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Abstract

This paper disentangles direct spillovers and common factors as sources of correlations in

simultaneous heteroscedastic systems. While these different components are not identifi-

able by standard means without restrictions, it is shown that they can be pinned down

by specifying the variances of the latent idiosyncratic and common shocks as ARCH-type

processes. Applying an adapted Kalman filter estimation method to Dow and Nasdaq

stock returns, predominant spillovers from the Dow and substantial rising factor expo-

sure are found. While the latter is shown to prevail in the recent global financial crisis,

volatility in the dot-com bubble period was driven by Nasdaq shocks.

Keywords: Simultaneous System, Latent Factor, Identification, Spillover, EGARCH

JEL classification: C32, G10

1This study is partly based on my CRC 649 discussion paper Weber (2007b). I am grateful to Jürgen

Wolters and Cordelia Thielitz as well as seminar participants at the ICMA Centre of the University of

Reading and the University of Mannheim for their comments. Of course, all remaining errors are my

own.



1 Introduction

Different stocks or portfolios often reveal a high degree of coherence in their fluctuations.

For example, from 1971 until 2009, daily Dow Jones Industrial and Nasdaq Composite

returns exhibit a correlation of 74%. On a very general basis, such a comovement could

result from contemporaneous spillovers between the relevant variables or from common

exogenous factors driving all of them alike. Concerning the first alternative, the direction

of the transmission effect represents a further refinement. In statistics, the negative

statement, ”correlation does not imply causation” is widespread; in short, this paper

intends to develop a positive answer to the question, to which extent a specific correlation

has a truly causal nature, and to which it is based on third-party intervention. From this

perspective, the contribution lies in designing statistical methods empirically assessing

the classical econometric issue of ”instantaneous” causation; see Granger (1988) as one

representative from this literature.

In the language of the above financial market example, equal development of different

stock indexes can have two reasons: First, observing already realised index movements

in one market might influence the decisions and activities of participants in another.

”Signalling effects” may be a good label for this case. Besides, liquidity and wealth effects

fall into the same category. Evidently, this represents the case of direct causal spillover.

Second, certain information is obtained contemporaneously by participants in several

markets, for which it is judged equally relevant. Logically, as a classical common factor,

this information generates immediate and similar stock price reactions in all segments

concerned. It follows that the current study has to unite two types of econometric analyses,

one occupied with financial transmission in terms of direct causality, and the other one

seeking for the effect of ”news” as fundamental factors triggering market responses.

A straightforward way of examining links between financial variables is given by choos-

ing markets with non-overlapping trading time. For example, when the New York Stock

Exchange opens, closing prices in Tokyo are already established. Therefore, the direction

of propagation can be defined running from the respective daytime to overnight returns.

Nonetheless, even here a real direct causal impact is not yet separated from pure incorpo-

ration of news arrived overnight, yet already manifested in the daytime trade of a different

time zone. In case of parallel trading, naturally given for equity indexes of the same na-

tionality, the issue is additionally complicated by the possibility of bi-directional spillover.

Inevitably, the discussion results in a classical econometric identification problem. In this

context, consider for illustrational purposes the standard solution to identifying struc-
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tural vector autoregressive (SVAR) models: Usually, a Choleski decomposition is applied

to the reduced-form residual covariance-matrix, leading to a triangular matrix of recur-

sive contemporaneous effects. Furthermore, the structural innovations have to be assumed

uncorrelated. Consequently, two possible sources of contemporaneous correlation, that is

half of the causal impacts (the interdependence) and the non-causal connections, are

assumed inexistent in this setting.

A strand of recent literature introduced a method that exploits non-constant variances

mostly of financial variables to address the simultaneity problem: Following the idea

that every shift in the structural variances yields more determining equations from the

reduced-form covariance matrix than unknown coefficients, the model structure can be

identified ”through heteroscedasticity” (see Rigobon 2003). Building upon this logic,

different literature contributions proposed specifying the respective variances as ARCH-

type processes, either for the reduced-form (Rigobon 2002) or structural residuals (Sentana

and Fiorentini 2001, Weber 2007a), thereby virtually providing a continuum of volatility

regimes. Further relevant papers include Feenstra (1994) and Lewbel (2008).

