Universität Regensburg Mathematik

Homological interpretation of extensions and biextensions of complexes

Cristiana Bertolin

Preprint Nr. 22/2008

HOMOLOGICAL INTERPRETATION OF EXTENSIONS AND BIEXTENSIONS OF COMPLEXES

CRISTIANA BERTOLIN

ABSTRACT. Let \mathbf{T} be a topos. Let $K_i = [A_i \overset{u_i}{\to} B_i]$ (for i=1,2,3) be a complex of commutative groups of \mathbf{T} with A_i in degree 1 and B_i in degree 0. We define the geometrical notions of extension of K_1 by K_3 and of biextension of (K_1,K_2) by K_3 . These two notions generalize to complexes of the kind K_i the classical notions of extensions and biextensions of commutative groups of \mathbf{T} . We then apply the geometrical-homological principle of Grothendieck in order to compute the homological interpretation of extensions and biextensions of complexes.

Contents

Int	roduction	1
Notation		3
1.	Extensions and biextensions of complexes	4
2.	The additive cofibred category $\Psi_{\text{Tot}(L_{})}$	8
3.	Homological description of $\Psi_{\text{Tot}(L)}$	10
	A canonical flat partial resolution for a complex concentrated in two	
	consecutive degrees	13
5.	Geometrical description of $\Psi_{\text{Tot}(\text{L})}$	16
	Proof of the main theorem	19
Re	References	

Introduction

Let **T** be a topos. Denote by \mathcal{C} the category of commutative groups of **T**, i.e. the category of \mathbb{Z} -modules of **T**. If I is an object of \mathcal{C} , we denote by $\mathbb{Z}[I]$ the free \mathbb{Z} -module generated by I. Let $\mathcal{D}(\mathcal{C})$ the derived category of the abelian category \mathcal{C} .

The geometrical-homological principle of Grothendieck states the following fact: if an object A of C admits an explicit representation in $\mathcal{D}(C)$ by a complex L. whose components are direct sums of objects of the kind $\mathbb{Z}[I]$, with I object of C, then the groups $\operatorname{Ext}^i(A,B)$ admit an explicit geometrical description for any object B of C.

A first example of this principle of Grothendieck is furnished by the geometrical notion of extensions of objects of C: in fact if P and G are two objects of C, it is a classical result that the group $\operatorname{Ext}^0(P,G)$ is isomorphic to the group of

 $^{1991\} Mathematics\ Subject\ Classification.\ 14K05.$

 $Key\ words\ and\ phrases.$ extensions, biextensions, commutative groups of a topos, tensor products.

automorphisms of any extension of P by G and the group $\operatorname{Ext}^1(P,G)$ is isomorphic to the group of isomorphism classes of extensions of P by G.

In [SGA7] Exposé VII Corollary 3.6.5 Grothendieck furnishes another example of this principle using the geometrical notion of biextension of objects C: if P, Q and G are three objects of C, he proves that the group $\mathrm{Biext}^0(P,Q;G)$ of automorphisms of any biextension of (P,Q) by G and the group $\mathrm{Biext}^1(P,Q;G)$ of isomorphism classes of biextensions of (P,Q) by G, have the following homological interpretation:

(0.1)
$$\operatorname{Biext}^{i}(P,Q;G) \cong \operatorname{Ext}^{i}(P \overset{\mathsf{L}}{\otimes} Q,G) \qquad (i=0,1)$$

where $P \overset{\mathbb{L}}{\otimes} Q$ is the derived functor of the functor $Q \to P \otimes Q$ in the derived category $\mathcal{D}(\mathcal{C})$. In other words, the strict Picard stack of biextensions of (P,Q) by G is equivalent to the strict Picard stack associated (by the dictionary of [SGA4] Exposé XVIII Proposition 1.4.14) to the object $\tau_{\leq 0} \mathbb{R} \operatorname{Hom}(P \overset{\mathbb{L}}{\otimes} Q, G[1])$:

$$\mathcal{B}iext(P,Q;G) \cong \operatorname{ch} \left(\tau_{\leq o} \mathbb{R} \operatorname{Hom}(P \overset{\text{\tiny L}}{\otimes} Q, G[1])\right).$$

Other examples of the geometrical-homological principle of Grothendieck are exposed in [Br]: according to loc.cit. Proposition 8.4 the strict Picard stack of symmetric biextensions of (P,P) by G is equivalent to the strict Picard stack associated to the object $\tau_{\leq o}\mathbb{R}\mathrm{Hom}(\mathbb{L}\mathrm{Sym}^2(P),G[1])$ and according to loc.cit. Theorem 8.9 the strict Picard stack of the 3-tuple (L,E,α) (resp. the 4-tuple (L,E,α,β)) defining a cubic structure (resp. a Σ -structure) on the G-torsor L is equivalent to the strict Picard stack associated to the object $\tau_{\leq o}\mathbb{R}\mathrm{Hom}(\mathbb{L}P_2^+(P),G[1])$ (resp. $\tau_{\leq o}\mathbb{R}\mathrm{Hom}(\mathbb{L}\Gamma_2(P),G[1])$).

Let $K_i = [A_i \xrightarrow{u_i} B_i]$ (for i = 1, 2, 3) be a complex with A_i and B_i objects of \mathcal{C} in degree 1 and 0 respectively. In this paper we introduce the geometrical notions of extension of K_1 by K_3 and of biextension of (K_1, K_2) by K_3 . These two notions generalize to complexes of the kind K_i the classical notions of extensions and biextensions of objects of \mathcal{C} . We then apply the geometrical-homological principle of Grothendieck in order to compute the homological interpretation of these geometrical notions of extensions and biextensions of complexes. Our main result is:

Theorem 0.1. Let $K_i = [A_i \xrightarrow{u_i} B_i]$ (for i = 1, 2, 3) be a complex of commutative groups of T with A_i in degree 1 and B_i in degree 0. Then we have the following canonical isomorphisms

$$\operatorname{Biext}^{i}(K_{1}, K_{2}; K_{3}) \cong \operatorname{Ext}^{i}(K_{1} \overset{\mathbb{L}}{\otimes} K_{2}, K_{3}) \qquad (i = 0, 1).$$

In other words, the strict Picard stack of biextensions of (K_1, K_2) by K_3 is equivalent to the strict Picard stack associated (by the dictionary of [SGA4] Exposé XVIII Proposition 1.4.14) to the object $\tau_{\leq o} \mathbb{R} \text{Hom}(K_1 \overset{\mathbb{L}}{\otimes} K_2, K_3[1])$:

$$\mathcal{B}iext(K_1,K_2;K_3) \ \cong \ \mathrm{ch} \ \big(\tau_{\leq o}\mathbb{R}\mathrm{Hom}(K_1 \overset{^{\mathrm{L}}}{\otimes} K_2,K_3[1])\big).$$

If $A_i = 0$ (for i = 1, 2, 3), this theorem coincides with the homological interpretation (0.1) of Grothendieck.

The homological interpretation of extensions of complexes of the kind K_i is a special case of Theorem 0.1: in fact, it is furnished by the statement of this Theorem with $K_2 = \begin{bmatrix} 0 & 0 \\ 0 & \mathbb{Z} \end{bmatrix}$, since the category $\mathbf{Biext}(K_1, \begin{bmatrix} 0 & 0 \\ 0 & \mathbb{Z} \end{bmatrix}; K_3)$ of biextensions of

 $(K_1, [0 \xrightarrow{0} \mathbb{Z}])$ by K_3 is equivalent to the category $\mathbf{Ext}(K_1, K_3)$ of extensions of K_1 by K_3 :

$$\mathbf{Biext}(K_1, [0 \xrightarrow{0} \mathbb{Z}]; K_3) \cong \mathbf{Ext}(K_1, K_3),$$

and since in the derived category $\mathcal{D}(\mathcal{C})$ we have that

$$\operatorname{Ext}^{i}(K_{1} \overset{\mathbb{L}}{\otimes} [0 \overset{0}{\to} \mathbb{Z}], K_{3}) \cong \operatorname{Ext}^{i}(K_{1}, K_{3}) \qquad (i = 0, 1).$$

The idea of the proof of Theorem 0.1 works as follow: Let $K = [A \xrightarrow{u} B]$ be a complex of commutative groups of **T** concentrated in degrees 1 and 0 and let L.. be a bicomplex of commutative groups of **T** which satisfies $L_{ij} = 0$ for $(ij) \neq (00), (01), (02), (10), (11), (10), (20)$. To the complex K and to the bicomplex L.. we associate an additive cofibred category $\Psi_{\text{Tot}(L..)}(K)$ which has the following homological description:

(0.2)
$$\Psi^{i}_{\mathrm{Tot}(\mathrm{L}..)}(K) \cong \mathrm{Ext}^{i}(\mathrm{Tot}(\mathrm{L}..), K) \qquad (i = 0, 1)$$

where $\Psi^0_{\text{Tot(L..)}}(K)$ is the group of automorphisms of any object of $\Psi_{\text{Tot(L..)}}(K)$ and $\Psi^1_{\text{Tot(L..)}}(K)$ is the group of isomorphism classes of objects of $\Psi_{\text{Tot(L..)}}(K)$. Then, to any complex of the kind $K = [A \stackrel{u}{\to} B]$ we associate a canonical flat partial resolution L..(K) whose components are direct sums of objects of the kind $\mathbb{Z}[I]$ with I a commutative group of \mathbf{T} . Consider now three complexes $K_i = [A_i \stackrel{u_i}{\to} B_i]$ (for i = 1, 2, 3). The category $\Psi_{\text{Tot(L..}(K_1))}(K_3)$ and $\Psi_{\text{Tot(L..}(K_1)\otimes \text{L..}(K_2))}(K_3)$ admit the following geometrical description:

$$\begin{array}{cccc} \Psi_{\mathrm{Tot}(\mathrm{L}..(K_1))}(K_3) & \cong & \mathbf{Ext}(K_1,K_3) \\ \Psi_{\mathrm{Tot}(\mathrm{L}..(K_1)\otimes\mathrm{L}..(K_2))}(K_3) & \cong & \mathbf{Biext}(K_1,K_2;K_3) \end{array}$$

Putting together this geometrical description (0.3) with the homological description (0.2), we get

- the proof of the Theorem 0.1;
- the proof that the group of automorphisms of any extension of K_1 by K_3 is the group $\operatorname{Ext}^0(K_1,K_3)$ and that the group of isomorphism classes of extensions of K_1 by K_3 is the group $\operatorname{Ext}^1(K_1,K_3)$.

