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Abstract

We present parametric finite element approximations of curvature flows for

curves in R
d, d ≥ 2, as well as for curves on two-dimensional manifolds in R

3.

Here we consider the curve shortening flow, curve diffusion and the elastic flow. It

is demonstrated that the curve shortening and the elastic flows on manifolds can be

used to compute nontrivial geodesics, and that the corresponding geodesic curve dif-

fusion flow leads to solutions of partitioning problems on two-dimensional manifolds

in R
3. In addition, we extend these schemes to anisotropic surface energy densities.

The presented schemes have very good properties with respect to stability and the

distribution of mesh points, and hence no remeshing is needed in practice.
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1 Introduction

In this paper we introduce numerical methods for the approximation of evolving curves in
R

d, d ≥ 2. The evolution laws considered all aim to reduce an energy, where the energy
will be either the length functional, the curvature (Willmore-) functional, or possibly
anisotropic versions of these. All the flows will be gradient flows, which hence have a
variational structure, and this will be heavily used when we derive the numerical approxi-
mations. The L2-gradient flow for the length of a curve in R

d leads to curvature flow, also
called curve shortening flow. If instead an appropriate H−1-gradient flow is considered,
one obtains a fourth order flow called curve or surface diffusion. If we restrict the curves
considered to lie on a two-dimensional manifold in R

d, we obtain, as an L2-gradient flow,
the geodesic curvature flow and, as an H−1-gradient flow, geodesic surface diffusion. We
will propose a parametric finite element approximation for these flows.
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Willmore flow of curves, also called elastic flow of curves, in higher codimension is
obtained as the L2-gradient flow of the curvature integral

W(Γ) = 1
2

∫

Γ

|~κ|2 ds , (1.1)

where ~κ is the curvature vector of a curve Γ in R
d. This leads to a flow, which is nonlinear

in the curvature. We will extend our parametric approximation to this flow as well. On
restricting Γ to lie on a two-dimensional manifold and on replacing ~κ in (1.1) with the
geodesic curvature vector, we obtain geodesic Willmore flow of curves. In addition, we
will also consider gradient flows for weighted, or anisotropic, length, as well as anisotropic
versions of (1.1) and the corresponding geodesic energy.

The present authors in recent work, Barrett, Garcke, and Nürnberg (2007b), Barrett,
Garcke, and Nürnberg (2007a) and Barrett, Garcke, and Nürnberg (2008b), have intro-
duced a new numerical approach for the approximation of geometric evolution equations.
An important feature of this approach is that the resulting new numerical schemes have
very good properties with respect to the equidistribution of mesh points. This is an im-
portant issue, as many discretizations can lead to coalescence of mesh points during the
evolution or lead to very irregular meshes; which, in turn, lead to ill-conditioned discrete
problems. The equidistribution property in these methods is formulated intrinsically in a
natural variational discretization of curvature, and no remeshing is needed in practice. So
far, the method introduced in Barrett, Garcke, and Nürnberg (2007b) has been restricted
to evolving curves and surfaces of codimension one. In this paper, we demonstrate that it
is possible to introduce an extension of this approach, which also allows it to approximate
curvature flows in higher codimension. We will discuss all the flows mentioned above.
Since our approach makes substantial use of the variational structure, we will first derive
these evolution laws as gradient flows, see Section 2.

Fundamental to many approaches, which numerically approximate evolving curves in
a parametric way, is the identity

~xss = ~κ , (1.2)

where ~x is the position vector, ~κ is the curvature vector and s is arclength of the curve. In
Dziuk (1991), for the first time, a weak formulation of (1.2) was used, in order to approx-
imate problems involving curvature. In particular, a weak formulation of the equation

~xt = ~xss (1.3)

can be used to approximate curvature flow numerically. It turns out, see Section 2, that
the equation (1.3) leads to parameterizations, ~x, of an evolving curve in which the motion
is in the curve’s normal direction. As it is possible to reparameterize a given curve, it is
not necessary to use such a parameterization. We will instead discretize the identity

~P ~xt = ~xss , (1.4)

where ~P is the projection onto the part normal to the curve. Solutions to (1.4) parame-
terize the same evolving curve as (1.3), if the initial data parameterize the same curve, as
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the tangential part of ~xt is not prescribed. As all parameterizations of a curve evolving
under the curve shortening flow are solutions to (1.4), one can hence consider (1.4) as the
proper geometric formulation of curvature flow.

Let us briefly discuss existing parametric approximations of the flows discussed in
this paper. Parametric finite element approximations of curves in R

d, d ≥ 2, have been
considered for curve shortening flow in Dziuk (1994), for curve diffusion and Willmore
flow in Dziuk, Kuwert, and Schätzle (2002), and for Willmore flow also in Deckelnick and
Dziuk (2007). In addition, the approach in Dziuk (1994) for isotropic curve shortening
flow for d ≥ 2, on using ideas from Dziuk (1999) for the anisotropic case for d = 2, was
recently extended to anisotropic surface energies in Pozzi (2007).

To our knowledge, so far no parametric approximations for geodesic evolution equa-
tions exist in the literature. Numerical approximations of geodesic curvature flow based
on level set techniques are presented in Chopp and Sethian (1993), Cheng, Burchard,
Merriman, and Osher (2002) and Spira and Kimmel (2007). The computation of mini-
mizers to the geodesic equivalent of the energy (1.1) has been considered in Brunnett and
Crouch (1994) for a sphere, and in Linnér and Renka (2005) for general manifolds. For
readers not familiar with numerical methods for geometric evolution equations, we refer
to Deckelnick, Dziuk, and Elliott (2005) for a recent overview.

The outline of the paper is as follows. In Section 2 we derive the evolution equations,
emphasizing their variational structure, and discuss how to extend these isotropic flows to
their anisotropic counterparts. Finite element approximations of these evolution laws are
introduced in Section 3, where we prove also well-posedness, stability and mesh properties
of theses schemes. In Section 4 we discuss possible solution methods for the arising discrete
systems. Finally in Section 5, we present several computations illustrating properties of
the considered geometric evolution equations, and of our numerical approximations.

2 Geometric evolution equations for curves

In this section we derive the geometric evolution equations studied in this paper.

Curve shortening flow

For a closed smooth curve Γ in R
d parameterized by ~x : I → R

d, I := R/Z, we have
that the length of Γ is given by

|Γ| :=

∫

I

|~xρ| dρ . (2.1)

For all ~η : I → R
d, we obtain that the first variation of |Γ| in the direction ~η is as follows.

Choose ~y : I × (−ε0, ε0) → R
d with ~y(ρ, 0) = ~x(ρ), ~yε(ρ, 0) = ~η(ρ) and compute

[δ|Γ|](~η) :=
d

dε

∫

I

|~yρ| dρ |ε=0=

∫

I

~xρ

|~xρ|
. ~ηρ dρ =

∫

Γ

~xs . ~ηs ds = −
∫

Γ

~κ . ~η ds , (2.2)

where ~ηs := ~ηρ/|~xρ| is the differentiation of ~η with respect to arclength and ~κ := ~xss is
the curvature vector. In order to define a gradient flow for the length |Γ|, we need to
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introduce an inner product for functions ~η : I → R
d. In this paper an inner product will

be a positive semi-definite, symmetric bilinear form. It should be noted that variations of
a curve Γ parameterized by ~x in a direction ~η have a tangential part, which correspond
to leading order to reparameterizations of the curve Γ; and a normal part, which actually
leads to proper variations of the curve. We therefore introduce the following inner product
for functions ~η, ~χ : I → R

d

(~η, ~χ)2,nor :=

∫

Γ

~P ~η . ~P ~χ ds , (2.3)

where ~P := ~Id − ~xs ⊗ ~xs is the projection onto the part normal to Γ. Here ~Id is the
identity operator on R

d. The corresponding semi-norm is denoted by ‖ · ‖2,nor. The inner
product (·, ·)2,nor is the L2-inner product of the normal part of vector valued functions on
the curve Γ. Now a time dependent function ~x is a solution to the gradient flow equation
for |Γ| with respect to (·, ·)2,nor, if

(~xt, ~η)2,nor = −
∫

Γ

~xs . ~ηs ds

for all ~η : I → R
d. Using the facts that ~P T = ~P and ~P 2 = ~P , we hence obtain the

following system
~P ~xt = ~xss , (2.4)

i.e. the normal part of the velocity vector is given by the curvature vector ~κ = ~xss. This
gradient flow has the property that the length |Γ| decreases fastest, when compared to
all other velocities of the curve having the same ‖.‖2,nor-norm. This is in accordance
with Taylor and Cahn (1994) and Luckhaus and Sturzenhecker (1995), who considered
geometric evolution equations as gradient flows. The formulation (2.4) has many solutions
in ~x, but they all parameterize the same evolving curve. For d = 2 we obtain, choosing a
unit normal ~ν to the curve and setting

V := ~xt . ~ν , ~xss = κ ~ν, (2.5)

the familiar law
V = κ .

As stated already in the introduction, the formulation (2.4) has the advantage that if a
parameterization of an evolving curve fulfills (2.4), then also all reparameterizations fulfill
(2.4).

We now introduce a suitable weak formulation of (2.4), which will form the basis of our
fully discrete parametric finite element approximation. Since ~κ is normal to the curve,
we can rewrite (2.4) as

~P ~xt = ~P ~κ , ~κ = ~xss . (2.6)

On defining the test function space

V ~τ := {~η : I → R
d : ~η is smooth and ~η . ~xs = 0} , (2.7)
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we obtain the following weak formulation of (2.6):
∫

Γ

(~xt − ~κ) . ~η ds = 0 ∀ ~η ∈ V ~τ ,

∫

Γ

~κ . ~η ds +

∫

Γ

~xs . ~ηs ds = 0 ∀ ~η , (2.8)

where we note again that ~κ ∈ V ~τ .

Curve diffusion

For curves in R
2 surface diffusion (also called curve diffusion) is given as

V = ~xt . ~ν = −κss , κ ~ν = ~xss. (2.9)

This evolution law can be interpreted as the H−1-gradient flow of the length functional
(2.1), see Taylor and Cahn (1994). In Dziuk, Kuwert, and Schätzle (2002) the curve
diffusion flow was generalized to higher codimensions as

~xt = −~∇2
s ~κ , ~κ = ~xss , (2.10)

where ~∇s ~η := ~P ~ηs is the normal component of ~ηs, and ~∇2
s · := ~∇s (~∇s ·). We now

demonstrate that (2.10) can in fact also be viewed as an H−1-gradient flow of length, i.e.
we generalize the observation of Taylor and Cahn (1994) to higher codimensions.

As in the case of the L2-gradient flow and as in the case of codimension 1, see Taylor
and Cahn (1994), we only want to account for the normal part of a possible variation of

a curve. In order to define the H−1-inner product, we need to invert the operator −~∇2
s

on a suitable subspace, see again Taylor and Cahn (1994) for the case of codimension

1. Therefore, we first of all identify the kernel of −~∇2
s , where we only want to consider

−~∇2
s applied to functions for which the tangential part disappears. For such functions, an

integration by parts formula holds for ~∇s, see Dziuk, Kuwert, and Schätzle (2002); and
hence we obtain that

∫

Γ

−~∇2
s ~η1 . ~η2 ds =

∫

Γ

~∇s ~η1 . ~∇s ~η2 ds ∀ ~η1, ~η2 ∈ V ~τ , (2.11)

where we recall (2.7). This implies that in order to find the kernel of −~∇2
s , we need to

find functions ~η ∈ V ~τ with ~∇s ~η = 0. Choosing an orthonormal basis {~νi(ρ)}d−1
i=1 of {~xs}⊥,

we can express ~η as ~η(ρ) =
∑d−1

i=1 αi(ρ) ~νi(ρ), ρ ∈ I. It follows that

~0 = ~∇s ~η =

d−1∑

i=1

(αi
~∇s ~νi + αi,s ~νi) , (2.12)

and hence {αi}d−1
i=1 satisfy the system of ODEs

αj,s = −
d−1∑

i=1

αi
~∇s ~νi . ~νj , j = 1 → d − 1 .

In addition, the functions αi have to be periodic. As at most (d−1) linearly independent
solutions ~α = (α1, . . . , αd−1)

T of (2.12) exist, we obtain that the kernel

ker(−~∇2
s ) := {~η ∈ V ~τ : ~∇s ~η = ~0} (2.13)
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is at most (d − 1)-dimensional. We observe that this kernel is (d − 1)-dimensional if Γ
lies in a two-dimensional affine hyperplane ~z0 + H in R

d, where H = span{~z1, ~z2} ⊂ R
d

and ~zi, i = 0 → 2, are fixed. To see this, assume w.l.o.g. that ~ν1(ρ) ∈ H, ρ ∈ I, and that
~νi(ρ) = ~νi(0) for all ρ ∈ I, i = 2 → d − 1. Then it follows that the functions ~η = ~νi,

i = 1 → d − 1, form a basis of ker(−~∇2
s ).

We set R := {~η ∈ V ~τ :
∫

Γ
~η .~v ds = 0 for all ~v ∈ ker(−~∇2

s )}, and define for all ~v ∈ R
a function ~u~v ∈ R as the solution of

∫

Γ

~∇s ~u~v . ~∇s ~η ds =

∫

Γ

~v . ~η ds ∀ ~η ∈ V ~τ .

Existence of ~u~v follows from the Fredholm alternative, but for sake of brevity we do not
present the details here. However, this can be made rigorous. Setting (−~∇2

s )−1 ~v := ~u~v,

we define the H−1-inner product for ~v, ~w : Γ → R
d with ~P ~v, ~P ~w ∈ R as

(~v, ~w)−1 :=

∫

Γ

~∇s [(−~∇2
s )−1 ~P ~v] . ~∇s [(−~∇2

s )−1 ~P ~w] ds =

∫

Γ

~v . (−~∇2
s )−1 ~P ~w ds .

Now the gradient flow of |Γ| with respect to the H−1-inner product is defined via

(~xt, ~η)−1 = −
∫

Γ

~xs . ~ηs ds , (2.14)

which has to hold for all ~η with ~P ~η ∈ R. The identity (2.14) is equivalent to

∫

Γ

[(−~∇2
s )−1 ~P ~xt] . ~η ds =

∫

Γ

~κ . ~η ds,

and hence we obtain that
~P ~xt = −~∇2

s ~κ (2.15)

as the H−1-gradient flow of length. In the special case d = 2 we obtain, on recalling the
definitions in (2.5) and on noting that −~∇2

s (κ ~ν) ≡ −κss ~ν, the flow (2.9), i.e. the surface
diffusion flow in the plane. We note that a parametric finite element approximation for
(2.9) was considered by the authors in Barrett, Garcke, and Nürnberg (2007b).

Similarly to (2.8), and on recalling (2.11), we obtain the following weak formulation
of (2.15):

∫

Γ

~xt . ~η ds −
∫

Γ

~∇s ~κ . ~∇s ~η ds = 0 ∀ ~η ∈ V ~τ ,

∫

Γ

~κ . ~η ds +

∫

Γ

~xs . ~ηs ds = 0 ∀ ~η ,

(2.16)
where we recall that ~κ ∈ V ~τ . This formulation will form the basis of our variational
approximation of curve diffusion.

