7-bicyclic 

hydroazulene ring system (Fig. 2). 
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Figure 2. Skeletal relationships: Two classes of guaianolide skeleton. 

 

The guaianolide skeleton along with the 5,7-bicyclic hydroazulene ring system often contains 

a third ring, an unsaturated α-methylene-γ-lactone, fused to the seven membered ring. 

Guaianolides exist in two forms namely, guaian-6,12-olides and guaian-8,12-olides (Fig. 2). 

These two classes differ in their site of annulation of the γ-butyrolactone motif and can simply 

be termed as angular and linear guaianolides respectively. The γ-butyrolactone ring is trans-

annulated in approximately 85% of all known guaianolides, while in few guaianolides, the 

hydroazulene core is also cis-fused in the 5,7,5-tricyclic carbon skeleton.[9] Along with the 
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structural diversity, guaianolides exhibit a broad range of biological activity and stimulate the 

development of research in their total synthesis. Some guaianolides have been reported to 

possess high antitumor, antihistosomal, anthelminthic, contraceptive, root-growth stimulatory 

and germination inhibitory activities.[10] This diverse bioactivity of guaianolides makes them 

attractive synthetic targets since the availability of these compounds from natural sources is 

very limited. The representative members shown below (Fig. 3) exemplify the structural 

diversity found within this class of compounds. Among the prominent members of 

guaianolides are the Thapsigargins isolated from root of Thapsia garganica, exhibiting Ca2+ 

modulating properties in subnanomolar concentrations. When applied to intact cells, 

Thapsigargin can severely alter cellular Ca2+ levels, leading to disrupted cell growth and 

function, and in many cases to programmed cell death.[11] (+)-Arglabin, another prominent 

member of guaianolides, was isolated from Artemisia glabella[12] and shows promising 

antitumor activity and cytotoxicity against different tumor cell lines (Human tumor cell lines 

IC50= 0.9-5.0 μg/ml).[13] Arglabin is of interest to the medical community in the recent years 

as it is currently being tested clinically against breast, colon, ovarian and lung cancer.[14, 15] 

Intrigued by its biological activity and structural features, we aimed towards the 

enantioselective total synthesis of (+)-Arglabin and this was successfully accomplished.[16]  
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Figure 3. Some representative examples of guaianolides exhibiting structural diversity. 
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1.3.2 Biological properties of sesquiterpene lactones 

Many of the α-methylene sesquiterpene lactones show cytotoxic, antitumor, and bactericidal 

properties, while few of them cause an allergenic contact dermatitis or affect plants by 

inhibition of growth.[17] The structure-activity relationship (SAR) of α-methylene 

sesquiterpene lactones was intensively studied.[18-22] It has been shown that these compounds 

can react by conjugate addition of various biological nucleophiles such as L-cysteine or thiol-

containing enzymes (E-SH) (Scheme 1). Further evidences shows that these lactones inhibit 

the incorporation of selected amino acids into proteins, i.e., they inhibit the metabolism at the 

cellular level, but do not alkylate DNA.[20, 23-28] Apparently, the residual molecule and its 

lipophilicity also determine the specificity and the site of the activity. 

 

OO

+ E-SH
Michael addition

OO

E-S

 
 

Scheme 1. Michael addition on α-methylene sesquiterpene lactones. 

 

Based on the SAR studies it has been shown that almost all known cytotoxic sesquiterpene 

lactones possess an α, β-unsaturated lactone structure, and that the conjugated double bond 

must be exocyclic.[23] A cyclopentenone or an additional α-methylene lactone moiety or a 

hydroxy group enhances the cytotoxic activity. The high cytotoxicity of sesquiterpene 

lactones can be attributed to the inhibition of DNA synthesis and/or transcription.[28a] A large 

number of active sesquiterpene lactones isolated from plant extracts show tumor inhibiting 

activity.[29] A few of them such as Vernolepin and Elephantopin (Fig. 4) show promising in 

vivo antitumor activity against the Walker 256 intramuscular carcinosarcoma in rats.[23] 

Despite of having very good antitumor activity, the considerable cytotoxicity of sesquiterpene 

lactones has prevented them so far from any useful medicinal application.[28b] 
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Figure 4. Representative members of α-methylene sesquiterpene lactones showing diverse biological properties.  
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In addition to cytotoxic and antitumor properties, certain sesquiterpene lactones show 

allergenic, phytotoxic and antimicrobial activities. Sesquiterpene lactones, which are 

sometimes present in the pollen, can cause allergic contact dermatitis, even when carried by 

the wind. For example, Parthenin (Fig. 4) present in Parthenium hysterophoros, is a primary 

allergen and the allergy thus caused represents a serious dermatological problem in India and 

neighbouring countries.[30] The α-methylene lactones present in the common sunflower 

(Helianthus annuus L.) are know to be stress metabolites, i.e. they are formed during attack by 

pests, during periods of dryness or overexposure to sunlight and heat, and probably act mainly 

as chemical defences against pests, especially microorganisms.[31]

 

1.4 Biogenesis of sesquiterpene lactones 
1.4.1 The MVA pathway 

In the early history of natural product chemistry, many strongly odorous plant compounds 

were observed to be formed from C5 units called isopentenyl or isoprene units. These 

compounds were termed terpenes. They are classified according to the number of isoprene 

units present in the molecule such as monoterpenes, C10; sesquiterpenes, C15; diterpenes, C20; 

etc. They are hypothetically derived from isoprene by joining two or more units from either 

end the head or the tail, known as the isoprene rule proposed by Wallach in 1887.[32] The 

“isoprene rule” deduced from these observations can only be regarded as a working 

hypothesis, since it fails to be true in all cases but has proven to be very useful in the majority 

of cases. In present-day terms, terpenes are classified according to the ‘biogenetic isoprene 

rule’ proposed by Ruzicka in 1953.[33] It is based on the biogenesis of terpenes and states that 

each member of a terpenoid subgroup was derived from a single parent compound that was 

unique to that group, and that the various parents were related in a simple homologous 

fashion. Accordingly, all sesquiterpenoids were derived from the parent compound farnesyl 

pyrophosphate (FPP) by a sequence of straight forward cyclizations, functionalizations and 

sometimes rearrangements that are well known from mechanistic organic chemistry.  

The parent of the terpenoids is 3R-(+)-mevalonic acid (MVA, 1; Scheme 2) which was 

isolated in 1956 as a metabolite of a Lactobacterium species and was found to be potent 

growth factor for yeast.[34, 35] Isoprene itself does not function as the reactive biogenetic 

species, but isopentenyl and dimethylallyl pyrophosphates are the reactive species involved in 

the formation of terpenes. These important precursors are formed from mevalonic acid 

(MVA, 1; Scheme 2) by phosphorylation followed by ATP-assisted loss of water and carbon 

dioxide to give isopentenyl pyrophosphate (IPP, 2). Isomerization of the double bond gives 
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dimethylallyl pyrophosphate (DMAPP, 3) (Scheme 2).[36] The biochemical pathways leading 

to the formation of these precursors have been extensively studied over the last 50 years and 

are generally accepted as mevalonate (MVA) biosynthesis pathway of terpenes in 

organisms.[37] More recently a second biosynthetic route known as mevalonate independent 

pathway or methylerythritol-phosphate pathway (MEP) was discovered in plants also leading 

to the formation of IPP (2) and DMAPP (3) as the final products.[38]

-O2C OH

OH
-O2C OPP

OHATP

Mg2+

ATP
-O2C OPP

OP

OPP OPP

MVA (1)

IPP (2) DMAPP (3)
OPP = O P O P O-

O- O-

O O-H2O

-CO2

 

Scheme 2. MVA pathway for the synthesis of IPP (2) and DMAPP (3). 

 

IPP (2) and its isomer DMAPP (3) together represent the equivalent of the isoprene unit. The 

joining of these two units in a head to tail fashion by prenyltransferases leads to the 

construction of basic backbones of terpenes (Scheme 3). The isomerase that interconnects IPP 

(2) and DMAPP (3) abstracts stereoselectively the pro-(R) hydrogen from the C2 position of 

IPP (2) to result in a trans substituted double bond and releases geranylpyrophosphate (GPP, 

4). The GPP (4) formed in this process acts as a fundamental precursor for the synthesis of 

monoterpenes (e.g. menthol). Addition of further C5-IPP (2) to the C10-skeleton of GPP (4) 

according to the isoprene rule gives rise to the formation of farnesylpyrophosphate (FPP, 5), 

the precursor for linear, cyclic sesquiterpenes (e.g. campherenol) and also sesquiterpene 

lactones such as guaianolides. 

OPP
DMAPP (3)

OPP

OPP
HR HS

sesquiterpenes (C15)
e.g. Campherenol,

Guaianolides, etc.

monoterpenes (C10)
e.g. Menthol

HR HS 1. electrophilic addition

2. stereospecific loss
of proton

OPP

IPP (2)

1. electrophilic addition

2. stereospecific loss
of proton IPP (2)

OPP

GPP (4)

FPP (5)

OH

Menthol

OH

Campherenol

HS

HS

 
Scheme 3. Biosynthesis of sesquiterpenes via the formation of FPP (5). 
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1.4.2 Biogenesis of guaianolides  
Sesquiterpene lactones are a major class of plant secondary metabolites that are mainly found 

in the Asteraceae but also occur in other high plant families and lower plants.[39] The majority 

of more than 4000 known different structures have a guaiane, eudesmane, or germacrane 

framework. Chicory (Cichorium intybus), also known as French endive, is known to contain 

guaianolides, eudesmanolides, and germacranolides. The biosynthesis of these sesquiterpene 

lactones in Chicory has been investigated by de Kraker et al. and is also reasonable to validate 

the same for other plant species.[40-43] Accordingly, the studies with the Chicory roots have 

shown that its sesquiterpene lactones are derived from (+)-Germacrene A (6; Scheme 4). Thus 

cyclization of FPP (5) yields (+)-Germacrene A (6) which undergoes further enzymatic 

oxidations to afford Germacrene acid (7). Formation of (+)-Costunolide (8) from Germacrene 

acid (7) is postulated to occur via hydroxylation at the C6-position by a cytochrome P450 

enzyme, after which lactonization yields (+)-Costunolide (8).[40] Further rearrangements and 

oxidative modifications of (+)-Costunolide (8) give rise to structurally diversified classes of 

compounds such as germacranolides, guaianolides and eudesmanolides (Scheme 4). 
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Scheme 4. Biosynthesis of germacranolides, guaianolides and eudesmanolides. 

 

A number of stereospecific biomimetic transformations leading to the formation of 

eudesmanolides and guaianolides from germacranolides and their derivatives have been 

reported in literature.[44-45]  
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1.5 Dimeric guaianolides 
1.5.1 Structural features and biological properties 

Dimeric guaianolides are structurally more complex guaianolides derived through the 

dimerization of two monomeric guaianolides, presumably via a [4+2] cycloaddition. Dimeric 

guaianolides isolated from plants, also known as disesquiterpene lactones, belong to a little 

studied type of sesquiterpenes, although their initial molecules, the mono guaianolides, have 

been studied in more detail both under chemical and stereo chemical aspects.[46] Members of 

the Artemisia genus are important medicinal plants found throughout the world. Artemisinin 

(see Fig. 1) isolated from Artemisia annua L. is a potent antimalarial agent. Dimeric 

sesquiterpene lactones isolated from Artemisia sylvatica exhibit a wide range of biological 

activities. Arteminolide A (Fig. 5) isolated from Artemisia sylvatica inhibits recombinant rat 

FPTase with IC50 of 360 nM and appears to be selective for FPTase. It did not inhibit rat 

squalene synthase (IC50 >> 200 μM) and recombinant rat geranyl-geranyl protein transferase I 

(IC50 >> 200 μM).[47, 48] These results suggest that Arteminolides are novel inhibitors of 

FPTase and could be used as antitumor agents against ras-mutated human cancers or a wide 

array of human cancers. Arteminolides B-D (Fig. 5) are new farnesyl protein transferase 

inhibitors isolated together with known Arteminolide A from the aerial parts of Artemisia 

argyi.[49] These new series inhibited a recombinant human FPTase with IC50 values of 0.76 

μM (Arteminolide B), 0.95 μM (Arteminolide C), and 1.1 μM (Arteminolide D).  
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Figure 5. Structural features of dimeric guaianolides, Arteminolides and Artanomaloides.  
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Artanomaloides A, C (Fig. 5) were also isolated from Artemisia argyi and are configurational 

isomers of Arteminolides A, C respectively. Interestingly, these configurational isomers show 

poor enzyme inhibition with IC50 values of 105 μM (Artanomaloide A) and 150 μM 

(Artanomaloide C) compared to Arteminolides A, C respectively.[49] This result indicates that 

the stereochemistry at the site of spiro-ring fusion is highly important for the biological 

activity of dimeric guaianolides.[50] 

 

1.5.2 Biosynthesis of dimeric guaianolides  
Dimeric guaianolides are biosynthetically derived from the mono guaianolides presumably 

via a Diels-Alder reaction. Diels-Alder reactions have been postulated as key steps in a 

number of biosynthetic conversions. However, until now there is no case known where the 

corresponding enzyme system, that would be the Diels-Alder-ase, could be detected.[51] 

Recently, Oikawa, Ishihara et al. published experimental evidence that the two phytotoxins 

“solanapyrones” produced by the pathogenic fungus Alternaria solani are probably formed by 

an enzyme-catalyzed [4+2] cycloaddition.[52] In case of dimeric guaianolides, the evidence 

comes from the fact that these compounds appear to undergo spontaneous retro Diels-Alder 

reactions in the mass spectrometer under a variety of ionization techniques. The daughter 

ion(s) formed by such fragmentation generally had half the mass of the parent dimer. 

Artemyriantholide D (12) (Scheme 5) is a dimeric guaianolide isolated from Artemisia 

myriantha  and is postulated to derive biosynthetically from a Diels-Alder reaction, in which 

new carbon-carbon bond formation take place between electron-deficient carbon-carbon 

double bond of the α,β - unsaturated lactone of a molecule of Arglabin (11) and a guaianolide 

(10) containing cyclopentadiene functionality derived from a fulvenoguaianolide (9).[53] 
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Scheme 5. Proposed biosynthesis of dimeric guaianolide Artemyriantholide D (12) via Diels-Alder reaction.  
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The isolation of Fulvenoguaianolide (9) in substantial amounts from Artemisia myriantha and 

the existence of Arglabin (11) as most abundant guaianolide in this species add support to the 

fact that this type of intermolecular Diels-Alder reaction can take place between them before 

isolation leading to the formation of dimeric guaianolides such as Artemyriantholide D (12). 

An exo Diels-Alder transition state is required in order to account for the stereochemistry of 

the dimeric linkage in Artemyriantholide D (12). This orientation of approach is unusual for 

Diels-Alder additions, which normally adopt an endo transition state, in which the possibility 

of secondary orbital overlap between frontier orbitals of the diene and dienophile reactants is 

maximized. This unusual orientation may be the result of steric avoidance and of favorable 

hydrogen bonding in the transition state between the lactone carbonyl of the dienophile 

(Arglabin (11)) and the hydroxyl group adjacent to the diene (10), which determine both the 

regio and stereoselectivity of the reaction.[53]

 

1.6 Synthesis of guaianolides and dimeric guaianolides 
1.6.1 Various approaches towards the synthesis of guaianolides  
The biosynthesis of guaianolides in conjunction with the recent developments in the total 

synthesis of various biologically active guaianolides has been recently reported by Reiser et 

al.[54] Many of these synthetic approaches towards guaianolides and pseudo- guaianolides 

which are either racemic or stereoselective can be broadly classified into six types as shown in 

Scheme 6.[55]  

A classical semi-synthesis involves the transformation of naturally occurring α-Santonin to 

the 5,7,5-tricyclic ring system of the guaianolides via photochemical rearrangement or a 

solvolytic rearrangement (Type 1).[56] The second type involves the annulation of the γ-

butyrolactone ring on the hydroazulene scaffold, which is pre constructed using a variety of 

laboratory starting materials and methods.[57] In the third type, the construction of the seven 

membered ring (B ring) takes place on the preexisting AC rings by means of a radical 

cyclization or by ring closing metathesis (RCM). This approach forms a basis for studies 

towards the total synthesis of various guaianolide natural products from our group. The 

concerted formation of AB ring system on a functionalized C-ring via radical cyclization 

stands for type 4 transformation.  The annulation of C-ring on the preexisting AB ring system 

accounts for type 5, while the concerted annulation of A and C-rings on the B-ring accounts 

for type 6 approach (Scheme 6).  
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Scheme 6.Various approaches towards the synthesis of guaianolides and pseudo-guaianolides.  
 

1.6.2 Stereoselective synthesis of guaianolides starting from simple aromatics 
The laboratory synthesis in the Reiser group involves the transformation of simple aromatics 

into functionalized 2,3-anti-disubstituted γ-butyrolactones that are capable of elaborating to 

guaianolide skeletons.[58] The shown below retrosynthetic approach (Scheme 7) outlines the 

key steps that are involved in transforming simple aromatic starting materials to guaianolide 

scaffolds. At first the application of asymmetric catalysis as a means of transforming simple 

achiral starting materials into useful chiral building blocks is utilized to a greater extent in our 

approach. Thus asymmetric cyclopropanation of a simple aromatic starting material such as 

furoic ester 13, followed by the ozonolysis of the unreacted double bond delivers 

enantiomerically pure cyclopropylcarbaldehyde 15 in good yield. The use of chiral bis 

(oxazoline) ligand such as (R,R)-iPr-box 14 sets the regio and stereoselectivity of the reaction. 

Cyclopropylcarbaldehyde intermediates such as 15 are very reactive towards cyclic or acyclic 

allylsilane 16 under Sakurai allylation conditions, leading to the formation of an adduct which 
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on subjecting to a retroaldol/lactonization cascade results in the formation of 2,3-anti-

disubstituted γ-butyrolactone 17. 
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Scheme 7. Retrosynthetic outline towards the synthesis of guaianolide scaffolds. 
 

The anti-disubstituted γ-butyrolactone is a key structural motif of guaianolides, and can be 

elaborated to the tricyclic core 18 of various guaianolide natural products either by ring 

closing metathesis (RCM) or by radical cyclizations as key steps. Interestingly, the use of 

appropriate chiral bis(oxazoline) ligand in the first step, i.e. in asymmetric cyclopropanation, 

can alter the whole sequence leading to the corresponding enantiomer of γ-butyrolactone 17. 

Thus, the approach is flexible enough in transforming simple aromatic starting materials to 

either of the enantiomerically pure guaianolide scaffolds.  The application of this strategy was 

successfully utilized in the first enantioselective total synthesis of a novel antitumor 

guaianolide (+)-Arglabin.[16] Further extension of this strategy to the total synthesis of 

Moxartenolide (see Fig. 3) is currently under investigation. 

 

1.6.3 Biomimetic approach towards the synthesis of dimeric guaianolides 
The appealing beauty of the routes that nature uses to build natural products is amazing and 

the quest for laboratory syntheses that mimic these routes is longstanding.[59] The importance 

of biomimetic synthesis in natural product synthesis can be illustrated in the words of Skyler 

and Heathcock[60] as “For all natural products, there exists a synthesis from ubiquitous 

biomolecules. The inherent interconnectivity of natural products implies that a truly 

biomimetic total synthesis represents a general solution not to the preparation of a compound 

but to the preparation of all similarly derived natural products (discovered and 

undiscovered).” The concept of biomimetic synthesis was coined by Robinson in 1917, 
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following his straightforward synthesis of tropinone 21 from succinaldehyde 19, 

methylamine, and acetone dicarboxylic acid 20 (Scheme 8).[61] 

O

HO

HO COO

N

O

O

COO

+ H2NMe +
1. H2O
2. HCl

19 20 21  
Scheme 8. Robinson’s one pot synthesis of Tropinone (21), first example of biomimetic synthesis 

 

As described in the biosynthesis of dimeric guaianolides, their biogenesis involves a [4+2] 

cycloaddition reaction between two mono guaianolides; the mimic of this process in the 

laboratory can lead us to the total synthesis of dimeric guaianolides. The target dimeric 

guaianolides chosen for this purpose are Artemyriantholide D (12) and Arteminolide C (22) 

(Scheme 9). 
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Scheme 9. Retrosynthetic strategy towards the synthesis of dimeric guaianolides Arteminolide C (22) and 
Artemyriantholide (12) 
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As outlined in the above retrosynthetic scheme (Scheme 9), the dimeric linkage between the 

two mono guaianolides, i.e. the dienophile part and the diene part is planned to assemble 

through a Diels Alder reaction. Thus, for both the cases Artemyriantholide D (12) and 

Arteminolide C (22) the diene component 24 is the same while the dienophile partner varies 

accordingly (11 and 23 respectively). The diene component 24 is accessible from the 

intermediate 25, which in turn can be synthesized from functionalized 2,3-anti-disubstituted 

γ-butyrolactone such as 26. Interestingly, the mono guaianolide Arglabin 11 needed as 

dienophile for the synthesis of Artemyriantholide D (12) has already been synthesized, while 

the Moxartenolide 23 needed for the synthesis of Arteminolide C (22) is yet to be synthesized. 

The stereochemistry of the dimeric linkage in both the dimeric guaianolides 

Artemyriantholide D (12) and Arteminolide C (22) is a result of an exo transition state of a 

[4+2] cycloaddition reaction. This type of transition state is unusual for Diels-Alder additions 

taking place in a reaction flask, but Buono et al. [62] has shown that high exoselectivity occurs 

in the Diels-Alder additions of α-methylene-γ-butyrolactones to cyclopentadiene under 

kinetically controlled as well as thermal conditions (Scheme 10). This offers an example of a 

substrate which violates the prevalent Alder-Stein principle.[63] The high exoselectivity 

observed is a result of conformationally rigid cyclic cisoid dienophile and is highly related to 

the α-substitution of the dienophile.[62]  

 

OO
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+ O

Oendo

1. Toluene, reflux 92 : 8
2. ZnCl2 (10 mol%) 93 : 7

CH2Cl2, rt
3. AlCl3, (10 mol%) 94 : 6

CH2Cl2, -15 oC

conditions exo : endo

 
Scheme 10. Diels-Alder reaction between α-methylene-γ-butyrolactone and pentadiene showing exo selectivity. 

 

Thus, the existence of such literature precedence for high exo selectivity prompted us to 

investigate and apply the same conditions in order to achieve the proposed exo selectivity in 

the biomimetic synthesis of these natural products. Also the successful application of above 

described biomimetic approach forms a basis to support the proposed biogenetic hypothesis.  
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1.7 Conclusions 
Guaianolides exhibit a broad range of biological activity and stimulate the development of 

research in their total synthesis. The diverse bioactivity of guaianolides makes them attractive 

synthetic targets since the availability of these compounds from natural sources is very 

limited. As there are more and more members of the guaianolide family discovered, the full 

evaluation of their biological activity is still of current interest. Although the high toxicity of 

some of the guaianolides prevents them from any useful medicinal application, attempts to 

control the cytotoxicity by chemical modifications and synthesizing the derivatives would be 

of great value. In case of dimeric guaianolides, the biomimetic approach would help us to 

validate the proposed biogenetic hypothesis involving a [4+2] cycloaddition reaction. 

Therefore the total synthesis of guaianolides plays an important role in inventing new, 

efficient and flexible ways to synthesize this class of natural products and their derivatives.  
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2. Aim of this work 
 
2.1 Studies towards the total synthesis of (+)-Arglabin and (+)-Moxartenolide 
 
The aim of this work was to achieve the enantioselective total synthesis of novel antitumor 

guaianolide (+)-Arglabin (11) by applying the strategy of transforming simple aromatic 

starting materials to guaianolide skeletons. The work was further extended towards the 

enantioselective total synthesis of (+)-Moxartenolide (23) and dimeric guaianolides such as 

Artemyriantholide D (12) (Fig. 6) 
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Figure 6. Target guaianolides aimed for total synthesis. 

 

The general retrosynthetic strategy shown below outlines the approach to achieve the target 

guaianolides. The total synthesis of both Arglabin (11) and Moxartenolide (23) was planned 

to achieve from a common synthetic intermediate of type 31 (Scheme 11).  
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Scheme 11. Retrosynthetic approach towards the total synthesis of Arglabin (11) and Moxartenolide (23). 
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The exo methylene group responsible for biological activity of both the guaianolides was 

incorporated by means of Mannich reaction.  In case of (+)-Arglabin 11, the C6/C6a double 

bond has to be stereoselectively epoxidized, for which a study of directed epoxidation using 

the free hydroxy group at C8 position in 31 was extensively investigated. The C4 stereogenic 

centre in 31 can be utilized for esterification purpose in case of Moxartenolide (23), while it 

has to be subjected to desoxygenation for the total synthesis of Arglabin (11).  The key 

intermediate 31 having all the necessary functional groups and capable of transforming into 

target molecules was readily obtained from lactone aldehyde 30 by allylation/ring closing 

metathesis sequence. The transformation of aromatic starting materials into functionalized 

2,3-anti-disubstituted γ-butyro-lactones is a standard protocol which was employed in the 

synthesis of 30. The chiral allyl silane 29 that accounts for the lower five membered ring of 

the target guaianolides was synthesized in a enantiomerically pure manner starting from 

furfuryl alcohol 27 via the intermediate 4-hydroxy protected 2-cyclopentenone 28.  

 

2.2 Model studies towards total synthesis of dimeric guaianolides 
 

As described in the retrosynthetic strategy of Artemyriantholide D (12) (see Introduction, 

Scheme 9) that a Diels-Alder reaction is required as key step between Arglabin (11) and diene 

component of type 24 with high exoselectivity. To validate the high exoselectivity reported in 

the Diels-Alder additions of α-methylene-γ-butyrolactones to cyclopentadiene (see 

Introduction, Scheme 10), a model study was conducted between Arglabin (11) and 

cyclopentadiene under different reaction conditions (Scheme 12). Also the effect of bis 

(oxazoline) ligand (BOX) in complexation with Cu(OTf)2 as a chiral Lewis acid was studied 

these types of Diels-Alder reactions was examined.  
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Scheme 12. Diels-Alder reaction between Arglabin (11) and cyclopentadiene showing high exoselectivity. 
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3. Enantioselective Total Synthesis of (+)-Arglabin 
 
3.1 Isolation and bioactivity  
 
Guaianolides are a member of one of the largest groups of naturally occurring sesquiterpene 

lactones. One of the prominent members of this widely distributed class of guaianolides is (+)-

Arglabin (11) (Fig. 7). It’s a sesquiterpene γ-lactone isolated from the aerial part of Artemisia 

glabella, a species of wormwood endemic to the Karaganda region of Kazakhstan. (+)-Arglabin 

was isolated as a crystalline compound with composition C15H18O3, and its structural 

elucidation was carried out by NMR studies and confirmed by X-ray analysis.[12]

 

O

 
 
 
 
 
 
 
 
Figure 7. Structures of Arglabin (11), DMA-Arglabin-HCl (32) and picture of Artemisia glabella 
 
(+)- Arglabin (11) shows promising antitumor activity and cytotoxicity against different tumor 

cell lines (Human tumor cell lines IC50 = 0.9-5.0 μg/ml).[13] The antitumor activity of  Arglabin 

is known to occur via its inhibition of farnesyltransferase which leads to the activation of RAS 

proto-oncogene, a process that is believed to play a pivotal role in 20-30% of all human tumors. 

