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Abstract. We study a fourth order geometric evolution problem on a network of curves
in a bounded domain Ω. The flow decreases a weighted total length of the curves and
preserves the enclosed volumes. Stationary solutions of the flow are critical points of
a partition problem in Ω. In this paper we study the linearized stability of stationary
solutions using the H−1-gradient flow structure of the problem. Important issues are the
development of an appropriate PDE formulation of the geometric problem and Poincaré
type estimate on a network of curves.
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1 Introduction

Motion by surface diffusion
V = −∆sκ (1.1)

is a fourth order geometric evolution for an evolving hypersurface Γ = {Γt}t≥0 that has
the property that the perimeter of the enclosed volume decreases whereas the volume is
conserved. The latter is in contrast to the second order motion by mean curvature V = κ
where also the perimeter decreases but the volume is not conserved. In the above, V is
the normal velocity of the surface, κ is the sum of the principal curvatures of the surface,
and ∆s is the Laplace-Beltrami operator of the surface.

The surfaces with constant mean curvature are stationary solutions of (1.1). A natural
question to ask is whether these solutions are stable under (1.1). This question has been
answered positive by Elliott and Garcke [2] for circles in the plane and by Escher, Mayer
and Simonett [4] for spheres in higher dimensions.

If a hypersurface lies in a bounded domain Ω and is attached to the outer boundary, the
surface diffusion has to take care of boundary conditions. Natural boundary conditions
are a 90◦ angle condition and a no-flux condition, i.e. we require on Γ ∩ ∂Ω

a 90◦ angle condition, (1.2)

τ · ∇sκ = 0, (1.3)

where ∇s is the surface gradient and τ is the outer conormal of Γ at its boundary points.
We remark that we assume that ∂Γ is contained in ∂Ω. For this evolution law, a linearized
stability criterion for spherical arcs that attach to the boundary with a 90◦ angle condition
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has been given by the authors [7]. For the mean curvature flow, one can also consider
situations where a hypersurface is attached to the outer boundary. In this case, only an
angle condition has to be fulfilled. We refer to [5, 6] for a stability analysis in this case.

In many situations of interest, different hypersurfaces moving by surface diffusion meet
at junctions. Assume that three evolving hypersurfaces Γi = {Γi

t}t≥0 fulfill the surface
diffusion equation

V i = −miγi∆sκ
i (1.4)

for i = 1, 2, 3, where γi is the surface energy density of the interface i and mi is the
mobility of the interface i. If the three hypersurfaces meet at a triple junction p(t), we
require that the following conditions hold:

∢(Γ1(t),Γ2(t)) = θ3, ∢(Γ2(t),Γ3(t)) = θ1, ∢(Γ3(t),Γ1(t)) = θ2, (1.5)

γ1κ1 + γ2κ2 + γ3κ3 = 0, (1.6)

m1γ1∇sκ
1 · T 1 = m2γ2∇sκ

2 · T 2 = m3γ3∇sκ
3 · T 3. (1.7)

Here the quantity ∢(Γi(t),Γj(t)) denotes the angle between Γi(t) and Γj(t), and T i is the
inner conormal to ∂Γi(t) at the triple junction. The angle conditions (1.5) follow from a
force balance at the triple junction (Young’s law), the second condition (1.6) follows from
the continuity of chemical potentials, and the third conditions (1.7) are the flux balance at
the triple junction. The angles θ1, θ2, θ3 are related through the identity θ1 + θ2 + θ3 = 2π
and via Young’s law which is

sin θ1

γ1
=

sin θ2

γ2
=

sin θ3

γ3
. (1.8)

Then we obtain from (1.5) and (1.8) that

γ1T 1 + γ2T 2 + γ3T 3 = 0

which is the force balance at the triple junction. The condition (1.7) relates the inward
pointing parts of the fluxes miγi∇sκ

i to each other where ∇s denotes the surface gradient.
For a network of curves evolving with respect to (1.4) fulfilling (1.5)-(1.7) at the triple

junction and (1.2)-(1.3) at contact points with ∂Ω, a computation shows that a network
of curves decreases the weighted total length

3∑

i=1

γiL[Γi(t)] (1.9)

and preserves the enclosed areas. We refer to Garcke and Novick-Cohen [8] for more
details on the model and a verification of the above properties.

From the above properties, it seems natural to expect that surface diffusion for a
network of curves leads to solutions which converge for large time to solutions of a parti-
tioning problem, i.e. to a partition that minimizes (1.9) under a volume constraint. Or,
to be more precise, we expect the convergence to critical points of (1.9) at large time.
These large time limits will have constant curvature (on each curve) and fulfill the angle
conditions (1.2) and (1.5). In addition, the three constant curvatures on the arcs have to
fulfill (1.6). Such a network is a stationary solution to (1.4), (1.2)-(1.3), (1.5)-(1.7). It

2



is the goal of this paper to derive a stability criterion for stationary solutions to (1.4),
(1.2)-(1.3), (1.5)-(1.7). The criterion will be based on a linearized stability consideration.
In the papers [5, 6, 10], the authors studied linearized stability for the mean curvature
flow, and also the authors of this paper previously studied the case of surface diffusion
without triple junctions [7].

Let us briefly outline how we proceed. A first preparatory but important step is to
come up with a proper representation of a network of curves. We parameterize curves
around a stationary curve with the help of a modified distance function. It is not possible
to use distance functions since the triple junction might move and hence we have to
introduce a certain tangential adjustment in order to be able to parameterize for all time
on a fixed parameter interval. The requirement that all curves meet at a triple point
leads to additional difficulties. We then formulate the evolution problem with the help
of this parameterization and derive a highly nonlinear problem which will be linearized
in Section 3. The linearized problem is complicated but has a gradient flow structure
with respect to a certain H−1-inner product on a network of curves. This is the main
observation which will greatly simplify the stability analysis. In fact the linearized problem
is the gradient flow of the quadratic form related to the second variation of (1.9) and hence
one can expect that the stability of solutions depends on the fact whether the stationary
solutions is a linearly stable extremum of (1.9).

In order to use spectral theory to analyze the linearized problem, we show self-
adjointness of the linearized spatial operator with respect to the H−1-inner product. Fur-
ther, we show that the spectrum and hence the stability behaviour has a certain monotone
dependence on the curvature of the outer boundary and the length of the curves. We then
formulate the stability criterion and finally apply the criterion to several specific geome-
tries. In this context, we refer to the proof of the double bubble conjecture [9] where also
a stability analysis involving the second variation of configurations with triple junction
has been used.

2 Parameterization and PDE formulation

In this section, we derive parameterizations that are convenient to formulate the evolution
problem in a PDE context. Let Ω be a bounded domain in R

2 containing (0, 0) and having
smooth boundary. We assume that Ω and ∂Ω are given as

Ω = {x ∈ R
2 |ψ(x) < 0}, ∂Ω = {x ∈ R

2 |ψ(x) = 0}

with a smooth function ψ : R
2 → R with ∇ψ(x) 6= 0 if x ∈ ∂Ω, i.e. if ψ(x) = 0. Let

Γi
∗ (i = 1, 2, 3) be straight lines or circular arcs with constant curvature κi

∗ satisfying

γ1κ1
∗ + γ2κ2

∗ + γ3κ3
∗ = 0. (2.1)

Further, the Γi
∗ (i = 1, 2, 3) are assumed to meet the outer boundary with an angle π/2

and have (0, 0) (without loss of generality) as a common point (triple junction). Then we
define an arc-length parameterizations of Γi

∗ (i = 1, 2, 3) as

Γi
∗ = {Φi

∗(σ) | σ ∈ [0, li]}

with Φi
∗(0) = (0, 0) and Φi

∗(l
i) ∈ ∂Ω, where li is the length of Γi

∗. Note that Φi
∗ can be

extended naturally either to a parameterization of a full circle or a straight line. We now
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introduce a stretched curvilinear coordinate system around the curves Γi
∗ (i = 1, 2, 3). In

order to allow for a tangential stretching of the coordinate system close to ∂Ω, we set

µi
Ω(q) := max{σ |Φi

∗(σ) + qN i
∗(σ) ∈ Ω}.

Now we define a set of admissible parameterizations with the help of

ρi : [0, li] → R, µi ∈ R (i = 1, 2, 3)

which fulfill

Φ1
∗(µ

1) + ρ1(0)N1
∗ (µ1) = Φ2

∗(µ
2) + ρ2(0)N2

∗ (µ2) = Φ3
∗(µ

3) + ρ3(0)N3
∗ (µ3). (2.2)

Here the parameter µi allows for a tangential movement at the triple junction. In addition,
we define

Ψi(σ, q, µi) := Φi
∗(ξ

i(σ, q, µi)) + qN i
∗(ξ

i(σ, q, µi))

where
ξi(σ, q, µi) := µi +

σ

li
{µi

Ω(q) − µi}.

Note that ξi(σ, 0, 0) = σ and ξi(0, q, µi) = µi. Then we define

Φi(σ) := Ψi(σ, ρi(σ), µi)

as the parameterizations of a set of curves Γi (i = 1, 2, 3) having the properties that they
meet at a triple junction and end on the boundary ∂Ω. Note that

T i =
1

J i(ui)
Φi

σ, N i =
1

J i(ui)
RΦi

σ,

where ui = (ρi, µi),

J i(ui) := |Φi
σ(σ)| =

√
|Ψi

σ|2 + 2(Ψi
σ,Ψ

i
q)R2ρi

σ + |Ψi
q|2|ρi

σ|2,

and R denotes the anti-clockwise rotation by π/2. We now consider evolving curves

Γi(t) := {Φi(σ, t) | σ ∈ [0, li]} (2.3)

where the Φi are defined for each t via admissible (ρ1(σ, t), ρ2(σ, t), ρ3(σ, t), µ1(t), µ2(t), µ3(t)),
i.e. we require that (2.2) holds.