NOTATION

In this paper, **T** is a topos and C is the category of commutative groups of **T**, i.e. the category of \mathbb{Z} -modules of **T**. Recall that we can identify commutative groups of **T** with abelian sheaves over **T**. If I is an object of C, we denote by $\mathbb{Z}[I]$ the free \mathbb{Z} -module generated by I (see [SGA4] Exposé IV 11).

All complexes of objects of $\mathcal C$ that we consider in this paper are chain complexes. The truncation $\tau_{\geq n} \mathbf L$ of a complex $\mathbf L$ is the following complex: $(\tau_{\geq n} \mathbf L)_i = \mathbf L_i$ for $i \geq n$ and $(\tau_{\geq n} \mathbf L)_i = 0$ for i < n.

If L.. is a bicomplex of objects of \mathcal{C} , we denote by $\operatorname{Tot}(L..)$ the total complex of L..: it is the chain complex whose component of degree n is $\operatorname{Tot}(L..)_n = \sum_{i+j=n} L_{ij}$. Let $\mathcal{D}(\mathcal{C})$ be the derived category of the abelian category \mathcal{C} . Denote by $\mathcal{D}^{[1,0]}(\mathcal{C})$

the subcategory of $\mathcal{D}(\mathcal{C})$ of complexes $K = [A \xrightarrow{u} B]$ with A concentrated in degree 1 and B concentrated in degree 0.

1. Extensions and biextensions of complexes

Let G be an object of \mathcal{C} . A G-torsor is an object of \mathbf{T} endowed with an action of G, which is locally isomorphic to G acting on itself by translation.

Let P, G be objects of C. An **extension of** P **by** G is an object E of T such that we have an exact sequence

$$0 \longrightarrow G \longrightarrow E \longrightarrow P \longrightarrow 0.$$

By definition the object E is a group. Since in this paper we consider only commutative extensions, E is in fact an object of C. We denote by $\mathbf{Ext}(P,G)$ the category of extensions of P by G. It is a classical result that the category $\mathbf{Ext}(P,*)$ of extensions of P by variable objects of C is an additive cofibred category over C

$$\mathbf{Ext}(P,*) \longrightarrow \mathcal{C}$$

 $\mathbf{Ext}(P,G) \mapsto G$

Moreover, the Baer sum of extensions defines a group law for the objects of the category $\mathbf{Ext}(P,G)$, which is therefore a Picard category.

Let P,G be objects of \mathcal{C} . Denote by $m:P\times P\to P$ the group law of P and by $pr_i:P\times P\to P$ with i=1,2 the two projections of $P\times P$ in P. According [SGA7] Exposé VII 1.1.6 and 1.2, the category of extensions of P by G is equivalent to the category of 4-tuple (P,G,E,φ) , where E is a G_P -torsor over P, and $\varphi:pr_1^*E\ pr_2^*E\to m^*E$ is an isomorphism of torsors over $P\times P$ satisfying some associative and commutative conditions (see [SGA7] Exposé VII diagrams (1.1.4.1) and (1.2.1)):

$$\mathbf{Ext}(P,G) \cong \Big\{ (P,G,E,\varphi) \ \Big| \ E = G_P - \text{torsor over } P \text{ and} \\ (1.1) \qquad \qquad \varphi : pr_1^*E \ pr_2^*E \simeq m^*E \text{ with ass. and comm. conditions} \Big\}.$$

It will be useful in what follows to look at the isomorphism of torsors φ as an associative and commutative group law on the fibres:

$$+: E_p E_{p'} \longrightarrow E_{p+p'}$$

where p, p' are points of P(S) with S any object of T.

Let I and G be objects of C. Concerning extensions of free commutative groups, in [SGA7] Exposé VII 1.4 Grothendieck proves that there is an equivalence of category between the category of extensions of $\mathbb{Z}[I]$ by G and the category of G_I -torsors over I:

(1.2)
$$\mathbf{Ext}(\mathbb{Z}[I], G) \cong \mathbf{Tors}(I, G_I)$$

Let P,Q and G be objects of C. A **biextension of** (P,Q) **by** G is a $G_{P\times Q}$ -torsor B over $P\times Q$, endowed with a structure of commutative extension of Q_P by G_P and a structure of commutative extension of P_Q by G_Q , which are compatible one with another (for the definition of compatible extensions see [SGA7] Exposé VII Définition 2.1). If m_P, p_1, p_2 (resp. m_Q, q_1, q_2) denote the three morphisms $P\times P\times Q\to P\times Q$ (resp. $P\times Q\times Q\to P\times Q$) deduced from the three morphisms $P\times P\to P$ (resp. $Q\times Q\to Q$) group law, first and second projection, the equivalence of categories (1.1) furnishes the following equivalent definition: a biextension of (P,Q) by G is a $G_{P\times Q}$ -torsor B over $P\times Q$ endowed with two

isomorphisms of torsors

$$\varphi: p_1^*E \ p_2^*E \longrightarrow m_P^*E \qquad \qquad \psi: q_1^*E \ q_2^*E \longrightarrow m_Q^*E$$

over $P \times P \times Q$ and $P \times Q \times Q$ respectively, satisfying some associative, commutative and compatible conditions (see [SGA7] Exposé VII diagrams (2.0.5),(2.0.6),(2.0.8), (2.0.9), (2.1.1)). As for extensions, we will look at the isomorphisms of torsors φ and ψ as two associative and commutative group laws on the fibres which are compatible with one another:

$$+_{P/Q}: E_{p,q} E_{p',q} \longrightarrow E_{p+p',q} +_{Q/P}: E_{p,q} E_{p,q'} \longrightarrow E_{p,q+q'}$$

where p, p' (resp. q, q') are points of P(S) (resp. of Q(S)) with S any object of \mathbf{T} . Let $K_i = [A_i \stackrel{u_i}{\to} B_i]$ (for i = 1, 2) be a complex of objects of $\mathcal C$ with A_i in degree 1 and B_i in degree 0.

Definition 1.1. An extension (E,β) of K_1 by K_2 consists of

- (1) an extension E of B_1 by B_2 ;
- (2) a trivialization β of the extension u_1^*E of A_1 by B_2 obtained as pull-back of the extension E via $u_1: A_1 \to B_1$, i.e. an homomorphism $\beta: A_1 \to B_2$.

Let $K_i = [A_i \xrightarrow{u_i} B_i]$ and $K'_i = [A'_i \xrightarrow{u'_i} B'_i]$ (for i = 1, 2) be complexes of objects of \mathcal{C} concentrated in degrees 1 and 0. Let (E, β) be an extension of K_1 by K_2 and let (E', β') be an extension of K'_1 by K'_2 .

Definition 1.2. A morphism of extensions

$$(\underline{F},\underline{\Upsilon}):(E,\beta)\longrightarrow(E',\beta')$$

consists of

(1) a morphism $\underline{F} = (F, f_1, f_2) : E \to E'$ from the extension E to the extension E'. In particular,

$$f_1: B_1 \longrightarrow B_1' \qquad f_2: B_2 \longrightarrow B_2'$$

are homomorphisms of commutative groups of T.

(2) a morphism of extensions

$$\underline{\Upsilon} = (\Upsilon, g_1, f_2) : u_1^* E \longrightarrow {u_1'}^* E'$$

compatible with the morphism $\underline{F} = (F, f_1, f_2)$ and with the trivializations β and β' . In particular,

$$g_1:A_1\longrightarrow A_1'$$

is an homomorphism of commutative groups of T.

We denote by $\mathbf{Ext}(K_1, K_2)$ the category of extensions of K_1 by K_2 . If the complex K_1 is fixed, the category $\mathbf{Ext}(K_1, *)$ of extensions of K_1 by variable complexes K_2 is an additive cofibred category over $\mathcal{D}^{[1,0]}(\mathcal{C})$

$$\begin{array}{cccc} \mathbf{Ext}(K_1,*) & \longrightarrow & \mathcal{D}^{[1,0]}(\mathcal{C}) \\ \mathbf{Ext}(K_1,K_2) & \mapsto & K_2 \end{array}$$

This is an easy consequence of the analogous properties of the category of extensions of objects of C. Moreover the Baer sum of extensions defines a group law for the objects of the category $\mathbf{Ext}(K_1, K_2)$, which is therefore a Picard category. The zero object (E_0, β_0) of $\mathbf{Ext}(K_1, K_2)$ with respect to this group law consists of

- the trivial extension $E_0 = B_1 \times B_2$ of B_1 by B_2 , i.e. the zero object of $\mathbf{Ext}(B_1, B_2)$, and
- the trivialization $\beta_0 = (id_{A_1}, 0)$ of the extension $u_1^* E_0 = A_1 \times B_2$ of A_1 by B_2 . We can consider β_0 as a lifting $(u_1, 0) : A_1 \to B_1 \times B_2$ of $u_1 : A_1 \to B_1$.

The group of automorphisms of any object of $\mathbf{Ext}(K_1, K_2)$ is canonically isomorphic to the group of automorphisms $\mathrm{Aut}(E_0, \beta_0)$ of the zero object of $\mathbf{Ext}(K_1, K_2)$. Explicitly, $\mathrm{Aut}(E_0, \beta_0)$ consists of the couple (f_0, f_1) where

- $f_0: B_1 \to B_2$ is an automorphism of the trivial extension E_0 , i.e. $f_0 \in Aut(E_0) = Ext^0(B_1, B_2)$, and
- $f_1: A_1 \to A_2$ is an homomorphism such that the composite $u_2 \circ f_1$ is compatible with the pull-back $u_1^* f_0$ of the automorphism f_0 of E_0 , i.e. $u_2 \circ f_1 = f_0 \circ u_1$.

We have therefore the canonical isomorphisms

$$\operatorname{Aut}(E_0, \beta_0) \cong \operatorname{Hom}_{\mathcal{D}(\mathcal{C})}(K_1, K_2) = \operatorname{Ext}^0(K_1, K_2).$$

The group law of the category $\mathbf{Ext}(K_1, K_2)$ induces a group law on the set of isomorphism classes of objects of $\mathbf{Ext}(K_1, K_2)$, which is canonically isomorphic to the group $\mathbf{Ext}^1(K_1, K_2)$, as we will prove in Corollary 4.3.