Let us now identify the stationary solutions of (2.15).

Lemma. 2.1. For a closed C2-curve Γ ⊂ R
d, d ≥ 2, it holds that ~∇2

s ~κ = ~0 if and only if
Γ is a (possibly multiply covered) circle.
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Proof. Arguing as above, we first obtain via an energy argument that stationary
solutions fulfill ~∇s ~κ = 0. As Γ is closed, we find a point on Γ such that |~xss| 6= 0 and
we define ~ν := ~xss/|~xss| and κ := |~xss| in a suitable neighbourhood of this point. Since
~νs . ~ν = 1

2
∂s|~ν|2 = 0 and ~xss . ~xs = 1

2
∂s |~xs|2 = 0 we obtain that

~0 = ~∇s (κ ~ν) = κs ~ν + κ ~νs − κ (~νs . ~xs) ~xs .

This implies that κs = 0 and hence |~xss| is a constant. In addition, we obtain that ~νs and
~xs are parallel, and hence ~xsss equals ~xs up to a fixed multiplicative factor. This implies
the existence of a γ ∈ R and a ~c ∈ R

d such that

~xsss = γ ~xs and ~xss = γ (~x + ~c) .

We now choose an orthogonal matrix ~Q such that ~w := ~Q (~x+~c) fulfills ~w(0) ∈ span{~e1, ~e2}
and ~ws(0) ∈ span{~e1, ~e2}, where {~ei}d

i=1 are the standard orthonormal vectors in R
d. Since

~w solves ~wss = γ ~w, we conclude from the unique solvability of the initial value problem
for ~wss = γ ~w that ~w(ρ) ∈ span{~e1, ~e2} for all ρ ∈ I. Moreover, we conclude that ~w
parameterizes a circle. This proves the claim.

Only the single covered circle is stable. Multiply covered circles are unstable already
in the plane, d = 2, which has been shown in Chou (2003) and which can also be deduced
from a linear stability analysis similar to the one in Garcke, Ito, and Kohsaka (2005).

We remark that curve diffusion is driven not only by curvature, but also by the torsion
of a curve. In particular, we obtain for d = 3, on setting κ ~ν := ~xss with |~ν| = 1, that

~∇2
s ~κ = (κss − κ β2) ~ν − (2 κs β + κ βs)~b ,

where ~b := ~xs × ~ν and ~bs = β ~ν with β being the torsion. We remark that ~∇2
s ~κ = ~0

implies that β ≡ 0.

Geodesic curvature flow

Moreover, we will consider the evolution of curves on a given two-dimensional manifold
M ⊂ R

3. We assume that M is given by a function F ∈ C2(R3) such that

M = {~z ∈ R
3 : F (~z) = 0} and |F ′(~z)| = 1 ∀ ~z ∈ M , (2.17)

where here and throughout we use ·′ as a shorthand notation for the gradient ∇, and
similarly ·′′ for the matrix of second derivatives D2. We set ~nF (~z) := F ′(~z) to be the unit
normal to M. Then for a given closed curve Γ on M, parameterized by ~x : I → M, we
define ~νF (ρ) := ~nF (~x(ρ)) = F ′(~x(ρ)) as the unit normal to M evaluated at ~x(ρ), ρ ∈ I.
We also set ~νM := ~xs × F ′(~x) = ~xs × ~νF as the unit normal to Γ, which is a vector
perpendicular to ~xs lying in the tangent space to M. We now define the L2-gradient flow
of the length |Γ| for a closed curve Γ ⊂ M. Here variations are restricted to lie on M,
and we choose ~y : I × (−ε0, ε0) → M with ~y(ρ, 0) = ~x(ρ) and ~yε(·, 0) = ~η ∈ V F , where

V F := {~η : I → R
d : ~η is smooth and ~η . ~νF = 0} . (2.18)
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The first variation of length now yields that

[δ|Γ|](~η) =

∫

Γ

~xs . ~ηs ds = −
∫

Γ

~xss . ~η ds = −
∫

Γ

κM ~νM . ~η ds = −
∫

Γ

~κM . ~η ds .

Here κM is the geodesic curvature, and ~κM ≡ κM ~νM is the geodesic curvature vector.
Since ~η ∈ V F lies in the tangent space of M and ~xss is perpendicular to ~xs, we obtain
that the projection of ~xss onto the tangent space of M is parallel to ~νM. Hence the above
representation follows. Of course ~xss, in general, does not lie in the tangent space to M,
and we introduce also the normal curvature κF and obtain that

~xss = κM ~νM + κF ~νF .

Now the L2-gradient flow of length on a manifold M is given as

~PM ~xt = ~κM ,

where ~PM ~χ := (~χ . ~νM) ~νM. Obviously, this is equivalent to

VM := ~xt . ~νM = κM , (2.19)

where of course ~xt is restricted to lie in the tangent space to M, i.e. ~xt ∈ V F . Since
geodesics are stationary solutions to geodesic curvature flow, one can try to use the flow
to compute geodesics as long time limits. We will show that this is possible, e.g. in cases
where the initial data are not homotopic to a point; see Section 5.

Geodesic surface diffusion

In order to define geodesic surface diffusion, we need to define an H−1-inner product.
As the projection ~PM has a one-dimensional range, it is enough to define an H−1-inner
product on scalar functions. For χ, η : Γ → R with

∫
Γ
χ ds =

∫
Γ
η ds = 0, we set

(χ, η)−1 :=

∫

Γ

∂s [(−∂ss)
−1χ] ∂s [(−∂ss)

−1η] ds =

∫

Γ

χ (−∂ss)
−1η ds ,

where (−∂ss)
−1η is a solution of −uss = η. The H−1-gradient flow is then given as

(−∂ss)
−1(~xt . ~νM) = κM ⇔ ~xt . ~νM = −(κM)ss , (2.20)

where we again require ~xt ∈ V F , in order to guarantee that ~x remains on M during the
evolution. If we define geodesic surface diffusion with the help of a vector-valued inner
product, we obtain the same flow. We leave the details to the reader.

Since geodesic surface diffusion is a gradient flow of length, we obtain that length
decreases during the flow. For the planar case, see Elliott and Garcke (1997), the enclosed
area, area(Γ), is preserved. The same holds true for geodesic surface diffusion, since

d

dt
area(Γ) =

∫

Γ

~xt . ~νM ds = −
∫

Γ

(κM)ss ds = 0 , (2.21)
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where the first identity is shown in e.g. Barbosa, do Carmo, and Eschenburg (1988) or
Garcke and Wieland (2006, (2.9)), and the second identity follows by integration since
the curve is closed. We remark that the area preserving and length decreasing property
leads to a flow which can be used to solve the following isoperimetric problem: Minimize
the length of a closed curve amongst all curves enclosing a prescribed area.

Willmore flow of curves

An elastic energy for curves is given as

Wλ(Γ) :=

∫

Γ

(1
2
|~κ|2 + λ) ds , (2.22)

where λ ∈ R is a given constant. We now consider the L2-gradient flow of Wλ, and
hence we have to compute the first variation of W(Γ) := 1

2

∫
Γ
|~κ|2 ds. Since we want to

generalize this idea later on, we firstly review a variant of computing the first variation
of W(Γ), which was introduced in Dziuk (2007).

We consider variations ~y : I × (−ε0, ε0) → R
d with ~y(ρ, 0) = ~x(ρ) and ~yε(ρ, 0) = ~χ(ρ).

Defining ~κ(ρ, ε), ε ∈ (−ε0, ε0), as the curvature vector of the curve parameterized by
~y(ρ, ε), we obtain that

[δW(Γ)](~χ) =
d

dε
W(Γ) |ε=0=

∫

Γ

~κ . ~κε ds + 1
2

∫

Γ

|~κ|2 ~xs . ~χs ds , (2.23)

where the last term arises from differentiating the arclength in
∫
Γ
|~κ|2 ds ≡

∫
I
|~κ|2 |~xρ| dρ.

Of course, for ease of exposition there is abuse of notation here and below, since ~κ ≡ ~κ(·, 0)
and ~κε ≡ ~κε(·, 0) in (2.23). Differentiating the identity

∫

I

~xρ

|~xρ|
. ~ηρ dρ =

∫

Γ

~xs . ~ηs ds = −
∫

Γ

~κ . ~η ds = −
∫

I

~κ . ~η |~xρ| dρ

with respect to ε, we obtain, on keeping ~η : Γ → R
d fixed, that

∫

Γ

~P ~χs . ~ηs ds = −
∫

Γ

~κε . ~η ds −
∫

Γ

(~κ . ~η) (~xs . ~χs) ds .

On choosing ~η = ~κ in the identity above, we derive from (2.23) that

[δW(Γ)](~χ) = −
∫

Γ

~κs . ~P ~χs ds − 1
2

∫

Γ

|~κ|2 ~xs . ~χs ds =

∫

Γ

[(~∇s ~κ)s + 1
2
(|~κ|2 ~xs)s] . ~χ ds

=

∫

Γ

(~∇2
s ~κ + 1

2
|~κ|2 ~κ) . ~χ ds , (2.24)

where ~∇s ~χ = ~P ~χs, recall (2.10). Here the last identity follows since

~∇2
s ~κ = (~∇s ~κ)s − [(~∇s ~κ)s . ~xs] ~xs = (~∇s~κ)s + (~κs . ~κ) ~xs ,

where we have noted that (~∇s ~κ)s = ~κss−(~κs . ~xs)s ~xs−(~κs . ~xs) ~xss. Hence the L2-gradient
flow of Wλ(Γ) with respect to the inner product (2.3) is given as

~P ~xt = −(~∇s ~κ)s − 1
2
(|~κ|2 ~xs)s + λ ~κ = −~∇2

s ~κ − 1
2
|~κ|2 ~κ + λ ~κ , (2.25)
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where we have noted the first two terms in the last integral in (2.24) are normal. The flow
(2.25), in general for λ = 0, is called elastic flow of curves, or Willmore flow of curves. An

alternative formulation replaces ~P ~xt by ~xt, see Dziuk, Kuwert, and Schätzle (2002) and
Deckelnick and Dziuk (2007). A weak formulation of (2.25) can be obtained as follows.
We find on testing the first equation in (2.25) with a test function ~η ∈ V ~τ , integrating over

Γ, using integration by parts for ∂s, and noting that ~∇s ~κ . ~ηs = ~P ~κs . ~ηs = ~P ~κs . ~P ~ηs =
~∇s ~κ . ~∇s ~η, that

∫

Γ

(~xt − λ ~κ) . ~η ds −
∫

Γ

~∇s ~κ . ~∇s ~η ds − 1
2

∫

Γ

|~κ|2 ~xs . ~ηs ds = 0 ∀ ~η ∈ V ~τ , (2.26a)
∫

Γ

~κ . ~η ds +

∫

Γ

~xs . ~ηs ds = 0 ∀ ~η , (2.26b)

where ~κ ∈ V ~τ as usual. Finally, we note that the energy (2.22) with λ = 0 can be reduced
by scaling, as e.g. an expanding circle continuously reduces the energy Wλ, and that a
parameter λ > 0 acts as a penalization term for growth in the curve’s length. Hence it is
also of interest to study a length preserving gradient flow of W. This can be achieved by
choosing a time dependent λ(t) in (2.25), such that

∫
Γ
~xt . ~κ ds = 0, recall (2.2), which

leads to

λ(t) = −
1
2

∫
Γ
|~κ|2 ~xs . ~κs ds +

∫
Γ
|~∇s ~κ|2 ds∫

Γ
|~κ|2 ds

. (2.27)

Geodesic Willmore flow of curves

We now consider an elastic energy for curves, which are restricted to lie on a two
dimensional manifold M in R

3 as above. We define

WM,λ(Γ) :=

∫

Γ

(1
2
|~κM|2 + λ) ds ,

and WM(Γ) := 1
2

∫
Γ
|~κM|2 ds. Here we recall that |~κM|2 = (κM)2, where κM is the

geodesic curvature. In what follows we will need the second fundamental form II of M,
which is given as

II~z(~τ1, ~τ2) := −[∂~τ1 ~nF (~z)] . ~τ2 = −F ′′(~z)~τ1 . ~τ2 ∀ ~τ1, ~τ2 ∈ T~zM , ~z ∈ M , (2.28)

where T~zM denotes the tangent space of M at ~z. We note that II~z(·, ·) is a symmetric
bilinear form. We will need also the Gauß curvature K of M, which is given by K(~z) :=
det (II~z(~τi, ~τj))

2
i,j=1, where ~τ1, ~τ2 ∈ T~zM are two orthonormal vectors. Hence on Γ we can

compute the Gauß curvature of M as

K(~x) = II(~xs, ~xs) II(~νM, ~νM) − II(~xs, ~νM) II(~νM, ~xs) , (2.29)

where, here and throughout, we suppress the subscript ~x of II.

In the following theorem the first variation of WM(Γ) is computed. We refer to Langer
and Singer (1984) for an alternative approach. However, the version presented here has
the advantage that we directly obtain a weak formulation.
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Theorem. 2.1. The first variation of WM(Γ) in a direction ~χ ∈ V F , recall (2.18), is
given as

[δWM(Γ)](~χ) = −
∫

Γ

[(~κM)s . ~P ~χs + 1
2
|~κM|2 ~xs . ~χs − κM κF II(~χ, ~νM)] ds , (2.30a)

or equivalently

[δWM(Γ)](~χ) =

∫

Γ

((κM)ss + 1
2
(κM)3 + KκM) (~χ . ~νM) ds . (2.30b)

Proof. Let ~y(ρ, ε) ∈ M be a variation of a curve Γ such that ~y(ρ, 0) = ~x(ρ) and
~yε(·, 0) = ~χ ∈ V F . We compute

d

dε

∫

Γ

1
2
|~κM|2 ds |ε=0=

∫

Γ

~κM . (~κM)ε ds +

∫

Γ

1
2
|~κM|2 ~xs . ~χs ds ,

with a similar abuse of notation, here and below, as in (2.23). The geodesic curvature
κM and the normal curvature κF are given via

∫

Γ

(κM ~νM + κF ~νF ) . ~η ds +

∫

Γ

~xs . ~ηs ds = 0

which has to hold for all ~η : I → R
3. Writing this identity as an integral over I, we obtain

after differentiation with respect to ε that

∫

Γ

[ (κM)ε ~νM + κM (~νM)ε + (κF )ε ~νF + κF (~νF )ε ] . ~η ds

+

∫

Γ

([κM ~νM + κF ~νF ] . ~η) (~xs . ~χs) ds +

∫

Γ

~P ~χs . ~ηs ds = 0 .