We now derive evolution equations for ρi and µi that have to hold in the case that
Γi (i = 1, 2, 3) in (2.3) solve (1.4), (1.2)-(1.3), (1.5)-(1.7). The normal velocity V i of Γi(t)
is given as

V i = (Φi
t, N

i)R2 =
1

J i(ui)

{
(Ψi

q, RΨi
σ)R2ρi

t + (Ψi
µ, N

i)R2µi
t

}

where

N i =
1

J i(ui)
(RΨi

σ +RΨi
qρ

i
σ).
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In addition, the curvature κi(= κi(ui)) of Γi(t) is computed as

κi(ui) =
1

(J i(ui))3
(Φi

σσ, RΦi
σ)R2

=
1

(J i(ui))3

[
(Ψi

q, RΨi
σ)R2ρi

σσ + {2(Ψi
σq, RΨi

σ)R2 + (Ψi
σσ, RΨi

q)R2}ρi
σ

+ {(Ψi
qq, RΨi

σ)R2 + 2(Ψi
σq, RΨi

q)R2 + (Ψi
qq, RΨi

q)R2ρi
σ}(ρi

σ)2 + (Ψi
σσ, RΨi

σ)R2

]
.

Thus the surface diffusion equation (1.4) can be reformulated as

ρi
t = −miγiai(ui)∆(ui)κi(ui) + bi(ui)µi

t, (2.4)

where

ai(ui) :=
J i(ui)

(Ψi
q, RΨi

σ)R2

, bi(ui) := −
(Ψi

µ, RΨi
σ)R2 + (Ψi

µ, RΨi
q)R2ρi

σ

(Ψi
q, RΨi

σ)R2

,

∆(ui) :=
1

J i(ui)
∂σ

( 1

J i(ui)
∂σ

)
=

1

(J i(ui))2
∂2

σ +
1

J i(ui)

(
∂σ

1

J i(ui)

)
∂σ.

Remark 2.1 The terms bi(ui)µi
t will give no contributions to the linearization (see Sec-

tion 3). However, using (2.2) and (2.4), µi
t can be written with the help of ∂4

σρ
i|σ=0 and

some lower order differential terms. For the nonlinear problem, it can be shown that these
terms are perturbations of the principal part when we study the generator of the analytic
semigroup for the equation (2.4).

Let us discuss the boundary conditions at the triple junction. First we have

Φ1(0) = Φ2(0) = Φ3(0). (2.5)

This is just (2.2). The angle conditions (1.5) are given by

(Φ1
σ,Φ

2
σ)R2 = |Φ1

σ||Φ2
σ| cos θ3, (Φ1

σ,Φ
3
σ)R2 = |Φ1

σ||Φ3
σ| cos θ2 (2.6)

at σ = 0 with the representation

(Φi
σ,Φ

j
σ)R2 = (Ψi

σ,Ψ
j
σ)R2 + (Ψi

σ,Ψ
j
q)R2ρj

σ + (Ψi
q,Ψ

j
σ)R2ρi

σ + (Ψi
q,Ψ

j
q)R2ρi

σρ
j
σ.

The condition guaranteeing the continuity of the chemical potentials (1.6) can be restated
as

γ1κ1(u1) + γ2κ2(u2) + γ3κ3(u3) = 0 at σ = 0. (2.7)

The balance of fluxes m1γ1κ1
s = m2γ2κ2

s = m3γ3κ3
s is written as

m1γ1

J1(u1)
∂σκ

1(u1) =
m2γ2

J2(u2)
∂σκ

2(u2) =
m3γ3

J3(u3)
∂σκ

3(u3) at σ = 0. (2.8)

Remark 2.2 The equations (2.5)-(2.8) lead to nine conditions at σ = 0. The three fourth
order PDEs for the functions ρi (i = 1, 2, 3) in (2.4) need six boundary conditions at σ = 0,
i.e. there are six degrees of freedoms coming from the PDEs in (2.4). We have three
additional degrees of freedoms for µi (i = 1, 2, 3), so that the number of conditions agree
with the number of degrees of freedoms. Thus the number of the boundary conditions at
σ = 0 is appropriate.
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On the outer boundary ∂Ω, we obtain that the angle condition (1.2) is equivalent to
(RΦi

σ,∇ψ(Φi))R2 = 0 and hence we have

(RΨi
σ +RΨi

qρ
i
σ,∇ψ(Ψi))R2 = 0 at σ = li (i = 1, 2, 3). (2.9)

The no-flux condition κi
s = 0 is equivalent to

∂σκ
i(ui) = 0 at σ = li (i = 1, 2, 3). (2.10)

3 Linearization

In this section, we linearize the nonlinear boundary value problem stated in Section 2.
The functions Ψi have the following properties which we need to derive the linearized
problem.

Lemma 3.1 The parameterizations Ψi in Section 2 fulfill

(i) Ψi(σ, 0, 0) = Φi
∗(σ) and Ψi(σ, q, 0) = Φi

∗(σµ
i
Ω(q)/li) + qN i

∗(σµ
i
Ω(q)/li).

(ii) Ψi
σ(σ, 0, 0) = T i

∗(σ), Ψi
q(σ, 0, 0) = N i

∗(σ), and Ψi
µ(σ, 0, 0) = (1 − σ/li)T i

∗(σ).

(iii) Ψi
σσ(σ, 0, 0) = κi

∗N
i
∗(σ), Ψi

σq(σ, 0, 0) = −κi
∗T

i
∗(σ), and Ψi

σµ(σ, 0, 0) = (−1/li)T i
∗(σ) +

(1 − σ/li)κi
∗N

i
∗(σ).

(iv) Ψi
σσq(σ, 0, 0) = −(κi

∗)
2N i

∗(σ) and Ψi
σσµ(σ, 0, 0) = (−2κi

∗/l
i)N i

∗(σ)−(1−σ/li)(κi
∗)

2T i
∗(σ).

Proof. By the definition of Ψi, (i) is obvious. Let us prove (ii). Differentiating Ψi(σ, 0, 0) =
Φi

∗(σ) with respect to σ, we readily derive Ψi
σ(σ, 0, 0) = T i

∗(σ). Applying a similar ar-
gument to [7, Lemma 3.1], we obtain (µi

Ω(q))′|q=0 = 0. Thus it follows from (i) that
Ψi

q(σ, 0, 0) = N i
∗(σ). Moreover, by the definition of ξi, we have

ξi
µ(σ, 0, 0) = 1 − σ/li.

The definition of Ψi and the Frenet-Serret formulas give

Ψi
µ(σ, q, µi) = ξµ(σ, q, µ

i)(1 − qκi
∗)T

i
∗(ξ(σ, q, µ

i)).

Setting (q, µi) = (0, 0), the third property of (ii) is derived. Finally, by using (ii) and
Frenet-Serret formulas, we have (iii)-(iv). �

Using Lemma 3.1, we observe bi(0) = 0, J i(0) = 1, and

∂J i(0)[ηi] = −κi
∗v

i − 1

li
τ i (3.1)

where ∂J i(0)[ηi] is the Fréchet derivative of J i at 0 = (0, 0) and ηi = (vi(·), τ i) ∈
C1([0, li]) × R.

Let us derive the linearization of (2.4). We define the operator

F i(ui) := ρi
t −miγiGi(ui) − bi(ui)µi

t,

which maps functions ui = (ρi(·, ·), µi(·)) ∈ C4,1(Qi
T )×C1([0, T ]) to functions in C0,0(Qi

T )×
C0([0, T ]), where Qi

T := [0, li] × [0, T ] and

Gi(ui) := −ai(ui)∆(ui)κi(ui).

Then the equation (2.4) is represented as F i(ui) = 0. We derive the Fréchet derivative of
F i at 0 = (0, 0) in the following lemma.
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Lemma 3.2 The operator F i is Fréchet differentiable with the derivative

∂F i(0)[ηi] = vi
t +miγi{vi

σσ + (κi
∗)

2vi}σσ,

where ∂F i(0) is the Fréchet derivative of F i at 0 = (0, 0) and ηi = (vi(·, ·), τ i(·)) ∈
C4,1(Qi

T ) × C1([0, T ]).

Using Lemma 3.1 and taking into account bi(0) = 0, the proof of this lemma is similar to
[7, the proof of Lemma 3.2]. Thus we omit it.

Let us linearize the boundary conditions (2.5)-(2.10). We first derive the following
lemma from (2.5).

Lemma 3.3 Let (vi(·), τ i) (i = 1, 2, 3) be in C0([0, li])×R. Then we obtain the following
conditions at σ = 0:

(i) γ1v1 + γ2v2 + γ3v3 = 0 at σ = 0.

(ii) For i, j, k ∈ {1, 2, 3} mutually different

τ i =
1

si
(cjvj − ckvk) at σ = 0,

where ci := cos θi and si := sin θi.

Proof. Let us prove (i). For ui = (ρi(·), µi) ∈ C0([0, li]) × R, we set

B0(u
i,uj) := Φi

∗(µ
i) + ρi(0)N i

∗(µ
i) − Φj

∗(µ
j) − ρj(0)N j

∗(µ
j).