Let $K_i = [A_i \xrightarrow{u_i} B_i]$ (for i = 1, 2, 3) be a complex of objects of \mathcal{C} with A_i in degree 1 and B_i in degree 0.

Definition 1.3. A biextension $(\mathcal{B}, \Psi_1, \Psi_2, \lambda)$ of (K_1, K_2) by K_3 consists of

- (1) a biextension \mathcal{B} of (B_1, B_2) by B_3 ;
- (2) a trivialization Ψ_1 (resp. Ψ_2) of the biextension $(u_1, id_{B_2})^*\mathcal{B}$ of (A_1, B_2) by B_3 (resp. of the biextension $(id_{B_1}, u_2)^*\mathcal{B}$ of (B_1, A_2) by B_3) obtained as pull-back of \mathcal{B} via $(u_1, id_{B_2}) : A_1 \times B_2 \to B_1 \times B_2$ (resp. via $(id_{B_1}, u_2) : B_1 \times A_2 \to B_1 \times B_2$). These two trivializations have to coincide over (A_1, A_2) ;
- (3) an homomorphism $\lambda: A_1 \otimes A_2 \to A_3$ such that the composite $A_1 \otimes A_2 \xrightarrow{\lambda} A_3 \xrightarrow{u_3} B_3$ is compatible with the restriction over (A_1, A_2) of the trivializations Ψ_1 and Ψ_2 .

Let $K_i = [A_i \xrightarrow{u_i} B_i]$ and $K'_i = [A'_i \xrightarrow{u'_i} B'_i]$ (for i = 1, 2, 3) be complexes of objects of \mathcal{C} concentrated in degrees 1 and 0. Let $(\mathcal{B}, \Psi_1, \Psi_2, \lambda)$ be a biextension of (K_1, K_2) by K_3 and let $(\mathcal{B}', \Psi'_1, \Psi'_2, \lambda')$ be a biextension of (K'_1, K'_2) by K'_3 .

Definition 1.4. A morphism of biextensions

$$(F, \Upsilon_1, \Upsilon_2, g_3) : (\mathcal{B}, \Psi_1, \Psi_2, \lambda) \longrightarrow (\mathcal{B}', \Psi_1', \Psi_2', \lambda')$$

consists of

(1) a morphism $\underline{F} = (F, f_1, f_2, f_3) : \mathcal{B} \to \mathcal{B}'$ from the biextension \mathcal{B} to the biextension \mathcal{B}' . In particular,

$$f_1: B_1 \longrightarrow B_1'$$
 $f_2: B_2 \longrightarrow B_2'$ $f_3: B_3 \longrightarrow B_3'$

are homomorphisms of commutative groups of **T**.

(2) a morphism of biextensions

$$\underline{\Upsilon}_1 = (\Upsilon_1, g_1, f_2, f_3) : (u_1, id_{B_2})^* \mathcal{B} \longrightarrow (u'_1, id_{B'_2})^* \mathcal{B}'$$

compatible with the morphism $\underline{F} = (F, f_1, f_2, f_3)$ and with the trivializations Ψ_1 and Ψ'_1 , and a morphism of biextensions

$$\underline{\Upsilon}_2 = (\Upsilon_2, f_1, g_2, f_3) : (id_{B_1}, u_2)^* \mathcal{B} \longrightarrow (id_{B_1'}, u_2')^* \mathcal{B}'$$

compatible with the morphism $\underline{F} = (F, f_1, f_2, f_3)$ and with the trivializations Ψ_2 and Ψ_2' . In particular,

$$g_1: A_1 \longrightarrow A'_1 \qquad g_2: A_2 \longrightarrow A'_2$$

are homomorphisms of commutative groups of \mathbf{T} . By pull-back, the two morphisms $\underline{\Upsilon}_1 = (\Upsilon_1, g_1, f_2, f_3)$ and $\underline{\Upsilon}_2 = (\Upsilon_2, f_1, g_2, f_3)$ define a morphism of biextensions $\underline{\Upsilon} = (\Upsilon, g_1, g_2, f_3) : (u_1, u_2)^* \mathcal{B} \to (u_1', u_2')^* \mathcal{B}'$ compatible with the morphism $\underline{F} = (F, f_1, f_2, f_3)$ and with the trivializations Ψ and Ψ' .

(3) an homomorphism $g_3:A_3\to A_3'$ of commutative groups of **T** compatible with u_3 and u_3' (i.e. $u_3'\circ g_3=f_3\circ u_3$) and such that

$$\lambda' \circ (g_1 \times g_2) = g_3 \circ \lambda$$

We denote by $\mathbf{Biext}(K_1, K_2; K_3)$ the category of biextensions of (K_1, K_2) by K_3 . If the complexes K_1 and K_2 are fixed, the category $\mathbf{Biext}(K_1, K_2; *)$ of biextensions of (K_1, K_2) by variable complexes K_3 is an additive cofibred category over $\mathcal{D}^{[1,0]}(\mathcal{C})$

$$\mathbf{Biext}(K_1, K_2; *) \longrightarrow \mathcal{D}^{[1,0]}(\mathcal{C})$$
$$\mathbf{Biext}(K_1, K_2; K_3) \mapsto K_3$$

This is an easy consequence of the fact that the category of biextensions of objects of \mathcal{C} is an additive cofibred category over \mathcal{C} (see [SGA7] Exposé VII 2.4). The Baer sum of extensions defines a group law for the objects of the category $\mathbf{Biext}(K_1, K_2; K_3)$ which is therefore a Picard category (see [SGA7] Exposé VII 2.5). The zero object $(\mathcal{B}_0, \Psi_{0,1}, \Psi_{0,2}, \lambda_0)$ of $\mathbf{Biext}(K_1, K_2; K_3)$ with respect to this group law consists of

- the trivial biextension $\mathcal{B}_0 = B_1 \times B_2 \times B_3$ of (B_1, B_2) by B_3 , i.e. the zero object of $\mathbf{Biext}(B_1, B_2; B_3)$, and
- the trivialization $\Psi_{01} = (id_{A_1}, id_{B_2}, 0)$ (resp. $\Psi_{02} = (id_{B_1}, id_{A_2}, 0)$) of the biextension $(u_1, id_{B_2})^* \mathcal{B}_0 = A_1 \times B_2 \times B_3$ of (A_1, B_2) by B_3 (resp. of the biextension $(id_{B_1}, u_2)^* \mathcal{B}_0 = B_1 \times A_2 \times B_3$ of $(B_1 \times A_2)$ by B_3). These two trivialization have to coincide over $A_1 \times A_2$,
- the zero homomorphism $\lambda_0 = 0 : A_1 \otimes A_2 \to A_3$.

The group of automorphisms of any object of $\mathbf{Biext}(K_1, K_2; K_3)$ is canonically isomorphic to the group of automorphisms of the zero object $(\mathcal{B}_0, \Psi_{01}, \Psi_{02}, \lambda_0)$, that we denote $\mathrm{Biext}^0(K_1, K_2; K_3)$. Explicitly, $\mathrm{Biext}^0(K_1, K_2; K_3)$ consists of the couple $(f_0, f_{11} + f_{12})$ where

- $f_0: B_1 \otimes B_2 \to B_3$ is an automorphism of the trivial biextension \mathcal{B}_0 , i.e. $f_0 \in \text{Biext}^0(B_1, B_2; B_3) = \text{Hom}(B_1 \otimes B_2, B_3)$, and
- $f_{11}: A_1 \otimes B_2 \to A_3$ (resp. $f_{12}: B_1 \otimes A_2 \to A_3$) is an homomorphism such that the composite $u_3 \circ f_{11}$ (resp. $u_3 \circ f_{12}$) is compatible with the pull-back $(u_1, id_{B_2})^* f_0$ (resp. $(id_{B_1}, u_2)^* f_0$) of the automorphism f_0 of \mathcal{B}_0 , i.e. $u_3 \circ (f_{11} + f_{12}) = f_0 \circ (u_1 \otimes id_{B_2} + id_{B_1} \otimes u_2)$.

We have therefore the canonical isomorphisms

$$\operatorname{Biext}^{0}(K_{1}, K_{2}; K_{3}) \cong \operatorname{Hom}_{\mathcal{D}(\mathcal{C})}(K_{1} \overset{\mathbb{L}}{\otimes} K_{2}, K_{3}) = \operatorname{Ext}^{0}(K_{1} \overset{\mathbb{L}}{\otimes} K_{2}, K_{3}).$$

The group law of the category $\mathbf{Biext}(K_1, K_2; K_3)$ induces a group law on the set of isomorphism classes of objects of $\mathbf{Biext}(K_1, K_2; K_3)$, that we denote by $\mathrm{Biext}^1(K_1, K_2; K_3)$.

Remark 1.5. According to the above geometrical definitions of extensions and biextensions of complexes, we have the following equivalence of categories

$$\mathbf{Biext}(K_1, [0 \to \mathbb{Z}]; K_3) \cong \mathbf{Ext}(K_1, K_3).$$

Moreover we have also the following isomorphisms

$$\mathrm{Biext}^{i}(K_{1}, [\mathbb{Z} \to 0]; K_{3}) = \begin{cases} \mathrm{Hom}(B_{1}, A_{3}), & i = 0; \\ \mathrm{Hom}(K_{1}, K_{3}), & i = 1. \end{cases}$$

Remark that we get the same results applying the homological interpretation of biextensions furnished by our main Theorem 0.1.

2. The additive cofibred category $\Psi_{\mathrm{Tot}(\mathrm{L..})}$

Consider the following bicomplex L.. of objects of C:

The total complex Tot(L..) is the complex

$$L_{02} + L_{11} + L_{20} \xrightarrow{\mathbb{D}_1} L_{01} + L_{10} \xrightarrow{\mathbb{D}_0} L_{00} \longrightarrow 0$$

where the differential operators \mathbb{D}_1 and \mathbb{D}_0 can be computed from the diagram (2.1). In this section we define an additive cofibred category $\Psi_{\text{Tot}(L..)}$ over $\mathcal{D}^{[1,0]}(\mathcal{C})$. Let $K = [A \xrightarrow{u} B]$ be an object of $\mathcal{D}^{[1,0]}(\mathcal{C})$.