We now choose ~η = ~κM ≡ κM ~νM and use the identities (~νM)ε . ~νM = 0 and ~νF . ~νM = 0
to obtain that

∫

Γ

(κM)ε κM + κF κM (~νF )ε . ~νM) ds +

∫

Γ

|~κM|2 ~xs . ~χs ds +

∫

Γ

(~κM)s . ~P ~χs = 0 .

Since (~νF )ε . ~νM = −II(~yε(·, 0), ~νM) = −II(~χ, ~νM) we obtain (2.30a).

Integration by parts yields, as ~χ ∈ V F , that

−
∫

Γ

1
2
|~κM|2 ~xs . ~χs ds =

∫

Γ

~κM . (~κM)s (~xs . ~χ) ds +

∫

Γ

1
2
|~κM|2 ~xss . ~χ ds

=

∫

Γ

~κM . (~κM)s (~xs . ~χ) ds +

∫

Γ

1
2
(κM)3 (~νM . ~χ) ds ,

and that ∫

Γ

(~κM)s . ~P ~χs ds = −
∫

Γ

(~P (~κM)s)s . ~χ ds .

11



It follows that

(~P (~κM)s)s = (κM)ss ~νM + (κM)s (~νM)s + (κM)s
~P (~νM)s + κM (~P (~νM)s)s .

Since (~νM)s . ~νM = 0 and since ~χ, ~νM ∈ V F , we obtain that ~P (~νM)s . ~χ = 0, and hence
that

(~P (~νM)s)s . ~χ = ([(~νM)s . ~νF ] ~νF )s . ~χ = ((~νM)s . ~νF ) ((~νF )s . ~χ) = −(~νM . (~νF )s) ((~νF )s . ~χ)

= −II(~νM, ~xs) II(~χ, ~xs) .

Similarly, on noting that ~χ = (~χ . ~xs) ~xs + (~χ . ~νM) ~νM, we have that

(κM)s (~νM)s . ~χ = (κM)s ((~νM)s . ~xs) (~χ . ~xs) = −(κM)s (~νM . ~xss) (~χ . ~xs)

= −(κM)s κM (~χ . ~xs) = −(~κM)s . ~κM (~χ . ~xs) . (2.31)

Combining the above identities yields that

[δWM(Γ)](~χ) =

∫

Γ

((κM)ss + 1
2
(κM)3) (~χ · ~νM) ds

+

∫

Γ

κM [II(~xs, ~xs) II(~χ, ~νM) − II(~νM, ~xs) II(~χ, ~xs)] ds,

where we have noted that II(~xs, ~xs) = ~νF . ~xss = κF . Finally, noting the decomposition of
~χ as used in (2.31) above and on recalling (2.29), we have that

II(~xs, ~xs) II(~χ, ~νM) − II(~νM, ~xs) II(~χ, ~xs)

= (~χ . ~νM) [II(~xs, ~xs) II(~νM, ~νM) − II(~xs, ~νM) II(~νM, ~xs)]

+ (~χ . ~xs) [II(~xs, ~xs) II(~xs, ~νM) − II(~νM, ~xs) II(~xs, ~xs)] = (~χ . ~νM)K .

Hence combining the above identities yields the desired result (2.30b).

The L2-gradient flow of the elastic energy WM,λ(Γ) is hence given as

VM = ~xt . ~νM = −(κM)ss − 1
2
(κM)3 + (λ −K) κM . (2.32)

Obviously Theorem 2.1 can be used to formulate a weak formulation of this gradient
flow equation. The flow (2.32) can be applied to compute periodic geodesics, i.e. curves
with zero geodesic Willmore energy, WM(Γ) = 0, see e.g. Linnér and Renka (2005). In
particular, it is possible to compute closed geodesics also in cases where the initial curve
is homotopic to a point. A situation which is of course always the case if the manifold
is diffeomorphic to a sphere. In such a case, the geodesic curvature flow cannot be used
in general to compute closed geodesics, but the flow (2.32) can be generically used; see
Langer and Singer (1984) or Linnér and Renka (2005) for more information. Finally, a
length preserving flow of (2.32), similarly to (2.25) with (2.27), can also be considered.

Anisotropic flows

Here we give a short overview on how to extend some of the previously introduced
geometric evolution equations to the case of anisotropic surface energy densities. We start
with the simplest flow, i.e. curve shorting flow in R

d, d ≥ 2.
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In many applications the energy of a surface in R
d depends locally on the orientation

in space. For the case of curves in R
d, d ≥ 2, the local orientation is given by the unit

tangent ~xs. Hence we introduce an anisotropic surface energy of the form

|Γ|φ :=

∫

Γ

φ(~xs) ds ,

where Γ ⊂ R
d is a closed curve and φ ∈ C2(Rd \ {~0}, R>0) ∩ C(Rd, R≥0) is a given

anisotropic energy density, cf. also Pozzi (2007). In this paper, we assume that the
function φ is absolutely homogeneous of degree one, i.e.

φ(λ ~p) = |λ|φ(~p) ∀ ~p ∈ R
d , ∀ λ ∈ R .

The one-homogeneity immediately implies that

φ′(~p) . ~p = φ(~p) and φ′′(~p) ~p = ~0 ∀ ~p ∈ R
d \ {~0} , (2.33)

where we recall that φ′ denotes the gradient and φ′′ the matrix of second derivatives of
φ. In the isotropic case we have that φ(~p) = |~p| and so φ(~xs) = 1, which means that
|Γ|φ reduces to |Γ|, the length of Γ. For an introduction to anisotropic surface energies
in general, and to Wulff shapes in particular, we refer to Giga (2006), Deckelnick, Dziuk,
and Elliott (2005) and the references therein.

The first variation of |Γ|φ is derived analogously to the isotropic case, recall (2.2), as

[δ|Γ|φ](~η) =

∫

Γ

φ′(~xs) . ~ηs ds = −
∫

Γ

[φ′(~xs)]s . ~η ds .

The quantity ~κφ := [φ′(~xs)]s can be viewed as an anisotropic curvature vector, and we
obtain that

~P ~xt = [φ′(~xs)]s = ~κφ (2.34)

as the gradient flow of |Γ|φ with respect to the inner product (·, ·)2,nor. Here we have
noted that ~κφ = φ′′(~xs) ~κ ∈ V ~τ , on recalling from (2.33) that φ′′(~xs) ~xs = ~0. The flow
(2.34) is called anisotropic curve shortening flow and is the natural anisotropic analogue
of (2.4).

Similarly, one can introduce anisotropic curve diffusion

~P ~xt = −~∇2
s ~κφ (2.35)

as the H−1-gradient flow of |Γ|φ. Moreover, it is possible to define the natural anisotropic
analogues of the previously introduced geodesic curve shortening and geodesic surface
diffusion flow. We leave the details to the interested reader.

In addition, the gradient flow for an anisotropic version of (2.22) is of interest; see e.g.
Clarenz (2004) and Diewald (2005), where the corresponding energy for hypersurfaces in
R

3 is treated. Similarly to (2.24), the first variation of the anisotropic Willmore energy

Wφ(Γ) := 1
2

∫

Γ

|~κφ|2 ds

13



can be computed as

[δWφ(Γ)](~χ) =
d

dε
Wφ(Γ) |ε=0=

∫

Γ

~κφ . ~κφ,ε ds + 1
2

∫

Γ

|~κφ|2 ~xs . ~χs ds ,

where we have adopted the same notation as in (2.23). Analogously to the isotropic case,
we then obtain, on recalling (2.33), that

[δWφ(Γ)](~χ) = −
∫

Γ

[φ′′(~xs) (~κφ)s] . ~χs ds − 1
2

∫

Γ

|~κφ|2 ~xs . ~χs ds

=

∫

Γ

[(φ′′(~xs) (~κφ)s)s + 1
2
(|~κφ|2 ~xs)s] . ~χ ds . (2.36)

On noting that in the isotropic case, φ(~p) = |~p|, we have that φ′′(~xs) = ~P , we see that
(2.36) is the natural anisotropic analogue of (2.24). Hence the L2-gradient flow of

Wφ,λ(Γ) := Wφ(Γ) + λ |Γ|φ
with respect to the inner product (2.3) is given as

~P ~xt = −(φ′′(~xs) (~κφ)s)s − 1
2
(|~κφ|2 ~xs)s + λ ~κφ , (2.37)

where as in the isotropic case, we use the fact that the term in square brackets in the last
integral in (2.36) is normal.

Naturally, an anisotropic version of (2.32) can also be computed. On defining the
anisotropic geodesic curvature vector by ~κφ,M := κφ,M ~νM, where κφ,M := ~κφ . ~νM and
similarly κφ,F := ~κφ . ~νF , we obtain the first variation of Wφ,M(Γ) := 1

2

∫
Γ
|~κφ,M|2 ds in a

direction ~χ ∈ V F , similarly to (2.30a), as

[δWφ,M(Γ)](~χ) = −
∫

Γ

[
[φ′′(~xs) (~κφ,M)s] . ~χs + 1

2
|~κφ,M|2 ~xs . ~χs − κφ,M κφ,F II(~χ, ~νM)

]
ds .

(2.38)

A wide class of anisotropies can either be modelled or at least very well approximated
by, see Barrett, Garcke, and Nürnberg (2008c),

φ(~p) =

L∑

ℓ=1

φℓ(~p) =

L∑

ℓ=1

√
~p . ~Gℓ ~p ⇒ φ′(~p) =

L∑

ℓ=1

[φℓ(~p)]−1 ~Gℓ ~p ∀ ~p ∈ R
d \ {~0} ,

(2.39)

where ~Gℓ ∈ R
d×d, ℓ = 1 → L, are symmetric and positive definite; and in this paper we

will restrict our analysis to anisotropies of the form (2.39). For later purposes, we note
for all ~p ∈ R

d \ {~0} that

φ′′(~p) =

L∑

ℓ=1

[φℓ(~p)]−1
[
~Id − [φℓ(~p)]−2 ( ~Gℓ ~p) ⊗ ~p

]
~Gℓ (2.40)

is positive semi-definite. In the recent paper Barrett, Garcke, and Nürnberg (2008a), we
introduced parametric finite element approximations for anisotropic geometric evolution
equations in the plane, i.e. d = 2; and showed that for the class of anisotropy densities
that correspond to the choice (2.39), unconditionally stable fully discrete approximations
are obtained. In the present paper, this analysis will be extended to the flow of curves in
R

d, d ≥ 3, as well as to the anisotropic geodesic flows mentioned above.
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3 Finite Element Approximation

In this section we introduce finite element approximations of the curvature flows discussed
in Section 2. We will use the variational structure of the flows and aim to generalize the
approach introduced in Barrett, Garcke, and Nürnberg (2007b) in a way that one still
has good mesh properties, so that no heuristic remeshing will be required in practice.

We introduce the decomposition I = ∪J
j=1Ij , J ≥ 3 of I = R/Z into intervals given by

the nodes qj , Ij = [qj−1, qj ]. Let hj = |Ij| and h = maxj=1→J hj be the maximal length of
a grid element. Then the necessary finite element spaces are defined as follows

V h := {~χ ∈ C(I, Rd) : ~χ |Ij
is linear ∀ j = 1 → J} =: [W h]d ⊂ H1(I, Rd),

where W h ⊂ H1(I, R) is the space of scalar continuous (periodic) piecewise linear func-
tions, with {χj}J

j=1 denoting the standard basis of W h. In addition, let ~πh : C(I, Rd) → V h

be the standard Lagrange interpolation operator. Throughout this paper, we make use
of the periodicity of I, i.e. qJ ≡ q0, qJ+1 ≡ q1 and so on. In addition, let 0 = t0 <
t1 < . . . < tM−1 < tM = T be a partitioning of [0, T ] into possibly variable time steps
τm := tm+1 − tm, m = 0 → M − 1. We set τ := maxm=0→M−1 τm.

For scalar and vector functions u, v ∈ L2(I, R(d)) we introduce the L2-inner product
〈·, ·〉m over the current polygonal curve Γm, which is described by the vector function
~Xm ∈ V h, as follows

〈u, v〉m :=

∫

Γm

u . v ds =

∫

I

u . v | ~Xm
ρ | dρ .

Here and throughout this paper, ·(∗) denotes an expression with or without the superscript
∗, and similarly for subscripts. In addition, if u, v are piecewise continuous, with possible
jumps at the nodes {qj}J

j=1, we define the mass lumped inner product 〈·, ·〉hm as

〈u, v〉hm := 1
2

J∑

j=1

| ~Xm(qj) − ~Xm(qj−1)|
[
(u . v)(q−j ) + (u . v)(q+

j−1)
]
,

where we define u(q±j ) := lim
εց0

u(qj ± ε). Furthermore, we note that on Γm we have almost

everywhere that

us . vs =
uρ . vρ

| ~Xm
ρ |2

and ~∇s ~u . ~∇s ~v =
~P m ~uρ . ~P m ~vρ

| ~Xm
ρ |2

=
~P m ~uρ . ~vρ

| ~Xm
ρ |2

, (3.1)

where ~P m = ~Id− ~Xm
s ⊗ ~Xm

s . In addition, let ~ωm
d (qj) :=

~Xm(qj+1)− ~Xm(qj−1)

| ~Xm(qj+1)− ~Xm(qj−1)| be the discrete

nodal tangent vector of Γm at the node ~X(qj), which we assume to be well defined for
j = 1 → J ; see our assumption (C) below. Then we define the following subspace of V h:

V h,m
~τ := {~η ∈ V h : ~η(qj) . ~ωm

d (qj) = 0, j = 1 → J} . (3.2)

Note that V h,m
~τ is a discrete analogue of (2.7).
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3.1 The isotropic case

Curve shortening flow

On employing a backward Euler discretization with respect to time, we propose the
following approximation to (2.6), where we recall the weak formulation (2.8). Find

{ ~Xm+1, ~κm+1} ∈ V h × V h,m
~τ such that

〈
~Xm+1 − ~Xm

τm

, ~χ〉hm − 〈~κm+1, ~χ〉hm = 0 ∀ ~χ ∈ V h,m
~τ , (3.3a)

〈~κm+1, ~η〉hm + 〈 ~Xm+1
s , ~ηs〉m = 0 ∀ ~η ∈ V h , (3.3b)

where, as noted above, the inner products 〈·, ·〉(h)
m as well as ·s depend on m; and where we

recall the definition of the test and trial function space V h,m
~τ in (3.2). We note that while

the scheme (3.3a,b) for d = 2 does not collapse exactly to the approximation Barrett,
Garcke, and Nürnberg (2007a, (2.3a,b)) with f(r) := r; it does collapse to that scheme’s
equivalent formulation Barrett, Garcke, and Nürnberg (2007a, (2.17)), on normalizing
that scheme’s discrete normal vectors ~ωm(qj). In practice, the results from these two
schemes are virtually indistinguishable.

Moreover, we recall that the fully discrete approximation for the curve shortening flow
in Dziuk (1994) is given by (3.3a,b) with the test and trial space V h,m

~τ replaced by V h.
We stress that this is a crucial difference, as the novel formulation in this paper allows for
tangential movement, which leads to good mesh properties; see Remark 3.2 and Section 5
below. In particular, no heuristic remeshing is needed in practice.