Then (2.5) is represented as B0(u
i,uj) = 0 at σ = 0. Computing the Fréchet derivative

of B0(u
i,uj) = 0, we derive

0 = ∂B0(0, 0)[ηi,ηj] = τ iT i
∗(0) + vi(0)N i

∗(0) − τ jT j
∗ (0) − vj(0)N j

∗ (0),

where ∂B0(0, 0)[ηi,ηj] is the Fréchet derivative of B0 at (0, 0) and ηi = (vi(·), τ i). This
implies that

τ iT i
∗(0) + vi(0)N i

∗(0) = τ jT j
∗ (0) + vj(0)N j

∗ (0). (3.2)

Set p∗ := τ 1T 1
∗ (0) + v1(0)N1

∗ (0) = τ 2T 2
∗ (0) + v2(0)N2

∗ (0) = τ 3T 3
∗ (0) + v3(0)N3

∗ (0). Then
we obtain (p∗, N

i
∗(0))R2 = vi(0) (i = 1, 2, 3), so that Young’s law for the stationary curves

Γi
∗ (i = 1, 2, 3) gives

3∑

i=1

γivi(0) =
3∑

i=1

γi(p∗, N
i
∗(0))R2 =

(
p∗,

3∑

i=1

γiN i
∗(0)

)
R2

= 0.

We prove (ii). By means of (3.2), we see

τ i = τ j(T i
∗(0), T j

∗ (0))R2 + vj(0)(T i
∗(0), N j

∗(0))R2.

Then it follows from the angle conditions for the stationary curves Γi
∗ at p∗ that

(T i
∗(0), T j

∗ (0))R2 = cos θk, (T i
∗(0), N j

∗(0))R2 = − sin θk
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for i, j, k ∈ {1, 2, 3} mutually different, so that we derive

τ i = τ j cos θk − vj(0) sin θk.

Setting ci := cos θi and si := sin θi, we have

(1 − cicjck)τ i = −
{
ckcisjvi(0) + skvj(0) + cksivk(0)

}
.

Further, (1.8) and (i) imply

(1 − cicjck)τ i = − 1

si

[{
(sksi − ckci(sj)2

}
vj(0) +

{
ck(si)2 − ckcisjsk

}
vk(0)

]

Since we observe

sksi − ckci(sj)2 = −cj(1 − cicjck), ck(si)2 − ckcisjsk = ck(1 − cicjck),

we are led to the desired result. �

Lemma 3.4 Let vi(·) (i = 1, 2, 3) be in C1([0, li]). Then, for i, j, k ∈ {1, 2, 3} mutually
different, the linearization of the angle conditions (2.6) are

1

si
(cjκj

∗ − ckκk
∗)v

i + vi
σ =

1

sj
(ckκk

∗ − ciκi
∗)v

j + vj
σ at σ = 0,

where ci := cos θi and si := sin θi.

Proof. For ui = (ρi(·), µi) ∈ C1([0, li]) × R, we set

B1(u
i,uj) := b1(u

i,uj) − J i(ui)J j(uj) cos θk,

where

b1(u
i,uj) := (Ψi

σ,Ψ
j
σ)R2 + (Ψi

σ,Ψ
j
q)R2ρj

σ + (Ψi
q,Ψ

j
σ)R2ρi

σ + (Ψi
q,Ψ

j
q)R2ρi

σρ
j
σ.

Then the boundary conditions for the angles are rewritten as B1(u
i,uj) = 0 at σ = 0,

which gives
∂B1(0, 0)[ηi,ηj] = 0 at σ = 0, (3.3)

where ∂B1(0, 0)[ηi,ηj ] is the Fréchet derivative of B1 at (0, 0) and ηi = (vi(·), τ i) ∈
C1([0, li]) × R. Let us derive the Fréchet derivative ∂B1(0, 0)[ηi,ηj]. Using Lemma 3.1,
the Fréchet derivative of Ψi

σ(0, ·, ·) at 0 = (0, 0) is

∂Ψi
σ(0, ·, ·)(0)[ηi] = −κi

∗T
i
∗(0)vi(0) +

(
−1

li
T i
∗(0) + κi

∗N
i
∗(0)

)
τ i.

This and Lemma 3.1(ii) imply that

∂b1(0, 0)[ηi,ηj]

= −κi
∗(T

i
∗(0), T j

∗ (0))R2vi(0) − 1

li
(T i

∗(0), T j
∗ (0))R2τ i + κi

∗(N
i
∗(0), T j

∗ (0))R2τ i

−κj
∗(T

i
∗(0), T j

∗ (0))R2vj(0) − 1

lj
(T i

∗(0), T j
∗ (0))R2τ j + κj

∗(T
i
∗(0), N j

∗ (0))R2τ j

+(T i
∗(0), N j

∗(0))R2vj
σ(0) + (N i

∗(0), T j
∗ (0))R2vi

σ(0),
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where ∂b1(0, 0)[ηi,ηj ] is the Fréchet derivative of b1 at (0, 0). The angle conditions for
the stationary curves Γi

∗ give

(T i
∗(0), T j

∗ (0))R2 = cos θk, (T i
∗(0), N j

∗(0))R2 = − sin θk, (N i
∗(0), T j

∗ (0))R2 = sin θk

for i, j, k ∈ {1, 2, 3} mutually different, so that

∂b1(0, 0)[ηi,ηj ] = − κi
∗v

i(0) cos θk − 1

li
τ i cos θk − κj

∗v
j(0) cos θk − 1

lj
τ j cos θk

+ (κi
∗τ

i − κj
∗τ

j) sin θk + (vi
σ(0) − vj

σ(0)) sin θk.

Then it follows from J i(0) = 1 and (3.1) that

∂B1(0, 0)[ηi,ηj ] = {(κi
∗τ

i − κj
∗τ

j) + (vi
σ(0) − vj

σ(0))} sin θk.

Thus (3.3) is equivalent to

{(κi
∗τ

i − κj
∗τ

j) + (vi
σ(0) − vj

σ(0))} sin θk = 0.

Since 0 < θk < π, we derive

κi
∗τ

i + vi
σ(0) = κj

∗τ
j + vj

σ(0).

Recalling Lemma 3.3(ii), we have

κi
∗

si
{cjvj(0) − ckvk(0)} + vi

σ(0) =
κj
∗

sj
{ckvk(0) − civi(0)} + vj

σ(0) (3.4)

for i, j, k ∈ {1, 2, 3} mutually different. Taking into account (1.8) and Lemma 3.3(i), we
observe

1

si
{cjvj(0) − ckvk(0)} =

1

γi

{cj
sj
γjvj(0) − ck

sk
γkvk(0)

}

=
1

γi

[cj
sj
γjvj(0) +

ck

sk
{γivi(0) + γjvj(0)}

]

=
1

γi

{ck
sk
γivi(0) +

(cj
sj

+
ck

sk

)
γjvj(0)

}

=
1

sk
{ckvi(0) − vj(0)},

Applying an analogous argument, we also have

1

sj
{ckvk(0) − civi(0)} =

1

sk
{vi(0) − ckvj(0)}.

Putting these terms into (3.4), we obtain

κi
∗

sk
{ckvi(0) − vj(0)} + vi

σ(0) =
κj
∗

sk
{vi(0) − ckvj(0)} + vj

σ(0).

This implies that

1

sk
(ckκi

∗ − κj
∗)v

i(0) + vi
σ(0) =

1

sk
(κi

∗ − ckκj
∗)v

j(0) + vj
σ(0).
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Using (1.8) and (2.1), we derive

1

sk
(ckκi

∗ − κj
∗) = − ck

γksi
(γjκj

∗ + γkκk
∗) −

1

sk
κj
∗

= − 1

sksi
(sjck + si)κj

∗ −
ck

si
κk
∗

= − 1

sksi
{sjck − (sjck + cjsk)}κj

∗ −
ck

si
κk
∗

=
1

si
(cjκj

∗ − ckκk
∗).

Also, we see
1

sk
(κi

∗ − ckκj
∗) =

1

sj
(ckκk

∗ − ciκi
∗).

This completes the proof. �

Lemma 3.5 Let vi(·) (i = 1, 2, 3) be in C3([0, li]). Then it holds

γ1{v1
σσ + (κ1

∗)
2v1} + γ2{v2

σσ + (κ2
∗)

2v2} + γ3{v3
σσ + (κ3

∗)
2v3} = 0,

m1γ1{v1
σσ + (κ1

∗)
2v1}σ = m2γ2{v2

σσ + (κ2
∗)

2v2}σ = m3γ3{v3
σσ + (κ3

∗)
2v3}σ

at σ = 0 and
vi

σ + hi
∗v

i = 0, {vi
σσ + (κi

∗)
2vi}σ = 0

at σ = li. Here the hi
∗ (i = 1, 2, 3) are the curvatures of ∂Ω at Γi

∗ ∩ ∂Ω, where we use the
sign convention that hi

∗ < 0 (i = 1, 2, 3) if Ω is convex.

Using Lemma 3.1, the proof of this lemma is similar to [7, the proof of Lemma 3.2 and
Lemma 3.3]. Thus we omit it.