The transformation of Arglabin (11) to its dimethylamino hydrochloride salt (32) will lead to 

increase of its bioavailability and has been successfully used in Kazakhstan for treatment of 

breast, colon, ovarian and lung cancer, and is currently under clinical evaluation.[64, 65]  

 

3.2 Farnesyltransferase inhibitors (FTIs) as novel therapeutic agents 
One of the aspects being extensively investigated in anticancer drug development is the 

intracellular signal transduction pathway. Rational therapies that target the RAS pathways 

might inhibit tumor growth, survival and spread. Several of these new therapeutic agents are 

showing promise in the clinic and many more are being developed. The RAS proteins are 

members of a large super family of low molecular weight GTP binding proteins, which can be 

divided into several families according to the degree of sequence conservation. The RAS family 

controls cell growth and the three members of the RAS family namely, HRAS, KRAS and 

NRAS, are found to be activated by mutation in human tumors.[66] The normal function of RAS 

proteins requires them to be post-translationally modified. The purpose of this is primarily to 
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localize them to the correct sub cellular compartment, principally the inner face of the plasma 

membrane. RAS proteins that are mislocalized at other sites in the cell are inactive, probably 

because they cannot recruit their target enzymes.[67] The fact that correct post-translational 

modification of RAS is required for its biological activity has made the enzymes involved in 

this processing very attractive targets for therapeutic intervention.[68] The steps in the normal 

post-translational processing of RAS are well described in literature[69] and can be shown in a 

schematic picture (Figure 8). Farnesyltransferase (FTase) catalyses the transfer of the 15-carbon 

isoprenoid chain from farnesyl pyrophosphate (FPP, F) to a cysteine residue that is close to the 

carboxyl terminus (C186 in human HRAS) (step a, Fig. 8). This results in RAS associating with 

intracellular membranes via its farnesyl group (F). Farnesyltransferase inhibitors (FTIs) block 

this farnesylation, so RAS remains in the cytosol and is unable to stimulate its downstream 

targets. However, when FTase is inhibited, KRAS and NRAS, but not HRAS, can be 

geranylgeranylated, an alternative 20-carbon isoprenylation is added, and this is catalyzed by 

geranylgeranyltransferase (GGTase), resulting in rescue of processing of these RAS isoforms. 

Following isoprenylation, several other processing steps occur (steps b, c, d, Fig. 8) before 

transportation to the plasma membrane. The greatest drug discovery effort has gone into 

developing inhibitors of FTase, but other steps in the pathway might be worth pursuing. The 

failure of FTIs to block KRAS processing has proved to be a notable problem as KRAS is the 

most commonly mutated RAS isoform in human tumors.  
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Figure 8. Post-translational processing of RAS proteins. (Modified from Ref. 67) 
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3.3 Retrosynthetic strategy 
In our retrosynthetic analysis the main focus was to achieve the stereo selective epoxidation of 

the C6/C6a double bond present in the natural product 11 (Scheme 13). To achieve this it was 

envisioned that the presence of a hydroxyl group at C8 position in the intermediate 34 can give 

rise to directed epoxidation to install the right stereochemistry of the epoxide. The C8 hydroxyl 

group can in turn be eliminated in an E1-type fashion leading to the installation of C8/C9 

double bond. The exo methylene group at C3 can be incorporated by means of a Mannich 

reaction employing Eschenmoser’s salt. The C6/C6a double bond in the intermediate 33 was 

planned to install via ring closing metathesis (RCM) of the allylation product derived from 30. 

Following a strategy developed in our research group for the enantioselective synthesis of 

trans-4,5-disubstituted γ-butyro-lactones,[58, 70] the key lactone aldehyde 30 can be synthesized 

readily from enantiomerically pure intermediates such as cyclopropylcarbaldehyde 15 and 

allylsilane 29. The synthesis of these chiral precursors can be achieved starting from simple 

aromatic starting materials such as 13 and 27 respectively (Scheme 13). 
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Scheme 13. Retrosynthetic outline for (+)-Arglabin (11). 
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4. Synthesis of chiral precursors 
 
4.1 Synthesis of cyclopropylcarbaldehyde via asymmetric cyclopropanation 
Cyclopropanes are an important class of compounds because of their occurrence in numerous 

natural products, drugs and also because of their value as synthetic building blocks in organic 

synthesis.[71] Cyclopropanes vicinally substituted with donor and acceptor moieties are 

particularly useful, since they easily undergo ring opening, giving rise to reactive intermediates, 

which can be intra- or intermolecularly trapped.[72] Highly functionalized 1,2,3-trisubstituted 

cyclopropylcarbaldehyde such as 15 can be synthesized in enantiomerically pure form in a two 

step sequence starting from methyl-2-furoate (13) (Scheme 14).[70, 72-74] Thus upon a Cu(I)-

mediated asymmetric, regio and diastereoselective cyclopropanation of methyl-2-furoate (13) 

using ethyl diazoacetate in the presence of chiral ligand (R,R)-iPr-Box (+)-14 resulted in (+)-35 

with high enantioselectivity of 85-90% ee, which was improved to >99% ee upon 

recrystallization. The ozonolysis of the unreacted double bond under standard conditions 

followed by reductive workup afforded enantiomerically pure cyclopropylcarbaldehyde (+)-15 

in good yield. The whole sequence can be scaled up to 50-100 g with out significant drop in 

enantiomeric excess of products. 
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Scheme 14. Conditions: a) (i) ethyl diazoacetate (2.67 eq.), Cu(OTf)2 (0.66 mol%), (R,R)-iPr-box (+)-14 (0.84 mol 
%), PhNHNH2 (0.70 mol %), CH2Cl2, 0 oC, 54%, 85-90% ee; (ii) recrystallization (pentane) >99% ee, 38%. b: (i) 
O3, CH2Cl2, –78 oC (ii) dimethylsulfide (4 eq.), 22 h, –78 oC to rt,  94%. 
 

The stereochemical outcome and high enantioselectivities of the cyclopropanated product 

during asymmetric cyclopropanation depends on the stereochemistry of the bis(oxazoline)-

ligand (BOX) 14 used in the reaction (Fig. 9). The use of other enantiomer of BOX ligand, i.e. 
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Figure 9. Two enantiomers of BOX-ligand. 
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(-)-14 in the above sequence gives rise to the synthesis of (-)-15. Thus with the choice of 

appropriate chiral ligand, the synthesis of either of the enantiomers of cyclopropylcarbaldehyde 

15 can be achieved.  Both enantiomers of the chiral BOX-ligand 14 were prepared from D or L- 

valinol 37 derived from the corresponding amino acids by sodium borohydride reduction and 

iodine (Scheme 15). The procedure is well standardized in our laboratory and also reported in 

literature.[75, 76]
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Scheme 15. Synthesis of chiral BOX-ligand. Conditions: a) valinol (2.0 eq.), NEt3 (2.5 eq.), CH2Cl2, 0 °C - RT, 70 
min, 84%; b) DMAP (10 mol %), NEt3 (4.0 eq.), TsCl (2.0 eq.), CH2Cl2, RT, 27 h, 83%. 
 

The regio, diastereo, and high enantio-selectivities observed during the cyclopropanation step 

can be explained by applying the models suggested by Pfaltz[77] and Andersson[78] for the 

asymmetric cyclopropanation of alkenes. The reactive complex 39 involved in the reaction can 

be accessed by reacting partner 13 in two ways (Fig. 10). Out of the two possible approaches, 

an approach from the right side is more favored, since an attack from left side shows strong 

repulsive interaction between 13 and iPr group of the ligand (+)-14. In the subsequent 

cyclopropanation the less substituted and presumably more electron rich double bond of 13 is 

attacked.  

 

 

 

 
 
 
 
 
 
Figure 10. Model for asymmetric cyclopropanation explaining the observed selectivities. (Reprinted from Ref. 75) 

                                                                                                                                                                                                                    

4.2 Synthesis of chiral allylsilane 
Allylsilanes have proven to be versatile building blocks in organic chemistry, especially for the 

mild and highly selective Hosomi-Sakurai allylation.[79, 80] As described in the retrosynthetic 

outline of Arglabin (11) (see Scheme 13), the allylsilane of type 29 is required to construct the 

lower five membered ring of the natural product. The synthesis of chiral allylsilane 29 can be 
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achieved from enantiomerically pure cyclopentenone 28, which in turn is obtained starting from 

furfuryl alcohol 27. Thus the synthesis of cyclopentenone 28 was first carried out following a 

well established route reported by Curran et al. for large quantity preparation of optically 

active cis-2-cyclopenten-1,4-diols.[81a, b] The synthesis starts with the rearrangement of furfuryl 

alcohol 27 to racemic 4-hydroxy cyclopent-2-enone (±) 40 in a moderate yield (Scheme 16). 

The mechanism of this rearrangement is an interesting feature to study and reported in 

literature.[81c, d] The protection of the free hydroxy group in (±) 40 with a bulky protecting group 

helps the subsequent LAH reduction of (±) 41 to occur in a highly diastereoselective fashion 

delivering the cis-substituted product (±) 42 in a good yield.  

  

O

O

OH

O

OTBDMS OTBDMS

OH

cis:t rans = 92:8
(±)-42

OH

a b c

27 (±)-40 (±)-41
 

Scheme 16. Synthesis of precursor for enzymatic resolution. Conditions: a) KH2PO4, pH = 4.1, H2O, reflux, 2 d, 
40%; b) TBDMSCl (1.15 eq.), NEt3 (1.50 eq.), DMAP (5 mol%), THF, 0 °C - RT, 89%; c) LiAlH4 (0.70 eq.), LiI 
(0.50 eq.), Toluene/TBME, -30 °C, 3 h, 85% (cis/trans 92:8). 
 

The racemate of (±)-42 was then subjected to a kinetic enzymatic resolution using porcine 

pancreas lipase (PPLE).[82] This resulted in the separation of two enantiomers (+)-42 and (-)-43 

by simple chromatography on silica gel, and interestingly both the enantiomers can be used in 

the further synthesis providing the important feature of not to loose material in this kinetic 

resolution (Scheme 17). 

OTBDMS

OH

OTBDMS

OAc

OTBDMS

OH

+

(-)-43
95% , 92% ee

(+)-42
80% , > 99% ee

(±)-42

a

 
Scheme 17. Enzymatic resolution. Conditions:  a) Porcine Pancreas Lipase PPLE, vinylacetate (4.50 eq.), NEt3 

(0.68 eq.), TBME, RT, 48 h, (-)-43 (95%, 92% ee), (+)-42 (80%, >99% ee). 
 

Having separated both the enantiomers by kinetic resolution, both the enantiomers were now 

converted to a single chiral intermediate 4-hydroxy protected cyclopent-2-enone (-)-28 by 

means of protection-deprotection sequence reported from Reiser group.[55, 75] The sequential 

steps leading to these transformations are outlined in Scheme 18. The transformations (a-d) on 

(+)-42 leads to PMB-protected cyclopent-2-enone (-)-28, while transformations (e-i) on (-)-43 

also leads to the same intermediate (-)-28 with good enantiopurity and yield.     
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(+)-42
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Scheme 18. Transformations on kinetically resolved enantiomers (+)-42 and (-)-43 leading to same intermediate (-
)-28. Conditions: a) LiOH (1.2 eq.), THF: MeOH: H2O (3:1:1), RT, 2 h, 96%; b) NaH (1.25 eq.), NaI (1.00 eq.), p-
methoxybenzylbromide (1.3 eq.), THF, RT, 5 h, 86%; c) TBAF (1.00 eq.), Et3N (0.10 eq.), THF, RT, 24 h, 85%. 
d) PCC (1.2 eq.), 4 Å MS, CH2Cl2, RT, 24 h, 86%; e) Et3N (2.0 eq.), Ac2O (4.5 eq.), RT, 6 h, 97%; f) TBAF (1.0 
eq), NEt3 (0.1 eq.), THF, RT, 2 h, 95%; g) p-methoxybenzyltrichloroacetimidate (1.67 eq.), Cu(OTf)2 (5 mol%), 
CH2Cl2, 0 °C - RT, 24 h, 83%; h) LiOH (1.2 eq.), THF/MeOH/H2O (3:1:1), Rt, 2 h, 92%. i) PCC (1.2 eq.), 4 Å 
MS, CH2Cl2, RT, 24 h, 85% 
 

Having synthesized the key intermediate 28 in enantiomerically pure form, the further task is to 

convert it to the corresponding allylsilane (+)-29. This is achieved by subjecting 28 to a highly 

diastereoselective 1,4-addition using appropriate cuprate reagent followed by trapping of the 

resulting enolate as corresponding silylenolether 48 (Scheme 19). The bulky PMB-protecting 

group in (-)-28 shields the lower half space making the cuprate addition proceed highly 

diastereoselective from the upper face resulting in the desired anti-substitution on the 

cyclopentane ring. The silylenolether 48 is very sensitive to heat and traces of acid. Therefore, 

purification by distillation or chromatography was not possible, however, after extensive 

extraction the products possessed sufficient purity to carry on with the next steps. The 

transformation of silylenolether 48 to the allylsilane 29 was achieved by using the Kumada 

coupling conditions reported by Kumada et al.[83] Accordingly, the use of Ni(acac)2 catalyzes 

the coupling of silylenolether 48 with appropriate Grignard reagent to afford the desired 

allylsilane 29 in moderate yield.  

OPMB

O OSiMe3

OPMB

SiMe3

OPMB
(-)-28 48 (+)-29

a b

 
 
Scheme 19. Synthesis of allylsilane. Conditions: a) LiCl (0.3 eq.), CuI (0.15 eq.), TMSCl (4.0 eq.), MeMgCl (3M 
in THF) (4.5 eq.), THF, -78 °C, 3 h, 90%, dr >99:1; b) Ni(acac)2 (0.15 eq.) Me3SiCH2MgCl (2 N in Et2O) (2.0 
eq.), Et2O, reflux, 16 h, 62%. 
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 5. Synthesis of trans-4,5-disubstituted γ-butyro-lactone 
 
Having synthesized the key intermediates cyclopropylcarbaldehyde (+)-15 and allylsilane (+)-

29 in enantiomerically pure form, the next step was addition of allylsilane (+)-29 to 

cyclopropylcarbaldehyde (+)-15. The stereocontrol additions on a cyclopropyl-substituted 

carbonyl compound such as 15 can be explained by analyzing the conformational preferences 

and applying the Felkin-Anh-model[84]
 in combination with the Curtin-Hammett-principle.[85]  

Thus Borontrifluoride mediated addition of allylsilane (+)-29 to cyclopropylcarbaldehyde (+)-

15 proceeded with excellent double stereocontrol, in which the attack of the allylsilane 29 takes 

place in accordance with Felkin-Anh paradigm (Scheme 20). The stereochemical outcome of 

this reaction can be explained by the proposed transition state 49. In this case, the nucleophile 

attacks the s-cis-conformation of the carbonyl group in anti-orientation to its methyl substituent 

leading to the experimentally observed trans-Felkin-Anh-product 50.  
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Scheme 20. Conditions: a) BF3·OEt2 (1.1 eq.), CH2Cl2, -78 °C, 16 h, 80% (crude), dr >99:1. 
 
Without isolation, the adduct 50 was directly subjected to base which results in the 

saponification of the labile oxalic ester group. As a result, the now unmasked donor-acceptor 

cyclopropane[86] undergoes a cascade of ring opening (retroaldol) and lactonization to afford 30 

as single stereoisomer (Scheme 21).  

O

CHO

O

H
H

OPMB
H

H

OH

CO2Et

OHH

OPMB

CH3

H

H

H - EtOH
H

OC(O)E

CO2Et

OHH

OPMB

CH3
H

H

H

50

30

a

E=CO2Me
 

Scheme 21. Retroaldol-lactonization. Conditions: a) Ba(OH)2·8H2O (0.55 eq.), MeOH, RT, 2 h, 62% (over two 
steps), dr >99:1. 
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6. Construction of the tricyclic core 
 
The trans-4,5-disubstituted γ-butyro-lactone 30 with its stereo centers incorporated as required 

in the natural product Arglabin (11) is a key building block for the synthesis of many other 

guaianolide natural products having anti-disubstituted lactone motif. The annulation of the 

seven membered rings on the lactone aldehyde 30 can be achieved in two different ways.  

 

6.1 Radical cyclization approach 
It has been earlier reported from Reiser group that precursors of the type 51 can be transformed 

into bi-and tricyclic sesquiterpene lactone scaffolds 53 via radical cyclization (Scheme 22).[73] 

Thus alkenylation of 51 by modified Horner-Wadsworth-Emmons (HWE) reaction gave rise to 

52, which upon treatment with Bu3SnH and AIBN gave rise to scaffolds 53 in good yields.  
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Scheme 22. Radical cyclization approach towards the construction of tricyclic core. 
 

6.2 Ring closing metathesis (RCM) approach 
Over the past decade, olefin metathesis has emerged as a powerful carbon-carbon bond-forming 

reaction that is widely used in organic synthesis and polymer science.[87] In the recent years it 

has been utilized to a greater extent for the synthesis of complex organic molecules and natural 

products. Various ruthenium based metathesis catalysts developed during the course of time are 

shown in Figure 11.  

 

 

 
                            

                           R= C6H2-2,4,6-(CH3)3

 

Grubbs’ 1st gen       Grubbs’ 2nd gen         Hoveyda-Grubbs’               catMETium® 

1995                          1999                            2000                                     ImesPCy degussa. 

 

Figure 11. Various ruthenium based metathesis catalysts known in the literature.  
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RCM is a versatile tool in organic chemistry and has already proven to be suitable for the 

formation of medium size rings and also for unusual ring sizes. The recent development of 

enantioselective metathesis catalysts based on ruthenium is expected to expand dramatically the 

scope and utility of this reaction in enantioselective total synthesis of natural products.[88] In the 

present total synthesis of (+)-Arglabin (11), it was planned to install the C6/C6a double bond 

through RCM. For the application of RCM, a diene system is needed, which is constructed by a 

Hosomi-Sakurai allylation[79, 80] of the lactone aldehyde 30. Thus Sakurai allylation of 30 with 

2-methylallylsilane yielded 54 as a 4:1 mixture of C-4-epimers (Scheme 23).  The latter is in 

principle without consequences, since the newly created hydroxyl group had to be removed at a 

latter point in the sequence for the synthesis of target Arglabin (11). Based on earlier 

experiments and reports from our group on similar unsubstituted structures, [89] the new free 

hydroxy functionality is known to perturb the subsequent ring closing metathesis. Therefore to 

overcome this known problem, it is necessary to protect the free hydroxy group in 54. Thus 

Acylation of 54 set the stage for ring closing metathesis which was carried out by using 

Grubbs’ 2nd generation catalyst (see Fig.11) with inert gas sparging at a reaction temperature of 

95 oC. To achieve complete conversion of the starting material 55 the catalyst (15 mol%) was 

split in three portions of 5 mol% each and employed with a time interval of 2 hours. Under 

these conditions the desired 56 and its C-4-epimer epi-56 in a total of 86% yield. The use of 

Grubbs’ 1st generation catalyst or Hoveyda-Grubbs’ catalyst (see Fig. 11) were not suitable for 

this transformation, while the use of catMETium®[90] catalyst gave a better yield (90%) of the 

desired product.  
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Scheme 23. Construction of the tricyclic core via RCM. Conditions: a) BF3·OEt2, -78 oC, 16 h, 70% (4:1 epimeric 
mixture at C-4); 2. Ac2O, Et3N, DMAP, RT, 24 h, 85% (4:1 epimeric mixture at C-4); b) Grubbs’ 2nd gen cat.  (3x5 
mol %), toluene, sparging with Ar, 95 oC, 6 h; followed by separation of C-4 epimers by chromatography: 56 
(70%), epi-56 (16%). 
 

The generally accepted mechanism for metathesis reaction is the Chauvin mechanism[91] which 

consists of a sequence of formal [2+2] cycloadditions/cycloreversions involving alkene, metal 

carbenes and metallocyclobutane intermediates (Scheme 24). All the steps of the catalytic cycle 

are reversible; an equilibrium mixture of olefins is obtained. The forward process is 

entropically driven because RCM cuts one substrate molecule into two products, and if one of 

 36

Arglabin Synthesis Main Part



                                                                                                                                                                                 

 
them is volatile (ethene, propene, etc.) the desired cycloalkene will accumulate in the reaction 

mixture.[87c] 

 

 
 

Scheme 24. Basic catalytic cycle of RCM. All the individual steps are reversible. 
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7. Stereoselective epoxidations 
 

7.1 The peracid method 
One of the major tasks in the total synthesis of (+)-Arglabin (11) was to stereoselectively 

epoxidize the C6/C6a double bond and gets the right stereo chemistry of the epoxide. Early 

investigations on such stereoselective epoxidations from our group on substrates similar to the 

intermediate 56 were unsuccessful in delivering the right stereo chemistry of the epoxide.[55] 

Thus the epoxidation of the substrate 57 with mCPBA gave mixture of diastereomeric epoxides 

58 in the ratio of 3:1 (β:α), the α-epoxide being the required one. So it was thought the 

presence of a free hydroxyl group at C8 position in 57 can give rise to directed epoxidation and 

improve the diastereoselectivity of the reaction.  But attempts to deprotect the benzyl protecting 

group in 57 led to unexpected rearrangement of the guaianolide skeleton to 6,6,6-tricyclic δ-

valerolactone skeleton 59 (Scheme 25).[55] The inherent problem associated with the standard 

debenzylation conditions (Pd/C, H2) in the presence of C6/C6a double bond led to the use of 

anhydrous FeCl3 as deprotection agent in this reaction.   
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Scheme 25: Earlier reports on stereoselective epoxidations from Reiser group. [55]

 

Taking the above experiences into consideration, for the total synthesis of Arglabin (11), it was 

envisioned that the choice of appropriate protection group at C8 position will help us to give 

better diastereoselectivity by means of directed epoxidation. For this purpose the PMB-group 

was chosen as the choice, since it can be deprotected under mild conditions using DDQ without 

perturbing other functionalities. Thus the deprotection of PMB group in 56 took place smoothly 

to deliver 60 as a crystalline solid in a good yield (Scheme 26). A single crystal X-ray analysis 

of 60 confirmed that all the stereo centers created so far are in right configuration as required in 

the natural product (Fig. 12). 
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Scheme 26. Deprotection of PMB. Conditions: a) DDQ, CH2Cl2, 4 h, RT, 90%. 
 
  
 
                                                                                                                                                  

                                                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

Figure 12. X-ray structure of 60. 
 

Having the key intermediate 60 in hand, it was subjected to stereoselective epoxidation 

conditions using variety of known methods in the literature.[92] The X-ray structure of 60 (Fig. 

12) revealed that both faces of the seven-membered ring for the subsequently planned 

epoxidation are equally exposed. In particular, it became clear that for the desired attack from 

the α face (bottom), the upward but pseudoequatorial-pointing acetoxy group at C-4 would 

provide a little steric shielding. Moreover, the hydroxy group at C-8 that was envisioned to 

serve as a directing substituent. Such directing effect is known not only for the epoxidation of 

the allylic alcohols but also for homoallylic alcohols.[93] Also from the X-ray structure it was 

evident that the C-8 hydroxyl group was oriented rather unfavorably in a pseudoequatorial 

position and pointed away from the double bond that was to be attacked. Furthermore, 

epoxidation from the β face (top) delivers the product with the more stable cis annulation 

between the five and seven-membered ring. With all these observations in mind, the 

epoxidation with mCPBA under standard conditions gave the diastereomeric mixture of 

epoxides 61 (β-epoxide) and 62 (α-epoxide) in the ratio of 3:1 respectively, the α-epoxide 
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being the required one (Scheme 27). Disappointingly, mCPBA, which is known to be directed 

by homoallylic alcohols, still gave the β-epoxide preferentially, which again demonstrates the 

preference for the cis annulation of the five- and seven-membered rings.[94] 
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Scheme 27. Conditions: a) m-CPBA, CH2Cl2, -10 oC to RT, 6 h, 85 %.  
 
 

7.2 The halohydrin approach 

Halohydrins derived from halohydroxylation of double bond are versatile synthetic 

intermediates and their principal synthetic application is incontestably the preparation of 

epoxides.[95] The reaction has been used extensively in organic synthesis and still a good 

complement to the direct epoxidation of alkenes. The stereochemistry of the epoxide derived 

from a two step halohydrin process is usually complementary to that of mCPBA mediated 

epoxidation. Thus for instance, the  mCPBA oxidation of the cis-decalin 63 is known to occur 

selectively exo to afford 64, while the two step epoxidation through the bromohydrin 

intermediate 65 gives exclusively the endo epoxide 66 (Scheme 28).[96]  
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Scheme 28. Differences in the stereochemistry of epoxide derived through peracid and halohydrin strategies.  

 

The above results prompted us to investigate the halohydrin strategy on the key intermediate 

60. The use of mild conditions that involves the in situ generation of hypobromous acid from 
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the combination of NaBrO3 and NaHSO3 were employed to carry out this reaction (Scheme 

29).[97] The reaction was expected to proceed via the formation of bromonium ion 67 which in 

principle can be attacked by the nucleophile (OH¯) in two different ways leading to the 

formation of regiomeric mixture of bromohydrins 68. Nevertheless both the regio isomers can 

be transformed into desired product 62 by treatment with base or Ag2O. Indeed, by using this 

strategy, the overall epoxidation took place in high yields without the isolation of intermediates, 

and gave only one product, although unfortunately again the unwanted β−epoxide 61 

exclusively (Scheme 29). Crystallization of the isolated β−epoxide 61 from pentane-CH2Cl2 

mixture afforded crystalline compound which on single crystal X-ray analysis proved the 

stereochemistry of β-epoxide (Fig. 13).    
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Scheme 29. Halohydrin strategy. Conditions: a) NaBrO3 / NaHSO3 (1:2), CH3CN/H2O (1:2), 48 h, RT, 80%. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. X-ray structure of 61. 
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The use of different system such as NBS-H2O to generate in situ hypobromous acid did not 

alter the out come of reaction, resulting again unwanted β−epoxide 61 exclusively.                          

 

7.3 The dioxirane method 
Dioxiranes are known to be important and versatile oxidants, which are generated in situ from 

potassium monoperoxysulfate (KHSO5, commercially known as oxone) and ketones (Scheme 

30). Dimethyldioxirane 69, a dioxirane generated from acetone as a ketone, is particularly 

useful as an oxidation reagent with a broad scope of synthetic applications.[98] The Shi 

epoxidation that is described in literature as an asymmetric epoxidation of olefins involves the 

use of dioxirane generated from oxone and a fructose-derived ketone.[99] It is reported that 

dioxiranes as oxidants usually give rise to opposite selectivity in comparison to the  mCPBA 

mediated epoxidations.[100]

O OOKHSO5

dimethyldioxirane

O +
O

69
 

 
Scheme 30. Synthesis of dimethyldioxirane and its utility as epoxidizing agent.  
 
