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The electronic spectra of bromo complexes of main group metal ions with an s2 electronic 

configuration (SnBr 3~, PbBr 3 ~, PbBr 4

2 ~, SbBr 4~, SbBr 6

3 " , BiBr 4 ~, B i B r 6

3 _ ) in acetonitrile show 
long-wavelength absorption bands which are assigned to metal-centered sp transitions. Com­
pared to the corresponding chloro complexes the sp bands of the bromo complexes appear at 
longer wavelength due to s p / L M C T mixing ( L M C T = ligand-to-metal charge transfer). As a 
result of this mixing the luminescence which originates from low-energy sp excited states is 
much weaker than that of the chloro complexes. Moreover, some of the bromo complexes {e.g. 
BiBr 4 ") undergo a photochemical redox decomposition induced by L M C T excitation. 

Introduction 
Main group metal ions with an s2 electronic con­

figuration such as Sn 2 + , Pb 2 + , Sb 3 + and B i 3 + form a 
variety of halide complexes [1, 2] which exist as 
well-defined anions in organic solvents of low 
coordinating ability such as acetronitrile [3]. Dur­
ing recent years we studied the absorption and 
emission spectra of the chloro complexes of these 
s2 metal ions in solution [3-10]. The longest-wave­
length absorption and emission were assigned to 
metal-centered sp transitions. The energy of these 
transitions is dependent on the metal and the mo­
lecular structure. The present study was under­
taken in order to investigate the influence of the 
ligands on the electronic spectra. It might be as­
sumed that the metal-localized sp transitions are 
hardly affected by the ligands. However, some pre­
vious observations indicated that the influence of 
the-ligands is not negligible. If chloride ligands are 
replaced by broihide tlhe longest-wavelength ab­
sorptions of s2 complexes are apparently shifted to 
lower energies [11-16]. A systematic study of the 
absorption as well as the emission spectra of the 
bromo complexes of Sn 2 + , Pb 2 + , Sb 3 + and B i 3 + was 
expected to clarify the role of the ligands. This in­
vestigation should be supplemented by an explora­
tion of the photochemical properties of the bromo 
complexes. 
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Experimental Section 
Materials 

The compounds [NEt4]SnBr3 [17, 18], 
[NEt4]SbBr4 [19, 20], and [NEt 4]BiBr 4 [19, 20] were 
prepared according to published procedures. 
[NEt4]PbBr3 was synthesized in analogy to 
[NEt4]PbCl3 [8, 21]. Acetonitrile was spectrograde. 

Spectroscopy 
Absorption spectra were measured with a Uvi-

kon 860 double-beam spectrophotometer. Emis­
sion spectra were obtained on a Hitachi 850 spec-
trofluorimeter which was equipped with a Hama-
matsu 928 photomultiplier. The luminescence 
spectra were corrected for monochromator and 
photomultiplier efficiency. Absolute emission 
quantum yields were determined by comparison of 
integrated emission intensities of the bromo com­
plexes with that of [Ru(bipy)3](PF6)2 in acetonitrile 
Umax = 605 nm; 0 = 0.013) [22] under identical 
conditions such as exciting wavelength, optical 
density, and apparatus parameters. 

Photolyses 
The light source was a Hanovia Xe/Hg 977 B- l 

(1000 W) lamp. Monochromatic light was ob­
tained by means of a Schoeffel G M 250-1 high-in­
tensity monochromator. The photolyses were car­
ried out at room temperature in 1 cm cells. Pro­
gress of photolysis was monitored by UV-visible 
spectrophotometry. For quantum yield determina­
tions the complex concentrations were such as to 
have essentially complete light absorption. The to­
tal amount of photolysis was limited to less than 
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5% to avoid light absorption by the photoproduct. 
Absorbed light intensities were determined by a 
Polytec pyroelectric radiometer which was cali­
brated and equipped with a RkP-345 detector. 

Results 

Electronic spectra 
The absorption and emission spectra of SnBr3~ 

and PbBr3~ in acetonitrile are shown in Fig. 1 and 
2. The excitation spectra matched the absorption 
spectra rather well. While the absorption spectrum 
of SnBr3" did not change upon addition of bro­
mide, PbBr3~ underwent spectral changes includ­
ing clear isosbestic points at 279 and 321 nm. Ac­
cording to an analysis of the spectral changes and 
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Fig. 1. Absorption (left side) and emission (right side) 
spectra of 1.4 x 10" 4 M [NEt 4 ]SnBr 3 in C H 3 C N at room 
temperature (1 cm cell; emission: A e x c = 310 nm; intensity 
in arbitrary units). 
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Fig. 2. Absorption (left side) and emission (right side) 
spectra of 1.3 x 10~4 M [NEt 4 ]PbBr 3 in C H 3 C N at room 
temperature (1 cm cell; emission: A e x c = 310 nm; intensity 
in arbitrary units). 

their dependency on the concentration of added 
bromide PbBr 3" was converted into PbBr 4

2". The 
equilibrium constant (PbBr3~ + Br" <P*PbBr4

2~) 
was surprisingly large (K= 13100 Lmoi" 1). The 
absorption and emission spectra of PbBr 4

2" are 
shown in Fig. 3. Again, the excitation spectrum 
agreed with the absorption spectrum. 
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Fig. 3. Absorption (left side) and emission (right side) 
spectra of 1.6 x 10~4 M [NEt 4 ] 2 PbBr 4 in C H 3 C N at room 
temperature (1 cm cell; emission: A e x c = 370 nm; intensity 
in arbitrary units). 