Definition 2.1. Denote by

$$\Psi_{\mathrm{Tot}(\mathrm{L}..)}(K)$$

the category whose **objects** consist of 4-tuple $(E, \alpha, \beta, \gamma)$ where

- (1) E is an extension of L_{00} by B;
- (2) (α, β) is a trivialization of the extension \mathbb{D}_0^*E of $L_{01} + L_{10}$ by B obtained as pull-back of E via \mathbb{D}_0 . Moreover we require that the corresponding trivialization $\mathbb{D}_1^*(\alpha, \beta)$ of $\mathbb{D}_1^*\mathbb{D}_0^*(E)$ is the trivialization arising from the isomorphism of transitivity $\mathbb{D}_1^*\mathbb{D}_0^*(E) \cong (\mathbb{D}_0 \circ \mathbb{D}_1)^*(E)$ and the relation $\mathbb{D}_0 \circ \mathbb{D}_1 = 0$; In other words, (α, β) is a lifting $L_{01} + L_{10} \to E$ of $\mathbb{D}_0 : L_{01} + L_{10} \to L_{00}$ such that $(\alpha, \beta) \circ \mathbb{D}_1 = 0$.
- (3) $\gamma: L_{20} \to A$ is an homomorphism such that the composite $L_{20} \xrightarrow{\gamma} A \xrightarrow{u} B$ is compatible with the restriction $D_{10}^*(\beta)$ of the trivialization β over L_{20} .

A morphism $(F, id, f_B, f_A) : (E, \alpha, \beta, \gamma) \to (E', \alpha', \beta', \gamma')$ between two objects of $\Psi_{\text{Tot}(L..)}(K)$ consists of

(1) a morphism $(F, id, f_B) : E \to E'$ of extensions inducing the identity on L_{00} and such that $F \circ \alpha = \alpha'$ and $F \circ \beta = \beta'$. In particular,

$$F: E \longrightarrow E'$$
 $id: L_{00} \longrightarrow L_{00}$ $f_B: B \longrightarrow B;$

(2) an homomorphism $f_A: A \to A$ such that $f_A \circ \gamma = \gamma'$.

Remark that the conditions $u \circ \gamma = D_{10}^*(\beta)$ and $u \circ \gamma' = D_{10}^*(\beta')$ imply that $f_B \circ u = u \circ f_A$, i.e. the couple (f_A, f_B) defines a morphism of complexes $K \to K$. The composition of morphisms of $\Psi_{\text{Tot}(L..)}(K)$ is defined using the composition of morphisms of extensions and the composition of morphisms of complexes (f_A, f_B) : $[A \xrightarrow{u} B] \to [A \xrightarrow{u} B]$.

We can summarize the data $(E, \alpha, \beta, \gamma)$ in the following diagram:

We have a functor

$$\begin{array}{ccc} \Pi: \Psi_{\mathrm{Tot}(\mathrm{L}..)} & \longrightarrow & \mathcal{D}^{[1,0]}(\mathcal{C}) \\ \Psi_{\mathrm{Tot}(\mathrm{L}..)}(K) & \mapsto & K \end{array}$$

which is cofibring. In fact, let $(f_1, f_0) : K = [A \xrightarrow{u} B] \to K' = [A' \xrightarrow{u'} B']$ be a morphism of $\mathcal{D}^{[1,0]}(\mathcal{C})$, and let $(E, \alpha, \beta, \gamma)$ be an object of the fibre $\Psi_{\text{Tot}(L..)}(K)$ over K. Denote by $(f_0)_*E$ the push-down of E via the homomorphism $f_0 : B \to B'$ and by $(F, id, f_0) : E \to E'$ the corresponding morphism of extensions inducing the identity on L_{00} . The object $((f_0)_*E, F \circ \alpha, F \circ \beta, f_1 \circ \gamma)$ is clearly an object of the fibre $\Psi_{\text{Tot}(L..)}(K')$ over K' and the morphism

$$(F, id, f_0, f_1) : (E, \alpha, \beta, \gamma) \longrightarrow ((f_0)_* E, F \circ \alpha, F \circ \beta, f_1 \circ \gamma)$$

is a cocartesian morphism for the functor $\Pi: \Psi_{\text{Tot}(L...)} \to \mathcal{D}^{[1,0]}(\mathcal{C})$: it is enough to use the analogue property of the morphism of extensions $(F, id, f_0): E \to (f_0)_*E$ which is a classical result. Therefore the category $\Psi_{\text{Tot}(L..)}$ is a cofibred category over $\mathcal{D}^{[1,0]}(\mathcal{C})$.

Finally, the cofibred category $\Psi_{\text{Tot(L..)}}$ is additive, i.e. it satisfies the two following conditions:

- (1) $\Psi_{\text{Tot(L..)}}(0)$ is equivalent to the trivial category;
- (2) $\Psi_{\text{Tot(L..)}}(K \times K') \longrightarrow \Psi_{\text{Tot(L..)}}(K) \times \Psi_{\text{Tot(L..)}}(K')$ is an equivalence of category for any object K, K' of $\mathcal{D}^{[1,0]}(\mathcal{C})$.

This is an easy consequence of the fact that the cofibred category $\mathbf{Ext}(L_{00},*)$ of extensions of L_{00} by objects of \mathcal{C} is additive.

For any object $K = [A \xrightarrow{u} B]$ of $\mathcal{D}^{[1,0]}(\mathcal{C})$, the Baer sum of extensions defines a group law for the objects of the category $\Psi_{\text{Tot}(L...)}(K)$. The zero object of $\Psi_{\text{Tot}(L...)}(K)$ with respect to this law group is the 4-tuple $(E_0, \alpha_0, \beta_0, \gamma_0)$ where

- $E_0 = L_{00} \times B$ is the trivial extension of L_{00} by B, i.e. the zero object of $\mathbf{Ext}(L_{00}, B)$, and
- α_0 is the trivialization $(id_{L_{01}}, 0)$ of the extension $d_{00}^*E_0 = L_{01} \times B$ of L_{01} by B; β_0 is the trivialization $(id_{L_{10}}, 0)$ of the extension $D_{00}^*E_0 = L_{10} \times B$ of L_{10} by B. We can consider α_0 (resp. β_0) as a lifting $(d_{00}, 0)$ (resp. $(D_{00}, 0)$) of $d_{00}: L_{01} \to L_{00}$ (resp. of $D_{00}: L_{10} \to L_{00}$),
- $\gamma_0 = 0 : L_{20} \to A$ is the zero homomorphism.

The group of automorphisms of any object of $\Psi_{\text{Tot}(L..)}(K)$ is canonically isomorphic to the group of automorphisms of the zero object of $\Psi_{\text{Tot}(L..)}(K)$, that we denote by $\Psi^0_{\text{Tot}(L..)}(K)$. Explicitly, $\Psi^0_{\text{Tot}(L..)}(K)$ consists of the couple $(f_0, (f_{01}, f_{10}))$ where

- $f_0: L_{00} \to B$ is an automorphism of the trivial extension E_0 , i.e. $f_0 \in Aut(E_0) = Ext^0(L_{00}, B)$, and
- $f_{01}: L_{01} \to A$ (resp. $f_{10}: L_{10} \to A$) is an homomorphism such that the composite $u \circ f_{01}$ (resp. $u \circ f_{10}$) is compatible with the pull-back $d_{00}^*(f_0)$ (resp. $D_{00}^*(f_0)$) of the automorphism f_0 of E_0 , i.e.

(2.2)
$$u \circ f_{01} = f_0 \circ d_{00}$$
 (resp.
$$u \circ f_{10} = f_0 \circ D_{00}$$
)

The group law of the category $\Psi_{\text{Tot(L..)}}(K)$ induces a group law on the set of isomorphism classes of objects of $\Psi_{\text{Tot(L..)}}(K)$ that we denote by $\Psi^1_{\text{Tot(L..)}}(K)$.

3. Homological description of $\Psi_{\mathrm{Tot}(\mathrm{L..})}$

Theorem 3.1. Let $K = [A \xrightarrow{u} B]$ be a complex of objects of C concentrated in degrees 1 and 0. We have the following canonical isomorphisms

$$\Psi^{0}_{\mathrm{Tot}(\mathrm{L}..)}(K) \cong \mathrm{Ext}^{0}(\mathrm{Tot}(\mathrm{L}..), K) = \mathrm{Hom}_{\mathcal{D}(\mathcal{C})}(\mathrm{Tot}(\mathrm{L}..), K)$$

$$\Psi^{1}_{\mathrm{Tot}(\mathrm{L}..)}(K) \cong \mathrm{Ext}^{1}(\mathrm{Tot}(\mathrm{L}..), K) = \mathrm{Hom}_{\mathcal{D}(\mathcal{C})}(\mathrm{Tot}(\mathrm{L}..), K[1]).$$

Proof. Let $(f_0, (f_{01}, f_{10}))$ be an element of $\Psi^0_{\text{Tot}(L..)}(K)$, i.e. an automorphism of the zero object $(E_0, \alpha_0, \beta_0, \gamma_0)$ of $\Psi_{\text{Tot}(L..)}(K)$. We will show that the morphisms $f_0: L_{00} \to B$ and $(f_{01}, f_{10}): L_{01} + L_{10} \to A$ define a morphism $\text{Tot}(L..) \to K$ in the derived category $\mathcal{D}(\mathcal{C})$. Consider the diagram

By definition, the morphisms $f_{01}: L_{01} \to A$ and $f_{10}: L_{10} \to A$ satisfies the equalities (2.2). Since $\mathbb{D}_0 = (d_{00}, D_{00})$, we get that $f_0 \circ \mathbb{D}_0 = u \circ (f_{01}, f_{10})$, i.e. the second diagram of (3.1) is commutative. Concerning the first diagram of (3.1), we have to prove that $(f_{01}, f_{10}) \circ \mathbb{D}_1 = 0$ with $\mathbb{D}_1 = (d_{01}, 0) + (D_{01}, d_{10}) + (0, D_{10})$. The first equality (2.2) and the condition $d_{00} \circ d_{10} = 0$ imply

$$u \circ f_{01} \circ d_{01} = f_0 \circ d_{00} \circ d_{01} = 0,$$

which furnishes (since u is arbitrary)

$$(f_{01}, f_{10}) \circ (d_{01}, 0) = 0.$$

Both equalities (2.2) and the condition $d_{00} \circ D_{01} + D_{00} \circ d_{10} = 0$ give that

$$u \circ (f_{01}, f_{10}) \circ (D_{01}, d_{10}) = f_0 \circ (d_{00}, D_{00}) \circ (D_{01}, d_{10}) = 0$$

which implies that

$$(f_{01}, f_{10}) \circ (D_{01}, d_{10}) = 0$$

since u is arbitrary. Because of the second equality (2.2) and the condition $D_{00} \circ D_{10} = 0$, we have that

$$u \circ f_{10} \circ D_{10} = f_0 \circ D_{00} \circ D_{10} = 0,$$

which furnishes (again because u is arbitrary)

$$(f_{01}, f_{10}) \circ (0, D_{10}) = 0.$$

Therefore also the first diagram of (3.1) is commutative. Hence we have construct a morphism

$$\Psi^{0}_{\mathrm{Tot}(\mathrm{L}..)}(K) \longrightarrow \mathrm{Hom}_{\mathcal{D}(\mathcal{C})}(\mathrm{Tot}(\mathrm{L}..), K)$$

$$(f_{0}, (f_{01}, f_{10})) \mapsto (f_{0}, (f_{01}, f_{10}))$$

which is clearly a canonical isomorphism.