Treatment of 60 with in situ generated dimethyldioxirane 69 under biphasic conditions 

(CH2Cl2-H2O solvent system) resulted in the epoxidation with preference of 7:1 of the 

corresponding β-epoxide 61 and α-epoxide 62 respectively (Scheme 31). The use of 

monophasic conditions (Acetone-H2O solvent system) also resulted in the epoxidation with 

preference to β-epoxide 61.  
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Scheme 31. Dioxirane method of epoxidation. Conditions: a) KHSO5 / Acetone, CH2Cl2/H2O, pH 7.2 buffer,  
18-crown-6, 0 oC, 6 h, 65%, dr = 88:12 (61: 62). b) KHSO5, Acetone-H2O (4:1), NaHCO3, 0 oC to RT, 6 h, 70%, 
dr = 84:16 (61:62). 
 

 

 42

Arglabin Synthesis Main Part

http://en.wikipedia.org/wiki/Asymmetric_synthesis
http://en.wikipedia.org/wiki/Epoxidation
http://en.wikipedia.org/wiki/Olefin
http://en.wikipedia.org/wiki/Oxone
http://en.wikipedia.org/wiki/Fructose
http://en.wikipedia.org/wiki/Catalyst


                                                                                                                                                                                 

 
7.4 Transition metal catalyzed epoxidation of homoallylic alcohols 

The use of transition metal catalysts such as vanadium and molybdenum for the epoxidation of 

olefins by alkyl hydroperoxides is well known in literature,[101] and it has been employed to a 

greater extent in the area of complex molecule synthesis in the recent years. It was shown that 

these transition metal-hydroperoxide reagents exhibit remarkable reactivity toward olefinic 

alcohols and give high stereo- and regioselectivities. The widely used catalysts for this purpose 

are VO(acac)2 and Mo(CO)6. The vanadium and molybdenum catalyzed epoxidations of the 

allylic alcohols and even the homoallylic alcohols are essentially stereospecific compared to the 

peracid method. The use of VO(acac)2 in combination with TBHP served to a greater extent in 

getting the desired α-epoxide in the present system.[102] Thus employing catalytic amounts of 

VO(acac)2 and tert-butylhydroperoxide TBHP as the stoichiometric oxidant in the epoxidation 

of 60 gave the desired α-epoxide 62 with a preference of 9:1, which demonstrates the 

extraordinary affinity for precoordination of the vanadium reagent to the C8 hydroxyl group 

before the epoxidation occurs. The desired α-epoxide 62 was isolated in 78% yield after 

chromatographic separation from the minor β-epoxide product 61 (Scheme 32). 
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Scheme 32. Transition metal mediated epoxidation. Conditions: a) [VO(acac)2] (2 mol %), TBHP, CH2Cl2, 0 oC to 
RT, 16 h, 78% (yield of purified 62). 
 
The high selectivity observed during the V5+/TBHP epoxidation could be explained by a 

proposed vanadate ester transition state in which the metal coordinates tetrahedrally and exists 

in a preferred chair form (Fig. 14). This nicely accounts for the selectivities observed in case of 

many acyclic homoallylic alcohols.[102, 103]  
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Figure 14. Proposed transition state to explain observed selectivities in V5+ / TBHP epoxidation. 
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The whole epoxidations exploited on substrate 60 can be summarized as shown in Table 1. 

  

 entry method conditions ratio 61/62 [a]

(β:α) 

yield 

(%) [b]

1 dimethyl- 

dioxirane 

 
KHSO5,acetone   

DCM- H2O, pH 7.2 
buffer, 18-crown-6, 

0 oC ,6 h 

88:12 65 

2 dimethyl- 

dioxirane 

 
 

KHSO5, NaHCO3 
acetone / H2O (4:1) 

0 oC to Rt , 6 h 

84:16 70 

3 halohydrin NaBrO3 / NaHSO3  
(1:2),CH3CN / H2O 

(1:2), > 48 h, Rt 

>99:1 80 

4 halohydrin NBS, THF / H2O 
(2:1), 15 h, Rt 

>99:1 72 

5 peracid 

 
 
 
 

mCPBA, CH2Cl2 , 
-10 oC to RT , 6 h 

75:25 85 

6 vanadium 

 
VO(acac)2 ,TBHP 

DCM ,0 oC to Rt ,16h
10:90 78 [c] 

 
 
 
Table 1.       [a] Determined by 1H NMR and GC. [b] Isolated yields as mixture of diastereomers.  
                    [c] Isolated yield of pure 62. 
 

 

 
 
 
 
 
 
 
                                                
                                                 61 

 
GC chromatograph of epoxides mixture 61 and 62 derived from mCPBA reaction (top image) and β-epoxide 61 

exclusively derived from Halohydrin reaction (bottom image) 
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8. Final steps towards the total synthesis 
 

8.1 Elimination studies 
Having solved the major task of setting the epoxide stereochemistry, the next aim was to focus 

on achieving the full functionalization and complete the total synthesis. For this the C8/C9 

double bond has to be incorporated in the intermediate 62 in the right position (Scheme 33). As 

the elimination can occur in two possible ways leading to the regiomeric mixture of products, 

the Zaitsev product 70 and the Hofmann product 71. Therefore the choice of suitable reaction 

conditions was essential to carry out this reaction. Out of the various methods known for 

elimination such as syn-elimination using pyrolysis,[104] piperidinium acetates,[105] or anti-

elimination after inverting the stereochemistry of C8 hydroxyl group by Mitsunobu reaction, 
[106] the syn-elimination employing Tf2O and pyridine was chosen as a choice for this 

dehydration reaction (Scheme 33).[107] Thus exposure of 62 to pyridine and Tf2O under Ar 

atmosphere and low temperature conditions afforded the desired Zaitsev product 70 in moderate 

yield. The reaction temperature plays a decisive role in this reaction. Based on earlier reports 

from our group on similar substrates, if the reaction was carried out at room temperature the 

mixture of regiomers are formed.[55]
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Scheme 33. Conditions: Tf2O, pyridine, CH2Cl2, -10 oC to 0 oC, 18 h, 62%. 
 

8.2 Barton-McCombie desoxygenation 

With the incorporation of C8/C9 double bond in the right position as required in the natural 

product, the next task was to desoxygenate the C4 oxygen functionality which is not required in 

the target natural product Arglabin (11). To perform this well known Barton-McCombie 

desoxygenation[108, 109] protocol for secondary alcohols was implemented. Thus to get the free 

secondary alcohol at C4 position in 70, the acetate protection group was first unmasked under 

mild basic conditions to afford 72 as a crystalline solid in a good yield (Scheme 34). To avoid 

the relactonization with newly generated C4 hydroxy group the reaction was carried at low 
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temperature. A single crystal X-ray analysis of 72 confirmed the right stereochemistry of the 

epoxide group as well as the right placement of C8/C9 double bond (Fig. 15).   

 

OO
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H O
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Scheme 34. Conditions: a) K2CO3, MeOH, 0 oC to RT, 4 h, 70%. 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
Figure 15. X-ray structure of 72.  
 

With the creation of free hydroxy group at C4 position in 72, the stage was set to exploit the 

two step Barton-McCombie desoxygenation protocol. For such transformation, different kinds 

of xanthates can be introduced first, followed by reduction of radical intermediates using 

Bu3SnH/AIBN.[110, 111] Thus treatment of 72 with thiocarbonyldiimidazole 73 led to formation 

of O-imidazolylthiocarbonate 74 which upon subsequent radical reduction with Bu3SnH/AIBN 

afforded the desoxygenated product 75 in good yield (Scheme 35).  
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Scheme 35. Barton-McCombie desoxygenation. Conditions: a) 1,1’-thiocarbonyldiimadazole 73, DMAP, CH2Cl2, 
RT, 4 h, 80%; b) Bu3SnH, AIBN, toluene, 90 oC, 5 h, 77%. 
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8.3 Eschenmoser reaction and completion of total synthesis 
 

The final task towards the total synthesis of (+)-Arglabin (11) was to introduce the C3 exo 

methylene group that is known to be responsible for the biological activity of natural product. A 

general method for construction of the α-methylene-γ-butyrolactone motif involves the direct 

conversion of the lactone ring into desired α-methylene lactone via a α-methylenation 

sequence. A large number of synthetic methods reported in literature are based on this 

method.[17, 112] A Mannich type reaction employing Eschenmoser’s salt[113] 76 [N, N 

dimethyl(methylene)ammonium Iodide] was attempted to incorporate the exo methylene group. 

Thus alkylation of 75 with Eschenmoser’s salt 76 yielded Dimethylamino Arglabin 77 (Scheme 

36). Without further purification, the Dimethylamino adduct 77 was subjected to quaternization 

with methyl iodide leading to the elimination of trimethylamine and afforded the target natural 

product (+)-Arglabin (11) in good yield. The choice of this method has an inherent advantage 

of synthesizing the Dimethylamino Arglabin 77, a derivative which can be easily converted to 

its hydrochloride salt, i.e. DMA-Arglabin-HCl (32) that has more bioavailability than the 

natural product (+)-Arglabin (11). Thus the present approach has an advantage of synthesizing 

both the natural product and its important derivative. Also it’s interesting to mention that the 

intermediate 75 can be subjected to a stereoselective alkylation leading to the total synthesis of 

(+)-Arborescin (78), a guaianolide structurally related to (+)-Arglabin (11) and was isolated 

from Artemisia arborescens (Compositae), a plant used for contraceptive purpose by the 

ancient Greeks and Arabs.[114] The total synthesis of (+)-Arborescin (78) was already reported 

by Ando et al starting from naturally occurring α-Santonin.[115]
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Scheme 36. Completion of total synthesis of (+)-Arglabin (11). Conditions: a) Eschenmoser salt 76, THF, -78 oC 
to RT, 4 h, 75%; d) MeI, MeOH, NaHCO3, CH2Cl2, 80%. 
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The synthesized natural product is identical in all spectroscopical data and optical rotation with 

an authentic sample of natural (+)-Arglabin (11) (Synthetic sample [α]23
D = + 81.0 (c = 0.3, 

CHCl3), Authentic sample [α]23
D = + 82.1 (c = 0.3, CHCl3)).[116] This led us to accomplish the 

first enantioselective total synthesis of (+)-Arglabin (11).[16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"The chemist who designs and completes an original and esthetically pleasing multistep 
synthesis is like the composer, artist or poet who, with great individuality, fashions new 
forms of beauty from the interplay of mind and spirit."  
                                                                                                   - E.J. Corey 

                                                                                                    1990 Nobel Prize for Chemistry 
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9. Studies towards the total Synthesis of (+)-Moxartenolide 
 

9.1 Isolation and bioactivity 
After accomplishing the total synthesis of (+)-Arglabin (11) the study was extended towards the 

total synthesis of (+)-Moxartenolide (23) (Fig. 16). (+)-Moxartenolide (23), a sesquiterpene γ-

lactone was isolated from the aerial parts of Artemisia argyi in 1996 as white powder.[117] The 

leaves of Artemisia argyi (Fig. 16) and several related Artemisia plants (Compositae) have been 

used as a Chinese natural medicine, Artemisia Argyi Folium, which is prescribed as a 

hemostatic and sedative agent in Chinese traditional preparations. The hair and fiber parts of 

the leaves are called moxa (mogusa in Japanese) and the preparation of moxa from the fresh 

leave is an important process in obtaining Artemisia Argyi Folium. Moxa has been particularly 

used for analgesic purposes in Chinese acupuncture-cautery procedures.[117] Relatively little is 

known about the chemical constituents of the processed leaves “moxa”. Extensive chemical 

studies on the leaves of Artemisia argyi led to the isolation of a guaianolide designated as 

Moxartenolide (23) and its structural elucidation was carried out by NMR studies. (+)-

Moxartenolide (23) displays inhibitory activity on the LPS-induced NF-κΒ activation with IC50 

value of 1.20 μM.[118] It is interesting to mention that guaianolide Dehydromatricarin (79) 

isolated from E. capillifolium[119] is structurally related to (+)-Moxartenolide (23), with only 

difference being the ester group at C4 position. It was reported that Dehydromatricarin (79) 

exhibits inhibitory activity against growth of HeLa cells, with IC50 = 15 μM.  
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Figure 16. Structures of Moxartenolide (23), Dehydromatricarin (79) and a picture of Artemisia argyi 

 

9.2 Importance of NF-κB inhibitors   

The recognition of pathogens by innate or adaptive immune receptors leads to activation of 

cells displaying these receptors, e.g., macrophages, dendritic cells, and lymphocytes. The signal 

generated by the liganded receptor is communicated to changes in gene expression leading to 

enhanced expression of effector molecules such as cytokines and adhesion molecules. This 

process depends on activation of various inducible transcription factors, among which the NF-
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κΒ transcription factors play an evolutionarily conserved and critical role in the triggering 

coordination of both innate and adaptive immune response.[120] NF-kB represents a group of 

structurally related and evolutionarily conserved proteins, with five members in mammals: Rel 

(c-Rel), RelA (p65), RelB, NF-κB1 and NF-κB2. Among the molecules induced by NF-κB are 

cytokines, chemokines, effector molecules of immunity and pro-survival factors. Mutations that 

inactivate NF-κB are generally lethal because of the essential role of this protein in cell 

survival. Partial loss of function causes varying degrees of immunodeficiency. Humans with 

such mutations have variable levels of immunodeficiency and many show poor inflammatory 

responses and lack some types of antibodies.[121] NF-κΒ is central for the overall immune 

response through its ability to activate genes coding for regulators of apoptosis and cell 

proliferation.[120] The various functions of NF-κΒ suggests that modulation of its activity and 

action represent effective therapeutic strategies for combating diseases such as arthritis, asthma, 

or autoimmunity that result from hyper- activation of otherwise beneficial immune responses. 

Thus specific inhibitors of NF-κΒ might be interesting leads to develop effective therapeutic 

agents for treatment of inflammation and cancer. 

 

9.3 Retrosynthetic strategy: Initial plans 
In our initial approach to Moxartenolide (23), the main focus was to achieve the 

functionalization of the lower five membered ring  through the chemoselective transformation 

of the ketone in intermediate 83 to the corresponding enoltriflate, followed by McMurry 

coupling[122] of it with Methyl Grignard to insert the C9 methyl group (Scheme 37). Such 

chemoselective transformation of ketone to enoltriflate in the presence of lactone is reported in 

literature.[123] This transformation makes the C7 position in intermediate 84 doubly allylic 

which can be easily subjected to allylic oxidation to get the desired enone functionality in the 

natural product. The exo methylene group at C3 can be inserted via the Mannich reaction, as it 

was performed in the total synthesis of (+)-Arglabin (11). Interestingly with the use of 

appropriate ester group at C4 position both the guaianolides Moxartenolide (23) and 

Dehydromatricarin (79) can be achieved from the same intermediate 84.  Thus the synthesis of 

intermediate 83 is turned out be essential for targeting these natural products. This in turn can 

be achieved via ring closing metathesis (RCM) of the allylation product derived from 82, a key 

building block that was planned to derive from retroaldol / lactonization sequence of 15 and 81. 

The synthesis of new chiral allylsilane of type 81 was planned from readily available 

cyclopenta-1,3-diketone 80. The synthesis of chiral cyclopropylcarbaldehyde 15 can be 

achieved starting from furoic ester 13 as described in total synthesis of (+)-Arglabin (11).  
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Scheme 37: Initial retrosynthetic outline for Moxartenolide (23) and Dehydromatricarin (79).  

 

9.4 Synthesis of chiral allylsilane  
 

The synthesis of chiral allylsilane 81 was planned to achieve from 86, via oxazaborolidine 87 

catalyzed enantioselective BH3
.SMe2 reduction,[124] followed by the protection of allylic alcohol 

88 (Scheme 38). Thus the synthesis started from readily available cyclopenta-1,3-diketone 80 

and transforming it to the corresponding enoltosylate 85. This upon subjection to a Cu(I) 

mediated Michael addition using appropriate Grignard reagent (TMSCH2MgCl) under goes an 

addition-elimination mechanism to give the allylsilane 86 in moderate yield.  
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Scheme 38. Synthesis of allylsilane 86. Conditions: a) Et3N, THF, RT, pToluenesulfonyl chloride, RT, 2 h, 65 %. 
b) i) LiCl, CuI , THF, ii) TMSCH2MgCl -78 oC, 10 h, iii) NH4Cl, 50 %. 
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Alternatively, 86 was also obtained starting from readily available cyclopent-2-enone 89 via the 

Cu(I) mediated 1,4 addition of Grignard reagent (TMSCH2MgCl) followed by trapping the 

enolate as silylenolether 90 (Scheme 39). Without purification, crude 90 was subjected to a 

Pd(II) mediated Saegusa oxidation[125] to deliver the allylsilane 86 in a moderate yield. The 

usage of stoichiometric amounts of Pd(OAc)2 in this reaction and also the formation of 

undesired product 91 in considerable amount (25%) limits the application of this procedure 

towards the synthesis of 86. So the synthesis of 86 was carried out using the previous method as 

described above (Scheme 38).  

O OSiMe3

TMS

O

TMS

+

O

TMS869089

a b

91
 

Scheme 39. Alternative synthesis of allylsilane 86. Conditions: a) i) LiCl, CuI, THF, ii) TMSCl, -72 oC iii) TMS-
CH2MgCl, 10 h, 72 % (crude) b) Pd(OAc)2 (0.5 eq),  pBenzoquinone (0.5 eq), CH3CN, RT, 2h, 55% (86), 25% 
(91). 
 

Having the allylsilane 86 in hand, at a first attempt to synthesize the lactone aldehyde 94, the 

direct addition of 86 to cyclopropylcarbaldehyde 15 was carried out under Lewis acid 

conditions (Scheme 40). Under this reaction conditions the addition was unsuccessful leading 

to decomposition of allylsilane 86 to 3-methylcyclopent-2-enone 93. The required Felkin-Anh 

product 92 was never observed. Although allylsilane 95 similar to 86 was reported in 

literature[126], its application in Sakurai allylation under Lewis acid conditions was not reported 

so far in the literature. 
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Scheme 40. Conditions: a) i) BF3
.
Et2O, CH2Cl2 , -78 oC, 15 min, ii) Allylsilane 86, -78 0C , 6 h, 55% (93).  

 

The failure of above reaction indicates that the conjugated allylic double bond in 86 can no 

longer function as normal allylic bond in addition to electrophilic aldehydes such as 15. Thus it 

 52

Moxartenolide Synthesis Main Part



                                                                                                                                                                                 

 
is necessary to prevent the conjugation by reducing the ketone functionality in 86. To achieve 

this 86 was subjected to standard Luche reduction conditions using NaBH4 and CeCl3, but 

unfortunately this resulted only in decomposition of allylsilane 86 to 3-methylcyclopent-2-

enone 93 (Scheme 41).   
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SiMe386 88
(expected)
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93

 
Scheme 41. a) NaBH4, CeCl3, MeOH, -78 oC, 15 min, 55%. 
 
 

9.5 Modified retrosynthetic strategy   
Having experienced the failures in the synthesis of desired allylsilane 88, recourse was taken to 

modify the retrosynthesis of the target Moxartenolide (23). According to the new retrosynthetic 

analysis, it was envisioned that intermediate 60 which was utilized in the total synthesis of (+)-

Arglabin (11), can also be used for the synthesis of (+)-Moxartenolide (23) (Scheme 42). Thus 

the C8/C9 double bond was planned to install either by regioselective syn elimination of C8 

hydroxy group in 60 or by a Shapiro reaction of the C8 oxidized product. The intermediate 60 

was synthesized from 30 as described in the total synthesis of (+)-Arglabin (11) (see Scheme 

23).  
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Scheme 42. Modified retrosynthetic plan for Moxartenolide (23). 

 

9.6 Syn Elimination studies 
According to the above modified retrosynthetic plan, at first syn elimination studies was carried 

out on intermediate 60. Since the C4 stereogenic centre in the target natural product has to be 

created stereoselectively, this was done by subjecting lactone aldehyde 30 to an 
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enantioselective allyltitanation[127] of aldehydes employing chiral auxiliary such as 

monochlorotitanate 97, derived from CpTiCl3 and chiral 1,4-diols (Scheme 43). Thus, treatment 

of 30 with a complex derived from (R,R)-97 and 2-Methyl allylmagnesium chloride gave the 

desired allylated product 54 with a good diastereoselectivity (96:4) compared to the BF3
.Et2O 

mediated allylation (80:20, see Scheme 23 in Arglabin total synthesis).  With the creation of C4 

stereocenter in a diastereoselective fashion, the allylated product 54 was further transformed to 

the required intermediate 60 following the same strategy described in Arglabin total synthesis 

(see Scheme 23). 
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Scheme 43. Conditions. a) (i) (R,R)-97, 2-Methyl allylmagnesium chloride, THF, -78 oC to 0 oC, 2 h, (ii) 30, 5 h, 
65 % (95:5 epimeric mixture at C4). b) Tf2O, Pyridine, CH2Cl2, -10 oC, 6 h, 68 % (regiomeric mixture of 98 and 
99). 
 

Having the key intermediate 60 in hand, it was subjected syn elimination conditions using Tf2O 

and pyridine[107] at low temperature. This led to the isolation of regiomeric mixture of products 

98 and 99 in the ratio of 3:2 respectively, determined through 1H NMR (Scheme 43). Under this 

reaction conditions the formation of Zaitsev product 98 occurred in preference to the Hofmann 

product 99, which has an extended conjugation system due to the newly formed C7/C8 double 

bond. But the presence of inseparable mixture of products 98 and 99 made this reaction not to 

be carried for further studies.  
 
9.7 Oxidation studies 
 

It was envisioned that the oxidation of the secondary alcohol group at C8 position in 60, 

followed by a Shapiro[128] protocol on the oxidized product should lead us to the same 
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intermediate 98. So with this idea the oxidation of 60 was carried out with PCC as oxidant. To 

our surprise the oxidation took place with good yield, but delivered the undesired product 101 

as 1:1 diastereomeric mixture (Table 2, entry 1). The formation of 101 can be readily explained 

by the enolization of the desired oxidation product 100 followed by keto-enol tautomerization 

leading to the opening of C6/6a double bond (Scheme 44). The usage of milder oxidizing 

agents such as Dess-Martin Periodane[11] or TEMPO[138] did not alter the course of the reaction 

and gave the same undesired product 101 as diastereomeric mixture (Table 2, entries 2, 3). 
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                                                                                            Table 2. [a] Isolated yield. [b] Determined by 1H NMR 

Entry Conditions Yield 
(%) [a]

101 
Ratio [b]

1. PCC, CH2Cl2, 
RT, 4 h. 

75% 1:1 

2. Dess-Martin -
Periodane, 

NaHCO3, CH2Cl2, 
RT, 2 h. 

72% 1:1 

3. TEMPO, NaOCl, 
KBr, CH2Cl2, 

0 oC to RT, 4 h. 

75% 2:1 

                                                                                            
 
 
Scheme 44. Oxidation studies on intermediate 60.  
 

Having observed the above unexpected result due to the in situ isomerization of the C6/C6a 

double bond in the desired oxidation product 100, the idea of implementing Shapiro protocol to 

synthesize 98 was unsuccessful.    

 
9.8 Allylic oxidations using SeO2
 
Allylic oxidation of olefinic compounds using SeO2 is a well known procedure in organic 

synthesis for the insertion of oxygen into an allylic carbon-hydrogen bond.[129] The recent 

developments in the asymmetric version[130] of this reaction expands the broad scope of its 

applicability in complex molecule synthesis. One of the major draw backs involved in a 

classical SeO2 reaction is frequent difficulty of removing colloidal selenium from the products 

and also the formation of organoselenium by-products. These difficulties are overcome by 

Sharpless allylic oxidation conditions[131] which employs catalytic SeO2 and TBHP as co-

oxidant. The use of such mild conditions is quite applicable for complex molecule synthesis. 

With the above failures in hand, for the total synthesis of Moxartenolide (23) it was considered 
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that the oxidation of C7 position in the target natural product should be carried out before the 

construction of the tricyclic core, i.e. on the intermediate 30 (see Scheme 42). For this purpose 

the Sharpless allylic oxidation conditions was chosen to implement on intermediate 30. Thus 

exposure of 30 to a precomplexed mixture of SeO2-TBHP gave the oxidation product 102, the 

oxidation being not regioselective as it occurred at both the allylic positions in the starting 

material 30 (Scheme 45). In an attempt to protect the secondary alcohol functionality in 102 

using basic conditions, it was observed that 102 undergoes an acetal formation with in situ silyl 

protection taking place to give a tricyclo[7.2.1.02,6] system 103, which is quite stable to 

purification on silica gel column chromatography. 
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Scheme 45. Conditions a) SeO2 (0.5 eq.), TBHP (2.0 eq), CH2Cl2, RT, 20 h, 55 % (4:1 inseparable mix of 
diastereomers). b) Et3N, TESCl, DMAP, RT, 4 h, 85% (4:1 inseparable mix of diastereomers). 
 
 
Taking the above observations into consideration, the future perspective for the total synthesis 

of (+)-Moxartenolide (23) would be to oxidize the C7 position in the intermediate 30 

regioselectively, by screening various other allylic oxidation systems such as CrO3-pyridine 

complexes[132] or by an heterogeneous catalyst Chromium Aluminophosphate-5[133] (CrAPO-5) 

in combination with TBHP, that are reported for the direct conversion of olefins to α,β-

unsaturated ketones (Scheme 46). Even the application of palladium catalysis to generate the π-

allylpalladium complex in 30 followed by subsequent attack of nucleophile such as an alkoxide 

on the π-allylpalladium complex would be of good choice to investigate.[134] These approaches 

are currently under investigation. 
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Scheme 46. Future plans towards (+)-Moxartenolide (23) starting from 30. 
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10. Biomimetic approach towards the synthesis of dimeric 
guaianolides 
Dimeric guaianolides isolated from plants belong to a little studied type of sesquiterpenes, 

although their initial molecules, the mono guaianolides, have been studied in more detail both 

under chemical and stereo chemical aspects.[46] They are structurally more complex 

guaianolides and derived through the dimerization of two monomeric guaianolides, presumably 

via a [4+2] cycloaddition. The proposed biosynthesis [53] for Artemyriantholide D (12) attracted 

our attention towards the synthesis of this dimeric guaianolide (see Introduction Scheme 5). 

Attempts to mimic such process in the laboratory would lead to the biomimetic total synthesis 

of this natural product. As proposed in the biosynthesis of Artemyriantholide D (12), a Diels-

Alder reaction is required as key step between Arglabin (11) and diene intermediate of type 24 

with high exoselectivity to account for the stereochemistry of the dimeric linkage.  
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Scheme 47. Retrosynthetic strategy for Artemyriantholide D (12). 
Although such exoselectivity is unusual for Diels-Alder additions taking place in a reaction 

flask, Buono et al [62] has shown that high exoselectivity occurs in the Diels-Alder additions of 

α-methylene-γ-butyrolactones to cyclopentadiene under kinetically controlled as well as 

thermal conditions (see Introduction Scheme 10). To validate these results Diels-Alder addition 

of α-methylene-γ-butyrolactone 106 to cyclopentadiene 107 was carried out using ZnCl2 as 

Lewis acid according reported procedure (Scheme 48).[62] The result was in accordance with the 

reported selectivity and gave a ratio of 3:1 for exo:endo isomers respectively (Table 3, entry 1). 

