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Abstract. We study a fourth order geometric evolution problem on a network of curves
in a bounded domain 2. The flow decreases a weighted total length of the curves and
preserves the enclosed volumes. Stationary solutions of the flow are critical points of
a partition problem in €. In this paper we study the linearized stability of stationary
solutions using the H~!-gradient flow structure of the problem. Important issues are the
development of an appropriate PDE formulation of the geometric problem and Poincaré
type estimate on a network of curves.
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1 Introduction

Motion by surface diffusion
V =-Ak (1.1)

is a fourth order geometric evolution for an evolving hypersurface I' = {I'; };>¢ that has
the property that the perimeter of the enclosed volume decreases whereas the volume is
conserved. The latter is in contrast to the second order motion by mean curvature V = &
where also the perimeter decreases but the volume is not conserved. In the above, V is
the normal velocity of the surface, k is the sum of the principal curvatures of the surface,
and A, is the Laplace-Beltrami operator of the surface.

The surfaces with constant mean curvature are stationary solutions of (1.1). A natural
question to ask is whether these solutions are stable under (1.1). This question has been
answered positive by Elliott and Garcke [2] for circles in the plane and by Escher, Mayer
and Simonett [4] for spheres in higher dimensions.

If a hypersurface lies in a bounded domain €2 and is attached to the outer boundary, the
surface diffusion has to take care of boundary conditions. Natural boundary conditions
are a 90° angle condition and a no-flux condition, i.e. we require on I' N 92

a 90° angle condition, (1.2)
T7-Vsr =0,

where V is the surface gradient and 7 is the outer conormal of I" at its boundary points.
We remark that we assume that OI' is contained in 0€2. For this evolution law, a linearized
stability criterion for spherical arcs that attach to the boundary with a 90° angle condition
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has been given by the authors [7]. For the mean curvature flow, one can also consider
situations where a hypersurface is attached to the outer boundary. In this case, only an
angle condition has to be fulfilled. We refer to [5, 6] for a stability analysis in this case.
In many situations of interest, different hypersurfaces moving by surface diffusion meet
at junctions. Assume that three evolving hypersurfaces T" = {I'i};5o fulfill the surface
diffusion equation
V= —m'y' Ak (1.4)

for i = 1,2,3, where 7' is the surface energy density of the interface i and m' is the
mobility of the interface . If the three hypersurfaces meet at a triple junction p(t), we
require that the following conditions hold:

T, T (1) = 60°, «(T*(t),T°()) = 0, <(I°(t), T (1) = 6%, (1.5)
Ve + 2 RE PR =0, (1.6)
m' ' V! - T = m*?Vk? - T? = m**Ver® - T (1.7)

Here the quantity <((T"(¢), Y (¢)) denotes the angle between I'*(¢) and T(t), and T" is the
inner conormal to OT"(¢) at the triple junction. The angle conditions (1.5) follow from a
force balance at the triple junction (Young’s law), the second condition (1.6) follows from
the continuity of chemical potentials, and the third conditions (1.7) are the flux balance at
the triple junction. The angles 6, 62, 03 are related through the identity ' + 602 + 03 = 27
and via Young’s law which is

sin 61 _sin 0? _sin 03
71 - 72 - 73

(1.8)

Then we obtain from (1.5) and (1.8) that
,lel + ’)/2T2 + 73T3 =0

which is the force balance at the triple junction. The condition (1.7) relates the inward
pointing parts of the fluxes m*y*V,k* to each other where V, denotes the surface gradient.

For a network of curves evolving with respect to (1.4) fulfilling (1.5)-(1.7) at the triple
junction and (1.2)-(1.3) at contact points with 02, a computation shows that a network
of curves decreases the weighted total length
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> LI () (1.9)

i=1

and preserves the enclosed areas. We refer to Garcke and Novick-Cohen [8] for more
details on the model and a verification of the above properties.

From the above properties, it seems natural to expect that surface diffusion for a
network of curves leads to solutions which converge for large time to solutions of a parti-
tioning problem, i.e. to a partition that minimizes (1.9) under a volume constraint. Or,
to be more precise, we expect the convergence to critical points of (1.9) at large time.
These large time limits will have constant curvature (on each curve) and fulfill the angle
conditions (1.2) and (1.5). In addition, the three constant curvatures on the arcs have to
fulfill (1.6). Such a network is a stationary solution to (1.4), (1.2)-(1.3), (1.5)-(1.7). It



is the goal of this paper to derive a stability criterion for stationary solutions to (1.4),
(1.2)-(1.3), (1.5)-(1.7). The criterion will be based on a linearized stability consideration.
In the papers [5, 6, 10], the authors studied linearized stability for the mean curvature
flow, and also the authors of this paper previously studied the case of surface diffusion
without triple junctions [7].

Let us briefly outline how we proceed. A first preparatory but important step is to
come up with a proper representation of a network of curves. We parameterize curves
around a stationary curve with the help of a modified distance function. It is not possible
to use distance functions since the triple junction might move and hence we have to
introduce a certain tangential adjustment in order to be able to parameterize for all time
on a fixed parameter interval. The requirement that all curves meet at a triple point
leads to additional difficulties. We then formulate the evolution problem with the help
of this parameterization and derive a highly nonlinear problem which will be linearized
in Section 3. The linearized problem is complicated but has a gradient flow structure
with respect to a certain H~'-inner product on a network of curves. This is the main
observation which will greatly simplify the stability analysis. In fact the linearized problem
is the gradient flow of the quadratic form related to the second variation of (1.9) and hence
one can expect that the stability of solutions depends on the fact whether the stationary
solutions is a linearly stable extremum of (1.9).

In order to use spectral theory to analyze the linearized problem, we show self-
adjointness of the linearized spatial operator with respect to the H~!-inner product. Fur-
ther, we show that the spectrum and hence the stability behaviour has a certain monotone
dependence on the curvature of the outer boundary and the length of the curves. We then
formulate the stability criterion and finally apply the criterion to several specific geome-
tries. In this context, we refer to the proof of the double bubble conjecture [9] where also
a stability analysis involving the second variation of configurations with triple junction
has been used.

2 Parameterization and PDE formulation

In this section, we derive parameterizations that are convenient to formulate the evolution
problem in a PDE context. Let Q be a bounded domain in R? containing (0, 0) and having
smooth boundary. We assume that 2 and 02 are given as

O ={zeR|¢(x) <0}, 90 ={zrecR? ¢()=0}

with a smooth function ¢ : R* — R with Vi(z) # 0 if x € 909, i.e. if ¢(x) = 0. Let
I (1 = 1,2,3) be straight lines or circular arcs with constant curvature . satisfying

YL+ 2 K2 + RS = 0. (2.1)
Further, the T'? (i = 1,2, 3) are assumed to meet the outer boundary with an angle /2
and have (0,0) (without loss of generality) as a common point (triple junction). Then we
define an arc-length parameterizations of I (i = 1,2,3) as

I, ={2.(0) o €[0,I}

with ®(0) = (0,0) and ®%(I*) € 99, where [’ is the length of I'".. Note that ® can be
extended naturally either to a parameterization of a full circle or a straight line. We now



introduce a stretched curvilinear coordinate system around the curves I'. (i = 1,2,3). In
order to allow for a tangential stretching of the coordinate system close to 0€), we set

pa(q) = max{o | @\ (o) + ¢N;(0) € Q}.
Now we define a set of admissible parameterizations with the help of
P[0l =R, peR (i=1,23)
which fulfill

DL (p') + p' ()N} (') = ®2(1*) + p*(0)NZ(?) = B2 (1) + p* (0) N (). (2.2)

Here the parameter ' allows for a tangential movement at the triple junction. In addition,
we define

V' (0, q, ') = PLE (0., ")) + gNI(E (0,4, 1"))

where ' . s '

§'(o,q, 1) = p' + Fpala) — 1.
Note that £(c,0,0) = o and £%(0, ¢, u*) = p*. Then we define

b'(0) := V'(o, p'(0), 1)
as the parameterizations of a set of curves I'? (i = 1,2, 3) having the properties that they
meet at a triple junction and end on the boundary 0f2. Note that
1

) ) . 1
T"N= ——— P N' = ——
Ji(u?) 7 Ji(u?)