Curve diffusion

For curve diffusion we use the formulation (2.15), and we obtain the following fully

discrete version on recalling (2.16). Find { ~Xm+1, ~κm+1} ∈ V h × V h,m
~τ such that

〈
~Xm+1 − ~Xm

τm

, ~χ〉hm − 〈~∇s ~κm+1, ~∇s ~χ〉m = 0 ∀ ~χ ∈ V h,m
~τ , (3.4a)

〈~κm+1, ~η〉hm + 〈 ~Xm+1
s , ~ηs〉m = 0 ∀ ~η ∈ V h , (3.4b)

where we recall (3.1). We note that the scheme (3.4a,b) for d = 2 does not collapse exactly
to the approximation Barrett, Garcke, and Nürnberg (2007b, (2.2a,b)). Apart from a nor-
malization of the discrete normal vectors, the schemes differ in the way they approximate
the flow (2.15). While (3.4a,b) is based on (2.16), the scheme in Barrett, Garcke, and
Nürnberg (2007b) approximates a weak formulation of (2.9). As a consequence, it does
not seem possible to show exact area preservation for a semi-discrete continuous in time
version of (3.4a,b), something that holds for the approximation in Barrett, Garcke, and
Nürnberg (2007b). However, once again in practice the results from these two schemes
are virtually indistinguishable.

Willmore flow of curves

Similarly, elastic flow of curves, (2.25), can be approximated as follows, where we recall
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the weak formulation (2.26a,b). Find { ~Xm+1, ~κm+1} ∈ V h × V h,m
~τ such that

〈
~Xm+1 − ~Xm

τm

, ~χ〉hm − 〈~∇s ~κm+1, ~∇s ~χ〉m − 1
2
〈|~κm|2 ~Xm

s , ~χs〉hm
− [λm]+ 〈~κm+1, ~χ〉hm = [λm]− 〈~κm, ~χ〉hm ∀ ~χ ∈ V h,m

~τ , (3.5a)

〈~κm+1, ~η〉hm + 〈 ~Xm+1
s , ~ηs〉m = 0 ∀ ~η ∈ V h , (3.5b)

where [r]± := ±max{±r, 0}, and ~κ0 ∈ V h,m
~τ is suitably chosen, see Section 5.

Note that for a given fixed λ ∈ R we set λm = λ, m = 0 → M − 1, whereas the time
dependent choice

λm = −
1
2
〈|~κm|2 ~Xm

s , ~κm
s 〉hm + |~∇s ~κm|2m

|~κm|2m,h

, (3.6)

with | · |2m(,h) := 〈·, ·〉(h)
m , approximates length preserving elastic flow, recall (2.27).

A fully discrete approximation of the formulation in Deckelnick and Dziuk (2007) of

(2.25), i.e. ~P ~xt replaced by ~xt, is given by: Find { ~Xm+1, ~κm+1} ∈ V h × V h such that for
all ~χ, ~η ∈ V h it holds that

〈
~Xm+1 − ~Xm

τm

, ~χ〉hm − 〈~∇s ~κm+1, ~∇s ~χ〉m − 1
2
〈|~κm|2 ~Xm+1

s , ~χs〉m − λm 〈~κm+1, ~χ〉hm = 0 ,

(3.7a)

〈~κm+1, ~η〉hm + 〈 ~Xm+1
s , ~ηs〉m = 0 . (3.7b)

Hence the main difference between (3.7a,b) and the approach corresponding to our frame-
work, (3.5a,b), is the choice of trial space for ~κm+1 and the choice of test function for the
first equation, i.e. V h,m

~τ in place of V h. In addition, we choose to treat the third term in
(3.5a) explicitly. This proves to be of no disadvantage in practice, but as the system is
now symmetric, it makes proving existence and uniqueness for (3.5a,b) straightforward,
and it simplifies the solution procedure for (3.5a,b).

Geodesic curvature flow

In order to approximate the geodesic curvature flow (2.19), as well as other curve

evolutions on a given manifold M, we now introduce ~ωm
F (qj) :=

F ′( ~Xm(qj))

|F ′( ~Xm(qj))|
, recall (2.17),

and set ~ωm
M(qj) := ~ωm

d (qj) × ~ωm
F (qj), j = 1 → J , where we assume that these are nonzero

vectors. We note that { ~Xm(qj)}J
j=1 may not lie exactly on M, hence the normalization

in ~ωm
F (qj). In addition, let

V h,m
F := {~η ∈ V h : ~η(qj) . ~ωm

F (qj) = 0, j = 1 → J} (3.8)

be the discrete analogue of (2.18). We then propose the following approximation to (2.19):

Find {δ ~Xm+1, κm+1
M } ∈ V h,m

F × W h, where ~Xm+1 := ~Xm + δ ~Xm+1, such that

〈δ
~Xm+1

τm

, χ ~ωm
M〉hm − 〈κm+1

M , χ〉hm = 0 ∀ χ ∈ W h, (3.9a)

〈κm+1
M ~ωm

M, ~η〉hm + 〈 ~Xm+1
s , ~ηs〉m = 0 ∀ ~η ∈ V h,m

F . (3.9b)
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Geodesic surface diffusion

Moreover, for the surface diffusion flow on manifolds, (2.20), also called geodesic sur-

face diffusion, we introduce the approximation: Find {δ ~Xm+1, κm+1
M } ∈ V h,m

F ×W h, where
~Xm+1 := ~Xm + δ ~Xm+1, such that

〈δ
~Xm+1

τm

, χ ~ωm
M〉hm − 〈[κm+1

M ]s, χs〉m = 0 ∀ χ ∈ W h (3.10)

and (3.9b) hold.

Geodesic Willmore flow

In order to compute elastic flow of curves on a manifold we have two options. On
recalling (2.32), we can either combine (3.9b) with

〈δ
~Xm+1

τm

, χ ~ωm
M〉hm − 〈[κm+1

M ]s, χs〉m − 〈[λm −Km]+ κm+1
M , χ〉hm =

− 1
2
〈(κm

M)3, χ〉hm + 〈[λm −Km]− κm
M, χ〉hm ∀ χ ∈ W h , (3.11)

where Km ∈ W h with Km(qj) = K(~ΠM ~Xm(qj)), j = 1 → J , is the Gauß curvature of

M evaluated at ~ΠM ~Xm, with ~ΠM being the orthogonal projection onto M. In addition,
κ0
M ∈ W h is a suitably chosen initial value, see Section 5 for details. Similarly to (3.5a,b),

for a given fixed λ ∈ R we set λm = λ, m = 0 → M − 1, whereas the time dependent
choice

λm =
1
2
|(κm

M)2|2m,h + 〈Km κm
M, κm

M〉hm − |(κm
M)s|2m

|κm
M|2m,h

, (3.12)

similarly to (3.6), approximates length preserving geodesic elastic flow.

A second variant is based on (2.30a), and uses as an additional discrete unknown the

normal curvature κm+1
F . Find {δ ~Xm+1, {κm+1

M , κm+1
F }} ∈ V h,m

F × [W h]2 such that

〈δ
~Xm+1

τm

, ~χ〉hm − 〈~∇s ~πh[κm+1
M ~ωm

M], ~∇s ~χ〉m − 〈[λm]+ κm+1
M ~ωm

M, ~χ〉hm − 1
2
〈(κm

M)2 ~Xm
s , ~χs〉hm

+ 〈κm
M κm

F , II(~χ, ~ωm
M)〉hm = 〈[λm]− κm

M ~ωm
M, ~χ〉hm ∀ ~χ ∈ V h,m

F, ~τ , (3.13a)

〈κm+1
M ~ωm

M, ~η〉hm + 〈κm+1
F ~ωm

F , ~η〉hm + 〈 ~Xm+1
s , ~ηs〉m = 0 ∀ ~η ∈ V h , (3.13b)

where ~χ ∈ V h,m
F, ~τ := V h,m

F ∩ V h,m
~τ is equivalent to ~χ = ~πh[χ ~ωm

M] for a χ ∈ W h. In addition,

κ0
M, κ0

F ∈ W h are again suitably chosen. We observe that in the last term on the left hand

side of (3.13a) we use a slight abuse of notation, as ~Xm in general does not lie exactly on
M. In particular, for ease of notation we define for all u ∈ C(I, R) and for an arbitrary

test function ~η ∈ V h,m
F, ~τ , on recalling (2.28) and on noting that in general |F ′( ~Xm)| 6= 1,

〈u, II(~χ, ~ωm
M)〉hm = −

J∑

j=1

〈1, χj〉m
[
u (~χ . ~ωm

M) [|F ′( ~Xm)|]−1 F ′′( ~Xm) ~ωm
M . ~ωm

M

]
(qj). (3.14)
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3.2 Properties of the discrete isotropic flows

We observe that δ ~Xm+1 ∈ V h,m
F weakly enforces ~Xm+1(qj) ∈ M ⇐⇒ F ( ~Xm+1(qj)) = 0,

j = 1 → J , as it is a linearized approximation of these constraints. In particular, for
curved manifolds the equations F ( ~Xm+1(qj)) = 0, j = 1 → J , are only approximately

satisfied. For k = 0 → m and j = 1 → J , we have that F ′( ~Xk(qj)) . ( ~Xk+1(qj)− ~Xk(qj)) =
0, and similarly to Deckelnick and Elliott (1998, p. 651) it formally follows, on assuming

that F ( ~X0(qj)) = 0 and that
~Xk+1(qj)− ~Xk(qj)

τ
= O(1), that there exist points ~ξk,j ∈ R

d such
that

|F ( ~Xm+1(qj))| ≤
m∑

k=0

|F ( ~Xk+1(qj)) − F ( ~Xk(qj))|

=

m∑

k=0

|[F ′′(~ξk,j) ( ~Xk+1(qj) − ~Xk(qj))] . ( ~Xk+1(qj) − ~Xk(qj))| = O(τ), j = 1 → J.

Hence, for small time steps the vertices of the polygonal curve should stay close to M;
and this is what one generally observes in practice, see Section 5 for details. However, one
could also employ a projection step that orthogonally projects ~Xm+1 onto M at every
time step, which would have the advantage of satisfying F ( ~Xm+1(qj)) = 0, j = 1 → J ,
exactly throughout the evolution. But this complicates the stability proof below, hence
our preference for e.g. the approximations (3.9a,b). However, we do include numerical
results using both approaches in Section 5.

Before we can proceed to prove existence and uniqueness to our approximations, we
have to make the following very mild assumption.

(C) Let (i) | ~Xm
ρ | > 0 for almost all ρ ∈ I, (ii) ~Xm(qj+1) 6= ~Xm(qj−1), j = 1 → J , and

(iii)
⋃J

j=1{~ωm
d (qj)}⊥ = R

d.

Remark. 3.1. We note that (C) is a very mild assumption that is only violated in very
rare occasions. In fact, (ii) is not strictly necessary as it is only required for normaliza-
tion of ~ωm

d (qj), recall (3.2). One could remove this normalization procedure, and hence
this assumption, and still be able to prove the well-posedness, equidistribution and stabil-
ity results below. However, for ease of exposition and as it is such a mild assumption
we include it. Finally, see Barrett, Garcke, and Nürnberg (2007b, Remark 2.2) for the
breakdown of (iii) in the case d = 2.

Theorem. 3.1. Let the assumption (C) hold. Then there exists a unique solution to the
systems (3.3a,b), (3.4a,b), (3.5a,b), (3.9a,b), (3.10) with (3.9b), (3.11) with (3.9b) and
(3.13a,b), respectively. In addition, the solution to (3.3a,b) satisfies

|Γm+1| + τm |κm+1|2m,h ≤ |Γm| . (3.15)

Moreover, the solution to (3.4a,b) satisfies (3.15) with the second term on the left hand

side replaced by τm |~∇s ~κ|2m. Furthermore, the solutions to (3.9a,b) and (3.10), (3.9b), in
place of (3.15) satisfy

|Γm+1| + τm |κm+1
M |2m,h ≤ |Γm|

19



and |Γm+1| + τm |[κm+1
M ]s|2m ≤ |Γm|, respectively.

Proof. The desired results for (3.3a,b), (3.4a,b), (3.5a,b), (3.9a,b), (3.10) with (3.9b)
and (3.13a,b) follow immediately from Theorems 3.2 and 3.3, below, for the choice φ(~p) =
|~p|. Existence and uniqueness for (3.11), (3.9b) can be shown analogously to the proof
for (3.10), (3.9b).

Remark. 3.2. Similarly to Barrett, Garcke, and Nürnberg (2007b, Remark 2.3), one can
consider a continuous in time semidiscrete version of our schemes, e.g. of (3.3a,b). In

which case, we seek ~X(t) ∈ V h and ~κ(t) ∈ V h
~τ := {~η ∈ V h : ~η(qj) . ~ωh

d(qj) = 0, j = 1 →
J}, where ~ωh

d on Γh(t), described by ~X(t), is defined analogously to ~ωm
d on Γm, for all

t ∈ [0, T ] such that

〈 ~Xt, ~χ〉h − 〈~κ, ~χ〉h = 0 ∀ ~χ ∈ V h
~τ , (3.16a)

〈~κ, ~η〉h + 〈 ~Xs, ~ηs〉 = 0 ∀ ~η ∈ V h; (3.16b)

where we always integrate over the current curve Γh, and 〈·, ·〉(h) is the same as 〈·, ·〉(h)
m

with Γm and ~Xm replaced by Γh and ~X, respectively. Then, on choosing ~η = ~ωh
d (qj) χj in

(3.16b) and on recalling that ~ωh
d (qj) . ~κ(qj) = 0, it follows with ~ah

j− 1

2

:= ~X(qj) − ~X(qj−1),

on noting that ~ωh
d (qj) =

~ah

j+ 1
2

+~ah

j− 1
2

|~ah

j+ 1
2

+~ah

j− 1
2

| , that

(
~ah

j+ 1

2

|~ah
j+ 1

2

| −
~ah

j− 1

2

|~ah
j− 1

2

|

)

.
(
~ah

j+ 1

2

+ ~ah
j− 1

2

)
= 0 , j = 1 → J . (3.17)

Clearly, (3.17) and the Cauchy-Schwarz inequality imply that |~ah
j+ 1

2

| = |~ah
j− 1

2

| if ~ah
j+ 1

2

is not

parallel to ~ah
j− 1

2

. Hence the scheme (3.16a,b) will always equidistribute the nodes along

Γh if the corresponding intervals are not locally parallel; see also Barrett, Garcke, and
Nürnberg (2007b) for the planar case. Although it does not appear possible to prove an
analogue for e.g. the fully discrete scheme (3.3a,b), in practice we see that the nodes are
moved tangentially so that they will eventually be equidistributed; see Section 5 for details.