By means of Lemma 3.2, Leamma 3.3(i), Lemma 3.4, and Lemma 3.5, we obtain the
linearized problem for t > 0

vi
t = −miγi{vi

σσ + (κi
∗)

2vi}σσ, σ ∈ (0, li) (3.5)

with the boundary conditions





γ1v1 + γ2v2 + γ3v3 = 0,

1

s1
(c2κ2

∗ − c3κ3
∗)v

1 + v1
σ =

1

s2
(c3κ3

∗ − c1κ1
∗)v

2 + v2
σ =

1

s3
(c1κ1

∗ − c2κ2
∗)v

3 + v3
σ,

γ1{v1
σσ + (κ1

∗)
2v1} + γ2{v2

σσ + (κ2
∗)

2v2} + γ3{v3
σσ + (κ3

∗)
2v3} = 0,

m1γ1{v1
σσ + (κ1

∗)
2v1}σ = m2γ2{v2

σσ + (κ2
∗)

2v2}σ = m3γ3{v3
σσ + (κ3

∗)
2v3}σ

(3.6)

at σ = 0 and {
vi

σ + hi
∗v

i = 0,

{vi
σσ + (κi

∗)
2vi}σ = 0

(3.7)

at σ = li (i = 1, 2, 3) where ci := cos θi and si := sin θi.
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4 Gradient flow structure

Let us consider the gradient flow structure of the linearized problem (3.5)-(3.7). For
k ∈ N, set

Hk := Hk(0, l1) ×Hk(0, l2) ×Hk(0, l3),

(Hk)′ := (Hk(0, l1))′ × (Hk(0, l2))′ × (Hk(0, l3))′,

Y :=
{
(ξ1, ξ2, ξ3) ∈ H1

∣∣ ξ1 + ξ2 + ξ3 = 0 at σ = 0,
∫ l1

0

ξ1 dσ =

∫ l2

0

ξ2 dσ =

∫ l3

0

ξ3 dσ
}
,

E :=
{
(v1, v2, v3) ∈ H1

∣∣ γ1v1 + γ2v2 + γ3v3 = 0 at σ = 0,
∫ l1

0

v1 dσ =

∫ l2

0

v2 dσ =

∫ l3

0

v3 dσ
}
,

X :=
{
(w1, w2, w3) ∈ (H1)′ | 〈w1, 1〉 = 〈w2, 1〉 = 〈w3, 1〉

}
,

where Hk(0, li) is the classical Sobolev space, (Hk(0, li))′ is the duality space of Hk(0, li),
and 〈·, ·〉 is the duality pairing between (H1(0, li))′ and H1(0, li).

Definition 4.1 We say that uw = (u1
w, u

2
w, u

3
w) ∈ Y for given w = (w1, w2, w3) ∈ X is

a weak solution of




−mi∂2
σu

i
w = wi for σ ∈ (0, li) (i = 1, 2, 3),

u1
w + u2

w + u3
w = 0 at σ = 0,

m1∂σu
1
w = m2∂σu

2
w = m3∂σu

3
w at σ = 0,

∂σu
i
w = 0 at σ = li (i = 1, 2, 3),

(4.1)

if uw = (u1
w, u

2
w, u

3
w) ∈ Y satisfies

〈w, ξ〉 =
3∑

i=1

mi

∫ li

0

∂σu
i
w∂σξ

i dσ (4.2)

for all ξ = (ξ1, ξ2, ξ3) ∈ Y.

Remark 4.2 Assume that uw is a smooth solution of (4.1). Then the duality pairing
between w ∈ (H1)′ and ξ ∈ H1 reduces to

〈w, ξ〉 =

3∑

i=1

mi

∫ li

0

(−∂2
σu

i
w) ξi dσ.

It follows from the integration by parts formula that

〈w, ξ〉 =
3∑

i=1

mi

{
[
(−∂σu

i
w) ξi

]σ=li

σ=0
+

∫ li

0

∂σu
i
w∂σξ

i dσ

}
.

Using in addition the condition ξ1 + ξ2 + ξ3 = 0 at σ = 0 for ξ ∈ H1, the boundary terms
vanish by means of m1∂σu

1
w = m2∂σu

2
w = m3∂σu

3
w at σ = 0 and ∂σu

i
w = 0 at σ = li (i =

1, 2, 3). Hence uw satisfies (4.2) for all ξ ∈ Y ⊂ Ỹ := {ξ ∈ H1 | ξ1 + ξ2 + ξ3 = 0 at σ = 0}.
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Conversely, let uw with u1
w + u2

w + u3
w = 0 at σ = 0 be a smooth solution of the weak

formulation (4.2). We first show that (4.2) holds for all ξ̃ ∈ Ỹ . For each ξ̃ ∈ Ỹ , there
exist constants (c1, c2, c3) such that

(ξ̃1 − c1, ξ̃2 − c2, ξ̃3 − c3) ∈ Y .

Indeed, taking into account ξ̃1 + ξ̃2 + ξ̃3 = 0 at σ = 0, we need to find (c1, c2, c3) satisfying

c1 + c2 + c3 = 0,

∫ l1

0

ξ̃1 dσ − c1l1 =

∫ l2

0

ξ̃2 dσ − c2l2 =

∫ l3

0

ξ̃3 dσ − c3l3. (4.3)

Since the matrix 


1 1 1
−l1 l2 0
0 −l2 l3




is invertible, there exist constants (c1, c2, c3) such that (4.3) is fulfilled. Thus, using

(ξ̃1 − c1, ξ̃2− c2, ξ̃3 − c3) ∈ Y as a test function in (4.2), it follows from 〈w1, 1〉 = 〈w2, 1〉 =
〈w3, 1〉 and c1 + c2 + c3 = 0 that

3∑

i=1

〈wi, ξ̃i − ci〉 =

3∑

i=1

〈wi, ξ̃i〉 −
3∑

i=1

ci〈wi, 1〉 =

3∑

i=1

〈wi, ξ̃i〉.

This implies that (4.2) holds for all ξ̃ ∈ Ỹ . The integration by parts formula gives

〈w, ξ̃〉 =

3∑

i=1

mi

{
[
(∂σu

i
w) ξ̃i

]σ=li

σ=0
+

∫ li

0

(−∂2
σu

i
w) ξ̃i dσ

}

for all ξ̃ ∈ Ỹ . Then the equation −mi∂2
σu

i
w = wi holds pointwise. Further, we have

∑
3

i=1
mi
[
(∂σu

i
w) ξ̃i

]σ=li

σ=0
= 0. Since ξ̃ ∈ H1 is arbitrary as long as ξ̃1 + ξ̃2 + ξ̃3 = 0 at σ = 0,

we obtain m1∂σu
1
w = m2∂σu

2
w = m3∂σu

3
w at σ = 0 and ∂σu

i
w = 0 at σ = li (i = 1, 2, 3).

Hence uw is a solution of (4.1).

Remark 4.3 For each w ∈ X , there exists a unique weak solution of (4.1) in Y . Indeed,
set

I[u, ξ] :=
3∑

i=1

mi

∫ li

0

∂σu
i∂σξ

i dσ (4.4)

for all u, ξ ∈ Y . Since a Poincaré-type inequality holds for all u ∈ Y (cf. Lemma 5.2 in
Section 5), the bilinear form I is continuous and coercive on Y . Then it follows from the
Lax-Milgram theorem that for each w ∈ X there exists a unique uw ∈ Y such that

I[uw, ξ] = 〈w, ξ〉

for all ξ ∈ Y . This shows the above assertion.

Definition 4.4 For a given w = (w1, w2, w3) ∈ X , we say that v = (v1, v2, v3) ∈ H3

with ∫ l1

0

v1 dσ =

∫ l2

0

v2 dσ =

∫ l3

0

v3 dσ
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is a weak solution of

wi = −miγi{vi
σσ + (κi

∗)
2vi}σσ for σ ∈ (0, li) (4.5)

with the boundary conditions (3.6) at σ = 0 and (3.7) at σ = li if v satisfies

〈w, ξ〉 =

3∑

i=1

mi

∫ li

0

γi{vi
σσ + (κi

∗)
2vi}σξ

i
σ dσ

for all ξ = (ξ1, ξ2, ξ3) ∈ Y and fulfills the boundary conditions




γ1v1 + γ2v2 + γ3v3 = 0,
1

s1
(c2κ2

∗ − c3κ3
∗)v

1 + v1
σ =

1

s2
(c3κ3

∗ − c1κ1
∗)v

2 + v2
σ =

1

s3
(c1κ1

∗ − c2κ2
∗)v

3 + v3
σ,

γ1{v1
σσ + (κ1

∗)
2v1} + γ2{v2

σσ + (κ2
∗)

2v2} + γ3{v3
σσ + (κ3

∗)
2v3} = 0

(4.6)

at σ = 0 and
vi

σ + hi
∗v

i = 0 (4.7)

at σ = li (i = 1, 2, 3).

Define the symmetric bilinear form

I[v1,v2] :=
3∑

i=1

γi

∫ li

0

{vi
1,σv

i
2,σ − (κi

∗)
2vi

1v
i
2}dσ +

3∑

i=1

γihi
∗v

i
1v

i
2

∣∣∣
σ=li

− γ1

s1
(c2κ2

∗ − c3κ3
∗)v

1
1v

1
2

∣∣∣
σ=0

− γ2

s2
(c3κ3

∗ − c1κ1
∗)v

2
1v

2
2

∣∣∣
σ=0

− γ3

s3
(c1κ1

∗ − c2κ2
∗)v

3
1v

3
2

∣∣∣
σ=0

and the inner product

(v1,v2)−1 :=
3∑

i=1

mi

∫ li

0

∂σu
i
v1
∂σu

i
v2
dσ, (4.8)

where uvj
= (u1

vj
, u2

vj
, u3

vj
) (j = 1, 2) are weak solutions of (4.1) for given vj = (v1

j , v
2
j , v

3
j ) ∈

X .