Let $(E, \alpha, \beta, \gamma)$ be an object of $\Psi_{\text{Tot}(L...)}(K)$. We will show that $(E, \alpha, \beta, \gamma)$ defines a morphism $\text{Tot}(L..) \to K[1]$ in the derived category $\mathcal{D}(\mathcal{C})$. Recall that E is an extension of L_{00} by B. Denote $j : E \to L_{00}$ the corresponding surjective morphism. Consider the complex $[E \xrightarrow{j} L_{00}]$, with E in degree 0 and L_{00} in degree -1. It is a resolution of B, and so in the derived category $\mathcal{D}(\mathcal{C})$ we have that

$$B = [E \xrightarrow{j} L_{00}].$$

Since by definition, the data (α, β) can be considered as a lifting $L_{01} + L_{10} \to E$ of $\mathbb{D}_0 : L_{01} + L_{10} \to L_{00}$ such that $(\alpha, \beta) \circ \mathbb{D}_1 = 0$, we can construct in $\mathcal{D}(\mathcal{C})$ the following morphism

that we denote by

$$c(E,\alpha,\beta): \mathrm{Tot}(\mathrm{L}..) \longrightarrow [E \xrightarrow{j} \mathrm{L}_{00}][1] = B[1].$$

Now we use the homomorphism $\gamma: L_{20} \to A$ and the above morphism $c(E, \alpha, \beta)$ in order to construct in the derived category $\mathcal{D}(\mathcal{C})$ a morphism $c(E, \alpha, \beta, \gamma): \operatorname{Tot}(L..) \to [A \xrightarrow{u} B][1]$. Consider the diagram

Recall that $\mathbb{D}_1 = (d_{01}, 0) + (D_{01}, d_{10}) + (0, D_{10})$. By construction $c(E, \alpha, \beta) \circ (d_{01}, 0) + (D_{01}, d_{10}) = 0$. By definition the homomorphism γ satisfies the equality $u \circ \gamma = \beta \circ D_{10}$, and so we have that $c(E, \alpha, \beta)_{|L_{10}} \circ (0, D_{10}) = u \circ \gamma$. Therefore the diagram (3.3) is commutative. Since the morphism $c(E, \alpha, \beta, \gamma)$ depends only

on the isomorphism class of the object $(E, \alpha, \beta, \gamma)$, we have construct a canonical morphism

$$c: \Psi^{1}_{\mathrm{Tot}(\mathrm{L}..)}(K) \longrightarrow \mathrm{Hom}_{\mathcal{D}(\mathcal{C})}(\mathrm{Tot}(\mathrm{L}..), K[1])$$

$$(E, \alpha, \beta, \gamma) \mapsto c(E, \alpha, \beta, \gamma).$$

Now we have to show that this morphism is an isomorphism.

Injectivity: Let $(E, \alpha, \beta, \gamma)$ be an object of $\Psi_{\text{Tot}(L..)}(K)$ such that the morphism $c(E, \alpha, \beta, \gamma)$ that it defines in $\mathcal{D}(\mathcal{C})$, is the zero morphism. The corresponding morphism $c(E, \alpha, \beta)$: Tot(L..) $\longrightarrow [E \xrightarrow{j} L_{00}][1]$ (3.2) must also be zero in $\mathcal{D}(\mathcal{C})$. Now we will show that $c(E, \alpha, \beta)$ is already zero in the category $\mathcal{K}(\mathcal{C})$ of complexes modulo homotopy. Recall that the complex $[E \xrightarrow{j} L_{00}]$ is a resolution of B in $\mathcal{D}(\mathcal{C})$. The hypothesis that $c(E, \alpha, \beta)$ is zero in $\mathcal{D}(\mathcal{C})$ implies that there is a resolution of B in $\mathcal{D}(\mathcal{C})$ of the kind $[C_0 \xrightarrow{i} C_{-1}]$ with C_0 in degree 0 and C_{-1} in degree -1, and a quasi-isomorphism (v_0, v_{-1}) : $[E \xrightarrow{j} L_{00}] \to [C_0 \to C_{-1}]$, explicitly

such that the composite $(v_0,v_{-1})\circ c(E,\alpha,\beta)$ is homotopic to zero. Since the morphism (v_0,v_{-1}) induces the identity on B, it identifies E with the fibred product $L_{00}\times_{C_{-1}}C_0$ of L_{00} and C_0 over C_{-1} . Therefore, the homomorphism $s:L_{00}\to C_0$ inducing the homotopy $(v_0,v_{-1})\circ c(E,\alpha,\beta)\sim 0$, i.e. satisfying $i\circ s=v_{-1}\circ id_{L_{00}}$, factorizes through an homomorphism

$$S: \mathcal{L}_{00} \longrightarrow E = \mathcal{L}_{00} \times_{C_{-1}} C_0$$

which satisfies $j \circ S = id_{L_{00}}$. This last equality means that the homomorphism S splits the extension E of L_{00} by B and so the complex $[E \xrightarrow{j} L_{00}]$ is isomorphic in $\mathcal{K}(\mathcal{C})$ to B, i.e. to the complex $[B \to 0]$ with B in degree 0. But then it is clear that the morphism

$$\operatorname{Hom}_{\mathcal{K}(\mathcal{C})}(\operatorname{Tot}(L..), B) \longrightarrow \operatorname{Hom}_{\mathcal{D}(\mathcal{C})}(\operatorname{Tot}(L..), B)$$

is an isomorphism and that $c(E, \alpha, \beta)$ is already zero in the category $\mathcal{K}(\mathcal{C})$. There exists therefore an homomorphism $h: \mathcal{L}_{00} \to E$ such that

$$j \circ h = id_{\mathbf{L}_{00}}$$
 $h \circ \mathbb{D}_0 = (\alpha, \beta),$

i.e. h splits the extension E, which is therefore the trivial extension E_0 of L_{00} by B, and h is compatible with the trivializations (α, β) . Moreover, concerning the data $\gamma: L_{20} \to A$ we get that

$$u \circ \gamma = \beta \circ D_{10} = h \circ D_{00} \circ D_{10} = 0,$$

and so (since u is arbitrary) the homomorphism γ is zero. Hence we can conclude that the object $(E, \alpha, \beta, \gamma)$ lies in the isomorphism class of the zero object of $\Psi_{\mathrm{Tot}(\mathrm{L..})}(K)$.

Surjectivity: Consider a morphism $((f_{01}, f_{10}), (f_{02}, f_{11}, f_{20})) : Tot(L..) \rightarrow [A \xrightarrow{u}]$

B[1] in the derived category $\mathcal{D}(\mathcal{C})$:

Since the homomorphism (f_{01}, f_{10}) comes from a morphism $\text{Tot}(\text{L..}) \to B[1]$ of $\mathcal{D}(\mathcal{C})$ (i.e. from an homomorphism $\text{L}_{01} + \text{L}_{10} \to B$ whose composite with \mathbb{D}_1 is zero), the commutativity of the above diagram implies that $f_{02} = f_{11} = 0$ or $f_{11} = f_{20} = 0$. Because of the symmetry of the bicomplex L.. (2.1), we can choose arbitrary the condition that we prefer: here we assume $f_{02} = f_{11} = 0$ and therefore we get the equality

$$u \circ f_{20} = f_{10} \circ D_{10}.$$

Consider now a resolution of B in $\mathcal{D}(\mathcal{C})$ of the kind $[C_0 \to C_{-1}]$ with C_0 in degree 0 and C_{-1} in degree -1. We can then assume that the morphism (f_{01}, f_{10}) comes from the following morphism $\text{Tot}(L_{..}) \to [C_0 \xrightarrow{i} C_{-1}][1]$ of $\mathcal{D}(\mathcal{C})$

Since C_0 is an extension of C_{-1} by B, we can consider the extension

$$E = F_{00}^* C_0$$

obtained as pull-back of C_0 via $F_{00}: L_{00} \to C_{-1}$. The condition $F_{00} \circ \mathbb{D}_0 = i \circ (F_{01}, F_{10})$ implies that $(F_{01}, F_{10}): L_{01} + L_{10} \to C_0$ factories through an homomorphism

$$(\alpha, \beta): L_{01} + L_{10} \rightarrow E$$

which satisfies $j \circ (\alpha, \beta) = \mathbb{D}_0$, with $j : E \to L_{00}$ the canonical surjection of the extension E. Moreover the condition $(F_{01}, F_{10}) \circ \mathbb{D}_1 = 0$ furnishes the equality $(\alpha, \beta) \circ \mathbb{D}_1 = 0$. Therefore the data $(E, \alpha, \beta, f_{20})$ is an object of the category $\Psi_{\text{Tot}(L..)}(K)$. Consider now the morphism $c(E, \alpha, \beta, f_{20}) : \text{Tot}(L..) \to K[1]$ associated to $(E, \alpha, \beta, f_{20})$. By construction, the morphism (3.6) is the composite of the morphism (3.2) deduced from $c(E, \alpha, \beta, f_{20})$ with the morphism

$$(F, F_{00}) : [E \xrightarrow{j} \mathcal{L}_{00}] \longrightarrow [C_0 \xrightarrow{i} C_{-1}]$$

where F is the canonical morphism $E = F_{00}^*C_0 \to C_0$. Since this last morphism (F, F_{00}) is a morphism of resolutions of B, we can conclude that in the derived category $\mathcal{D}(\mathcal{C})$ the morphism $((f_{01}, f_{10}), (f_{02}, f_{11}, f_{20}))$: $\text{Tot}(L..) \to [A \xrightarrow{u} B][1]$ is the morphism $c(E, \alpha, \beta, f_{20})$.