Existent methodology typically either assumes that the contemporaneous correlation re-

sults exclusively from common factors (i.e., factor models), or that it is to the full extent a

product of causal interaction only between the included variables (e.g., SVARs). These are

both serious drawbacks: The first variant obviously fails to detect causality between the

observed endogenous variables, which might play an important role for indexes as closely

connected as Dow and Nasdaq. Concerning the second variant, in presence of neglected

exogenous shocks, the estimation is bound to overstate the bilateral linkage. While this

problem might in principle be treated by augmenting the model with essential missing

variables, much relevant information will be unobservable (see e.g. King et al. 1994) or can

hardly be completely covered by time series systems of limited dimension. This stresses

the importance of allowing for contemporaneous interaction in the structural innovations.

However, as will be shown in the following section, unrestricted time-varying covariances

would simply undo the identifiability created by heteroscedasticity.

The current paper contributes to the progress in the research field by including an unob-

servable common factor into a heteroscedastic system, in addition to unrestricted simul-

taneous spillovers. Latent factor modelling allows covering general exogenous influences

that do not have to be observed or even predisposed. Following the same intuition, Weber

(2009) specifies simultaneous systems with constant and dynamic conditional correlations

of the structural innovations. While allowing for such correlations is directly linked to

the tradition of classical simultaneous systems, the underlying paper might be seen more
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in the finance context of factor models. Importantly, the underlying factor setup has the

advantage of clear-cut separation of the different fundamental driving forces and allows

structural interpretation e.g. in terms of variance decompositions. Moreover, refer as well

to Sentana and Fiorentini (2001) and Doz and Renault (2004), who discuss identification

of classical factor models in presence of heteroscedasticity; a well-known application is

given in King et al. (1994). Estimates of model parameters, factors states and condi-

tional variances are obtained by Quasi Maximum Likelihood (QML) via Kalman filtering.

As a further innovation, this paper specifically adapts the EGARCH model to handle

unobserved disturbances.

The application to U.S. stock market data shows that mean and volatility spillovers

mainly run from Dow to Nasdaq, which are both subject to substantial common factor

impacts. This is broadly in line with the findings of Weber (2009). In addition, important

developments within the sample period are revealed: While Dow shocks prevailed in the

first decades, Nasdaq took over during the dot-com bubble episode. Moreover, the factor

influence rises over time, culminating in the recent world financial crisis.

The reader can expect the following: The methodological concept is discussed at length

in the next section. Then, section 3 presents empirical results for U.S. equity data. In the

end, the summary provides a short overview of outcome, merits and further potentials of

the present examination. An appendix contains a mathematical proof.

2 Methodology

In the following paragraphs, a model is constructed that shall finally feature and identify

both mutual and common influences among a set of variables. At first, the structural form

of the mean equations is presented, followed by a discussion of inherent identification

problems in presence of full simultaneity and latent factor exposure. Thereafter, the

variances of the idiosyncratic and factor innovations are modelled by EGARCH processes.

Finally, Kalman filtering and estimation by Maximum Likelihood are tackled.

2.1 Basic Model and Identification

To begin with, think of the data generating process of the n variables (e.g., stock returns)

yit being approximated by the system

Ayt = εt . (1)
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The contemporaneous impacts are included in the matrix A with diagonal elements nor-

malised to one, and εt is a n-dimensional vector of uncorrelated structural residuals. Of

course, this model can easily be adapted to cover vector autoregressive lags or determin-

istic terms, as considered in the empirical example in section 3.

Representing a simultaneous equation system, (1) as it stands is not identified: In the

matrix A with normalised diagonal, n(n− 1) simultaneous impacts have to be estimated,

whereas the covariance-matrix of yt delivers only n(n − 1)/2 covariance equations due to

its symmetry. There are two standard solutions: One is to impose a recursive structure on

the contemporaneous impacts, thereby restricting A to a triangular matrix. However, this

would effectively imply that the research question of uncovering direction and strength

of mutual spillovers would have to be answered a priori for some theoretical, but not for

empirical reasons. Similar drawbacks apply to the second solution, the use of instrumental

variables. Here, exclusion restrictions must be assumed to hold for the instruments.

Heading towards a more appropriate solution, refer to Sentana and Fiorentini (2001),

who show that structural latent variable models like (1) can be identified in presence of

heteroscedasticity. The concept is as well discussed in Rigobon (2003) and Weber (2009),

effectively going back as far as Wright (1928). Since for financial volatility, ARCH-type

processes have been widely found to provide appropriate representations, I will follow We-

ber (2007a) in specifying multivariate EGARCH processes for the structural disturbances.