The exo isomer in this case was partially separated from the mixture by purification on silica 

gel column chromatography. Crystallization of pure exo isomer from pentane-CH2Cl2 mixture 

afforded a crystalline compound which upon single crystal X-ray analysis revealed the 

stereochemistry of exo isomer (Fig. 17). Also the effect of bis (oxazoline) ligand (BOX) in 

complexation with Cu(OTf)2 as a chiral Lewis acid was studied in this reaction. The use of 

(R,R)-iPr-Box (+)-14 gave the endo isomer in preference to exo isomer (exo:endo = 2:3) (Table 

3, entry 2). 
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Scheme 48. Diels-Alder reaction between α-methylene-γ-butyrolactone 106 and cyclopentadiene 107. 

 

Entry Conditions Yield (%) [a] Ratio 108 : 109 [b]

1 ZnCl2 (10 mol%), CH2Cl2, RT, 6 h 75 3:1 

2 (R,R)-iPr-Box (+)-14, Cu(OTf)2 (10 

mol%), CH2Cl2, 0 oC to RT, 6 h 

85 2:3 

   Table 3. [a] Yield of mixture. [b] Determined by GC and 1HNMR 

                                                                                                                                  

 

 

                                                                                                                       

 

 

 

 

 

 

 

 

Figure 17. X-ray structure of exo isomer 108 

 

The above high exo selectivity prompted us to investigate the Diels-Alder reaction between a 

stereochemically more complex dienophile such as (+)-Arglabin (11) and cyclopentadiene 107 

(Scheme 49). Thus the reaction between (+)-Arglabin (11) and cyclopentadiene 107 gave a 

mixture of isomers 110 and 111 with a better ratio (5:1, exo:endo), again with a preference to 

exo isomer.   
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110 111     
Scheme 49. Diels-Alder reaction between Arglabin (11) and cyclopentadiene 107. Conditions: a) ZnCl2, RT, 12 h, 
80% (mixture of 110 and 111). 

 58

Dimeric Guaianolides Biomimetic Synthesis Main Part



                                                                                                                                                                                 

 
 

The high exo selectivities in the above model Diels-Alder reactions promoted us to further 

extend our studies towards the biomimetic total synthesis of Artemyriantholide D (12). To 

achieve this, as mentioned in the retrosynthetic outline a diene cyclopentadiene intermediate 24 

was required to setup the required Diels-Alder reaction (see Scheme 47). To achieve this, it was 

envisioned that intermediate 114 derived by the opening of epoxide from 113 can serve to get 

the diene functionality in 24 (Scheme 50). The key intermediate 113 can in turn be synthesized 

from 112 via halohydrin mediated epoxidation strategy described in the total synthesis of 

Arglabin (see Scheme 29).  
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Scheme 50. Retrosynthetic outline for the synthesis of diene intermediate 24.  

 

The transformation of 113 to 114 is earlier reported from our group.[135] Thus oxidation of 113 

with PCC took place with highly stereoselective opening of the epoxide group delivering 115 in 

quantitative yield (for a transformation on similar substrate with mechanism see Scheme 44). 

The protection of the free tertiary alcohol group in 115 leads to the synthesis of the intermediate 

114 (Scheme 51). 
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Scheme 51. Conditions: a) PCC, CH2Cl2, RT, 4 h, quantitative.  

 

The transformation of 114 to cyclopentadiene intermediate 24 can be achieved in two ways. 

The first method involves the Luche reduction of the enone function followed by the 

elimination of allylic alcohol to give the desired intermediate 24. The second method involves a 

direct Shapiro reaction on 114 to deliver the desired intermediate 24. Zhai et al had reported a 

similar transformation in their biomimetic total synthesis of (+)-Absinthin (119) (Scheme 

52).[136] According to their report the transformation of  the intermediate 116 to the diene 118 
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was not possible directly by Shapiro reaction. So the reduction of enone 116 followed by the 

subsequent base-promoted elimination of corresponding sulfonates (OMs, OTs, or OTf) of 117 

was found to be not successful. But the Mitsunobu arylselenylation[137] of 117 with o-

nitrophenyl selenocyanate, followed by the oxidative cleavage of the selenides gave the desired 

cyclopentadiene 118, which underwent a [4+2] cycloaddition in the reaction flask with out any 

solvents and reagents to give the dimeric guaianolide (+)-Absinthin (119) with all the 

stereocenters fixed in one pot.    
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Scheme 52. Key steps in the biomimetic total synthesis of (+)-Absinthin (119) from Zhai et al. [136]

 

The preexistence of such biomimetic total synthesis promoted us to further investigate the 

studies in transforming 114 to cyclopentadiene intermediate 24. Thus to investigate the 

Mitsunobu arylselenylation,[137] an intermediate of type 101 was chosen for the model study 

(for the synthesis of 101 see Scheme 44). Thus the protection of free hydroxy group by acetate 

followed by the reduction of enone 120 with NaBH4 gave a diastereomeric mixture of allylic 

alcohols 121. Treatment of this mixture with o-nitrophenyl selenocyanate 122 under Mitsunobu 

arylselenylation conditions was never successful to give the desired selenides 123, which on 

oxidative cleavage with NaIO4 should give the cyclopentadiene intermediate 124.  
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Scheme 53. Conditions: a) Et3N, Ac2O, DMAP, CH2Cl2, RT, 8 h, 85 % (1:1 inseparable mixture of diastereomers 
at C6). b) NaBH4, MeOH, RT, 2 h, 78%. c) 122, nBu3P, THF, RT, 2 h.  
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In comparison with the Zhai et.al. intermediate 117 (Scheme 52) which underwent Mitsunobu 

arylselenylation under the same condition, it was rationalized that the C9 stereocenter in the 

intermediate 121 might be responsible for the breakdown of the reaction with o-nitrophenyl 

selenocyanate 122. In case of Zhai et.al. intermediate 117, the same C9 position is a sp2 

hybridized planar centre. Thus the failure of Mitsunobu arylselenylation reaction on a model 

substrate of type 121 led us to modify the approach in synthesizing the cyclopentadiene 

intermediate 24 required for the biomimetic Diels-Alder reaction. The alternative method 

involves the transformation of enone functionality in 114 to the cyclopentadiene functionality 

by Shapiro reaction (Scheme 52). These studies are currently under investigation. 
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11. Summary 
Every natural product type isolated from the seemingly limitless chemical diversity in nature 

provides a unique set of research opportunities deriving from its distinctive three-dimensional 

architecture and biological properties. Guaianolides, an interesting class of sesquiterpene 

lactones exhibit a broad range of biological activity along with the structural diversity and 

stimulate the development of research in their total synthesis. The essence of total synthesis lies 

in how readily available starting materials can be converted to complex molecular architectures 

through controlled, efficient and logically orchestrated carbon - carbon and carbon - heteroatom 

bond connectivities.  

In the present thesis it was shown how simple aromatic starting materials can be converted to 

chiral building blocks such as anti-disubstituted γ-butyro-lactones that are key structural motifs 

of guaianolides. Starting from furoic ester 13 either of the enantiomers of 

cyclopropylcarbaldehyde 15 are synthesized followed by transforming them to trans-4,5-

disubstituted γ-butyro lactones  of type 125 (Scheme 54) 
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(R,R)-iPr-BOX
(+)-14
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Scheme 54. Transformation of aromatic starting materials to trans-4,5-disubstituted γ-butyro lactones. 
The application of this was shown in the first enantioselective total synthesis of a novel 

antitumor guaianolide (+)-Arglabin (11). The work was further extended towards the 

enantioselective total synthesis of Moxartenolide (23) and dimeric guaianolides such as 

Artemyriantholide D (12) (Fig. 18) 

Moxartenolide (23)

OO

O

O

O

H

H

H
OO

H

H

H O

(+) Arglabin (11)

O O
O O

OH

O

H

Artemyriantholide D (12)

H

 
Figure 18. Target guaianolides aimed for total synthesis. 
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For the total synthesis of (+)-Arglabin (11), the synthesis of chiral allylsilane (+)-29 was carried 

out starting from kinetically resolved 1,4 diols (+)-42 and (-)-43 (Scheme 55). A study of the 

stereoselective epoxidations was carried out on substrate 60 to get the desired stereochemistry 

of the epoxide group present in the natural product and completion of total synthesis.   
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Scheme 55. Synthesis of chiral allyl silane (+)-29 and epoxidation study on 60.  

 

In the total synthesis of (+)-Moxartenolide (23), the new allylsilane 86 was synthesized starting 

from cyclopenta-1,3-diketone 80 via addition-elimination mechanism on 85 (Scheme 56). Later 

oxidative studies were carried out on substrate 30 to regioselectively oxidize the C7 position. 

The future perspective for the total synthesis of (+)-Moxartenolide (23) would be to oxidize the 

C7 position regioselectively to synthesize intermediate 104, followed by the construction of 

tricyclic core to complete the total synthesis 
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Scheme 56. Synthesis of new allylsilane 86 and future perspective for total synthesis of (+)-Moxartenolide (23). 
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Finally towards the end of thesis, biomimetic studies toward the total synthesis of dimeric 

guaianolide Artemyriantholide D (12) was carried out. Towards this model [4+2] 

cycloadditions between (+)-Arglabin (11) and cyclopentadiene 107 in presence of ZnCl2 

showed high exo selectivity as required for the biomimetic synthesis of Artemyriantholide D 

(12) (Scheme 57). Also model reactions were carried on substrate similar to 114 for the 

synthesis of cyclopentadiene intermediate 24 that is required to set up the proposed biosynthetic 

Diels-Alder reaction with (+)-Arglabin (11). 
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Scheme 57. Diels-Alder between (+)-Arglabin (11) and cyclopentadiene 107 showing required exoselectivity. 
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12. Experimental Part 
 

12.1 General 
 
1H NMR-Spectra were recorded on Bruker Avance 300, Bruker Avance 400, Bruker Avance 

600, Varian Inova 600, Bruker DRX-400 with a H/C/P/F QNP gradient probe and Bruker 

Avance 500 with a dual carbon/proton CPDUL cryoprobe. The chemical shift δ is given in 

[ppm], calibration was set on chloroform-d1 (7.26 ppm) or tetramethylsilane (0.00 ppm) as 

internal standard. The spectra were evaluated in 1st order and the coupling constants are given 

in Hertz [Hz]. The following abbreviations for the spin multiplicity were used: s = singlet, d = 

doublet, t = triplet, q = quartet, qt = quintet, m = multiplet, dt = doublet of a triplet, dd = 

double doublet, ddd = doublet of a double doublet, sept = septet. The used deuterated solvents 

are given separately.  
13C NMR-Spectra were recorded on Bruker Avance 300, Bruker Avance 400, Bruker 

Avance 600, Varian Inova, Bruker DRX-400 with a H/C/P/F QNP gradient probe and Bruker 

Avance 500 with a dual carbon/proton CPDUL cryoprobe. The chemical shift δ is given in 

[ppm], calibration was set on chloroform-d1 (77.16 ppm), or tetramethylsilane (0.00 ppm) as 

internal standard. The multiplicity of the signals were detected by DEPT 135 and 90 (DEPT = 

distortionless enhancement by polarization transfer) and are given as: + = primary und tertiary 

C-atom (positive DEPT 135 signal; tertiary C-atom: DEPT 90 signal), - = secondary C-atom 

(negative DEPT 135 signal), Cq = quaternary C-atom (DEPT-signal intensity zero).  

Melting points were measured on a Büchi SMP 20 in a silicon oil bath. The melting points 

are uncorrected. 

Infrared-Spectra were recorded on a Bio-Rad Excalibur Series or Mattson Genesis Series 

FT-IR. Solid compounds were measured in KBr, liquid compounds as a neat film between 

NaCl-plates. The wave numbers are given in [cm-1]. 

Masspectrometry was performed on Varian MAT 311A, Finnigan MAT 95, Thermoquest 

Finnigan TSQ 7000, Nermag quadrupoles, VG ZAB high-resolution double-focusing and VG 

Autospec-Q tandem hybrid with EBEqQ configuration. The percentage set in brackets gives 

the peak intensity related to the basic peak (I = 100%). High resolution mass spectrometry 

(HRMS): The molecular formula was proven by the calculated precise mass. 

Elemental analysis was prepared by the micro analytic section of the University of 

Regensburg using a Vario EL III or Mikro-Rapid CHN (Heraeus). 
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Optical rotation was measured at rt on a 241 MC Perkin-Elmer polarimeter at a wavelength 

of 589 nm (Na-D) in a 1 dm or 0.1 dm cell. The concentration is given in [g/100 ml]. 

X-ray analysis was performed by the crystallography laboratory of the University of 

Regensburg (STOE-IPDS, Stoe & Cie GmbH) and the crystallography laboratory of the 

University of Kansas. 

Chiral HPLC was performed in the analytic department of the University of Regensburg or 

on a Kontron Instruments 325 System (HPLC 335 UV detector, λ = 254 nm, Chiracel 

OD/OD-H column (50x4.6 mm, 10 µm, flow rate: 1 mL/min, 20 °C, n-heptane/ethanol 99:1). 

Gaschromatography (GC) was measured in the analytic department of the University of 

Regensburg or on Fisons Instruments GC 8000 series (Data Jet Integrator, CP-chiralsil-DEX-

CP column). 

Thin layer chromatography (TLC) was prepared on TLC-aluminium sheets (Merck, silica 

gel 60 F254, 0.2 mm). Detection in UV-light λ = 254 nm, staining with I2, Mostain, 

molybdatophosphoric-acid (5% in ethanol), KMnO4 solution or vanillin-sulfuric acid. 

Column chromatography was performed in glass columns (G2 or G3). As a stationary phase 

silica gel Merck-Geduran 60 (0.063-0.200 mm) or flash silica gel Merck 60 (0.040-0.063 mm) 

was used. 

Microwave: Microwave experiments were performed in a Prolabo Synthewave S 402 

(2.45 GHz, focused, max. 300 W) or on CEM Discover System. 

Ozone-Generator: For ozone generation a Fischer process technology ozone generator OZ 

500 MM was used, supplied by an oxygen tank. 

Solvents: Abs. solvents were prepared according to usual lab procedures or taken from the 

MB-SPS solvent purification system. Ethylacetate, hexanes (40-60 °C) and dichloromethane 

were purified by distillation before use. Further solvents and reagents were of p.a. quality. 

Reactions with oxygen- and moisture sensitive reactants were performed in oven dried and in 

vacuo heated reaction flasks under a pre-dried inert gas (nitrogen or argon) atmosphere. For 

cooling to temperatures < -40 °C a cryostat Haake EK 90 or dry ice/iso-propanol mixture was 

used. 
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12.2 Abbreviations 
 
 
abs absolute MeCN acetonitril 
AIBN azo-isobutyronitrile Mes mesyl 

Bu n-butyl min minute 

BuLi n-butyl lithium MS molecular sieve 

cat catalytic NMR nuclear magnetic resonance 

CI chemical ionization NMO N-methylmorpholin-N-oxid 
dr diastereomeric ratio NOE nuclear Overhauser effect 
DBU 1,8-Diazabicyclo[4.4.0] undec-7-ene Nu nucleophile 

  PCC pyridinium chlorochromate 
DEAD diethylazodicarboxylate Pg protecting group 

DMAP N,N-dimethylamino pyridine Ph phenyl 

DMF dimethyl formamide PMB p-methoxy-benzyl 

DMS dimethyl sulfide PPLE porcine pancreas lipase enzyme 

ee enantiomeric excess pyr pyridine 
eq. equivalents RCM ring closing metathesis 

EI electronic ionization RT room temperature 
Et ethyl SAR structure-activity relationship 

Glc glucose   

h hour TBME tert-butyl-methyl-ether 
HAT histone-acetyl-transferase TBDMS tert-butyldimethylsily 

HPLC high pressure liquid chromatography TBAF tetrabutylammonium fluoride 

  TPAP Tetrapropylammonium 
perruthenate 

HRMS high resolution mass spectrometry   

  tBu tert-butyl 

HWE Horner-Wadsworth-Emmons TES triethylsilyl 
iPr iso-propyl THF tetrahydrofuran 

IR infra red TMS trimethylsilyl 
LAH lithium aluminium hydride Tf trifluormethanesulfonate 

M metal Ts tosyl 
mCPBA m-chloroperbenzoic acid quant quantitative 

Me methyl   
 
Indication of relative and absolute stereochemistry: 
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12.3 Enantioselective total synthesis of (+)-Arglabin 
 
1. (1R,2R,3R)-(+)-2- Oxalic acid 2-ethoxycarbonyl-3-formylcyclopropylester methyl ((+)- 
     35) 
 

O
CO2Me

H

H

EtO2C
 
 
 
 
 

A 500 ml flask equipped with a stirring bar and a 500 ml, pressure-equalizing, addition funnel 

with incorporated Mariotte tube connected to a mineral oil bubbler, was purged with nitrogen 

and cooled to 0 °C. It was charged with Cu(OTf)2 (0.227 g, 0.628 mmol, 0.66%mol), (R,R)-iso-

propyl-bis(oxazoline) (+)-14 (0.211 g, 0.799 mmol, 0.84 mol%) and dry CH2Cl2 (10 ml) 

resulting in a deep blue solution. After stirring for 10 min furan-2-carboxylic acid methyl ester 

13 (12 g, 95 mmol, 1.0 eq.) was poured in and phenyl hydrazine (3 drops) was added via a 

syringe leading to a color change to red-brown which indicates the reduction of copper(II) to 

copper(I). This solution was stirred for 30 min and subsequently ethyldiazoacetate (215 ml 

solution of 10.14% mass, 0.25 mol, 2.67 eq.) in CH2Cl2 was added via the addition funnel 

during 5 days. On completion of addition the solution was stirred for 1 h until no gas evolution 

was observed any longer. The reaction mixture was passed through a pad of basic alumina 

(10x5.5 cm), followed by CH2Cl2 (500 ml). The organic layers were combined and 

concentrated under reduced pressure to afford yellow-brown oil. The residue was purified by 

fractioned distillation under reduced pressure (p = 3x10-2 mbar, b.p. = 38-44 °C) and starting 

material (4.78 g, 37.9 mmol, 40%) was recovered. The brown residue was purified by column 

chromatography (silica, 4x36 cm, hexanes: ethylacetate 9:1) to yield the desired product (+)-35 

(10.8 g, 50.90 mol, 85% ee, 54% yield, 89% yield based on recovered starting material) as a 

yellowish oil. To obtain enantiomeric pure product the oil was treated with n-pentane (200 ml) 

followed by CH2Cl2 (8 ml) with stirring until the solution changed from cloudy to clear. The 

solution was kept for 16 h at -27 °C and a small enantiomerically pure crystal was added which 

gave rise to colorless crystals after 6 d. The supernatant liquid was removed by filtration and 

the remaining crystals were dried in vacuo to afford (+)-35 (6.90 g, 33.0 mmol, 34%, >99% ee) 

as colorless crystals. After concentration of the mother liquor in vacuo the residue was again 

treated with n-pentane (120 ml) and CH2Cl2 (2 ml) and set for crystallization at -27 °C for 5 d. 

Removal of the supernatant liquid and drying in vacuo afforded (+)-35 (0.609 g, 2.87 mmol, 

3%, >99% ee, total yield: 7.51 g, 35.39 mol, 38% yield, 62% yield based on recovered starting 

material) as colorless crystals. 
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Rf (hexanes: ethylacetate 5:1, Vanilline) = 0.16.- mp. = 42 °C. – [α ]20

D = +272 (c = 1.0, 

CH2Cl2). – 1H NMR (300 MHz, CDCl3): δ = 1.16 (dd, J = 2.7, 1.1 Hz, 1 H, 6-H), 1.27 (t, J = 

7.1 Hz, 3 H, CH3), 2.87 (ddd, J = 5.3, 2.9, 2.7 Hz, 1 H, 5-H), 3.81 (s, 3 H, OCH3), 4.16 (q, J = 

7.1 Hz, 2 H, CH2CH3), 4.97 (dd, J = 5.3, 1.1 Hz, 1 H, 1-H), 6.40 (d, J = 2.9 Hz, 1 H, 4-H). – 
13C NMR (100.6 MHz, CDCl3): δ = 14.20 (+, CH3), 21.43 (+, C-6), 31.97 (+, C-5), 52.26 (+, 

OCH3), 61.08 (-, CH2), 67.54 (+, C-1), 116.19 (+, C-4), 149.15 (Cquart, C-3), 159.54 (Cquart, 

CO), 171.78 (Cquart, CO). – IR (KBr): ṽ = 3118, 2956, 1720, 1617, 1428, 1380, 1297, 1166, 

1124, 1041, 954, 831, 725 cm–1.  

 

2. (1R,2R,3R)-(-)-oxalic acid 2-ethoxycarbonyl-3-formyl-cyclopropyl ester methyl ester   
    ((+)-15)) 
 
 OC(O)CO2Me

CO2Et

OHC 

 

 

A 100 ml flask was charged with a solution of (+)-35 (3.022 g, 14.24 mmol, 1.0 eq.) in dry 

CH2Cl2 (50 ml). The flask was equipped with a gas passing tube connected with one side to an 

ozone generator and with the other side to a drying tube containing KOH coated clay ending up 

in the hood. The solution was cooled to -78 °C and a constant stream of oxygen containing 

ozone (O2 = 150 l/h, O3 = 7 g/h) was immersed into the solution until a deep blue color 

appeared (approx. 15 min). Excess of ozone was expelled by passing a constant flow of oxygen 

for another 10 min into the solution. The gas inlet tube was replaced by a drying tube. DMS 

(2.28 ml, 57 mol, 4.0 eq.) was added at -78 °C, and the reaction mixture was allowed to warm 

up slowly to rt and stirred for 22 h. The solution was washed with sat. NaHCO3 (10 ml) and the 

aqueous layer was extracted with CH2Cl2 (10 ml). The combined organic layers were washed 

with H2O (5 ml) and the aqueous layer was extracted again with CH2Cl2 (5 ml). The combined 

organic layers were dried (Na2SO4) and concentrated under reduced pressure to yield the 

aldehyde (3.199 g, 13.10 mmol, 92%) as a pale yellow oil which can be used without any 

further purification. To obtain a colorless microcrystalline solid the crude product was 

crystallized from Et2O (3 ml) and stored at -35 °C for 2 weeks. The solvent was removed by a 

pipette and the solid was dried in vacuo to give (+)-15 (3.124 g, 12.78 mmol) in 94% yield. 

 

m.p. = 52 °C. - [α ]20
D = + 37.5 (c = 1.0, CH2Cl2); 1H NMR (300 MHz, CDCl3): δ = 1.30 (t, J = 
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7.2 Hz, 3 H), 2.81 (ddd, J = 7.2, 6.0, 4.0 Hz, 1 H), 2.93 (dd, J = 6.0, 3.6 Hz, 1 H), 3.92 (s, 3 H), 

4.20 (q, J = 7.2 Hz, 1 H), 4.21 (q, J = 7.1 Hz, 1 H), 4.83 (dd, J = 7.2, 3.6 Hz, 1 H), 9.47 (d, J = 

4.0 Hz, 1 H).- 13C NMR (100.6 MHz, CDCl3): δ = 14.1 (+, CH3), 26.36 (+, C-3), 34.86 (+, C-

2), 54.00 (+, CO2CH3), 58.87 (+, C-1), 62.03 (-, CH2), 156.59 (Cquart, CO), 156.86 (Cquart, 

CO), 168.13 (Cquart, CO2Et), 192.13 (+, CHO). – IR (KBr): ṽ = 2985, 1779, 1751, 1724, 1708, 

1445, 1312, 1290, 1208, 1005, 736 cm-1. 

 

3. ((3S,4S)-4-(4-methoxybenzyloxy)-3-methylcyclopent-1-enyloxy) trimethylsilane (48) 
 
 OSiMe3

OPMB

1

2

3 4

5
 
 
 
 
Under a N2 atmosphere LiCl (185 mg, 4.38 mmol, 0.3 eq.) and CuI (417mg, 2.19 mmol, 0.15 

eq.) were dissolved in abs. THF (15 mL) and stirred for 15 min until a clear solution was 

obtained. Cyclopentenone (-)-28 (3.2 g, 14.6 mmol, 1 eq.) (the synthesis of (-)-28 was reported 

earlier with full characterization from Reiser group, see Ref 75) dissolved in abs. THF (14 mL) 

was added to the above mixture and stirred for further 20 min. and then cooled down to -78 oC 

before TMSCl (9.0 mL, 58.4 mmol, 4 eq.) was added dropwise. After an additional stirring for 

20 min was added CH3MgCl (3M sol. in THF, 22 mL, 66 mmol, 4.5 eq.) drop wise and stirred 

at -78 oC for 4 hrs. Et3N (20.2 mL, 146 mmol, 10 eq.) was injected at once at the same 

temperature and warmed up to 0 oC before being poured into a pre-cooled n-pentane (150 mL). 

The yellow emulsion developed was filtered through celite pad under reduced pressure and 

washed with pre-cooled n-pentane. The filtrate was washed with pre-cooled sat. NaHCO3 (4 x 

10 mL) to give colorless solution. It was dried over Na2SO4, filtered, concentrated in vacuo to 

afford 48 (4.04 g, 90 %) as pale yellow oil and used without further purification. 

 

Rf (hexanes: ethylacetate 75:25, Vanillin) = 0.5. - 1H NMR (300 MHz): δ = 0.2 (s, 9H, SiMe3), 

1.03 (d, J = 6.92 Hz, 3H, 3-CH3), 2.31-2.38 (m, 1H, 5-HA), 2.52-2.60 (m, 1H, 5-HB), 2.67-2.76 

(m, 1H, 3-H), 3.64-3.70 (m, 1H, 4-H), 3.79 (s, 3H, OMe), 4.43 (d, J = 6.30 Hz, 2H, -O-CH2), 

4.47-4.49 (m, 1H, 2-H), 6.84-6.89 (m, 2H, PMB),  7.24-7.29 (m, 2H, PMB). - 13C NMR (75 

MHz): δ = 0.27 (+, SiMe3), 20.06 (+, 3-Me), 40.40 (-, 5-C), 43.51 (+, 3-C), 55.53 (+, OMe), 

71.00 (-, PMB), 84.29 (+, 4-C), 106.66 (+, 2-C), 114.01 (+, 2xPMB), 129.49 (+, 2xPMB), 

130.98 (Cq, PMB), 151.04 (Cq, 1-C), 159.34 (Cq, PMB). - IR (neat) ṽ = 2956, 2903, 

2866,1646, 1613, 1512, 1456, 1249, 1212, 1172, 1087, 1035, 942, 900, 844 cm-1.  
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4. (((3S,4S)-4-(4-methoxybenzyloxy)-3-methylcyclopent-1-enyl)methyl)trimethylsilane      

    ((+)-29) 
 SiMe3

OPMB

1

2

3 4

5

6

 

 

 

Preparation of the Grignard reagent:  

Mg curls (1.154g, 47.2 mmol, 3.6 eq.) and I2 (catalytic) were stirred in abs. Et2O (19 mL) under 

a N2 atmosphere. At RT TMSCH2Cl (6.4 mL, 46.2 mmol, 3.6 eq.) was added slowly via a 

syringe to form the Grignard reagent.  