4. A CANONICAL FLAT PARTIAL RESOLUTION FOR A COMPLEX CONCENTRATED IN TWO CONSECUTIVE DEGREES

Let $K = [A \xrightarrow{u} B]$ be a complex of objects of \mathcal{C} concentrated in degrees 1 and 0. First we construct a canonical flat partial resolution of the complex K. Here "partial resolution" means that we have an isomorphism between the homology groups of the partial resolution and of K only in degree 1 and 0. Remark that this is enough for our goal since only the groups Ext^1 and Ext^0 are involved in the statement of the main Theorem 0.1.

Consider the following bicomplex L.(K) which satisfies $L_{ij}(K) = 0$ for $(ij) \neq (00), (01), (02), (10)$, which is endowed with an augmentation map $\epsilon_0 : L_{00}(K) \rightarrow B, \epsilon_1 : L_{10}(K) \rightarrow A$, and which depends functorially on K:

The non trivial components of L..(K) are explained in the above diagram. In order to define the differential operators D.. and d.. and the augmentation map ϵ . we introduce the following notation: If P is an object of \mathcal{C} , we denote by [p] the point of $\mathbb{Z}[P](S)$ defined by the point p of P(S) with S an object of \mathbf{T} . In an analogous way, if p,q and r are points of P(S) we denote by [p,q], [p,q,r] the elements of $\mathbb{Z}[P \times P](S)$ and $\mathbb{Z}[P \times P \times P](S)$ respectively. For any object S of \mathbf{T} and for any $a \in A(S), b_1, b_2, b_3 \in B(S)$, we set

$$\begin{aligned}
\epsilon_{0}[b] &= b \\
\epsilon_{1}[a] &= a \\
d_{00}[b_{1}, b_{2}] &= [b_{1} + b_{2}] - [b_{1}] - [b_{2}] \\
(4.1) & d_{01}[b_{1}, b_{2}] &= [b_{1}, b_{2}] - [b_{2}, b_{1}] \\
d_{01}[b_{1}, b_{2}, b_{3}] &= [b_{1} + b_{2}, b_{3}] - [b_{1}, b_{2} + b_{3}] + [b_{1}, b_{2}] - [b_{2}, b_{3}] \\
D_{00}[a] &= [u(a)]
\end{aligned}$$

These morphisms of commutative groups define a bicomplex L..(K) endowed with an augmentation map ϵ .: L.₀ $(K) \to K$. Remark that the relation $\epsilon_0 \circ d_{00} = 0$ is just the group law on B, and the relation $d_{00} \circ d_{01} = 0$ decomposes in two relations which expresse the commutativity and the associativity of the group law on B. This augmented bicomplex L..(K) depends functorially on K: in fact, any morphism $f: K \to K'$ of complexes of objects of $\mathcal C$ concentrated in degrees 1 and 0, furnishes a commutative diagram

$$\begin{array}{ccc} \text{L..}(K) & \stackrel{\text{L..}(f)}{\longrightarrow} & \text{L..}(K') \\ \epsilon. \downarrow & & \downarrow \epsilon. \\ K & \stackrel{f}{\longrightarrow} & K' \end{array}$$

Moreover the components of the bicomplex L..(K) are flat since they are free \mathbb{Z} -modules. In order to conclude that L..(K) is a canonical flat partial resolution of the complex K we need the following Lemma:

Lemma 4.1. The additive cofibred category $\mathbf{Ext}(K,*)$ of extensions of K by a variable object of $\mathcal{D}^{[1,0]}(\mathcal{C})$ is equivalent to the additive cofibred category $\Psi_{\mathrm{Tot}(L_{\bullet}(K))}$:

(4.2)
$$\mathbf{Ext}(K;*) \cong \Psi_{\mathrm{Tot}(\mathrm{L}..(K))}$$

Proof. The total complex Tot(L..(K)) is

$$\mathbb{Z}[B\times B] + \mathbb{Z}[B\times B\times B] \xrightarrow{\mathbb{D}_1} \mathbb{Z}[B\times B] + \mathbb{Z}[A] \xrightarrow{\mathbb{D}_0} \mathbb{Z}[B] \longrightarrow 0$$

where $\mathbb{D}_0 = D_{00} + d_{00}$ and $\mathbb{D}_1 = d_{01}$. If $K' = [A' \xrightarrow{u'} B']$ is an object of $\mathcal{D}^{[1,0]}(\mathcal{C})$, in order to describe explicitly the objects of the category $\Psi_{\text{Tot}(L..(K))}(K')$ we use the description (1.2) of extensions of free commutative groups in terms of torsors:

- an extension of $\mathbb{Z}[B]$ by B' is a $(B')_B$ -torsor,
- an extension of $\mathbb{Z}[B \times B] + \mathbb{Z}[A]$ by B consists of a couple of a $(B')_{B \times B}$ -torsor and a $(B')_A$ -torsor, and finally
- an extension of $\mathbb{Z}[B \times B] + \mathbb{Z}[B \times B \times B]$ by B' consists of a couple of a $(B')_{B \times B}$ -torsor and a $(B')_{B \times B \times B}$ -torsor.

According to these considerations an object $(E, \alpha, \beta, \gamma)$ of $\Psi_{\text{Tot}(L..(K))}(K')$ consists of

- (1) a B'-torsor E over B
- (2) a couple of two trivializations α and β of the couple of two B'-torsors over $B \times B$ and A, which are the pull-back of E via \mathbb{D}_0 . More precisely:
 - a trivialization α of the B'-torsor over $B \times B$ and $B \times B \times B$ which is the pull-back of E via $d_{00}: \mathbb{Z}[B \times B] \to \mathbb{Z}[B]$. This trivialization can be interpreted as a group law on the fibres of the B'-torsors over $B \times B$:

$$+: E_{b_1} E_{b_2} \longrightarrow E_{b_1+b_2}$$

where b_1, b_2 are points of B(S) with S any object of \mathbf{T} .

• a trivializations β of the B'-torsor $(D_{00})^*E$ over A which is the pullback of E via $D_{00}: \mathbb{Z}[A] \to \mathbb{Z}[B]$.

The compatibility of α and β with the relation $\mathbb{D}_0 \circ \mathbb{D}_1 = 0$ involves only α and it imposes on the data (E, +) two relations through the two torsors over $B \times B$ and $B \times B \times B$. These two relations are the relations of commutativity and of associativity of the group law +, which mean that + defines over E a structure of commutative extension of B by B';

(3) γ is the zero homomorphism since $L_{20}(K) = 0$.

The object $(E, +, \beta)$ of $\Psi_{\text{Tot}(L..(K))}(K')$ is an extension of K by K' and so we can conclude that the category the category $\Psi_{\text{Tot}(L..(K))}(K')$ is equivalent to the category $\mathbf{Ext}(K, K')$. The proof that we have in fact an equivalence of additive cofibred categories is left to the lector.

Proposition 4.2. We have that $H_2(\text{Tot}(L..(K))) = 0$ and the augmentation map $\epsilon : L._0(K) \to K$ induces the isomorphisms $H_1(\text{Tot}(L..(K))) \simeq H_1(K)$ and $H_0(\text{Tot}(L..(K))) \simeq H_0(K)$.

Proof. In order to prove this Lemma, we apply [SGA7] Exposé VII Proposition 3.5.3 to the the augmentation map $\epsilon : L_{0}(K) \to K$, i.e. we have to prove that for any complex $K' = [A' \xrightarrow{u'} B']$ of $\mathcal{D}^{[1,0]}(\mathcal{C})$ the functor

$$\epsilon.^*: \Psi_{\mathrm{Tot}(K)}(K') \to \Psi_{\mathrm{Tot}(\mathrm{L}..(K))}(K')$$

is an equivalence of category. According to our definition 2.1, it is clear that the category $\Psi_{\text{Tot}(K)}(K')$ is equivalent to the category $\mathbf{Ext}(K,K')$ of extensions of K by K'. On the other hand, by the Lemma 4.1 also the category $\Psi_{\text{Tot}(L..(K))}(K')$ is equivalent to the category $\mathbf{Ext}(K,K')$.

Corollary 4.3. Let K and K' two objects $\mathcal{D}^{[1,0]}(\mathcal{C})$. Then the group of automorphisms of any extension of K by K' is isomorphic to the group $\operatorname{Ext}^0(K,K')$, and the group of isomorphism classes of extensions of K by K' is isomorphic to the group $\operatorname{Ext}^1(K,K')$.

Proof. According to the above proposition, it exists an arbitrary flat resolution L'..(K) of K such that the groups $Tot(L..(K))_j$ and $Tot(L'..(K))_j$ are isomorphic for j=0,1,2. We have therefore a canonical homomorphism

$$L..(K) \longrightarrow L'..(K)$$

inducing a canonical homomorphism

$$Tot(L..(K)) \longrightarrow Tot(L'..(K))$$

which is an isomorphism in degrees 0,1 and 2. According to SGA 7 Proposition 3.4.7 we have the following equivalence of additive cofibred categories

$$\Psi_{\mathrm{Tot}(\mathrm{L}..(K))}(K') \cong \Psi_{\tau_{\geq 2}\mathrm{L}'..(K)}(K').$$

Hence in order to get the statement of this corollary we have to put together

• the geometrical description of the category $\Psi_{\text{Tot}(L..(K))}(K')$ furnished by the Lemma 4.1:

$$\mathbf{Ext}(K, K') \cong \Psi_{\mathrm{Tot}(\mathrm{L..}(K))}(K'),$$

• the homological description of the groups $\Psi_{\tau_{\geq 2} \text{Tot}(L'..(K))}(K')$ for i = 0, 1 furnished by the Theorem 3.1:

$$\Psi^{i}_{\tau_{>2}\mathrm{Tot}(\mathrm{L''}.(K))}(K') \cong \mathrm{Ext}^{i}(\mathrm{L'}..(K),K) \cong \mathrm{Ext}^{i}(K,K').$$

5. Geometrical description of $\Psi_{Tot(L,.)}$

Let $K_i = [A_i \xrightarrow{u_i} B_i]$ (for i = 1, 2) be a complex of objects of \mathcal{C} concentrated in degrees 1 and 0 and let $\mathrm{L.}(K_i)$ be its canonical flat partial resolution. Denote by $\mathrm{L.}(K_1, K_2)$ the complex $\mathrm{Tot}(\mathrm{L.}(K_1) \otimes \mathrm{L.}(K_2))$. In this section we prove the following geometrical description of the category $\Psi_{\tau \geq 2\mathrm{L.}(K_1, K_2)}$:

Theorem 5.1. The additive cofibred category $\mathbf{Biext}(K_1, K_2; *)$ of biextensions of (K_1, K_2) by a variable object of $\mathcal{D}^{[1,0]}(\mathcal{C})$ is equivalent to the additive cofibred category $\Psi_{\tau_{>2}L.(K_1,K_2)}$:

(5.1)
$$\mathbf{Biext}(K_1, K_2; *) \cong \Psi_{\tau_{>2} L.(K_1, K_2)}$$

Proof. Denote by L.. (K_1, K_2) the bicomplex L.. $(K_1) \otimes$ L.. (K_2) : explicitly, L_{ij} $(K_1, K_2) = 0$ for $(ij) \neq (00), (01), (02), (03), (04), (10), (11), (12), (20)$ and its

non trivial components are

$$\begin{array}{lll} \mathsf{L}_{00}(K_1,K_2) & = & \mathsf{L}_{00}(K_1) \otimes \mathsf{L}_{00}(K_2) \\ & = & \mathbb{Z}[B_1 \times B_2] \\ \mathsf{L}_{01}(K_1,K_2) & = & \mathsf{L}_{00}(K_1) \otimes \mathsf{L}_{01}(K_2) + \mathsf{L}_{01}(K_1) \otimes \mathsf{L}_{00}(K_2) \\ & = & \mathbb{Z}[B_1 \times B_2 \times B_2] + \mathbb{Z}[B_1 \times B_1 \times B_2] \\ \mathsf{L}_{02}(K_1,K_2) & = & \mathsf{L}_{00}(K_1) \otimes \mathsf{L}_{02}(K_2) + \mathsf{L}_{02}(K_1) \otimes \mathsf{L}_{00}(K_2) + \mathsf{L}_{01}(K_1) \otimes \mathsf{L}_{01}(K_2) \\ & = & \mathbb{Z}[B_1 \times B_2 \times B_2] + \mathbb{Z}[B_1 \times B_2 \times B_2 \times B_2] + \\ & = & \mathbb{Z}[B_1 \times B_1 \times B_2] + \mathbb{Z}[B_1 \times B_1 \times B_1 \times B_2] + \\ & = & \mathbb{Z}[B_1 \times B_1 \times B_2 \times B_2] \\ \mathsf{L}_{03}(K_1,K_2) & = & \mathsf{L}_{01}(K_1) \otimes \mathsf{L}_{02}(K_2) + \mathsf{L}_{02}(K_1) \otimes \mathsf{L}_{01}(K_2) \\ \mathsf{L}_{04}(K_1,K_2) & = & \mathsf{L}_{02}(K_1) \otimes \mathsf{L}_{02}(K_2) \\ \mathsf{L}_{10}(K_1,K_2) & = & \mathsf{L}_{10}(K_1) \otimes \mathsf{L}_{00}(K_2) + \mathsf{L}_{00}(K_1) \otimes \mathsf{L}_{10}(K_2) \\ & = & \mathbb{Z}[A_1 \times B_2] + \mathbb{Z}[B_1 \times A_2] \\ \mathsf{L}_{11}(K_1,K_2) & = & \mathsf{L}_{10}(K_1) \otimes \mathsf{L}_{01}(K_2) + \mathsf{L}_{01}(K_1) \otimes \mathsf{L}_{10}(K_2) \\ & = & \mathbb{Z}[A_1 \times B_2 \times B_2] + \mathbb{Z}[B_1 \times B_1 \times A_2] \\ \mathsf{L}_{12}(K_1,K_2) & = & \mathsf{L}_{10}(K_1) \otimes \mathsf{L}_{02}(K_2) + \mathsf{L}_{02}(K_1) \otimes \mathsf{L}_{10}(K_2) \\ & = & \mathbb{Z}[A_1 \times B_2 \times B_2] + \mathbb{Z}[B_1 \times B_1 \times A_2] \\ \mathsf{L}_{12}(K_1,K_2) & = & \mathsf{L}_{10}(K_1) \otimes \mathsf{L}_{02}(K_2) + \mathsf{L}_{02}(K_1) \otimes \mathsf{L}_{10}(K_2) \\ & = & \mathbb{Z}[A_1 \times A_2] \end{array}$$

The truncation $\tau_{\geq 2}$ L. (K_1, K_2) is the complex

$$L_{02}(K_1, K_2) + L_{11}(K_1, K_2) + L_{20}(K_1, K_2) \xrightarrow{\mathbb{D}_1} L_{01}(K_1, K_2) + L_{10}(K_1, K_2) \xrightarrow{\mathbb{D}_0} L_{00}(K_1, K_2) \to 0$$
 where the differential operators \mathbb{D}_0 and \mathbb{D}_1 can be computed from the below diagram, where we don't have written the identity homomorphisms in order to avoid too heavy notation(for example instead of $(id \times D_{00}^{K_2}, D_{00}^{K_1} \times id)$ we have written just $(D_{00}^{K_2}, D_{00}^{K_1})$):

Explicitly the condition $\mathbb{D}_0 \circ \mathbb{D}_1 = 0$ means:

 $\bullet\,$ the following sequences are exact:

$$(5.3) \ \mathbb{Z}[B_1 \times B_2 \times B_2] + \mathbb{Z}[B_1 \times B_2 \times B_2 \times B_2] \xrightarrow{d_{01}^{K_2}} \mathbb{Z}[B_1 \times B_2 \times B_2] \xrightarrow{d_{00}^{K_2}} \mathbb{Z}[B_1 \times B_2]$$

$$(5.4) \ \mathbb{Z}[B_1 \times B_1 \times B_2] + \mathbb{Z}[B_1 \times B_1 \times B_1 \times B_2] \xrightarrow{d_{01}^{K_1}} \mathbb{Z}[B_1 \times B_1 \times B_2] \xrightarrow{d_{00}^{K_1}} \mathbb{Z}[B_1 \times B_2]$$

• the following diagrams are anticommutative:

(5.5)
$$\mathbb{Z}[B_1 \times B_1 \times B_2 \times B_2] \quad \xrightarrow{d_{00}^{K_2}} \quad \mathbb{Z}[B_1 \times B_1 \times B_2]$$

$$d_{00}^{K_1} \downarrow \qquad \qquad \downarrow d_{00}^{K_1}$$

$$\mathbb{Z}[B_1 \times B_2 \times B_2] \qquad \xrightarrow{d_{00}^{K_2}} \qquad \mathbb{Z}[B_1 \times B_2]$$

(5.7)
$$\mathbb{Z}[B_1 \times B_1 \times A_2] \xrightarrow{D_{00}^{K_2}} \mathbb{Z}[B_1 \times B_1 \times B_2] \\
\downarrow^{d_{00}^{K_1}} \downarrow \downarrow^{d_{00}^{K_2}} \\
\mathbb{Z}[B_1 \times A_2] \xrightarrow{D_{00}^{K_2}} \mathbb{Z}[B_1 \times B_2]$$

(5.8)
$$\begin{array}{ccc}
\mathbb{Z}[A_1 \times A_2] & \xrightarrow{D_{00}^{K_2}} & \mathbb{Z}[A_1 \times B_2] \\
D_{00}^{K_1} \downarrow & & \downarrow D_{00}^{K_1} \\
\mathbb{Z}[B_1 \times A_2] & \xrightarrow{D_{00}^{K_2}} & \mathbb{Z}[B_1 \times B_2]
\end{array}$$

In order to describe explicitly the objects of the fibre $\Psi_{\tau \geq 2L.(K_1,K_2)}(K_3)$ of the cofibred category $\Psi_{\tau \geq 2L.(K_1,K_2)}$ we use the description (1.2) of extensions of free commutative groups in terms of torsors:

- an extension of $(\tau_{\geq 2}L.(K_1, K_2))_0$ by B_3 is a $(B_3)_{B_1 \times B_2}$ -torsor,
- an extension of $(\tau_{\geq 2}L.(K_1, K_2))_1$ by B_3 consists of a $(B_3)_{B_1 \times B_2 \times B_2}$ -torsor, a $(B_3)_{B_1 \times B_1 \times B_2}$ -torsor, a $(B_3)_{A_1 \times B_2}$ -torsor and a $(B_3)_{B_1 \times A_2}$ -torsor, and finally
- an extension of $(\tau_{\geq 2}L.(K_1, K_2))_2$ by B_3 consists of a system of 8 torsors under the groups deduced from B_3 by base change over the bases $B_1 \times B_2 \times B_2$, $B_1 \times B_2 \times B_2 \times B_2$, $B_1 \times B_1 \times B_1 \times B_1 \times B_1 \times B_1 \times B_1 \times B_2 \times B_2$, $A_1 \times B_2 \times B_2$, $A_1 \times B_2 \times B_2$, $A_1 \times B_1 \times B_1 \times A_2$, $A_1 \times A_2$ respectively.