RO! |

where u’ = (p', pi'),

T () = B ()] = \ /W52 + 29, Wi)gapf, + [ Wi[2] 032,
and R denotes the anti-clockwise rotation by 7/2. We now consider evolving curves
['(t) = {®'(o,t) | 0 € [0, 1']} (2.3)

where the ®° are defined for each t via admissible (p' (o, t), p*(0,t), p*(0, t), u*(t), u2(t), u3(t)),
i.e. we require that (2.2) holds.

We now derive evolution equations for p’ and p’ that have to hold in the case that
I (i=1,2,3) in (2.3) solve (1.4), (1.2)-(1.3), (1.5)-(1.7). The normal velocity V* of T"*(t)
is given as

V= () N = oo (0 R Jeaph + (7, N
where
N'= ——(RV' + RU'p").
Jl(ul)( o+ RV ;)



In addition, the curvature ‘(= £'(u')) of I''(¢) is computed as

W) = i P
~ (Ji(w))? [(\Ijq’ RV, )w2pie + {2(Voq BYG )r2 + (Voo RV )r2}pg

+{( g RYG w2 + 2(Wo g, RYG )2 + (Wi, RYY )R, }(05)" + (Vo RYG 2|

qq9’

RO )

Thus the surface diffusion equation (1.4) can be reformulated as

ot = —miyad () A () + b ) (2.4)
where
o iyl o Ul R e + (U RU )papt
az(uz) — J (’U,) ’ bz(uz) — _( “ U)R' ( ',u q)R po’
(Ui, RV )pe (Wi, RV g2
w1 1 B 1 9 1 1
M) i= e (Feay%%) = Ty * Ty o ) O

Remark 2.1 The terms b'(u')u! will give no contributions to the linearization (see Sec-
tion 3). However, using (2.2) and (2.4), ui can be written with the help of 92p’|,—¢ and
some lower order differential terms. For the nonlinear problem, it can be shown that these
terms are perturbations of the principal part when we study the generator of the analytic
semigroup for the equation (2.4).

Let us discuss the boundary conditions at the triple junction. First we have
d(0) = ®*(0) = *(0). (2.5)
This is just (2.2). The angle conditions (1.5) are given by
(g, P7)r2 = |0, [|D7[ cOs O, (D5, D)2 = |y ||P; | cos 02 (2.6)
at 0 = 0 with the representation
(81,00 = (W W) + (W, W)+ (W, W g, + (U, 0 ) g

The condition guaranteeing the continuity of the chemical potentials (1.6) can be restated
as

Ve (uh) + 2R (u?) + PR} (u?) =0 at o = 0. (2.7)
The balance of fluxes m'y'k! = m2y?k? = m343k3 is written as
m'y! 1(,,1 m?y? 20,2 m’y? 3003
m&oﬁl (u ) = m&oﬁl (u ) = Wﬁoﬁl (u ) at o =0. (28)

Remark 2.2 The equations (2.5)-(2.8) lead to nine conditions at ¢ = 0. The three fourth
order PDEs for the functions p’ (i = 1,2, 3) in (2.4) need six boundary conditions at ¢ = 0,
i.e. there are six degrees of freedoms coming from the PDEs in (2.4). We have three
additional degrees of freedoms for pu’ (i = 1,2,3), so that the number of conditions agree
with the number of degrees of freedoms. Thus the number of the boundary conditions at
o = 0 is appropriate.



On the outer boundary 0f2, we obtain that the angle condition (1.2) is equivalent to
(RP! , Vi)(P'))gz = 0 and hence we have

(RY! + RU! p! V(U )g2 =0 at o =1" (i=1,2,3). (2.9)

q

The no-flux condition k% = 0 is equivalent to

Opk'(u') =0 at o =1" (i=1,2,3). (2.10)

3 Linearization

In this section, we linearize the nonlinear boundary value problem stated in Section 2.
The functions ¥* have the following properties which we need to derive the linearized
problem.

Lemma 3.1 The parameterizations V' in Section 2 fulfill
(i) ¥'(0,0,0) = ®i(0) and ¥'(0,q,0) = PL(ops(q) /1) + gNi(opn(q) /1)
(ii) W (0,0,0) =Ti(o), ¥y(0,0,0) = Ni(0), and ¥,(7,0,0) = (1 — o /I')Ti(0).
(iii) V5 (0,0,0) = KIN[(0), Ui, (0,0,0) = —kiTi(0), and ¥, (0,0,0) = (—=1/I')Ti(c) +

(1—0/l"k!N(0o).
(iv) Wpq(0,0,0) = —(K5)*Ni(0) and Wi, (0,0,0) = (=2rL /1) N (0)— (10 /I')(K})*T}(0).
Proof. By the definition of ¥*, (i) is obvious. Let us prove (ii). Differentiating ¥*(c,0,0) =
®! (o) with respect to o, we readily derive W' (0,0,0) = T'(c). Applying a similar ar-
gument to [7, Lemma 3.1], we obtain (u(q))'|;=0 = 0. Thus it follows from (i) that
W (0,0,0) = N(c). Moreover, by the definition of £, we have

§,(0,0,0)=1—0/l'.

The definition of ¢ and the Frenet-Serret formulas give

Ui (0,q,1") = &ulo, g, 1) (1 — qul)TL(E(o, q, 1))

Setting (¢, u*) = (0,0), the third property of (ii) is derived. Finally, by using (ii) and
Frenet-Serret formulas, we have (iii)-(iv). O
Using Lemma 3.1, we observe 0'(0) = 0, J*(0) = 1, and

0J(0)[n'] = —kLv* — ﬁTZ (3.1)
where 0J°(0)[n’] is the Fréchet derivative of J* at 0 = (0,0) and n° = (v'(-),7%) €
C([0,1') x R.

Let us derive the linearization of (2.4). We define the operator
Fi(u') = p) = m'y' G (u') — b (u')
which maps functions u’ = (p'(-, ), p'()) € C*(Q4)xC* ([0, T]) to functions in C*0(Q%.) x
C°([0,TY)), where Q% :=[0,1*] x [0,T] and
G'(u') == —a' (u')A(u') k' (u").

Then the equation (2.4) is represented as F(u') = 0. We derive the Fréchet derivative of
F'at 0 = (0,0) in the following lemma.