2.2 Common Factors

Before tackling model setup and estimation in more detail, let us turn our attention to a

last problematic point: Conventional approaches to identification through heteroscedastic-

ity are based on the assumption of conditional uncorrelatedness of the structural residuals.

However, maintaining this assumption implies that the contemporaneous correlation of

the variables in yt is to be fully taken into account by direct spillovers between the in-

cluded variables. For example, it seems extremely unlikely that two U.S. indexes like Dow

Jones and Nasdaq Composite are not subject to any exogenous common factors, which

might at least partly trigger the observed substantial correlations.

Therefore, the present study formally includes a common factor into the simultaneous

heteroscedastic system. This allows for time-varying interaction in the structural innova-

tions in addition to the direct spillovers. Consequently, one can discriminate between all

possible sources of correlations: two directions of transmission and third-party influences.
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Thereby, the inclusion of the common factor allows maintaining mutual uncorrelatedness

of the innovations. In particular, identifiability is preserved by representing the dynamic

covariance structure in a parsimonious factor setup.

Formalising the preceding argumentation, add the factor zt (scalar in the bivariate Dow-

Nasdaq application) multiplied by the n × 1 vector of loadings β to equation (1). As a

standard assumption, all εjt and zt are conditionally uncorrelated, including leads and

lags. The reduced form results as

yt = A−1(βzt + εt) . (2)

2.3 Structural EGARCH

In the following, the heteroscedastic model specification shall be formalised. Besides

achieving identification, this serves to increase estimation efficiency and deliver measures

of spillovers in the volatility domain (e.g. reflecting information flows, see Ross 1989).

First, denote the conditional variances by

Var(εjt|Ωt−1) = hjt , j = 1, . . . , n , Var(zt|Ωt−1) = hzt , (3)

where Ωt−1 stands for the whole set of available information at time t − 1.

Then, stack the idiosyncratic conditional variances in the vector Ht =
(

h1t . . . hnt

)′

.

At last, obtain the standardised innovations ε̃jt = εjt/
√

hjt, j = 1, . . . , n, and z̃t =

zt/
√

hzt.

Then, I specify a multivariate EGARCH(1,1)-process for the idiosyncratic variances,

which allows for possible volatility spillovers. Following Weber (2007a), write

log Ht = C + G log Ht−1 + D(|ε̃t−1| − ι
√

2/π) + F ε̃t−1 , (4)

where C is a n-dimensional vector of constants, G, D and F are n×n coefficient matrices,

and ι denotes a column vector of n ones. The absolute value operation is to be applied

element by element to the n× 1 vector ε̃t−1. As in Nelson (1991),
√

2/π is subtracted to

demean these absolute value terms. Note that the model is invariant in this respect, since

any possible difference between E(|ε̃t−1|) and ι
√

2/π, for instance due to deviations from

conditional normality, would simply be multiplied by D and merged into C. Asymmetric

effects are incorporated by including ε̃t−1 without taking absolute values: Any parameters

in F differing from zero indicate that besides the magnitude of a shock its sign contains

5



valuable information for forecasting the conditional variances. Process orders 1, 1 are

standard in financial econometrics (see Nelson 1992) and will be shown to be appropriate

by ARCH-LM tests.

While (4) has as well been used by Weber (2009) for the innovations in his ”structural

conditional correlation” model, I put up an additional EGARCH equation for the factor

variance:

log hzt = g log hzt−1 + d(|z̃t−1| −
√

2/π) + f z̃t−1 , (5)

with g, d and f as scalar coefficients. The constant is left out in order to normalise the

unconditional factor variance. Due to the conditional uncorrelatedness of the idiosyncratic

and common factors, covariances need not to be explicitly modelled. Whether spillovers

(A) and common factor exposure (β) appropriately pick up the covariation in the data is

an empirical question tested later on.

From (2), the conditional reduced-form covariance-matrix is obtained as

Σt = A−1(βhztβ
′+







h1t 0
. . .