According to these considerations an object $(E, \alpha, \beta, \gamma)$ of $\Psi_{\tau \geq 2L.(K_1, K_2)}(K_3)$ consists of

- (1) a B_3 -torsor E over $B_1 \times B_2$
- (2) a couple of two trivializations $\alpha = (\alpha_1, \alpha_2)$ and $\beta = (\beta_1, \beta_2)$ of the couple of two B_3 -torsors over $B_1 \times B_2 \times B_2 + B_1 \times B_1 \times B_2$ and $A_1 \times B_2 + B_1 \times A_2$, which are the pull-back of E via \mathbb{D}_0 . More precisely:
 - a couple of trivializations $\alpha = (\alpha_1, \alpha_2)$ of the couple of B_3 -torsors over $B_1 \times B_2 \times B_2$ and $B_1 \times B_1 \times B_2$ which are the pull-back of E via $id \times d_{00}^{K_2} + d_{00}^{K_1} \times id : \mathbb{Z}[B_1 \times B_2 \times B_2] + \mathbb{Z}[B_1 \times B_1 \times B_2] \to \mathbb{Z}[B_1 \times B_2]$. The trivializations (α_1, α_2) can be interpreted as two group laws on the fibres of the couple of B_3 -torsors over $B_1 \times B_2 \times B_2$ and $B_1 \times B_2 \times B_2$:
 - $+_2: E_{b_2,b_1} \ E_{b_2',b_1} \longrightarrow E_{b_2+b_2',b_1}$ $+_1: E_{b_2,b_1} \ E_{b_2,b_1'} \longrightarrow E_{b_2,b_1+b_1'}$ where b_2,b_2' (resp. b_1,b_1') are points of $B_2(S)$ (resp. of $B_1(S)$) with S any object of \mathbf{T} .
 - a couple of trivializations $\beta = (\beta_1, \beta_2)$ of the couple of B_3 -torsors $((D_{00}^{K_1} \times id)^* E, (id \times D_{00}^{K_2})^* E)$ over $A_1 \times B_2$ and $B_1 \times A_2$ respectively, which are the pull-back of E via $D_{00}^{K_1} \times id + id \times D_{00}^{K_2} : \mathbb{Z}[A_1 \times B_2] + \mathbb{Z}[B_1 \times A_2] \to \mathbb{Z}[B_1 \times B_2].$
- (3) the compatibility of α and β with the relation $\mathbb{D}_0 \circ \mathbb{D}_1 = 0$ imposes, on the data $(E, +_1, +_2)$ and $((D_{00}^{K_1} \times id)^*E, (id \times D_{00}^{K_2})^*E, \beta_1, \beta_2)$, 8 relations of compatibility through the system of 8 torsors over $B_1 \times B_2 \times B_2$, $B_1 \times B_1 \times B_2 \times B_2 \times B_2 \times B_2 \times B_2$, $B_1 \times B_1 \times B_2 \times$

 B_2 , $B_1 \times B_1 \times A_2$, $A_1 \times A_2$. For α the relation $\mathbb{D}_0 \circ \mathbb{D}_1 = 0$ imposes the following 5 relations of compatibility on the data $(E, +_1, +_2)$ through the 5 torsors arising from the factor $L_{02}(K_1, K_2)$ of $\tau_{>2}L.(K_1, K_2)$:

- the exact sequence (5.3) furnishes the two relations of commutativity and of associativity of the group law $+_2$, which mean that $+_2$ defines over E a structure of commutative extension of $(B_2)_{B_1}$ by $(B_3)_{B_1}$;
- the exact sequence (5.4) expresses the two relations of commutativity and of associativity of the group law $+_1$, which mean that $+_1$ defines over E a structure of commutative extension of $(B_1)_{B_2}$ by $(B_3)_{B_2}$;
- the anticommutative diagram (5.5) means that these two group laws are compatible.

Therefore these 5 conditions implies that the torsor E is endowed with a structure of biextension of (B_1, B_2) by B_3 .

For β the relation $\mathbb{D}_0 \circ \mathbb{D}_1 = 0$ imposes the following 3 relations of compatibility on the data $((D_{00}^{K_1} \times id)^*E, (id \times D_{00}^{K_2})^*E, \beta_1, \beta_2)$ through the 3 torsors arising from the factors $L_{11}(K_1, K_2) + L_{20}(K_1, K_2)$ of $\tau_{\geq 2}L.(K_1, K_2)$:

- the anticommutative diagram (5.6) furnishes a relation of compatibility between the group law $+_2$ of E and the trivialization β_1 of the pullback $(D_{00}^{K_1} \times id)^*E$ of E over $A_1 \times B_2$, which means that β_1 is a trivialization of biextension;
- the anticommutative diagram (5.7) furnishes a relation of compatibility between the group law $+_1$ of E and the trivialization β_2 of the pullback $(id \times D_{00}^{K_2})^*E$ of E over $B_1 \times A_2$, which means that also β_2 is a trivialization of biextension;
- the anticommutative diagram (5.8) means that the two trivializations β_1 and β_2 have to coincide over $A_1 \times A_2$.
- (4) $\gamma: \mathbb{Z}[A_1] \otimes \mathbb{Z}[A_2] \to A_3$ is an homomorphism such that the composite $\mathbb{Z}[A_1] \otimes \mathbb{Z}[A_2] \stackrel{\gamma}{\to} \mathbb{Z}[A_1] \otimes \mathbb{Z}[A_2] \stackrel{u_3}{\to} B_3$ is compatible with the restriction of the trivializations β_1, β_2 over $\mathbb{Z}[A_1] \otimes \mathbb{Z}[A_2]$.

The object $(E, \alpha, \beta, \gamma)$ of $\Psi_{\tau \geq 2L.(K_1, K_2)}(K_3)$ is therefore a biextension $(E, \beta_1, \beta_2, \gamma)$ of (K_1, K_2) by K_3 . The diligent lector can check that the above arguments furnish the equivalence of additive cofibred categories (5.1).

6. Proof of the main theorem

Let $K_i = [A_i \stackrel{u_i}{\rightarrow} B_i]$ (for i = 1, 2, 3) be a complex of objects of \mathcal{C} concentrated in degrees 1 and 0. Denote by $L..(K_i)$ (for i = 1, 2) the canonical flat partial resolution of K_i introduced at the beginning of §3. According to Proposition 4.2, it exists an arbitrary flat resolution $L'..(K_i)$ (for i = 1, 2) of K_i such that the groups $Tot(L..(K_i))_j$ and $Tot(L'..(K_i))_j$ are isomorphic for j = 0, 1, 2. We have therefore canonical homomorphisms

$$L..(K_1) \longrightarrow L'..(K_1)$$
 $L..(K_2) \longrightarrow L'..(K_2)$

inducing a canonical homomorphism

$$\operatorname{Tot}(L..(K_1) \otimes L..(K_2)) \longrightarrow \operatorname{Tot}(L'..(K_1) \otimes L'..(K_2))$$

which is an isomorphism in degrees 0,1 and 2. Denote by $L.(K_1, K_2)$ (resp. $L'.(K_1, K_2)$) the complex $Tot(L..(K_1) \otimes L..(K_2))$ (resp. $Tot(L'..(K_1) \otimes L'..(K_2))$). Remark that

 $L'.(K_1, K_2)$ represents $K_1 \overset{\text{L}}{\otimes} K_2$ in the derived category $\mathcal{D}(\mathcal{C})$:

$$L'.(K_1,K_2) \cong K_1 \overset{\mathbb{L}}{\otimes} K_2.$$

By construction, according to SGA 7 Proposition 3.4.7 we have the following equivalence of additive cofibred categories

$$\Psi_{\tau>_2 L.(K_1,K_2)}(K_3) \cong \Psi_{\tau>_2 L'.(K_1,K_2)}(K_3).$$

Hence applying the Theorem 5.1, which furnishes the following geometrical description of the category $\Psi_{\tau_{\geq 2}L.(K_1,K_2)}(K_3)$:

$$\mathbf{Biext}(K_1, K_2; K_3) \cong \Psi_{\tau_{>2} L.(K_1, K_2)}(K_3),$$

and applying the Theorem 3.1, which furnishes the following homological description of the groups $\Psi^i_{\tau_{>2}\mathrm{L'}.(K_1,K_2)}(K_3)$ for i=0,1:

$$\Psi^{i}_{\tau_{>2}L'.(K_{1},K_{2})}(K_{3}) \cong \operatorname{Ext}^{i}(L'.(K_{1},K_{2}),K_{3}) \cong \operatorname{Ext}^{i}(K_{1} \overset{{}_{}^{\mathsf{L}}}{\otimes} K_{2},K_{3}),$$

we get the main Theorem 0.1, i.e.

$$\operatorname{Biext}^{i}(K_{1}, K_{2}; K_{3}) \cong \operatorname{Ext}^{i}(K_{1} \overset{\mathbb{L}}{\otimes} K_{2}, K_{3}) \qquad (i = 0, 1).$$

Remark 6.1. From the exact sequence $0 \to A_3[1] \to K_3 \to B_3 \to 0$ we get the long exact sequence

$$0 \to \Psi^0_{\tau \geq_2 \mathrm{L'}.(K_1,K_2)}(A_3[1]) \to \Psi^0_{\tau \geq_2 \mathrm{L'}.(K_1,K_2)}(K_3) \to \Psi^0_{\tau \geq_2 \mathrm{L'}.(K_1,K_2)}(B_3)$$

$$\to \Psi^1_{\tau \geq_2 \mathrm{L'}.(K_1,K_2)}(A_3[1]) \to \Psi^1_{\tau \geq_2 \mathrm{L'}.(K_1,K_2)}(K_3) \to \Psi^i_{\tau \geq_2 \mathrm{L'}.(K_1,K_2)}(B_3).$$

The homological interpretation of this long exact sequence is

$$0 \to \operatorname{Hom}(\operatorname{L}'.(K_1, K_2), A_3[1]) \to \operatorname{Hom}(\operatorname{L}'.(K_1, K_2), K_3) \to \operatorname{Hom}(\operatorname{L}'.(K_1, K_2), B_3)$$

$$\rightarrow \operatorname{Ext}^1(\operatorname{L}'.(K_1, K_2), A_3[1]) \rightarrow \operatorname{Ext}^1(\operatorname{L}'.(K_1, K_2), K_3) \rightarrow \operatorname{Ext}^1(\operatorname{L}'.(K_1, K_2), B_3),$$

and its geometrical interpretation is

$$0 \to \operatorname{Hom}(A_1 \otimes B_2 + B_1 \otimes A_2, A_3) \to \operatorname{Hom}(L'.(K_1, K_2), K_3) \to \operatorname{Hom}(B_1 \otimes B_2, B_3)$$
$$\to \operatorname{Hom}(A_1 \otimes A_2, A_3) \to \operatorname{Biext}^1(K_1, K_2; K_3) \to \operatorname{Biext}^1(K_1, K_2; B_3).$$

References

- [Br] L. Breen, Fonctions thêta et théorème du cube, Lecture Notes in Mathematics, Vol. 980 Springer-Verlag, Berlin, 1983.
- [SGA4] A. Grothendieck and others, Théorie des topos et cohomologie étale des schémas, Tome 1: Lecture Notes in Mathematics, Vol. 269 Springer-Verlag, Berlin-New York, 1972; Tome 3: Lecture Notes in Mathematics, Vol. 305 Springer-Verlag, Berlin-New York, 1973.
- [SGA7] A. Grothendieck and others, Groupes de Monodromie en Géométrie Algébrique, SGA 7 I, Lecture Notes in Mathematics, Vol. 288. Springer-Verlag, Berlin-New York, 1972.

NWF-I MATHEMATIK, UNIVERSITÄT REGENSBURG, D-93040 REGENSBURG $E\text{-}mail\ address$: cristiana.bertolin@mathematik.uni-regensburg.de