Lemma 4.5 Let w = (w1, w2, w3) ∈ X and v = (v1, v2, v3) ∈ H1 be given. Then the
following two states are equivalent.

(i) v ∈ H3 with ∫ l1

0

v1 dσ =

∫ l2

0

v2 dσ =

∫ l3

0

v3 dσ

and v is a weak solution of (4.5) with the boundary conditions (3.6) at σ = 0 and
(3.7) at σ = li.

(ii) v ∈ E and v fulfills
(w,ϕ)−1 = −I[v,ϕ] (4.9)

for all ϕ = (ϕ1, ϕ2, ϕ3) ∈ E .
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Proof. Assume that (i) holds. Then v ∈ H3 is a weak solution of the linearized system
(4.5), (3.6), (3.7). Set

Ξi := γi{vi
σσ + (κi

∗)
2vi} (i = 1, 2, 3).

Note that (Ξ1,Ξ2,Ξ3) ∈ H1 satisfies Ξ1 + Ξ2 + Ξ3 = 0 at σ = 0. By (4.8), Definition 4.1,
and Definition 4.4, we see

(w,ϕ)−1 =

3∑

i=1

mi

∫ li

0

∂σu
i
w∂σu

i
ϕ dσ = 〈w,uϕ〉 =

3∑

i=1

mi

∫ li

0

∂σΞi∂σu
i
ϕ dσ

for all ϕ ∈ E , where uϕ = (u1
ϕ, u

2
ϕ, u

3
ϕ) ∈ Y . According to Remark 4.2, we can find

(c1, c2, c3) such that (Ξ1 − c1,Ξ2 − c2,Ξ3 − c3) ∈ Y . That is, the ci (i = 1, 2, 3) satisfy

c1 + c2 + c3 = 0,

∫ l1

0

Ξ1 dσ − c1l1 =

∫ l2

0

Ξ2 dσ − c2l2 =

∫ l3

0

Ξ3 dσ − c3l3. (4.10)

Then, using the fact that uϕ ∈ Y is a weak solution of (4.1), we obtain

3∑

i=1

mi

∫ li

0

∂σΞi∂σu
i
ϕ dσ =

3∑

i=1

mi

∫ li

0

∂σ(Ξi − ci)∂σu
i
ϕ dσ =

3∑

i=1

∫ li

0

(Ξi − ci)ϕi dσ.

Further, it follows from ϕ ∈ E and c1 + c2 + c3 = 0 that

3∑

i=1

∫ li

0

(Ξi − ci)ϕi dσ =
3∑

i=1

∫ li

0

Ξiϕi dσ.

Thus we have

(w,ϕ)−1 =

3∑

i=1

∫ li

0

γi{vi
σσ + (κi

∗)
2vi}ϕi dσ

=

3∑

i=1

γi

∫ li

0

vi
σσϕ

i dσ +

3∑

i=1

γi(κi
∗)

2

∫ li

0

viϕi dσ

=
3∑

i=1

γi
[
vi

σϕ
i
]σ=li

σ=0
−

3∑

i=1

γi

∫ li

0

vi
σϕ

i
σ +

3∑

i=1

γi(κi
∗)

2

∫ li

0

viϕi dσ.

Using γ1ϕ1 + γ2ϕ2 + γ3ϕ3 = 0 at σ = 0, the second condition in (3.6), and the first
condition in (3.7), we are led to (4.9).

Conversely, assume that (ii) holds. Then v ∈ E fulfills (4.9) for all ϕ ∈ E . For each
ϕ ∈ E , there exists ζ = (ζ1, ζ2, ζ3) ∈ H3 such that





−miζ i
σσ = ϕi for σ ∈ (0, li),

ζ1 + ζ2 + ζ3 = 0 at σ = 0,

m1ζ1
σ = m2ζ2

σ = m3ζ3
σ at σ = 0,

ζ i
σ = 0 at σ = li.
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In fact, to obtain such a ζ, we consider the minimizing problem

1

2
I[ζ, ζ] −

3∑

i=1

∫ li

0

ϕiζ i dσ → min

for all ζ ∈ Y , where I is the bilinear form defined as (4.4). Since a Poincaré-type inequality
holds for all ζ ∈ Y and I is symmetric, this minimizing problem admits a solution ζ ∈ Y .
Further, applying the regularity theory, we get a ζ with the required regularity. Then,
using this ζ and taking into account (w,ϕ)−1 = 〈w, ζ〉, we obtain

〈w, ζ〉 =

3∑

i=1

miγi

∫ li

0

{vi
σζ

i
σσσ − (κi

∗)
2viζ i

σσ}dσ +

3∑

i=1

miγihi
∗v

iζ i
σσ

∣∣∣
σ=li

− m1γ1

s1
(c2κ2

∗ − c3κ3
∗)v

1ζ1
σσ

∣∣∣
σ=0

− m2γ2

s2
(c3κ3

∗ − c1κ1
∗)v

2ζ2
σσ

∣∣∣
σ=0

− m3γ3

s3
(c1κ1

∗ − c2κ2
∗)v

3ζ3
σσ

∣∣∣
σ=0

.

It follows from w ∈ (H1)′ that v ∈ H3. Further, the integration by parts formula gives

〈w, ζ〉 =

3∑

i=1

miγi

∫ li

0

{vi
σσ + (κi

∗)
2vi}σζ

i
σ dσ +

3∑

i=1

miγi{vi
σ + hi

∗v
i}ζ i

σσ

∣∣∣
σ=li

−m1γ1

{
v1

σ +
1

s1
(c2κ2

∗ − c3κ3
∗)v

1

}
ζ1
σσ

∣∣∣
σ=0

−m2γ2

{
v2

σ +
1

s2
(c3κ3

∗ − c1κ1
∗)v

2

}
ζ2
σσ

∣∣∣
σ=0

−m3γ3

{
v3

σ +
1

s3
(c1κ1

∗ − c2κ2
∗)v

3

}
ζ3
σσ

∣∣∣
σ=0

+

3∑

i=1

miγi{vi
σσ + (κi

∗)
2vi}ζ i

σ|σ=0. (4.11)

We first observe that the parts which except the boundary terms from (4.11) are a weak
formulation of wi = −miγi{vi

σσ + (κi
∗)

2vi}σσ for σ ∈ (0, li) together with

{
m1{v1

σσ + (κ1
∗)

2v1}σ = m2{v2
σσ + (κ2

∗)
2v2}σ = m3{v3

σσ + (κ3
∗)

2v3}σ at σ = 0,

{vi
σσ + (κi

∗)
2vi}σ = 0 at σ = li.

From the boundary terms of (4.11) at σ = li, we derive (4.7) by using the fact that ζ i
σσ is

arbitrarily at σ = li. Note that

m1γ1ζ1
σσ +m2γ2ζ2

σσ +m3γ3ζ3
σσ = 0 at σ = 0. (4.12)

Using m1ζ1
σ = m2ζ2

σ = m3ζ3
σ at σ = 0 and (4.12) in the boundary terms of (4.11) at

σ = 0, we obtain the second and third conditions in (4.6). Thus v is a weak solution of
the linearized system (4.5), (3.6), (3.7). �
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5 Self-adjointness of the linearized operator

Set

D(A) = {v = (v1, v2, v3) ∈ H3 | v satisfies (4.6) at σ = 0, (4.7) at σ = li, and
∫ l1

0

v1 dσ =

∫ l2

0

v2 dσ =

∫ l3

0

v3 dσ}.

Then we define the linearized operator A : D(A) → X as

〈Av, ξ〉 =
3∑

i=1

mi

∫ li

0

γi{vi
σσ + (κi

∗)
2vi}σξ

i
σ dσ

for all v ∈ D(A) and ξ ∈ Y . This definition gives for all ϕ ∈ E

(Av,ϕ)−1 = −I[v,ϕ].

For this operator A, we have the following lemma.

Lemma 5.1 The operator A is symmetric with respect to the inner product (·, ·)−1.

Proof. Since v1,v2 ∈ D(A) implies v1,v2 ∈ E , we have

(Av1,v2)−1 = −I[v1,v2] = −I[v2,v1] = (Av2,v1)−1 = (v2,Av1)−1.

Thus A is symmetric. �

Now we use the notation

‖v‖ =

(
3∑

i=1

‖vi‖2

)1/2

, ‖v‖−1 =

(
3∑

i=1

‖vi‖2
−1

)1/2

for v = (v1, v2, v3), where ‖ · ‖ is the L2-norm and ‖ · ‖−1 = {(·, ·)−1}1/2. The following
lemmas will be needed.

Lemma 5.2 (Poincaré-type inequality) For all v ∈ E , there exists a C > 0, which depends
on li (i = 1, 2, 3), such that

‖v‖ ≤ C‖vσ‖.

Proof. First we prove that there are j ∈ {1, 2, 3} and σj ∈ [0, lj ] such that vj(σj) = 0.
We show the assertion by a contradiction. If not, then vi has a definite sign for each
i ∈ {1, 2, 3} and σ ∈ [0, li]. Since v ∈ E , vi (i = 1, 2, 3) satisfy

∫ l1

0

v1 dσ =

∫ l2

0

v2 dσ =

∫ l3

0

v3 dσ. (5.1)

This implies that vi must have the same sign for i = 1, 2, 3 and σ ∈ [0, li]. But this
contradicts to γ1v1 + γ2v2 + γ3v3 = 0 at σ = 0.

16



By the above fact, we derive

|vj(σ)| =
∣∣∣
∫ σ

σj

vj
r dr
∣∣∣ ≤

∫ lj

0

|vj
σ| dσ ≤ (lj)1/2‖vj

σ‖.