0 hnt






)(A−1)′ . (6)

Since the log-linearised EGARCH equations necessarily deliver positive conditional vari-

ances, the (double) quadratic form (6) conveniently solves the common problem of assuring

the covariance matrix to be positive definite. Importantly, this feature is a consequence

of the structural modelling and does not rely on specific functional forms such as given

e.g. by the BEKK or CCC. Furthermore, two sources of cross-correlation, as represented

by non-zero off-diagonal elements in Σt, become evident: First, the common factor zt

naturally produces a certain degree of comovement though the loadings β, and second,

changes in a variable can instantaneously spill over according to the coefficients in A−1.

The task is to determine the contributions of both effects to the overall correlation as well

as the specific directions of spillover.

2.4 Estimation

For the purpose of estimation, the log-likelihood for a sample of T observations (com-

plemented by an adequate number of pre-sample observations) under the assumption of

conditional normality is constructed as

L(θ) = −1

2

T
∑

t=1

(n log 2π + log |Σt| + y′
tΣ

−1
t yt) , (7)
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where the vector θ stacks all free parameters from A, β, C, G, D, F , g, d and f . That is,

maximisation of (7) yields estimates of both the EGARCH parameters and the structural

coefficients governing spillovers and common factor exposure. Thereby, I rely on Quasi

Maximum Likelihood (see Bollerslev and Wooldridge 1992), using the robust ”sandwich”

covariance matrix of the parameters adapted to general conditional distributions. Numer-

ical likelihood optimisation is performed using the BHHH algorithm (Berndt et al. 1974).

Obviously, obtaining estimates of Σt requires knowledge of the non-observable factor states

zt through the EGARCH equation in (4). Approximate Kalman filtering is used to solve

this problem. Thereby, the state space model is set up as follows: First, since the factor is

serially uncorrelated, the transition equation is trivial in that it simply equals the factor

to its innovation. The observation equation is given by the reduced form (2).

Standard Kalman filter recursions predict and update expectation and covariance matrix

of the state variables conditional on a given information set; see Lütkepohl (2005) for a

textbook treatment of the multivariate case. Specifically, let µjt and σ2
jt, j = 1, . . . , n, z,

denote expectation and variance of the εjt and zt, conditional on the observable variables in

y up to time t. Then, E(zt|yt, yt−1, . . . ) = µzt and σ2
zt as the conditional factor variance are

directly obtained from Kalman filter updating as usual. The states of the idiosyncratic

shocks can be estimated from (2) as (µ1t, . . . , µnt)
′ = Ayt − βµzt. Accordingly, their

covariance matrix holding the σjt, j = 1, . . . , n, on its main diagonal is given by βσztβ
′.

As a last critical point, note that the EGARCH variances in (4) and (5) depend on

the absolute innovations |εjt| and |zt|. In the Appendix, the conditional Kalman filter

expectation of the z term (and the ε terms accordingly) is shown to emerge as

E(|zt| |yt, yt−1, . . . ) = µzt(Φ(µzt/σzt) − Φ(−µzt/σzt)) + 2σztϕ(µzt/σzt) , (8)

with ϕ and Φ representing the standard normal probability density and cumulative distri-

bution function, respectively.2 Since (8) contains only quantities that are made available

by the recursive filter, we are now well equipped for an application.

2Harvey et al. (1992) discuss an equivalent procedure for unobserved component ARCH and GARCH

models, using Et(z
2

t
) = µ2

zt
+ σ2

zt
.
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3 Blue Chip vs. High Tech

3.1 Data and Empirical Procedure

The empirical part analyses the interaction between two major U.S. stock segments as

reflected by the Dow Jones Industrial Average and the Nasdaq Composite, ”blue chip”

and ”high tech” in the language of Weber (2009). The sample of daily observations begins

on 2/5/1971, where Nasdaq had started, and ends on 12/31/2009; data source is Reuters.

Figure 1 presents continuously compounded returns and the well-known picture of the

index development. Most eye-catching are the Black Monday in 1987, the extremely

volatile period around 2000, where stock prices fell due to the dot-com bubble burst and

the general recession, and the recent world financial crisis. The unconditional standard

deviations of the returns are 1.09 and 1.26.
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Figure 1: Dow Jones and Nasdaq Composite

In preparation for the empirical procedure, the returns3 were filtered by regressing them

3Cointegration could not be established, leading to a model in first differences.
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on a constant and four day-of-the-week dummies. Based on the suggestion of the Bayesian

information criterion, autoregressive lags were not included. Starting values were deter-

mined as follows:4 The initial factor was obtained as the first principal component and

standardised to unit variance. Then, using the respective loadings in β, the factor scores

were subtracted from the returns. A was thus initialised as the identity matrix. The

EGARCH parameters were then obtained from univariate models for the initial series of

the factor and the idiosyncratic residuals. The variance processes were started at the

according sample moments. The estimations were carried out in a Gauss programme

employing the CML module.