The absorption spectra of SbBr4~ and BiBr 4" 
underwent also changes upon addition of bromide 
(Fig. 4 and 5). Both complexes were converted to 
SbBr6

3~ (K = 310L2mol~2) and BiBr 6

3~ (K = 
5100 L2mol~2), respectively. The bromo complexes 
of Sb 3 + and B i 3 + were not emissive in solution un­
der ambient conditions. 
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Fig . 4. Absorption spectrum of 0.7 x 10~4 M [NEt 4 ]SbBr 4 

in C H 3 C N in presence of (a) 0, 6.6 x 10' 5 , 1.3 x 10' 4 , 
2.6 x 10~4, 5.0 x 10" 4 and (f) 9.6 x 10 ' 4 M [NEtJBr . 
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Fig. 5. Absorption spectrum of 3.5 x 10~4 M [NEt 4 ]BiBr 4 

in C H 3 C N in presence of (a) 0, 1.6 x 10~4, 3.2 x 10~4 and 
(d) 1.3 x 10~3 M [NEtJBr . 

Fig . 6. Spectral changes during the photolysis of 
1.2 x io- 4 M [NEt 4 ]BiBr 4 in C H 3 C N at (a) 0, 5,10, 20,40 
and (0 100 s irradiation time ( 4 r = 366 nm; 1 cm cell). 

The spectral data of all complexes are summa­
rized in Table I. 

Photochemistry 
The photolysis of BiBr 4~ in argon-saturated ace­

tonitrile was accompanied by spectral changes 
(Fig. 6) which clearly indicate the formation of 
B r 3 _ (Anax = 2 6 9 n m ; e = 5.5 • 104 L m o r 1 cm"1) [23, 
24]. The irradiation of BiBr 4~ at higher concentra­
tions (10"3 M) led to the appearance of a black 

precipitate of elemental bismuth. Since the photo­
lysis of BiBr 4" yielded roughly equimolar amounts 
of tribromide it is assumed that BiBr 4~ reacts ac­
cording to the equation: 

BiBr4~ Bi(0) + Br 3" + 1/2 Br 2 

Free bromine which must be also formed in the 
photolysis does not show up in the spectral 
changes since it does not absorb strongly in the 
UV/visible region [24]. BiBr 4 " disappeared with 
quantum yields of (j> = 0.45 at A i r r = 306 nm, 

Table I. Absorption and emission data for several bromo complexes of s2 metal ions in solution at room temperature. 

Complex SnBr 3 " PbBr 3 - PbBr 4

2 " SbBr 4 " SbBr 6

3 ~ B i B r 4 " B i B r 6

3 " 

Absorption A-Band [nm] 
(e [ L m o l - 1 cm" 

320 
(130) 

sh 

306 
(6800) 

343 
(1970) 

334 
(1180) 

sh 

359 
(920) 

367 
(4400) 

384 
(3800) 

B-Band [nm] 
(£ [Lmol _ 1 cm" ']) 

275 
(1790) 

sh 

254 
(12400) 

- 300 
(2370) 

sh 

311 
(2890) 

sh 

- 274 
(11230) 

C-Band[nm] 
(e [ L m o r 1 cm" ']) 

211 
(10500) 

221 
(22000) 

- 245 
(47600) 

266 
(21000) 

259 
(8100) 

262 
(13400) 

L M C T [nm] 
(e [Lmol" 1 cm" 

- - - 216 
(36700) 

- 232 
(17550) 

sh 

241 
(17200) 

Emission A m a x [nm] 
<j> (argon-sat.) 

603 
0.0046 

604 
0.086 

560 
0.018 

- - - -

Stokes shift [cm"1] 16600 16500 17800 - - - -
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<j) = 0.43 at A i r r = 313 nm, and 0 = 0.30 at 
A i r r = 366nm. 

The photochemistry of the other bromo comple­
xes was not studied in detail. However, it was ob­
served that PbBr3~ in deaerated acetonitrile under­
went also a photoredox decomposition with a con­
comitant deposition of the metal. 