Lemma 3.2 The operator F* is Fréchet differentiable with the derivative

OF'(0)[n'] = vi +m'y{vg, + (K.)*0" oo,
where OF"(0) is the Fréchet derivative of F* at 0 = (0,0) and " = (v'(-,-),7'(")) €
CH1(QY) x C1([0,T)).

Using Lemma 3.1 and taking into account b°(0) = 0, the proof of this lemma is similar to
[7, the proof of Lemma 3.2]. Thus we omit it.

Let us linearize the boundary conditions (2.5)-(2.10). We first derive the following
lemma from (2.5).

Lemma 3.3 Let (vi(),7%) (i = 1,2,3) be in C°([0,1']) x R. Then we obtain the following
conditions at o = 0:

(i) Yo' ++*0? + 9303 =0 at 0 = 0.
(i) Fori,j, k€ {1,2,3} mutually different

= (v —F*) at 0 =0,
SZ

where ¢ = cos @ and s’ := sin §°.
Proof. Let us prove (i). For u’ = (p'(-), u') € C°([0,1']) x R, we set
Bo(u',u?) = @, (1) + p'(0) Ny (p') — ®L(1?) — p? (0) N (1),

Then (2.5) is represented as By(u',u’) = 0 at 0 = 0. Computing the Fréchet derivative
of Bo(u',u?) = 0, we derive

0= 0B,(0,0)[n", '] = 7'T%(0) + v (0)N;(0) — /T(0) — v’ (0) N} (0),

where 9By(0,0)[n’, n’] is the Fréchet derivative of By at (0,0) and n* = (v*(+), 7%). This
implies that

7'T3(0) + v'(0)N;(0) = T/T7(0) + v/ (0) N (0). (3-2)
Set p. := 7'T}(0) + v'(0)N;(0) = 7*TZ(0) + v*(0)NZ(0) = 7°T(0) + v*(0)N7(0). Then
we obtain (p., N:(0))rz = v*(0) (i = 1,2, 3), so that Young’s law for the stationary curves

I (i =1,2,3) gives

3 3
Do Av0) =D 4 (P N = (P, ZW\”
i=1 i=1
We prove (ii). By means of (3.2), we see
7' = 7(T3(0), T2(0))gz + v (0)(T3(0), N (0))ze
Then it follows from the angle conditions for the stationary curves I'’ at p, that

(TH0), T9(0))g2 = cos 0, (T(0), N2(0))g2 = — sin 6"



for i, j, k € {1,2,3} mutually different, so that we derive
7' =77 cos B¥ — 17 (0) sin 6.
Setting ¢ := cos #® and s* := sin #*, we have
(1= dF)r = {0 (0) + "7 (0) + Fs"0*(0)}.
Further, (1.8) and (i) imply
1

(1-cdcM)rt = — [{(s"s" = "' (s7)2}07(0) + {F(s")” — "c's7s" }u(0)]
Since we observe
sPst — (7)Y = (1 = ), F(s)? = Felsish = cF(1 - dd ),

we are led to the desired result. O

Lemma 3.4 Let v'(-) (i = 1,2,3) be in C*([0,1]). Then, fori,j k € {1,2,3} mutually
different, the linearization of the angle conditions (2.6) are

— (K — M vl = = (FRF — R+ vl at 0 =0,
s* s

where ¢ := cos @' and s' := sin6".
Proof. For u' = (p'(+), u*) € C1([0,1']) x R, we set
Bi(u',w!) = by (u', u’) — J(u')J? (u?) cos O,
where
by(u', w!) = (U, W)z + (U, Wl )gep] + (W5, W )gepl, + (W, W))repy ).

Then the boundary conditions for the angles are rewritten as Bi(u’,u’) = 0 at o = 0,
which gives o
0B1(0,0)[n",7’] =0 at o =0, (3.3)

where 9B;(0,0)[n’,n’] is the Fréchet derivative of By at (0,0) and n° = (v'(-),7") €
C1([0,1']) x R. Let us derive the Fréchet derivative dB;(0,0)[n’,n’]. Using Lemma 3.1,
the Fréchet derivative of W’ (0,-,-) at 0 = (0,0) is

OWL(0, ) (O] = ~w{TH(0)(0) + (3 TI(0) + KNI(O)) "

This and Lemma 3.1(ii) imply that

abl(oa 0)[77Z> nj]

= —r,(T2(0), T(0) g2 (0) — %(Tf(o),Tf(O))szi + 15, (N2(0), TY(0) o’
—#1(T5(0), TY(0))rav’ (0) — %(Tf (0), TY(0))re’ + KL(T2(0), NI(0))ge7?

+H(T2(0), N1(0))z205(0) + (N;(0), 7(0))z2v5,(0),
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where 9b;(0,0)[n’, n’] is the Fréchet derivative of b; at (0,0). The angle conditions for
the stationary curves I' give

(T%(0),T7(0))g2 = cos0*, (T(0), N9(0))g> = —sin@*, (N(0),77(0))g2 = sin 6"

for i, 7, k € {1,2,3} mutually different, so that

0b1(0,0)[n', 7] = — k'v*(0) cos #* — ﬁrl cos 0% — k17 (0) cos 0% — ET] cos 0"

+ (ki7" — kI79) sin 0% 4 (v(0) — v2(0)) sin 6.
Then it follows from J¢(0) = 1 and (3.1) that
0B1(0,0)[n',1’] = {(ri7" — Kl77) + (v5(0) — v5(0))} sin 0"
Thus (3.3) is equivalent to
{(ki7% — KI77) + (v1(0) — 2(0))} sin 0% = 0.
Since 0 < 6% < 7, we derive
KLTU 00 (0) = KIT7 4+ 0 (0).

Recalling Lemma 3.3(ii), we have
%{cw (0) — "R (0)} + vl (0) = %{C%k(m — ¢ (0)} + v2(0) (3.4)

for 4,5,k € {1,2,3} mutually different. Taking into account (1.8) and Lemma 3.3(i), we
observe

A (0) + S {70 (0) + 47 (0}

Applying an analogous argument, we also have

L {EH0) — ¢ (0)) = 0 (0) — o (0)).

Putting these terms into (3.4), we obtain

Ko h j i Rl k., j j

S 1 v(0) = w(0)} +v5(0) = —{v'(0) — "' (0)} + 03 (0).
This implies that

1 i i\, i i Lo AW j
(P = D)0 (0) + v (0) = (k= FrL)v!(0) + 3 (0).
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Using (1.8) and (2.1), we derive

Lok O PE RN S SR I
E(C Ky — '%*) = - ’ykSi (7 Ky ‘l”}/ K’*) - E’%*
1 - . cF i
= — Sksi(s]c + s")K! e
1 Jk j ok i K\ L c* k
= — sksi{s ¢ — (7" + sV R — it
1 . .
:;(c’ml — "RM).
Also, we see
1 , ) 1 o
S—k(ﬁai — "RI) = ;(ckmf — C'KY).

This completes the proof. [

Lemma 3.5 Let v'(-) (i =1,2,3) be in C3([0,1%]). Then it holds

ey (5170} 472 {0%, + (2707} + 440, + (5)7°) =0,
iy ol + ()P0t} =m0, + (270, = miy{ul, + (5%},

at o =0 and . o . -
v+ hivt =0, {vl, +(k)*'}, =0

oo

at 0 =1'. Here the hi (i = 1,2,3) are the curvatures of O at T'. N O, where we use the
sign convention that h < 0 (i = 1,2,3) if  is convexz.