3.2 Results and Discussion

Equations (9) display the contemporaneous interactions in the U.S. stock market, based

on the parameters from the structural matrix A and the vector of loadings β. The

variable names denote daily returns at time t, QML standard errors are in parentheses.

The estimates of the spillover coefficients imply that the Dow dominates the mutual

transmission. Furthermore, the returns are significantly hit by the common factor. Both

outcomes correspond to what economic intuition might have told us in advance.

DJIAt = 0.148
(0.027)

NQCt + 0.900
(0.075)

ẑt + ε̂1t

NQCt = 0.446
(0.029)

DJIAt + 0.591
(0.0342)

ẑt + ε̂2t (9)

Equation (10) shows the estimated EGARCH processes of the idiosyncratic variances.

Again, spillovers (the off-diagonal matrix elements) of Dow shocks to Nasdaq are much

stronger than in the reverse direction.5 In line with many established results for financial

data, the variances are quite persistent (as measured by G) and subject to asymmetrically

strong impacts of negative shocks (as measured by F ).

4Various further starting values were chosen, including relatively implausible ones. Nothing hinted at

a local-maximum-problem. The same applies to the use of different numerical algorithms.
5The present results are broadly in line with the structural conditional correlation estimates of Weber

(2009), who uses data until 10/31/2007. The current update until the end of 2009 has been checked not

to lead to significant changes in the parameter estimates. This should strengthen our confidence in the

model that is able to cope with the global financial crisis.
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(

log h2
1t

log h2
2t

)

=







− 0.02
(0.006)

− 0.028
(0.010)






+







0.996
(0.001)

− 0.013
(0.004)

− 0.004
(0.002)

0.977
(0.005)







(

log h2
1t−1

log h2
2t−1

)

+







0.155
(0.042)

0.080
(0.024)

0.211
(0.042)

0.221
(0.028)







(

|ε̃1t−1|

|ε̃2t−1|

)

+







− 0.038
(0.016)

− 0.029
(0.009)

− 0.073
(0.016)

− 0.040
(0.011)







(

ε̃1t−1

ε̃2t−1

)

(10)

The factor variance equation (11) reveals the same properties, i.e. persistence and asym-

metry:

log hzt = 0.975
(0.003)

log hzt−1 + 0.164
(0.020)

|z̃t−1| − 0.086
(0.016)

z̃t−1 (11)

Based on the estimated model (9), (10), (11), the sources of stock market comovement

can be assessed. First, the total conditional correlations are calculated from (6). Second,

the correlations emerging from common factor exposure only can be obtained from the

same covariance matrix by setting A = I. That is, spillovers are neglected, leaving the

correlation of the term βzt +εt. This corresponds to the structural conditional correlation

of Weber (2009), i.e. the fundamental correlation net of spillovers. Both the total and the

structural correlation are displayed in Figure 2.

0.0
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Figure 2: Total and structural conditional correlations

The average structural correlation (32%) lies near the value of 36% found by Weber (2009).

The total correlation reveals troughs in the early eighties and early nineties. The former is

evidently due to the surprisingly low factor-based structural correlation at the time. Af-

terwards however, this structural correlation has been rising considerably, underlining the

importance of common information in integrated markets. Further exploring the return

comovement, reconsider equation (6), which clarifies that the current model correlations

arise from the structural variances of the idiosyncratic and factor shocks. The standard

deviations are displayed in Figure 3.
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Figure 3: Conditional idiosyncratic and factor standard deviations

Several interesting observations arise from these figures: The volatile period around 2000

has been caused by idiosyncratic Nasdaq shocks. This is in line with economic intuition,

since the growth of the dot-com bubble and its burst are most closely connected to the

”high-tech” sector. At the same time, the idiosyncratic Dow volatility reached a minimum,

revealing a somewhat unusual pattern6. Nonetheless, this is a logical consequence of a

unique event, the dot-com bubble, dominating stock markets for several years. Beyond

that, the common factor has become more and more important. Particularly concerning

the recent global financial crisis, the model ascribes the largest part of the turbulences to

common factor volatility. Unlike the 2000 bubble, this crisis spread from mortgage and

money markets and hit both ”blue chip” and ”high tech” sectors alike. Logically, the

model again performs well in making a plausible choice. The same can be said concerning

the Gulf War 1990/91 that shows up in the factor variance.