Ni(acac)2 – coupling: 

The above freshly prepared TMSCH2MgCl (11 mL, 26.4 mmol, 2.4 mmol/mL, 2 eq.) was 

added to Ni(acac)2  (542 mg, 2.11 mmol, 0.15 eq.) taken in a three neck schlenk flask under a 

N2 atmosphere at room temperature to give a dark brown solution. The solution was set to 

reflux at 35 oC and to this was added crude 48 (4.04 g, 13.2 mmol, 1 eq.) drop wise over 15 

min via a syringe. The mixture was refluxed for 16 h at 35 oC. When the starting material was 

disappeared completely, H2O (5 mL) was added slowly to the reaction mixture. The organic 

phase was separated and the aqueous phase was extracted with Et2O (2x50 mL). The combined 

org. phase was dried over Na2SO4, filtered, concentrated under reduced pressure, and subjected 

to silica gel column chromatography (PE: EA = 98:2). The desired allylsilane 29 (2.89 g, 62 %) 

was obtained as clear pale yellow oil. 

 

Rf (hexanes: ethylacetate 80:20, Vanillin) = 0.8. [α]D
23 = + 23.6 (c = 0.55, CHCl3).  

 1H NMR (300 MHz): δ = 0.01 (s, 9H, SiMe3), 1.01 (d, J = 7.00 Hz, 3H, 3-CH3), 1.51 (bs, 2H, 

CH2-TMS), 2.23-2.30 (m, 1H, 5-HA), 2.47-2.55 (m, 1H, 5-HB), 2.7-2.8 (m, 1H, 3-H), 3.68-3.74 

(m, 1H, 4-H), 3.80 (s, 3H, OMe), 4.45 (d, J = 3.62 Hz, 2H, -O-CH2), 5.01 (bs, 1H, 2-H), 6.85-

6.88 (m, 2H, PMB), 7.26-7.28 (m, 2H, PMB). 

 13C NMR (75 MHz): δ = -0.9 (+, SiMe3), 19.97 (+, 3-C), 22.01 (-, 6-C), 43.78 (-, 5-C), 46.60 

(+, 3-C), 55.67 (+, O-Me), 71.06 (-, PMB), 87.17 (+, 4-C), 114.15 (+, 2xPMB), 126.24 (+, 2-

C), 129.59 (+, 2xPMB), 131.38 (Cq, PMB), 138.43 (Cq, 1-C), 159.41 (Cq, PMB). 

  

IR (neat) ṽ = 2953, 1612, 1512, 1455, 1346, 1298, 1172, 1083, 1037, 843, 447 cm-1. 

MS (EI, 70 eV): m/z (%): 121.1 (100), 73.1 (53), 183.1 (15), 209.1 (9), 304.2 (9) [M+]. - 

HRMS: (EI, 70 eV): 304.1854 (C18H28O2Si: cal. 304.1859 [M+]). 
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5. (1R,2S,3R)-2-((R)-((1´S,2´S,3´S)-2´-methyl-3´-(p-methoxybenzyloxy)-5´  

    methylenecyclopentyl)(hydroxy)methyl)-3-(ethoxycarbonyl)cyclopropylmethyl oxalate  
    (50) 
 

O

CO2Et

MeO
O

O OH

OPMB

H

1 2

3

1´

2´
3´
4´

5´ 
 
 
 

A solution of (+)-15 (1.45 g, 5.94 mmol, 1 eq.) in CH2Cl2 (10 mL) was cooled down to -78 oC 

under N2 atmosphere. BF3
.Et2O (0.72 mL, 6.5 mmol) was added via syringe and stirred for 20 

min. Allylsilane (+)-29 (1.9 g, 6.25 mmol) in CH2Cl2 (10 mL) was added subsequently via 

syringe drop wise for 15 min. The resulting brown solution was stirred for 16 h at -78 oC, and 

then it was quenched with sat. NaHCO3 (2 mL), allowed to warm up to room temperature. The 

layers were separated and the aqueous layer was again extracted with CH2Cl2 (5 X2 mL). The 

combined org. layers were washed with H2O, brine, dried (Na2SO4), filtered and concentrated 

in vacuo to yield 50 (4.4 g, 80%). The yellowish oil thus obtained (as a single stereoisomer) 

was used without further purification.  

 

Rf (hexanes: ethylacetate 60:40, Vanillin) = 0.42. 

 
1H NMR (300 MHz): δ = 1.26 (t, J = 7.1 Hz, 3H, CH2CH3), 1.87-1.94 (m, 1H, 2-H), 2.21 (dd, J 

= 6.03, 2.58 Hz, 1H, 3-H), 2.28-2.37 (m, 1H, 1`-H), 2.41-2.48 (m, 1H, 2`-H), 2.55-2.63 (m, 2H, 

4`-H), 3.57-3.61 (m, 1H, 3`-H), 3.77-3.80 (m, 1H, CHOH), 3.79 (s, 3H, PMB), 3.88 (s, 3H, 

CO2Me), 4.09-4.21 (m, 2H, CH2PMB), 4.39-4.49 (q, J = 7.1 Hz, CH2CH3), 4.7 (dd, J = 7.2, 2.6 

Hz, 1H, 1-H), 5.02-5.03 (m, 1H, C=CH2), 5.10-5.11 (m, 1H, C=CH2), 6.84-6.87 (m, 1H, PMB), 

7.21-7.24 (m, 1H, PMB) . 

 

 13C NMR (75 MHz): δ = 14.16 (+, CH2CH3), 19.97 (+, 2`-CH3), 25.52 (+, 3-C), 30.80 (+, 2-

C), 38.25 (-, 4`-C), 39.54 (+, 2`-C), 53.7 (+, PMB), 55.28 (+, OMe), 55.50 (+, 1-C), 58.86 (+, 

1`-C), 61.25 (-, CH2CH3), 70.20 (-, PMB), 70.86 (+, C-OH), 84.01 (+, 3`-C), 108.89 (-, 

C=CH2), 113.90 (+, 2xPMB), 129. 19 (Cq, PMB), 129.43 (+, 2xPMB), 149.74 (Cq, C=CH2), 

157.12 (Cq, CO), 157.36 (Cq, CO), 159.30 (Cq, PMB), 170.90 (Cq, CO2Et).  

 

 IR (neat) ṽ = 3499, 3427, 2956, 1778, 1754, 1726, 1612, 1513, 1455, 1372, 1309, 1248, 1159, 

1093, 1034, 828, 448 cm-1. 

 

 72

Arglabin Synthesis Experimental Part



 
6.  (2R,3S)-2-((1´S,2´S,3´S)-3´-(4-methoxybenzyloxy)-2´-methyl-5´-methylenecyclopentyl)  
     Oxotetrahydrofuran-3-carbaldehyde (30) 
 

O

CHO

O

H
H

OPMB
H1

5
4

3 2
1'

2'
3'

4'
5'

 

 

 

 

The crude cyclopropylalcohol 50 (4.4 g, 9.23 mmol, 1 eq.) was dissolved in MeOH (15 mL) 

and cooled down to 0 oC. Ba(OH)2 x 8 H2O (1.863 g, 5.9 mmol, 0.65 eq.) was added portion 

wise over a period of 2 h and the mixture was stirred for additional 1 h at  0 oC. After removal 

of approximately 80 % volume of MeOH under reduced pressure at rt, CH2Cl2 (50 mL) and 

H2O are added and the org. phase was separated. The aqueous phase was again extracted with 

CH2Cl2 (25 X2 mL). The combined org. layers were dried over Na2SO4, filtered, concentrated 

in vacuo. This was then purified by silica gel column chromatography (PE: EA= 3:1) to afford 

30 (2.1 g, 62 %, over two steps) as a single diastereomer, as colorless oil.  

 

Rf (hexanes: ethylacetate 60:40, Vanillin) = 0.35. [α]D
23 = +74.0 (c = 0.5, CHCl3).  

 

 1H NMR (300 MHz): δ = 1.05 (d, J = 6.9 Hz, 3H, 2´-Me), 2.10 - 2.20 (m, 1H, 2´-H), 2.33 - 

2.41 (m, 1H, 4`-H), 2.45 - 2.50 (m, 1H, 1´-H), 2.64 – 2.78 (m, 2H, 4´-H & 4-H), 2.90 (dd, J = 

7.0, 7.1 Hz, 1H, 4-H), 3.31 – 3.39 (m, 1H, 3-H), 3.51 – 3.57 (m, 1H, 3´-H), 3.79 (s, 3H, OMe), 

4.42 (s, 2H, PMB), 4.91 (dd, J = 6.1 Hz, 2H), 5.03 – 5.11 (m, 2H, C=CH2), 6.85 – 6.88 (m, 2H, 

PMB), 7.21 - 7.24 (m, 2H, PMB), 9.61 (d, J = 0.9 Hz, 1H, CHO).  

 

 13C NMR (75 MHz): δ = 18.24 (+, 2´- CH3), 29.43 (-, 4-C), 39.73 (-, 4`-C), 41.55 (+, 2´-C), 

49.54 (+, 3-C), 54.01 (+, 1`-C), 55.30 (+, O-Me), 71.17 (-, PMB), 80.49 (+, 2-C), 84.19 (+,3´-

C), 112.48 (-, =CH2), 113.87 (+, 2xPMB), 129.32 (+, 2xPMB), 130.19 (Cq, PMB), 146.78 (Cq, 

5´-C), 159.27 (Cq, PMB), 174.30 (Cq, 5-C), 197.41 (+, CHO).  

 

IR (neat) ṽ = 3000, 2860, 2840, 1778, 1727, 1610, 1512, 1458, 1354, 1248, 1175, 1089, 1032, 

821 cm-1. - MS (EI, 70 eV): m/z (%):121.1 (100), 137.0 (34.9), 138 (3.6) 344.2 (1.2) [M+]. - 

HRMS: (EI, 70 eV): 344.1631 (C20H24O5: cal. 344.1624 [M+]). 
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7. (4R,5R)-4-((S)-1´´-hydroxy-3´´-methylbut-3´´-enyl)-5-((1´S,2´S,3´S)-3´-(4-   
      methoxybenzyloxy)-2´-methyl-5´-methylenecyclopentyl)dihydrofuran-2(3H)-one  
      (1´´ S: 1´´ R=80:20) (54) 

OO

H
H

OPMB

H

HO

1

2

3
4
5

1´

2´ 3´

4´
5´

1´´ 2´´
3´´ 4´´ 

 

 

 

 

A solution of γ-butyrolactone carbaldehyde 30 (608 mg, 1.76 mmol, 1 eq.) in CH2Cl2 (4 mL) 

was cooled down to -78 oC. Under a N2 atmosphere 2-Methylallyltrimethyl silane (460 μL, 

2.64 mmol, 1.5 eq.) was injected at once and the resulting solution was stirred for 15 min. BF3 
.Et2O (210 μL, 1.9 mmol, 1.07 eq.) was added to this mixture via syringe over 5 min and the 

mixture was stirred at -78 oC for 16 h. After the disappearance of starting material as indicated 

by TLC (PE: EA= 1:1), the reaction mixture was quenched with NaHCO3 (2 mL) and was 

slowly warmed up to ambient temperature. The org. phase was separated, the aqueous phase 

was again extracted with CH2Cl2 (2X5 mL). The combined org. phases were dried over 

Na2SO4, filtered, and concentrated in vacuo. Purification by silica gel column chromatography 

(PE: EA= 3:1) afforded 54 (494 mg, 70%) as a 4:1 diastereomeric mixture, as colorless oil. 

 

Rf (hexanes: ethylacetate 60:40, Vanillin) = 0.61.  

 1H NMR (300 MHz): δ = 1.02 (d, J = 6.8 Hz, 3H, 2`-Me), 1.69 (s, 3H, 3``-Me), 1.81-1.83 (bs, 

1H, OH), 2.01-2.04 (m, 2H, 2``-H), 2.08-2.16 (m, 1H, 1`-H), 2.27-2.45 (m, 4H, 2`-H, 3-H, 4`-

H, 4-H), 2.57 (dd, J =  20.0, 5.1 Hz, 1H, 3-H), 2.67-2.69 (m, 1H, 4`-H), 3.45-3.51 (m, 1H, 3`-

H), 3.69-3.75 (m, 1H, 1``-H), 3.78 (s, 3H, OMe), 4.44 (bs, 2H, PMB, diast: 4.45), 4.66 (dd, J = 

4.5, 1.2 Hz, 1H, 5-H), 4.77 (bs, 1H, =CH2), 4.90 (m, 1H, =CH2), 4.95 (bs, 1H, =CH2), 5.03 (bs, 

1H, =CH2), 6.83-6.86 (m, 2H, PMB), 7.22-7.25 (m, 2H, PMB).  

 13C NMR (75 MHz): δ = 18.25 (+, 2`-CH3), 22.23 (+, 3``-CH3), 29.21 (-, 4`-C), 40.13 (-, 3-C), 

41.04 (+, 4-C), 42.27 (+, 2`-C), 43.86 (-, 2``-C), 53.53 (+, 1`-C), 55.30 (+, O-CH3), 68.22 (+, 

1``-C), 71.33 (-, PMBCH2), 83.79 (+, 5-C), 84.26(+, 3`-C), 111.44 (-, =CH2), 113.84 (+, 

2xPMB), 114.62 (-, =CH2), 129.35 (+, 2xPMB), 130.41 (Cq, PMB), 141.41 (Cq, 3``-C), 147.08 

(Cq, PMB), 159.23 (Cq, 5`-C), 176.94 (Cq, 2-C).  

 IR (neat) ṽ = 3461, 2994, 2886, 1770, 1651, 1613, 1514, 1455, 1355, 1300, 1249, 1179, 1092, 

1034, 896, 821, 759, 456 cm-1. - MS (CI, NH3): m/z (%) = 121.1 (14.80), 138.1 (6.12), 154.1 

(6.46), 418.2 (100) [M + NH4
+]. - HRMS: (EI, 70 eV): 400.2247 (C24H32O5: cal. 400.2250 

[M+]). 
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8. (S)-1´´-((2R,3R)-2-((1´S,2´S,3´S)-3´-(4-methoxybenzyloxy)-2´-methyl-5´-methylene-     
      cyclopentyl)-5-oxotetrahydrofuran-3-yl)-3´´-methylbut-3´´-enyl acetate  
      (1´´ S: 1´´ R=80:20) (55) 
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3´´ 4´´

                                                                                                              

 

 

 

 

To a solution of 54 (550 mg, 1.37 mmol, 1 eq.) in CH2Cl2 (5 mL) was added DMAP (16.7 mg, 

0.137 mmol), Et3N (0.482 mL, 3.43 mmol), Ac2O (0.259 mL, 2.74 mmol) and stirred at room 

temperature for 24 h. The reaction mixture was quenched with H2O (1mL) and the layers were 

separated. The org. phase was washed with NaHCO3 (1 mL), brine and dried over Na2SO4. The 

filtrate was concentrated in vacuo and purified by silica gel column chromatography (PE: EA= 

4:1) to afford 55 (516 mg, 85%) as colorless oil (dr = 4:1).  

 

Rf (hexanes: ethylacetate 60:40, Vanillin) = 0.76.  

 

 1H NMR (300 MHz): δ = 1.02 (d, J = 6.8 Hz, 3H, 2`-Me), 1.70 (s, 3H, 3``-Me), 1.94 (s, 3H, 

OAc, diast: 1.98), 2.17-2.23 (m, 1H, 4`-H), 2.25-2.31 (m, 3H, 2``-H & 1`-H), 2.59 (bs, 2H, 4-

H), 2.66-2.73 (m, 1H, 4`-H), 3.46-3.52 (m, 1H, 3`-H), 3.77 (s, 3H, OMe), 4.42 (d, J = 2.2 Hz, 

2H, PMB-CH2), 4.45-4.46 (m, 1H, 2-H), 4.70 (bs, 1H, =CH2), 4.79 (m, 1H, =CH2), 4.93 (bs, 

1H, =CH2), 5.04 (bs, 1H, =CH2), 5.13-5.18 (m, 1H, 1``-H), 6.83-6.86 (m, 2H, PMB), 7.21-7.24 

(m, 2H, PMB).  

 

 13C NMR (75 MHz): δ = 18.32 (+, 2`-CH3), 20.77 (+, 3``-CH3), 22.19 (+, OAc), 29.30 (-, 4`-

C), 39.59 (-, 4-C), 40.44 (+, 3-C), 40.98 (-, 2``-C), 41.14 (+, 2`-C), 54.16 (+, 1`-C), 55.23 (+, 

O-CH3), 71.06 (-, PMB), 71.15 (+, 1``-C), 83.42 (+, 2-C), 84.35 (+, 3`-C), 111.49 (-, =CH2), 

113.74 (+, 2xPMB), 114.28 (-, =CH2), 129.16 (+, 2xPMB), 130.51 (Cq, PMB), 140.48 (Cq, 

3``-C), 147.26 (Cq, PMB), 159.12 (Cq, 5`-C), 170.30 (Cq, 5-C), 176.05 (Cq, OAc). 

 

 IR (neat) ṽ = 2959, 2934, 1776, 1738, 1610, 1514, 1455, 1373, 1298, 1242, 1174, 1091, 1033, 

948, 897, 824, 736 cm-1. - MS (EI, 70 eV): m/z (%):121.1 (100), 137.1 (29.41), 151.1 (6.97), 

191.1 (2.93), 246.2 (6.17), 442.2 (1.17) [M+]. - HRMS: (EI, 70 eV): 442.2360 (C26H34O6: cal. 

442.2655 [M+]). 
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9. (3aR,4S,8S,9S,9aS,9bR)-8-(4-methoxybenzyloxy)-6,9-dimethyl-2-oxo-    
     2,3,3a,4,5,7,8,9,9a,9b-decahydroazuleno[4,5-b]furan-4-yl acetate (56) 
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In a 25-mL schlenk flask equipped with a condenser, 55 (250 mg, 0.565 mmol, 1 eq.) was 

dissolved in abs. Toluene (5 mL). A gentle stream of argon was introduced into the solution 

throughout the reaction and the reaction set up was put down into a preheated 90 oC oil bath. 

Grubbs’ II catalyst (24 mg, 0.028 mmol, 5 mol %) dissolved in abs. Toluene (1 mL) was added 

followed by two additional 5 mol% batches every 2 h (total catalyst loading 15 mol%, reaction 

time 6 h). After cooling the solution to room temperature the solvent was removed under 

reduced pressure and chromatography on flash silica gel (PE : EA=2:1) afforded 56 (202 mg, 

86 %) as pure single diastereomer and epi-56 (36 mg) as pure single diastereomer.  

 

Major Isomer:     

                                                                                         

Rf (hexanes: ethylacetate 70:30, Vanillin) = 0.61. [α]D
23 = + 28.8 (c = 0.645, CHCl3).  

 

 1H NMR (300 MHz): δ = 1.04 (d, J = 6.8 Hz, 3H, 9-Me),   1.72 (s, 3H, 6-Me), 2.00 (s, 3H, 

OAc), 2.15 (dd, J = 11.42, 2.38 Hz, 1H, 3-HA), 2.28-2.48 (m, 7H, 3-HB, 3a-H, 5-HB, 7-H, 9-H , 

9a-H) 2.54 (d, J = 9.49 Hz, 1H, 5-HA), 3.44-3.51 (m, 1H, 8-H), 3.75 (s, 3H, OMe), 3.89 (t, J = 

9.94 Hz, 1H, 9b-H), 4.42 (bs, 2H, PMB-CH2), 4.59-4.66 (m, 1H, 4-H), 6.83 (d, J = 8.67 Hz, 

2H, PMB), 7.21 (d, J = 8.64 Hz, 2H, PMB).  

 

 13C NMR (75 MHz): δ = 18.83 (+, 9-CH3), 21.06 (+, 6-CH3), 23.57 (+, OAc), 35.14 (-, 7-C), 

36.99 (-, 3-C), 41.22 (-, 5-C), 42.11 (+, 9-C), 52.37 (+, 3a-C), 53.33 (+, 9a-C), 55.23 (+, O-

CH3), 70.63 (-, PMB), 70.82 (+, 8-C), 83.73 (+, 9b-C), 83.91 (+, 4-C), 113.78 (+, 2xPMB), 

126.22 (Cq,  C-6), 129.27 (+, 2xPMB), 130.56 (Cq, PMB), 136.27 (Cq,  C-6a), 159.13 (Cq, 

PMB), 169.97 (Cq, 2-C), 174.63 (Cq, OAc).  

 

 IR (neat) ṽ = 2362, 1783, 1738, 1514, 1242, 1030, 946 cm-1.- MS (EI, 70 eV): m/z (%): 77 

(33.54), 121.1 (100), 146.0 (36.53), 253.9 (40.70), 287.0 (21.70), 414.2 (3.23) [M+]. - HRMS: 

(EI, 70 eV): 414.2046 (C24H30O6: cal. 414.2042 [M+]). 
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Minor Isomer:  
 
(3aR,4R,8S,9S,9aS,9bR)-8-(4-methoxybenzyloxy)-6,9-dimethyl-2-oxo-2,3,3a,4,5, 
7,8,9,9a,9b-decahydroazuleno[4,5-b]furan-4-yl acetate (56epi) 
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Rf (hexanes: ethylacetate 70:30, Vanillin) = 0.55. [α]D
23 = - 29.4 (c = 0.486, CHCl3).  

 

 1H NMR (300 MHz): δ = 1.11 (d, J = 6.5 Hz, 3H, 9-Me), 1.65 (s, 3H, 6-Me), 2.06 (s, 3H, 

OAc), 2.30-2.41 (m, 7H, 3-HB, 3a-H, 5-HB, 7-H, 9-H, 9a-H), 2.55 (dd, J = 9.24, 6.0 Hz, 1H, 3-

HA), 2.69 (dd, J = 10.16, 6.13 Hz, 1H, 5-HA), 3.44-3.51 (m, 1H, 8-H), 3.79 (s, 3H, OMe), 4.13-

4.20 (m, 1H, 9b-H), 4.48 (bs, 2H, PMB-CH2), 5.11 (d, J = 5.9, 1H, 4-H), 6.87 (d, J = 8.63 Hz, 

2H, PMB), 7.26 (d, J = 8.57 Hz, 2H, PMB). 

 

 13C NMR (75 MHz): δ = 18.84 (+, 9-CH3), 20.98 (+, 6-CH3), 24.60 (+, OAc), 33.10 (-, 7-C), 

37.04 (-, 3-C), 37.90 (-, 5-C), 42.87 (+, 9-C), 51.26 (+, 3a-C), 53.22 (+, 9a-C), 55.30 (+, O-

CH3), 67.85 (-, PMB), 70.91 (+, 8-C), 81.46 (+, 9b-C), 83.99 (+, 4-C), 113.78 (+, 2xPMB), 

126.35 (Cq,  C-6), 129.22 (+, 2xPMB), 130.72 (Cq, PMB), 134.91 (Cq,  C-6a), 159.13 (Cq, 

PMB), 170.57 (Cq, 2-C), 174.93 (Cq, OAc).  

 

 IR (neat) ṽ = 2362, 1783, 1738, 1514, 1242, 1030, 946 cm-1. 

 

MS (EI, 70 eV): m/z (%): 77 (33.54), 121.1 (100), 146.0 (36.53), 253.9 (40.70), 287.0 (21.70), 

414.2 (3.23) [M+]. - HRMS: (EI, 70 eV): 414.2046 (C24H30O6: cal. 414.2042 [M+]). 
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10. (3aR,4S,8S,9S,9aS,9bR)-8-hydroxy-6,9-dimethyl-2-oxo-2,3,3a,4,5,7,8,9,9a,9b- 
      decahydro-azuleno[4,5-b]furan-4-yl acetate (60) 
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To a solution of 55 (220 mg, 0.531 mmol, 1eq.) in CH2Cl2 (5 mL) were added pH 7.2 buffer (1 

mL), DDQ (156 mg, 0.690mmol) and stirred at room temperature for 4 h. After the completion 

of reaction as indicated by TLC (PE: EA =1:1), the mixture was diluted to (8 mL) and 

quenched with H2O (2 mL). The layers were separated and the aqueous phase was gain 

extracted with CH2Cl2 (3 X 2mL). The combined org. phases were dried over Na2SO4 and 

concentrated in vacuo. Purification on silica gel (PE: EA=3:2) afforded 60 (141 mg, 90%) as a 

white solid, which was recrystallized from n-pentane-CH2Cl2 mixture, which on single crystal 

X-ray analysis gave the crystal structure of 60. 

 

Rf (hexanes: ethylacetate 60:40, Vanillin) = 0.34. mp = 106–107 oC. [α]D
23 = + 3.0 (c = 1.3, 

CHCl3).  

 
1H NMR (300 MHz): δ = 1.05 (d, J = 6.8 Hz, 3H), 1.70 (s, 3H), 1.98 (s, 3H),  2.04-2.17 (m, 

3H), 2.25-2.41 (m, 5H), 2.50-2.64 (m, 2H), 3.68-3.64 (m, 1H), 3.85-3.91 (m, 1H), 4.58-4.66 

(m, 1H).  

 

 13C NMR (75 MHz): δ = 17.37 (+, 9-CH3), 20.08 (+, 6-CH3), 22.58 (+, OAc), 34.07 (-, 7-C), 

38.50 (-, 3-C), 40.16 (-, 5-C), 44.96 (+, 9-C), 51.28 (+, 3a-C), 52.21 (+, 9a-C), 69.85 (+, 8-C), 

76.64 (+, 9b-C), 83.07 (+, 4-C), 125.33 (Cq,  C-6), 134.61 (Cq,  C-6a), 169.09 (Cq, 2-C), 

173.74 (Cq, OAc).  

 

 IR (neat) ṽ = 3441, 2960, 2845, 1769, 1735, 1440, 1373, 1240, 1146, 1068, 1029, 992, 964, 

799, 460 cm-1.- MS (EI, 70 eV): m/z (%): 43.0 (100), 55.0 (12.92), 79.1 (10.02), 91.0 (14.34), 

105.0 (12.17) 145.0 (16.25), 159.2 (11.05), 234.2 (13.24). - PI- LSIMS (MeOH / Glycerin): 

217.2 (100), 235.3 (90.0), 295.3 (86) [M+H+], 387.4 (42) [M+H++gly]. - HRMS: (EI, 70 eV): 

295.1547 (C16H23O5: cal. 295.1545 [M+H+]). 
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11. (3aR,4S,6S,6aR,8S,9S,9aS,9bR)-8-hydroxy-6,9-dimethyl-6,6a-epoxy-2-oxo-2,3,3a,4,5,7,  

       8,9,9a,9b-decahydroazuleno[4,5-b]furan-4-yl acetate (61) 
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Halohydrin method 

To a solution of 60 (22 mg, 0.074 mmol, 1 eq.) and NaBrO3 (22 mg, 0.14 mmol) in CH3CN (1 

mL) and H2O (2 mL) was added 1 M solution of NaHSO3 (30 mg, 0.29 mmol) drop wise and 

the reaction mixture was stirred at room temperature for more than 48 h. After the reaction, the 

resulting solution was extracted with diethyl ether (2 x 2 mL). Then the combined organic 

layers were washed with aqueous Na2SO3, brine and dried over Na2SO4. After filtration, the 

solvent was evaporated in vacuo to give crude material which was purified by silica gel column 

chromatography (PE: EA= 3:2) to afford 61 (18.4 mg, 80%) as pure single diastereomer, as 

colorless oil. Crystallization from pentane-CH2Cl2 mixture at 0 oC afforded crystalline product 

which on single crystal X-ray analysis gave the crystal structure of 61. 