Discussion 
Halide complexes of s2 metal ions are characteri­

zed by metal-centered sp and ligand-to-metal char­
ge transfer (LMCT) transitions at higher energies. 
This situation is exemplified by a qualitative M O 
scheme of an octahedral bromo complex of an s2 

metal ion (Fig. 7). Since an s2 ion has an lS0 

ground state and 3 P 0 , 3 Pj , 3 P 2 and 1Pl excited states 
the a l g *-» t l u * sp transition splits in several com­
ponents. Generally, three sp absorptions may be 
observed: A band ( l S 0 - » 3 P , or ^ g - ^ T ^ in O h 

symmetry), B band O S Q ^ P J or ' A ^ - ^ T j J and C 
band O S o - ^ P , or l A l g - ^ T l u ) [25-27] . L M C T 
transitions involve the promotion of a ligand elec­
tron from the filled p„ orbitals (t2u, t l g, t2 g) and pa 

orbitals (eg, t l u, a l g) to the empty antibonding pa 

orbitals (tlu*> of the metal (Fig. 7) [13]. The bro­
mide sa orbitals (eg, tj u , a.x g) could be too stable to 
be involved in low-energy L M C T transitions. 

np • 

t l u C LUMO 

sp 

— L a,-a' a l g O HOMO 

LMCT 

t l u a b 

a l ga b 

metal bromide 

Fig. 7. Qualitative M O scheme and electronic transitions 
of an octahedral bromo complex of an s2 metal ion. 

In the case of the chloro complexes L M C T tran­
sitions may occur only at rather high energies. In 
fact, all long-wavelength transitions of the chloro 
complexes of Sn 2 + , Pb 2 + , Sb 3 + , and B i 3 + were as­
signed to metal-centered sp transitions [3, 7, 8]. 
The interpretation of the spectra of the corre­
sponding bromo complexes is less straight-for­
ward since bromide is a stronger reductant and 
L M C T absorptions are expected to appear at 
longer wavelength. They may thus obscure the sp 
bands. 

As a further complication sp and L M C T transi­
tions can mix. The bromide valence orbitals occur 
at relatively high energies and are thus close to the 
metal s orbital. The large <7-overlap shifts then the 
a l g* orbital (Fig. 7) to higher energies and increas­
es the ligand contribution to this MO. Since the 
metal p orbitals are much less stable than the s or­
bital the (j-overlap between metal p and ligand or­
bitals is apparently smaller. As an overall effect the 
sp transition a l g*—»t l u* of bromo complexes is 
displaced to lower energies and contains an in­
creased L M C T contribution compared to the cor­
responding chloro complexes. 

• A comparison of the absorption spectra shows 
clearly that the bromo complexes absorb at longer 
wavelength (Table I) than the corresponding chlo­
ro complexes of Sn 2 + , Pb 2 + , Sb 3 + , and B i 3 + [3, 7, 8]. 
We suggest that this red shift is a strong indication 
for considerable sp/LMCT mixing in the case of 
the bromo complexes. In this context it is of inter­
est that halide complexes of d 1 0 ions such as C u + 

[28] or A g + [29] show similar effects. Metal-cen­
tered ds transitions mix apparently with appro­
priate L M C T transitions [28, 30]. 

The sp absorptions of the bromo complexes 
Sn 2 + , Pb 2 + , Sb 3 + , and B i 3 + (Table I) were assigned 
in analogy to those of the corresponding chloro 
complexes [3, 7, 8] assuming comparable energy 
differences between A, B and C bands. Deviations 
of the spectral pattern between chloro and bromo 
complexes are then partially due to additional 
long-wavelength L M C T bands which appear in 
the spectra of the bromo complexes (Table I). 
More detailed and reliable assignments are ham­
pered by the low symmetries of the M X / " com­
plexes with m = 3 (C 3 v) and 4 (C 2 v) [3]. 

The assumption of considerable sp/LMCT mix­
ing in bromo complexes of s2 metal ions is also 
supported by other observations. The lumines-



cence of the bromo complexes (Table I) is much 
weaker than that of the corresponding chloro 
complexes. The anions SbBr4~, SbBr6

3~, BiBr 4" 
and BiBr 6

3~ do not emit at all. Generally, the lumi­
nescence of main group metal complexes origi­
nates from sp excited states, while L M C T states 
are deactivated by other processes including pho-
toreactions [3, 6,9, 31]. The low emission quantum 
yields of the bromo complexes are thus a good in­
dication of a notable sp/LMCT mixing in the low­
est excited states. 

The Stokes shifts of the luminescence of the bro­
mo complexes (Table I) are comparable to those of 
the corresponding chloro complexes [3, 7, 8]. The 
structural changes which take place in the emitting 
excited states of the bromo complexes are appar­
ently very similar to those which occur upon sp ex­
citation of the chloro complexes [3, 7, 8]. 

The partial L M C T character of the lowest excit­
ed states of the bromo complexes is also evident 
from their photoactivity. While the chloro com­
plexes of s2 metal ions undergo a photooxidation 
by intermolecular excited state electron transfer to 

molecular oxygen [4, 6, 9] the irradiation of the 
bromo complexes may also lead to the reduction 
of the metal and oxidation of the bromide ligands. 
This process which is typical for L M C T excitation 
[4, 6, 9, 31] is most efficient at shorter wavelength 
where L M C T transitions are expected to occur. 
The reduction of the photochemical quantum 
yield with increasing wavelength of irradiation is 
an indication that the L M C T contribution to the 
lower excited states becomes smaller but cannot be 
neglected. A similar wavelength-dependent quan­
tum yield was also observed for the photochemical 
reductive elimination of TeBr 6

2" [31]. Contrary to 
the previous interpretation we now suggest that 
this dependency on the irradiation wavelength is 
also caused by sp/LMCT mixing which decreases 
with the excitation energy. 
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