However, one problem should be acknowledged: The Black Monday 1987 is reflected in

the idiosyncratic variances, what appears somehow peculiar in the light of a worldwide

stock market crash. The technical explanation of this phenomenon is straightforward: The

factor variance has been very low in the 1980s, implying a low Kalman gain (the fraction of

the observable variables that the conditional linear projection assigns to the unobservable

factor) on 10/19/1987. Logically, the strongly negative returns were not picked up by z,

but instead by the εi. Since these shocks drive the EGARCH variances, the spike appears

in the idiosyncratic volatilities. Obviously, the otherwise well-performing parsimonious

6It might seem that the idiosyncratic Dow volatility has been constant from 2001 until 2005, before

it begins to recover. Of course, this would be implausible in a heteroscedastic model. In fact, the

conditional variance still varied over time, even if fluctuations appeared on a very low level and are thus

hardly detectable in the graphic. The small size of fluctuations simply results from the low variance,

i.e. the expected square of the shock. Besides, the elongate curve is to a certain extent induced by the

EGARCH model: Since the log variance is not bounded from below, the variance itself can stay near zero

for an extended period. Using a standard GARCH model, I found the same curve pattern, but not as

pronounced.
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model structure is not able to deal with such an extremely short-lasting unique one-time

event. Notwithstanding, in a large sample the relevant period comprises only a few days.

Neutralising them by use of impulse dummies does not change the estimation outcome,

what is reassuring with regard to robustness.

The clear separation of idiosyncratic innovations, spillovers and common factors in (2) is

a major strength of the underlying model. Primarily, it facilitates further investigation in

terms of variance contributions. The conditional proportions of Dow and Nasdaq return

variance that are due to one of the idiosyncratic innovations, respectively, or the common

factor are plotted in Figure 4.
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Figure 4: Variance contributions of idiosyncratic and factor shocks to DJIA and NDC

The Dow is dominated by own idiosyncratic shocks in the first, and by factor shocks in the

second sample half. Additionally, spillovers from Nasdaq gained significant weight during

the bubble period. Nasdaq itself was subject to considerable transmission effects from the

Dow in the first two decades. Afterwards, the common factor took over, complemented by

own shocks predominantly around 2000. In particular, it can be concluded that the quite

strong orientation of Nasdaq towards the Dow development has been weakened since the

1990s. This may be interpreted as an emancipation process of Nasdaq, but may above

all be seen in the context of the extraordinary phenomenon of the inflating and bursting

dot-com bubble.

Naturally, total correlation and return variances may as well be inferred from reduced-
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form multivariate volatility models. However, as the preceding discussion shows, in the

present context the comovement results from distinct structural market processes. This

allows a deeper understanding of the driving forces of financial returns. Furthermore, one

might for example conduct correlation forecasts conditioned on special types of shocks, a

task that is unfeasible in reduced form.

At last, statistical tests for appropriate specification of the heteroscedasticity are con-

ducted. First, I focus on the return variances. Under the usual null hypothesis, the

autocorrelations of the squares of the standardised variables yjt/
√

Σjjt, with Σjjt the jth

diagonal element from (6), should equal zero. Indeed, the empirical correlation coeffi-

cients are quite small, mostly below 1%, with large p-values of ARCH-LM tests. Only

the first Nasdaq autocorrelation reaches statistical significance, but is still limited to 5%.

In general, these results support the common literature result that GARCH-type models

of orders 1, 1 are fairly suitable for financial markets data. Especially for the current

model, it might be even more important that the covariance is appropriately modelled

given the structural sources of market comovement, the two spillovers and the common

factor. Here, the standardised cross-products y1ty2t/Σ12t are clearly free of statistically

significant serial correlation, supporting the multivariate structural specification.