Moreover, we note that as the above analysis is only based on the equation (3.16b) and
the fact that ~κ ∈ V h

~τ , the same equidistribution property holds for all the other (isotropic)
schemes in this paper as well, and in particular for all the schemes involving (3.3b) or
(3.9b) or (3.13b). The anisotropic schemes discussed in Section 3.3, below, satisfy a
similar criterion. Here one obtains equidistribution with respect to φ, recall (2.39), in the
case L = 1 and with respect to some nontrivial nonlinear function in the case L ≥ 2. See
Barrett, Garcke, and Nürnberg (2008a) for the details in the planar case, d = 2, which
immediately carry over to the higher codimension and geodesic flows as discussed in this
paper.
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3.3 The anisotropic case

The natural extension of (3.3a,b) to the anisotropic flow (2.34) for anisotropies of the

form (2.39) is: Find { ~Xm+1, ~κm+1
φ } ∈ V h × V h,m

~τ such that

〈
~Xm+1 − ~Xm

τm

, ~χ〉hm − 〈~κm+1
φ , ~χ〉hm = 0 ∀ ~χ ∈ V h,m

~τ , (3.18a)

〈~κm+1
φ , ~η〉hm +

L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Xm+1
s , ~ηs〉m = 0 ∀ ~η ∈ V h . (3.18b)

Moreover, we obtain the following approximation for anisotropic curve diffusion: Find
{ ~Xm+1, ~κm+1

φ } ∈ V h × V h,m
~τ such that

〈
~Xm+1 − ~Xm

τm

, ~χ〉hm − 〈~∇s ~κm+1
φ , ~∇s ~χ〉hm = 0 ∀ ~χ ∈ V h,m

~τ , (3.19)

and (3.18b) hold.

Anisotropic Willmore flow for curves, (2.37), can be approximated as follows, where

we recall (2.40). Find { ~Xm+1, ~κm+1
φ } ∈ V h × V h,m

~τ such that

〈
~Xm+1 − ~Xm

τm

, ~χ〉hm − 〈φ′′( ~Xm
s ) (~κm+1

φ )s, ~χs〉m − 1
2
〈|~κm

φ |2 ~Xm
s , ~χs〉hm − [λm]+ 〈~κm+1

φ , ~χ〉hm
= [λm]− 〈~κm

φ , ~χ〉hm ∀ ~χ ∈ V h,m
~τ , (3.20)

and (3.18b) hold, where ~κ0
φ ∈ V h,m

~τ is suitably chosen.

Similarly, we can extend the isotropic scheme to the anisotropic curvature flow on
manifolds as follows. Find {δ ~Xm+1, κm+1

φ,M} ∈ V h,m
F × W h, where ~Xm+1 := ~Xm + δ ~Xm+1,

such that

〈δ
~Xm+1

τm

, χ ~ωm
M〉hm − 〈κm+1

φ,M , χ〉hm = 0 ∀ χ ∈ W h, (3.21a)

〈κm+1
φ,M ~ωm

M, ~η〉hm +
L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Xm+1
s , ~ηs〉m = 0 ∀ ~η ∈ V h,m

F . (3.21b)

In order to approximate anisotropic geodesic surface diffusion flow, (3.21a) needs to be
replaced by

〈δ
~Xm+1

τm

, χ ~ωm
M〉hm − 〈[κm+1

φ,M ]s, χs〉m = 0 ∀ χ ∈ W h. (3.22)

Finally, on recalling (2.38) we can generalize our approximation (3.13a,b) to the

anisotropic geodesic Willmore flow of curves as follows. Find {δ ~Xm+1, {κm+1
φ,M , κm+1

φ,F }} ∈
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V h,m
F × [W h]2 such that

〈δ
~Xm+1

τm

, ~χ〉hm − 〈φ′′( ~Xm
s ) (~πh[κm+1

φ,M ~ωm
M])s, ~χs〉m − 〈[λm]+ κm+1

φ,M ~ωm
M, ~χ〉hm

− 1
2
〈(κm

φ,M)2 ~Xm
s , ~χs〉hm + 〈κm

φ,M κm
φ,F , II(~χ, ~ωm

M)〉hm = 〈[λm]− κm
φ,M ~ωm

M, ~χ〉hm
∀ ~χ ∈ V h,m

F, ~τ , (3.23a)

〈κm+1
φ,M ~ωm

M, ~η〉hm + 〈κm+1
φ,F ~ωm

F , ~η〉hm +

L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Xm+1
s , ~ηs〉m = 0 ∀ ~η ∈ V h ,

(3.23b)

where we recall the notation in (3.14), and where κ0
φ,M, κ0

φ,F ∈ W h are suitably chosen.

We observe that all of the above anisotropic schemes reduce to their isotropic equiva-
lents in §3.1 for the special case φ(~p) = |~p|.
Theorem. 3.2. Let the assumption (C) hold. Then there exists a unique solution to the
systems (3.18a,b), (3.19) with (3.18b), (3.20) with (3.18b), (3.21a,b), (3.22) with (3.21b)
and (3.23a,b).

Proof. As (3.18a,b) is a linear system, existence follows from uniqueness. To investi-

gate the latter, we consider the system: Find { ~X,~κφ} ∈ V h × V h,m
~τ such that

〈 ~X, ~χ〉hm − τm 〈~κφ, ~χ〉hm = 0 ∀ ~χ ∈ V h,m
~τ , (3.24a)

〈~κφ, ~η〉hm +
L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Xs, ~ηs〉m = 0 ∀ ~η ∈ V h. (3.24b)

Choosing ~χ = ~κφ ∈ V h,m
~τ , in (3.24a) and ~η = ~X ∈ V h in (3.24b) yields on combining, that

L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Xs, ~Xs〉m + τm 〈~κφ, ~κφ〉hm = 0 . (3.25)

It follows from (3.25), on recalling from (2.39) that ~Gℓ, ℓ = 1 → L, are positive definite,

that ~κφ ≡ ~0 and that ~X ≡ ~Xc ∈ R
d. Together with (3.24a) this yields that

〈 ~Xc, ~χ〉hm = 0 ∀ ~χ ∈ V h,m
~τ .

It immediately follows from assumption (C) that ~Xc = ~0. Hence we have shown that

(3.18a,b) has a unique solution { ~Xm+1, ~κm+1
φ } ∈ V h × V h,m

~τ . Similarly, for (3.19), (3.18b)

we find that
∑L

ℓ=1〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Xs, ~Xs〉m + τm 〈~∇s ~κφ, ~∇s ~κφ〉m = 0, and so ~X ≡ ~Xc and

〈~κφ, ~η〉hm = 0 for all ~η ∈ V h. Hence ~κφ ≡ 0 and, as before, we find that ~Xc = ~0, and so we
obtain the desired result.

In an analogous fashion, we obtain for (3.20), (3.18b) that

L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Xs, ~Xs〉m + τm

[
〈φ′′( ~Xm

s ) (~κφ)s, (~κφ)s〉m + [λm]+ 〈~κφ, ~κφ〉hm
]

= 0 .
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As φ′′ is positive semi-definite, recall (2.40), it follows, as above, that ~X ≡ ~Xc and

〈~κφ, ~η〉hm = 0 for all ~η ∈ V h, which implies that ~κφ ≡ 0 and ~Xc = ~0.

For the system (3.21a,b) we obtain analogously for {δ ~X,~κφ,M} ∈ V h,m
F × W h that

L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ (δ ~X)s, (δ ~X)s〉m + τm 〈κφ,M, κφ,M〉hm = 0 ,

and hence the desired results follows from assumption (C). Similarly, for (3.22), (3.21b)

we find that
∑L

ℓ=1〈[φℓ( ~Xm
s )]−1 ~Gℓ (δ ~X)s, (δ ~X)s〉m + τm 〈[κφ,M]s, [κφ,M]s〉m = 0, and so

δ ~X ≡ ~Xc ∈ V h,m
F ∩R

3 and κφ,M ≡ κc ∈ R. As before, assumption (C) yields that ~Xc = ~0,
and hence that κc 〈~ωm

M, ~η〉hm = 0 for all ~η ∈ V h. Therefore κc = 0, and so we obtain the
desired result.

Finally, the system (3.23a,b) can be dealt with in an analogous fashion. In particular,
we obtain that

L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ (δ ~X)s, (δ ~X)s〉m

+ τm

[
〈φ′′( ~Xm

s ) (~πh[κφ,M ~ωm
M])s, (~π

h[κφ,M ~ωm
M])s〉m + [λm]+ 〈κφ,M, κφ,M〉hm

]
= 0 .

As before, we can deduce that δ ~X ≡ ~0, and hence that κφ,M ≡ 0 and κφ,F ≡ 0; which
proves the claim for the system (3.23a,b).

Theorem. 3.3. Let the assumption (C) hold. The solution { ~Xm+1, ~κm+1
φ } ∈ V h × V h,m

~τ

to (3.18a,b) satisfies
|Γm+1|φ + τm |~κm+1

φ |2m,h ≤ |Γm|φ . (3.26)

Moreover, the solution to (3.19), (3.18b) satisfies (3.26) with the second term on the left

hand side replaced by τm |~∇s ~κφ|2m. In addition, the solutions to (3.21a,b) and (3.22),
(3.21b) satisfy

|Γm+1|φ + τm |κm+1
φ,M |2m,h ≤ |Γm|φ . (3.27)

and |Γm+1|φ + τm |[κm+1
φ,M ]s|2m ≤ |Γm|φ, respectively.

Proof. Choosing ~χ = ~κm+1
φ in (3.18a) and ~η =

~Xm+1− ~Xm

τm
in (3.18b) yields that

L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Xm+1
s , ~Xm+1

s − ~Xm
s 〉m + τm 〈~κm+1

φ , ~κm+1
φ 〉hm = 0 .

Repeating verbatim the corresponding proof in Barrett, Garcke, and Nürnberg (2008a,
Theorem 2.5), which crucially depends on the chosen class (2.39) of anisotropy density
functions, we can show that

L∑

ℓ=1

〈[φℓ( ~Xm
s )]−1 ~Gℓ

~Xm+1
s , ~Xm+1

s − ~Xm
s 〉m ≥ |Γm+1|φ − |Γm|φ, (3.28)

which yields the desired result. Similarly, the result (3.27) follows from (3.28) on choosing

χ = κm+1
φ,M in (3.21a) and ~η = δ ~Xm+1

τm
∈ V h,m

F in (3.21b). The remaining results follow
analogously.
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4 Solution of the discrete equations

In this section, we discuss possible solution methods for the discrete systems arising from
the approximations introduced in the previous section. For ease of presentation, we only
consider the isotropic case. All the methods immediately carry over to the anisotropic
case, on replacing the stiffness matrix ~A, see (4.1) below, with the obvious anisotropic

version ~Aφ. See e.g. Barrett, Garcke, and Nürnberg (2008a) for the corresponding details
in the planar case, d = 2. In addition, for the anisotropic Willmore flow schemes, the
anisotropic matrices ~Aφ and Aφ need to be defined, where the former is the natural

anisotropic version of the matrix ~A, see below, with φ′′( ~Xm
s ) replacing ~P m.

In order to solve the algebraic systems arising from our fully discrete parametric finite
element approximations, we apply a Schur complement approach in each case.

For an arbitrary n ∈ N, let ~Idn ∈ (Rd×d)n×n be the identity matrix, and similarly for

Idn ∈ R
n×n. We introduce also the diagonal matrices M ∈ R

J×J , ~M ∈ (Rd×d)J×J , and

the stiffness matrices A ∈ R
J×J and ~A, ~A ∈ (Rd×d)J×J with entries

Mkl := 〈χk, χl〉hm, ~Mkl := Mkl
~Id1, Akl := 〈[χk]s, [χl]s〉m, ~Akl := Akl

~Id1,

and ~Akl :=
(
〈~∇s (χk ~ei), ~∇s (χl ~ej)〉m

)d

i,j=1
, (4.1)

where, as before, {~ei}d
i=1 are the standard orthonormal vectors in R

d.

Curve shortening flow

In addition, we define the orthogonal projection ~P : (Rd)J → K := {~z ∈ (Rd)J :
~zj . ~ωm

d (qj) = 0, j = 1 → J} onto the Euclidean space associated with V h,m
~τ . Then we can

formulate (3.3a,b) as: Find {δ ~Xm+1, ~κm+1} ∈ (Rd)J × K such that
(

τm
~P ~M ~P −~P ~M
~M ~P ~A

)(
~κm+1

δ ~Xm+1

)
=

(
~0

− ~A ~Xm

)
, (4.2)

where, with the obvious abuse of notation, δ ~Xm+1 = (δ ~Xm+1
1 , . . . , δ ~Xm+1

J )T and ~κm+1 =

(~κm+1
1 , . . . , ~κm+1

J )T , are the vectors of coefficients for ~Xm+1 − ~Xm and ~κm+1, respectively.

On noting that ~M ~P = ~P ~M , and on recalling that ~M is an invertible matrix, we can
transform (4.2) to

~κm+1 = 1
τm

~P δ ~Xm+1, (4.3a)

( ~A + 1
τm

~P ~M ~P) δ ~Xm+1 = − ~A ~Xm . (4.3b)

Curve diffusion

Similarly to (4.2), and on recalling (4.1), we can formulate (3.4a,b) as follows. Find

{δ ~Xm+1, ~κm+1} ∈ (Rd)J × K such that
(

τm
~P ~A ~P −~P ~M
~M ~P ~A

)(
~κm+1

δ ~Xm+1

)
=

(
~0

− ~A ~Xm

)
. (4.4)
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In order to apply a Schur complement approach to (4.4), we need to characterize the

kernel of ~P ~A ~P. It clearly holds that ~P ~A ~P is positive semidefinite, and hence

~z ∈ ker ~P ~A ~P ⇐⇒ ~z . ~P ~A ~P ~z = 0 ⇐⇒ ~P ~z ∈ ker ~A .

It follows that ker ~P ~A ~P = K
⊥ ⊕ (K ∩ ker ~A). It remains to identify K ∩ ker ~A, i.e. the

discrete analogue of (2.13). We have that 〈~∇s ~η, ~∇s ~η〉m = 0 for ~η ∈ V h,m
~τ if and only if

~P m[~η(qj+1) − ~η(qj)] = ~0 on [qj , qj+1] and ~η(qj) . ~ωm
d (qj) = 0 for j = 1 → J , (4.5)

where we recall (3.1). Now (4.5) can be used, under our assumption (C), to show that

K∩ker ~A = span{~kℓ : ℓ = 1 → K}, where {~kℓ}K
ℓ=1 are linearly independent and K ≤ d−1.

We recall (2.13), and note that also in the discrete case we observe in practice that
K = d − 1 if Γm lies in a two-dimensional hyperplane.