Using Lemma 3.1, the proof of this lemma is similar to [7, the proof of Lemma 3.2 and
Lemma 3.3]. Thus we omit it.

By means of Lemma 3.2, Leamma 3.3(i), Lemma 3.4, and Lemma 3.5, we obtain the
linearized problem for ¢t > 0

’Ui = —mivi{vfm + (Ki)2vi}aaa OIS (Oa lz) (35)

with the boundary conditions

(

Ao 4202 4 B3 = 0,
1 1
L2022 331 o1 _ Y33 11y 2, 02 L1122 3 3
] o (c°Kr; — CR)v + 0, = (¢’ — ¢ Ky )V™ + v 33(C K, — C°R})v° + v, (3.6)
THvoe + (k)20 +v{vg, + (r2)%0?} + {05, + (k3)%0%} = 0,
[ My {vg, + (52)%0' e = m?y* {07, + (D)%}, = mPy*{ug, + (k1)*0°},
at 0 =0 and . o
ve + hiv' =0, (3.7)
{voo + (k1)?0'}, =0 .

at o = 1" (i = 1,2,3) where ¢' := cos§’ and s’ := sin §'.

10



4 Gradient flow structure

Let us consider the gradient flow structure of the linearized problem (3.5)-(3.7). For
k € N, set

HY = H*5(0,1Y) x H*(0,1%) x H*(0,1%),

(H") = (H"(0,1%)) x (H™(0,%))" x (H*(0, %)),

Yi={& ) e |+ +=0at 0=0,
1! 12

l3
ldo = £ do = §3da},
0 0 0

8 = {(Ul,Uz,Us) c Hl "}/IUI _'_72,02 —|—’}/3U3 =0 at o = 07
13

ll
/ vldaz/ v2d0:/ v?’da},
0 0 0

o= {(w,w’ w’) € (HY) [{w', 1) = (w* 1) = (w*, 1)},

where H*(0, %) is the classical Sobolev space, (H*(0,1%))" is the duality space of H*(0, %),
and (-, -) is the duality pairing between (H'(0,1%))" and H(0,1%).

12

Definition 4.1 We say that ., = (ul,u?,u) € YV for given w = (w', w? w?®) € X is
a weak solution of

—m'Oul, = w' for o€ (0,1 (i=1,2,3),

Uy, + u2, +ud, =0 at o =0, (41)
mtO,ul, = m*O,ul, = mPo,ud, at o =0, ’
Oput, =0 at o=1" (i=1,2,3),

if Uy = (upy, uZ, ud) €Y satisfies

3 1t
(w,&) =S m' / Dol 9,6 do (4.2)
i=1 0

for all § = (£1,€2,8%) € V.

Remark 4.2 Assume that u,, is a smooth solution of (4.1). Then the duality pairing
between w € (H!') and &€ € H' reduces to

3 K

(w,§) = Zml/ (—02ul,) &' do.

i=1 0
It follows from the integration by parts formula that
3 ;
(w, &) = Zml { [(—0,ul,) &' Z;o + i Oy, 05E" da} :
i=1
Using in addition the condition &' + &2 4+ €3 = 0 at o = 0 for € € H!, the boundary terms
vanish by means of m'0,uL, = m?d,u, = m*9,ul, at ¢ = 0 and d,ul, =0 at o =1" (i =

1,2,3). Hence u,, satisfies (4.2) forall ¢ € Y C Y := {€ € H' |1 +24+£3 =0 at 0 = 0}.
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Conversely, let u,, with ul, +u2 +u2 = 0 at 0 = 0 be a smooth solution of the weak

formulation (4.2). We first show that (4.2) holds for all £ € Y. For each & € Y, there

exist constants (¢!, ¢, ¢®) such that

(gl _ 61’52 N 02,53 N 03) €Y.

Indeed, taking into account €' + €2+ €3 = 0 at o = 0, we need to find (¢!, 2, ¢3) satisfying

i1 12 3
A+ =0, do — 't = & do - Pl1* = & do — A1, (4.3)
0 0 0
Since the matrix
1 1 1
—r 2 0
0o =2 P

is invertible, there exist constants (c',c? ¢®) such that (4.3) is fulfilled. Thus, using
(=t €2 — 2,63 — ) € Y as a test function in (4.2), it follows from (w!, 1) = (w?, 1) =
(w, 1) and ' + ¢ + ¢® = 0 that

3 3 3

Z(wlng) - Zci<wi7 1> = Z<w27§>

i=1 i=1 i=1 i=1

N
B
my
-
I

This implies that (4.2) holds for all E €Y. The integration by parts formula gives

w8 =3 { [0 €17 + [ i e}

for all € € Y. Then the equation —m*07u;,, = w’ holds pointwise. Further, we have

SO mi [(0,ui,) gﬂ Zzi) = 0. Since € € H! is arbitrary as long as £+ &2+ =0at o = 0,
we obtain m!'d,ul, = m?0d,u?, = m*d,ul, at 0 = 0 and d,ul, =0 at o =1'(i = 1,2,3).
Hence u,, is a solution of (4.1).

Remark 4.3 For each w € X, there exists a unique weak solution of (4.1) in ). Indeed,

set
3 e

Tlu, &)=Y m' [ 0,u'd,¢ do (4.4)

i=1 0
for all u,& € Y. Since a Poincaré-type inequality holds for all w € Y (cf. Lemma 5.2 in

Section 5), the bilinear form Z is continuous and coercive on ). Then it follows from the
Lax-Milgram theorem that for each w € X there exists a unique u,, € ) such that

T, §] = (w, §)
for all £ € V. This shows the above assertion.

Definition 4.4 For a given w = (w',w? w3) € X, we say that v = (v',v%v3) € H?

with
ll
/ vl dU:/
0 0

2 3

U2d0':/ v3do
0

12



is a weak solution of
w' = —m'y vl + (k)" }ee  for o € (0,1Y) (4.5)
with the boundary conditions (5.6) at o =0 and (3.7) at 0 = I' if v satisfies
3

I
=S [y + (68 o
i=1

0
for all & = (£*,€%,€3) € YV and fulfills the boundary conditions
Aol 4 202 1 3P =0,
1
3.3 1,1y, 2 , 2 2.2\,3 , 3
= — (K, — c kU Hvs = 3 — ('Kl = 20 + 03, (4.6)

YHvge + (5?0} +9*{07, + (52)*0?} + v {vg, + (k2)*0°} = 0

at o =0 and

1
o — (K2 = PR ol =

v+ hiv' =0 (4.7)
ato=1"(i=1,2,3).

Define the symmetric bilinear form

Iy, vo] = Zv/ {v1 o0, — (k )2viv§}d0+27 Plvivg|

li

- —1(02/{3 — PR3l — —2(03/{3 ctrviv
S o=0 S o=0
3
Y
- ('Kl — PRl
S o=0
and the inner product
3 K
— i i i
(v1,v9)_1 := E m Oy Uy, Oy, do, (4.8)
, 0
i=1

where wy; = (u,,, uy, u, ) (j = 1,2) are weak solutions of (4.1) for given v; = (v}, v}, v}) €
X.