Then it follows from (5.1) that

∣∣∣
∫ li

0

vidσ
∣∣∣ =

∣∣∣
∫ lj

0

vjdσ
∣∣∣ ≤

∫ lj

0

|vj|dσ ≤ (lj)3/2‖vj
σ‖ ≤ (lj)3/2‖vσ‖. (5.2)

Setting vi
av = (li)−1

∫ li

0

vi dσ, (5.2) implies

‖vi
av‖ ≤ (li)−1/2(lj)3/2‖vσ‖. (5.3)

By means of

∫ li

0

(vi − vi
av) dσ = 0 and Schwarz’s inequality, we obtain

|vi − vi
av| ≤

∫ li

0

|vi
σ| dσ ≤ (li)1/2‖vi

σ‖,

so that
‖vi − vi

av‖ ≤ li‖vi
σ‖ ≤ li‖vσ‖. (5.4)

By (5.3) and (5.4), we are led to the desired inequality. �

Lemma 5.3 For all δ > 0 there exists a constant Cδ > 0 such that for all v ∈ E and
each i = 1, 2, 3 the inequality

|vi(0)|2 ≤ δ‖vσ‖2 + Cδ‖v‖2
−1

holds. The same inequality holds for vi(li) instead of vi(0).

Applying a similar argument to the proof of [7, Lemma 5.2] and using Lemma 5.2, we can
prove this lemma. Thus we omit the proof.

Lemma 5.4 There exist c1 > 0 and c2 > 0 such that

‖vσ‖2 ≤ c1‖v‖2
−1 + c2I[v,v] for all v ∈ E .

The proof of this lemma is similar to that of [7, Lemma 5.3]. Thus we omit it.
Also, applying a similar argument as in the proof of [7, Corollary 5.4], the Lemma 5.4

implies the following corollary.

Corollary 5.5 The largest eigenvalue of A is bounded from above by c1/c2, where c1, c2
are as in Lemma 5.4.

Then it follows from this corollary that

(Av,v)−1 ≤ c‖v‖−1 (5.5)

with c = c1/c2.
By means of the above lemmas, we obtain the following theorem.
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Theorem 5.6 (i) The operator A is self-adjoint with respect to the inner product (·, ·)−1.

(ii) The spectrum of A contains a countable system of eigenvalues.

(iii) The initial value problem (3.5)-(3.7) is solvable for given initial data in X .

(iv) The zero solution is an asymptotically stable solution of (3.5)-(3.7) if and only if
the largest eigenvalue of A is negative.

Proof. Let us prove (i). By means of (5.5), we find a ω ∈ R such that the operator
B := ωId−A is strongly monotone with respect to the inner product (·, ·)−1. Since A is
symmetric (see Lemma 5.1), B is also symmetric. We show that R(B) = X , where R(B)
is the range of the operator B. For each f = (f 1, f 2, f 3) ∈ X , we need to prove that there
exists a weak solution v of the boundary value problem

{
miγi{vi

σσ + (κi
∗)

2vi}σσ + ωvi = f i for σ ∈ (0, li) (i = 1, 2, 3),

(3.6) at σ = 0 and (3.7) at σ = li (i = 1, 2, 3).
(5.6)

To obtain a weak solution of (5.6), we consider the minimizing problem

F (v) :=
1

2
{I[v,v] + ω‖v‖2

−1} − (f ,v)−1 → min

for all v ∈ E . It follows from Lemma 5.4 that F is coercive on E for sufficiently large ω, so
that this minimizing problem admits a solution ṽ = (ṽ1, ṽ2, ṽ3) when ω is large enough.
Taking the first variation of F , we have

−γi{ṽi
σσ + (κi

∗)
2ṽi} + ci + ωui

ev = ui
f for σ ∈ (0, li) (i = 1, 2, 3) (5.7)

with the first and second conditions in (3.6) at σ = 0 and the first condition in (3.7) at
σ = li (i = 1, 2, 3), where ci (i = 1, 2, 3) are constants satisfying (4.10). Then it follows
from ui

ev, u
i
f ∈ H1(0, li) (i = 1, 2, 3) that ṽ ∈ H3. The sum of (5.7) for i = 1, 2, 3 leads

us to the third condition in (3.6) at σ = 0 and differentiating (5.7) twice in a weak sense
gives a weak formulation of miγi{vi

σσ +(κi
∗)

2vi}σσ +ωvi = f i together with the remaining
boundary conditions in (3.6) and (3.7) (cf. Definition 4.4). Thus, for each f ∈ X , there
exists ṽ ∈ D(B) (= D(A)) such that Bṽ = f . That is, we obtain R(B) = X . This implies
that B is self-adjoint, so that A is self-adjoint.

The assertions (ii)-(iv) follow from the standard theory of self-adjoint operators and
the theory of semigroups, respectively (see [7, 12, 13]). This competes the proof of the
theorem. �

Lemma 5.7 Let
λ1 ≥ λ2 ≥ λ3 ≥ · · ·

be the eigenvalues of A (taking into account the multiplicity).
(i) It holds for all n ∈ N

λn = − inf
W∈Σn−1

sup
v∈W⊥\{0}

I[v,v]

(v,v)−1

,

λn = − sup
W∈Σn−1

inf
v∈W⊥\{0}

I[v,v]

(v,v)−1

.

Here Σn is the collection of n-dimensional subspaces of E and W⊥ is the orthogonal
complement of W with respect to the H−1-inner product.
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(ii) The eigenvalues depend continuously on hi
∗, l

i, and κi
∗. Further, the eigenvalues are

monotone decreasing in each of the parameters hi
∗ (i = 1, 2, 3).

Proof. The lemma follows with the help of Courant’s maximum-minimum principle to-
gether with the fact that I depends continuously on hi

∗, l
i, and κi

∗, and is monotone with
respect to hi

∗. The proof follows the lines of Courant and Hilbert [1, Chapter VI]. �

6 Stability analysis

In this section, we apply the stability criterion formulated in the previous section to two
cases.

6.1 The case : κi
∗ = 0 (i = 1, 2, 3)

Lemma 6.1 (i) The operator A has zero eigenvalues if and only if (h1
∗, h

2
∗, h

3
∗) satisfies

Λ(h1
∗, h

2
∗, h

3
∗) = 0

with the form (a precise definition is given in the proof)

Λ(h1
∗, h

2
∗, h

3
∗) := a123h

1
∗h

2
∗h

3
∗ + a12h

1
∗h

2
∗ + a23h

2
∗h

3
∗ + a31h

3
∗h

1
∗

+ a1h
1
∗ + a2h

2
∗ + a3h

3
∗ + a0, (6.1)

where a123, a12, · · · , a0 are positive constants depending continuously on γi and li (i =
1, 2, 3).

(ii) Set
S = {(h1

∗, h
2
∗, h

3
∗) |Λ(h1

∗, h
2
∗, h

3
∗) = 0}.

The multiplicity of zero eigenvalues is equal to two if (h1
∗, h

2
∗, h

3
∗) = (h1

∗,c, h
2
∗,c, h

3
∗,c)

∈ S, where 



h1
∗,c = −a31a2 + a12a3 − a123a0 − a23a1

2(a31a12 − a123a1)
,

h2
∗,c = −a12a3 + a23a1 − a123a0 − a31a2

2(a12a23 − a123a2)
,

h3
∗,c = −a23a1 + a31a2 − a123a0 − a12a3

2(a23a31 − a123a3)
.

(6.2)

Further, it is equal to one if (h1
∗, h

2
∗, h

3
∗) ∈ S \ {(h1

∗,c, h
2
∗,c, h

3
∗,c)}

Proof. In case that κi
∗ = 0 (i = 1, 2, 3), we obtain that eigenfunctions of zero eigenvalues

would have the form vi(σ) := αi
3σ

3 + αi
2σ

2 + αi
1σ + αi

0, where αi
k are constants. Then we

have
vi

σ(σ) = 3αi
3σ

2 + 2αi
2σ + αi

1, vi
σσ(σ) = 6αi

3σ + 2αi
2, vi

σσσ(σ) = 6αi
3.

The boundary condition vi
σσσ = 0 at σ = li gives αi

3 = 0. This implies that

vi(σ) = αi
2σ

2 + αi
1σ + αi

0, vi
σ(σ) = 2αi

2σ + αi
1, vi

σσ(σ) = 2αi
2.
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By virtue of the boundary conditions





γ1v1 + γ2v2 + γ3v3 = 0,

v1
σ = v2

σ = v3
σ,

γ1v1
σσ + γ2v2

σσ + γ3v3
σσ = 0,

at σ = 0, we are led to 




γ1α1
0 + γ2α2

0 + γ3α3
0 = 0,

α1
1 = α2

1 = α3
1,

γ1α1
2 + γ2α2

2 + γ3α3
2 = 0.

(6.3)

Further, by virtue of the boundary condition

vi
σ + hi

∗v
i = 0

at σ = li, we have
(2αi

2l
i + αi

1) + hi
∗

{
αi

2(l
i)2 + αi

1l
i + αi

0

}
= 0. (6.4)

Since vi (i = 1, 2, 3) also satisfy

∫ l1

0

v1 dσ =

∫ l2

0

v2 dσ =

∫ l3

0

v3 dσ,

we obtain





1

3
α1

2(l
1)3 +

1

2
α1

1(l
1)2 + α1

0l
1 =

1

3
α2

2(l
2)3 +

1

2
α2

1(l
2)2 + α2

0l
2

1

3
α1

2(l
1)3 +

1

2
α1

1(l
1)2 + α1

0l
1 =

1

3
α3

2(l
3)3 +

1

2
α3

1(l
3)2 + α3

0l
3.