 

Rf (hexanes: ethylacetate 65:35, Vanillin) = 0.37. mp = 171-172 oC [α]D
23 = + 30.7 (c = 1.32, 

CHCl3).  

 

 1H NMR (300 MHz): δ = 1.14 (d, J = 7.2 Hz, 3H), 1.43 (s, 3H), 1.75-1.81 (m, 2H), 1.90-1.92 

(m, 1H), 2.05 (d, J = 6.20 Hz, 1H), 2.07 (s, 3H), 2.12-2.15 (m, 1H), 2.32-2.46 (m, 4H), 2.62-

2.66 (m, 1H), 4.14-4.16 (m, 1H), 4.35 (t, J = 10.66 Hz, 1H), 4.84-4.88 (m, 1H).  

 

 13C NMR (75 MHz): δ =  18.11 (+, 9-CH3), 20.96 (+, 6-CH3), 21.44 (+, OAc), 35.20 (-, 7-C), 

39.37 (-, 3-C), 44.85 (-, 5-C), 45.57 (+, 9-C), 52.27 (+, 3a-C), 54.55 (+, 9a-C), 57.93 (+, 8-C), 

70.08 (+, 9b-C), 70.76 (Cq, 6a-C), 77.29 (Cq, 6-C), 81.50 (+, 4-C), 169.96 (Cq, 2-C), 174.06 

(Cq, OAc).  

 

 IR (neat) ṽ = 3480, 2590, 2586, 1780, 1732, 1350, 1237, 1010, 992, 964, 799, 460 cm-1. - MS 

[PI- LSIMS (CH2Cl2/MeOH / Glycerin)]: m/z (%): 277.3 (100), 311.3 (11.0) [M+H+], 369.4 

(43.2), 403.3 (14) [M+H++gly]. - HRMS: (EI, 70 eV): 311.1502 (C16H23O6: cal. 311.1495 

[M+H+]). 
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12. (3aR,4S,6R,6aS,8S,9S,9aS,9bR)-8-hydroxy-6,9-dimethyl-6,6a-epoxy-2-oxo-2,3,3a,4,5,7,  
     8,9,9a,9b-decahydroazuleno[4,5-b]furan-4-yl acetate (62) 
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VO(acac)2 mediated epoxidation 

 

To a solution of 60 (120 mg, 0.406 mmol, 1eq.) in CH2Cl2 (4 mL) under a N2 atmosphere at 0 0 

C was added tert-butyl Hydroperoxide (3M sol in Toluene, 0.20 mL, 0.60 mmol) and 

VO(acac)2 (2.1 mg, 2 mol%) and stirred for 16 h at room temperature. After the disappearance 

of starting material as indicated by TLC (PE: EA= 1:1), the reaction mixture was quenched 

with sat. NaHSO3 sol. (1 mL). The layers were separated and the aqueous phase was once 

again extracted with CH2Cl2 (2 x 3 mL). The combined org. phases were washed with H2O, 

brine, dried over Na2SO4, and concentrated in vacuo. Purification on silica gel column 

chromatography (PE: EA= 3:2) afforded 62 (98 mg, 78%) as pure single diastereomer, as 

colorless oil.  

 

Rf (hexanes: ethylacetate 70:30, Vanillin) = 0.41. [α]D
23 = + 42.4 (c = 0.896, CHCl3).  

 1H NMR (300 MHz): δ = 1.22 (d, J = 6.74 Hz, 3H), 1.33 (s, 3H), 1.63-1.70 (m, 1H), 1.86-1.92 

(m, 1H), 2.03 (s, 3H), 2.05-2.12 (m, 3H), 2.30-2.36 (m, 2H), 2.40-2.54 (m, 3H), 3.74-3.80 (m, 

1H), 4.07-4.21 (m, 1H), 4.87-4.96 (m, 1H).  

 

 13C NMR (75 MHz): δ = 18.78 (+, 9-CH3), 21.02 (+, 6-CH3), 23.24 (+, OAc), 34.28 (-, 7-C), 

39.60 (-, 3-C), 40.26 (-, 5-C), 47.43 (+, 9-C), 50.73 (+, 3a-C), 50.95 (+, 9a-C), 59.96 (+, 8-C), 

69.83 (+, 9b-C), 70.84 (Cq, 6a-C), 77.27 (Cq, 6-C), 81.90 (+, 4-C), 169.77 (Cq, 2-C), 174.79 

(Cq, OAc).  

 

 IR (neat) ṽ = 3438, 2910, 1782, 1739, 1595, 1373, 1237, 1035 cm-1. - MS (EI, 70 eV): m/z 

(%): 43.1 (100), 59.1 (21.8), 72.1 (12.54), 126.1 (5.01), 250.1 (23.59), 292.1 (2.0) [M+-H2O]. - 

HRMS: (EI, 70 eV): 292.1312 (C16H20O5: cal. 292.1311 [M+-H2O]). 

 

mCPBA method: To a solution of 60 (50 mg, 0.169 mmol, 1 eq.) in CH2Cl2 (5 mL) under a N2 

atmosphere at -10 oC was added mCPBA (70% w/w, 2 eq., 82.5mg, 0.338 mmol) at once at this 
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temperature and the solution was stirred for 6 hours, while the reaction mixture was slowly 

warmed up to room temperature. After the disappearance of starting material as indicated by 

TLC (PE: EA= 1:1), the reaction mixture was quenched with sat. NaHCO3 sol. (1 mL). The 

layers were separated and the aqueous phase was once again extracted with CH2Cl2 (2 x 2 mL). 

The combined org. phases were washed with H2O, brine, dried over Na2SO4, and concentrated 

in vacuo. Purification on silica gel column chromatography (PE: EA= 4:1) afforded mixture of 

diastereomeric epoxides 61 and 62 (45 mg, 85%, 3:1 ratio respectively) as colorless oil. 

 

Dioxirane method: 

a) Biphasic method: 

A cold solution of potassium peroxomonosulfate (KHSO5) (49 mg, 0.0813 mmol, 1.5 eq.) in 

water (0.5 mL), was added dropwise slowly to a stirred biphasic mixture of CH2C12 (2 mL) and 

buffered (pH 7.2) water (0.5 mL) kept at 0 oC and containing 60 (16 mg, 0.0542 mmol, 1 eq.), 

acetone (40 μL, 0.1 mol), and 18-crown-6 (2.86 mg, 0.0108 mmol). After the completion of 

addition the reaction was stirred for 6 hours at the same temperature and finally after the 

disappearance of starting material as indicated by TLC (PE: EA= 1:1), the acetone was 

removed at rotavapour followed by the extraction of the mixture with CH2C12. The layers were 

separated and the aqueous phase was once again extracted with CH2Cl2 (2 x 2 mL). The 

combined org. phases were washed with H2O, brine, dried over Na2SO4, and concentrated in 

vacuo to afford a mixture of product and 18-crown-6. Purification on silica gel column 

chromatography (PE: EA= 4:1) separated 18-crown-6 and afforded mixture of diastereomeric 

epoxides 61 and 62 (11 mg, 65%, 88:12 ratio respectively) as colorless oil. 

 

b) Monophasic method: 

A cold solution of potassium peroxomonosulfate (KHSO5) (49 mg, 0.0813 mmol, 1.5 eq.) in 

water (0.5 mL), was added dropwise slowly to a stirred 1M solution of acetone and water (4:1) 

containing 60 (16 mg, 0.0542 mmol, 1 eq.), acetone (40 μL, 0.1 mol), and NaHCO3 (0.0813 

mmol 1.5 eq.) stirred for 6 hours while the reaction mixture was slowly warmed up to room 

temperature. After the disappearance of starting material as indicated by TLC (PE: EA= 1:1), 

the acetone was removed at rotavapour followed by the extraction of the mixture with CH2C12. 

The organic phase was washed with sat. Na2SO3 sol. (1 mL), followed by washing with H2O, 

brine, dried over Na2SO4, and concentrated in vacuo. Purification on silica gel column 

chromatography (PE: EA= 4:1) afforded mixture of diastereomeric epoxides 61 and 62 (12 mg, 

70%, 84:16 ratio respectively) as colorless oil. 
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13.  (3aR,4S,6R,6aS,9aS,9bR)-8-en-6,9-dimethyl-6,6a-epoxy-2-oxo-2,3,3a,4,5,7,8,9,9a,9b- 

       octahydroazuleno[4,5-b]furan-4-yl acetate (70) 
 

OO

AcO
H

H

H

1
2

3a

4
6

6a 7

8
9

9a

O

 

 

 

 

 

A solution of 62 (91 mg, 0.293 mmol, 1 eq.) in CH2Cl2 (5 mL) under a N2 atmosphere was                

cooled to -10 oC and added pyridine (0.118 mL, 1.46 mmol). To this mixture Tf2O (0.074 mL, 

0.44 mmol) was added drop wise and the reaction mixture was stirred for 18 h while the 

temperature was increased slowly to 0 oC. The reaction mixture was quenched with NaHCO3 (1 

mL), diluted with CH2Cl2 (2 mL) and the layers were separated. The aqueous layer was 

extracted once again with CH2Cl2 (2 x 2 mL), the combined org. phases were dried, filtered and 

concentrated in vacuo. Purification on silica gel column chromatography (PE: EA= 4:1) 

afforded 70 (53 mg, 62%) as a colorless solid.  

 

Rf (hexanes: ethylacetate 60:40, Vanillin) = 0.7. [α]D
23 = + 67.9 (c = 0.53, CHCl3).  

 

 1H NMR (300 MHz):δ = 1.34 (s, 3H), 1.91 (bs, 3H), 2.03 (s, 3H), 2.06-2.10 (m, 1H), 2.13-2.20 

(m, 2H), 2.29-2.39 (m, 2H), 2.45-2.53 (m, 1H), 2.72-2.79 (m, 1H), 2.86-2.92 (m, 1H), 4.16-

4.22 (m, 1H), 4.91-4.99 (m, 1H), 5.55 (s, 1H). 

 
 - 13C NMR (75 MHz): δ = 18.17 (+, 9-CH3), 21.04 (+, 6-CH3), 22.55 (+, OAc), 33.95 (-, 7-C), 

39.35 (-, 3-C), 39.54 (-, 5-C), 51.64 (+, 3a-C), 60.57 (Cq, 6-C), 69.83 (+, 9a-C), 72.15 (Cq, 6a-

C), 80.91 (+, 9b-C), 124.92 (+, 8-C), 140.24 (Cq, 9-C), 169.75 (Cq, 2-C), 174.91 (Cq, OAc).-  

 

IR (neat) ṽ = 2923, 1788, 1739, 1595, 1425, 1237, 1033. cm-1. 

 

MS (CI, NH3): m/z (%) = 103.2 (3.26), 310.2 (100) [M + NH4
+], 311.2 (15.99), 327.2 (4.25) 

[M+ NH4
++ NH3

+] HRMS: (EI, 70 eV): 292.1316 (C16H20O5: cal. 292.1311 [M+]). 

 

 

 
 

 82

Arglabin Synthesis Experimental Part



 
14. (3aR,4S,6R,6aS,9aS,9bR)-8-en-6,9-dimethyl-6,6a-epoxy-2-oxo-2,3,3a,4,5,7,8,9,9a,9b- 
      octahydroazuleno[4,5-b]furan-4-yl hydroxide (72) 
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To a solution of 70 (40 mg, 0.136 mmol, 1.0 eq.) in MeOH (4 ml) was cooled to 0 °C. K2CO3 

(10 mg, 0.230 mmol, 0.55 eq.) was added and the mixture was stirred for 4 h at 0 °C while the 

reaction mixture was warmed up to RT slowly.  After the disappearance of starting material as 

indicated by TLC (PE: EA= 1:1), the solvent MeOH was evaporated at rotavapour at RT by 

applying vacuum. The residue was dissolved in Et2O (5 ml) and the mixture was extracted, 

washed with NaHCO3 (1 ml), H2O (1 ml) and brine (2 ml). The organic layer was dried over 

Na2SO4 and concentrated in vacuo. The residue was purified by flash chromatography on silica 

gel (hexanes: ethylacetate 70:30) to give 72 (24 mg, 70%) product as a colorless solid, which 

up on crystallization from pentane-CH2Cl2 mixture at 0 oC afforded crystalline product which 

on single crystal X-ray analysis gave the crystal structure of 72. 

 

Rf (hexanes: ethylacetate 1:1, Vanillin) = 0.3. mp = 124-125 oC, [α]D
23 = + 101.7. (c = 0.93, 

CHCl3). 
 

1H NMR (300 MHz): δ = 1.30 (s, 3H), 1.60-1.68 (m, 1H), 1.87 (bs, 3H), 1.90-1.99 (m, 1H), 

2.01-2.06 (m, 1H), 2.09-2.14 (m, 1H), 2.25-2.32 (m, 1H), 2.34-2.39 (m, 1H), 2.59-2.69 (m, 

1H), 2.74-2.75 (m, 1H), 2.851 (d, J = 10.624 Hz, 1H), 3.63-3.73 (m, 1H), 4.02-4.12 (m, 1H), 

5.50 (s, 1H).  

 
13C NMR (75 MHz): δ = 18.20 (+, 9-CH3), 22.75 (+, 6-CH3), 34.32 (-, 7-C), 39.41 (-, 3-C), 

43.55 (-, 5-C), 51.66 (+, 3a-C), 53.85 (+, 9a), 60.85 (Cq, 6-C), 67.88 (+, 4-C), 72.52 (Cq, 6-

Ca), 81.22 (+, 9b-C), 124.74 (+, 8-C), 140.46 (Cq, 9-C), 175.82 (Cq, 2-C). 

 

IR (neat) ṽ = 3434, 2923, 1781, 1176, 1099, 1045, 842 cm-1. 

 

 MS (CI, NH3): m/z (%) = 180.1 (3.75), 251.1 (1.42) [M+H+], 268.2 (100) [M + NH4
+], 285.2 

(6.32) [M + NH4
++ NH3

+]. - HRMS: (EI, 70 eV): 250.1211 (C14H18O4: cal. 250.1205 [M+]) 
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15. (3aR,4S,6R,6aS,9aS,9bR)-8-en-6,9-dimethyl-6,6a-epoxy-2-oxo-2,3,3a,4,5,7,8,9,9a,9b- 
      octahydroazuleno[4,5-b]furan-4-yl-1´H-imidazole-1´-carbothioate (74) 
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To a solution of 72 (18 mg, 0.072 mmol, 1 eq.) in CH2Cl2 under N2 atmosphere, was added 

thiocarbonyldiimidazole (38 mg, 0.216 mmol) and DMAP (4 mg, 0.03 mmol) and the resulting 

solution was stirred at room temperature for 4 h. After the completion of reaction, solvent was 

removed under reduced pressure and the resulting crude material was purified by column 

chromatography on silica gel (PE: EA =1:1) to afford 74 (20.7 mg, 80%) as pure pale yellow 

colored oil.   

 

Rf (hexanes: ethylacetate 1:1, Vanillin) = 0.39. [α]D
23 = + 86.4. (c = 0.39, CHCl3) 

 
1H NMR (300 MHz): δ = 1.39 (s, 3H), 1.94 (bs, 3H), 2.0 (s, 1H), 2.14-2.20 (m, 1H), 2.26-2.34 

(m, 1H), 2.43-2.45 (m, 1H), 2.48-2.52 (m, 1H), 2.53-2.59 (m, 1H), 2.62-2.68 (m, 1H), 2.77-

2.84 (m, 1H), 2.96-3.0 (m, 1H), 4.0-4.1 (m, 1H), 4.2-4.3 (m, 1H), 5.5 (s, 1H), 5.70-5.77 (m, 

1H), 7.05 (s, 1H).  

 
13C NMR (75 MHz): δ = 18.15 (+, 9-CH3), 22.42 (+, 6-CH3), 33.81 (-, 7-C), 38.53 (-, 3-C), 

39.30 (-, 5-C), 51.37 (+, 3a-C), 51.51 (+, 9a), 60.36 (Cq, 6-C), 72.25 (Cq, 6-Ca), 79.38 (+, 4-

C), 80.53 (+, 9b-C), 117.79 (+, 8-C), 125.13 (+, 2XC-Imadazole), 131.24 (+, Imidazole), 

140.00 (Cq, 9-C), 173.98 (Cq, 2-C), 182.34 (Cq, C=S). 

 

IR (neat) ṽ = 2927, 1784, 1385, 1335, 1285, 1230, 1099, 972, 731, 464 cm-1. 

 

MS (EI, 70 eV): m/z (%) = 43.1 (100), 69.1 (45.21), 81.1 (41.36), 107.1 (33.75), 145.1 (31.29), 

189.1 (18.95), 233.2 (19.41), 360.1 (6.0) [M+]. - HRMS: (EI, 70 eV): 360.1146 (C18H20N2O4S): 

cal. 360.1144 [M+]).  
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16. (31R,4aS,6aS,9aS,9bR)-1,4a-dimethyl-5,6,6a,7,9a,9b-hexahydro-3H-chromeno[5,6- 
       b]furan-8(4aH)-one (75) 
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To 72 (20 mg, 0.05 mmol, 1eq.) taken in a three neck round bottom flask under N2 atmosphere 

was dissolved in abs. Toluene (4 mL) and AIBN (4.5 mg, 0.027 mmol ) was added to it at 40 o 

C. The reaction mixture was heated to 90 oC and Bu3SnH (44.7 μL, 0.166 mmol) was added 

dropwise injected via syringe. The resulting mixture was refluxed at 90 oC for 5 h. After the 

completion of reaction the solvent was evaporated under reduced pressure and the crude 

material was purified by column chromatography on silica gel (PE: EA = 4:1) to afford 75 (10 

mg, 77 %) as a colorless oil.  

 

Rf (hexanes: ethylacetate 1:1, Vanillin) = 0.6. [α]D
23 = + 87.0 (c = 0.90, CHCl3).  

 

1H NMR (300 MHz): δ = 0.88-0.93 (m, 1H), 1.32 (s, 3H), 1.46-1.54 (m, 1H), 1.56-1.67 (m, 

2H), 1.79-1.84 (m, 1H), 1.92 (bs, 3H), 1.95-2.0 (m, 1H), 2.06-2.10 (m, 1H), 2.16-2.28 (m, 1H), 

2.43-2.51 (m, 1H), 2.73-2.87 (m, 1H), 4.02-4.09 (m, 1H), 5.55 (s, 1H). 

 
13C NMR (75 MHz): δ = 18.22 (+, 9-CH3), 22.74 (+, 6-CH3), 23.71 (-, 4-C), 33.53 (-, 5-C), 

36.17 (-, 7-C), 39.61 (-, 3-C), 47.50 (+, 3a-C), 52.44 (+, 9a), 62.61 (Cq, 6-C), 72.47 (Cq, 6-Ca), 

84.66 (+, 9b-C), 124.73 (+, 8-C), 140.62 (Cq, 9-C), 176.33 (Cq, 2-C). 

 

IR (neat) ṽ = 2900, 2320, 1776, 1440, 1215, 454 cm-1. 

 

MS (EI, 70 eV): m/z (%) = 43.1 (100), 55.1 (63.96), 96.1 (78.44) 107.1 (57.49), 176.0 (47.67), 

201.1 (20.60), 234.1 (33.70) [M+]. - HRMS: (EI, 70 eV): 234.1259 (C14H18O3): cal. 234.1256 

[M+]).  
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17. (31R,4aS,6aS,9aS,9bR)-7-((dimethylamino)methyl)-1,4a-dimethyl-5,6,6a,7,9a,9b- 

hexahydro-3H-chromeno[5,6-b]furan-8(4aH)-one (77) 
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To a solution of LHMDS prepared as usual from Hexamethyldisilazane (45 μL, 0.212 mmol) 

and nBuLi (1.6 M hexane, 106 μL, 0.17 mmol) in THF (0.5 mL) was added a solution of 75 

(20 mg, 0.085 mmol) in THF (0.5 mL) at -78 oC. After 1 h stirring, the resulting lithium enolate 

was added to a solution of Eschenmoser’s salt (31 mg, 0.17 mmol) in THF (1 mL) at -78 oC via 

cannula. The resulting mixture was stirred at -78 oC for 1 h and then it was stirred for overnight 

while the temperature was raised slowly up to room temperature. After the completion of 

reaction as indicated by TLC (PE: EA= 1:9), the reaction mixture was quenched with sat. 

NH4Cl (0.5 mL) solution and extracted with diethyl ether (2 mL). The phases were separated 

and the aqueous phase was once again extracted with diethyl ether (2 x 1 mL). The combined 

org. phases were washed with brine, dried over Na2SO4, filtered and concentrated under 

reduced pressure to give crude material. This crude 77 (18 mg, 75%) as a diastereomeric 

mixture, was used for the final step of the synthesis without further purification.   

 

Rf (hexanes: ethylacetate 40:60, Vanillin) = 0.1  

 
1H NMR (300 MHz): δ = 0.91−0.96 (m, 2H), 1.36 (bs, 3H), 1.98 (bs, 3H), 2.13 (bs, 3H), 2.23 

(bs, 6H), 2.31-2.49 (m, 2H), 2.75-2.87 (m, 4H), 4.54-4.61 (m, 1H), 5.57 (s, 1H). 
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18. (+)-Arglabin (11) 

[(31R,4aS,6aS,9aS,9bR)-1,4a-dimethyl-7-methylene-5,6,6a,7,9a,9b-hexahydro-3H-

chromeno[5,6-b]furan-8(4aH)-one] 

 

O
O

H

H

H

1
2

3a
4

6

6a 7

8
9

9a

O 

 

 

The Dimethylamino Arglabin 77 (10 mg, 0.034 mmol) was dissolved in MeOH (0.5 mL) and 

treated with excess of MeI (0.5 mL) and stirred at room temperature for 24 h. After 24 h 

solvent  MeOH was removed under reduced pressure and the remaining solid was taken in a 

separatory funnel containing a mixture of 10 % aqueous  NaHCO3 (1 mL) and CH2Cl2 (1 mL). 

The mixture was then shaken until all the solid had dissolved and the org. phase was separated, 

the aqueous phase was extracted once again with CH2Cl2 (2 x 1 mL). The combined org. 

phases were washed with brine, dried over Na2SO4 and evaporated under reduced pressure to 

give crude material. This was then purified by column chromatography on silica gel (PE: EA = 

4:1) to afford the final product (+) Arglabin (11) (6.7 mg, 80%) as a white crystalline solid.  

 

Synthetic sample 

Rf (hexanes: ethylacetate 40: 60, Vanillin) = 0.87. [α]D
23 = + 81.0 (c = 0.30, CHCl3). 

 

1H NMR (300 MHz): δ = 1.35 (s, 3H, 6-CH3), 1.45-1.52 (m, 1H), 1.81-1.87 (m, 1H), 1.97 (bs, 

3H, 9-CH3), 2.02-2.06 (m, 1H), 2.13-2.28 (m, 3H), 2.75-2.81 (m, 1H), 2.92-2.95 (m, 1H), 3.98-

4.0 (m, 1H), 5.41 (d, J = 3.14 Hz, 1H, =CH2), 5.57-5.58 (m, 1H, 9b-H), 6.15 (d, J = 3.38 Hz, 

1H, =CH2). 

 
13C NMR (75 MHz): δ = 18.24 (+, 9-CH3), 21.42(-, 4-C), 22.77 (+, 6-CH3), 33.45 (-, 5-C), 

39.69 (-, 7-C), 51.02 (+, 3a-C), 52.82 (+, 9a-C), 62.66 (Cq, 6-C), 72.49 (Cq, 6-Ca), 82.86 (+, 

9b-C), 118.26 (-, =CH2), 124.88 (+, 8-C), 139.10 (Cq, =CH2), 140.54 (Cq, 9-C), 170.41 (Cq, 2-

C). 

IR (neat) ṽ = 2926, 2853, 1767, 1440, 1307, 1255, 1156, 1064, 995, 958, 429 cm-1.  

MS (EI, 70 eV): m/z (%) = 43.1 (78.30), 96.1 (100), 108.9 (50.90), 188.80 (23.96), 203.1 

(16.27), 228.1 (7.70), 246.1 (9.47) [M+]. - HRMS: (EI, 70 eV): 246.1263 (C15H18O3): cal. 

246.1256 [M+]). 
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Authentic sample [116]

 

Rf (hexanes: ethylacetate 40: 60, Vanillin) = 0.87. [α]D
23 = + 82.1 (c = 0.30, CHCl3). 

 

1H NMR (300 MHz): δ = 1.34 (s, 3H, 6-CH3), 1.46-1.50 (m, 1H), 1.81-1.88 (m, 1H), 1.96 (bs, 

3H, 9-CH3), 2.02-2.07 (m, 1H), 2.11-2.27 (m, 3H), 2.74-2.80 (m, 1H), 2.91-2.95 (m, 1H), 3.96-

4.0 (m, 1H), 5.41 (d, J = 3.11 Hz, 1H, =CH2), 5.56-5.57 (m, 1H, 9b-H), 6.13 (d, J = 3.39 Hz, 

1H, =CH2). 
 

13C NMR (75 MHz): δ = 18.29 (+, 9-CH3), 21.42(-, 4-C), 22.80 (+, 6-CH3), 33.42 (-, 5-C), 

39.70 (-, 7-C), 51.99 (+, 3a-C), 52.79 (+, 9a-C), 62.69 (Cq, 6-C), 72.50 (Cq, 6-Ca), 82.89 (+, 

9b-C), 118.35 (-, =CH2), 124.92 (+, 8-C), 139.0 (Cq, =CH2), 140.51 (Cq, 9-C), 170.49 (Cq, 2-

C). 
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12.4 Studies towards total synthesis of (+)-Moxartenolide 
 
 
19. 3-oxocyclopent-1-enyl 4-methylbenzenesulfonate (85) 
 O

TsO

 
 
 
 
 
To a solution of 80 (200 mg, 2.04 mmol, 1 eq.) in THF (4 mL) was added Et3N (0.84 ml, 6.12 

mmol) dropwise at 0 oC and stirred for 10 min at the same temperature. This was followed by 

the addition of ToSCl (972 mg, 5.102 mmol) portion wise for every 10 min in three batches 

and the reaction mixture was stirred for 2 hours while it was warmed up slowly to RT. After 

the completion of reaction as indicated by TLC (PE: EtOAc = 1:1) the reaction mixture was 

quenched by slow addition of saturated solution of NaHCO3. It was extracted with Et2O and 

the org. phase was washed with NaHCO3 (1 mL), H2O (1 mL), brine and dried over Na2SO4. 

The filtrate was concentrated in vacuo and purified by silica gel column chromatography (PE: 

EA= 4:1) to afford 85 (330 mg, 65%) as a brown colored crystalline solid. 