This characterization of ker ~P ~A ~P allows us to use a Schur complement approach as
in Barrett, Garcke, and Nürnberg (2007b). In particular, on noting that ~P ~kℓ = ~kℓ for

ℓ = 1 → K, we introduce the orthogonal projection ~ΠM onto { ~X ∈ (Rd)J : ~XT ~M ~kℓ =

0, ℓ = 1 → K} by ~ΠM := ~IdJ − ~QM
~QT

M where the columns of ~QM form an orthonormal

basis of span{ ~M ~kℓ : ℓ = 1 → K} if that space is nontrivial (K ≥ 1), and ~Q = 0 otherwise
(K = 0). Then (4.4) is replaced by

~ΠM ( ~A + 1
τm

~M ~P ~S ~P ~M) ~ΠM δ ~Xm+1 = −~ΠM
~A ~Xm , (4.6)

where ~S is the inverse of ~P ~A ~P restricted on the set (ker ~P ~A ~P)⊥; see Barrett, Garcke,
and Nürnberg (2007b, p. 452) for the details in the case of curve networks in the plane,
which is a very similar situation.

Willmore flow of curves

The system (3.5a,b) for the elastic flow of curves can be formulated as: Find {δ ~Xm+1,
~κm+1} ∈ (Rd)J × K such that

(
τm

~P( ~A + [λm]+ ~M) ~P −~P ~M
~M ~P ~A

)(
~κm+1

δ ~Xm+1

)

=

(
~P~b

− ~A ~Xm

)

, (4.7)

where~b ∈ (Rd)J with~bj =
(
−1

2
〈|~κm|2 ~Xm

s , (~ei χj)s〉hm − [λm]− 〈~κm, ~ei χj〉hm
)d

i=1
, j = 1 → J .

The system (4.7) can once again be solved with a Schur complement approach. First,

consider the simpler case when λm > 0 or K = 0, recall (4.6), so that ~B := ~P ( ~A +

[λm]+ ~M) ~P is symmetric positive definite on K; and we denote its inverse on K by ~B−1.
Then (4.7) can be transformed to

~κm+1 = 1
τm

~B−1 ~P [ ~M δ ~Xm+1 +~b], (4.8a)

( ~A + 1
τm

~M ~P ~B−1 ~P ~M) δ ~Xm+1 = − ~A ~Xm − 1
τm

~M ~B−1 ~P~b. (4.8b)

If λm ≤ 0 and K ≥ 1, on the other hand, then the matrix ~B = ~P ~A ~P is no longer
invertible. Then, similarly to (4.6), we apply a Schur complement approach.
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First, as ~P ~kℓ = ~kℓ for ℓ = 1 → K, we have that

~kT
ℓ ( ~M δ ~Xm+1 +~b) = 0 , ℓ = 1 → K ; (4.9)

and hence it follows that

~κm+1 = 1
τm

~S ~P [ ~M δ ~Xm+1 +~b] +

K∑

ℓ=1

µℓ
~kℓ = 1

τm

~S ~Π ~P [ ~M δ ~Xm+1 +~b] +

K∑

ℓ=1

µℓ
~kℓ .

Here ~S is as in (4.6), and ~Π = ~IdJ − ~Q ~QT , with the columns of ~Q forming an orthonormal

basis of K∩ker ~P ~A ~P = K∩ker ~A = span{~kℓ : ℓ = 1 → K}, so that ~Π : K → (ker ~P ~A ~P)⊥

is the orthogonal projection. Hence δ ~Xm+1 satisfies

( ~A + 1
τm

~M ~P ~Π ~S ~Π ~P ~M) δ ~Xm+1 = − ~A ~Xm − 1
τm

~M ~P ~Π ~S ~Π ~P~b −
K∑

ℓ=1

µℓ
~M ~kℓ . (4.10)

The unique solvability of (3.5a,b) yields that the operator ~G on the left hand side of
(4.10) is symmetric positive definite. Hence µℓ ∈ R, ℓ = 1 → K, have to be chosen

such that the condition (4.9) is satisfied. This can be achieved as follows. Let ~Xf :=
~G−1 (− ~A ~Xm − 1

τm

~M ~P ~Π ~S ~Π ~P~b) and ~Xℓ := ~G−1 ~M ~kℓ, ℓ = 1 → K. Then it holds that

(µj)
K
j=1 is the solution of the linear system

(
~kT

ℓ
~M ~Xj

)K

ℓ,j=1
(µj)

K
j=1 =

(
~kT

ℓ ( ~M ~Xf +~b)
)K

ℓ=1
and δ ~Xm+1 = ~Xf −

K∑

ℓ=1

µℓ
~Xℓ . (4.11)

The well-posedness of (4.11) follows as
(
~kT

ℓ
~M ~Xj

)K

ℓ,j=1
=
(
~kT

ℓ
~M ~G−1 ~M ~kj

)K

ℓ,j=1
is a sym-

metric positive definite matrix, on recalling that ~kℓ, ℓ = 1 → K, are linearly independent,
and ~M and ~G are symmetric positive definite matrices.

Geodesic flows

We recall the definitions (4.1), and in addition introduce the diagonal matrix ~N ∈
(R3)J×J , defined by the diagonal entries ~Nkk := ~ωm

M Mkk, k = 1 → J . Moreover, we define

the orthogonal projection ~Q : (R3)J → X := {~z ∈ (R3)J : ~zj . ~ωm
F (qj) = 0, j = 1 → J}

onto the Euclidean space associated with V h,m
F .

The linear equations that have to be solved at each time level of the approximation
(3.9a,b) can then be written as follows. Find {δ ~Xm+1, κm+1

M } ∈ X × R
J such that

(
τm M − ~NT ~Q
~Q ~N ~Q ~A ~Q

)(
κm+1
M

δ ~Xm+1

)
=

(
0

− ~Q ~A ~Xm

)
. (4.12)

Similarly to (4.3a,b), we can transform (4.12) to

κm+1
M = 1

τm
M−1 ~NT ~Q δ ~Xm+1, (4.13a)

~Q ( ~A + 1
τm

~N M−1 ~NT ) ~Q δ ~Xm+1 = − ~Q ~A ~Xm. (4.13b)
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Analogously, we can formulate the approximation (3.10), (3.9b) for geodesic surface

diffusion as: Find {δ ~Xm+1, κm+1
M } ∈ X × R

J , such that

(
τm A − ~NT ~Q
~Q ~N ~Q ~A ~Q

)(
κm+1
M

δ ~Xm+1

)
=

(
0

− ~Q ~A ~Xm

)
. (4.14)

Following closely the Schur approach in Barrett, Garcke, and Nürnberg (2007b) and
introducing the inverse S of A restricted on the set (ker A)⊥ ≡ (span{1})⊥, where 1 :=

(1, . . . , 1)T ∈ R
J , as well as the orthogonal projection ~Π onto { ~X ∈ (Rd)J : ~XT ~Q ~N1 = 0},

we can solve for δXm+1 in (4.14) by solving

~Π ~Q ( ~A + 1
τm

~N S ~NT ) ~Q ~Π δ ~Xm+1 = −~Π ~Q ~A ~Xm. (4.15)

Similarly, on introducing the matrix MG ∈ R
J×J defined by [MG]kl := 〈[λm−Km]+ χk,

χl〉hm, k, l = 1 → J , the system (3.11), (3.9b) for geodesic Willmore flow can be rewritten

in terms of: Find {δ ~Xm+1, κm+1
M } ∈ X × R

J , such that

(
τm (A + MG) − ~NT ~Q

~Q ~N ~Q ~A ~Q

) (
κm+1
M

δ ~Xm+1

)
=

(
b

− ~Q ~A ~Xm

)
, (4.16)

where b ∈ R
J with bj = τm 〈1

2
(κm

M)3 + [λm −Km]− κm
M, χj〉hm, j = 1 → J .

The solution to (4.16) can be found as follows, where we closely follow the exposition
in Barrett, Garcke, and Nürnberg (2007b), where the planar case “M = R

2” was treated.

If λm−Km
min > 0, where Km

min := minj=1→J Km(qj), then Â := A+MG is a positive definite
matrix, and we can solve (4.16) by solving

κm+1
M = 1

τm
Â−1[ ~NT ~Q δ ~Xm+1 + b], (4.17a)

~Q ( ~A + 1
τm

~N Â−1 ~NT ) ~Q δ ~Xm+1 = − ~Q ~A ~Xm − 1
τm

~Q ~N Â−1 b . (4.17b)

If λm −Km
min ≤ 0, on the other hand, we note that

1T ( ~NT ~Q δ ~Xm+1 + b) = 0 ,

and hence we have that

κm+1
M = 1

τm
S [ ~NT ~Q δ ~Xm+1 + b] + µ 1 = 1

τm
S Π[ ~NT ~Q δ ~Xm+1 + b] + µ 1 ,

where S is defined as above and Π = IdJ− 1 1T

1T 1
is the orthogonal projection onto (ker A)⊥ =

(span{1})⊥, and where µ =
1T κm+1

M

1T 1
∈ R is unknown. Hence the solution can be found by

solving

~Q ( ~A + 1
τm

~N ΠSΠ ~NT ) ~Q δ ~Xm+1 = − ~Q
[
~A ~Xm + 1

τm

~N ΠSΠ b + µ ~N 1
]

. (4.18)
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Similarly to (4.10), we let ~G denote the operator on the left hand side of (4.18), which
is symmetric and positive definite. Then we find the solution to (4.18) as follows. Let
~Xf := −~G−1 ~Q [ ~A ~Xm 1

τm

~N ΠSΠ b] and ~Xg := ~G−1 ~Q ~N 1. Then

µ :=
1T b + 1T ~NT ~Q ~Xf

1T ~NT ~Q ~Xg

and δ ~Xm+1 = ~Xf − µ ~Xg.

Note that 1T ~NT ~Q ~Xg = ~XT
g

~G ~Xg > 0, as ~G is symmetric positive definite, so µ is well
defined and uniquely determined.

Finally, on introducing the matrix A ∈ R
J×J defined by

[A]kl := 〈~∇s ~πh(χk ~ωm
M), ~∇s ~πh(χl ~ω

m
M)〉m,

and the diagonal matrix ~NF ∈ (R3)J×J , defined by the diagonal entries [ ~NF ]kk := ~ωm
F Mkk,

k = 1 → J , the system (3.13a,b) for geodesic Willmore flow can be rewritten in terms of:

Find {δ ~Xm+1, κm+1
M , κm+1

F } ∈ X × [RJ ]2, such that
(

τm (A + [λm]+M) − ~NT ~Q
~Q ~N ~Q ~A ~Q

) (
κm+1
M

δ ~Xm+1

)

=

(
c

− ~Q ~A ~Xm

)

, κm+1
F = −M−2 ~NT

F
~A ~Xm+1

(4.19)

where c ∈ R
J with cj = τm

[
−1

2
〈(κm

M)2 ~Xm
s , (~πh[χj ~ωm

M])s〉hm + 〈κm
M κm

F , II(χj ~ωm
M, ~ωm

M)〉hm −
〈[λm]− κm

M, χj〉hm
]
, j = 1 → J . As before, the system (4.19) can be solved with a Schur

complement approach. To this end, in the case λm ≤ 0, we first identify the kernel of the
matrix A. It follows from (4.5) that 〈~∇s ~πh(η ~ωm

M), ~∇s ~πh(η ~ωm
M)〉m = 0 for η ∈ W h, if and

only if

η(qj+1) ~P m ~ωm
M(qj+1) = η(qj) ~P m ~ωm

M(qj) on [qj , qj+1] for j = 1 → J . (4.20)

Now (4.20) can be used to find at most one linearly independent null vector of A explicitly,
recall (C). This allows us to apply a Schur complement approach as before, and we leave
the details to the reader.

5 Results

The symmetric Schur complement systems (4.3b), (4.6), (4.8b), (4.10), (4.13b), (4.15),
(4.17b) and (4.18) can be easily solved with a conjugate gradient solver. But we remark

that in some situations the matrices ~Q ~A ~Q and A can be ill conditioned, in particular
when the criteria (4.5) and (4.20) are “almost satisfied”. Then it proved beneficial in
practice to solve an equivalent reformulation of e.g. the nonsymmetric system (4.4) with
a preconditioned BiCGSTAB solver, where the preconditioner Chen, Phoon, and Toh
(2006, Eqn. (4)) proved to be particularly efficient.

The schemes (3.5a,b), (3.11) with (3.9b) and (3.13a,b) need to be supplied with suit-
able initial data for the discrete curvatures. To this end, we define ~y0 ∈ V h such that

〈~y0, ~η〉hm + 〈 ~X0
s , ~ηs〉m = 0 ∀ ~η ∈ V h . (5.1)
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Figure 1: An example for curve shortening flow of a trefoil knot. On the left, ~X(t) at

times t = 0, 0.5, . . . , 2, 2.45. To the right, ~X(T ) for (3.3a,b) and Dziuk’s scheme (scaled).

Then ~κ0 ∈ V h,m
~τ and κ0

M ∈ W h can be defined via

〈~κ0, ~η〉hm = 〈~y0, ~η〉hm ∀ ~η ∈ V h,m
~τ , (5.2a)

〈κ0
M, η〉hm = 〈~y0, η ~ω0

M〉hm ∀ η ∈ W h ; (5.2b)

and similarly for κ0
F ∈ W h. The initial data ~κ0

φ, κ0
φ,M and κ0

φ,F for the anisotropic schemes
(3.20), (3.18b) and (3.23a,b) can be defined in an analogous fashion, on introducing ~y0

φ

via the obvious anisotropic variant of (5.1).

Throughout this section, unless otherwise stated, we use uniform time steps τm = τ ,
m = 0 → M − 1; and choose the initial approximation ~X0 of ~x(·, 0) such that Γ0 is
approximatively equidistributed. In addition, we note that no remeshing was used for any
of the experiments presented in this section and, unless stated otherwise, no projection
to the manifold M was employed for the geodesic flows. For later purposes, we define

~X(t) := t−tm−1

τ
~Xm + tm−t

τ
~Xm−1 t ∈ [tm−1, tm] m ≥ 1.

Curve shortening flow

In this section, we report on numerical simulations for our approximation (3.3a,b) of
curve shortening flow, and compare our scheme to the approximation from Dziuk (1994),
recall §3.1. The first experiment is for a trefoil knot in R

3, and in particular the initial
curve is given by

~x(ρ, 0) = ((2+cos(6 π ρ)) cos(4 π ρ), (2+cos(6 π ρ)) sin(4 π ρ), sin(6 π ρ))T , ρ ∈ I . (5.3)

See Figure 1 for the results, where J = 100, τ = 10−3 and T = 2.45. We can clearly
observe the (asymptotic) equidistribution property for our scheme (3.3a,b), as discussed
in Remark 3.2. The result for the scheme from Dziuk (1994), on the other hand, shows
a coalescence of mesh points, which prevents that scheme from integrating much further
without their heuristic redistribution.

In addition, we performed experiments for a closed helix in R
3. Here the open helix

is defined by
~x0(̺) = (sin(16 π̺), cos(16 π ̺), ̺)T , ̺ ∈ [0, 1] , (5.4)

and the initial curve is constructed from (5.4) by connecting ~x0(0) and ~x0(1) with a
polygon that visits the points ~0 and ~e3. We used the discretization parameters J = 512
and τ = 10−3. The results are shown in Figure 2.
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Figure 2: Isotropic curve shortening flow. Plot of ~X(t) at times 0, 0.1, 0.2, 0.4, 0.5.
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3) Plot of ~X(t) at times 0, 0.1, . . . , 0.6 and at time

t = T = 0.68 (scaled).