(6.5)

Then λ = 0 is an eigenvalue if and only if the equations (6.3)-(6.5) have a nontrivial
solution (α1

0, α
2
0, α

3
0, α

1
1, α

2
1, α

3
1, α

1
2, α

2
2, α

3
2) 6= 0, which is equivalent to det [M(h1

∗, h
2
∗, h

3
∗)] =

0 where M(h1
∗, h

2
∗, h

3
∗) is a 9 × 9-matrix as follows:




γ1 γ2 γ3 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0

0 0 0 1 0 −1 0 0 0

0 0 0 0 0 0 γ1 γ2 γ3

h1
∗ 0 0 1 + l1h1

∗ 0 0 2l1 + (l1)2h1
∗ 0 0

0 h2
∗ 0 0 1 + l2h2

∗ 0 0 2l2 + (l2)2h2
∗ 0

0 0 h3
∗ 0 0 1 + l3h3

∗ 0 0 2l3 + (l3)2h3
∗

l1 −l2 0
(l1)2

2
−(l2)2

2
0

(l1)3

3
−(l2)3

3
0

l1 0 −l3 (l1)2

2
0 −(l3)2

2

(l1)3

3
0 −(l3)3

3




.
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Setting Λ(h1
∗, h

2
∗, h

3
∗) := det [M(h1

∗, h
2
∗, h

3
∗)], we obtain the form (6.1). Also, by means of

the precise computation by MAPLE, we can observe that a123, a12, · · · , a0 are positive.
This completes the proof of (i).

Let us prove (ii). By using MAPLE, we can derive

rank [M(h1
∗,c, h

2
∗,c, h

3
∗,c)] = 7.

This implies that the multiplicity of zero eigenvalues is equal to two, provided that
(h1

∗, h
2
∗, h

3
∗) = (h1

∗,c, h
2
∗,c, h

3
∗,c) ∈ S. Also, by using MAPLE again, we see that for (h1

∗, h
2
∗, h

3
∗) ∈

S \ {(h1
∗,c, h

2
∗,c, h

3
∗,c)}

rank [M(h1
∗, h

2
∗, h

3
∗)] = 8,

which means that the multiplicity of zero eigenvalues is equal to one, provided that
(h1

∗, h
2
∗, h

3
∗) ∈ S \ {(h1

∗,c, h
2
∗,c, h

3
∗,c)}. �

Remark 6.2 Set h1
∗,a := −a23/a123. Then, if h1

∗ 6= h1
∗,a, the form of Λ(h1

∗, h
2
∗, h

3
∗) = 0 is

represented as

(
h2
∗ +

a31h
1
∗ + a3

a123h1
∗ + a23

)(
h3
∗ +

a12h
1
∗ + a2

a123h1
∗ + a23

)
=

(a31a12 − a123a1)(h
1
∗ − h1

∗,c)
2

(a123h1
∗ + a23)2

(6.6)

with a31a12 −a123a1 ≥ 0. Also, if h1
∗ = h1

∗,a, the form of Λ(h1
∗, h

2
∗, h

3
∗) = 0 is represented as

(a12a23 − a123a2)h
2
∗ + (a23a31 − a123a3)h

3
∗ + a23a1 − a123a0 = 0. (6.7)

Note that Λ(h1
∗, h

2
∗, h

3
∗) = 0 has the descriptions (6.6) and (6.7) if and only if the constants

a123, a12, · · · , a0 satisfy

4(a2a3 − a23a0)(a31a12 − a123a1) − (a31a2 + a12a3 − a123a0 − a23a1)
2 = 0.

The other descriptions of Λ(h1
∗, h

2
∗, h

3
∗) = 0 as (6.6) and (6.7) are derived by rotating the

number {1, 2, 3} in order.

Let us analyze Λ(h1
∗, h

2
∗, h

3
∗) = 0 which implies that the operator A has zero eigenvalues.

For simplicity, we only consider the case that

γ1 = γ2 = γ3 = 1, l2 = l3 = 1.

Note that γ1 = γ2 = γ3 = 1 implies θ1 = θ2 = θ3 = 2π/3 by virtue of Young’s law (1.8).
Set l1 := d. Then it follows that

a123 = 2 d4 + 16 d3 + 12 d2 + 4 d+ 2,

a12 = a31 = 3 d4 + 32 d3 + 30 d2 + 12 d+ 7, a23 = 8 d3 + 48 d2 + 24 d+ 4,

a1 = 48 d3 + 72 d2 + 36 d+ 24, a2 = a3 = 12 d3 + 96 d2 + 60 d+ 12,

a0 = 36 (1 + 2 d)2.

Also, (h1
∗,c, h

2
∗,c, h

3
∗,c) is represented as

h1
∗,c = − d2 + 12 d (4 d+ 1)

−1 + 6 d2 + 16 d3 + 3 d4
, h2

∗,c = −3, h3
∗,c = −3,
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Figure 1: The configuration of S; d = 1 (−1 + 6 d2 + 16 d3 + 3 d4 > 0)

which imply that the multiplicity of zero eigenvalues is equal to two. Further, we obtain

h1
∗,a = − a23

a123

< 0, h2
∗,a = − a31

a123

< 0, h3
∗,a = − a12

a123

< 0 (6.8)

and

h1
∗,a − h1

∗,c =
2 (1 + 6 d+ 3 d2 + 2 d3)2

(−1 + 6 d2 + 16 d3 + 3 d4) (d4 + 8 d3 + 6 d2 + 2 d+ 1)
,

h2
∗,a − h2

∗,c = h3
∗,a − h3

∗,c =
−1 + 6 d2 + 16 d3 + 3 d4

2 (d4 + 8 d3 + 6 d2 + 2 d+ 1)
.

It follows that hi
∗,a > hi

∗,c (i = 1, 2, 3), provided that the parameter d is large enough such
that −1 + 6 d2 + 16 d3 + 3 d4 > 0. Then we obtain a situation as in Fig. 1. Also, it follows
that hi

∗,a < hi
∗,c (i = 1, 2, 3), provided that the parameter d is small enough such that

−1 + 6 d2 + 16 d3 + 3 d4 < 0. Then we are led to a situation as in Fig. 2. Now we prepare
the following notations.






S1 := {(h1
∗, h

2
∗, h

3
∗) ∈ S | hi

∗ > hi
∗,a (i = 1, 2, 3)},

S2 := S \ (S1 ∪ S3),
S3 := {(h1

∗, h
2
∗, h

3
∗) ∈ S | hi

∗ < hi
∗,a (i = 1, 2, 3)},

(6.9)





R1 := {(h1
∗, h

2
∗, h

3
∗) ∈ R+ | hi

∗ > hi
∗,a (i = 1, 2, 3)},

R2 := R− \ R4,
R3 := R+ \ R1,
R4 := {(h1

∗, h
2
∗, h

3
∗) ∈ R− | hi

∗ < hi
∗,a (i = 1, 2, 3)},

(6.10)

where R+ := {(h1
∗, h

2
∗, h

3
∗) |Λ(h1

∗, h
2
∗, h

3
∗) > 0} and R− := {(h1

∗, h
2
∗, h

3
∗) |Λ(h1

∗, h
2
∗, h

3
∗) < 0}.

Theorem 6.3 Let NU be the number of positive eigenvalues and NN be the number of
zero eigenvalues. Set γ1 = γ2 = γ3 = 1, l1 = d, and l2 = l3 = 1.
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Figure 2: The configuration of S; d = 0.01 (−1 + 6 d2 + 16 d3 + 3 d4 < 0)

(i) Assume that the parameter d satisfies −1 + 6 d2 + 16 d3 + 3 d4 > 0. Then we obtain

NU = 0, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ R1 (i.e. Γ∗ is linearly stable),

NU = 0, NN = 1 if (h1
∗, h

2
∗, h

3
∗) ∈ S1,

NU = 1, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ R2,

NU = 1, NN = 1 if (h1
∗, h

2
∗, h

3
∗) ∈ S2 \ {(h1

∗,c, h
2
∗,c, h

3
∗,c)},

NU = 1, NN = 2 if (h1
∗, h

2
∗, h

3
∗) = (h1

∗,c, h
2
∗,c, h

3
∗,c) ∈ S2 ∩ S3,

NU = 2, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ R3,

NU = 2, NN = 1 if (h1
∗, h

2
∗, h

3
∗) ∈ S3 \ {(h1

∗,c, h
2
∗,c, h

3
∗,c)},

NU = 3, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ R4,

(ii) Assume that the parameter d satisfies −1 + 6 d2 + 16 d3 + 3 d4 < 0. Then we obtain

NU = 0, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ R1 (i.e. Γ∗ is linearly stable),

NU = 0, NN = 1 if (h1
∗, h

2
∗, h

3
∗) ∈ S1 \ {(h1

∗,c, h
2
∗,c, h

3
∗,c)},

NU = 0, NN = 2 if (h1
∗, h

2
∗, h

3
∗) = (h1

∗,c, h
2
∗,c, h

3
∗,c) ∈ S1 ∩ S2,

NU = 1, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ R2,

NU = 1, NN = 1 if (h1
∗, h

2
∗, h

3
∗) ∈ S2 \ {(h1

∗,c, h
2
∗,c, h

3
∗,c)},

NU = 2, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ R3,

NU = 2, NN = 1 if (h1
∗, h

2
∗, h

3
∗) ∈ S3,

NU = 3, NN = 0 if (h1
∗, h

2
∗, h

3
∗) ∈ R4,

Proof. We only prove (i). The proof of (ii) is given by a similar argument. Set (h1
∗, h