Lemma 4.5 Let w = (w',w? w?) € X and v = (v',v*v3) € H! be given. Then the
following two states are equivalent.
3

(i) v € H® with
ll
/vlda:/ U2d0':/ v3do
0 0 0

and v is a weak solution of (4.5) with the boundary conditions (3.6) at ¢ = 0 and
(3.7) at o = 1"

(ii)) v € & and v fulfills

l2

(w7 (P)—l = _I[Uv QO] (49>
for all p = (¢!, 0%, p3) € £.
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Proof. Assume that (i) holds. Then v € H? is a weak solution of the linearized system
(4.5), (3.6), (3.7). Set

== g, + ()%} (1=1,2,3).
Note that (2!, =2, =3

=1 =2, 23) € H! satisfies 2! + 22+ 23 = 0 at 0 = 0. By (4.8), Definition 4.1,
and Definition 4.4, we see

3 Iz 3 &
(w, )1 = Zmi i Do igyOs iy, do = (W, uy) = Zmi i 0= Dpui, do
i=1 i=1
for all ¢ € &, where u,,

= (up, ub,ul) € Y. According to Remark 4.2, we can find
(¢, 2, ¢) such that (B! — ¢!, =2 — 2, =3

— 2,22 — ) e Y. That is, the ¢ (i = 1,2, 3) satisfy

12 3

ll
d+F+ =0, / Eldo — ' = / =2 do — lI* = / = do — 1P (4.10)
0 0 0
Then, using the fact that u, € ) is a weak solution of (4.1), we obtain
3 Ik 3 1t 3 Ik
Z mi/ &,Ei@aufp do = Z m' [ 0,(E — ci)ﬁgufp do = Z/ (B — ' do.
i=1 0 i=1 0 i=1 0
Further, it follows from ¢ € £ and ¢' + ¢* + ¢® = 0 that

3 i 3 i
Z/l (B~ p'do = Z/l =t do.
i=1 0 i=1 70

Thus we have
3 1t
w.)1 = Y [ Ay + (6 do
i=1 Y0

3 Ik 3 Ik
=Y [t o+ 3o [ et do
i=1 0 0

=1
LA i .ot LA o
SDIRHCTN D DL AR SEN A Rt
=1 =1 =1

Using 71! + 7v20? + +3¢0® = 0 at ¢ = 0, the second condition in (3.6), and the first
condition in (3.7), we are led to (4.9).

Conversely, assume that (ii) holds. Then v € & fulfills (4.9) for all ¢ € €. For each
@ € &, there exists ¢ = (¢4, (3, ¢?) € H? such that

i, = ¢ for o € (0,1,
CHCHE=0 at o =0,
mi¢l =m22=m33 at o=0,
=0 at o =1["

14



In fact, to obtain such a ¢, we consider the minimizing problem
1 5.
76 = 3 [ o~ min

forall ¢ € ), where Z is the bilinear form defined as (4.4). Since a Poincaré-type inequality
holds for all ¢ € Y and 7 is symmetric, this minimizing problem admits a solution ¢ € ).
Further, applying the regularity theory, we get a ¢ with the required regularity. Then,
using this ¢ and taking into account (w, ¢)_1 = (w, ), we obtain

3 1t 3
(w,¢) = Z m'y' [ {vl . — (KL)*0'¢, bdo + Z m'y'hv'C,
i=1 0 i=1

o=l
1.1 2.2
M= o 9 3 3\, 1,1 ma” 33 1,.1y,.22
— C°K: — K2 — C’K. — C K,V
sl ( * *) 77| o 52 ( * *) 77| o
3.3
moyT o4 2 2\ 3,3
— —F(c'k, — kv
83( * *) 97| —o

It follows from w € (H')’ that v € H3. Further, the integration by parts formula gives

=t

3 1t 3
(w,¢) =Y min' [ {ul, + ()0} Cdo + > miy'{v] + hiv'},
i=1 0 i=1 7

1
L)1 2.2 _ 3.3y 1\ ,1
—mv{vajtsl(cm—c&*)v}w ;
o=

2.2 2 3.3 1,.1y\,,2 2
—my {Ucr_'_ (C Ky —C ’%*>U }Co‘o‘

? o=0
1
—miyt{ul + ekl — At b,
S o=0
3
+Y iy, + (520} oo (4.11)
=1

We first observe that the parts which except the boundary terms from (4.11) are a weak
formulation of w' = —m'y{v!_+ (k.)?v'} 4, for o € (0,1%) together with

{ mH{vge + (12)%0" o = m*{07, + (K2)%0*}e = m* {05, + (K0)*°},  at o =0,

{vi, + (K)*v'}, =0 at o=I"

From the boundary terms of (4.11) at ¢ = I*, we derive (4.7) by using the fact that ¢’ is
arbitrarily at o = [*. Note that

m'y' L+ mPPC, +mPYPE =0 at o =0. (4.12)
Using m!¢t = m?¢2 = m3¢3 at 0 = 0 and (4.12) in the boundary terms of (4.11) at

o = 0, we obtain the second and third conditions in (4.6). Thus v is a weak solution of
the linearized system (4.5), (3.6), (3.7). O
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5 Self-adjointness of the linearized operator
Set

D(A) ={v = (v',v*,v*) € H?| v satisfies (4.6) at 0 =0, (4.7) at 0 = I, and

13

I 2
/ vld0:/ U2d0':/ v do}.
0 0 0

Then we define the linearized operator A : D(A) — X as

3 /i

(o€ = S [ 9t {uh, + ()Y€ o

i=1
for all v € D(A) and € € ). This definition gives for all ¢ € £

(Av, ) 1 = —I[v, ¢].
For this operator A, we have the following lemma.
Lemma 5.1 The operator A is symmetric with respect to the inner product (-,-)_1.
Proof. Since vy, vy € D(A) implies vy, vs € £, we have

(Avy,v9) 1 = —I[v1,v3] = —I[vy,v1] = (Avg, v1)_1 = (Va, Avy)_1.

Thus A is symmetric. [

Now we use the notation

3 1/2 3 1/2
o]l = <Z ||v’||2> vl = (Z ||v’||31>
i=1 1=1

for v = (v',v2,v%), where || - || is the L?norm and || - ||_; = {(-,-)_1}"/%. The following
lemmas will be needed.

Lemma 5.2 (Poincaré-type inequality) For allv € &, there exists a C > 0, which depends
onl' (i=1,2,3), such that
[v]] < Cllvg]|.

Proof. First we prove that there are j € {1,2,3} and o; € [0,#] such that v’(o;) = 0.
We show the assertion by a contradiction. If not, then v* has a definite sign for each
i €{1,2,3} and o € [0,%]. Since v € &, v" (i = 1,2, 3) satisfy

13

I 12
/ vld0:/ U2d0':/ v® do. (5.1)
0 0 0

This implies that v must have the same sign for i = 1,2,3 and ¢ € [0,1’]. But this
contradicts to y'v! +42v? 4+ 4303 =0 at 0 = 0.
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By the above fact, we derive

o 17
/dws/Wwwswwwm
o 0

[0 (0)| =

Then it follows from (5.1) that

2 4 4
[ o] =| [ o] < [ 1lao < @R < 02wl (52
0 0 0

li
Setting v’ = (li)_l/ v'do, (5.2) implies
0

lvgu | < ()72 (1) 2w . (5:3)

lz‘
By means of / (v' =" )do = 0 and Schwarz’s inequality, we obtain
0

li
w_%mﬂhmwsmmmm

so that ' ' o '
[v" = v, | < Ulvg |l < U lvg - (5.4)

By (5.3) and (5.4), we are led to the desired inequality. [

Lemma 5.3 For all 6 > 0 there exists a constant Cs > 0 such that for all v € £ and
each v = 1,2,3 the inequality

[0'(0)* < 8flwa* + Csllwll,
holds. The same inequality holds for v'(1I*) instead of v*(0).