Anisotropic curve shortening flow

We repeated the experiment in Pozzi (2007, Fig. 3) for our scheme for anisotropic

curve shortening flow in R
3, i.e. the anisotropy is given by (2.39) with L = 1 and ~G1 =

diag(0.01, 1, 1). Here the initial curve is given by the tilted unit circle

~x(ρ, 0) = ( 1√
2

cos(2 π ρ), sin(2 π ρ), 1√
2

cos(2 π ρ))T , ρ ∈ I . (5.5)

The discretization parameters were J = 128, τ = 10−3 and T = 0.68. As can be seen
from the plots in Figure 3, at time t = T the curve is aligned in the (x1, x2) plane and it
has shrunk to a very elongated ellipse, as is to be expected from the chosen anisotropic
energy density.

In addition, we performed experiments for a closed helix, inspired by the simulations
in Pozzi (2007, Figs. 4 and 5). For the initial curve we choose the closed helix as in
Figure 2, recall (5.4). For the same anisotropy as above, we performed a simulation with
the discretization parameters J = 512 and τ = 10−3. The results are shown in Figures 4
and 5, where in the latter case the initial curve was rotated by 90◦, in order to highlight
the effect of the anisotropy.

Next we repeated the experiment in Figure 1 but now for the anisotropy (2.39) with

L = 1 and ~G1 = diag(0.1, 1, 1). The results for the discretization parameters J = 200

and τ = 10−3 are shown in Figure 6. The same flow for (2.39) with L = 3 and ~G1 =

diag(ε, 1, 1), ~G2 = diag(1, ε, 1), ~G3 = diag(1, 1, ε), with ε = 10−3 is shown in Figure 7.
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Figure 4: (φ(~p) =
√

0.01 p2
1 + p2

2 + p2
3) Plot of ~X(t) at times 0, 0.1, 0.2, 0.4, 0.5.
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Figure 5: (φ(~p) =
√

0.01 p2
1 + p2

2 + p2
3) Plot of ~X(t) at times 0, 0.1, 0.2, 0.4, 0.7.

For the last two experiments we observe that in each case, as expected, the curve quickly
aligns with the x1 − x2 plane (although it could have also chosen the x1 − x3 plane in the
first case, or the x1 − x3 or x2 − x3 plane in the latter case), and then shrinks to a point.
As it does so, the curve clearly resembles the Wulff shape of the given anisotropies, i.e.
an ellipse in Figure 6 and a smooth square in Figure 7.

Curve diffusion

Here we report on results for the scheme (3.4a,b). Numerical results for d = 2 are
very similar to the ones reported in Barrett, Garcke, and Nürnberg (2007b), and hence
we only report on a single numerical simulation. We repeated the experiment in Barrett,
Garcke, and Nürnberg (2007b, Fig. 8), i.e. the surface diffusion flow of a planar 8 : 1
ellipse with semiminor 0.075. We let J = 256, τ = 10−7 and T = 10−3. See Figure 8
for the results. The total relative area loss for this computation was 0.04%, which is
surprisingly less than the loss of 0.09% observed for the scheme in Barrett, Garcke, and
Nürnberg (2007b). Here we recall that for a continuous in time semi-discrete version of
the scheme in Barrett, Garcke, and Nürnberg (2007b), exact area conservation can be
shown; something that does not appear possible for (3.4a,b). We note that in practice,
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Figure 6: (φ(~p) =
√

0.1 p2
1 + p2

2 + p2
3) An example for anisotropic curve shortening flow of

a trefoil knot. Plots of ~X(t) for t = 0, 0.5, . . . , 3.5, 3.7 and ~X(3.7) (scaled).
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Figure 8: (d = 2) Curve diffusion for an 8:1 ellipse. ~X(t) at times t = 0, 10−4, . . . , 10−3.

we always observed good area conservation for (3.4a,b) and, as expected, equidistribution
of mesh points for numerical steady states.

In a first computation for d = 3, we repeated the experiment in Figure 1, but now for
the curve diffusion flow (2.10). The discretization parameters were J = 100, τ = 10−3

and T = 4. We compare the results of our scheme (3.4a,b) with the corresponding
approximation in Dziuk, Kuwert, and Schätzle (2002), i.e. Barrett, Garcke, and Nürnberg
(2007b, (2.3a,b)), which from now on will be referred to as DKS, see Figure 9. In Figure 10

we compare the ratio rm := hm
max/h

m
min, where hm

max := maxj=1→N | ~Xm(qj) − ~Xm(qj−1)|
and hm

min := minj=1→N | ~Xm(qj) − ~Xm(qj−1)|, for the schemes (3.4a,b) and DKS. We see
that while our approximation approaches an equidistributed polygonal curve, the scheme
DKS leads to coalescence of vertices and it soon fails to integrate further.

For the interested reader, we continue the evolution in Figure 9 further, until the curve
reaches a numerically steady state. In line with the theoretical result in Lemma 2.1, the
curve evolves to a doubly covered circle; see Figure 11. However, we recall that multiply
covered circles are unstable for the curve diffusion flow, see e.g. Chou (2003). The fact
that the presented example leads to a doubly covered circle is due to the chosen symmetric
initial data. Hence it is remarkable, that our numerical scheme is able to follow this flow
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Figure 9: Curve diffusion for a trefoil knot. ~X(t) at times t = 0, 2, T = 4, and ~X(T ) for

(3.4a,b). On the right, ~X(T ) for DKS.
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Figure 11: Plot of ~X(t) for t = 20, 30, 50. Below a 2d view of ~X(50) and a plot of |Γm|.

to the (unstable) steady state solution.

The instability of multiply covered circles can also be seen as follows. For curve
diffusion in the plane, recall (2.9), it can be shown that the quantity

∫
Γ
~x . ~ν ds is preserved.

For curves that bound a region, it holds that
∫
Γ
~x . ~ν ds = 2 area(Γ), and so the above

property just reflects area conservation; see also (2.21). The second variation of the
length functional at a (possibly multiply covered) covered circle, under the constraint
that

∫
Γ
~x . ~ν ds is fixed, gives

[δ2 |Γ|](η) =

∫

Γ

[(ηs)
2 − κ

2 η2] ds ,

where η : Γ → R is a variation in the normal direction; see e.g. Garcke, Ito, and Kohsaka
(2005) for a similar analysis. We hence obtain that multiply covered circles are linearly
unstable under curve diffusion, as e.g. the variation η(s) = cos(κ

l
s) for an l-times covered

circle yields [δ2 |Γ|](η) < 0 if l ≥ 2, on noting that κ is constant.

In order to illustrate the instability of multiply covered circles, we include the following
two experiments. The first is for d = 2 and uses as initial data

~x(ρ, 0) = (cos(4 π ρ)−δ cos(2 π ρ) sin(4 π ρ), sin(4 π ρ)+δ cos(2 π ρ) cos(4 π ρ))T , ρ ∈ I ,

where we set δ = 0.2. Note that this corresponds to the above mentioned perturbation for
a unit circle in the case l = 2. The evolution can be seen in Figure 12, where we observe
that the double covering unravels and the curve flows towards a singularity. Note that
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Figure 12: (d = 2) ~X(t) at times t = 0, 37, 50. A plot of |Γm| on the right.
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Figure 13: ~X(t) at times t = 0, 20, 24, 24.4, 24.5. A plot of |Γm| on the right.

our numerical scheme simply integrates over the singularity (a cusp), so that the eventual
steady state is a single covered circle. This is a well-known phenomenon of parametric
approximations, see e.g. Deckelnick, Dziuk, and Elliott (2005, Fig. 4.2.) for an example
for the curve shortening flow. The discretization parameters for this experiment were
J = 128, τ = 10−4 and T = 50.

The second experiment is for d = 3 and uses as initial data

~x(ρ, 0) = (sin(4 π ρ), cos(4 π ρ), δ cos(2 π ρ))T , ρ ∈ I ,

where here we set δ = 0.01. We show the evolution in Figure 13, where this time the
doubly covered circle first opens up, and then shrinks to a point. The discretization
parameters are J = 128, τ = 10−3 and T = 24.568, which was the approximate extinction
time.

The curve diffusion flow for the closed helix as shown in Figure 2 can be seen in
Figure 14, where we used the discretization parameters J = 512 and τ = 10−3.

Anisotropic curve diffusion

In an experiment for our scheme (3.19), (3.18b), with the anisotropy φ as in Figure 6,
we start with the initial data (5.5) and choose as discretization parameters J = 128,
τ = 10−3 and T = 5. The results can be seen in Figure 15, where we observe that the
curve attains a Wulff shape in the x1 − x2 plane.

Willmore flow of curves

In this section, we present numerical simulations for our approximation (3.5a,b) of
the Willmore flow of curves, and compare some of the results to the schemes (3.7a,b)
from Deckelnick and Dziuk (2007), and to the corresponding scheme from Dziuk, Kuwert,
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Figure 14: Plot of ~X(t) at times t = 5, 10, 15, 19, 20, 23, 24, 25, 30, 50.
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Figure 15: φ(~p) =
√

0.1 p2
1 + p2

2 + p2
3. Plots of ~X(t) at times t = 0, 0.2, . . . , T = 5 and at

t = T .

and Schätzle (2002). The latter two schemes will be referred to as DD and DKS in this
section.

The first experiment is for (2.25) with λ = 0. The initial curve is given by a 2 : 1
lemniscate. As discretization parameters we choose J = 100, τ = 5 × 10−4 and T = 0.2.
In Figure 16 we show the evolutions for the three schemes as well as a plot of the discrete
Willmore energy

Wm :=

{
1
2
|~κm+1|m,h m = 0 → M − 1,

1
2
|~κM |M,h m = M.

As can be seen from the plots, the lack of sufficient tangential movement of vertices leads
to very long segments in the evolution of the schemes DKS and DD. We note that the
scheme DKS fails soon after the shown time T = 0.2. For the other two schemes we
continue the evolution until time T = 6, see Figure 17 for the results.

The remaining experiments in this subsection are for d = 3. First, we repeated the
experiment in Figure 1, but now for the elastic flow of curves, (2.25) with the length
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Figure 16: (d = 2) Evolution for (3.5a,b), DKS and DD. Plots of ~X(t), t = 0, T = 0.2.
The discrete energy Wm below.
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Figure 17: (d = 2) Evolution for (3.5a,b) and DD. Plots of ~X(t), t = 0, 2, 4, 6.

preserving choice (2.27). The discretization parameters were J = 100, τ = 10−3 and
T = 200. We show the evolution in Figure 18, where the numerical steady state solution
is a doubly covered circle. Here we recall that multiply covered circles are only stable for
d = 2, see e.g. Langer and Singer (1985). Hence it is once again remarkable, that our
numerical method manages to follow this flow to the (unstable) steady state solution.

The length preserving Willmore flow for the closed helix as shown in Figure 2 can be
seen in Figure 19. The discretization parameters for (3.5a,b) with (3.6) were J = 512 and
τ = 10−3.

Anisotropic Willmore flow of curves

In a first experiment for our approximation (3.20), (3.18b) for the flow (2.37) with
λ = 0, we repeated the experiment in Figure 17, but now for the anisotropic energy
densities φ(~p) =

√
0.25 p2

1 + p2
2 and φ(~p) =

√
p2

1 + 0.25 p2
2, see Figure 20. We observe that

in each case, the lemniscate clearly aligns itself with the chosen anisotropy. Here we note
for the reader that in a simpler experiment for the same anisotropies for a starting unit
circle, say, the curve would first change towards a Wulff shape, i.e. a shape so that ~κφ

is constant on Γ, see e.g. Giga (2006), and then expand almost self-similarly, with the
asymptotic limit being an expanding Wulff shape, i.e. an ellipse.

The next experiment is for d = 3, and we start with the trefoil knot (5.3) and
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Figure 18: Plot of ~X(t) at times t = 0, 2, 10, 20, 50, 200. Below a 2d view of ~X(200) and
a plot of Wm.
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Figure 19: Plot of ~X(t) at times t = 5, 25, 50, 100, 200, 300, 500, 1000, 2000, 10000.
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Anisotropic Willmore flow of a lemniscate. Plots of ~X(t), t = 0, 1, . . . , 6.
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Figure 21: (φ(~p) =
√

0.75 p2
1 + p2

2 + p2
3) Plots of ~X(t) at times t = 0, 0.5, 2, 10, 200. A

2d plot of ~X(T ) in the x2 − x3 plane below.

used the same discretization parameters as in Figure 18. We used the anisotropic en-
ergy density φ(~p) =

√
0.75 p2

1 + p2
2 + p2

3 and set λ = 0. The numerical results for our
scheme (3.20), (3.18b) are shown in Figure 21. The same computation for the density
φ(~p) =

√
p2

1 + 0.75 p2
2 + p2

3 can be seen in Figure 22. Here the observed behaviour is quite
interesting. In contrast to the corresponding results for anisotropic curve shortening and
anisotropic curve diffusion flow, the results shown here do not always settle in the plane
“favoured” by the chosen anisotropy. Of course, this is due to the energy (2) considered
here. On recalling that ~κφ = φ′′(~xs) ~xss, it is easy to see that for the anisotropies in Fig-
ures 21 and 22 it is beneficial, with regards to the energy, for the curve to remain in one
of the three coordinate planes. In which of the three planes the curve ends up, depends
(highly nontrivially) on the initial data.

Geodesic curvature flow

Here we test our approximation (3.9a,b) for the geodesic curvature flow (2.19) with
the following true solution. Let Γ(t) be a circle with radius r(t) on the unit sphere in R

3.
Then

~x(ρ, t) = (r(t) cos g(ρ), r(t) sin g(ρ), [1 − r2(t)]
1

2 )T , r(t) := [1 − (1 − r2(0)) exp (2 t)]
1

2 ,
(5.6)

with r(0) ∈ (0, 1], is an exact solution of (2.19), where g(ρ) = 2 π ρ+0.1 sin (2 π ρ) in order
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Figure 22: (φ(~p) =
√

p2
1 + 0.75 p2

2 + p2
3) Plots of ~X(t) at times t = 0, 0.5, 2, 10, 200. A

2d plot of ~X(T ) in the x1 − x3 plane below.

J ‖ ~X − ~x‖L∞ eoc

64 9.0903e-03 –

128 2.3143e-03 1.973752

256 5.8128e-04 1.993271

512 1.4550e-04 1.998214

1024 3.6386e-05 1.999564

Table 1: Absolute errors for the geodesic curvature flow.

to make the initial distribution of nodes in our approximation of (5.6) non-uniform. We
use (5.6) in order to perform a convergence test for our approximation (3.9a,b), see Table 1.
We used τ = 0.5 h2 and T = 2, with the initial circle starting at an altitude of x3 = 0.1,
so that r(0) =

√
0.99 and the extinction time is given by T = 1

2
ln 1

1−r2(0)
≈ 2.303. Here,

and in what follows, we always compute the error ‖ ~X − ~x‖L∞ := maxm=1→M ‖ ~X(tm) −
~x(·, tm)‖L∞, where ‖ ~X(tm)−~x(·, tm)‖L∞ := maxj=1→J minρ∈J | ~Xm(qj)−~x(ρ, tm)|, between
~X and the true solution on the interval [0, T ]. The results in Table 1 indicate a convergence
rate for the error of O(h2).