 

Rf (hexanes: ethylacetate 1:1, Vanillin) = 0.75. mp = 75 – 77 oC 
 

1H NMR (300 MHz, CDCl3) δ = 2.42-2.45 (m, 2H), 2.48 (bs, 3H), 2.65-2.69 (m, 2H), 5.92 (t, 

J = 1.57Hz, 1H), 7.40 (d, J = 8.06Hz, 2H), 7.86 (d, J = 8.41Hz, 2H). 

 
13C NMR (75 MHz, CDCl3) δ = 21.83 (+, CH3), 28.69 (-, CH2), 34.07 (-, CH2), 115.03 (+, 
CH), 128.48 (+, CH), 130.31 (+, CH), 146.75 (Cq), 178.95 (Cq), 204.81 (Cq). 
 
Elemental analysis: Observed C: 56.62%, H: 5.02%. Calculated C: 57.13%, H: 4.79%.   
 
 

20. 3-((trimethylsilyl)methyl)cyclopent-2-enone (86) 
O

TMS

 

 

 

Preparation of the Grignard reagent:  

Mg curls (162 mg, 6.66 mmol, 4.2 eq.) and I2 (catalytic) were stirred in abs. Et2O (4 mL) 

under a N2 atmosphere. At room temperature TMSCH2Cl (0.88 mL, 6.34 mmol, 4 eq.) was 

added slowly via a syringe to form the Grignard reagent.  
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1,4 Addition: 

Under a N2 atmosphere LiCl (20.1 mg, 0.475 mmol, 0.3 eq.) and CuI (45 mg, 0.237 mmol, 

0.15 eq.) were dissolved in abs. THF (2 mL) and stirred for 15 min until a clear solution was 

obtained. Enoltosylate 85 (0.4 g, 1.586 mmol, 1 eq.) dissolved in abs. THF (2 mL) was added 

to the above mixture and stirred for further 20 min. and then cooled down to -78 oC. After an 

additional stirring for 20 min was added above prepared TMSCH2MgCl (1 mL, 6.3 mmol, 4.0 

eq.) drop wise and stirred at -78 oC for 10 hrs. The reaction mixture was quenched by slow 

addition of saturated solution of NH4Cl. It was extracted with Et2O and the org. phase was 

washed with NaHCO3 (1 mL), H2O (1 mL), brine and dried over Na2SO4. The filtrate was 

concentrated in vacuo and purified by silica gel column chromatography (PE: EA= 9:1) to 

afford 86 (133 mg, 50%) as pale yellow oil. This decomposes on long standing at RT and has 

to be stored in refrigerator as solution in CH2Cl2. Also 86 decompose rapidly in CDCl3 

solution on long standing.   

 

Rf (hexanes: ethylacetate 60:40, Vanillin) = 0.47. 

 
1H NMR (300 MHz, C6D6) δ = 0.215 (s, 9H, TMS), 1.45 (s, 2H), 1.87-1.89 (m, 2H), 2.05-

2.08 (m, 2H), 5.72(s, 1H), 6.91(s, 1H), 7.15(s, 1H). 

 
13C NMR (75 MHz, C6D6) δ = -1.66 (+, CH3, TMS), 26.06 (-, CH2), 33.51 (-, CH2), 35.59 (-, 

CH2), 116.57 (+, CH), 128.10 (Cq), 207.70 (Cq). 

 

 IR (neat) ṽ = 2957, 2927, 2856, 1731, 1669, 1593, 1461, 1250, 1202, 1126, 1073, 841, 744 

cm-1. 

 

MS (EI, 70 eV): m/z (%) = 57 (30), 149 (100), 168 (40) [M+], 279 (20). - HRMS: (EI, 70 eV): 

168.3080 (C9H16OSi): cal. 168.3082 [M+]. 
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21. (4R,5R)-4-((S)-1´´-hydroxy-3´´-methylbut-3´´-enyl)-5-((1´S,2´S,3´S)-3´-(4-   
      methoxybenzyloxy)-2´-methyl-5´-methylenecyclopentyl)dihydrofuran-2(3H)-one  
      (1´´ S: 1´´ R = 96:4) (54) 

TiCl

O
O

O
O

PhPh
Ph

Ph

97

OO

H
H

OPMB

H

HO

1

2

3
4
5

1´

2´ 3´

4´
5´

1´´ 2´´
3´´ 4´´

 

 

 

 

 

Enantioselective allyltitanation of aldehyde 30 employing chiral auxiliary monochlorotitanate 

97 [127]

The titanium complex 97 (0.408 g, 0.666 mmol, 1.7 eq.) was dissolved in absolute ether (7 

mL) and kept at 0 oC. A freshly prepared Grignard reagent 2-Methyl allylmagnesium chloride 

[1 ml, 0.8 M) from 2-Methyl allylchloride (58 μL, 1.5 eq.), Mg curls (16 mg, 1.7 eq.), was 

added drop wise and stirred for 2 h, which resulted in a orange suspension. The reaction 

mixture was then cooled to -78 oC and the aldehyde 30 (135 mg, 0.392 mmol, 1 eq.) dissolved 

in dry THF (1 mL) was added to the above orange suspension in ether. The resultant solution 

was allowed to stir at -78 oC for 4 h. After the disappearance of starting material as indicated 

by TLC (PE: EA= 1:1), to this was added 45 % solution of ammonium fluoride and kept at 

room temperature for over night., passed through celite and washed with ether. The collected 

organic solution was washed with brine and the compound was extracted using ether. The 

organic layer was dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. 

Purification by silica gel column chromatography (hexane: ethyl acetate 2:1) aforded the 

allylated product 54 as 96:4 diastereomeric mixture, as colorless viscous liquid (107 mg, 68 

%). 

Rf (hexanes: ethylacetate 60:40, Vanillin) = 0.61. [α]D23 = +62.0 (c 0.5, CHCl3). 

1H NMR (300MHz): � =  1.07(d, J = 6.9 Hz, 3H), 1.71(s, 3H), 1.96 (br s, 1H), 2.04-2.07(m, 

2H), 2.10-2.18 (m, 1H), 2.30-2.47(m, 3H), 2.53-2.65 (m, 1H), 2.69-2.77(m, 1H), 3.47-3.54 

(m, 1H), 3.72-3.77 (m, 1H), 3.80(s, 3H), 4.46 (s, 2H), 4.66-4.70 (m, 1H), 4.80 (br s, 1H), 4.91 

(br s, 1H), 5.00 (br s, 1H), 5.05 (br s, 1H), 6.85-6.89 (m, 2H), 7.26-7.27 (m, 2H). 

13C NMR (300MHz): δ = 17.2, 21.2, 28.2, 28.7, 39.1, 40.0, 41.2, 42.8, 52.5, 54.3, 67.2, 70.3, 

82.8, 83.3, 110.4, 112.8, 113.5, 128.3, 129.4, 140.4, 146.1, 158.2, 180.0   

IR (Neat) ṽ = 3458, 2932, 2871, 1769, 1652, 1612, 1586, 1513, 1456, 1376, 1354, 1302, 

1200, 1174, 1089, 894, 819, 524 cm-1 

HRMS: (EI, 70 eV): Calcd. for C24H32O5 [M+]: 400.2250, Found: 400.2240. 
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22. (3aR,4S,9aS,9bR,Z)-6,9-dimethyl-2-oxo-2,3,3a,4,5,7,9a,9b-octahydroazuleno[4,5- 

      b]furan-4-yl acetate (98) and  

     (3aR,4S,9R,9aS,9bR,Z)-6,9-dimethyl-2-oxo-2,3,3a,4,5,9,9a,9b-octahydroazuleno[4,5- 

      b]furan-4-yl acetate (99) 

OO

AcO
H

H

H

O
O

AcO
H

H

H

98 993:2

 

 

 

 

 

A solution of 60 (20 mg, 0.068 mmol, 1 eq.) in CH2Cl2 (2 mL) under a N2 atmosphere was                       

cooled to -10 oC and added pyridine (30 μL, 0.34 mmol). To this mixture Tf2O (18 μL, 0.101 

mmol) was added drop wise and the reaction mixture was stirred for 6 h. The reaction mixture 

was quenched with NaHCO3 (1 mL), diluted with CH2Cl2 (2 mL) and the layers were 

separated. The aqueous layer was extracted once again with CH2Cl2 (2 x 2 mL), the combined 

org. phases were dried, filtered and concentrated in vacuo. Purification on silica gel column 

chromatography (PE: EA= 9:1) afforded regiomeric mixture of 98 and 99 (3:2 ratio, 12.5 mg, 

68%) as a colorless oil. 

 

Rf (hexanes: ethylacetate 60:40, Vanillin) = 0.5 

 
1H NMR (300 MHz, CDCl3) δ = 1.13 (d, J = 7.06Hz, 2H), 1.74 (bs, 3H), 1.87-1.90 (m, 5H), 

2.06 (s, 6H), 2.06-2.66 (m, 11H), 2.96-2.98 (m, 2H), 3.07-3.09 (m, 1H), 3.27-3.30 (m, 1H), 

3.75-3.84 (m, 2H), 4.66-4.73 (m, 2H), 5.52 (s, 1H), 5.86-5.92 (m, 1H), 6.20-6.23 (m, 1H). 

 
13C NMR (75 MHz , CDCl3) δ = 10.94, 14.03, 17.63, 21.07, 21.48, 22.85, 22.93, 22.96, 

23.72, 28.90, 30.34, 34.44, 35.40, 37.70, 38.71, 40.98, 41.58, 43.78, 53.09, 53.16, 53.52, 

55.07, 68.14, 70.80, 70.82, 83.30, 84.11, 125.13, 126.24, 128.85, 130.86, 137.89, 140.34, 

141.13, 143.03, 170.04, 174.60, 174.72.  

 

IR (neat) ṽ = 2955, 1784, 1738, 1441, 1372, 1234, 1166, 1084, 1028, 994, 959, 915 cm-1. 

 

MS (EI, 70 eV): m/z (%) = 71.1 (20), 145 (50), 159 (30), 183 (25), 207 (60), 216 (100), 276 

(10) [M+]. 
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23. 3aR,4S,6R,9S,9aS,9bR)-6-hydroxy-6,9-dimethyl-2,8-dioxo-2,3,3a,4,5,6,8,9,9a,9b-   

      decahydroazuleno[4,5-b]furan-4-yl acetate (6 R: 6 S=1:1) (101)  

 

O

H

H
O

OH

H

O

AcO

6
 

 

 

Using PCC 

The compound 60 (80 mg, 0.275 mmol, 1 eq.) was dissolved in dry dichloromethane (2 mL). 

To this Molecular sieves (MS 4Ao) were added and stirred for few minutes. PCC (75 mg, 

0.344 mmol) was added to the above solution and stirred for 4 h. After the disappearance of 

starting material as indicated by TLC (PE: EA= 3:2), the crude reaction mixture was passed 

through celite and concentrated under reduced pressure. Product was purified by silica gel 

column chromatography using (PE: EA= 4:1) as the eluent to afford 101 (63 mg, 75%) as 1:1 

diastereomeric mixture, as colorless oil.  

 

Rf (hexanes: ethylacetate 60:40, Vanillin) = 0.16 

 
1H NMR (300 MHz, CDCl3) δ = 1.24 (d, J = 3.56Hz, 3H), 1.27 (d, J = 2.52Hz, 3H), 1.59 (bs, 

6H), 2.02 (s, 2H), 2.07-2.09 (m, 8H), 2.13-2.18 (m, 4H), 2.40-2.50 (m, 3H), 2.69-2.77 (m, 

5H),  3.06-3.09 (m, 1H), 3.45-3.59 (m, 1H), 3.86-3.93 (m, 1H), 4.06-4.13 (m, 3H), 4.99-5.06 

(m, 1H), 5.16-5.22 (m, 1H), 6.04 (s, 1H), 6.33 (s, 1H). 

 
13C NMR (75 MHz , CDCl3) δ = 14.18 (+), 15.69 (+), 16.05 (+), 21.07 (+), 21.13(+), 21.20 

(+), 29.88 (+), 30.83 (+), 35.59 (-), 35.69 (-), 44.44 (+), 45.09 (-), 45.57 (-), 46.78 (+), 49.12 

(+), 54.37 (+), 55.00 (+), 60.46 (-), 70.29 (+), 71.77 (Cq), 71.90 (Cq), 72.55 (+), 81.88 (+), 

83.15 (+), 129.46 (+), 130.51 (+), 170.06 (Cq), 170.24 (Cq), 171.31 (Cq), 174.02 (Cq), 174.57 

(Cq), 178.54 (Cq), 179.74 (Cq), 209.04 (Cq), 210.05 (Cq). 

 

IR (neat) ṽ = 3466, 3442, 2976, 2934, 1779, 1730, 1699, 1604, 1372, 1237, 1170, 1100, 1027, 

1003, 974, 918, 882, 734, 657, 590, 544, 518 cm-1. 

 

MS (EI, 70 eV): m/z (%) = 43.1 (100), 55.1 (15), 111.1 (10), 139.1 (20), 205.1 (20), 248.2 

(10, -OAc), 308.1 (5) [M+]. - HRMS: (EI, 70 eV): 308.1255 (C16H20O6): cal. 308.1260[M+]. 
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Using Dess-Martin Periodinane[11] 

To a solution of 60 (8 mg, 0.023 mmol, 1 eq.) in CH2Cl2 (1 mL) at RT was added solid 

NaHCO3 (7 mg, 0.083 mmol, 3.5 eq.) followed by Dess–Martin periodinane (16.5 mg, 0.039 

mmol, 1.7 eq.). Stirring was continued for 2 hours before the addition of a 1:1 mixture of 

saturated aqueous NaHCO3 solution and saturated aqueous sodium thiosulfate solution (1 mL) 

and CH2Cl2 (1 mL). The phases were separated and the aqueous phase extracted with CH2Cl2 

(2 mL), the combined organics washed with the before mentioned 1:1 saturated aqueous 

NaHCO3 solution and saturated aqueous sodium thiosulfate solution (1 mL), dried over 

Na2SO4, concentrated under reduced pressure and purified by column chromatography (PE: 

EA= 4:1) to afford 101 (6 mg, 72%) as 1:1 diastereomeric mixture, as colorless oil. 
 
 

Using TEMPO[138] 

To a solution of 60 (8 mg, 0.023 mmol, 1 eq.) in CH2Cl2(1 mL) at 0 oC was added solid 

TEMPO (3 mg, 0.015 mmol, 0.5 eq.) followed by KBr (1 mg, 0.08 mmol, 0.2 eq.) and NaOCl 

solution (10-13% in H2O, 30 μL, 0.8 mL/1mmol of substrate). The reaction mixture was 

stirred for 4 hours while the temperature was warmed up to RT slowly. After the 

disappearance of starting material as indicated by TLC (PE: EA= 3:2), the reaction mixture 

was extracted with CH2Cl2, followed by washing with H2O, brine, dried over Na2SO4, 

concentrated under reduced pressure and purified by column chromatography (PE: EA= 4:1 ) 

to afford 101 (6.5 mg, 75%) as 1:1 diastereomeric mixture, as colorless oil. 

 

24. (3aR,4S,6R,9S,9aS,9bR)-6,9-dimethyl-2,8-dioxo-2,3,3a,4,5,6,8,9,9a,9b-   

      decahydroazuleno[4,5-b]furan-4,6-diyl diacetate (6 R: 6 S=1:1) (120) 

 

O

H

H
O

OAc

H

O

AcO

6
 

 

 

 

To a solution of 101 (25 mg, 0.081 mmol, 1 eq.) in CH2Cl2 (1 mL) was added DMAP (5 mg, 

0.04 mmol, 0.5 eq.), Et3N (0.034 mL, 0.243 mmol, 3 eq.), Ac2O (0.015 mL, 0.162 mmol) and 

stirred at room temperature for 24 h. The reaction mixture was quenched with H2O and the 

layers were separated. The org. phase was washed with NaHCO3 (1 mL), brine and dried over 

Na2SO4. The filtrate was concentrated in vacuo and purified by silica gel column 
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chromatography (PE: EA= 3:1) to afford 120 (24 mg, 85%) as 1:1 diastereomeric mixture, as 

colorless oil.  

 

Rf (hexanes: ethylacetate 1:1, Vanillin) = 0.26.  
 

1H NMR (300 MHz, CDCl3) δ = 1.24-1.25 (m, 3H), 1.27-1.28 (m, 3H), 1.68 (s, 4H), 1.74 (s, 

3H), 2.03-2.11 (m, 12H), 2.17-2.36 (m, 2H), 2.40-2.79 (m, 10H), 2.87-2.90 (m, 1H), 3.83-

3.90 (m, 1H),  4.27-4.34 (m, 1H), 4.92-4.99 (m, 1H), 5.19-5.29 (m, 1H), 6.12-6.13 (m, 1H, 

diastereomeric), 6.17-6.18 (m, 1H). 

 
13C NMR (75 MHz , CDCl3) δ = 16.02 (+), 16.08 (+), 21.02 (+), 21.84 (+), 27.44 (+), 30.44 

(+), 35.27 (-), 35.41 (-), 43.32 (-), 44.99 (-), 46.06 (+), 46.27 (+), 47.28 (+), 50.58 (+), 54.42 

(+), 54.79 (+), 70.07 (+), 70.94 (+), 78.96 (Cq), 79.67 (Cq), 82.19 (+), 82.34 (+), 130.51 (+), 

131.53 (+), 169.45 (Cq), 169.96 (Cq), 170.09 (Cq), 173.83 (Cq), 176.01 (Cq), 176.35 (Cq), 

208.19 (Cq), 208.81 (Cq). 

 

IR (neat) v = 2979, 2934, 2199, 1786, 1732, 1704, 1607, 1431, 1370, 1235, 1176, 1095, 1021, 

1005, 970, 879, 811, 734, 650, 609, 516 cm-1. 

 

MS (EI, 70 eV): m/z (%) = 91.1 (25), 248.1 (100), 290.2 (20), 308.1 (15), 350.2 [M+]. - 

HRMS: (EI, 70 eV): 350.1366 (C18H22O7): cal. 350.1366 [M+].   

 

 

25. (2R,3S)-2-((1´S,2´S,3´S)- 1`,5`,-dihydroxy 3´-(4-methoxybenzyloxy)-2´-methyl-5´- 

      methylenecyclopentyl) Oxotetrahydrofuran-3-carbaldehyde (102) 

 

O

CHO

O

H
HO

OPMB
H

OH1

3
1'

4'

 

 

 

Sharpless allylic oxidation using SeO2
[131] 

 

To a solution of 14 mg (0.126 mmol, 0.5 eq.) of Se02 in CH2C12 (1 mL) was added 65 μL 

(0.505 mmol, 4 eq.) of 70% tert-butyl hydroperoxide. After the mixture had been stirred for 

0.5 h at 25 oC (water bath), 87 mg (0.252 mmol, 1 eq.) of lactone carbaldehyde 30 dissolved 
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in CH2C12 (1 mL) was added drop wise several minutes. The mixture was stirred at 25 oC for 

48 h. After the disappearance of starting material as indicated by TLC (PE: EA= 1:4), the 

reaction mixture was poured into water (1 mL) contained in a separatory funnel, and washed 

with a NaI solution (0.5 M) to destroy the excess of t-butyl hydroperoxide. Then the organic 

phase was washed with a 10% sodium thiosulphate solution, brine, dried over Na2SO4 and 

evaporated. Purification of the crude reaction mixture by silica gel column chromatography 

(PE: EA= 3:1) to afford 102 (52 mg, 55%) as 4:1 diastereomeric mixture, as colorless oil.  

 

Rf (hexanes: ethylacetate 20:80, Vanillin) = 0.28 

 
1H NMR (300 MHz, CDCl3) δ = 1.07 (d, J = 7.18Hz, 3H), 1.23-1.26 (m, 1H), 2.29-2.34 (m, 

1H), 2.80-2.87 (m, 1H), 3.34-3.39 (m, 1H), 3.46-3.53 (m, 1H), 3.80 (s, 4H), 4.34-4.39 (m, 

1H), 4.64-4.66 (m, 2H), 4.68-4.70 (m, 1H), 5.43-5.44 (m, 2H), 6.87-6.90 (m, 2H), 7.27-7.30  

(m, 2H), 9.63 (s, 1H). 

 
13C NMR (75 MHz , CDCl3) δ = 13.43 (+), 29.06 (-), 41.97 (+), 46.83 (+), 55.32 (+), 72.39 (-

), 77.24 (Cq, 1`-C), 78.13 (+, 4`-C), 83.24 (+), 89.22 (+), 111.84 (-, =CH2), 113.99 (+, PMB), 

129.50 (+, PMB), 130.18 (Cq, PMB), 152.68 (Cq, =C), 159.40 (Cq, PMB), 174.38 (Cq, 

C=O), 197.62 (+, CHO). 

 

IR (neat) ṽ = 2963, 2874, 2836, 2199, 1768, 1727, 1612, 1585, 1513, 1464, 1419, 1363, 1303, 

1247, 1181, 1076, 1030, 910, 822, 731, 457, 428 cm-1. 

 

MS (EI, 70 eV): m/z (%) = 44.1 (30), 121 (100, PMB), 205.1 (15), 237.2 (15), 263.1 (50), 

376.2 (10) [M+]. - HRMS: (EI, 70 eV): 376.1516 (C20H24O7): cal. 376.1511 [M+]. 
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26. Compound (103). 

O

O

O

H

OH

O
SiEt3

OPMB
H

tricyclo[7.2.1.02,6] system

 

 

 

 

 

 

To a solution of 102 (40 mg, 0.111 mmol, 1 eq.) in CH2Cl2 (2 mL) was added DMAP (7 mg, 

0.055 mmol, 0.5 eq.), Et3N (0.031 mL, 0.222 mmol, 2 eq.), followed by the dropwise addition 

of TESCl (0.057 mL, 0.333 mmol, 3 eq.) and stirred at room temperature for 4 h. The reaction 

mixture was quenched with H2O and the layers were separated. The org. phase was washed 

with NaHCO3 (1 mL), brine and dried over Na2SO4. The filtrate was concentrated in vacuo 

and purified by silica gel column chromatography (PE: EA= 4:1) to afford 103 (45 mg, 85%) 

as 1:1 diastereomeric mixture, as colorless oil.  

 

Rf (hexanes: ethylacetate 1:1, Vanillin) = 0.47.  

 
1H NMR (300 MHz, CDCl3) δ = 0.61-0.64 (m, 6H, diastereomeric), 0.66-0.69 (m, 6H), 0.94-

0.99 (m, 18H), 1.61 (s, 2H), 2.51-2.60 (m, 2H), 2.65-2.69 (m, 1H), 2.76-2.85 (m, 2H), 2.90-

2.91 (m, 1H), 3.05-3.17 (m, 2H), 3.31-3.35 (m, 2H), 3.77-3.80 (m, 6H), 4.34-4.35 (m, 2H), 

4.50-4.63 (m, 5H), 4.71-4.73 (m, 1H), 5.07-5.08 (m, 1H), 5.25-5.26 (m, 1H), 5.37-5.40 (m, 

1H), 5.68-5.72 (m, 2H),  6.85-6.88 (m, 4H), 7.28-7.31 (m, 4H). 

 
13C NMR (75 MHz , CDCl3) δ = 4.89 (-), 4.93 (-, diastereomeric), 6.81 (+), 6.83 (+), 13.13 

(+), 13.98 (+), 30.48 (-), 32.82 (-,diastereomeric), 38.80 (+), 39.25 (+), 43.64 (+), 46.59 (+), 

55.25 (+), 72.28 (-), 72.36 (-,diastereomeric), 77.31 (+), 77.70 (+), 88.52 (+), 88.61 (+), 88.98 

(+), 88.92 (+), 97.85 (+), 104.60 (+), 109.85 (-), 113.70 (+),113.71 (+), 129.73 (+), 129.81 

(+), 130.40 (+), 152.54 (+), 153.82 (+), 159.18 (+), 174.82 (+), 175.65 (+). 

 

IR (neat) ṽ = 2955, 2908, 2875, 2837, 2364, 2199, 2063, 1783, 1612, 1513, 1458, 1413, 1345, 

1301, 1248, 1174, 1144, 1102, 1031, 1007, 963, 915, 834, 742, 677, 544, 480, 455, 427 cm-1. 

 

MS (EI, 70 eV): m/z (%) = 44.1 (20), 87.0 (10), 121.0 (100, PMB), 191 (10), 219 (10), 299 

(5), 369 (10), 490.1 [M+]. - HRMS: (EI, 70 eV): 490.2379 (C26H38SiO7): cal. 490.2387 [M+].  
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12.5 Biomimetic studies towards synthesis of Dimeric guaianolides 
 
27. 4',5'-dihydro-2'H-spiro[bicyclo[2.2.1]hept[5]ene-2,3'-furan]-2'-one  

     (108, exo) and (109, endo) 

 

O

O

+

108 exo

O

O

109 endo

 

 

 

Using ZnCl2

To a solution of 2-methylenecyclopentanone 106 (300 mg, 3.06 mmol, 1 eq.) in CH2Cl2 (2 

mL), was added ZnCl2 (41.6 mg, 0.305 mmol, 10 mol %) weighed under N2 atmosphere, and 

the mixture was stirred for 15 minutes at RT under N2 atmosphere. This was followed by the 

dropwise addition of cyclopentadiene 107 (1 mL, 12.2 mmol, 4 eq.) at the same RT and the 

resulting mixture was stirred for 6 hours. After the disappearance of 2-

methylenecyclopentanone 106 as indicated by TLC (Rf = 0.4, PE: EA = 1.1, UV active, I2 

active), the reaction was stopped and the solvent CH2Cl2 was removed under reduced pressure 

at RT, followed by the purification of the resulting crude material by silica gel column 

chromatography (PE: EA= 4:1) to afford 108 and 109 as 3:1 diastereomeric mixture (376 mg, 

75%), as colorless oil. Upon careful separation on silica gel column chromatography using 

(PE: EA= 9:1) the exo isomer was separable to some extent (90 mg) and the rest a mixture of 

108 (exo) and 109 (endo) isomers (285 mg). Crystallization of pure 108 (exo) isomer from 

pentane-CH2Cl2 mixture at low temperature afforded crystalline 108 which on single crystal 

X-ray analysis revealed its structure.  

 

Rf (108, hexanes: ethylacetate 40:60, I2 active) = 0.76. 
 

1H NMR (108, 300 MHz, CDCl3) δ = 1.02-1.07 (m, 1H), 1.34-1.38 (m, 1H), 1.81-1.90 (m, 

1H), 1.98-2.0 (m, 2H), 2.14-2.19 (m, 1H), 2.85-2.91 (m, 2H), 4.09-4.22 (m, 2H), 6.09-6.11 

(m, 1H), 6.24-6.27 (m, 1H). 

 
13C NMR (75 MHz, CDCl3) δ = 35.30 (+), 39.26 (+), 42.75 (-), 46.95 (Cq), 47.68 8 (+), 49.12 

(-), 65.03 (+), 134.09 (-), 134.87 (-), 182.34 (Cq). 
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IR (neat) ṽ = 3062, 2971, 2873, 1755, 1454, 1369, 1334, 1280, 1209, 1149, 1023, 929, 859, 

821, 780, 726 cm-1. 

 

MS (EI, 70 eV): m/z (%) = 66.1 (100), 99.0 (85), 164.1 (10) [M+]. - HRMS: (EI, 70 eV): 

164.0833 (C10H12O2): cal. 164.0837 [M+].  