Applying a similar argument to the proof of [7, Lemma 5.2] and using Lemma 5.2, we can
prove this lemma. Thus we omit the proof.

Lemma 5.4 There exist c; > 0 and ¢y > 0 such that
|vs|I?> < erl|v]|2) + cal[v,v]  forall vEE.

The proof of this lemma is similar to that of [7, Lemma 5.3]. Thus we omit it.
Also, applying a similar argument as in the proof of [7, Corollary 5.4], the Lemma 5.4
implies the following corollary.

Corollary 5.5 The largest eigenvalue of A is bounded from above by c1/ce, where ¢y, co
are as in Lemma 5.4.

Then it follows from this corollary that
(Av,v)_1 < v (5.5)

with ¢ = ¢1/co.
By means of the above lemmas, we obtain the following theorem.
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Theorem 5.6 (i) The operator A is self-adjoint with respect to the inner product (-, -)_;.
(i) The spectrum of A contains a countable system of eigenvalues.
(i11) The initial value problem (3.5)-(3.7) is solvable for given initial data in X .

(iv) The zero solution is an asymptotically stable solution of (3.5)-(3.7) if and only if
the largest eigenvalue of A is negative.

Proof. Let us prove (i). By means of (5.5), we find a w € R such that the operator
B = wld— A is strongly monotone with respect to the inner product (-,-)_;. Since A is
symmetric (see Lemma 5.1), B is also symmetric. We show that R(B) = X', where R(B)
is the range of the operator B. For each f = (f!, f2, f3) € X, we need to prove that there
exists a weak solution v of the boundary value problem

{2 = 1 fr 7€ 0 (1129

. 5.6
(3.6) at c =0 and (3.7) at c =" (i = 1,2, 3). (5.6)

To obtain a weak solution of (5.6), we consider the minimizing problem
1 .
F(v) = s{I[v, o] + wllv]2,} = (f, )+ — min

for all v € £. It follows from Lemma 5.4 that F is coercive on £ for sufficiently large w, so
that this minimizing problem admits a solution v = (?%,9%,7%) when w is large enough.
Taking the first variation of F', we have

—{Uy + (KL)?0'} + ¢ + wuly = uf for o€ (0,1°) (i =1,2,3) (5.7)

with the first and second conditions in (3.6) at ¢ = 0 and the first condition in (3.7) at
o=1"(i =1,2,3), where ¢' (i = 1,2, 3) are constants satisfying (4.10). Then it follows
from uf, v € H'(0,1") (i = 1,2,3) that ¥ € H*. The sum of (5.7) for i = 1,2,3 leads
us to the third condition in (3.6) at ¢ = 0 and differentiating (5.7) twice in a weak sense
gives a weak formulation of m*y"{v’_+ (ki)*v'},, +wv’ = f? together with the remaining
boundary conditions in (3.6) and (3.7) (cf. Definition 4.4). Thus, for each f € X, there
exists v € D(B) (= D(A)) such that Bv = f. That is, we obtain R(B) = X'. This implies
that B is self-adjoint, so that A is self-adjoint.

The assertions (ii)-(iv) follow from the standard theory of self-adjoint operators and
the theory of semigroups, respectively (see [7, 12, 13]). This competes the proof of the
theorem. [

Lemma 5.7 Let
AL > A > A3 >

be the eigenvalues of A (taking into account the multiplicity).
(i) It holds for alln € N

I[v,v]

Ap =— inf sup
WeEn-1vew-+\{0} (v,v) 1

I
Ap = — sup inf v, v] .
Wes,_1 vewh\{o} (v,v)_

Y

Here ¥, is the collection of n-dimensional subspaces of € and W+ is the orthogonal
complement of W with respect to the H ™ '-inner product.
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(ii) The eigenvalues depend continuously on hi, I, and k.. Further, the eigenvalues are
monotone decreasing in each of the parameters h. (i =1,2,3).

Proof. The lemma follows with the help of Courant’s maximum-minimum principle to-

gether with the fact that I depends continuously on hl, I*, and %, and is monotone with

respect to hL. The proof follows the lines of Courant and Hilbert [1, Chapter VI]. [

6 Stability analysis

In this section, we apply the stability criterion formulated in the previous section to two
cases.

6.1 The case:k’ =0 (i =1,2,3)
Lemma 6.1 (i) The operator A has zero eigenvalues if and only if (hL, h%, h2) satisfies
A(hy, b2, h3) =0
with the form (a precise definition is given in the proof)

A(hi, hz, hi’) = &123hihzhi + &12hihz + azghzhi + aglhihi

+a1hi —F&ghi —l—aghi —I—Cl(), (61)
where ay93, aia, - -+, ag are positive constants depending continuously on " and I* (i =
1,2,3).

(ii) Set

S = {(hy, h2, h3) | A(hy, b2, h3) = 0}
The multiplicity of zero eigenvalues is equal to two if (hl,hZ, h3) = (hl, hZ . B2 )

*767 *707
€ S, where
( Bl — _ Q3102 + Q1203 — A123Q0 — Q2301

e 2(az1a12 — a123a1) ’

B2 — _ Q1203 + ag3a1 — a123a0 — a3102 (6 2)
e 2(a12a23 — a123a2) ’ '

B3 — _ Q2301 + agi1a2 — 412300 — A1203
*,C *

L 2(agsaz1 — ajazas)

Further, it is equal to one if (hl,h?, h3) € S\ {(hl,, b2 . B2 )}

Proof. In case that ! = 0(i = 1,2, 3), we obtain that eigenfunctions of zero eigenvalues
would have the form v'(0) := a40® + abo? + ajo + af), where o}, are constants. Then we
have

v (0) = 3aho® + 2abo +af, v (o) = 6ako +2ak, v (o) = 6ak.

7
oo

The boundary condition v’, =0 at o = [" gives a4 = 0. This implies that

v'(0) = abo? +alo +af, vi(o)=2abo+al, v (0)=2dl.

o oo
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By virtue of the boundary conditions

ALl 4 4202 4 ABy3 = (),

2 3

v, = Vs = U,

1
Voo + Vo0 + 72055 =0,

at 0 = 0, we are led to

Yag + 72k +3ad =0,

at = a? = a3,

Ylad +v2ad +~3ad = 0.

Further, by virtue of the boundary condition
vl 4+ hivt =0

at o = [’, we have N . o N 4
(2040 + ad) + B {ab(1)? + il + ab} =0,
Since v (i = 1,2, 3) also satisfy

13

I 12
/ UldO'I/ U2dU:/ v3do,
0 0 0

we obtain
Loyis o1 11 11 L 9o 1 oo
ay ()’ 4+ o (1) + agl” = a3 (%) + =i (%)
3 2 3 2
1 1 1 1
gaé(ll)?’ + §ai(ll)2 + apl' = gag’(l?’)?’ + §a§(l3)2

(6.3)
(6.4)
+ agl?
(6.5)
+ adl®.