As an example computation we present the above evolution for a circle on the unit
sphere for the discretization parameters J = 100, τ = 10−3 and T = 2.3. See Figure 23
for the results. The corresponding evolution on a 2:1 :1 ellipsoid is on the right hand side
in the same figure, where now T = 2.5.

In what follows, we look at geodesic curvature flows towards several different geodesics
on a torus. To this end, we chose as the manifold M a torus with radii R and r, implicitly
defined by the equation 0 = (R −

√
z2
1 + z2

2)
2 + z2

3 − r2. Throughout we set R = 4 and
r = 1, unless otherwise stated. The discretization parameters for our scheme (3.9a,b) were
J = 200 and τ = 10−2. Some results can be seen in Figure 24, where in each case we plot
the initial and final curves, as well as the evolution of |Γm|. In each case, the maximum
distance of a vertex of ΓM to M was less than 10−4. In addition, a more complicated flow
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Figure 23: An example for geodesic curvature flow on the unit sphere and on a 2 : 1 : 1
ellipsoid. In each case, we show ~X(t) at times t = 0, 0.5, 1, 1.5, 2, T .

can be seen in more detail in Figure 25. The evolution starts with a curve given by

~x(ρ, 0) = ((R + r cos v(ρ)) cos u(ρ), (R + r cos v(ρ)) sin u(ρ), r sin v(ρ))T , ρ ∈ I ,

where u(ρ) = 2π (ρ + 3
4

sin(2π ρ)) and v(ρ) = 10 π ρ. We used the same discretization
parameters as before, except τ = 2 × 10−3.

Now we give some example evolutions for curves on a sickle torus, where the smaller
radius r varies between 0.5 and 2, and R = 4 as before. In particular, the sickle torus
is given by the equation 0 = (R −

√
z2
1 + z2

2)
2 + z2

3 − [r(z1, z2)]
2, where r(z1, z2) :=

r1 + r2−r1

2
(1 − cos(arctan( z2

z1
)) with r1 = 2 and r2 = 0.5.

The first experiment is for a vertical circular curve. Of course, on the standard torus,
any such circle would be a steady state solution for the geodesic curvature flow. However,
on the sickle torus, there exist only two such steady states: one where the tube is thinnest
(θ = π, say) and one where it is largest (θ = 0). So if we start with the circle just left
of the latter position, and in particular choose θ = −0.1 π, then the curve should move
towards the energy minimizing geodesic at the thinnest point. This is what we observe
in Figure 26. The discretization parameters were the same as before. Note that at time
t = T , the maximum distance of the curve to the manifold was 4.6 × 10−3. Next we
repeated the experiments in Figures 24 and 25 now for the sickle torus. The results for
the same parameters as before can be seen in Figures 27 and 28.

Anisotropic geodesic curvature flow

We considered also anisotropic geodesic curve evolutions. We begin with the geodesic
curvature flow, (3.21a,b). In the first experiment, the initial curve is given by a circle on
the unit sphere, either at the equator, or 0.1 above the equator, and in each case turned by
45◦ degrees. The anisotropy was chosen as in Figure 6, and the discretization parameters
were J = 128, τ = 10−2 and T = 2.8. The results can be seen in Figure 29. We note
that the curve which started on the tilted equator aligns itself with the chosen anisotropy
and becomes stationary on the equator. As this stationary solution is unstable, it is once
again remarkable that our numerical method can integrate this evolution correctly. The
second evolution, however, yields a curve that moves towards the north pole. As it does
so it attains an elliptic shape aligned with the anisotropy and eventually shrinks a point.

Geodesic surface diffusion
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Figure 24: Flows towards geodesics on a torus. ~X(t), t = 0, 50. A plot of |Γm| on the
right.
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Figure 25: Flow towards a geodesic on a torus. ~X(t), t = 0, 25, . . . , 125, T = 300. A plot
of |Γm| on the right.
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Figure 26: Flow towards a simple geodesic on a sickle torus. ~X(t), t = 0, 15, . . . , 150. A
plot of |Γm| on the right.
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Figure 27: Flows towards geodesics on a sickle torus. ~X(t), t = 0, 50. A plot of |Γm| on
the right.
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Figure 28: Flow towards a geodesic on a sickle torus. ~X(t), t = 0, 10, . . . , 50, T = 100. A
plot of |Γm| on the right.
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Figure 29: φ(~p) =
√

0.1 p2
1 + p2

2 + p2
3. Anisotropic geodesic curve shortening flow on the

unit sphere. Left starting on an equator, right starting 0.1 above equator. We plot ~X(t)

for t = 0, 0.2, . . . , T = 2.8 and ~X(T ).

Figure 30: An example for surface diffusion flow on a 2 : 1 : 1 ellipsoid. ~X(t) at times
t = 0, 0.2, . . . , T = 3 and t = T .

We repeated the experiment for the ellipsoid in Figure 23 now for geodesic surface
diffusion, employing our scheme (3.10), (3.9b). The results are shown in Figure 30. We
note that the final plot is a numerical steady state. We recall from (2.21) that this curve
is a numerical approximation to the shortest curve on the manifold that encloses the same
area as Γ(0).

The evolution for a letter “C” that is projected onto a unit sphere can be seen in
Figure 31. Here we chose J = 100 and τ = 10−4. We note that the approximately
polygonal circle that was attained at time T = 0.5 has maximum distance 4.4 × 10−3

from the manifold M. If we use the larger time step size τ = 10−3, however, this distance
increases to 2.2 × 10−2 and the curve develops some oscillations. However, this problem
can be prevented when using the orthogonal projection ~ΠM back onto M after every
time step, see Figure 32 for the corresponding results. It is interesting to note, that the
observed oscillations for the larger time step size appear despite the stability result in
Theorem 3.1 for our scheme (3.10), (3.9b). To underline this fact, we also present a plot
of |Γm| over time in Figure 32, both for the case τ = 10−3 and τ = 10−4.

Anisotropic geodesic surface diffusion

The next experiments are for the approximation (3.22), (3.21b) for geodesic surface
diffusion. Here we start with an initial “circle” on a 2:1 :1 ellipsoid, which is tilted by 45◦.
In Figure 33 we show the evolution for the anisotropic density φ(~p) =

√
0.01 p2

1 + p2
2 + p2

3

and the isotropic case φ(~p) = |~p|. The discretization parameters were J = 100, τ = 10−3
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Figure 31: An example for surface diffusion flow on a unit sphere. Here τ = 10−4. ~X(t)

at times t = 0, 0.01, . . . , T = 0.5 and ~X(T ).
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Figure 32: ~X(T ) for the time step size τ = 10−3 without (left) and with a projection ~ΠM
being used after each time step (middle). On the right, a plot of |Γm| for τ = 10−3 (solid)
and τ = 10−4 (dashed) without the projection.

and T = 9. We observe that in the isotropic case the curve evolves to a vertically aligned
circle on the manifold, while the anisotropic flow leads to a horizontally aligned ellipse
on the manifold. In both cases, as discussed before, the obtained numerical results are
approximations to the minimizer of the given weighted length among all curves that
enclose the same area as Γ(0).

Geodesic Willmore flow of curves

First we perform a convergence test for our approximations (3.11), (3.9b) and (3.13a,b)
of geodesic Willmore flow (2.32). To this end, similarly to (5.6), we define a true solution
for the geodesic Willmore flow on the unit sphere. In particular, let

~x(ρ, t) = (r(t) cos g(ρ), r(t) sin g(ρ), [1− r2(t)]
1

2 )T , r(t) = [1− (1− r4(0)) e−2 t]
1

4 , (5.7)

with r(0) ∈ (0, 1] and g(ρ) as in (5.6). Starting with an initial circle at an altitude
of x3 = 0.75, so that r(0) = 1

4

√
7, we compare our discrete solutions from the two

schemes (3.11), (3.9b) and (3.13a,b), respectively, with the true solution (5.7). We set
τ = 0.5 h2 and T = 1 and report on the observed errors in Table 2, where we note that
the experiments indicate that the convergence rate for the error is O(h2).

It can be easily shown that a geodesic circle with radius r on the unit sphere is a
stationary solution of (2.32), if and only if

r = 1 or r = [2 λ − 1]−
1

2 if λ > 1 , (5.8)
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Figure 33: An example for anisotropic surface diffusion on an ellopsoid. We plot ~X(t) for

t = 0, 0.5, . . . , T = 9, ~X(T ) and the energy |Γ|φ. The case φ(~p) =
√

0.01 p2
1 + p2

2 + p2
3 is

above, with φ(~p) = |~p| below.

J (3.11), (3.9b) (3.13a,b)

‖ ~X − ~x‖L∞ eoc ‖ ~X − ~x‖L∞ eoc

64 6.2955e-03 – 5.9935e-03 –

128 1.5464e-03 2.025407 1.4766e-03 2.021120

256 3.8497e-04 2.006096 3.6785e-04 2.005090

512 9.6142e-05 2.001507 9.1890e-05 2.001138

1024 2.4029e-05 2.000390 2.2963e-05 2.000597

Table 2: Absolute errors for the geodesic Willmore flow.

which in the latter case means that its “altitude” with respect to the chosen equator is
given by [1 − r2(t)]

1

2 = [1 − (2 λ − 1)−1]
1

2 . In a numerical example for λ = 2.5, we show
the evolution of a circle on the unit sphere. The circle starts off at height 0.1 above the
“equator” and moves towards the steady state solution of radius r = 1

2
at an altitude of

x3 = 1
2

√
3. The parameters were J = 100, τ = 10−3 and T = 2.0, where here and in what

follows we used the approximation (3.11), (3.9b). See Figure 34 for the results, where we
also show a plot of the discrete energy Wm

M,λ, defined by

Wm
M,λ :=

{
1
2
|κm+1

M |m,h + λ |Γm| m = 0 → M − 1,
1
2
|κM

M|M,h + λ |ΓM | m = M.
(5.9)

Next we show an example for geodesic Willmore flow on a torus, where the torus is
given as in Figure 25. The evolution for a circle that is homotopic to a point can be seen
in Figure 35. The discretization parameters were J = 100, τ = 10−3 and T = 50. We
note that as there are no geodesics on the torus that are homotopic to a point, see e.g.
Bliss (1902), this flow cannot reach a geodesic as a steady state. This is confirmed by the
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Figure 34: (λ = 2.5) An example for geodesic Willmore flow on the unit sphere. ~X(t) at
times t = 0, 0.5, 1, 1.5, 2. A plot of Wm

M,λ on the right.
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Figure 35: Flow for a circle on a torus. ~X(t), t = 0, 10, T = 50; and a plot of Wm
M (right).

numerical results, where the discrete energy WM
M is bounded well away from zero.

We now compare the evolution of an initially smoothed polygonal curve on the unit
sphere, which is slightly raised above the equator, for the flow (2.32) with different values
of λ. Some results for the discretization parameters J = 200 and τ = 10−3 can be seen in
Figure 36. As expected, the flow for λ = 0 yields a curve on the equator, while for λ > 0
we obtain a numerical steady state as predicted in (5.8). The most interesting evolution is
for λ < 0, where growth in the length of the curve is encouraged. For the value λ = −0.5
shown here, this eventually leads to a triple covering of a circle at the equator.

Next we present some computations for the length preserving geodesic Willmore flow
on the unit sphere. The results for our scheme (3.11), (3.9b) with the choice (3.12)
different initial curves can be seen in Figure 37. Here we chose J = 100, T = 1 and
τ = 5 × 10−6. After 200 time steps we increased the time step size to τ = 5 × 10−4.

Anisotropic geodesic Willmore flow of curves

Finally, we present some computations for our scheme (3.23a,b) for anisotropic geodesic
Willmore flow, recall (2.38). As the initial curve we chose the tilted circle above the equa-
tor as in Figure 29. Some experiments for different choices of λ and φ can be seen in
Figures 38 and 39. The discretization parameters were J = 128 and τ = 10−3. We ob-
serve that as in the isotropic case, recall (5.8), for large values of λ > 0 the curve attains
a steady state away from the equator, with the steady state being aligned with the Wulff
shape of the chosen anisotropy. For small values of λ > 0, however, the flow does not
always yield the energy minimizing equator in the x1−x2 plane. In particular, for λ = 0.1
the presented simulation finds as steady state the equator inside the x2 −x3 plane, which
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Figure 36: Willmore flow on the unit sphere. ~X(t) at times t = 0, 1 for λ = 5, 0. Below,

the evolution ~X(t), t = 0.5, 1, 1.5, 2, 3, 4, 7, 10, for λ = −0.5.

here is not the global minimizer.

6 Conclusions

We present novel variational approximations of geometric gradient flows for closed curves
in R

d, d ≥ 2, and on two-dimensional manifolds in R
3, including anisotropic variants. We

are able to prove well-posedness for the introduced discretizations, and prove stability for
the approximations of the gradient flows for (anisotropic) length.

While there exist corresponding parametric finite element approximations of the higher
codimension flows, see Dziuk (1994), Dziuk, Kuwert, and Schätzle (2002), Pozzi (2007),
Deckelnick and Dziuk (2007), our schemes have excellent properties with respect to distri-
bution of mesh points. In particular, no remeshing is needed in practice, something that is
generally needed for existing approaches in the literature. In addition, our approximation
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Figure 37: Length preserving geodesic Willmore flow on a unit sphere. Above ~X0 and
below ~XM with |ΓM | = 5.48, 7.8, 9.27, 10.1.

of (2.37) is the first parametric scheme for the numerical approximation of anisotropic
Willmore flow for curves in the literature.

Moreover, we present fully practical approximations for geodesic geometric evolution
equations, something that is new in the literature. Again, these schemes lead to asymp-
totically equidistributed curves in practice. Natural applications of these novel approx-
imations are the computation of closed geodesics on given manifolds, as well as simple
isoperimetric problems on manifolds. Extending these schemes to include the case of
geodesics with fixed endpoints, as well as more complicated partitioning problems, will
be the subject of our future research.

Figure 38: φ(~p) =
√

0.1 p2
1 + p2

2 + p2
3, λ = 5 (left), φ(~p) =

√
0.5 p2

1 + p2
2 + p2

3, λ = 5

(right). In each case we plot ~X(t), t = 0, 0.2, 0.4, 0.6, T = 2.
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Figure 39: (φ(~p) =
√

0.5 p2
1 + p2

2 + p2
3) λ = 0.5 (left) and λ = 0.1 (right). We plot ~X(t),

t = 0, 5, 10, T = 20.
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