 

Using (R,R)-iPr-Box (+)-14 and Cu(OTf)2

 

To a solution of (R,R)-iPr-Box (+)-14  (13.5 mg, 0.0509 mmol, 10 mol%) in CH2Cl2 (0.5 mL), 

was added Cu(OTf)2 (20.2 mg, 0.055 mmol, 1.1 eq. with respect to ligand (+)-14) weighed 

under N2 atmosphere, and the resulting blue colored complex  was stirred for 10 minutes at 0 
oC under N2 atmosphere. This was followed by the dropwise addition of 2-

methylenecyclopentanone 106 (50 mg, 0.509 mmol, 1 eq.) and stirred for another 15 minutes 

at 0 oC. The reaction mixture was further treated with cyclopentadiene 107 (0.207 mL, 2.54 

mmol, 5 eq.) and the resulting mixture was stirred for 6 hours while the temperature was 

raised up to RT. After the disappearance of 2-methylenecyclopentanone 106 as indicated by 

TLC (Rf = 0.4, PE: EA = 1.1, UV active, I2 active), the reaction was stopped and the solvent 

CH2Cl2 was removed under reduced pressure at RT, followed by the purification of resulting 

crude material by silica gel column chromatography (PE: EA= 4:1) to afford 108 and 109 as 

2:3 diastereomeric mixture (71 mg, 85%), as colorless oil.  

 

 

28. Compounds 110 (exo) and 111 (endo) 

 

O

O

H H

O

H

O

O

H

H

H

O

110 exo 111 endo

+

 

 

 

 

 

 

To a solution of (+)-Arglabin (11) (5 mg, 0.0203 mmol, 1 eq.) in CH2Cl2 (0.5 mL), was added 

ZnCl2 (0.5 mg, 0.002 mmol, 10 mol %) weighed under N2 atmosphere, and the mixture was 

stirred for 15 minutes at 0 oC under N2 atmosphere. This was followed by the dropwise 

addition of cyclopentadiene 107 (9 μL, 0.101 mmol, 5 eq.) at the same 0 oC and the resulting 
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mixture was stirred for 6 hours while the temperature was raised up to RT.. After the 

disappearance of (+)-Arglabin (11) as indicated by TLC (Rf = 0.56, PE: EA = 1.1, UV active, 

Vanillin), the reaction was stopped and the solvent CH2Cl2 was removed under reduced 

pressure at RT, followed by the purification of the resulting crude material by silica gel 

column chromatography (PE: EA= 9:1) to afford 110 and 111 as 5:1 diastereomeric mixture 

(376 mg, 75%), as colorless oil.  

 

Rf (hexanes: ethylacetate 40:60, I2 active) = 0.73. 

 
1H NMR (300 MHz, CDCl3) δ = 1.30 (s, 4H), 1.55 (s, 8H), 1.96-1.97 (m, 5H), 2.98 (s, 1H), 

4.16-4.23 (m, 1H), 5.56 (s, 2H), 5.98-6.01 (m, 1H), 6.20-6.23 (m, 1H). 

 
13C NMR (75 MHz , CDCl3) δ = 18.53, 23.06, 23.58, 22.97, 23.73, 28.91, 29.69, 30.35, 

34.04, 34.96, 38.72, 39.32, 41.31, 47.64, 47.84, 52.58, 52.76, 55.81, 62.13, 72.16, 81.35, 

124.78, 134.74, 137.94, 141.05, 181.80. 

 

IR (neat) ṽ = 3726, 3547, 2929, 2856, 2390, 2324, 2319, 2000, 1766, 1442, 1379, 1315, 1238, 

1164, 1085, 1029, 961, 921, 867, 731 cm-1. 

 

MS (EI, 70 eV): m/z (%) = 43.1 (70), 66.1 (100, CPD), 109.0 (45), 187.1 (90), 213.0 (25), 

228 (15), 247.1 (40, (+)-Arglabin), 312.1 (40) [M+]. - HRMS: (EI, 70 eV): 312.1720 

(C20H24O3): cal. 312.1275 [M+].  
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13. Appendix 
 
 
13.1 NMR - spectra 
 
 
 
 
 
1H-NMR spectra - upper image 
 
 
 
 
13C-NMR spectra (DEPT 135 integrated) - lower image 
 
 
 
Solvents, if not stated otherwise: CDCl3 
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 102 

(S)-4-(4-methoxybenzyloxy)cyclopent-2-enone (28) 
 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

020406080100120140160180200
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 103 

((3S,4S)-4-(4-methoxybenzyloxy)-3-methylcyclopent-1-enyloxy)trimethylsilane (48) 
 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

0102030405060708090100110120130140150160170180190
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 104 

(((3S,4S)-4-(4-methoxybenzyloxy)-3-methylcyclopent-1-enyl)methyl)trimethylsilane (29) 
 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

020406080100120140160180

 
 
 
 
 

 

AppendixNMR Appendix



 105 

(2R,3S)-2-((1´S,2´S,3´S)-3´-(4-methoxybenzyloxy)-2´-methyl-5´-methylenecyclopentyl)-5-
oxotetrahydrofuran-3-carbaldehyde (30) 
 

(ppm)

1.02.03.04.05.06.07.08.09.010.0

 
 

(ppm)

020406080100120140160180200
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 106 

(4R,5R)-4-((S)-1´´-hydroxy-3´´-methylbut-3´´-enyl)-5-((1´S,2´S,3´S)-3´-(4-
methoxybenzyloxy)-2´-methyl-5´-methylenecyclopentyl)dihydrofuran-2(3H)-one  
(54) (1´´ S: 1´´ R=80:20) 
 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

 

(ppm)

020406080100120140160180
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 107 

 
(S)-1´´-((2R,3R)-2-((1´S,2´S,3´S)-3´-(4-methoxybenzyloxy)-2´-methyl-5´-methylene-
cyclopentyl)-5-oxotetrahydrofuran-3-yl)-3´´-methylbut-3´´-enyl acetate (55) 
(1´´ S: 1´´ R=80:20) 

 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

020406080100120140160180
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 108 

(3aR,4S,8S,9S,9aS,9bR)-8-(4-methoxybenzyloxy)-6,9-dimethyl-2-oxo-
2,3,3a,4,5,7,8,9,9a,9b-decahydroazuleno[4,5-b]furan-4-yl acetate (56) 
 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

020406080100120140160180
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 109 

(3aR,4R,8S,9S,9aS,9bR)-8-(4-methoxybenzyloxy)-6,9-dimethyl-2-oxo-2,3,3a,4,5, 
7,8,9,9a,9b-decahydroazuleno[4,5-b]furan-4-yl acetate (epi 56) 

 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

020406080100120140160180
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 110 

(3aR,4S,8S,9S,9aS,9bR)-8-hydroxy-6,9-dimethyl-2-oxo-2,3,3a,4,5,7,8,9,9a,9b-decahydro-
azuleno[4,5-b]furan-4-yl acetate (60) 

 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

0102030405060708090100110120130140150160170180190
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 111 

(3aR,4S,6S,6aR,8S,9S,9aS,9bR)-8-hydroxy-6,9-dimethyl-6,6a-epoxy-2-oxo-2,3,3a,4,5,7, 
8,9,9a,9b-decahydroazuleno[4,5-b]furan-4-yl acetate (61) 
 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

0102030405060708090100110120130140150160170180190
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 112 

(3aR,4S,6R,6aS,8S,9S,9aS,9bR)-8-hydroxy-6,9-dimethyl-6,6a-epoxy-2-oxo-2,3,3a,4,5,7, 
8,9,9a,9b-decahydroazuleno[4,5-b]furan-4-yl acetate (62) 
 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

020406080100120140160180

 
 
 
 

OO

OH

AcO
H

H

H O
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(3aR,4S,6R,6aS,9aS,9bR)-8-en-6,9-dimethyl-6,6a-epoxy-2-oxo-2,3,3a,4,5,7,8,9,9a,9b-
octahydroazuleno[4,5-b]furan-4-yl acetate (70) 
 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

020406080100120140160180
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 114 

(3aR,4S,6R,6aS,9aS,9bR)-8-en-6,9-dimethyl-6,6a-epoxy-2-oxo-2,3,3a,4,5,7,8,9,9a,9b-
octahydroazuleno[4,5-b]furan-4-yl hydroxide (72) 

 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

020406080100120140160180
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 115 

(3aR,4S,6R,6aS,9aS,9bR)-8-en-6,9-dimethyl-6,6a-epoxy-2-oxo-2,3,3a,4,5,7,8,9,9a,9b-
octahydroazuleno[4,5-b]furan-4-yl-1´H-imidazole-1´-carbothioate (74) 
 

(ppm)

1.02.03.04.05.06.07.08.09.0

 
 

(ppm)

020406080100120140160180
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 116 

(31R,4aS,6aS,9aS,9bR)-1,4a-dimethyl-5,6,6a,7,9a,9b-hexahydro-3H-chromeno[5,6-
b]furan-8(4aH)-one (75) 
 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

(ppm)

020406080100120140160180
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 117 

(31R,4aS,6aS,9aS,9bR)-7-((dimethylamino)methyl)-1,4a-dimethyl-5,6,6a,7,9a,9b-
hexahydro-3H-chromeno[5,6-b]furan-8(4aH)-one (77) 
 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5
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(+)-Arglabin (11) (synthetic sample), [ ]23
Dα = 81.0 (c = 0.3, CHCl3) 

 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 
(+)-Arglabin (isolated sample), [ ]23

Dα = 82.1 (c = 0.3, CHCl3) 
 

(ppm)

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

 
 

 

OO

H

H

H O
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(+)-Arglabin (synthetic sample), [ ]23
Dα = 81.0 (c = 0.3, CHCl3) 

 

(ppm)

020406080100120140160180

 
 

(+)-Arglabin (isolated sample), [ ]23
Dα = 82.1 (c = 0.3, CHCl3) 

 

(ppm)

020406080100120140160180
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 120 

(ppm)

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

(ppm)

020406080100120140160180

 
3-((trimethylsilyl)methyl)cyclopent-2-enone (86) 
 

 

O

TMS
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 121 

(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

(ppm)

0102030405060708090100110120130140150160170180190

(4R,5R)-4-((S)-1´´-hydroxy-3´´-methylbut-3´´-enyl)-5-((1´S,2´S,3´S)-3´-(4-   
 methoxybenzyloxy)-2´-methyl-5´-methylenecyclopentyl)dihydrofuran-2(3H)-one  
 (1´´ S: 1´´ R = 96:4) (54) 

 
                                                                                                                                                                        

OO

H

H

OPMB

H

HO

1

2

3
4
5

1´

2´ 3´

4´

5´

1´´ 2´´
3´´ 4´´
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 122 

ppm (t1) 1.02.03.04.05.06.07.0

ppm (t1)

50100150

(3aR,4S,9aS,9bR,Z)-6,9-dimethyl-2-oxo-2,3,3a,4,5,7,9a,9b-octahydroazuleno[4,5-
b]furan-4-yl acetate (98) and (3aR,4S,9R,9aS,9bR,Z)-6,9-dimethyl-2-oxo-     
2,3,3a,4,5,9,9a,9b-octahydroazuleno[4,5-b]furan-4-yl acetate (99) 

 
     

 

O
O

AcO
H

H

H

O
O

AcO
H

H

H

98 993:2
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 123 

(ppm)

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

(ppm)

020406080100120140160180

3aR,4S,6R,9S,9aS,9bR)-6-hydroxy-6,9-dimethyl-2,8-dioxo-2,3,3a,4,5,6,8,9,9a,9b- 
decahydroazuleno[4,5-b]furan-4-yl acetate (6 R: 6 S=1:1) (101)  
 

 
                                                                                                                                                            

O

H

H
O

OH

H

O

AcO

6
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 124 

(ppm)

1.01.52.02.53.03.54.04.55.05.56.06.57.0

(ppm)

2030405060708090100110120130140150160170180190200210

(3aR,4S,6R,9S,9aS,9bR)-6,9-dimethyl-2,8-dioxo-2,3,3a,4,5,6,8,9,9a,9b-  
decahydroazuleno[4,5-b]furan-4,6-diyl diacetate (6 R: 6 S=1:1) (120) 
   

                            

O

H

H
O

OAc

H

O

AcO

6
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 125 

(ppm)

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0

(ppm)

102030405060708090100110120130140150160170180190200

(2R,3S)-2-((1´S,2´S,3´S)- 1`,5`,-dihydroxy 3´-(4-methoxybenzyloxy)-2´-methyl-5´- 
methylenecyclopentyl) Oxotetrahydrofuran-3-carbaldehyde (102) 

 
                                                                                                                                                                

O

CHO

O

H

HO

OPMB

H
OH1

3

1'
4'
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(ppm)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.0

(ppm)

020406080100120140160180

Compound 103                                            

 
                                                                                                                                                                            

O

O

O

H

OH

O

SiEt3

OPMB
H

tricyclo[7.2.1.02,6] system
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ppm (t1)
1.02.03.04.05.06.0

(ppm)

102030405060708090100110120130140150160170180190

 
4',5'-dihydro-2'H-spiro[bicyclo[2.2.1]hept[5]ene-2,3'-furan]-2'-one (108, exo) 

                                 

 

108 exo

O

O
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 128 

(ppm)

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

(ppm)

102030405060708090100110120130140150160170180190

Compounds 110 (exo) and 111 (endo)                                                                                                            

 

 

O

O

H H

O

H

O

O

H

H

H

O

110 exo 111 endo

+
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13.2 X-ray data 
 
 

 
 
 
 
 
 
 
 
 AcO
 
 
 
 
 
 
 
 
 
 
 

 
Crystal data and structure refinement for f226. 
 
Crystal Data Table 1                                                                                                                   .                         
 
Empirical formula ;                                                        C16 H22 O5 
 
Formula weight ;                                                            294.34 
   
Crystal size ;                                                                  0.380 x 0.160 x 0.060 mm 
 
Crystal description ;                                                       rod 
 
Crystal colour ;                                                             colourless 
 
Crystal system;                                                             Orthorhombic 
 
Space group ;                                                                P 21 21 21 
   
Unit cell dimensions                                                    a = 6.7210(5) A   alpha = 90 deg. 
                                                                                     b = 11.3264(8) A    beta = 90 deg. 
                                                                                     c = 20.238(2) A   gamma = 90 deg. 
   
Volume ;                                                                      1540.6(2) A3 

   
Z, Calculated density ;                                                 4,  1.269 Mg/m3  
   
Absorption coefficient ;                                               0.094 mm-1 

O
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F(000) ;                                                                        632 
                                                                                                                                                      . 
Data Collection                                                                                                                            .              
   
Measurement device type;                                        STOE-IPDS diffractometer  
   
Measuremnet method;                                              rotation  
   
Temperature;                                                            123(1) K  
   
Wavelength;                                                             0.71073 A  
   
Monochromator;                                                      graphite  
   
Theta range for data collection;                               3.19 to 26.95 deg.  
   
Index ranges;                                                           -8<=h<=8, -14<=k<=14, -25<=l<=25  
                                                                                                                                                      .  
  
Reflections collected /unique;                                24284 / 3335 [R(int) = 0.0304]  
   
Reflections greater                                                 I>2\s(I);2912  
   
Absorption correction ;                                          None  
   
Max. and min. transmission ;                                0.994 and 0.965  
    
                                                                                                                                                      . 
  
Refinement;  
                                                                                                                                                      . 
   
Refinement method;                                            Full-matrix least-squares on F^2  
   
Hydrogen treatment;:  
   
Data / restraints / parameters;                            3335 / 0 / 193  
   
Goodness-of-fit on F2;                                     1.018  
   
Final R indices [I>2sigma(I)]                            R1 = 0.0324, wR2 = 0.0751  
   
R indices (all data)                                             R1 = 0.0375, wR2 = 0.0764  
   
Absolute structure parameter;                          -0.1(7)  
   
Largest diff. peak and hole;                              0.274 and -0.142 e.A-3  
 
                                                                                                                                                      . 
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Table 2.  Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x 
103) for f226.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
   
   
Atom;  x;           y;             z;    U(eq)  
   
O(1);7067(2);653(1);1482(1);26(1)  

O(2);5807(2);-2233(1);964(1);33(1)  

O(3);7936(2);2702(1);3361(1);32(1)  

O(4);11610(1);207(1);-203(1);26(1)  

O(5);14926(2);203(1);-27(1);36(1)  

C(1);8757(2);164(1);1398(1);22(1)  

C(2);8212(2);1381(1);1672(1);22(1)  

C(3);10013(2);2226(1);1701(1);23(1)  

C(4);11385(2);2443(1);1230(1);23(1)  

C(5);11431(2);1888(1);537(1);26(1)  

C(6);11272(2);542(1);489(1);22(1)  

C(7);9198(2);101(1);654(1);22(1)  

C(8);8743(2);-1206(1);506(1);26(1)  

C(9);7052(2);-1454(1);982(1);25(1)  

C(10);7420(2);1348(1);2397(1);24(1)  

C(11);7917(2);2592(1);2654(1);25(1)  

C(12);9991(2);2836(1);2378(1);28(1)  

C(13);5232(2);1013(1);2491(1);31(1)  

C(14);13024(2);3350(1);1326(1);29(1)  

C(15);13523(2);51(1);-391(1);25(1)  

C(16);13655(3);-311(1);-1109(1);33(1)  
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Table 1.  Crystal data and structure refinement for f227.  
   
 
Crystal Data                                                                                                                                  .                       
   
Empirical formula ;C16 H22 O6  
 
Formula weight ;310.34  
   
Crystal size ;0.32 x 0.18 x 0.06 mm  
   
Crystal description ;flat prism  
   
Crystal colour ;colourless  
   
Crystal system;Orthorhombic  
   
Space group ;P 21 21 21  
   
Unit cell dimensions       ;a = 7.8751(7) A   alpha = 90 deg.  
                                        ;b = 9.9609(8) A    beta = 90 deg.  
                                        ;c = 20.630(2) A   gamma = 90 deg.  
   
Volume ;1618.3(2) A3  
   
Z, Calculated density ;4,  1.274 Mg/m3  
   
Absorption coefficient ;0.097 mm-1  
   
F(000) ;664  
   

OO
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H
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 Data Collection ;  
   
   
Measurement device type ;STOE-IPDS diffractometer  
   
Measuremnet method ;rotation  
   
Temperature ;123(1) K  
   
Wavelength ;0.71073 A  
   
Monochromator ; graphite  
   
Theta range for data collection ;2.77 to 26.87 deg.  
   
Index ranges ;-10<=h<=9, -12<=k<=12, -26<=l<=26  
   
Reflections collected / unique ;24731 / 3442 [R(int) = 0.0634]  
   
Reflections greater I>2\s(I);2863  
   
Absorption correction ;None  
   
   
Refinement ;  
   
   
Refinement method ;Full-matrix least-squares on F^2  
   
Hydrogen treatment ;:  
   
Data / restraints / parameters ;3442 / 0 / 202  
   
Goodness-of-fit on F^2 ;1.052  
   
Final R indices [I>2sigma(I)]     ;R1 = 0.0528, wR2 = 0.1541  
   
R indices (all data)              ;R1 = 0.0620, wR2 = 0.1580  
   
Absolute structure parameter ;0.0(15)  
   
Largest diff. peak and hole ;0.346 and -0.310 e.A^-3  
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Table 2.  Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A2 

x 103) for f227.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
   
   
 Atom;  ;x         ;y          z ;        U(eq)  

 O(1);-2202(3);2566(2);5165(1);30(1)  

O(2);-3005(3);169(2);7062(1);37(1)  

O(3);2042(2);5005(2);6434(1);28(1)  

O(4);205(3);6629(2);6736(1);36(1)  

O(5);1220(2);416(2);6883(1);27(1)  

O(6);3551(2);244(2);7499(1);32(1)  

C(1);-2158(4);1968(3);5815(1);25(1)  

C(2);-1988(4);3452(3);5731(1);26(1)  

C(3);-248(4);4125(3);5767(1);28(1)  

C(4);628(3);4034(3);6429(1);25(1)  

C(5);1465(3);2676(3);6524(1);26(1)  

C(6);180(3);1513(2);6602(1);23(1)  

C(7);-679(3);1012(3);5982(1);26(1)  

C(8);-1557(4);-372(3);6064(1);30(1)  

C(9);-1803(5);-1089(3);5407(2);42(1)  

C(10);-3288(4);-27(3);6376(1);31(1)  

C(11);-3820(4);1310(3);6048(1);29(1)  

C(12);-3489(4);4356(3);5870(2);36(1)  

C(13);2539(4);2478(3);7140(1);26(1)  

C(14);2547(3);962(3);7214(1);26(1)  

C(15);1634(4);6285(3);6596(1);29(1)  

C(16);3167(4);7191(3);6562(2);38(1) 
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Table 1.  Crystal data and structure refinement for g027.  
  
Crystal Data                                                                                                                                  .  
   
 Empirical formula ;C14 H18 O4  
 
Formula weight ;250.28  
   
Crystal size ;0.230 x 0.180 x 0.010 mm  
   
Crystal description ;plate  
   
Crystal colour ;colourless  
   
Crystal system;Orthorhombic  
   
Space group ;P 21 21 21  
   
Unit cell dimensions              ;a = 5.94400(10) A   alpha = 90 deg.  
                                               ;b = 7.17110(10) A    beta = 90 deg.  
                                               ;c = 29.1130(5) A   gamma = 90 deg.  
   
Volume ;1240.94(3) A^3  
   
Z, Calculated density ;4,  1.340 Mg/m^3  
   
Absorption coefficient ;0.801 mm^-1  
   
F(000) ;536  
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Data Collection ;  
   
   
Measurement device type ;Oxford Diffraction Gemini Ultra  
   
Measuremnet method ;omega-scan  
   
Temperature ;123 K  
   
Wavelength ;1.54184 A  
   
Monochromator ; graphite  
   
Theta range for data collection ;3.04 to 51.66 deg.  
   
Index ranges ;-5<=h<=6, -7<=k<=6, -29<=l<=29  
   
Reflections collected / unique ;12707 / 1357 [R(int) = 0.0477]  
   
Reflections greater I>2\s(I);1176  
   
Absorption correction ;Semi-empirical from equivalents  
   
Max. and min. transmission ;1.00000 and 0.78410  
   
 
Refinement ;  
   
   
Refinement method ;Full-matrix least-squares on F^2  
   
Hydrogen treatment ;:  
   
Data / restraints / parameters ;1357 / 0 / 213  
   
Goodness-of-fit on F^2 ;1.024  
   
Final R indices [I>2sigma(I)]     ;R1 = 0.0267, wR2 = 0.0611  
   
R indices (all data)              ;R1 = 0.0322, wR2 = 0.0623  
   
Absolute structure parameter ;-0.1(3)  
   
Largest diff. peak and hole ;0.097 and -0.128 e.A^-3  
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Table 2.  Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters 
(A^2 x 10^3) for g027. U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor. 
   
   
 Atom;    x;           y;           z ;      U(eq)  
   
O(1);-7763(2);-2634(2);-1302(1);37(1)  

O(2);-3511(3);-5108(2);-2302(1);42(1)  

O(3);-1727(3);335(2);-1459(1);34(1)  

O(4);1070(3);1176(2);-1923(1);41(1)  

C(1);-3537(4);-1043(3);-1455(1);33(1)  

C(2);-4000(5);-1667(3);-969(1);31(1)  

C(3);-6148(4);-2833(3);-932(1);31(1)  

C(4);-6764(4);-4459(3);-1212(1);34(1)  

C(5);-5353(5);-5228(4);-1600(1);37(1)  

C(6);-4457(4);-3894(3);-1962(1);34(1)  

C(7);-2688(4);-2574(3);-1779(1);32(1)  

C(8);-1384(5);-1425(4);-2130(1);35(1)  

C(9);-486(4);147(3);-1846(1);34(1)  

C(10);-4357(4);-198(3);-600(1);33(1)  

C(11);-6056(5);-670(3);-327(1);37(1)  

C(12);-7123(5);-2476(4);-458(1);37(1)  

C(13);-2841(4);1436(3);-524(1);45(1)  

C(14);-8362(4);-5883(3);-1014(1);41(1)  
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 Table 1.  Crystal data and structure refinement for i009.  
   
 Crystal Data                                                                                                                                 .  
   
Empirical formula ;C10 H12 O2  
 
Formula weight ;164.20  
   
Crystal size ;0.430 x 0.370 x 0.020 mm  
   
Crystal description ;plate  
   
Crystal colour ;colourless  
   
Crystal system;Orthorhombic  
   
Space group ;P 21 21 21  
   
Unit cell dimensions              ;a = 6.9823(2) A   alpha = 90 deg.  
                                               ;b = 10.4959(3) A    beta = 90 deg.  
                                               ;c = 11.1686(4) A   gamma = 90 deg.  
   
Volume ;818.50(4) A^3  
   
Z, Calculated density ;4,  1.332 Mg/m^3  
   
Absorption coefficient ;0.740 mm^-1  
   
F(000) ;352  
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Data Collection ;  
   
   
Measurement device type ;Oxford Diffraction Gemini Ultra  
   
Measuremnet method ;omega-scan  
   
Temperature ;123 K  
   
Wavelength ;1.54184 A  
   
Monochromator ; graphite  
   
Theta range for data collection ;5.78 to 66.76 deg.  
   
Index ranges ;-7<=h<=8, -12<=k<=11, -13<=l<=12  
   
Reflections collected / unique ;5896 / 1429 [R(int) = 0.0364]  
   
Reflections greater I>2\s(I);1367  
   
Absorption correction ;Semi-empirical from equivalents  
   
Max. and min. transmission ;1.00000 and 0.79960  
   
 
Refinement ;  
   
   
Refinement method ;Full-matrix least-squares on F^2  
   
Hydrogen treatment ;:  
   
Data / restraints / parameters ;1429 / 0 / 109  
   
Goodness-of-fit on F^2 ;1.082  
   
Final R indices [I>2sigma(I)]     ;R1 = 0.0348, wR2 = 0.0906  
   
R indices (all data)              ;R1 = 0.0364, wR2 = 0.0918  
   
Absolute structure parameter ;0.5(3)  
   
Largest diff. peak and hole ;0.141 and -0.195 e.A^-3  
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Table 2.  Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters 
(A^2 x 10^3) for i009. U(eq) is defined as one third of the trace of the orthogonalized Uij 
tensor. 
 
   
   Atom;  x;        y;        z ;       U(eq)  
   
O(1);-720(2);2830(1);8895(1);29(1)  

O(2);1351(2);4430(1);8776(1);32(1)  

C(1);998(2);3325(1);8585(1);24(1)  

C(2);2222(2);2319(1);7976(1);23(1)  

C(3);1336(2);1102(2);8482(2);27(1)  

C(4);-763(2);1472(1);8610(2);29(1)  

C(5);1956(2);2488(2);6571(1);27(1)  

C(6);3510(2);3496(2);6316(2);30(1)  

C(7);5134(2);2669(2);6813(2);30(1)  

C(8);4416(2);2491(2);8128(1);27(1)  

C(9);4745(3);1427(2);6172(2);32(1)  

C(10);2864(3);1323(2);6023(2);32(1)  
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