Then A = 0 is an eigenvalue if and only if the equations (6.3)-(6.5) have a nontrivial

3

solution (o}, ad, ag, af,a? a3, al a3, ai) # 0, which is equivalent to det [M(hl, h? h3)] =

0 where M(hL, h2, h3) is a 9 x 9-matrix as follows:

R 0 0 0 0 0
0 O 0 1 -1 0 0 0 0
0 O 0 1 0 -1 0 0 0
0 0 0 0 0 0 f}/l 72 ,}/3
L0 0 1+ 0 0 2+ (1')2h! 0 0
0 A2 0 0 1+2r2 0 0 2% + (12)2h2 0
0o 0 B 0 0 1+Bh 0 0 203 + (I3)2h3
1)2 2\2 1\3 2\3
Lo (GO ) () _ )
l F 0 5 5 0 5 5 0
1)2 3\2 1\3 3\3
| s @) _ ) () _ )
L l 0 : 2 0 2 3 0 3 _



Setting A(hL, h2, h3) := det [M(hl, h% h3)], we obtain the form (6.1). Also, by means of
the precise computation by MAPLE, we can observe that ajs3, a2, -+ ,ag are positive.
This completes the proof of (i).
Let us prove (ii). By using MAPLE, we can derive
rank [M(hy ., b7 ., B .)] = 1.
This implies that the multiplicity of zero eigenvalues is equal to two, provided that
(RY, h2,B3) = (hl ., k2., h3,) € S. Also, by using MAPLE again, we see that for (hl, h? h3) €

k9 Toxy 1oy *,c7 ' Ux,e0 Tk e k9 Toxy 1oy

S\A(he e b2 B2 )}

ERGRAE N Rt N

rank [M(h!, B2, )] = 8,

which means that the multiplicity of zero eigenvalues is equal to one, provided that
(h’iv h'z? hi’) < 8 \ {(h’i,c? hi,c? hi’,c)} D
Remark 6.2 Set h., := —ags/a1z3. Then, if hl # hy,, the form of A(hl, h? h2) =0 is

*,a7 s9 Ty 10y
represented as

<h2 N as hl + as ) (h3 ajphl + as ) (as1a12 — arazar)(hl — hl,)?

— ’ 6.6
aiozhl + ags aia3hl + ags (@123} + as3)? (6.6)

with aziais — aeza; > 0. Also, if ht = hl | the form of A(hL, h% h3) = 0 is represented as

*,a)
(a12a93 — 0123a2)hi + (agsas; — a1230l3)hi’ + agza; — ajgzag = 0. (6.7)

Note that A(hL, h%, h2) = 0 has the descriptions (6.6) and (6.7) if and only if the constants
123, Q12, "+ + , Ao Satisfy

4(a2a3 - a23a0)(a31a12 - a123a1) - (a31a2 + a12a3 — Q12300 — a23a1)2 = 0.

The other descriptions of A(hL,h? h3) =0 as (6.6) and (6.7) are derived by rotating the
number {1,2,3} in order.

Let us analyze A(hl, h2, h3) = 0 which implies that the operator A has zero eigenvalues.
For simplicity, we only consider the case that

71:72:73:1’ 12213:1.

Note that 4! =42 = 43 = 1 implies 0! = 6% = * = 27/3 by virtue of Young’s law (1.8).
Set [ := d. Then it follows that

Qros =2d* + 16 d> +12d*> +4d + 2,

o =az =3d" +32d +30d> +12d+7, a3 =8d®> +48d* +24d + 4,
a1 =48>+ T72d*+36d+24, ay=a3=12d>+96d* +60d + 12,

ap = 36 (1+2d)>

2
R e

Also, (hl

*,C)

h? ) is represented as

P +12d(4d+1)
—1+4+6d2+16d3 + 3dY

hl, = 2, =-3,

*,C

= -3,
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h3 -2

Figure 1: The configuration of S; d =1(—1+6d*> + 16d®> + 3d* > 0)

which imply that the multiplicity of zero eigenvalues is equal to two. Further, we obtain

=20, h,=-2L <o, B,=-"2 <0 (6.8)
' ayo3 ’ a123 ’ 123
and
pLopl 2(1+6d+3d*+2d%)?

(—14+6d2+16d3+3d*) (d*+8d> +6d2+2d + 1)’
—1+6d*>+16d%+3d*
(d*+8d3+6d2+2d+1)

2 2 _ 1.3 3
h*,a - h*,c - h’*,a - h*,c - 2

It follows that h’i,a > h’i,c (1 =1,2,3), provided that the parameter d is large enough such
that —14+6d? +16d> +3d* > 0. Then we obtain a situation as in Fig. 1. Also, it follows
that hfw < hi,c (1 = 1,2,3), provided that the parameter d is small enough such that
—14+6d*>+16d®+3d* < 0. Then we are led to a situation as in Fig. 2. Now we prepare
the following notations.

Sy = {(hl,h2,h3) € S|hi >N, (i =1,2,3)},
S=S\(SUS). (69)
8y = {(hL, B2, 1E) € S|H. < hi, (i =1,2,3)},
Rl = {(hiv hza hi) S R-i— | hfk > hi,a (7’ = 1’2’3)}’
Ro :=R_\ Ry,

Rs:=R: \ Ry, , .

Ry = {(hl, b2, h3) € R Bl < b, (i =1,2,3)},

where R := {(hl, hZ, h3) | A(hl, b2, h3) > 0} and R_ = {(hl, h? h3)| A(hL, K2 h3) < 0}.

(6.10)

Theorem 6.3 Let Ny be the number of positive eigenvalues and Ny be the number of
zero eigenvalues. Set ' =2 = =1,1' =d, and > =3 = 1.
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h3

Figure 2: The configuration of S; d = 0.01 (=1 +6d* + 16d> + 3d* < 0)

(1) Assume that the parameter d satisfies —1 4+ 6d* + 16 d> + 3d* > 0. Then we obtain

Ny =0,
Ny =0,
Ny =1,
Ny =1,
Ny =1,
Ny =2,
Ny =2,
Ny =3,

Ny =0
Ny =1
NNZO
NN:1
NN:2
NNZO
NN:1
NNZO

if
if
if
if
if
if
if
if

(
(
(
(
(
(
(
(

hl b2 h3) € Ry (i.e. T, is linearly stable),

hl h2h

* 9 £

€ 817
€ R2>

hl h2 h3 ESQ\{( *c? *c?h3 )}

3
hl h?, h3
3

hi, h2h

( *,C) *C’

hl h2 h?) € R,
hl h2 h3 683\{( N *c?h3 )}
hl h2 h3 S R47
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)
)
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)
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(ii) Assume that the parameter d satisfies —1 + 6d* + 16 d®> + 3d* < 0. Then we obtain

Ny =0,
Ny =0,
Ny =0,
Ny =1,
Ny =1,
Ny =2,
Ny =2,
Ny =3,

Proof. We only prove (i). The proof of (ii) is given by a similar argument. Set (hl, hZ, h?)
(0,0,0). Then this implies that