4 Concluding Summary

Stock market returns, like those of the Dow Jones and Nasdaq Composite indexes, are

often correlated to a substantial degree. This paper aimed at distinguishing the part of a

contemporaneous correlation arising from causal spillover between the relevant variables

from the one that is due to any third-party influences affecting all of them alike. Logically,

an appropriate model has to feature a structural character and must additionally include

common factors as sources of model-exogenous impulses. However, such a specification

obviously runs into identification problems, which are well known in econometrics from

classical simultaneous equation systems.

This study developed a customised adequate solution based on the idea of identification

through heteroscedasticity: Both the idiosyncratic innovations of the stock returns as well

as their common factor are allowed to exhibit ARCH-type effects, so that the additional

information needed for identifying the model structure can be achieved from continually

shifting volatility. Parameter estimates likewise factor states and conditional variances

are obtained by means of QML Kalman filtering techniques.
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The empirical results showed predominant spillovers from the Dow to the Nasdaq com-

pared to the reverse direction. Besides, both stock segments are exposed to significant

common factor influence. The latter was moderate in the 1980s, but has been rising since

then, dominating in the recent global financial crisis. In contrast, the high volatility in

the dot-com bubble period around 2000 was driven by Nasdaq shocks.

This paper contributed to the literature by allowing the researcher to determine common

driving forces of different variables while retaining the possibility of mutual contempora-

neous interaction between them. Through this methodological innovation it is possible

to uncover structural market processes that are normally hidden behind reduced-form

correlations. This paves the way to structural interpretations in terms of economics as

well as to sophisticated conditioned first and second moment forecasts, both of which are

hardly feasible in conventional reduced-form approaches.

Future research might exploit the advance in methodology for finding sources of corre-

lations in further significant applications, respectively for re-examining econometric ap-

proaches that traditionally had to rely on non-testable assumptions. Moreover, interest

could focus on econometric refinements in terms of theoretical model elaboration, for in-

stance concerning the specification of the factor structure, as well as simplified estimation

procedures. At last, complementing the simultaneous factor structure by risk premia from

arbitrage pricing as given for example in King et al. (1994) may provide the model with

additional economic appeal.

5 Appendix

This appendix proves result (8). First, let us restate zt|{yt, yt−1, . . . } ∼ N(µzt, σ
2
zt). In

the following, I omit the conditioning information set {yt, yt−1, . . . } for simplicity.

Second, define wt := zt−µzt, vt := w2
t and xt := wt/σzt. Note that this implies dwt = dzt,

dvt = 2wtdwt and dwt = σztdxt. Furthermore, ϕ shall denote the standard normal

probability density and Φ the according cumulative distribution function.

For the expectation of the absolute value of a continuous random variable, we have

E(|zt|) = E(zt|zt > 0) + E(−zt|zt < 0) .
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The first term results as

E(zt|zt > 0) =
1√

2πσzt

∫ ∞

0

zte
−

(zt−µzt)
2

2σ2
zt dzt

=
1√

2πσzt

∫ ∞

−µzt

(wt + µzt)e
−

w
2
t

2σ2
zt dwt

=
1√

2πσzt

∫ ∞

−µzt

wte
−

w
2
t

2σ2
zt dwt +

µzt√
2πσzt

∫ ∞

−µzt

e
−

w
2
t

2σ2
zt dwt

=
1

2
√

2πσzt

∫ ∞

µ2
zt

e
−

vt

2σ2
zt dvt + µzt

∫ ∞

−µzt
σzt

1√
2π

e−
x2

t
2 dxt

=
1

2
√

2πσzt

[

−2σ2
zte

−
vt

2σ2
zt

]∞

µ2
zt

+ µzt(1 − Φ(
−µzt

σzt

))

=
σzt√
2π

e
−

µ2
zt

2σ2
zt + µzt(1 − Φ(

−µzt

σzt

))

= σztϕ(
µzt

σzt

) + µzt(1 − Φ(
−µzt

σzt

)) .

Similarly, one can show for the second term that

E(−zt|zt < 0) = σztϕ(
µzt

σzt

) − µzt(1 − Φ(
µzt

σzt

)) .

In sum, we find

E(|zt|) = µzt(Φ(µzt/σzt) − Φ(−µzt/σzt)) + 2σztϕ(µzt/σzt) ,

what equals (8). The expectations of |εit|, i = 1 . . . , n, can be obtained accordingly.
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