2
∗, h

3
∗) =

(0, 0, 0). Then this implies that

I[v,v] =

∫ d

0

(v1
σ)2 dσ +

∫ 1

0

(v2
σ)2 dσ +

∫ 1

0

(v3
σ)2 dσ ≥ 0.
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Figure 3: stable stationary solution (d = 1, (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0))

Since the maximal eigenvalue λ1 allows the characterization

λ1 = − inf
v∈E\{0}

I[v,v]

(v,v)−1

,

we have λ1 ≤ 0. Also, it follows from Lemma 6.1(i) and Λ(0, 0, 0) = 36 (1+2 d)2 > 0 that
all eigenvalues are not zero for (h1

∗, h
2
∗, h

3
∗) = (0, 0, 0). Thus, in this case, we see λ1 < 0,

so that all eigenvalues are negative. Further, by means of (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0) ∈ R1,

Lemma 5.7, and Lemma 6.1, we are led to λ1 < 0 as long as (h1
∗, h

2
∗, h

3
∗) ∈ R1. Hence

all eigenvalues are negative, provided that (h1
∗, h

2
∗, h

3
∗) ∈ R1. Using Lemma 5.7 and

Lemma 6.1 again, we are led to the desired results. �

Let us consider the stability of stationary solutions for situations as in Fig. 3 and Fig. 4.
For a stationary solution as in Fig. 3, we observe (6.8) and

Λ(0, 0, 0) = a0 = 36 (1 + 2 d)2 > 0

for all d > 0. These imply that the point (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0) is included in R1 for all

d > 0. Thus we obtain that all eigenvalues are negative, so that a stationary solution as
in Fig. 3 is linearly stable. We remark that this agrees with the result which is shown in
[11] in a sense of nonlinear. For a stationary solution as in Fig. 4, we derive

Λ(−1,−1,−1) = 0, hi
∗,a = −7

3
< −1 (i = 1, 2, 3)

at d = 1. This gives that the point (h1
∗, h

2
∗, h

3
∗) = (−1,−1,−1) exists on S1 in Fig. 1. Thus

we obtain that one eigenvalue is zero and the others are negative, so that the stability
of a stationary solution as in Fig. 4 is neutral in the linearized problem. We remark that
the zero eigenvalue is a consequence of the fact that the total length is invariant under
rotation in the geometry of Fig. 4.
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120Æ120Æ 120Æ
Figure 4: neutral stationary solution (d = 1, (h1

∗, h
2
∗, h

3
∗) = (−1,−1,−1))

6.2 The case : κ1

∗ = 0 and κi 6= 0 (i = 2, 3)

By means of κ1
∗ = 0 and (2.1), we have γ2κ2

∗ + γ3κ∗ = 0. Set κ3
∗ := κ∗ ( 6= 0), which gives

κ2
∗ = −γ3κ∗/γ

2. Now we only consider the case that

γ1 = γ2 = γ3 = 1, l1 =
√

3 , l2 = l3 (=: d).

Then we have κ2
∗ = −κ∗. Under these assumptions, we obtain the following lemma.

Lemma 6.4 (i) The operator A has zero eigenvalues if and only if (h1
∗, h

2
∗, h

3
∗) satisfies

Λ̃(h1
∗, h

2
∗, h

3
∗) = 0

with the form

Λ̃(h1
∗, h

2
∗, h

3
∗) := ã123h

1
∗h

2
∗h

3
∗ + ã12h

1
∗h

2
∗ + ã23h

2
∗h

3
∗ + ã31h

3
∗h

1
∗

+ ã1h
1
∗ + ã2h

2
∗ + ã3h

3
∗ + ã0,

where ã123, ã12, · · · , ã0 are constants depending continuously on κ∗ and d.

(ii) Set

S̃ = {(h1
∗, h

2
∗, h

3
∗) | Λ̃(h1

∗, h
2
∗, h

3
∗) = 0}.

The multiplicity of zero eigenvalues is equal to two if (h1
∗, h

2
∗, h

3
∗) = (h̃1

∗,c, h̃
2
∗,c, h̃

3
∗,c)

∈ S̃, where h̃i
∗,c (i = 1, 2, 3) are described by replacing a123, a12, · · · , a0 in (6.2) with

ã123, ã12, · · · , ã0. Further, it is equal to one if (h1
∗, h

2
∗, h

3
∗) ∈ S̃ \ {(h̃1

∗,c, h̃
2
∗,c, h̃

3
∗,c)}

Proof. In this case, eigenfunctions of zero eigenvalues have the form v1(σ) := α1
3σ

3 +
α1

2σ
2 + α1

1σ + α1
0 and vi(σ) := αi

1σ + αi
0 + αi

c cos(κi
∗σ) + αi

s sin(κi
∗σ) (i = 2, 3), where

α1
0, α

1
1, α

1
2, α

1
3, α

i
1, α

i
0, α

i
c, α

i
s (i = 2, 3) are constants. A similar argument of the proof of

Lemma 6.1 leads us to the desired results. Thus we omit it. �

Let us analyze Λ̃(h1
∗, h

2
∗, h

3
∗) = 0 which implies that the operator A has zero eigenvalues.

For simplicity, we set

κ∗ =
1

2
.
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Then d can be chosen in

0 < d <
8π

3
.

Using MAPLE, it can be checked that Λ̃(h1
∗, h

2
∗, h

3
∗) = 0 has the same descriptions as in

Remark 6.2. Further, We can check by MAPLE that h̃i
∗,c < h̃i

∗,a (i = 1, 2, 3) are fulfilled

and h̃i
∗,a (i = 1, 2, 3) are monotone increasing with respect to d. Now we use the notations

S̃j (j = 1, 2, 3) and R̃k (k = 1, 2, 3, 4), which are described by replacing Λ(h1
∗, h

2
∗, h

3
∗) and

hi
∗,a in (6.9) and (6.10) with Λ̃(h1

∗, h
2
∗, h

3
∗) and h̃i

∗,a, respectively.
Let us consider the stability of a stationary solution as in Fig. 5. According to [3], a

stationary solution as in Fig. 5 with (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0) is stable. Also, MAPLE gives

Fig. 8 as the configuration of Λ̃(h1
∗, h

2
∗, h

3
∗) = 0 at d = π/3. Since





Λ̃(0, 0, 0) =

3

8
+

√
3π

36
> 0,

h̃1
∗,a ≈ −1.47 < 0, h̃2

∗,a ≈ −2.01 < 0, h̃2
∗,a ≈ −2.01 < 0

at d = π/3, the point (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0) is included in R̃1 in Fig. 8. Then it follows

from Lemma 5.7 and Lemma 6.4 that a stationary solution as in Fig. 5 is stable, provided
that (h1

∗, h
2
∗, h

3
∗) ∈ R̃1. Further, we can obtain the same results as in Theorem 6.3 (i).

Let us consider the stability of stationary solutions as in Fig. 6 and Fig. 7. Note that
Λ̃(h1

∗, h
2
∗, h

3
∗) = 0 depends continuously on the parameter d with keeping the configuration

as in Fig. 8 for 0 < d < 8π/3. Then MAPLE gives Fig. 9 and Fig. 10 as the configurations

of Λ̃(h1
∗, h

2
∗, h

3
∗) = 0 at d = 4π/3 and d = 2π, respectively. We consider the stability of a

stationary solution as in Fig. 6 with (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0). Since





Λ̃(0, 0, 0) = 0,

h̃1
∗,a ≈ −0.67 < 0, h̃2

∗,a ≈ −0.44 < 0, h̃2
∗,a ≈ −0.44 < 0

at d = 4π/3, the point (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0) exists on S̃1 in Fig. 9. Thus we obtain that one

eigenvalue is zero and the others are negative, so that the stability of a stationary solution
as in Fig. 6 is neutral in the linearized problem. We remark that the zero eigenvalue
is a consequence of the fact that the total length is invariant under translation in the
geometry of Fig. 6. Finally, we consider the stability of a stationary solution as in Fig. 7
with (h1

∗, h
2
∗, h

3
∗) = (0, 0, 0). Since





Λ̃(0, 0, 0) = −π
2

2
− 3

√
3π

8
< 0,

h̃1
∗,a ≈ −0.17 < 0, h̃2

∗,a ≈ −0.11 < 0, h̃2
∗,a ≈ −0.11 < 0

at d = 2π, the point (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0) is included in R̃2 in Fig. 10. Thus we obtain

that one eigenvalue is positive and the others are negative, so that a stationary solution
as in Fig. 7 is unstable.
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120Æ 120Æ120Æ�3� �2�
�1�

Figure 5: stable stationary solution (d = π/3, (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0))

120Æ 120Æ120Æ�3� �2��1�
Figure 6: neutral stationary solution (d = 4π/3, (h1

∗, h
2
∗, h

3
∗) = (0, 0, 0))

120Æ 120Æ120Æ�3� �2��1�

Figure 7: unstable stationary solution (d = 2π, (h1
∗, h

2
∗, h

3
∗) = (0, 0, 0))
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Figure 8: The configuration of S̃; d = π/3
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Figure 9: The configuration of S̃; d = 4π/3
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R̃1
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R̃3

R̃4

S̃1S̃2
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Figure 10: The configuration of S̃; d = 2π
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