Ny =0
NN:1
NN:2
Ny =0
NN:1
NNZO
NN:1
NNZO

if
if
if
if
of
if
if
if

(
(
(h.
(
(
(h.
(h.
(h.

hl, h?, h3

* 9 %)

hl, h2,

h1 h2

* 9 %)

hi, h?,

( *,C) *C’

€ R,

h3 )681 ﬂSg,



Figure 3: stable stationary solution (d = 1, (hl, h2, h3) = (0,0,0))

Since the maximal eigenvalue \; allows the characterization

I
>\1 = — inf [’v’ 'U] s
vee\{0} (v, V)

we have A\; < 0. Also, it follows from Lemma 6.1(i) and A(0,0,0) = 36 (1+2d)? > 0 that
all eigenvalues are not zero for (hl, h2, h3) = (0,0,0). Thus, in this case, we see \; < 0,

£ %)

so that all eigenvalues are negative. Further, by means of (hl, h? h3) = (0,0,0) € R4,
Lemma 5.7, and Lemma 6.1, we are led to A\; < 0 as long as (hl, h? h3) € R,. Hence
all eigenvalues are negative, provided that (hl,h2, h?) € R,. Using Lemma 5.7 and

Lemma 6.1 again, we are led to the desired results. [J

Let us consider the stability of stationary solutions for situations as in Fig. 3 and Fig. 4.
For a stationary solution as in Fig. 3, we observe (6.8) and

A(0,0,0) = ap =36 (1+2d)>>0

for all d > 0. These imply that the point (hL, h2, h3) = (0,0,0) is included in R, for all
d > 0. Thus we obtain that all eigenvalues are negative, so that a stationary solution as
in Fig. 3 is linearly stable. We remark that this agrees with the result which is shown in

[11] in a sense of nonlinear. For a stationary solution as in Fig. 4, we derive

A(-1,-1,-1)=0, hl,= —g <—1(i=1,2,3)
at d = 1. This gives that the point (hl, h?, h3) = (=1, —1,—1) exists on S; in Fig. 1. Thus
we obtain that one eigenvalue is zero and the others are negative, so that the stability
of a stationary solution as in Fig. 4 is neutral in the linearized problem. We remark that
the zero eigenvalue is a consequence of the fact that the total length is invariant under
rotation in the geometry of Fig. 4.
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Figure 4: neutral stationary solution (d = 1, (hl, h2 h3) = (—1,-1,-1))

6.2 The case:k! =0 and k' # 0 (i = 2, 3)

By means of k! = 0 and (2.1), we have v?k2 + 73k, = 0. Set k3 := k. (# 0), which gives

k2 = =3k, /7. Now we only consider the case that

V=r2=43=1 '=+V3, P=013(=d).

Then we have k2 = —k,. Under these assumptions, we obtain the following lemma.
Lemma 6.4 (i) The operator A has zero eigenvalues if and only if (hL, h2, h2) satisfies
A(hl b2 ) = 0
with the form
A(hL, b2, h2) = G1oshlh?h3 + Giohth? + Gosh?h3 + Gy W3R}
+arhl + Gh? + ash? + a,

where ays3, a1, - - , g are constants depending continuously on k. and d.

(i1) Set
S = {(hy, B 02 | ARy, B2, BY) = 0}

The multiplicity of zero eigenvalues is equal to two if (hl, h? h3) = (%iﬁ,%ic,ﬁi”c)

€ S, where h. . (i =1,2,3) are described by replacing ayas, a1z, - -+ ,ag in (6.2) with

Grog, Qi2, - -+, Go. Further, it is equal to one if (h}, h2, h%) € 8 \ {(hye hZ o h3 )}
Proof. 1In this case, eigenfunctions of zero eigenvalues have the form v'(o) := alo® +
wyo® + ajo + af and v'(0) = ajo + of + alcos(klo) + ol sin(klo) (i = 2,3), where

ab,af,ad al b ab ol ol (i = 2,3) are constants. A similar argument of the proof of
Lemma 6.1 leads us to the desired results. Thus we omit it. [

Let us analyze A(hL, h2, h?) = 0 which implies that the operator A has zero eigenvalues.
For simplicity, we set

1

Ky = —.

2
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Then d can be chosen in
8
0<d< 5

Using MAPLE, it can be checked that A(hL, h2 h3) = 0 has the same descriptions as in

Remark 6.2. Further, We can check by MAPLE that A, < ?Lia (i = 1,2,3) are fulfilled
and ?Lia (i = 1,2,3) are monotone increasing with respect to d. Now we use the notations
gj (j=1,2,3) and Ry, (k = 1,2,3,4), which are described by replacing A(hl, h2, h3) and
hi, in (6.9) and (6.10) with A(hL, h2, h3) and ﬁi’a, respectively.

Let us consider the stability of a stationary solution as in Fig.5. According to [3], a
stationary solution as in Fig.5 with (hl, h% h2) = (0,0,0) is stable. Also, MAPLE gives
Fig. 8 as the configuration of A(hL, h2 h3) =0 at d = /3. Since

* 7 * *

K(0,0,0)zgjt% > 0,

hl,~—147<0, h%,~-201<0, h?,~-2.01<0

at d = 7/3, the point (h!, k2, h?) = (0,0,0) is included in R, in Fig.8. Then it follows
from Lemma 5.7 and Lemma 6.4 that a stationary solution as in Fig.5 is stable, provided
that (hl, h2, h3) € R,. Further, we can obtain the same results as in Theorem 6.3 (i).

_ Let us consider the stability of stationary solutions as in Fig.6 and Fig.7. Note that
A(hL, h2, h3) = 0 depends continuously on the parameter d with keeping the configuration
as in Fig. 8 for 0 < d < 87/3. Then MAPLE gives Fig.9 and Fig. 10 as the configurations
of A(ht,h2 h3) =0 at d = 47/3 and d = 2, respectively. We consider the stability of a

*) * *

stationary solution as in Fig.6 with (hl, h2, h3) = (0,0,0). Since

A(0,0,0) = 0,
B, ~—067<0, B2, ~—044<0, h2, ~—044<0

at d = 4 /3, the point (ht, h2, h3) = (0,0, 0) exists on S; in Fig. 9. Thus we obtain that one
eigenvalue is zero and the others are negative, so that the stability of a stationary solution
as in Fig.6 is neutral in the linearized problem. We remark that the zero eigenvalue
is a consequence of the fact that the total length is invariant under translation in the
geometry of Fig. 6. Finally, we consider the stability of a stationary solution as in Fig.7

with (hl, h2, h2) = (0,0,0). Since

- 2 33
A(0,0,0):—%— \/8_”

hl,~—017<0, h2,~—-011<0, h2,~—0.11<0

< 0,

at d = 2, the point (h!, h2, h%) = (0,0,0) is included in R, in Fig. 10. Thus we obtain
that one eigenvalue is positive and the others are negative, so that a stationary solution
as in Fig.7 is unstable.
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Figure 5: stable stationary solution (d = 7/3, (hl, hZ, h3) = (0,0,0))

120°

Figure 6: neutral stationary solution (d = 47 /3, (hl, h2 h3) = (0,0,0))

* ) *

Figure 7: unstable stationary solution (d = 2, (hL, h2, h3) = (0,0,0))
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Figure 10: The configuration of g; d=2m
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